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Abstract

For unmanned aerial vehicles (UAVs) to take off and land on limited areas ver-
tical take-off and landing capabilities can be greatly beneficial. Such a system is
implemented in Kongsberg’s LocalHawk project.

A key challenge in vertical landing is vertical position and velocity estimation.
Some airframe designs take-off and land with a 90 degree pitch. While the singularity
could be solved by an alternative mechanization, the developmental nature of the
project inspire a singularity free implementation.

In this thesis a singularity-free navigation system for the LocalHawk UAV is
developed. This is done in the framework of the error-state formulation of the ex-
tended Kalman filter, which allows for a modular system where sensors and states
can be added and removed easily. The error state formulation allows the higher-rate
strapdown computer to work independently of the Kalman filter, and a navigation
solution can be computed when the aiding sensors are unable to provide measure-
ments. The attitude is represented by means of a direction cosine matrix, which
is a singularity free representation, and vector measurements are used for the atti-
tude. In addition, the added benefit from tightly coupled global navigation satellite
systems (GNSS) improve the solution during periods of reduced signal coverage,
particularly during maneuvers.

Simulations indicate that it may be possible to land vertically with onboard sen-
sors. Landing without aiding sensors caused too large uncertainty in the estimates,
and should not be attempted.
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Sammendrag

Vertikal take-off og landing er et viktig verktøy for ubemannede luftfartøy (UAV).
Med reduserte krav til utplasseringsomr̊ade blir bruksomr̊adet utvidet betraktelig.
Et slik take-off system er implementert p̊a Kongsbergs LocalHawk UAV.

Nøyaktig beregning av vertikal posisjon og hastighet er en nøkkelutfordring p̊a
dette omr̊adet. Enkelte flytyper tar av med nesen mot himmelen. Dette krever et
godt estimat av orientering, og singulariteten i eulervinklene må unng̊as.

Denne masteroppgaven omhandler utvikling og simulering av et singularitetsfritt
navigasjonssystem for LocalHawk-prosjektet. Dette gjøres ved hjelp av et utvidet
Kalmanfilter Orienteringen representeres ved en rotasjonsmatrise, og vektormålinger
brukes for orientering. Det er ogs̊a tatt i bruk satelittbasert navigasjon, hvor en tett
kobling gir økt ytelse i svake signalforhold, særlig under manøvre.

Simuleringer indikerer at det kan være mulig å lande vertikalt med sensorkon-
figurasjonen p̊a flyet, men nærmere testing og undersøkelser må gjennomføres før
dette kan fastsl̊as. Landing uten støttesensorer anbefales ikke, siden usikkerhetet i
estimatet øker.
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Chapter 1
Introduction

1.1 The LocalHawk Project

The LocalHawk student project is a long-term student project managed by Kongs-
berg Defence Systems (KDS). This project is the foundation for this thesis, and
the proposed navigation system will be implemented in the LocalHawk framework.
The overall project goal is to develop an unmanned aerial vehicle (UAV) capable of
filming a folk derby race autonomously. The UAV will need to take off, track the
participants and film them, and land without human aiding. Project specifications
have stated that the UAV should be capable of take-off and landing from a limited
area. This suggests a UAV capable of vertical take-off and landing (VTOL). This
impose several requirements on the navigation system, particularly in the context
of landing. In addition, the airframe design is not finalized and could change in the
future.

1.2 Thesis motivation

In order to track the participating race cars safely and effectively, the guidance,
navigation and control (GNC) system must be able to give accurate state estimates
and control surface deflections. An overview of a GNC system can be seen in Fig-
ure 1.1. The guidance system generate reference trajectories based on a predefined
goal or inputs from the flight computer, and generate reference signals for the con-
trol system. The control system give actuator values to the UAV control surfaces,
which affects the motion of the system. A sensor configuration measures physical
quantities related to the UAV motion, and a navigation system provide estimates of
the motion for feedback to the control and guidance systems.

Up until this point, a commercial off-the-shelf navigation system has been used
for the LocalHawk, the MTi-G from Xsens Technologies [3]. The main motivation
for replacing the commercial system is that it is provided as a “black-box” from
the manufacturer. This makes it difficult to combine the output with additional
sensors, and it is not known how the integration filter weighs the aiding sensor data.
Furthermore, the global positioning system (GPS) module does not output raw data,
which makes tight integration impossible.

3
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Guidance Control

Navigation

Plant

Sensors

Figure 1.1: A general overview of GNC systems.

1.2.1 Extension of previous work

The LocalHawk project has been running each summer for several years, and the
project as a whole has a solid foundation. However, since a commercial navigation
system has been used, there were no existing modules for navigation.

The navigation system were also a topic in the project report written during
the fall 2014 semester at NTNU [47]. The strapdown equations were tested exten-
sively on rate and implementation methods, and a simple test of inertial navigation
system/global navigation satellite system (INS/GNSS) were also conducted.

The work done in this thesis extends the navigation system into a multisensor
navigation system, with the addition of a magnetometer and barometer. Methods
for generating measurement data and simple kinematic test trajectories were also
implemented. Everything is implemented in the LocalHawk framework, enabling
the project participants to test and extend the system immediately.

1.3 Navigation requirements

1.3.1 Vertical take-off and landing designs

Several types of aerial vehicles capable of vertical take-off and landing (VTOL) have
been designed since the 1950s. For this thesis, they will be divided into two main
categories: Lift-off vehicles and tailsitters. It is possible to divide the categories
further, and there are several design choices to make with respect to size, payload
weight, stability and other criteria. However, for navigation purposes, the categories
described below will suffice.

Lift-off vehicles

The common factor of lift-off vehicles is the fact that the attitude of the vehicle
body with respect to the ground does not change in the process from takeoff to
nominal flight, as seen in Figure 1.2. Generally, there are two ways to achieve this:
Thrust vectoring, or separated actuators for upwards and forward thrust. Thrust
vectoring is the ability to change the direction of thrust from an actuator, such that
it can be directed at will. An example of this is shown in Figure 1.3a, where the
four propellers can be tilted to achieve forward thrust. Helicopters are also included
in this category, as they change the pitch of the rotor blades to change the thrust
vector.

Figure 1.3b shows an example of an aircraft with several actuators, where vertical
and horizontal thrust can be independently controlled. Quadcopters also belong to

4
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xb

xb

xb

zb

zb

zb

Figure 1.2: Expected behavior of lift-off vehicles.

(a) The LocalHawk 2014 prototype, by
Kongsberg Defence Systems. (b) Fan-in-wings with fixed thrusters.

Figure 1.3: Concepts for lift-off UAVs.

this category, as the difference in lift from the different propellers can be used to
control the attitude and position of the copter.

It should be noted that any directional sensors, for example ultrasonic range
finders, attached to lift-off aircraft will point in the same nominal direction during
all operation phases. Antennas for data transfer, such as GNSS and telemetry, can
also be placed for optimal reception at all times.

Tailsitters

The term “tailsitter” will be used to describe vehicles aligned vertically at takeoff,
followed by a transition to horizontal alignment during nominal flight, as seen in
Figure 1.4. This means we can expect an attitude change of approximately 90◦

pitch.
Some tailsitters are incapable of vertical landing, and must employ conventional

xb

xb
xb

zb

zb zb

Figure 1.4: Expected behavior of tailsitter vehicles.
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(a) Lockheed XFV. (b) Google wing.

Figure 1.5: Tailsitter designs.

means to land. Others can align the tail back down again, and land back on the
tail. Examples can be seen in Figure 1.5. Directional navigation sensors will now
change directions during the take-off process, and they might not be able to provide
consistent results during the transition phase. Considering that the sensors are
fixed to the UAV body, the measurement equations will not change. However, the
placement of the sensors must be considered to ensure the data are valid during
critical operations, such as landing.

1.3.2 Navigation data requirements

In [6], navigation is defined as “Determination of the position, velocity, and, option-
ally, attitude of a vehicle in a reference coordinate system.” As previously discussed
in [47], there are several advantages in using the earth-centered inertial (ECI) co-
ordinate frame for representing the attitude, position and velocity of the UAV. The
main benefit of this is that the IMU outputs data relative to the inertial frame,
which means the data does not have to be converted to local navigation systems
before propagating them through the strapdown system. Figure 1.6 shows some of
the sensors and their respective sensor frames. by resolving the navigation states in
the ECI-frame, there are no need to transform the measurements to other coordinate
frames. Another benefit is that there is no need to track any local navigation frame.

The principal disadvantage of this method is that other systems on the UAV
might require data in other formats, such as linear velocity in the body-frame. This
is solved by converting the attitude, position and velocity by a series of kinematic
transformations, described in Appendix A.

Navigation data accuracy

The operation consist of several phases, each of which impose requirements on the
navigation system. Attitude is important during both take-off and landing, since
the lack of aerodynamic forces means the actuator thrust forces must be directed
properly to ensure a safe take-off and landing. Landing is probably the most critical

6



1.4 Sensor configuration

IMU

GNSS

Barometer

Magnetometer

Strapdown
ECI

ECEF

NED

NED

T i
e

T i
n

T i
n

ECI
T n
i

NED

Kalman filter

Figure 1.6: Some sensors and their coordinate frames. T denotes a generic coordinate
transformation, which are discussed in Appendix A. The output is resolved in the NED-
frame for evaluation by for example the guidance module.

phase, where both vertical position and velocity, as well as horizontal velocity must
be accurately determined.

The exact toleration limits for landing autonomously depends on several factors.
Too large vertical velocity uncertainty might cause the landing gear to break, which
expose the gimballed camera. Rotorcraft experiments [35] reports successful landing
with a vertical velocity between 18 and 35 cm/s, and horizontal velocities in the
magnitude of 15cm. The navigation system will need to detect errors in that range
if the control system should be able to react on them.

1.4 Sensor configuration

1.4.1 Inertial measurement unit

Inertial measurement units (IMU) are able to provide high-rate measurements of
acceleration and angular velocity. These can be processed in a strapdown system
to produce estimates of attitude, velocity and position. However, their error char-
acteristics leads to unbounded position and velocity errors, which means they are
unsuited for standalone navigation over longer periods of time [23]. Nonetheless,
the IMU and strapdown equations provide a solid foundation for the navigation
solution, and the additional sensors will correct the long-term errors.

1.4.2 Global Navigation Satellite System

A global navigation satellite system (GNSS) is able to provide an absolute position
measurement, and most UAVs operating outdoors are equipped with a receiver [13].
The complementary properties of IMU and GNSS sensor suites means they often
are sufficient for UAVs operating without any obstacles [30].

However, GNSS systems are effected by a lot of error sources. Depending on the
GNSS used, the horizontal dilution of precision (HDOP) range from 1 to 3 meters
at 95% confidence level [50]. Combining different GNSS can lower this to about
0.5 meters, but this require more advanced hardware. This means the accuracy of
standalone GNSS is insufficient during landing, and other sensors have to be applied.

7
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1.4.3 Altimeters

Altimeters can be integrated into the system when improved accuracy in the vertical
direction is needed. This could be either measurements from a barometer attached
to the UAV, or some form of distance measurement from a ranging sensor. These
range finders can either be light based, or sound based [30]. Light detection and
ranging (LIDAR) have a better range, but are heavier and more power consuming.
The sound based ranging sensors are typically smaller and have a more limited
range.

1.4.4 Magnetometers

Three-axis magnetometers can be an independent sensor, or contained in an IMU.
They measure the magnetic field of the earth, which is useful in determining the
heading of the UAV. Together with accelerometers and gyroscopes, magnetometers
can be utilized in a complementary filter to determine the attitude of the UAV
without other measurement sensors [33]. Additionally, many IMUs come equipped
with magnetometers aligned with the accelerometers and gyroscopes, which means
all the measurements are readily available.

However, they are not able to produce sufficiently accurate estimates of roll and
pitch on its own. In addition, it has been suggested that electric motors and other
electric components on small-scale UAVs will distort the magnetic field to the point
where the magnetometer measurements are rarely useful [17].

1.4.5 Vision systems

It is possible to calculate translational and angular velocities of an object by using
the optical flow from a sequential set of images. There are several methods for
calculating optical flow [34], and vision-based autonomous landing of UAVs is a
promising research field [35].

1.4.6 Sensor configuration

In view of the sensors above, a suitable sensor configuration will have to be suggested
for the LocalHawk. The ADIS 16488 IMU [8] provides measurements of acceleration,
angular velocity and magnetometer in three orthogonal axes, as well as pressure data
from a barometer. Since most UAVs are equipped with an IMU for acceleration and
angular rate measurements, it will be advantageous to use the magnetometer and
barometer measurements, despite the challenges described in Section 1.4.4.

A GNSS receiver is almost always present in an UAV [13] due to the ability
to provide absolute position measurements. The IMU/GNSS complementary prop-
erties make this a good baseline for general navigation [11], and the additional
magnetometers and barometer could mean this sensor suite is sufficient for normal
operations. Similar UAV setups with a tactical grade IMU, a GNSS receiver and a
barometer reports a standard deviation of about 1.5 meters in the down-direction
[31]. Other studies report considerably better accuracy with the barometer, down
to 10 cm [49]. It will be investigated if the barometer is sufficient for landing.

8



1.4 Sensor configuration

The survey [30] notes that vision-based navigation is still very active, and a
limited amount of tests have been conducted. However, more recent papers [34] has
shown promising results on the topic. Since the LocalHawk will be equipped with a
camera, the navigation system should be designed such that integration of camera
measurements at a later stage is possible.
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Chapter 2
Litterature review

2.1 Kalman filtering

The Kalman Filter were introduced in 1960 [28], and has since been a popular tool
for state estimation in general [11, 12] and navigation applications [23]. The original
Kalman filter is a discrete and recursive formulation. Both of these properties are
desirable in computer implementations. The Kalman filter assumes a linear system
model:

xk+1 = Fkxk + uk (2.1a)

zk = Hkxk + wk (2.1b)

Where uk and wk are assumed to be white gaussian noise. If the system in Equa-
tion (2.1) is observable and the initial state has a gaussian distribution, the Kalman
filter has the following properties [39]:

• The state estimate is unbiased and optimal in the sense of minimum variance.

• The Kalman filter is asymptotically stable.

2.1.1 Nonlinear extensions

The most popular nonlinear extension of the Kalman filter is the extended Kalman
filter, which is the traditional workhorse for attitude estimation [15]. The matrices
Fk and Hk in the system model, Equation (2.1), are replaced by nonlinear functions
fk(xk) and hk(xk), respectively. These functions are linearized at the current state
estimate to yield a linear model that can be used to update the covariance.

Also note that there exists other Kalman filtering techniques for state estimation,
such as the sigma-point Kalman filter, also known as the unscented Kalman filter
(UKF) Instead of linearization, the UKF propagates a deterministic set of samples
through the state space [24]. Experimental results show that EKF and UKF have
similar performance for integrated inertial and satellite navigation systems [22, 21,
48, 46].
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(b) Error state filter structure. The red
lines indicate open-loop corrections, and
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Figure 2.1: General block diagrams of the total and error state filter. The dashed lines
indicate optional senor corrections. Adopted from [23].

2.1.2 Total- and error-state Kalman filters

There are two main strategies for approaching the navigation problem, largely in-
dependent of filter type. A total state filter, also known as a direct filter, calculates
the navigation state (attitude, velocity and position) of the host vehicle from sensor
measurements. In an error state filter, also known as an indirect filter, a single
sensor is used as a reference navigation sensor. This could be an IMU, or other
dead-reckoning sensors [23]. The reference sensors dead-reckoning capabilities are
used to provide an estimated navigation solution. The INS is used as a reference
navigation system, and the other sensors provide estimates of the error in the INS
solution. These errors can be either fed back to the INS to provide closed-loop cor-
rections or provided as corrections to the INS output as open-loop corrections. The
two designs can be seen in Figure 2.1.

The main advantages of the error state formulation are

• There are no need for a dynamic model of the host vehicle, as a dynamic model
of the IMU errors are used instead. The accelerometer and gyroscope error
model has slower dynamics, and a linear model can be used [40]. This also
means that the Kalman filter will be tuned to the sensor model instead of the
vehicle model. Changes in the aerodynamic properties of the UAV does not
affect the filter.

• The navigation system can be split into a high-rate component, the strap-
down system, and a low-rate component, the Kalman filter. This means the
high output rate of the IMU can be fully utilized even on platforms with low
computational power.

• If the Kalman filter is unable to provide error estimates for some reason, the
strapdown solution still provide a navigation solution by integrating the IMU
output. This will give the position relative to where the aiding sensors were
lost, and is referred to as dead reckoning [45].

As indicated in Figure 2.1b, there are two main methods of handling the error
state. The estimated error can be applied in an open-loop correction. This means
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the error may continue to grow, and sensor errors will not be corrected before the
measurements are integrated in the INS. Closed-loop correction remedy this by
applying and resetting the error. This means the estimated sensor errors are applied
before they are integrated in the INS, and the dynamic model are working around
the linearization point.

The main advantage of the total state filter is that the desired quantity, such
as position, velocity and attitude, are available directly from the filter without any
calculations [43]. A weakness is the increased computational complexity added by
integrating the high-rate IMU in the Kalman filter loop. However, the effects can be
reduced by applying an asynchronous filter, where only the prediction step is placed
in the INS loop [43].

To the author’s best knowledge, no error state formulation for UKF has been
derived and tested against the EKF. Thus, it is currently not known to what degree
an error state UKF would benefit from the points discussed above.

2.2 Singularity-free navigation

It is well known that all three-parameter attitude representations are singular [15,
19]. Using a three-parameter attitude representation for the global attitude will
impose restrictions on the navigation system. Although it is possible to avoid the
particular singularity of the tailsitter at 90◦ by choosing a different mechanization
than the classical “aerospace” Euler angle sequence, any sequence of rotations will
impose constraints on the navigation system. Switching the mechanization is im-
practical, and thus a singularity-free representation will be sought.

The two most common nonsingular attitude representations are the DCM and
the unit quaternion [45]. It has been indicated that the four-parameter quaternion
are more computationally efficient than the nine-parameter DCM, although this
is a diminishing advantage as computational power increase. DCM manipulations
consist of matrix multiplications, which can be more intuitive than the quaternion
product. Matrix multiplication is also a native operation in the Matlab/Simulink
framework.

A popular approach for extended Kalman filtering in the context of attitude es-
timation is the multiplicative extended Kalman filter (MEKF) [15]. The idea is to
represent the attitude as the composition between a nonsingular global parametriza-
tion, such as the quaternion, and a three-parameter local error. Although all three-
parameter attitude representations are known to have singularities [15], this is not
a problem with local errors.

2.3 Nonlinear observers

More recently, nonlinear deterministic observers have been developed for attitude
estimation purposes [33, 20] as an alternative to the EKF. Their stability are proven
using Lyapunov-based method. The proofs are mostly done with a DCM, although
it is possible to represent the observer with quaternions as well [33].

Another feature is that there are no covariance propagation, which significantly
decreases computational requirements [20]. Although this could be an advantage
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Chapter 2. Litterature review

in low-cost navigation technology, the covariance can provide valuable information
about the estimate accuracy. Another weakness of observers is that it is less modular,
such that it is nontrivial to add or remove sensors without affecting the Lyapunov
candidate solution.

2.4 GNSS under reduced conditions

INS/GNSS integration has seen a lot of research due to the complimentary benefits,
and navigation in obstacle-free environments is usually achieved with commercially
available systems [30]. This means researchers are focusing more on GNSS-denied
navigation.

In GNSS-reduced environments, the effect of combining independent GNSS sys-
tems can be significant [9]. Tight coupling benefit from the additional satellites in
the second GNSS system, and loosely coupled systems are also improved in envi-
ronments with moderate availability. This will be demonstrated later in this thesis.
When GNSS signals are in abundance, the effect is limited.

2.5 Relative navigation and obstacle detection

Relative navigation by obstacle detection is relevant for autonomous landing, and
several studies shows promising experiments by using vision sensors [35, 41, 32].
There are, however, challenges in combining relative and globally referenced states
[32]. Note that these reports make use of a rotorcraft UAV which means the results
are most easily applied to lift-off vehicles.

Placement of vision sensors on a tail-sitter is usually optimized for nominal flight.
A more light-weight detection system, such as an ultrasonic ranging sensor, could
be fitted at the tail of the UAV. Ultrasonic sensors have successfully been applied
for indoor navigation [44, 14]. Outdoor experiments have also been conducted with
a wireless sensor network and an ultrasonic sensor [37].
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Background theory

3.1 Coordinate frames

There are several reference frames in use for navigation. This section provides a
summary of the definitions. Transformations between them are found in Appendix
A.

3.1.1 Earth-centered inertial frame

An earth centered inertial (ECI) frame is an inertial coordinate frame [6]. This
means the attitude of the coordinate frames stay fixed: However, the origin of the
frame follows the center of the earth as it orbits the sun, which again rotates in
the galaxy. The effects of these rotations are usually ignored, since their impact is
negligible compared to other error sources [23].

The most commonly used inertial frames defines a z-axis along the earth rotation
axis. Some authors [39] define the x-axis to point towards the vernal equinox, while
others [42] does not put this limitation to frames termed “ECI”. We will define
the ECI-frame to coincide with the ECEF-frame described below at system startup,
which simplifies the relationship between the ECI-frame and the ECEF-frame. They
can be seen in Figure 3.1

3.1.2 Earth-centered earth-fixed frame

The earth-centered earth-fixed (ECEF) frame is a cartesian coordinate system which,
as opposed to the ECI-frame, rotates with the earth. We will use the World Geodetic
System 1984 (WGS 84) coordinate system as our fixed-earth global system [5]. This
standard defines several important parameters, such as the direction of the axes and
the parameters of the ellipsoidal approximation of the earth. Key parameters are
shown in Table 3.1. The origin of the coordinate frame is defined in the earth’s
center of mass. The z-axis coincides with the z-axis of the ECI-frame, while the
x-axis goes through a meridian defined by the International Earth Rotation Service
(IERS). The y-axis simply complete an orthogonal system [5].

It is also possible to reference ECEF-coordinates as ellipsoidal coordinates, and
will be called geodetic coordinates to clarify which coordinates are used. The refer-
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Figure 3.1: The ECEF-frame rotates with the earth, while the ECI-frame is fixed.

Table 3.1: Defining parameters of WGS 84, as well as some useful derived values.

re 6378137 m Equatorial radius
f−1 298.257223563 Reciprocal of flattening
ωe 7.292115× 10−5 rad/s Angular velocity of earth
GM 3986004.418× 108 m3/s2 Earth’s Gravitational constant

rp = re(1− f) 6356752 m Polar radius

e =
√

1− r2
p/r

2
e 0.0818 Eccentricity of ellipse

ence ellipsoid is, again, defined in [5]. The geodetic coordinates is frequently used
in global navigation, and are defined by two angles, longitude and latitude, as well
as a height above the reference ellipsoid. They can be seen in Figure 3.2, where the
latitude is denoted as µ, the longitude is denoted as l and the height by h. Note
how the geodetic latitude is defined differently from the geocentric latitude µc.

3.1.3 Local navigation frame

The local navigation frame is a cartesian coordinate system, which varies along the
location on the earth. The origin follows the UAV, and coincides with the main
sensor axes. There are several ways of defining a local navigation frame: Some
authors use an east-north-up (ENU) or north-west-up (NWU) frame. However,
the most common frame [23] is the north-east-down frame (NED). It has an x-axis
pointing towards the geographic north pole, and the z-axis is normal to the ellipsoid
at the chosen origin, downwards into the earth. See Figure 3.3 for an illustration.
The y-axis completes the right-hand system, and points east.

3.1.4 Body frame

The body frame is a fixed frame with respect to the target vehicle. The center of
rotation or a sensor system is conventional choices for the origin [23]. The x, y and
z-axes are commonly chosen along the longitudinal, lateral and normal axes of the
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Figure 3.3: The ECEF- and NED-frame relations.
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xbzb

by

Figure 3.4: The conventional choice of the body frame for an aircraft.

Table 3.2: The coordinate frames used in this thesis.

Frame abbreviation index
Earth-centered inertial ECI i
Earth-centered Earth-fixed ECEF e
Local navigation frame NED n
Body frame b
IMU sensor frame m

vehicle, as shown in Figure 3.4 [18].

3.1.5 IMU frame

In practical UAV design, it is not always possible to align the IMU with the center
of rotation. This is known as size effect [27]. It is convenient to use the IMU frame
for the navigation solution, but the measurements will have to be converted to the
body frame for guidance and control purposes. This transformation is done by using
lever arm compensation as described in Appendix A.

A summary of the coordinate frames are given in Table 3.2

3.2 Kalman Filtering

This section will give the Kalman filter recursion for the system in Equation (2.1),
repeated here:

xk+1 = Fkxk + uk (3.1a)

zk = Hkxk + wk (3.1b)

where k is the time index, xk is the system state, Fk is the state transition matrix, zk
is the measurement and Hk is the measurement matrix. The vectors uk and wk are
assumed to be white gaussian noise (WGN), which means they have the following
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properties:

E [uk] = 0 E [wk] = 0 (3.2a)

E [ukvj] =

{
Qk k = j

0 k 6= j
E [wkwj] =

{
Rk k = j

0 k 6= j
(3.2b)

That is, they have zero mean and are uncorrelated in time. The covariances are
described by the matrices Q and R. The initial state estimate is also assumed to
have a gaussian distribution, with expectation x̂0|0 and covariance P0|0.

With the assumptions described above, the optimal estimate of xk+1 given mea-
surements z0, . . . , zk, denoted x̂k+1|k can be predicted as

x̂k+1|k = Fkx̂k|k (3.3)

The covariance of this estimate can be predicted as

Pk+1|kFkPk|kF
>
k + Qk (3.4)

Given a measurement zk, the measurement innovation is given by the difference
between the observed and predicted measurement:

δzk = zk −Hkx̂k|k−1 (3.5)

The measurement innovation has covariance given by

Sk = HkPk|k−1H
>
k + Rk (3.6)

The measurement innovation and the corresponding covariance can be used to com-
pute the Kalman gain Kk, which can be used to update the state estimate and
covariance with the new information:

Kk = Pk|k−1HkS
−1
k (3.7)

x̂k|k = x̂k|k−1 + Kkδzk (3.8)

Pk|k = Pk|k−1 −KkSkK
>
k (3.9)

3.2.1 Nonlinear variations

The extended Kalman filter assumes the following model [11]:

xk+1 = f(xk, k) + uk (3.10)

zk = h(xk, k) + wk (3.11)

The EKF solves the nonlinearities by linearizing the models around the state esti-
mate x̂k|k and prediction x̂k|k−1:

Fk =
∂f(xk, k)

∂x

∣∣∣∣
x=x̂k|k

(3.12)

Hk =
∂h(xk, k)

∂x

∣∣∣∣
x=x̂k|k−1

(3.13)
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The computation of the estimate covariance (3.4), measurement innovation (3.6) and
the Kalman gain (3.7) can then be done with the linearized Jacobians. It should be
noted that the state prediction (3.3) and the measurement prediction in (3.5) can
be calculated with the nonlinear functions [11, 39]:

x̂k+1|k = f(x̂k|k, k) (3.14)

δzk = zk − h(x̂k|k−1, k) (3.15)

3.3 Mathematical review

3.3.1 Skew-symmetric form

Let u and v be three-dimensional vectors. The cross product of u and v can be
written as the following matrix multiplication [16]:

u× v =




0 −u3 u2

u3 0 −u1

−u2 u1 0


v = [u]× v (3.16)

where ui are the elements of u.

3.3.2 Matrix exponential

This section is based on the results in [36].

The matrix exponential of a matrix A can be defined by the power series expansion

exp A = I3 + A +
A2

2
+ · · · =

∞∑

j=0

Aj

j!
(3.17)

In [47], the matrix exponential were calculated by truncating the power series. How-
ever, the survey [36] notes that this is not a very precise method.

Since the implementation is done in Matlab/Simulink software, it is desirable
to use the methods provided from this framework. Matlab documentation [2] notes
that a Padé approximation with scaling and squaring is used. The scaling and
squaring part exploits that

exp A =
(
exp(A/2j)

)2j
(3.18)

which means that it is possible to compute the matrix exponential of A/2j, and
then multiply the solution by itself j times. The value of j is commonly selected
such that ‖A‖/2j ≤ 1. This ensures the exponential of the resulting matrix can be
efficiently computed.

The Padé approximation of the matrix exponential of a matrix is given as

exp A ≈ D−1
q Nq (3.19)
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where

Nq =

q∑

i=0

(2q − i)!q!
(2q)!i!(q − i)!A

i, Dq =

q∑

i=0

(2q − i)!q!
(2q)!i!(q − i)!(−A)i (3.20)

The survey [36] includes a list of tables for selecting the value of q to obtain desired
accuracy.

It is also possible to use the Taylor series in Equation (3.17) on the scaled matrix.
However, the Padé approximation with proper scaling is a very effective algorithm.
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Chapter 4
States and Sensor Measurements

This chapter defines the states used in the navigation system, as well as the sensor
models. This include the measurement equations and error characteristics, as well
as the models used for generating sensor data based on the true pose of the UAV.

4.1 Navigation states

The navigation state is given as

xN =




Ci
m

viim
riim


 (4.1)

where Ci
m, viim and riim is the attitude, velocity and position of the IMU with respect

to the ECI-frame. The IMU-frame has been chosen as the main navigation frame.
This is advantageous since the IMU is chosen as the reference navigation solution,
described below. It is also a fixed point on the airframe, such that changes in the
payload does not affect the navigation solution. This is the case with the center of
gravity (CG), which could change during operation. An example of this is fuel-based
aircraft. However, tilt-rotor aircraft might also have a slight shift of the CG.

It is also seen that the ECI-frame has been chosen as the reference frame. The
advantages of this is that there is no need to track the local navigation frame.
The reference navigation sensor, the IMU, also outputs data relative to this frame.
This simplifies the strapdown algorithm, as the IMU output does not have to be
converted.

4.1.1 Error states

To use an error state formulation, a consistent error definition must be decided. Let
Ĉi
m, v̂iim and r̂iim be the attitude, velocity and position estimates from the reference

navigation system. The errors are defined as

δCm
i = Cm̂

m = Ĉi
m
>Ci

m (4.2)

δviim = viim − v̂iim (4.3)

δriim = riim − r̂iim (4.4)
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Chapter 4. States and Sensor Measurements

The velocity and position errors are related by a difference, while the attitude error
is represented as an error DCM. Note that the error DCM represents a rotation from
the estimated attitude to the true attitude. The small-angle approximation can be
used to represent this error as a three-element vector [23]:

δCm
i ≈ I3 + [δψm

im]× >

= I3 − [δψm
im]× (4.5)

where δψm
im is the rotation vector from the m-frame to the m̂-frame. This approxi-

mation is usually valid in a closed-loop error state filter [23], and the three-parameter
vector δψm

im can substitute the nine-parameter error DCM from Equation (4.2) in
the error state. The error angle has no total state counterpart. Due to singularity
issues, no global three-parameter attitude representation will be used. This means
the error state can be written

δxN =



δψm

im

δvmim
δrmim


 (4.6)

4.2 Inertial measurement unit

The IMU measures specific force and angular velocity, or their integrated values.
These measurements will be propagated through a set of strapdown equations to
provide estimates of linear velocity, position and attitude. As previously mentioned,
it will be used as the reference navigation sensor. This section describes the mea-
surement model, while Section 5.2.1 provides an overview of the reference navigation
system, the strapdown algorithm.

4.2.1 Measurement equations

The output from the IMU can be modeled as

fI = fm + ba + wa (4.7)

ωI = ωmim + bg + wg (4.8)

where fm and ωmim are the true values of specific force and angular velocity. The
biases are assumed to consist of one known part, the bias estimate b̂a and b̂g, and
the residual bias δba and δbg:

ba = b̂a + δba (4.9)

bg = b̂g + δbg (4.10)

The measurement noise wa and wg are assumed to have covariances Ra and Rg,
where

Ra = σ2
aI3 (4.11)

Rg = σ2
gI3 (4.12)
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4.3 Barometer

which means the accelerometer and gyroscope triads are assumed to consist of sen-
sors with equal characteristics.

When integrated specific force and angular rate is output from the IMU, the
measurements are

υI =

∫ t+∆t

t

fI dτ

=

∫ t+∆t

t

fm + ba + wa dτ

= υm + bυ + wυ (4.13)

where υ denotes integrated specific force. The greek letter υ has been chosen to
denote the integrated specific force, which should not be confused with the linear
velocity v. The integrated angular rate is denoted α, and the measurements are

αI =

∫ t+∆t

t

ωI dτ

αI =

∫ t+∆t

t

ωmim + bg + wg dτ

= αmim + bα + wα (4.14)

4.2.2 Sensor states

Since the output from the IMU is used as a reference navigation solution, the IMU
state will contain the attitude, velocity and position solution. The bias is also
included in the IMU state such that

xI =




Ci
m

viim
riim
ba
bg




(4.15)

The IMU error state is given as the navigation errors and the bias errors:

δxI =




δψm
im

δviim
δriim
δba
δbg




(4.16)

4.3 Barometer

The barometer provides measurements of the pressure at the current location:

pm = p0

[
T0

T0 + kT (hm − h0)

] g0
RkT

(4.17)
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Table 4.1: Barometer parameters. The left column assumes mean sea level.

T0 288.15 K kT –0.0065 K/m
p0 101.325 kPa R 287.05 J/(kgK)
h0 0 m g0 9.80655 N/m

riim

riisB

rimsB

zi

xi

Figure 4.1: The barometer “satellite” geometry.

where T0, p0 and h0 are the temperature, pressure and altitude at a known reference
point. hm is the IMU height, referenced in the same system as the reference point.
This reference point will be taken to be zero geopotential height, which means the
zero level is the geoid. The constant kT is the temperature lapse rate, which is
determined using the altitude and the U.S. Standard atmosphere [4]. It is assumed
to be constant, which is valid for heights of 11 km. This should be sufficient for
the applications of the LocalHawk UAV. For altitudes above this, different values
for kT has to be used. R and g0 are the ideal gas constant and the average surface
acceleration due to gravity. The parameter values can be found in Table 4.1.

Since the pressure is a monotonically decreasing function of height, it is possible
to invert Equation (4.17) to obtain the height as a function of pressure:

hm = h0 +
T0

kT

[(
pm
p0

)−RkT
g0 − 1

]
(4.18)

The advantage of this transformation is that the barometer measurement can be
written as a pseudorange measurement by introducing a satellite at zero geopotential
height, as seen in Figure 4.1. The distance from the geopotential surface is given by

ρB =
∥∥rimsB

∥∥

=

√(
riisB − riim

)> (
riisB − riim

)
(4.19)

= hm − h0

=
T0

kT

[(
pm
p0

)−RkT
g0 − 1

]
(4.20)
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4.3.1 Measurement equation

The measurement is the pseudorange ρB with an added bias bB:

zB = ρB + bB + wB

=
T0

kT

[(
pm
p0

)−RkT
g0 − 1

]
+ bB + wB

= hB(x) + wB (4.21)

4.4 Magnetometer

By equipping the UAV with a magnetometer, it is possible to get measurements of
the local magnetic field resolved in the magnetometer frame. With knowledge of the
local magnetic field, the attitude of the UAV can be computed.

4.4.1 Measurement equation

The magnetometer triad outputs the magnetic field strength along the IMU axes,
and the measurement is given by

zM = mm + wM

= Cm
i mi + wM (4.22)

which gives

hM(x) = Cm
i mi (4.23)

Take care to note the difference between the boldface m, which is the magnetic
field measurement, and m, which is the IMU frame.

The magnetic field mi is a function of the user position and time. Given infor-
mation about the user position and current year, the model outputs the magnetic
field component in the NED-frame.

4.4.2 Magnetometer errors

The main error sources on magnetometers are unmodeled variations in the magnetic
field (local anomalies) and instrument errors [23]. The instrument errors are often
split into two components, the hard- and soft-iron magnetism. Hard-iron magnetism
is the addition of a magnetic field vector from magnets and electrical equipment,
while soft-iron magnetism is errors in the local underlying field, such as magnetic
field distortions from the material the magnetometer is mounted on.

These errors can often be determined through a process known as swinging, which
can be done mechanically or electrically [29]. It will be assumed that this process has
been completed, and that additional errors can be captured in the additive noise.
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Receiver
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processor

Navigation
processor

I,Q ρ, ρ̇ r,v

Figure 4.2: General GNSS hardware architecture.

4.5 Leveling

The gravity vector appears in the measurement equation for the accelerometer triad,
which means it can be used to determine the attitude of the UAV. This process is
known as leveling [23]. In order to do this, the acceleration of the UAV must be
calculated from an external source or assumption.

4.5.1 Measurement equation

The corrected IMU output will be used as a measurement of the attitude:

zA = υI − b̂υ

= υm + bυ + wυ − b̂υ

=

∫ t+∆t

t

fm(τ) dτ + ∆tba −∆tba + wυ

=

∫ t+∆t

t

Ci
m
> (aiim − gi

)
dτ + ∆tδba + wυ

≈ ∆tCi
m
> (aiim − gi

)
+ ∆tδba + wυ

which gives

hA(x) = ∆tCi
m
> (aiim − gi

)
+ ∆tδba (4.24)

Note that the subscript A is used for leveling, since the accelerometers are used.

4.6 Global navigation satellite system

The GNSS equipment tracks signals from satellites in view of the antenna. It is
structured as shown in Figure 4.2 [23], and consists of the receiver, the ranging
processor and the navigation processor. The operating principles of the receiver
and ranging processor are only briefly described here. For a full treatment, see for
example [23].

The receiver perform low-level signal processing, such as low-pass filtering and
sampling. These signals, in-phase (I) and quadra-phase (Q) signals are sampled by
the ranging processor and compared to predicted values from the ranging processor.
The difference can be used to determine the signal transmit time. Multiplying
the transmit time by the speed of light give the range from the antenna to the
satellite. Similarly, it is possible to calculate the rate of change, known as the range-
rate. In practice, inaccuracies in the clock receiver will perturb the measurements.
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4.6 Global navigation satellite system

The predicted range due to transmit time and clock errors is denoted pseudorange,
denoted ρ. The pseudorange-rate is denoted ρ̇.

The last stage of conventional GNSS hardware is the navigation processor. Given
pseudoranges and pseudorange-rates from at least 4 satellites, it is possible to resolve
the antenna position, velocity and aforementioned clock errors. There are several
methods to do this, some of which will be discussed in Section 5.6.3. The resulting
position and velocity can then be used to correct the position and velocity estimates.
This is called loose integration of GNSS, due to the separate navigation processor.

Another option is to skip the navigation processor and use the ranging processor
output directly. This is called tight integration.

It should also be noted that there exists integration schemes where the I’s and
Q’s are used as measurements in the integration filter. This, however, will not be
pursued further.

4.6.1 Measurement equations

Loose integration

For loose integration, the navigation processor has calculated a standalone position
and velocity estimate of the antenna, along with the receiver clock errors. The
antenna position and velocity must be transposed using the techniques described in
Appendix A to obtain the corresponding error states [23]:

riia = riim + Ci
mrmma (4.25)

and

viia = viim + Ci
m [ωmim]× rmma (4.26)

The receiver clock errors are also output, which give the total measurement as

zG =




riia
viia
bρ
bρ̇


+ wG (4.27)

where wG has covariance RG. This gives

hG(x) =




riim + Ci
mrmma

viim + Ci
m [ωmim]× rmma
bρ
bρ̇


 (4.28)

The measurement noise wG is assumed to capture all errors in the GNSS system,
ranging from the satellite motion to the resolution of position and velocity estimates
from the pseudorange measurements.
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riis1

riis2

riia
zi

xi

rias1
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Figure 4.3: Geometry of satellite navigation, simplified to two dimensions.

Tight integration

For tight integration, consider Figure 4.3. The measurements for tightly measured
systems consists of the pseudoranges and pseudorange-rates for each individual satel-
lite to the receiver antenna. The pseudorange is given as

ρj =
∥∥∥riasj

∥∥∥+ bρ

=
√

riasj
>riasj + bρ

=
√

(riisj − riia)
>(riisj − riia) + bρ (4.29)

for each satellite sj. The pseudorange-rate is given by the differentiation of the
pseudorange:

ρ̇j =
d

dt

(√
riasj

>riasj + bρ

)

=
2riasj

>

2
√

riasj
>riasj

d

dt

(
riisj − riia

)
+ bρ̇

= liasj
>
(
viisj − viia

)
+ bρ̇ (4.30)

where liasj is the unit vector pointing from the antenna to satellite j, also called
the Line of sight (LOS) vector. The pseudoranges and pseudorange-rates can be
grouped together as a single measurement:

zG =




ρ1
...
ρNs
ρ̇1
...
ρ̇Ns




+ wG (4.31)

where Ns is the total number of satellites in view. This will vary by the location of
the antenna and obstructions close to the antenna, but is obviously bounded by the
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4.7 Overview

Table 4.2: Error and total state overview.

State True value Estimate Error Composition

Attitude (DCM) Ci
m Ĉi

m δCm
i Ci

m = Ĉi
mδC

m
i

Attitude (Angle) δψm
im δCm

i ≈ I3 − [δψm
im]×

Position riim r̂iim δriim riim = r̂iim + δriim

Velocity viim v̂iim δviim viim = v̂iim + δviim

Accelerometer Bias ba b̂a δba ba = b̂a + δba

Gyro Bias bg b̂g δbg bg = b̂g + δbg

GNSS Clock Bias bρ b̂ρ δbρ bρ = b̂ρ + δbρ

GNSS Clock Drift bρ̇ b̂ρ̇ δbρ̇ bρ̇ = b̂ρ̇ + δbρ̇

Barometer Bias bB b̂B δbB bB = b̂B + δbB

total number of satellites in view. The measurement equation can then be written

hG(x) =




√(
riis1 − riia

)> (
riis1 − riia

)
+ bρ

...√(
riisNs − riia

)> (
riisNs − riia

)
+ bρ

lias1
> (viis1 − viia

)
+ bρ̇

...

liasNs
>
(
viisNs − viia

)
+ bρ̇




(4.32)

4.6.2 Sensor states

The modeled errors consist of the clock bias and the clock drift. As with the ac-
celerometer values, they are split into a known and unknown component:

bρ = b̂ρ + δbρ (4.33)

bρ̇ = b̂ρ̇ + δbρ̇ (4.34)

which give the GNSS total state and the GNSS error state as

xG =

[
bρ
bρ̇

]
δxG =

[
δbρ
δbρ̇

]
(4.35)

4.7 Overview

The states and sensor subscripts are summarized in Table 4.2 and Table 4.3, respec-
tively.
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Table 4.3: Sensor subscripts

IMU I
Barometer B

Magnetometer M
Leveling A
GNSS G
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Chapter 5
Filter Implementation

5.1 Filter structure

This implementation make use of an error state extended Kalman filter. The mea-
surement equations from the previous chapter will be linearized, and the error state
transition model will be derived.

The error state Kalman filter has been chosen primarily for its modularity, as
well as the advantages detailed in Section 2.1.2.

5.1.1 State transition model

A linear error process model will be used for the error state:

d

dt
δx = Fδx (5.1)

Since there are no interactions between the sensors in the system model [23], the
state transition matrix can be written

F =




FI 0 0
0 FB 0
0 0 FG


 (5.2)

where the 0 are zero matrices of appropriate size. The process model is discretized
before it is input to the EKF. Due to the slow dynamics and fast update rate, a
forward euler method is used to obtain the state transition model:

δxk+1 = (I + F) δxk = Fkδxk (5.3)

The discretization and linearization errors, as well as any unmodeled effects, are
assumed to be captured by the state transition noise. This give the state transition
model

δxk+1 = Fkδxk + uk uk ∼ N (0,Qk) (5.4)

The state transition noise covariance Qk is given by

Qk =




QI,k 0 0
0 QB,k 0
0 0 QG,k


 (5.5)
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Figure 5.1: A continuous-time strapdown system.

Further details of the state transition model are provided in the following sections.

5.1.2 Measurement Jacobians

Altough the process model is assumed to be linear, some of the measurements are
nonlinear. This includes the attitude measurements and the tightly coupled system.
The measurement Jacobian can be written

H =




HB

HM

HA

HG


 (5.6)

Further details of the individual Jacobians are also provided in the following sec-
tions.

5.2 Inertial measurement unit

5.2.1 Strapdown algorithm

The strapdown algorithm is the reference navigation solution, which integrates the
output from the IMU into attitude, linear velocity and position. They are related
by

Ċi
m = Ci

m [ωmim]× (5.7)

v̇iim = Ci
mfm − gi (5.8)

ṙiim = viim (5.9)

where gi is the gravity vector at the current position resolved in the inertial frame,
and [·]× denotes the skew-symmetric form of a three-element vector. A block diagram
is shown in Figure 5.1 Discretization of the strapdown has previously been discussed
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5.2 Inertial measurement unit

at length [47], and this section summarizes the results. The attitude update is given
by

Ci
m(t+ ∆t) = Ci

m(t) exp
(
[αmim]×

)
(5.10)

where exp(·) denotes the matrix exponential, and the implementation is discussed
in Section 3.3.2.

The velocity update is given by

viim(t+ ∆t) = viim(t) + υi(t+ ∆t) + ∆tgi(riim(t)) (5.11)

where the gravitational acceleration is assumed to be constant over the time interval,
and the rotated integrated specific force is given by

υi(t+ ∆t) = Ci
m(t)

[
υm(t+ ∆t) +

1

2
αmim(t+ ∆t)× υm(t+ ∆t)

]
(5.12)

The gravitational term is modeled by EGM2008, and the details will be given in
Section 6.1.1

The position calculation is a trapezoidal method with the velocity at the current
and previous time step:

riim(t+ ∆t) = riim(t) + ∆t
viim(t) + viim(t+ ∆t)

2
(5.13)

These calculations form the basis for the navigation system, and the other sensors
provide corrections to the strapdown solution and estimates of the IMU errors.

5.2.2 State transition matrix

Since the IMU is used as the reference navigation sensor, the navigation error state
and the IMU errors will be coupled.

Attitude error dynamics

The attitude error angle dynamics can be found by considering the skew-symmetric
component:

d [δψm
im]×

dt
≈ − dδCm

i

dt

= − dĈi
m
>Ci

m

dt

= − dĈi
m
>

dt
Ci
m − Ĉi

m
> dCi

m

dt

=
(
Ĉi
m [ω̂mim]×

)>
Ci
m − Ĉi

m
>Ci

m [ωmim]×

= − [ω̂mim]× >Ĉi
m
>Ci

m − Ĉi
m
>Ci

m [ωmim]×

= [ω̂mim]× δCm
i − δCm

i [ωmim]× (5.14)
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Chapter 5. Filter Implementation

Note that the error DCM is reset at every filter iteration. Thus it is approximated
by the identity matrix:

d [δψm
im]×

dt
≈ [ω̂mim]× − [ωmim]×

= [ω̂mim − ωmim]×

From the IMU output, Equation (4.8), the attitude error estimate is dependent on
the gyro bias error:

δψ̇
m

im ≈ ωI − b̂g − (ωI − bg)

= bg − b̂g

= δbg (5.15)

Velocity error dynamics

Consider the velocity error

dδviim
dt

=
d

dt

(
viim − v̂iim

)

= Ci
mfm − gi −

(
Ĉi
mf̂m − ĝi

)

= Ĉi
mδC

m
i

(
f̂m + b̂a − ba

)
− Ĉi

mf̂m

= Ĉi
m

(
δCm

i

(
f̂m − δba

)
− f̂m

)
(5.16)

where the various error definitions from Table 4.2 have been used to rewrite the
velocity error dynamics as functions of the other errors. The small-angle approxi-
mation is applied to Equation (5.16) to obtain

δv̇iim ≈ Ĉi
m

((
I3 − [δψm

im]×
) (

f̂m − δba
)
− ˆfm

)

= Ĉi
m

(
f̂m − [δψm

im]× f̂m − δba + [δψm
im]× δba − f̂m

)

= Ĉi
m

([
f̂m
]×
δψm

im − δba + [δψm
im]× δba

)
(5.17)

The last term in Equation (5.17) is a product of two error states. To obtain a linear
state transition model, this term must be assumed to be negligible, such that

δv̇iim ≈ Ĉi
m

[
f̂m
]×
δψm

im −Ci
mδba (5.18)

Position error dynamics

The position error is simply an integral of the velocity error:

δṙiim = δviim (5.19)
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5.3 Barometer

Bias error dynamics

For the accelerometer and bias, we use a first order Markov model:

ḃa = T−1
a ba + wba (5.20)

ḃg = T−1
g bg + wbg (5.21)

where Ta and Tg are diagonal time constant matrices.

IMU state transition matrix

The error state transition for the IMU can be formed from the previous states:

δẋI =
d

dt




δψm
im

δviim
δriim
ba
bg




=




03 03 03 03 I3

Ĉi
m

[
f̂m
]×

03 03 −Ĉi
m 03

03 I3 03 03 03

03 03 03 T−1
a 03

03 03 03 03 T−1
g







δψm
im

δviim
δriim
ba
bg




= FIδxI (5.22)

Equation (5.22) is the first element on the diagonal of Equation (5.2).

5.3 Barometer

5.3.1 Jacobian

The barometer measurement depends on the position:

∂hB
∂δriim

=
∂

∂δriim

√(
riisB − riim

)> (
riisB − riim

)

=
2
(
riisB − riim

)>

2
√(

riisB − riim
)> (

riisB − riim
)
∂(riisB − r̂iim − δriim)

∂δriim

=

(
riisB − riim

)>
√(

riisB − riim
)> (

riisB − riim
) (−I3)

= limsB
> (5.23)

The Jacobian corresponding to the bias element is simply

∂hB
∂bB

= 1 (5.24)

which give the total barometer Jacobian as

HB =
[

∂hB
∂δψmim

∂hB
∂δviim

∂hB
∂δriim

∂hB
∂δba

∂hB
∂δbg

∂hB
∂δxB

∂hB
∂δxG

]

=
[
01×3 01×3 limsB

> 01×3 01×3 1 01×2

]
(5.25)
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5.3.2 State transition model

Similarly to the IMU biases, the barometer bias is modeled as a first-order Markov
model:

ḃB = −T−1
B bB (5.26)

This give the matrix FB in Equation (5.2) as

FB = −T−1
B (5.27)

5.4 Magnetometer

5.4.1 Jacobian

The magnetometer measurement in Equation (4.22) can be rewritten in terms of
the estimate and error DCM by the definition in Equation (4.2):

hM = Cm
i mi

= Ci
m
>mi

= δCm
i
>Ĉm

i mi

(5.28)

The small-angle approximation is applied to write the measurement as a function
of the error state:

hM ≈
(
I3 − [δψm

im]×
)>

Ĉi
m
>mi

= Ĉi
m
>mi + [δψm

im]× Ĉi
m
>mi

= Ĉi
m
>mi −

[
Ĉi
m
>mi

]×
δψm

im (5.29)

where the anticommutative property of the cross product has been used. This give
the nonzero Jacobian elements as

∂hM
∂δψm

im

= −
[
Ĉi
m
>mi

]×
(5.30)

and the magnetometer Jacobian as

HM =
[
∂hM
∂δψmim

∂hM
∂δviim

∂hM
∂δriim

∂hM
∂δba

∂hM
∂δbg

∂hM
∂δxB

∂hM
∂δxG

]

=
[
−
[
Ĉi
m
>mi

]×
03 03 03 03 03×1 03×2

]
(5.31)
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5.5 Leveling

5.5 Leveling

5.5.1 Jacobian

The leveling measurement Jacobian is derived similarily to the magnetometer. From
Equation (4.24):

hA(x) = ∆t

((
Ĉi
mδC

m
i

)> (
aiim − gi

)
+ δba

)

≈ ∆t
((

I3 − [δψm
im]×

)>
Ĉi
m
> (aiim − gi

)
+ δba

)

= ∆t

(
Ĉi
m
> (aiim − gi

)
−
[
Ĉi
m
> (aiim − gi

)]×
δψm

im + δba

)
(5.32)

which give the nonzero elements of the Jacobian HA as

∂hA
∂δψm

im

= −∆t
[
Ĉi
m
> (aiim − gi

)]×
(5.33)

∂hA
∂δba

= ∆tI3 (5.34)

and the leveling Jacobian as

HA =
[

∂hA
∂δψmim

∂hA
∂δviim

∂hA
∂δriim

∂hA
∂δba

∂hA
∂δbg

∂hA
∂δxB

∂hA
∂δxG

]

=
[
−∆t

[
Ĉi
m
> (aiim − gi)

]×
03 03 ∆tI3 03 03×1 03×2

]
(5.35)

5.5.2 Acceleration calculation

Equation (5.33) shows that the acceleration aiim is needed to compute the attitude. A
common method is to assume the UAV is stationary or moving with constant velocity
with respect to the local frame. This means the only acceleration measured by the
accelerometers are the coriolis and centripetal acceleration described in Appendix
A, and the acceleration is given by

aiim ≈ 2
[
ωiie
]×

viim −
[
ωiie
]× [

ωiie
]×

riim (5.36)

With this approach, the measurement will be corrupted during maneuvers, with
accelerations of 1m/s2 corresponding to an error of approximately 5.7◦ [23]. To avoid
this, it is possible to add a maneuver detection algorithm. The most simple method
is to check the norm of the IMU output:

gm =
‖υ̂m‖

∆t
(5.37)

and use the attitude measurement if gm is in an interval such that

gm ∈ [gmin, gmax] (5.38)

and discard it otherwise. This should be used with care, as the accelerometer bias
errors will influence the value of gm. The limits should be chosen conservatively,
and it should be possible to deactivate this maneuver detection. For example, the
it should be deactivated during initialization.
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5.6 GNSS

5.6.1 Jacobian

The GNSS Jacobian depends on the integration structure.

Loosely coupled integration

First, rewrite the position measurement from Equation (4.28) in terms of the error
states:

riim + Ci
mrmma = riim + Ĉi

m + δCm
i rmma

≈ riim + Ĉi
m

(
I3 − [δψm

im]×
)

rmma

= r̂iim + δriim + Ĉi
mrmma + Ĉi

m [rmma]
× δψm

im (5.39)

which give the nonzero elements of the first three rows of the Jacobian as

∂riia
∂δψm

im

= Ĉi
m [rmma]

× (5.40)

∂riia
∂δriim

= I3 (5.41)

Similarly, the velocity can be rewritten in terms of the error states as

viim + Ci
m [ωmim]× rmma ≈vmim + Ĉi

m

(
I3 − [δψm

im]×
)

[ω̂mim − δbg]× rmma

=v̂iim + δviim + Ĉi
m [ω̂mim]× rmma + Ĉi

m [rmma]
× δbg + · · ·

[ω̂mim × rmma]
× δψm

im + [δψm
im]× (δbg × rmma) (5.42)

This give the nonzero elements of the fourth through sixth rows of the Jacobian as

∂viia
∂δψm

im

= Ĉi
m

(
[ω̂mim × rmma]

× − [δbg × rmma]
×)

= Ĉi
m [ω̂mim × rmma]

× (5.43)

∂viia
∂δviim

= I3 (5.44)

∂viia
∂δbg

= Ĉi
m

(
[rmma]

× − [δψm
im]× [rmma]

×)

= Ĉi
m [rmma]

× (5.45)

where it has been exploited that the Jacobian is evaluated at the prior error state,
which is zero due to filter reset. The two last rows of Equation (4.28) are trivial to
rewrite, and the Jacobian can be calculated as

∂bρ
∂δbρ

= 1 (5.46)

∂bρ̇
∂δbρ̇

= 1 (5.47)
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5.6 GNSS

All the Jacobian elements related to attitude are dependant on the lever arm between
the IMU and GNSS receiver antenna. If this value is small or the uncertainty is not
negligible, it could be advantageous to set this to zero [23]. This give the loosely
coupled measurement Jacobian as

HG =
[

∂hG
∂δψmim

∂hG
∂δviim

∂hG
∂δriim

∂hG
∂δba

∂hG
∂δbg

∂hG
∂δxB

∂hG
∂δxG

]

=




Ĉi
m [rmma]

× 03 I3 03 03 03×1 03×2

Ĉi
m [ω̂mim × rmim]× I3 03 03 Ci

m [rmma]
× 03×1 03×2

02×3 02×3 02×3 02×3 02×3 02×1 I2


 (5.48)

where the last two rows have been

Tightly coupled integration

Just as in the loosely coupled case, Equation (4.32) can be written in terms of the
error states. To avoid double work, note that the satellite position does not contain
any error states, and observe that

∂ρj
∂δx

=
∂ρj
∂riia

∂riia
∂δx

(5.49)

where the second calculation has been carried out in the loosely coupled case. The
first term is found as

∂ρj
∂riia

=
2
(
risj − riia

)>

2

√(
risj − riia

)> (
risj − riia

)(−I3)

= −liasj
> (5.50)

such that

∂ρj
∂δψm

im

= −liasj
>Ĉi

m [rmma]
× (5.51)

∂ρj
∂δriim

= −liasj
> (5.52)

and the clock bias is given by

∂ρj
∂δbρ

= 1 (5.53)

For the pseudorange-rate, note that the chain rule gives

∂ρ̇j
∂δx

=
(
viisj − viia

)> ∂liasj
∂δx

+ liasj
> ∂

∂δx

(
viisj − viia

)

=
(
viisj − viia

)> ∂liasj
∂δx

− liasj
>∂viia
∂δx

(5.54)

The calculations in the second term has already been done. Since the LOS vector is
a function of the antenna position, the Jacobian depends on the same terms as the
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loosely coupled measurement. However, these terms are often ignored due to their
low impact on the integrated navigation system [23]. This gives

∂ρ̇j
∂δψm

im

= −liasj
>Ĉi

m [ω̂mim × rmma]
× (5.55)

∂ρ̇j
∂viim

= −liasj
> (5.56)

∂ρ̇j
∂δbg

= −liasj
>Ĉi

m [rmma]
× (5.57)

and

∂ρ̇j
∂δρ̇

= 1 (5.58)

To summarize, the tightly coupled GNSS Jacobian is given by

HG =
[

∂hG
∂δψmim

∂hG
∂δviim

∂hG
∂δriim

∂hG
∂δba

∂hG
∂δbg

∂hG
∂δxB

∂hG
∂δxG

]

=




−lias1
>Ĉi

m [rmma]
× 01×3 −lias1

> 01×3 01×3 0 1 0
...

−liasN
>Ĉi

m [rmma]
× 01×3 −liasN

> 01×3 01×3 0 1 0

−lias1
>Ĉi

m [ω̂mim × rmma]
× −lias1

> 01×3 01×3 01×3 0 0 1
...

−liasN
>Ĉi

m [ω̂mim × rmma]
× −liasN

> 01×3 01×3 01×3 0 0 1




(5.59)

5.6.2 State transition matrix

As mentioned in Section 4.6.2, the clock bias is the integral of the clock drift. As-
suming a constant clock drift model gives

ẋG =
d

dt

[
bρ
bρ̇

]
=

[
0 1
0 0

] [
bρ
bρ̇

]
= FGxG (5.60)

Which constitutes the last two states of Equation (5.2)

5.6.3 GNSS Standalone Solution

The position and velocity of the receiver must be calculated from the pseudoranges
and pseudorange-rates to be used in the loosely coupled integration filter. An iter-
ative least-squares method can be used [39]. However, an algebraic solution derived
by [10] will be used here. This is known as the Bancroft method. We group the
satellite positions and measured pseudoranges in a vector as

aj =

[
reesj
ρj

]
1 ≤ j ≤ N (5.61)
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where N is the total number of observed measurements, which is required to be at
least 4. Define the matrix A as

A =




a>1
a>2
...

a>N


 ∈ RN×4 (5.62)

along with the vectors i0 and r defined by

i0 =




1
1
...
1


 r =




〈a1, a1〉
〈a2, a2〉

...
〈aN , aN〉


 (5.63)

where the Lorentz product of two 4-elements vectors are defined as

〈a,b〉 = a1b1 + a2b2 + a3b3 − a4b4 (5.64)

Compute the generalized inverse of A, A†, as well as the vectors u and w from

A† =
(
A>WA

)−1
A>W (5.65)

u = A†i0 (5.66)

w = A†r (5.67)

where W is a symmetric, positive definite weighting matrix. The identity matrix is
used here, although the inverse of the measurement covariance matrix can also be
used [10]. Next, find the roots λ1,2 of

〈u,u〉λ2 + 2 (〈u,w〉 − 1)λ+ 〈w,w〉 = 0 (5.68)

The two solution candidates are then given by

y1,2 = λ1,2u + w (5.69)

where

reea,i =



yi,1
yi,2
yi,3


 , bρ = −yi,4 (5.70)

The correct position and clock bias can be found by inserting the solutions into the
original equation for the pseudorange, Equation (4.29). There will be agreement
only in one case.

With a position solution, the line-of-sight matrix from the antenna to the satel-
lites can be found by normalizing the vector from the estimated position to each
satellite:

L =




−reas1
>/
∥∥reas1

∥∥ 1
−reas2

>/
∥∥reas2

∥∥ 1
...

...
−reasN

>/
∥∥reasN

∥∥ 1


 =




−l>1 1
−l>2 1

...
...

−l>N 1


 (5.71)
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The LOS-matrix is augmented with a column of ones to account for the receiver
clock states. Note that in the ideal noiseless case, the LOS-matrix is equivalent to
A defined in Equation (5.62) normalized by the last column.

The generalized inverse of L is found as in (5.65):

L† =
(
L>WL

)−1
L>W (5.72)

which can be used to calculate the velocity of the receiver antenna by [39]:

[
veea
bρ̇

]
= L† (ρ̇− ρ̇sat) (5.73)

where

ρ̇ =



ρ̇1
...
ρ̇Ns


 ρ̇sat =




l>1 vees1
l>2 vees2

...
l>NveesN


 (5.74)

5.7 Filter Reset

In a closed-loop error state formulation, the estimated error is applied to the attitude,
velocity and position in the reference navigation system. This means the error has
to be reset, else it is accumulated both in the strapdown system and the integration
filter. For this section, let x− denote a state before the reset, and x+ after reset.

Notice from Table 4.2 that all the error states except the attitude is a linear
function of the true state. For brevity, only the position error is considered in the
reset procedure, and the other errors are updated identically. The state update is
given by

r̂iim+ = r̂iim+ + δr̂iim (5.75)

Ĉi
m+ = Ĉi

m−δĈ
m
i

≈ Ĉi
m−
(
I3 − [δψm

im]×
)

(5.76)

The error state is reset by

δx = 018×1 (5.77)

The position update is just a linear relationship, such that

E
[
δriim+δr

i
im
>
+

]
= E

[
δriim−δr

i
im
>
−
]

(5.78)

and the angle error transforms as

E
[
δψm

im+δψ
m
im
>
+

]
= E

[
Cm+
m−δψ

m
im−

(
Cm+
m−δψ

m
im−
)>]

= Cm+
m−E

[
δψm

im−δψ
m
im
>
−
]
Cm+
m−
> (5.79)
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where Cm+
m− is estimated by given by the error state update as

Cm+
m− = C

m+

i Ci
m−

≈ Ĉi
m+

>Ĉi
m−

≈
(
Ĉi
m−
(
I3 − [δψm

im]×
))>

Ĉi
m−

= I3 + [δψm
im]× (5.80)

Which give the covariance reset as

P+ = GP−G> (5.81)

G =

[
I3 + [δψm

im]× 0
0 I15

]
(5.82)
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Chapter 6
System Testing and Results

In order to test the system, a true trajectory for the UAV needs to be determined,
and sensor data must be generated. The sensor data generation is the same for all
cases, and is described in the following section. Some general considerations, such
as parameters, are given after that. Finally, each test case is described and results
are presented.

6.1 Sensor measurement generation

6.1.1 IMU

Given values of acceleration, angular velocity and position of the UAV, the IMU
outputs of specific force and angular velocity are straightforward to calculate. The
specific force are a linear combination of acceleration and gravity with added bias
and measurement noise:

fI = amim −Cm
i gi + ba + wa (6.1)

Gravity model

The term gi is the acceleration due to gravity. The earth gravitational model 2008
(EGM08) will be used to model the gravity. Matlab software implements this model
in the ECEF-frame [1], and the interface is shown in Figure 6.1. Given a position
reem, the EGM model outputs gravity values ge. These can be rotated back to the
ECI-frame by the coordinate transformations described in Appendix A.

Bias model

The bias are generated as constant terms, and are drawn from a normal distribution:

ba ∼ N (03×1, σ
2
basI3) (6.2)

EGM 2008
reeb ge

Figure 6.1: The EGM08, with interface from Matlab/Simulink implementation.
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where the standard deviation σbas is called bias repeatability, and is usually found
on the IMU data sheet.

The measurement noise wa is assumed to be WGN:

wa[n] ∼ N (03×1, σ
2
aI3) (6.3)

The angular velocity does not need to be corrected for gravity, such that the mea-
surement generation is given directly by Equation (4.8). The bias is also considered
constant:

bg ∼ N (03×1, σ
2
bgsI3) (6.4)

The measurement noise standard deviation is denoted σg.
The integrated specific force and integrated angular velocity can be calculated

analytically if the closed-form expression for specific force and angluar velicty is
known. However, this is in most cases impractical, and a numerical intergration
method is preferred. A trapezoidal integration scheme is used, similar to the one
used in the chosen IMU [8]. It is given by

υI [Dn] =
Ts
2

D−1∑

d=0

fI [Dn− d] + fI [Dn− d− 1] (6.5)

where Ts is the internal sample rate, and D > 0 is the decimation rate. The output
rate depends on the IMU sampling time and chosen decimation rate, and given by
∆t = DTs. The noise parameters can be applied before or after the summation.
Rewrite the noise term of Equation (6.5) as

wυ[Dn] =
Ts
2

D−1∑

d=0

wa[Dn− d] + wa[Dn− d− 1]

=
Ts
2

(wa[Dn] + wa[Dn− 1] + wa[Dn− 1] + wa[Dn− 2] + . . .

. . .+ wa[Dn−D + 1] + wa[Dn−D + 1] + wa[Dn−D])

=Ts

(
1

2
wa[Dn] + wa[Dn− 1] + . . .+ wa[Dn−D + 1] +

1

2
wa[Dn−D]

)

The covariance can then be expressed as the covariance of the sum:

Rυ = T 2
s

(
1

22
Ra + Ra + . . .+ Ra +

1

22
Ra

)

= T 2
s

(
D − 1

2

)
Ra (6.6)

It should be noted that this trapezoidal integration scheme introduce correlation
between samples, as the sample wa[Dn] will appear in the expression for wυ[D(n+1)]
as well.

Similar calculations can be done for the integrated angular velocity:

αI =
Ts
2

D−1∑

d=0

ωI [Dn− d] + ωI [Dn− d− 1] (6.7)
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h [m]

µ [deg]

l [deg]

t [year]

mn [nT]

Figure 6.2: The WMM, with interface from the Matlab implementation.

The covariance of wα can be found using the same techniques as for the integrated
specific force:

Rα = T 2
s

(
D − 1

2

)
Rg (6.8)

The accelerometer sensor data is also used in the leveling data.

6.1.2 Barometer

Barometer data is generated given the height of the UAV and the geoid height at the
current location. Matlab software provides functions to calculate the geoid height,
which is converted to a satllite position in the inrtial frame by the transformations
in Appendix A. The measurements is then calculated by Equation (4.17) with the
height difference hm − h0 given by Equation (4.19).

6.1.3 Magnetometer

The magnetic measurements will be described by the World Magnetic Model (WMM),
released by the U.S. National Oceanographic and Atmospheric Administration [7].
It describes the magnetic field by means of north, east and down intensity at a given
position and time, and is released on a five-year basis.

Similarly to the gravity model, the WMM is also implemented in Matlab, and the
interface is shown in Figure 6.2. This shows that the ECEF ellipsoidal coordinates
and the current year is needed to calculate the local magnetic field, which is resolved
in the NED-frame. The magnetic field varies slowly over time, and the year input
is assumed to be constant.

After calculating the true local magnetic field with the true user position, the true
DCM Cm

n can be used to rotate the vector to the IMU-frame, as in Equation (4.22).

6.1.4 GNSS

To test the GNSS integration, a satellite model is needed. The constellation will
follow simple circular orbits with constant velocity. The satellites orbital planes are
assumed to be evenly distributed around the planet, and the satellites in a given
orbital plane is assumed to be evenly spread around the orbit.

Given a constant circular orbit, the satellite positions can be given as

riisj = Ci
sj

r
sj
isj

(6.9)
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zi

xi
yi

xsjysjzsj

Rs l

µ

i

Figure 6.3: The satellite orbits are defined by a constant orbital radius and a set of three
rotations.

where the satellite position in its own frame is given by the orbital radius of the
constellation:

r
sj
isj

=



Rs

0
0


 (6.10)

The DCM Ci
sj

can be found be a sequence of rotations. First, rotate the i-frame

by an angle l about the zi-axis. This angle is the ascending node. It describes the
latitude where the orbital plane cross the equator. Then, rotate by the inclination
angle i, common to all the satellites, about the new x-axis. An inclination angle
of 0 means the satellites follow the equator, which give low coverage at the poles.
Last, rotate by an angle of µ about the new z-axis. This is called the perigree of the
satellite. This give

Ci
sj

= Cz(l)Cx(i)Cz(µ) (6.11)

The rotations are illustrated in Figure 6.3. The velocity of a satellite is given by

viisj =
d

dt
riisj

=
d

dt

(
Ci
sj

r
sj
isj

)

= Ċi
sj

r
sj
isj

+ Ci
sj

v
sj
isj

= Ci
sj

[
ω
sj
isj

]×
r
sj
isj

= Ci
sj

v
sj
isj

(6.12)

Where the satellite angular velocity can be expressed as

ω
sj
isj

=




0
0
ωµ


 (6.13)
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Table 6.1: GNSS constellation parameters. The parameters are selected to mimic the
american GPS constellation [25].

Sample rate 2.5 Hz
Number of orbital planes 6
Number of satellites per orbital plane 4
Satellite orbital radius 20200km
Satellite orbital period 12 hours
Orbit inclination angle 55◦

Figure 6.4: GNSS constellation generated by the parameters in Table 6.1. Initial satellite
positions in red, satellite trajectories in blue.

due to constant inclination angle and ascending node. If Tµ is the orbital period of
the satellite, ωµ = 2π/Tµ. This give

viisj = Ci
sj




0
2πRs
Tµ

0


 (6.14)

This describes the motion of a single satellite. To generate a full constellation, the
parameters l and µ will be varied. The number of values of l will determine the
number of satellite orbits, while µ will determine the number of satellites per orbit.
This give the total number of satellites as Nsat = NlNµ.

6.1.5 GNSS realization

The GNSS constellation is described by the parameters in Table 6.1. This give a
total number of 24 satellites. To determine what satellites are able to provide
measurements to the receiver, a mask angle will be set. It describes the maximum
angle between the satellite position vector and the line-of-sight vector from the
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θm

s1
s2

θs2

Figure 6.5: The mask angle determines if the satellite measurement is valid. Here, the
measurement from s1 will be rejected, and s2 is valid.

antenna to the satellite. The criteria is given as

θsj > θm (6.15)

This is illustrated in Figure 6.5. Note that due to the flattening of the earth, the
mask angle is not the minimum elevation required in the local NED-frame. However,
this difference will be neglected.

6.2 Initialization test

This test simulates an initialization phase before takeoff. This is important to get a
good estimate of the attitude, position and velocity before the UAV starts moving.
It is also important to identify error parameters such as biases. It is known that
there are three unobservables for stationary INS/GNS systems [38]. These three
variables are combinations of accelerometer biases and attitude errors.

6.2.1 Setup and parameters

Since there are no information on the state of the system, all the navigation states
will have to be initialized with some assumptions. If the location where the UAV is
deployed is approximately known, the latitude and longitude can give an approxi-
mate initial position. In this particular case, the initial latitude and longitude were
rounded down to the nearest integer, giving a position error of about 50km. With
an approximate position, the initial velocity can be calculated by assuming the UAV
is locally at rest. The coordinate transformation in Appendix A can be applied to
calculate this velocity. Finally, the UAV attitude is assumed to align with the local
NED-frame at the selected location. The bias parameters are initialized at zero.

Due to the large initial position error, the barometer has been disabled for the
first 100 seconds. This is to let the GNSS handle the coarse positioning, and then
adjust with the barometer.

To overcome the observability issue, motion is introduced to the system. The
angle input can be seen in Figure 6.6, which simulates “rocking” the UAV back
and forth. The position is assumed to be locally at rest throughout the simulation,
which means the velocities and accelerations are zero.
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Figure 6.6: The input on the system in the initialization test.
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Figure 6.7: The euler angles and angle errors resolved about the NED-frame for the
initialization test case.

6.2.2 Results

The estimated attitude and attitude errors can be seen in Figure 6.7. There is an
initial transient of 9 degrees about the down-axis, which is resolved in the first 10
seconds. After this, there is a small steadystate error, less than a degree, about
the north- and down-axis. This is resolved after the system starts moving after 30
seconds.

The velocity error can be seen in Figure 6.8. The transient velocity errors are
large due to the initial position error, and the largest transients are gone after
about 20 seconds. However, the transients are not completely gone until about 60
seconds into the simulation. The effect of enabling the barometer after 100 seconds
is notable, and reduce the error estimates and covariance by about a third.

The position errors are seen in Figure 6.9. Once again, the large initial error cause
quite large transient errors, and the estimates overshoot. Enabling the barometer is
very effective for the position estimate and reduces the position error and covariance
to about one tenth.
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Figure 6.8: Velocity errors resolved in the NED-frame for the initialization test case,
with the transient error on the left and steady-state on the right.
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Figure 6.9: Position errors resolved in the NED-frame for the initialization test case,
with the transient error on the left and steady-state on the right.
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Figure 6.10: Bias estimates for the accelerometers and gyros for the initialization test
case.
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Figure 6.11: True position data for the reduced GNSS signal test.

The bias estimates are seen in Figure 6.10. There are notable transients in the
accelerometer esimates, which can explain the attitude errors seen in Figure 6.7. The
constant error up to 30 seconds in the y-axis accelerometer bias can also explain the
constant attitude error. As with the angle errors, this offset is also resolved by tilting
the UAV.

6.3 Reduced GNSS signal test

This test simulates a simple flight pattern, and the purpose is to compare loose and
tight GNSS coupling.

6.3.1 Setup and parameters

The trajectory is seen in Figure 6.11, and lasts for 150 seconds. It is assumed that
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Figure 6.12: The available number of measurements for the GNSS receiver over time.
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Figure 6.13: Angles and angle errors for the loose coupling. The error bars correspond
to one standard deviation.

GNSS measurements are received from all satellites in view for the first 40 seconds.
After this, the number measurements are reduced according to a pseudorandom
pattern as shown in Figure 6.12.

Recall that 4 satellites are needed for a position and velocity fix in a loosely cou-
pled system. This means there are several periods where there are no measurements
available to the integration filter. To aviod the transient errors from the intialization
test, the estimates are initialized at their true values.

6.3.2 Results

The angle and angle errors for the loosely coupled test case is shown in Figure 6.13.
Maneuvers seems to affect the attitude estimate, with biggest error in the yaw angle.
There are two notable errors, one between 50 and 60 seconds and one between 120
and 130 seconds. The uncertainty in the last error is detected by the filter, but the
first error is not detected along the horizontal errors.

The velocity and velocity errors for the loosely coupled test is seen in Figure 6.14.
The most notable errors seem to happen around the same time as the angle errors.
This due to the transformation of integrated specific force from the body axis to
the inertial axis. However, the errors seems to persist after the error angle has been
corrected. The barometer seems to correct the errors along the vertical axis.

The position and position errors are seen in Figure 6.15. The constant velocity
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Figure 6.14: Velocity and velocity errors for the loose coupling. The error bars corre-
spond to one standard deviation.
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Figure 6.15: Position and position errors for the loose coupling. The error bars corre-
spond to one standard deviation.

errors are seen as linearly increasing position errors. Other than these consequences
from the attitude errors, the filter seems to capture the information loss. Once
again, the barometer seems to aid in the vertical channel.

The angles and angle errors for the tightly coupled system is shown in Figure 6.16.
The GNSS coupling does not influence the attitude measurement sensors, such that
the behavior is expected to be similar to the loosely coupled test. The same attitude
errors due to maneuvers are seen in the tightly coupled case.

The velocity and velocity errors for the tightly coupled system is shown in Fig-
ure 6.17. They are also influenced by the attitude errors. However, it seems the cor-
rect errors are estimated faster, and the transient after the misalignment is shorter.
This is seen especially well during the attitude error at 125 seconds.

The position and position errors for the tightly coupled system is shown in Fig-
ure 6.18. The improved velocity correction give a noticeable performance increase
in the position errors.
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Figure 6.16: Angles and angle errors for the tight coupling. The error bars correspond
to one standard deviation.
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Figure 6.17: Velocity and velocity errors for the tight coupling. The error bars corre-
spond to one standard deviation.

62



6.4 Landing test

-600
-400
-200

0
200
400
600

x-
ax
is
(N

or
th
)

Position [m]

-900
-600
-300

0
300
600
900

y-
ax
is
(E
as
t)

-45
-30
-15
0
15
30
45

0 15 30 45 60 75 90 105 120 135 150

z-
ax
is
(D

ow
n
)

t [s]

rnim
r̂nim

-15
-10
-5
0
5
10
15

x-
ax
is
(N

or
th
)

Position error [m]

-15
-10
-5
0
5
10
15

y-
ax
is
(E
as
t)

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

0 15 30 45 60 75 90 105 120 135 150

z-
ax
is
(D

ow
n
)

t [s]

δrnim
δr̂nim

Figure 6.18: Position and position errors for the tight coupling. The error bars corre-
spond to one standard deviation.

Figure 6.19 and Figure 6.20 compares the velocity and position for each case with
a simulation with full coverage the entire simulation time. There are some errors
that seems to coincide with the attitude error regardless of the signal strength, but
the duration of the effects are notable in the reduced test case. Clearly, the tight
integration manages to use the information from a reduced set of satellites to reduce
the error much faster than the loose coupling.

6.4 Landing test

6.4.1 Setup and parameters

This test simulates the landing of the UAV under various conditions. The true
trajectory is the same in all the cases, and can be seen in Figure 6.21. The system
is initialized at the true state, and the position and velocity is perturbed by a zero-
mean random value. The covariance for this variable is given by the steady-state
covariance from the end of the initialization test.

The first case we consider is with all aids enabled. This will serve as a comparison
for the later tests, and also be used to assert if the sensor configuration is sufficient
for autonomous landing. The two following tests will disable all aiding sensors to
assert the dead reckoning capabilities of the IMU and the strapdown equations.

6.4.2 Results

Figure 6.22 shows the velocity and velocity errors for the aided landing.
Figure 6.23 shows the position and position errors for the aided landing.
Next, the same maneuver is performed without any aids. Figure 6.24 shows the

velocity and velocity errors. Since the velocity is initialized at an offset and there are
no measurement updates, the estimates stay constant. However, there are not a big
change, which means the inertial navigation system is able to detect the maneuever
along the z-axis. The standard deviation of the error also grows, as should be
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Figure 6.19: Velocity errors for the reduced GNSS simulations compared to a full cover-
age simulation. The loosely coupled system is on the left and the tightly coupled system
on the right.
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Figure 6.20: Position errors for the reduced GNSS simulations compared to a full cover-
age simulation. The loosely coupled system is on the left and the tightly coupled system
on the right.
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Figure 6.21: True trajectory for the landing test.
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Figure 6.22: Velocity and velocity error estimates during landing with all aids enabled.
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Figure 6.23: Position and position error estimates during landing with all aids enabled.
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Figure 6.24: Velocity and velocity error estimates during landing without aids enabled.
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Figure 6.25: Position and position error estimates during landing without aids enabled.

expected when there are no measurements. The z-axis standard deviation grows a
lot slower than the two others, due to the initial accuracy from the barometer.

Figure 6.25 shows the position and position errors. The constant velocity errors
are integrated to linearly increasing position errors. Once again, the z-axis benefit
from the added accuracy from the barometer.

Next, the initial standard deviation of the position and velocity estimates is
reduced to a tenth. This is to test the potential of the inertial navigation algorithm
with a more accurate sensor suite. Figure 6.26 shows the velocity and velocity
errors. The constant offset is still present, but about a tenth of the magnitude.
This is not really that surprising, given the reduction in standard deviation. The
standard deviation of the error estimate, however, is significantly reduced.

Figure 6.27 shows the position and position errors. The reduced velocity error is
directly influencing the position error, and the standard deviation is also significantly
reduced.
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Figure 6.26: Velocity and velocity error estimates during landing without aids enabled.
The standard deviation of the initial values have been reduced.
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Figure 6.27: Position and position error estimates during landing without aids enabled.
The standard deviation of the initial values have been reduced.
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Chapter 7
Simulink Models

This chapter will illustrate the components implemented in the Simulink framework
to give a brief overview of the scope. It does not include every single operation, but
the most essential components are described below. Constant parameters are set in
the Matlab/Simulink workspace, and does not need to be input explicitly into the
block. The blocks have been edited to be consistent with the notation used in the
thesis and to remove unnecessary details. The relationship is shown in Figure 7.1.

The components of the individual sensor modules are shown in Table 7.2, Ta-
ble 7.3, Table 7.4, and Table 7.5 or Table 7.6. The two GNSS interfaces have been
configured with the same input/output to make changing between them easier.

The EKF components are shown in Table 7.7. Note that the sensor indices
are not present in the EKF blocks. The sensors interface the EKF via modules
that combines the measurement, the measurement prediction and the Jacobian in
a single Simulink bus. This is to ensure the desired modularity, as changes in the
sensor configuration is simply a change in the interface.

A few utility blocks are seen in Table 7.8. They have been used in various com-
ponents of the implementation, mainly for rate transition, interpolation, reset and
cumulative summation. Additionally, many of the basic operators used in Chap-
ter 5 are native computations in Simulink, such as addition, multiplication and
vector concatenation. These have been left out of this overview.

input 1

input 2

input n

output 1

output 2

output m

System name

(a) A generic block from the Simulink
software.

input 1

input 2

input n output m

output 2

output 1

System name

(b) The corresponding block in this chap-
ter.

Figure 7.1: The simulink block on the left correspond to the block on the right.
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Table 7.1: Components of the strapdown computer.

Model Notes
α̂m

im

δψm
im

Ĉi
mAttitude

computer
Implements Equation (5.10).

υ̂m

Ĉi
m

α̂m
im

Specific
force

resolution

υ̂i

Implements Equation (5.12).

υ̂i

δv̂i
im

δr̂iim

v̂i
im

r̂iim

Navigation
computer

Implements Equation (5.11) and Equa-
tion (5.13).

r̂iim

t

Gravity
computer

∆tgi
Interface the gravity model described in
Section 6.1.1 by a set of coordinate trans-
formations.

δxI
δv̂i

im

δr̂iim

δψ̂
m

im

INS corrections

Decompose the error state in each com-
ponent. This block also handles the rate
transition between the strapdown system,
the sensor blocks and the filter by insert-
ing extra zeros.

IMU
corrections

υI

αI

δxI

υ̂m

α̂m
im Implements the IMU correction.

Table 7.2: Components of the barometer module

Model Notes

Transform
pressure to
height

pm ρB
Implements Equation (4.18).

Find satellite
position

t
r̂iim

r̂iisB
Implements Equation (4.19).

Construct
LOS-vector

r̂iisB
r̂iim

limsB Implements Equation (5.23).

70



Table 7.3: Components of the magnetometer module.

Model Notes

Calculate
inertial

magnetism

r̂iim

t
mi

Interface the magnetic model described in
Section 6.1.3 by a set of coordinate trans-
formations.

Table 7.4: Components of the leveling module.

Model Notes

Calculate
coriolis and
centripetal
acceleration

r̂iim

v̂i
im

υ̂i
rot Implements Equation (5.36).

Maneuver
detection

υ̂m valid maneuver Implements Equation (5.37) and Equa-
tion (5.38).

Table 7.5: Components of the loosely coupled GNSS module.

Model Notes

Decompose
satellite data

Satellite
data

riis

vi
is

ρ

ρ̇

Demodulates the satellite data into vec-
tors.

Standalone
position

riis

ρ

r̂iia

bρ

Implements the Bancroft position
method.

Find LOS
matrix

riis

r̂iia

[
lias
]

Implements Equation (5.71).

Standalone
velocity

viis

ρ̇
[
lias
]

v̂iia

bρ̇ Implements Equation (5.73)
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Table 7.6: Components of the tightly coupled GNSS module.

Model Notes

Decompose
satellite data

Satellite
data

riis

vi
is

ρ

ρ̇

Demodulates the satellite data into vec-
tors.

Estimate LOS
and ranges

riis

r̂iim

b̂ρ

Lias

hG

Implements the range part of Equa-
tion (4.32)

Estimate
range-rate

Lias

viis

v̂iia

b̂ρ̇

hG Implements the range-rate part of Equa-
tion (4.32)
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Table 7.7: Components of the Kalman Filter. All the blocks are found in Section 3.2.

Model

Ĉi
m

υ̂m

FIINS state
transition

State
transition
matrix

Ĉi
m

υ̂m

F

Update
estimate

K

δz

δx

Symmetrize
and reset
covariance

P

δψ̂
m

im

P

P

F

H
K

P
Calculate gain
and update
covariance

Fk

Pk−1|k−1

Q

Covariance
prediction

Pk|k−1

Pk|k−1

H

R

K

S

Innovation
covariance and

filter gain

Pk|k−1

K

S

Pk|kUpdate state
covariance
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Table 7.8: Various utility blocks.

Model Notes
Skew-

symmetric
form

u [u]
×

Block diagonal
matrix

F1

F2

F12
Block diagonal form.

F12 =

[
F1 0m×n

0n×m F2

]

Accumulate
error

δbγ bγ Accumulates a general error signal, typi-
cally used for biases.

Data validation
x

s
x

The output is valid only if the flag s is
set. This block is typically used to set
measurements to zero between sampling.
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Chapter 8
Discussion

The tests were only conducted using simple kinematic models, but they still provide
some insight in the performance and challenges with the system.

8.1 Initialization

The gyro bias estimates seems to be determined regardless of the motion of the
UAV. The accelerometer and magnetometer measurements indicate that the UAV
is at rest, which allows the biases to converge to their true values.

However, the accelerometer and attitude errors are dependent on motion to be
estimated. From a practical perspective, the idea of rotating the UAV might be
undesirable. However, alternative is to allow the accelerometer bias and attitude
measurement to have a constant offset during takeoff, which would hopefully be
corrected during regular operations. Depending on the take-off method, this may
not be crucial. For vertical take-off, the axes of primary interest are the x- and
y-axes. The initial errors about these axes are not very large, such that a vertical
take-off could still be possible with some unintended horizontal motion. This motion
could be sufficient to correct the estimates.

8.2 Reduced GNSS signals

The loose and tight coupling seem to have comparable velocity and position errors
when the receiver have signals from all the satellites in range, as seen in Figure 6.19
and Figure 6.20. The most notable errors occurs at about the 55 and 125 second
mark, along the x- and y-axis. These are corrected relatively quickly, independent
of coupling mode.

The same errors occur when a reduced number of satellite measurements are
available. In this case, the difference between the loose and tight coupling is more
notable. The loose coupling is unable to detect the velocity error due to few mea-
surements in the time interval. This is demonstrated best in the north direction
after 55 seconds and in the east direction after 55 and 125 seconds. This cause the
velocity error to persist, and the position errors grows linearly, resulting in position
errors up to about 15 meters.
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The tight coupling is able to provide some corrections at each interval, and
the velocity error is reduced more quickly. This improve the position estimates
substantially, and the error is approximately halved compared to the loose coupling.

The velocity errors at the 55 and 125 second mark also occurs when all the satel-
lite measurements are available. This means these errors are caused by other effects.
The attitude estimation is independent of the GNSS coupling, and Figure 6.13 and
Figure 6.16 show the same effects. There are two main attitude which both occur at
the same time the velocity is offset. An attitude error cause the strapdown computer
to rotate the integrated specific force to the wrong frame, which cause an error in
the velocity estimate.

It is evident that a good attitude estimate would reduce the velocity error during
maneuvers, which again would reduce the effects of reduced satellite measurements.
With accurate initial estimates of the attitude, velocity and position, a high quality
IMU should be able to coast through the periods of reduced GNSS measurement
availability without accumulating too large errors. This means that maneuver de-
tection can be considered equally important for the purposes of mitigating velocity
errors during periods of reduced GNSS measurement availability.

In Section 1.3.2, it was argued that the most critical phase of VTOL operations
was during landing. The maneuvers during this phase should not be of the magni-
tude seen during these maneuvers, such that the effects during this phase will be less
than the magnitude indicated here. However, the underlying problem of attitude
errors during maneuvers should not be discarded.

Also note that a kinematic simulation model has been used to generate the data
for testing, and that these combinations of maneuvers might be less of a problem
with a more realistic UAV model.

8.3 Landing and dead reckoning

The third test trajectory concerned a simple landing model. With the aiding sen-
sors enabled, the error along the z-axis were approximately 10 cm. This means the
barometer could be able to provide sufficiently accurate data for autonomous land-
ing. However, the simulation model has not considered environmental effects, which
means the barometer is assumed to be calibrated before take-off, or has some relative
measurement to provide precise estimates of the ground height. These relative mea-
surements might be barometric data from a ground station (differential barometry),
or some relative altitude measurements such as an ultrasonic range finder. The ad-
ditional benefit of a range finder is another, independent height measurement, which
improves the redundancy of the system.

Without the landing aids, the z-axis position error were about 6 meters after 30
seconds. This means that dead reckoning were unsuited for landing scenarios. How-
ever, this does not necessarily imply a low-quality strapdown system. The system
were initialized with lower errors, and the horizontal errors were less than a meter
after 30 seconds. The error is still too significant to be used for landing purposes,
but the scenario shows the potential precision of the system without aiding sensors
for longer time periods. Also note that the standard deviation of the estimates were
considerably larger than accepted values during landing with dead reckoning.
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Another aspect of autonomous landing is horizontal motion. Depending on the
landing area, a moderate horizontal position error might not be problematic. How-
ever, it is important to have a good estimate of the horizontal error. Landing gears
are usually not designed to handle large horizontal velocities, and large errors might
cause damage to the UAV. With the accuracy of the current system, as seen in
Figure 6.23, the horizontal velocity errors are probably on the borderline of what
would be considered feasible. Dead reckoning landing with the current system is not
possible. However, an improvement

Throughout this section, it has been argued that a better initial position estimate
would significantly improve the dead reckoning results, as the inertial navigation
system is quite capable. It is not immediately evident how to reduce these errors,
especially in the horizontal direction. One possibility is to use differential or RTK
GNSS systems, although that would require additional ground station hardware.

8.4 Further work

The next steps from this point is naturally divided into two parts: Further inte-
gration of the system into the LocalHawk framework, and developing methods to
improve the navigation solution.

The first step of further integration is to set up the navigation system imple-
mentation with the guidance and control systems. This is a prerequisite for testing
on the hardware platform and the airframe. When airframe design is finalized, the
transformation between coordinate frames such as the body frame and the IMU-
frame can be implemented. Designing an interface to the LocalHawk simulator
would also be advantageous.

Of immediate research interest is attitude determination under maneuvers. Fur-
ther research on horizontal velocity calculations exclusively with onboard sensors
are also interesting. So far, most implemented landing systems utilize some form of
aid from a ground station or vision-aided landing using markers.

79



Chapter 8. Discussion

80



Chapter 9
Conclusion

This thesis has described an implementation of a navigation system for the Kongs-
berg LocalHawk UAV using an error state extended Kalman filter. The sensor
configuration currently consists of an IMU as the reference navigation sensor and
barometer, magnetometer and GNSS receiver as aiding sensors. The filter has been
designed to allow changes in the sensor configuration, such that additional sensors
are easily added.

The simulations indicate that the system is initialized correctly even under no-
table initial error, and the biases were correctly resolved by rotating the UAV. Tight
coupling of GNSS improved the position and velocity estimates during reduced sig-
nals conditions. This was found to be especially important during maneuvers. The
barometer provides valuable measurements of motion in the vertical direction, which
is important during landing. However, horizontal motion estimation accuracy were
bounded by GNSS.

The work in this thesis can be expanded in several ways, both in implementa-
tion and research. The implementation can be further integrated into the Local-
Hawk framework, such that the system can be validated experimentally. Additional
sensors, such as an ultrasonic ranging sensor, would give both redundancy and addi-
tional accuracy for the purpose of detecting the height above ground. Another topic
of future research is attitude determination during maneuvers, as accelerations dis-
turb the leveling measurment. This attitude error affects the velocity estimates, and
coping with them would be an interesting topic.
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Appendix A
Coordinate Transformations

The different sensor measurements are sometimes given in different coordinate frame.
In addition, it might be advantageous to convert data to different frames for guidance
and control purposes, for example in the body frame. The transformations are based
on rigid body kinematics, which can be found in a classical mechanics textbook
such as [16]. More specialized texts such as [23, 18, 39] provide calculations of the
navigation-specific kinematics.

A.1 Earth-centered inertial and earth-centered earth-

fixed coordinates

To convert between the ECEF and ECI-frame, we can utilize that the z-axes are
coincident. This means that the DCM relating the ECI and ECEF-frames are the
simple rotation about the z-axis:

Ce
i = Cz(ωet) (A.1)

where ωe is the earth angular velocity, defined in [5], and t is the time since system
initialization. This give the position, velocity and acceleration transformation as
[23]

reeb = Ce
ir
i
ib riib = Ci

er
e
eb (A.2)

veeb = Ce
i

(
viib −

[
ωiie
]×

reeb

)
viib = Ci

e

(
veeb + [ωeie]

× reeb
)

(A.3)

aeeb = Ce
i

(
aiib − 2

[
ωiie
]×

viib +
[
ωiie
]× 2riib

)
(A.4)

aiib = Ci
e

(
aeeb + 2 [ωeie]

× veeb + [ωeie]
× 2reeb

)
(A.5)

A.2 ECEF cartesian and ellipsoidal coordinates

For this section, let x, y and z be cartesian coorinates in an earth-centered, earth-
fixed coordinate frame, and µ, l and h be the geodetic latitude, longitude and height
above the ellipsoid for the same point. Conversion from ellipsoidal to cartesian
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coordinates are straightforward [26]:

x = (N(µ) + h) cosµ cos l (A.6)

y = (N(µ) + h) cosµ sin l (A.7)

z =

(
r2
p

r2
e

N(µ) + h

)
sinµ (A.8)

where re and rp denotes the equatorial and polar radius of the ellipsoid, and the
normal radius of curvature N is given by

N(µ) =
r2
e√

r2
e cos2 µ+ r2

p sin2 µ
(A.9)

For conversion from cartesian to ellipsoidal coordinates, the choice of geodetic ver-
sus geocentric latitude creates a nontrivial coupling between latitude and height.
While closed-form solutions exist, an iterative algorithm is usually applied [39]. The
equations are given by

tan l =
y

x
(A.10)

tanµ =
z√

x2 + y2

(
1−

(
r2
e − r2

p

)
N(µ)

r2
e (N(µ) + h)

)−1

(A.11)

h =

√
x2 + y2

cosµ
−N(µ) (A.12)

which can be solved iteratively by the following procedure [18]:

1. Compute an approximate latitude µ0 = atan

[
z(1−e2)−1√

x2+y2

]
, where e =

√
1− (rp/re)2.

2. Compute the corresponding normal radius of curvature N(µ0) from Equa-
tion (A.9).

3. Compute a height estimate by h =

√
x2+y2

cosµ0
−N(µ0).

4. Compute an improved latitude by µ = atan

[
z√
x2+y2

(
1− e2 N(µ0)

N(µ0)+h

)−1
]
.

5. If µ 6= µ0 within acceptable tolerance limits, let µ0 = µ and go back to step 2.

6. Compute the longitude by l = atan
[
y
x

]
.

A.3 ECEF to NED

The local NED plane depends on the location on the earth, and the transformation
is given as [18]:

Ce
n =



− cos l sinµ − sin l − cos l cosµ
− sin l sinµ cos l − sin l cosµ

cosµ 0 − sinµ


 (A.13)
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A.4 NED to body

A.4 NED to body

One of the most common methods to describe the body frame relative to the NED-
frame is the roll-pitch-yaw convention [16]. This consists of a rotation about the
initial z-axis, then a rotation about the resulting y-axis and finally a rotation about
the resulting x-axis. This give the DCM from frame n to b as

Cb
n = Cz(ψ)Cy(θ)Cx(φ) (A.14)

In addition to having only three parameters, these three Euler angles are also easy
to visualize. They have a disadvantage, however, in that they have a singularity at
90◦ pitch:

Cz(ψ)Cy(π/2)Cx(φ) =




0 cosψ sinφ− sinψ cosφ sinψ sinφ+ cosψ cosφ
0 cosψ cosφ+ sinψ sinφ sinψ cosφ− cosψ sinφ
−1 0 0




=




0 sin(φ− ψ) cos(φ− ψ)
0 cos(φ− ψ) − sin(φ− ψ)
−1 0 0


 (A.15)

The angles φ and ψ only appear through their difference, such that they cannot be
determined with a pitch angle of 90◦. Because of this weakness, the euler angels will
not be used in the internal mechanization of the algorithm. The DCM will be used
instead.

A.5 Transposition of navigation solutions

The different sensors are located in different positions on the UAV. To properly
integrate the sensor data, they need to reference the same point. Assume that the
sensor B has fixed a attitude and location relative to the airframe b. The position
of the sensor in the ECI-frame is then given by

riiB = riib + ribB

= riib + Ci
ar
b
bB (A.16)

and the velocity is found from differentiation:

viiB =
d

dt

(
riib + Ci

br
b
bB

)

= viib + Ċi
br
b
bB + Ci

bṙ
b
bB

= viib + Ci
b

[
ωbib
]×

rbbB (A.17)

where it has been used that the lever arm is constant in the body frame.
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