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Numerisk analyse av den dynamiske responsen til eksisterende jernbanebroer i 

det norske jernbanenettet 

Numerical analysis of the dynamic response of existing railway bridges in the Norwegian railway network 

Det norske jernbanenettet består i dag av mer enn 4000 km med spor der ca. 2500 km er elektrifisert 

og 250 km er dobbeltspor. Videre har den norske nasjonale jernbanenettet mer 2500 broer og er i 

vekst. I dag blir over 12 millioner tonn gods transportert på jernbanenettet hvert år med et mål om å 

doble dette innen 2020. Dermed er det av stor betydning å sikre de investeringene som er gjort i norsk 

jernbaneinfrastruktur. Kravene til jernbanenettet vil øke, spesielt vil en økning i antall avganger og 

høyere hastigheter øke etterspørselen av detaljert kunnskap om de eksisterende konstruksjonene. 

Oppgaven skal fokusere på eksisterende jernbanebruer. I det norske jernbanenettet eksisterer det 

mange forskjellige brosystemer med varierende levetid på grunn av varierende degradering. Ved å 

introdusere nye overvåkningssystemer og etablere numeriske modeller til disse broene kan deres 

tilstand bli vurdert i dag så vel som deres prestasjoner ved høyere belastning og høyere hastighet. Det 

er derfor ønskelig å etablere numeriske beregningsmodeller som kan evaluere de statiske og 

dynamiske egenskapene til ulike jernbanebruer. Fokus vil være på ulike lastmodeller og ulik 

detaljeringsgrad på de numeriske modellene. Tanken er at sentrale parameterer i den dynamiske 

responsen skal kunne stilles mot tilsvarende målte verdier. Her er etableringen av dempningsmodeller 

og komplekse egenfrekvenser viktig å vurdere. Dette skal så implementeres og evalueres i et FE-

program. Som del av oppgaven er det tenkt å gjennomføre en kartlegging av ulike laster (statiske og 

dynamiske) som er spesielle for jernbanebruer, state-of-the-art litteraturstudie. De valgte bruene skal 

så kontrolleres med ulike laster mot eksisterende regelverk der ulike aktuelle problemstillinger 

trekkes frem og utforskers. Spesielt er problemstillinger rundt vedlikeholdsbehov og 

levetidsevaluering noe som bør trekkes frem. Det bør redegjøres for opprinnelige intensjoner og 

videreføre/utvikle behovene for dagens bruk.  
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Sammendrag
Jernbanen er en viktig del av infrastrukturen i dagens samfunn og for imøtekomme dagens
og morgendagens krav til jernbanen er et behov for å styrke og vurdere tilstanden til eksis-
terenede jernbanebroer. Denne oppgaven fokuserer på numerisk analyse av den dynamiske
responsen til jernbanebroer. Oppgaven vurderer forskjellige viskøse dempningsmodeller
siden de representer en viktig del av de dynamiske egenskapene til jernbanebroer. Videre
studeres problemet med bevegelige laster, og de kvalitative forskjellene til tre last mod-
eller blir etablert gjennom studier på en fritt opplagt bjelke. Resonans fenomener assosiert
med bevegelige laster blir også vurdert. Deretter blir et studie på Tallerås jernbanebro
presentert, der de dynamiske egenskapene og oppførselen til broa blir studert gjennom en
tre dimensjonal element model i Abaqus. Resultatene viser at forskjellen mellom de ulike
last modellene skyldes graden av treghetskrefter som er inkludert og mengden energi som
dissiperes av modellen. Studien viser at resonans effekter indusert i Tallerås er som følge
av den gjentagende belastningen fra togets aksler. Resultatene viser også at det er viktig
å inkludere sporet i den dynamiske analysen av fagverksbroer i stål. Oppgaven avsluttes
med forslag til videre arbeid.
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Abstract
The railway is an important part of the infrastructure in todays society and there is a
need to increase the capacity and verify the existing railway network to face the challenges
of tomorrow. To meet todays and the future demand set upon the railway network, there
is a need to strengthen and assess the condition of existing railway bridges. This thesis
focuses on numerical analysis of the dynamic response of railway bridges. First, viscous
damping models are considered since they represent an important part of the dynamic
properties of the bridge. Then the moving load problem is investigated, and studies
on the dynamic response of a simply supported beam under different load models are
conducted to determine the qualitative difference between the moving force, moving mass
and the sprung mass model. The resonance phenomena induced by the moving loads
are also considered. Finally, a case study is presented where the dynamic properties and
behavior the Tallerås railway bridge is determined by establishing a three dimensional
finite element model of the bridge in the finite element code Abaqus. The results show
that the difference between the load models are the level of inertia effects included and the
amount of energy dissipated by the load model. The case study indicate that resonance
effects induced in the Tallerås railway bridge is due to the repeated loading from railway
axles. The results also show that it is important to include the track in dynamic analysis
of steel truss bridges. The thesis finishes by suggesting suitable subjects for further work.
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Chapter 1

Introduction

The railway is an important part of the infrastructure in todays society. The challenges
associated with growing population, climate change and an ever rising need for transport
of goods means that the railway will have an ever bigger role in the future. To meet the
future demand set upon the railway network, it is necessary not only to construct new
railway, but also to strengthen and assess the condition of the existing railway network.
An essential part of the railway network are railway bridges. Studies on the railway
network in Europe show that more than 60% of the railroad bridges are more than 50
years old [1].

1.1 Problem description
To assess the condition of existing railway bridges and to determine appropriate measures
to strengthen these bridges, it is necessary to establish and verify numerical models which
are able to reproduce the dynamic behavior of railway bridges under load from moving
trains.

1.2 Scope of the thesis
The overall focus of this thesis is on numerical analysis of the dynamic response of railway
bridges. The dynamic response of railway bridges is dependent on the dynamic properties
of the bridge and the loading imposed by the train.

The dynamic properties of the bridge are determined by the inertial, elastic and dis-
sipative properties of the bridge. The inertial and elastic properties are relatively easily
determined once the material and geometry of the bridge is known. The dissipative prop-
erties on the other hand is generally a more difficult subject. The first topic of this thesis is
therefore to investigate different damping models for dynamic analysis of railway bridges.

In order to verify that the numerical model represents the dynamic properties of the
actual bridge, it is necessary to conduct real life measurements on the bridge. The mea-
surements of the bridge are used to calibrate the numerical model through considerations
about damping and resonance frequencies. This thesis will not conduct any real life exper-
iments, but rather look at the theoretical background to extract the damping ratios and
natural frequencies from the numerical model. The second topic of this thesis is therefore

1



the quadratic eigenvalue problem and the extraction of natural frequencies and damping
ratios.

The train and the loading it imposes on the bridge is then considered. Different ways to
represent the train in a numerical analysis is reviewed and dynamic effects associated with
moving loads are considered. The third topic is therefore on load models and dynamic
effects associated with moving loads.

Finally, a case study of an existing railway bridge will be conducted where the above
main topics will be combined to determine the dynamic properties and response of the
Tallerås railway bridge.

1.3 Structure of the report
The layout of this thesis is given below.

Chapter 2 briefly considers the single degree of freedom system. Through the deriva-
tion of the single degree of freedom system, important concepts and terminology will be
introduced which will aid the discussion in the following chapters.

Chapter 3 considers multi degree of freedom systems, viscous damping models and the
quadratic eigenvalue problem.

Chapter 4 reviews different methods to model the train and the difference between
the load models and their effect on the structure. The section explains how the load
models are implemented in Abaqus. The phenomena of resonance from the moving loads
is discussed.

Chapter 5 is a study of the Tallerås railway bridge. The work done in the previous
chapters will be extended to a full three dimensional model with a real bridge and trains.
Different load models, tracks and dynamic phenomena will be discussed.

Chapter 6 contains concluding remarks about the main points found in the thesis and
further work.

2



Chapter 2

Single degree of freedom system

This chapter briefly considers the single degree of freedom (SDOF) dynamic system.
Through the derivation of the single degree of freedom system, important concepts and
terminology will be introduced which will aid the discussion in the following chapters.

2.1 Viscously damped single degree of freedom sys-
tems

In the derivation of the dynamic response of a SDOF system it is assumed that the
energy dissipation from the system can be represented by viscous damping. After the
SDOF system with viscous damping is derived, non-viscous damping is considered briefly.
Figure 2.1a shows a wagon with mass m connected to the surroundings through a spring
with stiffness k and a viscous dashpot with damping constant c. The displacement of the
wagon is uniquely defined by the horizontal displacement u(t), i.e it is a SDOF system.
An external force P (t) is working on the wagon, and it is assumed that there is no friction
associated with movement of the wagon. The spring exerts a force fS on the body equal
to the product of the stiffness coefficient k and displacement u(t). Similarly the dashpot
exerts a force fD on the wagon equal to the product of the damping coefficient c and
velocity u̇(t). By d’Alemberts principle, the inherent inertia of any body may be defined
as a force fI opposite in direction and equal in magnitude to the product of the mass m
and the acceleration ü(t). The free body diagram (FBD) in figure 2.1b shows all forces
working on the system.

c

k

m
P (t)

u(t)

(a) General SDOF system.

fD

fS

fI

P (t)

(b) Free body diagram of the SDOF sys-
tem.

Figure 2.1: The figure shows a single degree of freedom system, and the definition used
in the derivation of the response of a single degree of freedom system.
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Taking force equilibrium in the horizontal direction yields the equation of motion for
a general SDOF, see equation (2.1).

mü(t) + cu̇(t) + ku(t) = P (t) (2.1)

The solution of equation (2.1) consists of a complementary solution and a particular
solution. The complementary solution is obtained by solving the homogeneous version of
equation (2.1), i.e P (t) = 0, see equation (2.2).

mü(t) + cu̇(t) + ku(t) = 0 (2.2)

The general solution of equation (2.2) is u(t) = Aeλt, the non-trivial solution is then given
by the characteristic equation shown below, equation (2.3a).

λ2 + c

m
λ+ k

m
= 0 (2.3a)

λ = − c

2m ±
√(

c

2m

)2
− k

m
(2.3b)

It is here appropriate to define the natural frequency1 ωn, the critical damping ccr and
the damping ratio ξ.

ωn =
√
k

m
(2.4a)

ccr = 2mωn (2.4b)

ξ = c

ccr
(2.4c)

Introducing equations (2.4) into equation (2.3b) yields equation (2.5).

λ = −ξωn ± ωn
√
ξ2 − 1 (2.5)

From equation (2.5), three characteristic solutions to equation (2.1) emerges depending
on the value of ξ. If ξ = 1, the radical in the characteristic equation (2.5) vanishes
and the system is said to be critically damped. If the damping is larger than critical
damping, i.e ξ > 1, the characteristic equation will have two real valued roots and the
system is said to be overdamped. If the damping is less than the critical damping, i.e
ξ < 1 the characteristic equation will have two complex roots and the system is said to
be underdamped. The solution for the damped free vibrating SDOF system is given by
equation (2.6), where A and B are constant determined by initial conditions, u(0) and
u̇(0).

u(t) =


e−ξωnt [A cos(ωdt) +B sin(ωdt)] for ξ < 1
e−ωnt [A+B t] for ξ = 1
e−ξωnt [A cosh(ω̄t) +B sinh(ω̄t)] for ξ > 1

(2.6)

1ω is strictly speaking known as the circular or angular frequency. The distinction is important when
the frequency f = ω

2π is used. In this thesis, the term frequency will be used about the angular frequency
ω, in cases where f is also used, the context will clearly avoid any ambiguity.
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Where ω̄ = ωn
√
ξ2 − 1 and wd, known as the damped natural frequency, is defined by

equation (2.7).
wd = ωn

√
1− ξ2 (2.7)

The damping ratio ξ for a particular system may be determined by measurements
or by making an educated guess. Over the years, measurements have been made on a
wide range of structures, such that a rational approach to estimating ξ for a structure,
would be to utilize data aquired for a similar structure to the one being analyzed. For
common engineering structures, where there are no special devices for added damping,
the damping ratio ξ is seldom larger than 15%, see [2, p.454].

0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t/Tn

u
(t

)/
u

0

underdamped, ξ<1
critically damped, ξ=1
overdamped, ξ>1

Figure 2.2: The figure illustrates the characteristic response u(t) of an underdamped,
critically damped and an overdamped free vibrating SDOF system.

Figure 2.2 shows the characteristic response of an underdamped, a critically damped
and an overdamped SDOF system. The critically damped system returns to rest earlier
than both the underdamped and the overdamped configuration. The overdamped system
has similar characteristics to the critically damped system, but returns to rest at a much
lower rate. The underdamped system is different from the two other system in that it
oscillates around the final position before it returns to rest.

The particular solution of equation (2.1) depends on the nature of the loading. In the
continuation it is assumed that the loading is a simple harmonic, see equation (2.8).

P (t) = P0 sin(Ωt) (2.8)

The general form of the particular solution is u(t) = G1 cos(Ωt) + G2 sin(Ωt), which
means that the particular solution of equation (2.1) is given by equation (2.9).

u(t) = P0

k

1
(1− β2)2 + (2ξβ)2

[
(1− β2) sin(Ωt)− 2ξβ cos(Ωt)

]
(2.9)

where the frequency ratio β is defined by equation (2.10).

5



β = Ω
ωn

(2.10)

Alternatively, the particular solution given by equation (2.9) may be rewritten through
trigonometric identies to be an expression of a single sine with an amplitude and a phase
angle, see equation (2.11).

u(t) = P0

k

1√
(1− β2)2 + (2ξβ)2

sin(Ωt− φ) (2.11)

where the phase angle φ is defined by equation (2.12).

φ = arctan 2ξβ
1− β2 (2.12)

The amplitude of the alternative form presented by equation (2.11) may be viewed
as the product of the static deflection ust = P0

k
to a static load P0 and an dynamic

amplification factor D(β, ξ) defined by equation (2.13).

D(β, ξ) = 1√
(1− β2)2 + (2ξβ)2

(2.13)

If there is no damping and the frequency ratio is equal to unity, i.e β = 1 the dynamic
amplification factor goes to infinity, see figure 2.3. The effect that the response of a system
radically increases at some load frequencies is known as resonance, and the frequency
which the response is largest is know as the resonance frequency of the system. This
means that the resonance frequency for an undamped system is the natural frequency, ωn.
Equation (2.13) also shows that for a viscously damped system, the dynamic amplification
is finite and the resonance frequency is lower than the natural frequency of the system.
This effect is shown in figure 2.3 for ξ = 0.2 which gives resonance frequency at about
96% of the natural frequency.

As mentioned earlier in this chapter, a damping ratio of ξ = 0.2 is high for common
engineering structures, and it should be noted that even with this high damping ratio
the effect on the resonance frequency and the damped natural freqeuency given by equa-
tion (2.7) is rather modest for the SDOF system. Although this is illustrated for the
SDOF system, this conclusion cannot be easily extended to MDOF systems. In dynamic
systems, the resonance frequencies are important quantities in all stages of designing new
structures and in the system identification of existing structures. Chapter 3 investigates
the effect of damping on the resonance frequencies of a MDOF system by evaluating the
quadratic eigenvalue problem.

2.2 Non-viscous damping
Non-viscous damping may roughly be divided into hysteretic, Coulomb or radiation damp-
ing. Radiation damping is associated with energy dissipation to the boundaries of the
dynamic system, for instance energy loss to the surrounding soil at the supports of a rail-
way bridge. Coulomb damping is associated with dry friction, such as relative movement
in the joints of a railway bridge. Hysteretic damping is associated with energy loss due

6



0 1 2

1

2

3

β=0.96 →

β

D
(β
,ξ

)
ξ=0.0
ξ=0.2

Figure 2.3: The figure shows the dynamic amplification factor plotted versus the fre-
quency ratio for two different values of the damping ratio. No damping yields an infinite
dynamic amplification factor at β equal to unity, while any damping yields a finite dy-
namic amplification and an resonance frequency lower than the natural frequency.

to plastic deformation and internal friction at material level. The non-viscous damping
models all have applications which are important in dynamical systems, and there exists
vast amount of literature on each of them. It is also important to note that at low levels
of damping the difference between the damping models vanishes, such that either model
may be utilized to model the energy dissipation from a system [3, p.389].

A number of researchers have studied damping in bridges and even railway bridges
in particular. Frýba [4, chap. 5] discusses the difference between the viscous, hysteretic
and Coloumb damping models, and concludes that because of the relatively low damping
values associated with railway bridges, the practical difference between the models are
negligible. In addition, the viscous damping model is more easily represented in the
dynamic equations than the other models, and relatively easily implemented in finite
element codes.

Although the author recognizes the possible applications of the non-viscous damping
models in dynamic simulations of railway bridges, there is also a need to limit the scope
and extend of this thesis. Combined with the above discussion, the choice is made to
focus further attention on viscous damping models.
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Chapter 3

Multi degree of freedom systems

A multi degree of freedom system (MDOF) is defined as a system where there are more
than one degree of freedom. This chapter start off by deriving the property matrices M
and K in the finite element context, next some of the characteristics of the mass and
stiffness matrix are established. After this, the linear eigenvalue problem will be solved
because it is important in the following discussion on viscous damping models in MDOF
systems. At the end of this section, the quadratic eigenvalue problem will be solved
and the use of the quadratic eigenvalue problem and characteristics of the solution with
different damping models will be discussed.

3.1 Equation of motion for multi degree of freedom
system.

A general continuum may be discretized into a MDOF system by what is known as the
finite element method (FEM). The basic idea behind the finite element method is to divide
the continuum into a finite set of elements. Within each element the displacement field
w is described by a set nodes d and continuous interpolation functions N between those
nodes, see equation (3.1).

w = Nd (3.1)
The strain field ε is obtained by appropriate strain-displacement relations, i.e by partial

derivates of the displacement field. On matrix form the strain-displacement relation is
defined by the operator ∂, such that the strain field is defined by equation (3.2).

ε = ∂w = ∂Nd = Bd (3.2)

where B = ∂N is known as the strain-displacement matrix. The constitutive matrix
E gives the relationship between the stress field σ and the strain field ε, see equation (3.3).

σ = Eε (3.3)

Imposing the admissible virtual displacement δw = Nδd on an element, yields internal
virtual work δWi, equal to the virtual strain energy, see equation (3.4).

δWi =
∫
V

δεTσ dV = δdT
∫
V

BTEB dV d (3.4)
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Similarly, the virtual displacement produces external virtual work δWe, which may be
found by accounting for body forces FB and surface tractions FT working on the element
and concentrated forces pk working directly at the nodes. If the inertia forces (−ẅ)ρ dV ,
defined by the density ρ = dm

dV and the acceleration ẅ = Nd̈, are separated from the
body forces, the external virtual work is given by equation (3.5)

δWe = −
∫
V

δwTρẅ dV +
∫
V

δwTFB dV +
∫
S

δwTFT dS + δdTpk

= δdT

− ∫
V

ρNTN dV d̈+
∫
V

NTFB dV +
∫
S

NTFT dS + pk
 (3.5)

Equation (3.4) and equation (3.5) together with the principle of virtual work, δWi =
δWe, yields the equation of motion for the element, see equation (3.6)

md̈+ kd = p (3.6)
where m is the mass matrix of the element, k is the stiffness matrix of the element

and p is the load vector of the element, all defined by equations (3.7).

m =
∫
V

ρNTN dV (3.7a)

k =
∫
V

BTEB dV (3.7b)

p =
∫
V

NTFB dV +
∫
S

NTFT dS + pk (3.7c)

At the system level, there exists another set of degrees of freedom u. The system level
degrees of freedom can be related to the elemental degrees of freedom dj of element j, by
the connectivity matrix aj, see equation (3.8).

dj = aju (3.8)
Introducing equation (3.8) into equation (3.6), premultiplying by aTj and summing

over all J elements in the system, the equation of motion for the system is obtained, see
equation (3.9)

Mü+Ku = P (3.9)
Where M is the consistent mass matrix of the system, K is the stiffness matrix of

the system and P is the load vector of the system, all defined by equations (3.10)

M =
J∑
j=1
aTjmjaj =

J∑
j=1
aTj

∫
Vj

ρNT
j Nj dV aj (3.10a)

K =
J∑
j=1
aTj kjaj =

J∑
j=1
aTj

∫
Vj

BT
j EjBj dV aj (3.10b)

P =
J∑
j=1
aTj pj =

J∑
j=1
aTj

∫
Vj

NT
j FB,j dV +

∫
Sj

NT
j FT,j dS + pkj

 (3.10c)
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3.2 Properties of the mass and the stiffness matrix.

The consistent mass matrix has some important characteristics. It is real, which means
that the complex conjugate1 of the matrix is equal to the matrix itself, i.e M̄ = M .
Furthermore, it is symmetric, i.eMT = M , and it is positive definite, i.e xTMx > 0 for
any real non-trivial vector x. The consistent mass matrix is not the only possible way
to form the mass matrix of a system. Under certain circumstances, e.g hand calculations
or formulation for explicit time integration, it is common to construct the mass matrix
such that it becomes diagonal. This method is known as particle mass lumping and
the corresonding mass matrix is known as the lumped mass matrix. The lumped mass
matrix is real and obviously symmetric since it is diagonal. The lumped mass matrix
may become singular, i.e Mx = 0 when there are degrees of freedom with no associated
inertia[5, p.282]. An example is when inertia related with rotational degrees of freedom
are neglected in beam and plate elements. The consequence is that the lumped mass
matrix is only positive semidefinite, i.e xTMx ≥ 0.

The stiffness matrix is real and symmetric if the constitutive matrixEj is real and sym-
metric. Ej is symmetric for any linear hyperelastic material [6, p.5-3]. The constitutive
matrix may be formulated as complex for dissipative materials, but in the continuation
it is assumed that the material is strictly elastic and real such that K is real. Further-
more, the constitutive matrix Ej is also positive definite, the classic justification for this
is that work that goes into deforming an elastic body has to be positive [7, p.57] such
that W = 1/2

∫
V ε

TEε dV > 0. As a consequence, the stiffness matrix K is for most
structures positive definite, the exceptions are in systems where the stiffness matrix may
become singular, i.eKx = 0. This occurs in systems where rigid body motion is possible
or where reduced numerical integration introduce mechanisms at system level. If x is a
rigid body motion or triggers a mechanism, then no internal forces arise in the structure
from the displacement, i.e Kx = 0.

The above discussion has revealed that both the mass and the stiffness matrix are in
general real, symmetric and only positive semidefinite. The discussion also showed that
the mass matrix may be made positive definite if proper precautions are taken in the
formulation of the mass matrix. Similarly, the stiffness matrix is positive definite if the
structure is properly restrained against rigid body motion and the element formulation
is such that mechanisms are not possible at system level. In the continuation of this
thesis, it is therefore assumed that proper care has been taken in the formulation of the
system equation such that both M and K are positive definite. Equation (3.11) and
equation (3.12) postulate the properties of the mass and stiffness matrix.

M̄ = M (3.11a)
MT = M (3.11b)
xTMx > 0 (3.11c)

1An overline denotes the complex conjugate, such that the complex conjugate of λ is λ̄.
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K̄ = K (3.12a)
KT = K (3.12b)
xTKx > 0 (3.12c)

where x is any real and non-trivial vector with proper dimension.

3.3 The linear eigenvalue problem
The solution to the undamped, free vibrating system is the homogeneous solution of
equation (3.9), i.e P = 0, and it is on the general form given by equation (3.13).

u = φ est (3.13)

Introducing equation (3.13) into equation (3.9) yields the linear eigenvalue problem,
see equation (3.14).

(K − λnM )φn = 0 (3.14)
where λn = −s2

n is the eigenvalue and φn is the corresponing eigenvector. Throughout
this thesis it is assumed that the eigenvalues are distinct, such that there are no repeated
eigenvalues. Equation (3.14) has a solution when the determinant of the matrix in the
parenthesis is equal to zero. This produces a Nth order polynomial with N solutions, i.e
there are N eigenvectors and eigenvalues, where N is the number of degrees of freedom in
the system. BecauseM and K are real, symmetric and positive definite, the eigenvalues
λn are real. This can be shown by writing out equation (3.14), taking the complex conju-
gate of the entire equation and premultiplying with φn, see equation (3.15a). Similarly,
writing out equation (3.14), taking the transpose of the entire equation and postmulti-
plying with φ̄n yields equation (3.15b).

λ̄nφ
T
nMφ̄n = φTnKφ̄n (3.15a)

λnφ
T
nMφ̄n = φTnKφ̄n (3.15b)

Subtracting equation (3.15a) from equation (3.15b) assuming that the eigenvalues are
complex, i.e λn = λRn + i λIn yields equation (3.16).(

λn − λ̄n
)
φTnMφ̄n = i 2λInφTnMφ̄n = 0 (3.16)

Since M is real and positive definite, M may be written on the form M = QTQ, where
Q is a real and non-singular matrix[8, p.61]. It follows that that φTnMφ̄n = φTnQ

TQφ̄n =
yTn ȳn = ∑J

j=1 yn,j ȳn,j > 0. Therefore λIn has to be zero for equation (3.15a) to be fullfilled
and λn is real. Since the eigenvalue λn is real, the basis for eigenvector φn is also real
[8, p.57]. To show this consider the case where both the eigenvalues and eigenvectors are
complex, i.e λn = λRn + i λIn and φn = φRn + iφIn. Inserting the complex eigenvalues
and eigenvectors into equation (3.14) and realizing that both the real and the imaginary
parts must vanish, yields the following equations.

(K − λRnM)φRn = −λInMφIn (3.17a)
(K − λRnM )φIn = λInMφRn (3.17b)
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Equation (3.17a) show that if the eigenvalues are real, i.e λIn = 0, then φRn is a valid
eigenvector of the eigenvalue λn = λRn, see equation (3.18)

(K − λnM)φRn = 0 (3.18)

It is here appropriate to point out that the eigenvalue problem only determines the
eigenvalues and the direction of the eigenvector, the eigenvalue problem does not define the
magnitude or length of the eigenvectors. Since all eigenvalues are distinct, it follows that
equation (3.17a) is equal to any multiple of equation (3.17b) and that the complex part of
the eigenvector is a multipleA of the real part of the eigenvector, i.e φIn = AφRn. Writing
out the expression for the complex eigenvector, φn = (1+iA)φRn, inserting the result into
equation (3.14) again shows that the eigenvector may be chosen complex but the basis
for the eigenvector is real. Infact, multiplying the basis eigenvector with an arbitrary
complex number C, i.e φ = CφRn also satisfies equation (3.18). In the continuation of this
thesis it is assumed that if there exists a real basis for the eigenvectors, the eigenvectors
are chosen real, such that all eigenvectors for the undamped case are hereby referred to
as real.

A consequence of real eigenvectors and positive definite property matrices M and K
are that the eigenvalues λn become positive. Premultiplying equation (3.14) by φTn and
rearranging for the eigenvalue λn, and remembering equation (3.11c) and equation (3.12c)
yields the following

λn = φTnKφn
φTnMφn

> 0 (3.19)

which clearly states that the eigenvalues become positive. It is here appropriate to
relate the eigenvalues of the MDOF system to the natural frequencies of the system given
by equation (2.4a). Recall that the eigenvalues where related to the response through
sn = ±

√
−λn in equation (3.13). Equation (3.19) shows that λn > 0 such that it is

appropriate to write sn = ±i
√
λn. The response for the undamped free vibrating system

is then a non-decaying harmonic function un = φn (An cosωnt+Bn sinωnt), where Euler’s
formula ei θ = cos θ + i sin θ has been employed and natural frequencies are defined by
the eigenvalues through equation (3.20).

ωn =
√
λn (3.20)

Another important characteristic for real and symmetric matrices are that the eigen-
vectors are orthogonal with respect to the property matrices M and K. To show this
consider the two eigenvalue equations for the eigenvalues λm and λn. Transpose the en-
tire equation for eigenvalue λm and postmultiply by the eigenvector φn, then premultiply
the equation for eigenvalue λn by the transposed eigenvector φTm. Finally subtract the
equation for λn from the equation for λm, the following result appears.

(λm − λn)φTmMφn = 0 (3.21)

Since all eigenvalues are assumed to be distinct, equation (3.21) implies that if λm 6= λn
or m 6= n, then φTmMφn has to vanish, i.e φTmMφn = 0. If m = n then equation (3.11c)
clearly states that φTmMφn > 0, the actual magnitude of φTmMφn depends on the mag-
nitude of the eigenvectors φn. Recall from the earlier discussion that the magnitude of the
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eigenvector is unknown, the eigenvalue problem only define its direction. The magnitude
of the eigenvectors may therefore be chosen by imposing another constraint or condition.
The manner in which the magnitude is chosen is called normalization, and a convenient
way of normalizing the eigenvectors is by what in dynamics is known as mass orthonor-
malization[9, p.480] or just mass normalization, i.e demanding that φTnMφn = 1. In a
similar fashion it may be shown that φTmKφn must vanish for m 6= n and with mass
normalization φTnMφn = 1, equation (3.19) shows that φTmKφn = λn when m = n.
Equation (3.22) and equation (3.23) summarizes the discussion in this paragraph and
shows that the eigenvectors are orthogonal with respect to the property matricesM and
K.

φTmMφn =

1 for m = n

0 for m 6= n
(3.22)

φTmKφn =

λn for m = n

0 for m 6= n
(3.23)

The orthogonality properties of the eigenvectors can be taken advantage of in obtaining
the complete solution of the dynamic equation. The total solution will be a superposition
of the homogeneous solution uc and the particular solution up determined by the charac-
teristics of the loading. The homogeneous solution is given by taking the sum of the N
different solutions of φn and sn of equation (3.13), i.e uc = ∑N

n=1φnAn esnt = ∑N
n=1φnycn.

The particular solution can be described by the eigenvectors as well, such that up =∑N
n=1φnypn, and the total solution is u = uc + up = ∑N

n=1φn(ycn + ypn) = ∑N
n=1φnyn.

The matrix form of the total solution is given by equation (3.24)

u = Φy (3.24)

where Φ =
[
φ1 φ2 · · · φN

]
is known as the modal matrix, where modal ma-

trix comes from the fact that the eigenvectors are often referred to as mode shapes.
y =

[
y1 y2 · · · yN

]T
is a columnvector containing the modal degrees of freedom. Intro-

ducing equation (3.24) into equation (3.9) and premultiplying with ΦT yields the modal
equation of motion.

ΦTMΦÿ + ΦTKΦy = ΦTP (3.25)
The matrix ΦTMΦ is known as the modal mass matrix, and with mass normalized

eigenvectors, equation (3.22) implies that the modal mass matrix is equal to the identity
matrix, i.e ΦTMΦ = I =

⌈
1 1 · · · 1

⌋
. The matrix ΦTKΦ is known as the modal

stiffness matrix, and with mass normalized eigenvectors equation (3.23) implies that the
modal stiffness matrix becomes a diagonal matrix containing the eigenvalues, i.e ΦTKΦ =
Λ =

⌈
λ1 λ2 · · · λN

⌋
. Λ is known as the spectral matrix. Lastly the vector ΦTP is the

modal load vector PΦ. With mass normalization the modal equation of motion for the
undamped multi degree of freedom system is given by equation (3.26).

ÿ + Λy = PΦ (3.26)
Equation (3.26) is a set of N uncoupled equations of motion, basically turning the

coupled MDOF system into a set of N SDOF systems which may be easily and effectively
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solved for y by the theory and solution outlined in section 2. Once the response in the
modal coordiantes are obtained, the response in the physical degrees of freedom u may
then be found by employing transformation equation (3.24) once more.

As a side note, it may be mentioned that the displacement u is often dominated by
a subset of the eigenvectors, such that very good approximations of the displacement
may be found by only taking, say the M ≤ N first mode shapes into the solution,
i.e u ≈ ∑M

n=1φnyn. Choosing a subset M ≤ N of the eigenvectors to represent the
displacement effectively reduces the degrees of freedom in the system from N to M . In
cases where the above approximation is appropriate, modal transformation may be very
effective in solving the equation of motion and obtaining the dynamic response.

The discussion in this section has shown that the eigenvalues of the undamped equa-
tion of motion are positive and real. This section has also shown that the eigenvectors
for undamped dynamic systems are real and they exhibit orthogonal properties with re-
spect to the mass and the stiffness matrix, and that the transformation matrix defined
by the orthogonal eigenvectors diagonalizes therefore diagonalizes the property matrices.
The derivations made about the eigenvalues and eigenvectors in this section will aid the
discussion in the following section about viscous damping models and the derivation of
the complex eigenvalue problem in section 3.5.

3.4 Viscous damping in multi degree of freedom sys-
tems

The equation of motion for a viscously damped system is given by equation (3.27).

Mü+Cu̇+Ku = P (3.27)

In the derivation of the equation of motion for MDOF system no terms for dissi-
pation of energy or damping was included. If a viscous damping constant c for the
continuum could be determined, the derivation of the elemental damping matrix c and
the system damping matrix C would follow similar lines to that of the mass matrix,
see section 3.1. Separating the viscous damping force (−ẇ)c dV from the body forces
would yield the damping matrix at elemental level c =

∫
V cN

TN dV and at system level
C = ∑J

j=1 a
T
j cjaj. Additional sources of damping, such as friction in joints and radiation

loss at the boundaries could also be quantified and terms could be added to the viscous
damping matrix to represent these mechanisms.

As it turns out, it is in general difficult and time consuming to directly determine
the coefficients of the damping matrix from the specific sources. Instead the damping
matrix is often constructed to fit experimental data from the structure being analyzed
or experimental data from structures similar to the structure being analyzed. This data
is often given in modal form, i.e the modal damping ratio ξn is given. If the system is
solved with modal analysis this data can then be used directly, but if the system is solved
by any other method, e.g numerical integration, the physical damping matrix has to be
constructed from the modal damping ratios. Subsection 3.4.1 discusses different ways of
constructing the damping matrix from modal damping ratios.

The viscous damping in multi degree of freedom system may be categorized into two
different types. If the modal transformation u = Φy diagonalizes the damping matrix
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C, i.e ΦTCΦ is diagonal, then the classic modal analysis outlined at the end of the
previous section is applicable and the system is said to possess classical damping. If the
modal transformation does not diagonalize the damping matrix, the system is said to
have non-classical damping.

Apart from the fact that the non-classical damping matrix is not diagonalized by
the classical modal transformation, its properties are quite general. The non-classical
damping matrix mainly appears when the damping matrix is defined directly in the phys-
ical coordinates, e.g if the elemental damping constant may be determined such that
c⇒ cj ⇒ C or if active viscous dampers are installed on a structure such that the damp-
ing properties may be added to the damping matrix in the physical coordinates directly.
The non-classical damping matrix affects the resonance and damped frequencies of the
system and will be therefore be discussed further in section 3.5.

3.4.1 Classical viscous damping
The classically damped MDOF system yields with modal transformation an uncoupled
system, i.e a set of SDOF systems. Writing out the equation of motion for mode n with
mass normalized eigenvectors yields the following equation

ÿn + c̃nẏ + ω2
nyn = PΘn

where c̃n = φTnCφn is the viscous damping coefficient for mode n. Introducing the
modal damping ratio ξn = c̃n

2ωn
, the equation of motion for mode n may be written in

terms of the modal damping ratio ξn and the natural frequencies ωn, see equation (3.28)

ÿn + 2ξnωnẏ + ω2
nyn = PΘn (3.28)

Introducing the diagonal modal damping matrix Ξ =
⌈
2ξ1ω1 2ξ2ω2 · · · 2ξNωN

⌋
the

equation of motion in modal coordinates is given on matrix form in equation (3.29).

ÿ + Ξẏ + Λy = PΦ (3.29)

As mentioned in section 3.4 if the modal damping ratios ξn are known and the system
is solved by modal analysis, equation (3.29) may be solved for the modal coordinates
and transformed by equation (3.24) to obtain the solution in the physical coordinates. If
the damping ratios are known, but modal analysis is not used to obtain the response of
the system, the viscous damping matrix C may be determined from the modal damping
matrix Ξ. The relation between the viscous damping matrix and the modal damping
matrix is given by the following equation.

ΦTCΦ = Ξ

Although the viscous damping matrix may be determined by matrix inversion, i.e
C = Φ−TΞΦ−1, it is more efficient and accurate to utilize the properties of the mass
normalization. Pre- and postmultiplication of the above equation with ΦTMΦ = I
yields the following equation.

ΦTCΦ = ΦTMΦΞΦTMΦ
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Comparing the right and the left hand side shows that the viscous damping matrix is
a product of the modal damping matrix, the modal transformation matrix and the mass
matrix, see equation (3.30).

C = MΦΞΦTM (3.30)

The above method of constructing the viscous damping matrix is often called the direct
method and a damping matrix constructed by the above method is in the continuation
of this thesis called the direct damping matrix. The primary advantage of the direct
method is that it provides precise control of the actual damping ratios in all modes.
The disadvantage of the direct method is that it requires that the damping ratios to be
specified in all modes of vibration and that it is necessary to solve the eigenvalue problem
to obtain Φ and the elements of Ξ. Furthermore, the direct damping matrix C becomes
a full matrix, i.e it is not sparse, which significantly reduces the efficiency of certain
numerical integration schemes. More on this at the end of section 3.5.

The direct damping matrix is not the only classical viscous damping matrix, in fact
there exists an infinite number of them. If a matrix can be described by what is known as
a Caughey series, the matrix becomes diagonal under modal transformation. Thus, if a
damping matrix can be described by a Caughey series, the damping matrix is a classical
damping matrix. In the following, the Caughey series will be derived and related to the
modal damping ratio ξn.

To find the Caughey series, it is necessary to rewrite the eigenvalue problem, equa-
tion (3.14) to the form shown in equation (3.31).

M−1Kφn = λnφn (3.31)

Premultiply both sides of equation (3.31) by φTmM , the right hand side will then
be φTmMφn. With mass normalized eigenvectors, equation (3.22) yields the following
relation.

φTmMM−1Kφn =

λn for m = n

0 for m 6= n

By premultiplying equation (3.31) by φTmMM−1K gives through the above equation the
following.

φTmM (M−1K)2φn

λ2
n for m = n

0 for m 6= n

where the notation φTmMM−1KM−1Kφn = φTmM(M−1K)2φn has been intro-
duced. If the same procedure as the one outlied above is repeated b times, the following
equation is found

φTmM(M−1K)bφn =

λbn for m = n

0 for m 6= n

If equation (3.31) is premultiplied by λ−1
n (M−1K)−1 and a similar procedure as the

one above is applied by premultiplying the equation by φTmM ((M−1K)−1)b it may be
shown that b in the above equation is any integer, i.e −∞ < b <∞.
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It can also be seen that the product of an arbitrary constant ab and the above equation
retains the orthogonality properties, in fact the sum of all possible variations of such a
product is also orthogonal, see equation (3.32).

∑
b

abφ
T
mM(M−1K)bφn =


∑
b abλ

b
n for m = n

0 for m 6= n
(3.32)

The above equation shows that if the damping matrix C can be described as a lin-
ear combination of M (M−1K)b, it becomes diagonal under modal transformation, see
equation (3.33).

C =
∑
b

abM(M−1K)b (3.33)

Equation (3.33) is the Caughey series, after Thomas K. Caughey who first derived the
condition and a matrix constructed from a Caughey series is therefore known as a Caughey
damping matrix. The Caughey damping matrix may be determined from known modal
damping ratios ξn. Consider the equation of motion for a MDOF system with viscous
damping, equation (3.27), and transfer it to modal coordinates, the following equation
appears.

ÿ + ΦTCΦẏ + Λy = PΦ (3.34)

With Caughey damping, the matrix ΦTCΦ becomes diagonal, i.e ΦTCΦ = ∑
b abΛ

b,
and each line in equation (3.34) becomes uncoupled, see equation (3.35). Recall that for
the undamped eigenvalue problem, the eigenvalues where related to the natural frequencies
by equation (3.20)

ÿn +
∑
b

abω
2b
n ẏn + ω2

nyn = PΘn (3.35)

Comparing equation (3.35) with equation (3.28) it becomes apparent that the relation
between the modal damping ratio ξn and the Caughey series is given by equation (3.36).

ξn = 1
2
∑
b

abω
2b−1
n (3.36)

The coefficients ab may be determined by choosing the damping ratios ξn in the modes
with natural frequency ωn, and a equally sized set of b. To illustrate this process consider
a case where the damping ratio in modes with natural frequency ωp, ωr, ωs and ωt are
equal to ξp, ξr, ξs and ξt. The set b = [0, 1, 2, 3] is chosen, this information yields three
different versions of equation (3.36) which is given on matrix form in equation (3.37).

1
2


1
ωp

ωp ω3
p ω5

p
1
ωr

ωr ω3
r ω5

r
1
ωs

ωs ω3
s ω5

s
1
ωt

ωt ω3
t ω5

t



a0
a1
a2
a3

 =


ξp
ξr
ξs
ξt

 (3.37)

The coefficients a0, a1, a2 and a3 are then determined by inverting the matrix on the
left side, the result for b = b1 = [0, 1, 2, 3] is shown for all damping ratios equal to ξ0 in
figure 3.1.
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ωp ωr ωs ωt
0

ξ0

ωn

ξ n

b1=[0,1,2,3]
b2=[-1,0,2,3]

Figure 3.1: The figure depicts the resulting damping ratio ξn for Caughey damping with
two different sets of b. The figure shows that b1 = [0, 1, 2, 3] is well behaved for the
frequencies specified. The set b2 = [−1, 0, 1, 2] results negative damping ratio ξn for
certain modes, which means that the solution diverges.

It is important to note that the set b should be chosen with care, in figure 3.1 the
resulting damping ratio for b2 = [−1, 0, 2, 3] is also shown. The figure shows that the
damping ratios within the specified range ωp < ωn < ωt lies close to the specified damping
ratio ξ0, being exact at the specified frequencies for both b1 and b2. For frequencies ωn < ωp
and ωn > ωt, i.e below and above the minimum and maximum specified frequncies, the
damping ratio is increasing towards infinity for b1 and decreasing towards negative infinity
for b2. For the case of b1 this means that the modes outside of the specified frequency
range are heavily damped, if the important modes are found in the frequency range, this
poses no problem and may be beneficial in damping out numerical noise. For the case of
b2 the damping ratio becomes negative for modes outside of the chosen range. Negative
damping ratios means that the exponential e−ξnωnt in the homogeneous solution goes to
infinity as time increases, see equation (2.2). In turn, this means that the total response
will become unstable and tend towards infinity as time increases.

It should also be noted that even though the set b1 = [0, 1, 2, 3] behaved well with ξ0
specified in the frequencies [ωp, ωr, ωs, ωt] it is not certain that it does so for another set
of frequencies. In figure 3.2 the damping ratio for set b1 = [0, 1, 2, 3] with ξ0 specified in
the same frequencies [ωp, ωr, ωs], but with the last frequency ωt changed to ω̃t. The figure
shows that the damping ratio becomes negative for modes just below ω̃t, and the solution
will diverge.

The advantage of a general Caughey damping matrix is that the damping matrix
may be specified without solving the eigenvalue problem. Another advantage is that
the damping ratio may be specified with good precision within a frequency range, e.g
ξn ≈ ξ0 in the range ωp < ωn < ωt, with relatively few parameters. The disadvantages
of the general Caughey damping matrix is that damping ratios may become negative if
the matrix is not determined with care, and that the Caughey damping matrix becomes
a full matrix in most combinations of b. As mentioned for the direct damping matrix,
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b1=[0,1,2,3]

Figure 3.2: The figure shows that the set b1 yields negative damping ratio ξn in certain
modes when ξ0 is specified in frequencies [ωp, ωr, ωs, ω̃t].

a full matrix may significantly reduce the efficiency of numerical integration schemes. I
should be noted that the direct damping matrix is a special case of the Caughey damping
matrix.

An important special case of Caughey damping is Rayleigh damping, i.e b = [0, 1].
Rayleigh damping was named after Lord Rayleigh who first wrote about it in [10, p.130-
131] and is because of its simplicity and characteristics often applied in dynamic analysis.
It is also widely available in commercial codes and therefore deserves some special atten-
tion.

With Rayleigh damping the damping matrix becomes proportional to the mass and
the stiffness matrix, see equation (3.38).

C = a0M + a1K (3.38)
The damping ratio for Rayleigh damping is given by equation (3.39), and a0 and a1 are

given by equations (3.40) for damping ratios ξp and ξr specified in modes with frequency
ωp and ωr, respectively. See figure 3.3 for the characteristic curve for the damping ratios
with Rayleigh damping.

ξn = 1
2

(
a0

ωn
+ a1ωn

)
(3.39)

a0 =2ωpωr
ωpξr − ωrξp
ω2
p − ω2

r

(3.40a)

a1 =2ωpξp − ωrξr
ω2
p − ω2

r

(3.40b)

Because of the uncertainty related to the modal damping ratios it is in practice com-
mon to choose the damping ratios equal to each other, i.e ξp = ξr = ξ0. Then pick
the first frequency equal to the fundamental frequency, i.e the lowest natural frequency
ωp = ω1 and chose the second frequency equal to one of the higher frequency components
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Figure 3.3: The figure depicts the typical shape of the damping raios with Rayleigh
damping.

of the loading [11, p.236]. The result is that that the first mode, which often is the most
dominant in the total response gets a specified damping ratio while the modes which
are within the specified range of frequencies have reasonable damping ratios around the
specified damping ratio ξ0. Modes outside of the specified frequency range, such as high
frequency numerical noise, are more heavily damped and thereby contribute less to the
overall response.

Although the above procedure is simple and effective in prescribing reasonable damp-
ing ratios in the modes of interest, the procedure should not be applied uncritically. If
the frequency range becomes large the damping in some modes may become unreasonably
small. If the ratio between the lowest and highest specified frequency is defined as γ = ωr

ωp

then the minimum damping ratio ξmin is found in mode with frequency ωmin, see definition
in equations (3.41).

γ = ωr
ωp

(3.41a)

ωmin = √γωp (3.41b)

ξmin = 2
√
γ

1 + γ
ξ0 (3.41c)

Figure 3.4 shows the minimum damping ratio as a function of the ratio γ between the
lowest and highest specified frequency.

If the system has natural frequencies close to ωmin, these modes will have relatively low
damping. The actual effect of this on the response of a system depends on the properties
and characteristics of the system. If these low damped modes are excited by either initial
conditions or the loading, the effect of low damping in these modes may have a significant
impact on the overall response. As mentioned earlier, the first is mode is often dominant
in the response of a system such that the other modes may not affect the total response
significantly.

Example 1 and example 2 considers the response of a cantilever beam with a natural
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Figure 3.4: The figure shows the minimum damping ratio ξmin compared to the specified
damping ratio ξ0 with increasing ratio γ between the two specified frequencies.

frequency close to ωmin. In example 1 the loading and the monitored response variable are
dominated by the first mode and therefore illustrates a case where the above simplified
method is effective in specifying damping ratios. In example 2, the loading and the mon-
itored response are dominated by the second mode which lies close to ωmin and illustrates
the consequence this has on the response.
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Example 1. Consider the cantilever beam shown in figure 3.5.

P

m,EI, L

wtip

L 15m
EI 1.667× 106 Nm2

m 100 kgm−1

P0 1000N
ξ0 0.05
Ω 0− 100rad s−1

Figure 3.5: The figure shows the beam and the definition of the loading and the observed
response variable, the table shows the properties of the beam and the loading.

The beam has a constant cross section with flexural rigidity EI, distributed mass m
and length L. The beam is loaded with a harmonic concentrated load P = P0 sin Ωt,
where the amplitude is P0 and the load frequency is Ω. Note that the load frequency
may range from 0 to 100 rad s−1. Damping in the system is assumed to be around ξ0
modal damping.

The system is to be analyzed with conventional 4DOF Euler-Bernoulli beam ele-
ments. The system is solved with both Rayleigh damping, and the direct damping
method. The implications of using Rayleigh damping versus the direct damping matrix
is to be determined for the vertical deflection at the tip of the beam.

The element matrices are not stated here but can be found in almost any book on
structural dynamics, see for instance [9, chap 18.7]. A preliminary convergence study
shows that N = 4 elements are sufficient to describe the modes within the specified
frequency range of 0 − 100rad s−1. The resulting mass M and stiffness matrix K for
the cantilever beam are given in appendix A. From the mass and the stiffness matrix,
the eigenvalues of the system may be obtained through equation (3.14)

The direct damping matrix is determined by employing equation (3.30) with ξ = ξ0
in all modes, see the direct damping matrix CDir in appendix A. The Rayleigh damping
matrix is constructed with the damping ratios ξp = ξr = ξ0, and the first frequency is set
equal to the first natural frequency, i.e ωp = ω1. The second frequency is chosen equal
fourth natural frequency, i.e ωr = ω4. This yields the coefficients a0 = 0.1961 rad s−1

and a1 = 0.0014 s rad−1 and the damping matrix CRay, see appendix A. In the table
below, the four first eigenfrequencies of the system are given together with the resulting
damping ratios in the corresponding modes with Rayleigh and Direct damping.

Table 3.1: The table shows the four first natural frequencies of the beam and the
resulting damping ratios with direct damping and Rayleigh damping.

ωn[rad s−1] ξRayleigh[%] ξDirect[%]
2.0 5.0 5.0
12.7 1.6 5.0
35.7 2.7 5.0
70.4 5.0 5.0

With the above Rayleigh damping matrix γ = 35.2 and ωmin = 11.9 rad s−1 which
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is close to the second natural frequency of 12.7 rad s−1. The second mode will there-
fore have little damping, and it is expected that the response in this mode will be
significantly different for the two systems with different damping matrices.

Figure 3.6 shows the frequency response plot for the vertical deflection of the tip of
the beam wtip normalized against the static deflection of the tip of the beam wst.
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Direct damping

Figure 3.6: The figure shows the frequency response of the beam with direct and
Rayleigh damping.

There are several important things which can be seen from the frequency response
plot. First of all, the plot shows that the responses in the two systems are different in
the second mode, it can also be seen that the responses are different in the third mode.
The response in the first and fourth mode are identical. All of this is a consequence of
the differing damping ratios, and is as expected.

Secondly, and perhaps the most obvious, it shows that the first mode totally dom-
inates the response of this particular system. This indicates that the loading of the
system primarily excites the first mode, and that the first mode has a significant com-
ponent in the displacement at the tip of the beam.

This means that the difference between the Rayleigh damping and the Direct damp-
ing is only prominent when the frequency of the loading is close to the second or third
mode. In other words, the difference between using Rayleigh damping and Direct damp-
ing is only significant if the loading works in these modes. Furthermore, if the loading
has more than one frequency component, and one of them is in the first mode, the
relative difference between using Rayleigh damping and Direct damping diminishes.
N
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Example 2. Consider the cantilever beam shown in figure 3.7.

M

m,EI, L θtip

L 15m
EI 1.667× 106 Nm2

m 100 kgm−1

M0 1000Nm
ξ0 0.05
Ω 0− 100rad s−1

Figure 3.7: The figure shows the beam and the definition of the loading and the observed
response variable, the table shows the properties of the beam and the loading.

It is the exact same beam as in example 1, the mass matrix M , the stiffness matrix
K and the damping matrices Cdir and CRay are found in appendix A. The difference
in this example is that the beam is loaded with a harmonic concentrated moment
M = M0 sin Ωt, where the amplitude is M0 and the load frequency is Ω. The load
frequency may still range from 0 to 100 rad s−1.

The natural frequencies and resulting damping ratios are given by the table 3.1, and
restated below for convenience.

ωn[rad s−1] ξRayleigh[%] ξDirect[%]
2.0 5.0 5.0
12.7 1.6 5.0
35.7 2.7 5.0
70.4 5.0 5.0

In this example, the loading and the monitored response are working to a greater
extent in the second mode. Since the second mode has relatively low damping with
Rayleigh damping, it is expected that the difference between the response for the direct
damping matrix and the Rayleigh damping is significant.

In figure 3.8 the frequency response plot for the rotation of the tip of the beam θtip
normalized against the static rotation of the tip of the beam θst.
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Figure 3.8: The figure shows the frequency response of the beam with direct and
Rayleigh damping.

The results show that the response in both the second and third vibration modes are
significantly different for the two damping models, the response in the first and forth
mode are exactly the same because they have the same damping ratios in with both
damping models. This means that if the load has a frequency component in the second
or third mode, the difference in the response between the two systems will be significant.
If the loading is working in the frequencies in between the frequency of the second and
third mode, there will be no difference in the total response of the beam.
N

Again, it is important to note that the actual modal damping ratios in a system is
seldom known such that the above examples provide more of an observation regarding the
properties of Rayleigh damping than a categorical shortcoming or error associated with
Rayleigh damping. The examples also illustrates another great advantage of Rayleigh
damping. Consider the topology of the damping matrices CDir and CRay provided in
appendix A. As stated before, the direct damping matrix CDir is a full matrix, while
the damping matrix CRay keeps the topology of the mass matrix M and the stiffness
matrix K. This is important both with regards to computer memory use, and in regards
to computational efficiency in certain numerical integration schemes. For instance, the
commercial finite element code Abaqus uses the Hilber-Hughes-Taylor α-method (HHT
α-method) as its default implicit time integration algorithm [12, sec 6.3.2]. The HHT α-
method is an extension of the well known Newmark β-method, and involves the inversion
of the matrix, Keff = h1M + h2C + h3K, where h1,2,3 are coefficients dependent on the
numerical coefficients αH , β, γ and the time step ∆tn+1. It is apparent that if C is a full
matrix, Keff is also a full matrix. A full matrix, as opposed to a sparse matrix, is far
more memory intensive and computationally expensive to invert, see discussion [13, p.
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239-243].
To summarize this discussion on classical viscous damping it is appropriate to point

out that while the direct damping matrix and the ”higher-order” Caughey damping ma-
trix provide better control over the damping ratios in the specific modes than the Rayleigh
damping matrix, the Rayleigh damping matrix provides in many cases better computa-
tional efficiency than the two other methods. It has also been pointed out that more
often than not, the actual damping ratios of a system is not known, but obtained from
experience data from similar structures. These two factors combined, speaks a strong
case for Rayleigh damping in comparison to the two other methods of constructing the
damping matrix.

3.5 The quadratic eigenvalue problem
In this section it is assumed that the damping matrixC is real and symmetric. The general
form of the solution for the damped multi degree of freedom system is the same as for the
undamped case, i.e equation (3.13). Introducing equation (3.13) into the homogeneous
version of equation (3.27) yields what is known as the quadratic eigenvalue problem, see
equation (3.42). (

s2
nM + snC +K

)
φn = 0 (3.42)

Although the eigenvalues and eigenvectors may be obtained through equation (3.42), it
is beneficial to linearize the quadratic eigenvalue problem into a linear eigenvalue problem.
This allows to make use of the derivations made for the linear eigenvalue problem in
section 3.3. To obtain the linearized form of the eigenvalue problem it is necessary to
transfer from the physical coordinates to the state coordinates or the state space. By
augmenting equation (3.27) and Mu̇ −Mu̇ = 0, the state space equation of motion is
found, see equation (3.43).

Aẋ+Bx = R (3.43)

where x is the state space vector, R is the state space load vector and the matrices
A and B are the state matrices, all defined by equations (3.44).

A =
[

0 M
M C

]
(3.44a)

B =
[
−M 0

0 K

]
(3.44b)

R =
[

0
P

]
(3.44c)

x =
[
u̇
u

]
(3.44d)

The state matrices A and B have dimensions 2N × 2N and are real and symmetric
because M , C and K are real and symmetric. The general form of the solution to the
homogeneous problem for the state space equation of motion is found to be on the same
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form as the general form given by equation (3.13), i.e x = θ est. Introducing the general
solution into the state space equation of motion, the linear eigenvalue problem for the
damped multi degree of freedom system is given by equation (3.45)

(B − λnA)θn = 0 (3.45)

where λn = −sn is the eigenvalue and θn is its corresponding eigenvector. There are
2N eigenvalues and eigenvectors, and the eigenvalues are again assumed to be distinct.
Since neither A, nor B are positive definite, the eigenvalues are in general complex, this
can be seen with a similar derivation to the one that produced equation (3.16), but θTnAθ̄n
may now be zero and λIn is therefore not necessarily zero. Furthermore the eigenvalues
and eigenvectors come in pairs of complex conjugates, this can be verified by taking the
complex conjugate of equation (3.45), i.e (B− λ̄nA)θ̄n = 0, which shows that also λ̄n, θ̄n
are also valid eigenvalues and eigenvectors. This means that if λn,θn is a set of eigenvalues
and eigenvectors of equation (3.45), then their complex conjugates λ̄n, θ̄n are also a set of
eigenvalues and eigenvectors of the same equation.

Since both A and B are symmetric, the eigenvectors θn are orthogonal with respect
to A and B, the proof is analogous to that of the undamped case, see derivation of equa-
tion (3.21). The eigenvectors may also be normalized analogous to mass normalization,
such that θTnAθn = 1 and θTnBθn = λn.

3.5.1 The use of the quadratic eigenvalue problem
The quadratic eigenvalue problem and the complex eigenvalues and eigenvectors may
be used to obtain the physical response of a dynamic system by utilizing the complex
eigenvectors in a modal transformation. The method for obtaining the response with the
eigenvectors and eigenvalues of the quadratic eigenvalue problem is herein called complex
modal analysis. Since the quadratic eigenvalue problem includes the damping matrix,
the complex modal analysis diagonalizes the system regardless of whether the damping is
classical or non-classical. The following section will derive the equation for the complex
modal analysis and verify the complex modal analysis in an example by comparing the
obtained response from the complex modal analysis against the response obtained by
classic modal analysis and implicit numerical integration with the Newmark β-method.

The complex eigenvalues may also be used to determine the resonance frequencies and
the effective modal damping ratios of damped multi degree of freedom systems. Once the
equations from the complex modal analysis are verified in the following subsection, the
same equations will be utilized to show that the complex eigenvalues predict the resonance
frequencies of generally damped viscous systems.

Complex modal analysis.

In a similar fashion as for the undamped eigenvalue problem, a damped modal matrix
Θ may be defined from the damped eigenvectors θn, i.e Θ =

[
θ1 θ2 · · · θ2N

]
. The

damped modal matrix also defines the linear tranformation from the state space x to the
damped modal coordinates z, see equation (3.46).

x = Θz (3.46)
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Since the eigenvectors of the quadratic eigenvalue problem are orthogonal with respect
to the state matrices A and B, the modal transformation ΘTAΘ and ΘTBΘ yields two
diagonal matrices. If the proper normalization is used, the modal transformation yields
the identity matrix I and the spectral matrix S =

⌈
λ1 λ2 · · · λ2N

⌋
, see equations

below.
ΘTAΘ = I

ΘTBΘ = S

Introducing equation (3.46) into equation (3.43) and premultiplying with ΘT gives the
governing differential equation in the damped modal coordinates.

ż + Sz = RΘ (3.47)

where RΘ = ΘTR is the damped modal load vector.
Since the spectral matrix is diagonal, equation (3.47) is 2N uncoupled first order

differential equations on the form żn + λnzn = RΘn. The complementary solution is
zcn = zcn0 e−λnt, and is given on matrix form in the equation below.

zc(t) = e−Stzc0

The particular solution zp(t) is determined by the characteristics of the loading, in the
continuation it is assumed that the loading is a single sinusodial, i.e P = P0 sin Ωt and
RΘ = RΘ0 sin Ωt, the particular solution is given by the following equation.

zp(t) = (S sin Ωt− ΩI cos Ωt)DRΘ0 (3.48)

where D = (Ω2I +SS)−1. The total solution of the damped modal equations are the
sum of the complementary and the particular solution, see below

z(t) = e−Stzc0 + (S sin Ωt− ΩI cos Ωt)DRΘ0

The initial conditions of the system in the physical coordinates are u0 and u̇0, which by
equation (3.44d) yields the initial conditions in the state space x0 =

[
u̇0 u0

]T
. Through

the orthogonality relation for the damped eigenvectors, ΘTAΘ = I, and equation (3.46)
the initial condition in the modal coordinates can be found to be z0 = ΘTAx0, such that
the total solution of in the modal coordinates with the initial conditions is given by the
following equation

z(t) = e−St(ΘTAx0 + ΩDRΘ0) + (S sin Ωt− ΩI cos Ωt)DRΘ0

To obtain the response in the physical coordinates u, let the transformation matrix T
be defined by T =

[
0 I

]
, such that it gives the relation between the physical coordinates

u and the state coordinates x, see equation below.

u = Tx (3.49)

By combining this result with equation (3.46), the response in the physical coordinates
of a damped multi degree of freedom system with a single harmonic load is finally given
by equation (3.50).
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u(t) = TΘ
[

e−St(ΘTAx0 + ΩDRΘ0) + (S sin Ωt− ΩI cos Ωt)DRΘ0
]

(3.50)
In example 3 the above derivation will be verified against the classical modal analysis

in a classically-damped system and against the Newmark β-method in a non-classically
damped system. Once the above derivation is verified, the resonance frequencies and the
effective damped ratios of the system will be determined in the subsequent section. It
should be noted that Lallement and Inman [14] provided the inspiration for the following
example.

Example 3. Consider the cantilever beam shown in figure 3.9.

P

m,EI, L

wtip

L 15m
EI 1.667× 106 Nm2

m 100 kgm−1

P0 1000N
Ω 10rad s−1

ξ0 0.05
ξnon 0 and -7.5

Figure 3.9: The figure shows the beam and the definition of the loading and the observed
response variable, the table shows the properties of the beam and the loading.

It is the exact same beam as in example 1 and example 2, and the same discretization of
the beam is used such that the mass matrixM and the stiffness matrixK are found in
appendix A. The beam is loaded with single harmonic concentrated load P = P0 sin Ωt
at the tip, where the amplitude is P0 and the load frequency is Ω.

The damping matrix is a non-classical damping matrix, constructed from a classical
direct damping matrix CDir with ξn = ξ0 in all modes, and a non-classical damping
matrix Cnon(ξnon), see below.

C(ξnon) = CDir +Cnon(ξnon)
The direct damping matrix CDir is the same as the one utilized in example 1 and

example 2 and is found in appendix A. The non-classical part is constructed such
that modes 1 and 2 are coupled when the classical transformation ΦTCnon(ξnon)Φ is
employed, see below.

ΦTCnon(ξnon)Φ = ξnon



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


The non-classical damping matrixCnon(ξnon) is found in the physical coordinates, by

utilizing the method for constructing the direct damping matrix, see discussion related
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to equation (3.30). Although the physical interpretation for the non-classical damping
matrix is that it provides damping between the first and second mode of vibration. An
attempt to describe the physical mechanism which leads to such damping is considered
secondary, the purpose of this example is to show that the complex modal analysis may
be used to obtain the response of a dynamic system and to investigate the implications
of coupled modes.

In order to show that the complex modal analysis may be used to obtain the response
of a system, the response obtained by the complex modal analysis will be compared
to the response obtained by numerical integration with the Newmark β-method and to
the response obtained by classical modal analysis.

Specifically, equation (3.50) is employed in the complex modal analysis, the formula
and theory for implementation of the Newmark β-method are found in [9] and the
constant acceleration version, i.e β = 1/4 and γ = 1/2 is adopted.

The scripts used to carry out the analysis are provided in appendix B.7.
First the coupled damping coefficient ξnon is set to zero, such that the system has

classical viscous damping with ξn = ξ0. With classical viscous damping it is expected
that the response obtained by either method will yield exactly the same results.

The results for the deflection of the tip wtip normalized against the static deflection
wst are presented in figure 3.10.
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Figure 3.10: The figure shows the response of the tip of the beam with classical viscous
damping.

Figure 3.10 shows that all three methods for obtaining the response yields the exact
same result. This implies that the methods are implemented correctly in Matlab, and
it also implies that the complex modal analysis may be used to obtain the response of
a classically damped system.

In the second part of this example, the response of a non-classically damped system
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will be obtained. The coupled damping coefficient ξnon is set to −7.5, the number is
chosen because it provides significant coupling between the two modes and it yields
positive dissipated energy for this particular configuration of the system.

The classical modal analysis cannot be utilized to solve a non-classically damped
system, the result of the classical modal analysis will be provided with only the classical
damping matrix CDir, such that the new system can be compared to the old one.
Regarding the response obtained from the complex modal analysis and the Newmark
β-method it is expected that both of them provide the same results.

The results for the deflection of the tip wtip normalized against the static deflection
wst are presented in figure 3.11.
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Figure 3.11: The figure shows the response of the tip of the beam with non-classical
viscous damping with coupling between the first and the second classical modes.

Figure 3.11 shows that the complex modal analysis and the Newmark β-method both
provide the same results, and unless the Newmark β-method is wrongly implemented
such that it yields the exact same results as the complex modal analysis, this shows
that the complex modal analysis may be used to obtain the response of a non-classically
damped system as well.

Regarding the non-classically damped response versus the classically damped re-
sponse it is seen that introducing the damping between the first and the second mode
has actually increased the total response of the system. This is against intuition, be-
cause introducing damping to a system usually means that the response of the system
is reduced. At second glance, it reveals the actual nature of the geometric coupling be-
tween the two modes which is introduced with non-classical viscous damping. Consider
the equation of motion for the first and second classical mode shown below.

ÿ1 + 2ξ0ω1ẏ1 + 2ξnonω1ẏ2 + ω2
1y1 = PΦ,1
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ÿ2 + 2ξnonω2ẏ1 + 2ξ0ω2ẏ2 + ω2
2y2 = PΦ,2

The non-classical damping does not only provide damping between the two first
modes, it also provides a coupling between the modes. This means that any excitation
of either mode, leads to the excitation of the other mode.

In this example the load frequency is Ω = 10 rad s−1, from example 1 it is known
that the second natural frequency of this system is ω2 = 12.7 rad s−1, such that the
second frequency ratio is β2 ≈ 0.8. This means that the second mode is strongly
excited, and through the coupling provided by the non-classical damping also the first
mode is excited. In example 1 the frequency response plot revealed that the first mode
dominated the total response at the tip of the beam, such that through the coupling
provided by the damping an increase in the response is actually reasonable. In light of
this and the fact that the coupling provided by the non-classical damping excites the
first modes leads to the question, how does the coupling affect the frequency response
of the system? The frequency response plot for the classically and the non-classically
damped system are presented below.
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Figure 3.12: The figure shows the frequency response plot of the beam with classical
and non-classical damping.

The frequency response plot shows that the resonance frequency for the first and
second modes are changed towards each other. This is a result of the geometric coupling
provided by non-classical damping. It can be seen that the natural frequencies deter-
mined by the linear eigenvalue problem does not coincide with the actual resonance
frequencies of the system.

In the subsection following this example, the eigenvalues obtained from the quadratic
eigenvalue problem will be used to determine these new natural frequencies of the
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system.
N

Determining the resonance frequencies of the non-classically damped system

In example 3 it was shown that with non-classical damping, the resonance frequencies
of the system changes. If the non-classical damping is significant, the undamped natu-
ral frequencies determined by the linear eigenvalue problem may not predict the actual
resonance frequencies of the system. As discussed before, the resonance frequencies of
the system are important in nearly all design states, and being able to predict them is
therefore important.

The quadratic eigenvalue may be utilized to determine the resonance frequencies of the
non-classically damped system. Recall that the eigenvalues from the quadratic eigenvalue
problem are in general complex and come in complex conjugate pairs such that they may
be written on the following form,

λn = λRn ± i λIn (3.51)
where λRn is the real part and λIn is the imaginary part of the eigenvalues. The eigen-

values of the complex eigenvalue problem are usually related to the eigenvalues of the lin-
ear eigenvalue problem through the underdamped complementary solution. As discussed
before, most structures are infact underdamped, and therefore it is in the continuation
assumed that the system is underdamped. Recall that the solution to the characteristic
equation for the single degree of freedom system, and the classically underdamped system
was found to be

λn = −ξnωn ± i ωn
√

1− ξ2
n

Comparing the real and the imaginary parts of the above equation and equation (3.51)
yields the following relations between the eigenvalues obtained by the complex eigenvalue
problem and the complex natural frequencies ωn and the damping ratio ξn.

ωn =
√
λ2
Rn + λ2

In (3.52a)

ξn = − λRn√
λ2
Rn + λ2

In

(3.52b)

The resonance frequencies of the damped system occurs when the response becomes
large. From the proceeding section on the complex modal analysis, the steady state re-
sponse, i.e the particular solution, for the complex modal coordinates was provided by
equation (3.48). Through the transformation matrices from the complex modal coordi-
nates to the physical coordinates, defined by equation (3.46) and equation (3.49), the
particular solution in the state space is found to be given by the following equation.

up(t) = TΘ(S sin Ωt− ΩI cos Ωt)DRΘ0

Recall that the matrix D was defined by D = (Ω2I + SS)−1, which implies that
when the matrix (Ω2I + SS) is singular, the matrix D tends to infinity, and the system
is in resonance. The matrix (Ω2I + SS) is singular when its determinant is zero, and
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the determinant of a diagonal matrix is the product of its diagonal elements. This means
that if any of its diagonal elements are zero or close to zero, the dynamic system is in
resonance. The condition for resonance is therefore given by the equation below.

Ω2 + λ2
n = Ω2 + λ2

Rn − λ2
In + i 2λRnλIn = 0

Assuming that the damping ratios ξn are small, the real part of the eigenvalue vanishes,
i.e λRn = −ξnωn ≈ 0 and the imaginary part equals the complex natural frequency, i.e
λIn ≈ ωn, see equations (3.52).

This implies that resonance occurs when the load frequency Ω is equal to the complex
natural frequencies ωn given by equation (3.52a).

To confirm the above discussion and derivation, consider the following brief example
where the resonance frequencies for the non-classically damped beam in example 3 are
determined with equation 3.52a and compared against the predicted resonance frequencies
from the undamped eigenvalue problem.

Example 4. In this example the resonance frequencies found for the non-classically
damped system in example 3 are to be determined. The frequency response plot,
figure 3.12, given in example 3 is given below for convenience.
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Classical damping, ξnon=0
Non-classical damping, ξnon=-7.5

The resonance frequencies where found by employing the inbuilt Matlab function
findpeaks on the frequency response plot, the result are given in the first column of
table 3.2. The natural frequencies calculated by the linear and quadratic eigenvalue
problem and are also provided in the second and third column, respectively.
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Table 3.2: The table shows the resonance frequencies of the cantilever beam of example 3
with non-classical damping and the natural frequencies of the system estimated by the
linear and complex eigenvalue problem. The effective damping ratios in the modes are
also given.

Resonance frequencies Linear frequencies Complex frequencies Effective modal ratios
[rad s−1] [rad s−1] [rad s−1] [%]

2.6 2.0 2.5 5.8
10.0 12.7 10.1 5.8
35.9 35.7 35.7 5.0
71.0 70.4 70.4 5.0
132.1 130.9 130.9 5.0

The table shows that the complex natural frequencies obtained from the quadratic
eigenvalue problem estimates the resonance frequencies of the beam for the first and
second mode much better than the linear eigenvalue problem. It can also be seen that
for the modes which are not coupled, i.e all modes except the first and the second,
the natural frequencies obtained the linear and the quadratic eigenvalue problem are
the same. The coupling between the first and second mode changes the effective modal
damping ratios for these modes, but does not affect damping ratios for the other modes.
N
The use of the complex natural frequencies are not limited to determining the res-

onance frequency of a non-classically damped system. With the quadratic eigenvalue
problem, the non-classical damping matrix of the system could be determined by invert-
ing the problem in the example above. Imagine that the frequency response of a structure
was known from experiments, and the elastic and inertial properties where well defined,
i.e the stiffness and the mass matrix was known. Then the damping matrix could be
tuned either through a iterative process or an analytical approach, such that the complex
natural frequencies coincided with the resonance frequencies of the experimental data.

The main topics in this chapter on multi degree of freedom systems have been the
linear eigenvalue problem, viscous damping models and the quadratic eigenvalue problem.
The purpose of the section on the linear eigenvalue problem was to provide the basis for
development and discussion of the viscous damping models and the derivation of the
quadratic eigenvalue problem.

From the discussion on viscous damping models, it is apparent that unless the specific
damping ratios of the given structure are known or the non-classical damping matrix is
available from experimental data on the specific structure, the Rayleigh damping matrix
provides sufficient control over the damping ratios and better computational efficiency
than the alternatives. The Rayleigh damping matrix will therefore be adopted in the
continuation of this thesis, more specifically in the case study in chapter 5

The discussion on the quadratic eigenvalue problem showed that the complex eigen-
values could be used to determine the resonance frequencies and effective modal damping
ratios of a non-classically damped system. These findings will be utilized in chapter 5 to
determine the resonance frequencies of the complete structure, and to confirm that the
structure has reasonable damping ratios in the significant modes.
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Chapter 4

Dynamic load modeling

This section reviews different methods to model the train and the difference between the
load models and their effect on the structure. The section explains how the load models
are implemented in Abaqus. The phenomena of resonance from the moving loads will be
discussed, and it will be shown that there exists two different ways moving loads induce
resonance in a structure.

4.1 Moving forces model
In this section the theory for the moving forces load model will be developed. First the
problem with a moving load on a simply supported beam will be solved analytically,
then the formulation for the moving load on a beam for finite element simulation will be
derived. Finally, an example will be used to verify the finite element formulation against
the analytical solution.

x, um,EI, L

P

vPz, w

(a)

Pδ(x− xP (t))

V + dV

M +
dM

M

V dx

m dx ẅ

(b)

Figure 4.1: The figure shows the properties and definitions used in the derivation of the
analytical solution of the moving force problem.

Consider the simply supported beam shown in figure 4.1a. It has constant cross
sectional area made up of a linear elastic material. The beam has mass per unit length
m, bending stiffness EI and length L. It is assumed that the length of the beam is
large compared to its other dimensions such that Naviers hypothesis is valid, i.e plane
sections remain plane and perpendicular to the neutral axis. The beam is loaded with a
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concentrated force P , moving at constant speed vP . A coordinate x with origin at the
left end of the beam and with direction in the length axis of the beam, may describe
the position xP of the load at time t given the initial position is xP (t = 0) = xP0, see
equation (4.1).

xP (t) = xP0 + vP t (4.1)
The moving load may be represented as a spatially distributed load by introducing the

Dirac delta function δ(x−xP (t)). Figure 4.1b shows the forces working on an infinitesimal
element of the beam with internal shear force V , moment M , lateral inertia force m dx ẅ
and the external distributed loading Pδ(x − xp(t)). It should be noted that the inertia
associated with angular acceleration is neglected. Taking moment equilibrium about the
center of the element and neglecting higher order terms, yields the well known relation
between the shear and the moment, dM

dx = V . Finally, force equilibrium in the vertical
direction and the relation M = −EIw′′ from Naviers hypothesis yields the governing
differential equation (4.2).

mẅ + EIw′′′′ = −Pδ(x− xP (t)) (4.2)
The solution of the above differential equation is assumed to be on the form of w(x, t) =

φ(x)y(t). Introducing this relation into the homogeneous version of equation (4.2) and
rewriting the result slightly yields the following equation.

EI

m

φ′′′′(x)
φ(x) = − ÿ(t)

y(t)

It can be seen that the left hand side of the above equation is only dependent on x and the
right hand side of the equation is only dependent on t. The above equation can therefore
only be satisfied if both sides equal the same constant λ, which are the eigenvalues of the
continuous system. It will be shown that there exists an infinite number of eigenvalues in
the continuous system, and the following equations must be satisfied for each of them.

ÿn(t) + λnyn(t) = 0 (4.3a)

φ′′′′n (x)− λn
m

EI
φn(x) = 0 (4.3b)

Equation (4.3a) has a general solution on the form yn = An esnt, which by introduc-
tion into equation (4.3a) yields the constant sn =

√
−λn. If λn < 0 then y(t) grows

exponentially and subsequently the homogeneous solution of w(x, t) diverges. This is
clearly unphysical and dictates that λn ≥ 0, and it follows that sn = i

√
λn = i ωn, where

ωn =
√
λn are the natural frequencies of the system.

The general solution of equation (4.3b) is on the form φn = Bn eαnx. Defining γ4
n =

λn
m
EI

yields the following relation,

α4
n − γ4

n = (α2
n + γ2

n)(α2
n − γ2

n) = 0

which has the solution αn = ±γn and αn = ±i γn. Through Euler’s formula and hyperbolic
identities it is possible to write the general solution of equation (4.3b) as

φn(x) = C1n cos γnx+ C2n sin γnx+ C3n cosh γnx+ C4n sinh γnx
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Introducing the boundary conditions of the simply supported beam w(0, t) = 0, w(L, t) =
0, w′′(0, t) = 0 and w′′(L, t) = 0 into the above equation yields C1n = C3n = 0,
C2n sin γnL = 0 and C4n sinh γnL = 0. Since sinh γnL is never zero, C4n has to be zero. A
non-trivial solution then demands that sin γnL = 0, which occurs when γn = nπ

L
.

The nth vibration mode of a simply supported beam is then given by the following
equation.

φn(x) = Cn sin nπx
L

The constant Cn is the magnitude of the mode shape and it can be seen that multiply-
ing φn(x) in equation (4.3b) with the arbitrary constant C also satisfies equation (4.3b)
such that Cn itself is arbitrary. As for the MDOF system, the modes for the continuous
system may be mass normalized, to show this recall that the displacement wn(x, t) due to
the nth mode is the product of the mode and the modal coordinate, see equation (4.4).

wn(x, t) = φn(x)yn(t) (4.4)
By introducing equation (4.4) into equation (4.2), multiplying both sides by φn(x)

and integrating over the length of the beam, the equation of motion for the nth vibration
mode emerges.

L∫
0

m[φn(x)]2 dx ÿn(t) +
L∫

0

EIφn(x)φ′′′′n (x) dx yn(t) = −
L∫

0

Pφn(x)δ(x− xP (t)) dx

Choosing the modal mass to be equal to unity, i.e
∫ L

0 m[φn(x)]2 dx = 1, is known as mass
normalization and the nth mass normalized vibration mode is given by equation (4.5).

φn(x) =
√

2
mL

sin nπx
L

(4.5)

Combining equation (4.5) and (4.1) with the equation of motion for the nth vibration
mode gives the equation of motion for the nth vibration mode with mass normalized mode
shapes 1, see equation (4.6).

ÿn(t) + n4π4EI

mL4 yn(t) = −P
√

2
mL

sin
(
nπvP t

L
+ nπxP0

L

)
(4.6)

Comparing equation (4.6) with equation (4.3b) and remembering that ωn =
√
λn shows

that the natural frequency of the system for mode n is given by ω2
n = λn = n4π4EI

mL4 .
Note that the derivation does not contain a term which takes damping into account, i.e
there is no term which represents energy dissipation from the system. Assuming classical
viscous damping, the total energy dissipation from the system is proportional to the
modal velocity. Introducing the modal damping ratio ξn into the above equation, i.e the
left hand side of equation (4.6) is augmented with a term 2ξnωnẏn(t), see equation (4.7).

ÿn(t) + 2ξnωnẏn(t) + ω2
nyn(t) = −P

√
2
mL

sin
(
nπvP t

L
+ nπxP0

L

)
(4.7)

1Recall the fundamental property of the Dirac delta function, i.e
∫ L

0 Pφn(x)δ(x − xP (t)) dx =
Pφn(xP (t))
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From section 2 it is known that there are three distinct solutions to the homogeneous
version of equation (4.7), depending on the value of ξn. As mentioned in section 2,
most engineering structures are underdamped structures. It is therefore assumed that the
simply supported beam in figure 4.1a is an underdamped structure. Furthermore, it is
assumed that the load starts at the left end, i.e xP0 = 0, and that the beam is initially at
rest, i.e yn(0) = 0 and ẏn(0) = 0. The analytical solution for the modal coordinate yn is
then given by equation (4.8).

yn(t) = P
√

2mLL3/(n4π4EI)
(1− β2

n)2 + (2ξnβn)2

2ξnβn cos(Ωnt)− (1− β2
n) sin(Ωnt)

+ e−ξnωnt

βn(1− β2
n − 2ξ2

n)√
1− ξ2

n

sin(ωdnt)− 2ξnβn cos(ωdnt)
 (4.8)

Where Ωn is the load frequency, ωn is the natural frequency, βn is the frequency ratio,
ξn is the damping ratio and ωdn is the damped natural frequency, see (4.9).

Ωn = nπvP
L

(4.9a)

ωn =
(
nπ

L

)2
√
EI

m
(4.9b)

βn = Ωn

ωn
(4.9c)

ωdn = ωn
√

1− ξ2
n (4.9d)

Inserting equation (4.5) and (4.8) into equation (4.4) and taking the sum of all modes,
gives the analytical solution of the displacement field for the simply supported beam, see
equation (4.10).

w(x, t) = 2PL3

π4EI

∞∑
n=1

sin (nπx/L)
n4[(1− β2

n)2 + (2ξnβn)2]

2ξnβn cos(Ωnt)− (1− β2
n) sin(Ωnt)

+ e−ξnωnt

βn(1− β2
n − 2ξ2)√

1− ξ2
n

sin(ωdnt)− 2ξnβn cos(ωdnt)

(4.10)

It should be noted that equation (4.10) is only valid while the loading is on the beam,
i.e 0 ≤ xP (t) ≤ L.

In the finite element method, the continous beam is divided into a set of elements,
each defined by two nodes. Loads working on the elements, i.e between the nodes, are
distributed to the nodes as nodal loads. There are two basic ways of distributing the
forces to the nodes in a conventional FEA. First is the consistent load formulation, see
equation (3.7c), which utilizes the interpolation functions of the element as weighing
functions, in this formulation the distributed loads end up as both nodal point loads and
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nodal moments. The second way is by ”load lumping”, here the forces acting within
the elements are distributed to the nodes as nodal forces by linear weighing functions
regardless of the polynomial order of the element, see [3, 13]. The consistent formulation
is more complex and involved than its counterpart, but yields an exact solution to the
mathematical problem. Load lumping involves approximation, but the solution converges
as the size of the are elements are reduced. Wu et al. [15] showed that load lumping
provides good results for the case of moving concentrated loads. Because of its simplicity
and the results obtained by Wu et al., load lumping will be adopted in this thesis.

i

−∆L 0 ∆L xi

x0 (i−1)∆L xP (t)

i− 11 i+ 1 N + 1

P

vPPi(t)

xiP (t)

Figure 4.2: The figure shows a continous beam divided into N elements and N + 1 nodes.
The nodal load Pi(t) and the moving load P are also shown. Note that P is shown in
gray to signify its indirect effect in the finite element formulation. The figure shows the
definition of the local nodal coordinate system xi and the global coordinate system x,
and the position of the moving load in the nodal coordinate system xiP (t) and the global
coordinate system xP (t).

Figure 4.2 shows a continous beam divided into N elements defined by N + 1 nodes.
Assuming that each node is equidistantly spaced, the length of each element is ∆L = L

N
.

A local coordinate system xi with origin in node i and direction along the length axis of
the beam may define the position xiP of the moving load P . The linear distribution of
the moving load P to the nodal load Pi, is then given by equation (4.11).

Pi(t) =


(
1−

∣∣∣xiP (t)
∆L

∣∣∣)P for −∆L ≤ xiP (t) ≤ ∆L
0 elsewhere

(4.11)

The moving load P has the position xP (t) in the global coordinate system defined
with origin in the left end of the continuous beam. With xP (0) = xP0, equation (4.1)
is also valid for the position of the moving load depicted in figure 4.2. The relationship
between the local and the global position of the moving load is given by equation (4.12).

xiP (t) = xP (t)− (i− 1)∆L (4.12)
Combining equation (4.1), (4.11) and (4.12) gives the explicit definition of nodal load

as a function of time, see equation (4.13).

Pi(t) =


(
1−

∣∣∣xP 0+vP t−(i−1)∆L
∆L

∣∣∣)P for (i−2)∆L−xP 0
vP

≤ t ≤ i∆L−xP 0
vP

0 elsewhere
(4.13)
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To gain confidence in the proposed finite element formulation for the moving load, ex-
ample 5 compares the analytical response and the finite element response of a simply
supported beam.

Example 5. Consider the simply supported beam shown in figure 4.1. The length
of the beam is L and it has a constant cross section with flexural rigidity EI and
distributed mass m. The beam is loaded with a moving load with magnitude P and
velocity vp. It is assumed that the beam has Rayleigh damping, with damping ratio ξ0
specified in the first and second natural frequency, yielding Rayleigh coefficients a0 and
a1. The example is to be solved with the analytical solution and the proposed moving
load formulation for finite elements. The analysis is carried out in Matlab and Abaqus,
the scripts carrying out the analysis are provided in appendix B.8.

It is expected that the finite element solution with the moving load formulation,
equation (4.13) converges to the analytical solution provided by equation (4.10) as the
number of elements increases.

The results of the analysis are presented in figure 4.3 for the deflection of the mid
point of the beam.
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L 25m
EI 4.375× 108 Nm2

m 785 kgm−1

P 105 N
vP 25ms−1

ξ0 0.05
a0 0.9431 rad s−1

a1 0.0017 rad−1 s

Figure 4.3: The figure shows the deflection of the midpoint of the beam, normalized
against the maximum deflection of the beam for different discretization of the beam.
The table shows the properties of the beam and the load.

The result shows as expected that the finite element solution converges to the analytical
solution as the number of elements are increased.
N

4.2 Moving mass model
The moving force model does not include the inertia effects from the mass of the train
in the analysis. This section considers the basic implications of including the mass of the
train in the analysis and under what conditions the inertia effects become significant.
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Figure 4.4: The figure shows a simply supported beam with a moving mass.

The differential equation for a moving point mass on a beam can be obtained rather
easily, but the analytical solution of the differential equation is difficult to obtain even for
a simply supported beam. In any case, the goal is to analyze more complex structures
than simply supported beams, such that the problem is solved with contact formulation
in the finite element method. The theory behind the contact formulation is considered
beyond the scope of this thesis and is therefore not included. It can be noted that Saleeb
and Kumar [16] is a good starting point for readers interested in the moving mass problem
and contact formulations in commercial finite element codes.

The problems are solved using the contact pair algorithm in Abaqus. The reason for
choosing the contact pair algorithm over the other contact formulations is primarily based
on the fact that only the contact pair algorithm allows the use of beam elements in 3D
contact problems. In addition, specifying contact pairs are considered more efficient and
robust than utilizing an all-inclusive general contact formulation [12, sec 35.1.1]. Without
going into greater detail, an explanation on how the moving mass is modeled in Abaqus
is found in the following paragraph.

The point mass is modeled with a mass element, the rail is modeled with Euler-
Bernoulli beam elements. There is a slight difference between the formulation in 2D and
3D. The contact pair algorithm needs to have a master and a slave surface. A single node
can be defined as a node based surface, but the node based surface can only be defined
a slave surface. A beam element in 2D can be defined a master surface, such that the
contact formulation in 2D consists of the node with the moving mass is defined as the
slave surface and the beam is defined as the master surface. In contrast, a beam element
cannot be defined a master surface in 3D, such that an additional rigid element has to
be introduced and attached to the moving mass to constitute the master surface in the
contact formulation. The beam may then be defined the slave surface in the contact pair.

In order to gain confidence in the above formulation of the moving mass model consider
example 6.

Example 6. The simply supported beam shown in figure 4.4 has length L and a
constant cross section with flexural rigidity EI and distributed mass m. It is assumed
that the beam has Rayleigh damping, with damping ratio ξ0 specified in the first and
second natural frequency, yielding Rayleigh coefficients a0 and a1. The beam is loaded
with a moving mass MP moving with constant velocity vP .

The example is to be solved with both the moving mass formulation and the moving
load formulation with equivalent load P = MPg. The analysis is carried out in Matlab
and Abaqus, the scripts are provided in appendix B.9.
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The difference between the moving mass formulation and the moving load formula-
tion should vanish if the inertia effects of the train vanish. From equations (4.9a) and
(4.9b) the first resonance velocity of this problem is estimated to be vP1 ≈ 94ms−1.
The velocity of the load is about 1% of the first resonance frequency, and may therefore
be considered low. It is therefore expected that the difference in response produced by
the two models is negligible.

The results for the deflection of the mid point of the beam are presented in figure 4.5.
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Figure 4.5: The figure shows the deflection of the midpoint of the beam, normalized
against the maximum deflection of the beam for different discretization of the beam.
The table shows the properties of the beam, the load and the moving mass.

The results shows as expected that the moving mass formulation is equal to the mov-
ing force formulation. The prescribed velocity is so low that the accelerations and
subsequently the inertia forces of the moving mass vanishes.
N
To further investigate the difference between the moving force model and the moving

mass model, consider the simply supported beam shown in figure 4.4 again. It is exactly
the same beam as the one used to develop the moving load model, but now a point mass
MP is moving at constant speed vP along the beam. A coordinate x with origin at the
left end of the beam and with direction in the length axis of the beam, may describe the
position xP of the point mass at time t given the initial position xP (t = 0) = xP0, see
equation (4.1).

Assuming that the point mass never looses contact with the beam, the displacement
of the point mass wP (t) is equal to the displacement of the beam w(x, t) at x = xP (t), i.e
wP (t) = w(xP (t), t). The total acceleration of the point mass is the sum of the acceleration
of the beam at x = xP (t) and of the gravity g, see the equation below.

ẅP (t) = g + ẅ(xP (t), t)

By employing d’Alemberts principle, the point mass may be represented as a con-
centrated force PMM = MP ẅP (t). The connection between the concentrated force P in
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the moving load model and the inertia force PMM in the moving mass model is made by
realizing that P is equal to the weight of the moving moving mass, i.e P = MPg. The
inertia force resulting from the moving mass may then be written as equation (4.14).

PMM = P

(
1 + ẅ(xP (t), t)

g

)
(4.14)

Equation (4.14) shows that the difference between moving force model and the moving
mass model depends on the magnitude of the acceleration of the beam at xP (t) relative
to the magnitude of the gravity. It also shows that the problem becomes nonlinear as
the loading becomes a function of the response of the structure, i.e P = P (ẅ, t). Recall
that the velocity of the moving mass is assumed to be constant, see equation (4.1), the
acceleration of the beam at point xP (t) may be written on the following form.

ẅ(xP (t), t) =
[
(vp)2∂

2w(x, t)
∂x2 + 2vp

∂2w(x, t)
∂x∂t

+ ∂2w(x, t)
∂t2

]
x=xP 0+vP t

From the equation above and equation (4.10) an exact expression for the acceleration
in the case of the moving force can be determined, see equation (4.15). Note that it is
assumed that the moving load starts in the left end of the beam, i.e xP (t) = vP t and
P = MPg has been introduced.

ẅ(xP (t), t) = 2MPg

mL

∞∑
n=1

{
sin Ωnt

[
2β2

nD1n sin (Ωnt− θ1n) + (1− β2
n)D2n e−ξnωnt sin (ωdnt− θ2n)

]
− 2βn cos Ωnt

[
βnD1n cos (Ωnt− θ1n) +D2n e−ξnωnt[ξn sin (ωdnt− θ2n)

+
√

1− ξ2
n cos (ωdnt− θ2n)]

]}
(4.15)

where

D1n = 1√
(1− β2

n)2 + (2ξnβn)2

D2n = 1
(1− β2

n)2 + (2ξnβn)2

√√√√β2
n(1− β2

n − 2ξ2
n)2

1− ξ2
n

+ (2ξnβn)2

θ1n = arctan 2ξnβn
1− β2

n

θ2n = arctan
2ξn

√
1− ξ2

n

1− β2
n − 2ξ2

n

To analyze the above equations, recall that the purpose is to investigate the difference
between the moving load and moving mass model. All parameters which derive from the
properties of the beam may therefore be considered as constants. This means that the
two parameters to directly consider in the above equations areMP and βn = nπ

ωnL
vP . First

consider the amplification factors D1n and D2n, figure 4.6 shows the behaviour of D1n and
D2n as a function of βn.

44



0 0.5 1 1.5 2 2.5 30

2

4

6

8

10

βn

D
α
n

D1n
D2n

Figure 4.6: The figure shows dynamic amplification factors for the simply supported beam
with moving load, the damping factor is set to ξn = 0.05.

The figure shows that both amplification factors become significant as βn ≈ 1, i.e close
resonance. Since either amplification factor is included in every term in equation (4.15)
this implies that the acceleration of the moving load at xP (t) becomes significant at
resonance. Consequently this means that the difference between the moving load and
equivalent moving mass load becomes more significant closer to resonance. Example 7
investigates the above observation.

Example 7. The simply supported beam shown in figure 4.4 has length L and a
constant cross section with flexural rigidity EI and distributed mass m. It is assumed
that the beam has Rayleigh damping, with damping ratio ξ0 specified in the first and
second natural frequency, yielding Rayleigh coefficients a0 and a1. The beam is loaded
with a moving mass MP moving with constant velocity vP .

The example is to be solved with both the moving mass formulation and the moving
load formulation with equivalent load P = MPg. The analysis is carried out in Matlab
and Abaqus, the scripts for this example are the same as the scripts provided for
example 6, but with a different velocity vP , see appendix B.9.

The velocity of the moving mass vP = 90ms−1 is close to the resonance velocity of
the beam at ≈ 94ms−1. Based on observations made about the acceleration ẅ(xP (t), t)
it is expected that the difference between the moving mass formulation and the moving
load formulation is large. The results for the deflection of the mid point of the beam
are presented in figure 4.7.
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Figure 4.7: The figure shows the response at the midpoint of the beam with the moving
force formulation and the moving mass formulation. The table shows the properties of
the beam and the loading.

The results show that the two responses are diverging from eachother. When the
moving mass is leaving the beam, i.e at t/tmax = 1, both the displacement estimated by
the two load models and slopes are vastly different. This means that the free vibration
phase starting at t/tmax = 1 will be different. The example indicate that the difference
in the two proposed load models are significant at velocities close to the resonance
velocity of the beam.
N
The second thing that is important to note is that D2n goes to zero as βn goes to zero.

Since every term in equation (4.15) includes either βn directly or D2n, the acceleration of
the moving mass goes to zero as βn tends to zero. It follows that the difference between
the moving load and the equvalent moving mass load vanishes as the velocity tends to
zero. This is in accordance with both intuition and what was found in example 6. A
final observation regarding βn is that every term in equation (4.15) is dependent on some
power of βn, either directly or through D2n. This implies that ẅ(xP (t), t) is sensitive to
changes in βn, and subsequently the velocity of the moving mass vP . This means that even
at moderate velocities, the difference between the two models should become apparent.
Example 8 illustrates the sensitivity of ẅ(xP (t), t) to vP .

Example 8. The simply supported beam shown in figure 4.4 has length L and a
constant cross section with flexural rigidity EI and distributed mass m. It is assumed
that the beam has Rayleigh damping, with damping ratio ξ0 specified in the first and
second natural frequency, yielding Rayleigh coefficients a0 and a1. The beam is loaded
with a moving mass MP moving with constant velocity vP .

The example is to be solved with both the moving mass formulation and the moving
load formulation with equivalent load P = MPg. The analysis is carried out in Matlab
and Abaqus, the scripts for this example are the same as the scripts provided for
example 6, but with vP = 10ms−1, see appendix B.9.

The first resonance velocity is vP1 ≈ 94ms−1, this means that the velocity in this
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example is only at 10% of the first resonance velocity. This is by no means a high
velocity, but because the acceleration of the moving mass is sensitive to the velocity, it
is expected that the response obtained by the moving mass formulation should differ
from the response obtained by the moving force model.

The results for the deflection of the mid point of the beam are presented in figure 4.8.
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Figure 4.8: The figure shows the response at the midpoint of the beam with the moving
force formulation and the moving mass formulation. The table shows the properties of
the beam and the loading.

The results shows as expected that even with a modest velocity compared to the reso-
nance velocity, the difference in the response between the two load formulations become
apparent.
N
Although the above example shows that the response is different at relatively low

velocities, the magnitude of the deflection of the mid point in the two formulations are
largely the same. This means that if the purpose of the analysis is to extract the maximum
deflection of the structure and the velocities are moderate, either method may be applied.
On the other hand, if for instance the accelerations or stresses are the goal of the analysis,
the difference in the results may prove more significant.

The second parameter which differentiate the moving load and the moving mass model
is the mass MP . Equation (4.15) shows that the acceleration at xP (t) depends on the
ratio between the mass of the moving load MP and the mass of the beam mL. This
indicates that if the moving mass becomes small compared to the weight of the bridge,
the difference between the two models will be reduced. A final example is presented below
to check the above observation and to verify that the moving mass model does capture
this behaviour.

Example 9. The simply supported beam shown in figure 4.4 has length L and a
constant cross section with flexural rigidity EI and distributed mass m. It is assumed
that the beam has Rayleigh damping, with damping ratio ξ0 specified in the first and
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second natural frequency, yielding Rayleigh coefficients a0 and a1. The beam is loaded
with a moving mass MP moving with constant velocity vP .

The example is to be solved with both the moving mass formulation and the moving
load formulation with equivalent load P = MPg. The analysis is carried out in Matlab
and Abaqus, the scripts for this example are the same as the scripts provided for
example 6, but with vP = 10ms−1 and MP = 1 kg, see appendix B.9.

The mass of the beam is about 20 000 kg, in example 8 the moving mass was about
50% of the mass of the beam. Under those conditions, the difference between the two
load formulations became apparent. In this example, the ratio between the moving
mass and the mass of the beam is about 1% of the mass of the beam. According to the
discussion proceeding this example, the difference between the two load formulations
should vanish as a result of the acceleration of the moving mass vanishes.

The results for the deflection of the mid point of the beam are presented below.
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Figure 4.9: The figure shows the response at the midpoint of the beam with the moving
force formulation and the moving mass formulation. The table shows the properties of
the beam and the loading.

It should be pointed out that the axes of the above plot are scaled, the absolute
deflection under the conditions of this example are in them selves negligible. Never-
theless, this example shows that the characteristics of the moving load formulation is
similar to the characteristics of the moving force formulation when the moving mass is
small compared to the mass of the beam.
N
This section has outlined the method for implementing the moving mass model in

Abaqus. It has been shown that the moving mass formulation produce intuitive and
physically sound results compared to the moving force model. The examples indicate
that the difference between the two models are negligible at low velocities and when the
moving mass is small compared to the mass of the beam. Furthermore, the examples
indicate that the difference between the two formulations become apparent at relatively
low velocities. This may prove significant if the purpose of the analysis is to extract the
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stress history or evaluate the acceleration of the structure. Finally, the results indicate
that the difference in the two formulations are vastly different at speeds close to the
resonance speed of the structure.

4.3 Sprung mass model
In section 4.1 a method for implementing a moving force across a structure was developed
for the finite element method and verified against the analytical solution of a force moving
along a simply supported beam. In section 4.2 the moving force model was extended to
the moving mass model to include the inertia effect of the physical body represented by
the models. More often than not, the physical body is more complicated systems including
elastic and dissipative elements, e.g the suspension system of a car or train. This section
will extend the moving mass model to a more realistic model and include a spring and
viscous dashpot in the formulation, some basic implications of the sprung mass model
will also be considered.

vP

(a)

M2

M1

K C

w2(t)

w(xP (t), t)

(b)

Figure 4.10: The figure shows the sprung mass model moving on a simply supported beam
(a), and the quantities used to define the sprung mass model (b).

The analytical solution of the sprung mass moving on a beam involves two coupled and
non-linear partial differential equations. As for the moving mass problem, the solution of
the above problem is obtained with contact formulation in the finite element method. In
the following paragraph, a brief description of the specifics for modeling the sprung mass
in the finite element method is presented.

The sprung mass model consists of two nodes, one containing the mass element M1
and the second containing the mass element M2. The contact formulation between the
mass M1 and the beam/rail is the same as presented in the beginning of section 4.2. The
nodes are connected in the vertical direction with a linear spring element with stiffness
K and a viscous dashpot with viscous coefficient C. All degrees of freedom, except the
vertical degree of freedom of the node with M2 are constrained to the corresponding
degree of freedom of the node with M1. Before the presented model is implemented
in some practical examples, the following paragraph will analyse the problem from an
analytical point of view to gain some insight into the problem.

Consider the simply supported beam shown in figure 4.10a. It is exactly the same
beam as the one used to develop the moving load model and the moving mass model,
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but now a sprung mass is moving at constant speed vP along the beam. A coordinate
x with origin at the left end of the beam and with direction in the length axis of the
beam, may describe the position xP of the sprung mass at time t given the initial position
xP (t = 0) = xP0, see equation (4.1).

As implied by figure 4.10b it is assumed that the point mass M1 never looses contact
with the beam, and the displacement of M1 is therefore equal to the displacement of the
beam w(x, t) at x = xP (t), i.e the displacement of M1 is w(xP (t), t). The acceleration
of the first mass is the sum of the acceleration of the beam at xP (t) and the gravity g.
The second point mass M2 has displacement w2(t), such that the total acceleration of the
second mass is the sum of ẅ2(t) and the gravity g. By applying d’Alemberts principle
and combining the equilibrium equations for the two point masses it is possible to find
the equivalent force PSM for the sprung mass. By realizing that the connection between
the moving load and the sprung mass model is through the weight of the model, i.e
P = (M1 +M2)g the following equation appears.

PSM = P

[
1 + M1

M1 +M2

ẅ(xP (t), t)
g

+ M2

M1 +M2

ẅ2(t)
g

]
The above equation shows that the sprung mass model differs from the moving force
model by the second and third term in the square brackets. The second term in the
square brackets are the inertia effects of the first mass, and the third term in the brackets
are the inertia effects related to the second mass M2.

In practical applications, the first mass M1 is much smaller than the second mass
M2, for instance M1 would be the wheel of a train and M2 would be part of the train
and its cargo. This means that in the limit the fraction M1/(M1 + M2) vanishes, while
M2/(M1 + M2) becomes equal to unity. Under these conditions the equivalent load for
the sprung mass on the beam may be written on the following form.

PSM ≈ P

[
1 + ẅ2(t)

g

]
(4.16)

The acceleration of the second mass ẅ2(t) is due to the forces imposed on the second
mass by the spring and the dashpot. From equilibrium considerations the acceleration of
the second mass can be obtained, see below.

ẅ2(t) = K

M2
[w(xP (t), t)− w2(t)] + C

M2
[ẇ(xP (t), t)− ẇ2(t)]

The above equation is a second order non-linear differential equation. Instead of trying
to solve it to obtain the acceleration of the second mass, it is deemed more productive to
determine its value through some physical reasoning.

If the spring stiffness K and the viscous damping coefficient C become small, the
forces working on the second mass becomes small. This means that the acceleration ẅ2(t)
becomes small, and in the limit it vanishes. This indicates that with low stiffness and
damping of the sprung mass formulation, the equivalent force for the sprung mass becomes
equal to the force in the moving load formulation, i.e PSM = P .

On the other hand, if the spring stiffness and the damping coefficient are large, the
spring and the dashpot acts as rigid links between the first and the second mass. The
acceleration of the second mass will then be equal to the acceleration of the first mass
such that PSM = P [1 + ẅ(xP (t), t)/g] = PMM .
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Although the sprung mass formulation is equal to the two other formulations in the
limit of K and C, it is not given that intermediate values of the K and C yield results
within the bounds of the two formulations. This is explained by the fact that the accel-
eration ẅ2(t) is dependent on the response of the structure itself and thereby the loading
PSM is non-linear. In addition, the sprung mass itself is a subsystem with its own dynamic
properties which interact with the beam system.

In the following example, the above observations about the sprung mass model com-
pared to the two other models will be investigated.

Example 10. The simply supported beam shown in figure 4.10a has length L and a
constant cross section with flexural rigidity EI and distributed mass m. It is assumed
that the beam has Rayleigh damping, with damping ratio ξ0 specified in the first and
second natural frequency, yielding Rayleigh coefficients a0 and a1.

The example is to be solved with a flexible, a intermediate and a stiff configuration of
the sprung mass formulation with M1,M2, C,K according to figure 4.10b. The results
are to be compared to the moving mass formulation with MP = M1 + M2 and the
moving load formulation with equivalent load P = (M1 +M2)g. The analysis is carried
out in Matlab and Abaqus, the scripts for this example are provided in appendix B.10.

In the flexible configuration K = 104 Nm−1 and C = 100Nsm−1 and the deflection
under gravity alone is close to 10m, the stiffness of the sprung mass must therefore
be considered low. Assuming that C may be considered low as well, it is expected
that the response obtained from the flexible sprung mass configuration will be close to
the response obtained by the moving force formulation because the acceleration ẅ2(t)
vanishes.

In the intermediate configuration K = 106 Nm−1 and C = 103 Nsm−1 and the
deflection under gravity is about 1mm, the stiffness of the sprung mass can therefore
be considered as intermediate. Assuming that C may be considered intermediate as
well, it is difficult to anticipate where the response from the sprung mass will end up
compared to the two other formulations because of the nonlinearity of the problem.

In the stiff configuration K = 109 Nm−1 and C = 105 Nsm−1 and the deflection
under gravity negligible, the stiffness of the sprung mass must therefore be considered
high. Assuming that C may be considered high as well, it is expected that the response
obtained from the stiff sprung mass configuration will be close to the response obtained
by the moving mass formulation because the acceleration ẅ2(t) is close to ẅ(xP (t), t).

The results for the deflection of the mid point of the beam are presented in fig-
ure 4.11.
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Figure 4.11: The figure shows the response at the midpoint of the beam with different
load models. The table shows the properties of the beam and the loading.

The results show as expected that the response obtained by the flexible configuration
of the mass sprung formulation is very similar to the moving force formulation, and the
response obtained by the stiff configuration of the mass sprung formulation is close to
the response of the moving mass formulation. The slight difference shown between the
flexible configuration and the moving force formulation may be attributed to the inertia
effect of the first mass M1. The response obtained from the intermediate configuration
is less than both the moving force formulation and the moving mass formulations. This
characteristic is generally found for intermediate values of the stiffness and damping
coefficient. The physical explanation for this is that for intermediate values of stiffness
and damping, the damper in the sprung mass model dissipates energy from the system,
and thereby reduces the response of the system. This claim is also backed by Majka
and Hartnett [17] who makes similar observations about the sprung mass model.
N
In this section the method for implementing the mass sprung model in the finite

element method has been presented. It has also been shown that the moving force model
and the moving mass model are limiting cases of the sprung mass model. Regarding actual
values of the spring stiffness and the viscous dashpot coefficient this obviously varies with
the specific train being modeled. In the literature, Iwnick [18], Yau et al. [19] and Liu
et al. [20] among a wealth of others provide values for the vehicle parameters of the sprung
mass.

4.4 Vehicle interaction model
In addition to the moving forces, moving mass and the sprung mass model there exists
even more complex dynamic systems to model the train, see figure 4.12.

These models are henceforth known as vehicle interaction models, and they are made
up of the same basic elements as in the sprung mass model, but in addition the coupling
between the axles through the boggies and the coupling between the boggies through the
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Figure 4.12: The figure depicts an example of a vehicle interaction model

vehicle body are included. The rotational inertia of the boggies and the vehicle bodies are
also included. These vehicle interaction models may have up to 35 degrees of freedom,
depending on the complexity of the models. The vehicle interaction models have been used
by [17], [21],[22], [23] and [24] among others to study the dynamic response of bridges, due
to parameters such as velocity, track irregularity, damping and bridge skewness. Although
the wide use of complex vehicle interaction models, comparative studies made by [20] and
[25] shows that the difference between complex vehicle interaction models and the sprung
mass model are small when the dynamics of the bridge, rather than the dynamics of the
vehicles are being assessed. In special cases, e.g where the bridge lies in a curve and
the lateral deflections of the bridge are to be assessed, a vehicle interaction model may
obviously be warranted. Based on the results found in [20] and [25] and the need to
limit the scope of this thesis, the choice is made to leave out the more complex vehicle
interaction models in this thesis and focus on the moving force and the sprung mass
model.

4.5 Resonance from a series of moving loads.
In the previous section on the moving load, moving mass and sprung mass, resonance
was considered for the case of a single moving load, and it was found that resonance
occurs when the moving load travels at the resonance velocity. In reality however, most
structures are under a series of moving loads, e.g a wheelset on a train. This section will
show that a succession of moving loads will produce resonance at speeds different from
those anticipated by the single moving load.

Both Frýba [26] and Yang et al. [27] among others have studied the phenomena of
resonance from a series of moving loads. Yang et al. present an detailed derivation of
the analytical solution to the problem of a series of moving loads on a simply supported
beam which provides great insight into the problem at hand. Instead of reproducing the
entire derivation in this thesis, the phenomena of resonance from a series of moving loads
will rather be investigated through reasoning and practical examples supported by the
analytical solution of Yang et al.. The interested reader is referred to the book [27, chap
2.6-2.7] where the detailed derivation can be found.

Figure 4.13 shows a simply supported beam loaded with a series of moving load with
intensity P , velocity vp and a distance d in between each of them. Consider any section
of the beam, say the midsection of the beam. At time t = t0 the first moving load passes
over the midsection, at time t = t0 + d

vP
the second load passes over the midsection and
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Figure 4.13: The figure shows two forces P , moving at a constant velocity vP and a
constant distance d from eachother.

at time t = t0 +n d
vP

the nth load passes over the midsection of the beam. In other words,
the period between each load is TP = d

vP
and the angular frequency ΩP of the series of

moving loads is given by equation (4.17).

ΩP = 2π
TP

= 2πvP
d

(4.17)

Analogous to the case of a single moving load, one might expect that resonance occurs
when the frequency of the series of moving loads equals one of the natural frequencies
of the beam. The beam in figure 4.13 has flexural rigidity EI, mass per unit length
m and length L, which means that the natural frequencies of the beam are given by
equation (4.9b), the equation is restated below for convenience

ωn = (nπ)2

√
EI

mL4

With the load frequency for the series of moving loads, equation (4.17), and the above
equation for the natural frequencies of the beam. The following equation gives the distance
between the moving loads which is expected to yield resonance in the first mode with
natural frequency ω1.

d = 2πvP
ω1

(4.18)

In example 11, the above equation will be evaluated through a practical example.

Example 11. Consider the simply supported beam shown in figure 4.13.
The length of the beam is L and it has a constant cross section with flexural rigidity

EI and distributed mass m. The beam is loaded with Nlds moving loads, all with
magnitude P , constant velocity vp and distance d between them. Damping is neglected,
i.e ξn = 0. The example is to be solved with moving load formulation for finite elements
with d in the range [0, L], and the displacement of the midpoint of the beam shall be
analyzed. The analysis is carried out in Matlab and Abaqus, the scripts carrying out
the analysis are provided in appendix B.11.

First of all, the velocity vp is about 10% of the resonance velocity at 94ms−1, such
that there are no resonance effect from the velocity alone. From equation (4.18) it
is suggested that the series of moving loads will be in resonance with the beam at
d = 5.3m, the response at this configuration is therefore expected to be large compared
to distances in the same vicinity.
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The results of the analysis are presented in figure 4.14, the distance between the
moving loads d are on the abscissa, while the ratio between the maximum displacement
at the midpoint of the beam wmax and the maximum displacement wmax,d=0 of the
midpoint of the beam for d = 0 is given on the ordinate.
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Figure 4.14: The figure shows the maximum amplitude of the response given for the
distance d between each moving load. The table gives the properties of the beam and
the loading.

The first thing that can be seen is that response is decreasing as the distance between
the loads are increasing, this is due to the fact that the load intensity, i.e the loading
per distance, decreases with increasing d. The result shows as expected that around
d = 5.3m the response at the midspan is exhibiting resonance behavior. The results
also shows that resonance occurs at distances around d = 10.6, 15.9, 21.2m, incidentally
these are multiples of the resonance distance d = 5.3m. The reason for this is that with
loads at the nth multiple of d, the beam is still excited in the same way as for d, but
in instead of excite the beam every period, it exites the beam every nth period. This
will be explained in detail after this example as it is an important point for the case of
resonance from a series of multiple loads.
N
In the above example it was found that resonance occur at distance d and at multiples

n of d. This is in accordance with the analytical solution provided both Frýba [26] and
Yang et al. [27], where they find that resonance in the first natural mode finds place at
distances

dn = n
2πvP
ω1

between the series of loads.
To give an explanation as to why the resonance behavior is found for any multiple of d1,

recall that the system with the moving load formulation is linear, such that the principle
of superposition applies. This means that the response from each of the moving loads
may be obtained separately, and the total response is found by adding the contribution
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from each load. Consider figure 4.15, it shows a beam and its first vibration mode ω1.
For now, assume that there is no damping in the system.

(a) d1, t = t0 (b) d1, t = t0 + T1 (c) d1, t = t0 + 2T1

(d) 2d1, t = t0 (e) 2d1, t = t0 + T1 (f) 2d1, t = t0 + 2T1

Figure 4.15: Figure (a),(b) and (c) shows snapshots of the beam for d = d1 between
moving forces, and figure (d), (e) and (f) shows snapshots of the beam for d = 2d1.

In figure (a), (b) and (c) the distance between the loads are d1 = 2πvP

ω1
, while in figure

(d), (e) and (f) the distance is 2d1. At time t = t0, a snapshot of the beam is taken,
and at this time the first load passes over the midpoint of the beam and in phase with
the first vibration mode, see figure (a) and (d). After one period T1 of the first vibration
mode a new snapshot is taken, figure (b) and (e) shows that the vibration mode is in the
same state as at time t = t0, but now the second load has not yet reached the midpoint of
the beam for case (e), the load for 2d1 ”skips” the opportunity to excite the beam. After
another period T1 the vibration mode is again in the same state, and now second load
acts at the center for the case of 2d1 and the third load acts for d1. The same procedure
can be applied to any section of the beam, with the same result. The figure illustrates
that the loads for both d1 and nd1 works on the beam in the same phase.

Yang et al. [27] also point out that the resonance that occurs from a series of moving
loads is different from that of an harmonic load with load frequency equal to the natural
frequency of the system. The resonance behavior is created from the fact that the vibration
from one load is in phase with the vibration of all the preceeding loads. Any dynamic
effect created by the first load, is also added by the subsequent loads. The result is that
the response of the system grows at a linear rate until the last load enters the beam,
regardless of whether d = d1 or d = nd1.

Regarding the influence of damping on the resonance effect from a series of moving
loads it is apparent from the proceeding chapters that damping affects both the tran-
sient and free vibration response by limiting the amplitude and changing the vibration
frequency. Damping will therefore reduce and create bounds for the resonance effect from
the series of moving loads.

In example 12, the undamped response in the time domain of the midpoint of the
beam from a series of moving loads will be shown and the effect that damping has on the
resonance from a series of moving will be illustrated.

Example 12. Consider the simply supported beam shown in figure 4.13.
The length of the beam is L and it has a constant cross section with flexural rigid-

ity EI and distributed mass m. The beam is loaded with Nlds moving loads, all with
magnitude P , constant velocity vp and distance d = 3d1 between them. The response
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for the midpoint of the beam is to be obtained with both damping neglected, i.e ξn = 0
and with Rayleigh damping where the damping ratio ξ0 is specified in the first and sec-
ond natural frequency. The analysis is carried out in Matlab and Abaqus, the scripts
carrying out the analysis is a slightly modified version of the script provided in ap-
pendix B.11.

The results of the analysis are presented in figure 4.16.
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Figure 4.16: The figure shows the response at the midpoint of the beam with and
without damping. The table shows the properties of the beam and the loading.

The results show that the response for the undamped system grows linearly until
the last load enters the beam, then the total loading on the beam is reduced and the
response subsides accordingly, the free vibration after the last load leaves the beam will
be substantial. The damped system shows resonance effects, but the response is bound
by the dissipation of energy from the system and the fact that each load no longer hits
the exact same phase.
N
Before ending the discussion on it is appropriate to mention the phenomena of can-

cellation. The series of moving loads may induce resonance in the system by repeatedly
exciting the system in the same manner as the preceeding loads, in figure 4.15 it was
shown that this happened when the successive loads work on the system in the same
phase of the observed vibration mode. To illustrate the phenomenon of cancellation con-
sider figure 4.17.

(a) d1, t = t0 (b) d1, t = t0 + 1
2T1 (c) d1, t = t0 + T1

Figure 4.17: The figure illustrates the phenomenon of cancellation.
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In figure 4.17, the distance between the loads are d = 1/2dn. The first and the third
load shown in figure 4.17a and 4.17c excite the beam in the same opportune state as the
other, while the second load in figure 4.17b excite the beam when it is in the opposite
state. This means that the the odd numbered loads excite the beam in the same phase
and the even numbered loads excite the system in the same phase, but the dynamic effect
added by either the odd or the even loads are canceled out by the other set because they
work against each other. This can also be seen in figure 4.14 in example 11, at the distance
d = 2.65m every second load in the series hits the beam in the same phase, but since the
other loads work in the opposite phase, no resonance peak can be seen for this distance.

Yang et al. [27] shows that the phenomenon of cancellation does not just happen when
the distance between the loads are equal to the half period of the vibration modes. Even if
the loads does not work in the absolute opposite phase of the resonance distance, the total
sum of the moving loads are bound by each other. This means that not only damping
will create bounds the response of a series of moving loads, but also the phenomenon of
cancellation.

Extending the discussion about the series of moving loads to the discussion about
trains and bridge dynamics it is evident that the configuration of the train will influence
the dynamic response the bridge. Such that it is not only necessary to have detailed
knowledge about the geometry and properties of the bridge being analyzed, but also the
configuration of the trains which will frequent the bridge.

In this chapter the main topics have been load models and resonance from moving
loads. The modeling techniques and formulations in the finite element program Abaqus
was presented for the moving force, moving mass and sprung mass load model. The
analytical solution for the moving load model was derived, and it was used to verify the
finite element formulation of the moving force model. The response from the moving
mass model and the sprung mass model was then compared against the response for the
moving force model, and the comparison yielded reasonable and physically sound results.
The implementation of the load models in the finite element code is therefore regarded as
successful and providing physical results.

In the discussion of the sprung mass model it was shown that in the limit, the sprung
mass model was equal to the moving force and the moving mass model. It was also argued
that the sprung mass model could be regarded as the most realistic of the three models
since it is able to represent the elastic and dissipative properties often inherent in the
physical bodies being modeled. This speaks a strong case for utilizing the sprung mass
model in the continuation of the thesis, but from a computational expense point of view,
the sprung mass model and the moving mass model was found to be more expensive than
the moving force model, especially in three dimensions.

Regarding the use of the load models in the case study in chapter 5, the moving mass
model is excluded from further study since it is found more computationally expensive
than the moving force model and less realistic than the sprung mass model.

The moving force model may yield less realistic results than the sprung mass model,
but only under conditions where the inertia effects of the train become significant. Under
circumstances where the inertia effects are small, either due to absent dynamic effects or
relatively low mass of the train compared to the bridge, the moving force model and the
sprung mass model are expected to yield similar results. This means that the moving force
model may be used to locate velocities with significant dynamic effects, but the response
obtained by the moving force model at these velocities are not certain to be accurate.
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Based on this fact and the argument of computational efficiency, the moving force model
will be utilized as the reference load model for the case study and the sprung mass model
will be used for comparison.
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Chapter 5

Case study: Tallerås railway bridge

In this chapter a case study of the Tallerås railway bridge will be presented. The case
study will determine the resonance velocities of two different trains by the moving force
model presented in chapter 4 and the reason for the induced resonance will be determined.
Once the resonance velocities are determined, the significance of the resonance effects on
the stress in the structure will be examined. The response obtained by the moving force
model and the sprung mass model will be compared. The case study will also investigate
the effects of including two different track models in the dynamic analysis.

5.1 Tallerås railway bridge
Tallerås railway bridge is located on the railway between Otta and Dombås station on the
line with name Dovrebanen. It was put in service in 1912 and was operational until 1940
when it was disabled by the Norwegian resistance movement during the second world war.
It was later repaired and has largely been operational ever since.

Figure 5.1: The picture shows an overview picture of Tallerås railway bridge. Source:
Main inspection report Tallerås, autumn 2007. Jernbaneverket/Norconsult.
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The bridge is a nailed steel truss bridge with a main span of 52m, and a width of 5m.
The geometry of the bridge is defined by figure C.1, found in appendix C.

5.1.1 Load carrying system
The load carrying system of the bridge can be divided into a primary and a secondary
system, see figure 5.2. The primary system consists of two identical planar trusses designed

(a) Primary system.

(b) Secondary system.

Figure 5.2: The figure shows a breakdown of the main parts of the bridge.

to carry the vertical loads, connected by an upper truss and a lower truss which are
designed to take the horizontal loads. The secondary system consists of 11 continuous
cross girders and 20 longitudinal girders, each longitudinal girder is nailed to the web of
the adjacent cross girders. The cross girders of the secondary system are connected to the
vertical hangers in the planar trusses of the primary system, thereby creating a complete
structure, see the picture in figure 5.2.

The bridge has a ballastless track, the track is connected to the bridge by hooks
connecting the sleeper and the longitudinal girder. The loading from the train is thereby
transfered through the sleepers and onto the longitudinal girders. From the longitudinal
girders, the loading is carried to the cross girders and out to the vertical hangers of the
primary system. Through the vertical hangers the forces are distributed throughout the
truss to the boundary conditions of the bridge.

In the primary system, the truss is carefully designed such that all centerlines at
the nodes coincide, this means that the forces are mainly transfered by normal forces.
In the secondary system, the loading is carried primarily by bending and shear forces.
It should be noted that the cross girders have a length to height ratio of about 5, i.e
L/h ≈ 5 and the longitudinal girders have a length to height ratio of 3. Both the cross
and longitudinal girders are I-shaped profiles, and at these length to height ratios, shear
deformations are significant. This means that Timoshenko beam theory is necessary, [12,
sec 29.3.3] suggests minimum ratio 15 for the Bernoulli beam theory to be applicable. Bell
[13, p.283] investigates shear deformations in a I-shaped profile which may be interesting
to the unconvinced reader.
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5.1.2 Finite element model
The steel in the bridge is assumed throughout the thesis to have E = 210× 109 Nm−2,
ν = 0.33 and density ρ = 7850 kgm−3.

Element types

The primary carrying system in the Tallerås railway bridge primarily carries forces by
normal forces. This implies that truss elements can be used to establish the finite element
model for the primary system. Although it must be acknowledged that the truss element
is more efficient than a beam element, it proved to be alot of effort to establish the
primary system with truss elements. It involved a number of linear constraint equations,
e.g each of the mid nodes in the upper truss had to be constrained in the plane of the
sub truss and the verticals connecting to the secondary system had to be constrained.
Any alterations to the model would also involve introducing additional constraints, such
that any modification of the model became very tedious. Therefore, the choice was made
early on to utilize beam elements in the finite element model for the primary system, fully
aware of the implication it has on the efficiency of the model. The beam elements are
mainly Euler-Bernoulli beam elements with cubic formulation (B33), any exceptions are
given in the following paragraph. The beam sections of the primary system are largely
composed of a number of profiles and nails, according to Abaqus beam section library
these beam sections are classified as generalized.

The secondary carrying system in the Tallerås railway bridge carries forces through
bending and shear. As mentioned at the end of the previous subsection, both the cross
and longitudinal girders in the secondary system have a low length to height ratio, such
that the contribution from shear deformations are considerable in both of these structural
elements. The secondary system is therefore modeled with a linear finite Timoshenko
beam element (B31). The beam sections in the secondary system are composed by plates,
angle bars and nails to make out I-shaped beam section. Since the shear factor k in the
Timoshenko beam theory is determined by the beam section type, the beam section type
of the secondary system is therefore defined as the I-section in the Abaqus library. The
resulting basic finite element model is given in figure 5.3.

Figure 5.3: The figure shows the basic configuration of the finite element model of the
Tallerås bridge.
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Boundary conditions

The following discussion about the boundary conditions of the bridge are referred to
figure 5.3, the coordinate system in the bottom left corner of the figure has its origin in
the furthest away corner of the bridge. The bridge is assumed to be simply supported
in the length direction. The bridge is restrained at one end in the x-direction, and it is
restrained in all four corners in the y- and z-direction. This is in good agreement with
the drawings for the bridge, where one end lies on a series of cylinders free to roll in
the x-direction, but restraining the y- and z-direction. The relatively short dimensions
in the z-direction means that temperature and membrane effects arising from the above
boundary conditions are negligible.

From figure 5.3 it can be seen that the first and the last cross girder of the secondary
system are not suspended from any vertical hangers in the primary system. From the
picture in figure 5.1 it can be seen that the ends of these cross girders are constrained to
the end diagonals of the primary system. These cross girders are therefore constrained at
the ends to the respective nodes of the primary system by linear constraint equations in
the finite element model.

Other constraints

It is important to realize that imposing constraints increases the stiffness of the system,
this in turn means that the natural frequencies of the system increases and the resonance
velocity associated with the natural frequency increases. This means that analyzing a
overconstrained structure will lead to a non-conservative result by overestimating the
resonance velocity of the structure. That being said, it is important to include constraints
which are clearly present in the physical system, such that the actual behaviour of the
system can be described by the finite element model and over conservative designs can
be avoided. This subsection considers details in the actual bridge who impose constraints
which are reasonable to include in the finite element model.

With the element model established according to the above description, an eigenvalue
analysis was performed. The result showed that the first mode was horizontal displace-
ment in the z-direction of the upper part of the bridge with a frequency ω = 16.3 rad s−1,
see figure 5.4a.

The next significant mode was similar the first mode, but where the lower part of the
bridge more dominant in the displacement pattern than the upper part, its frequency was
ω = 32.7 rad s−1. The two lowest significant modes of the basic model indicate that the
shear stiffness of the bridge in the z-direction is low compared to the stiffness in the rest
of the structure.

Further investigation of the detail drawings of the bridge and the modes of the basic
finite element model indicate two main reasons for low shear stiffness in the finite element
model.

The first reason is that the portal frame1 is in reality stiffer than the basic finite element
model indicate. Figure 5.4b shows that the corners of the portal frame are stiffened by
two 12mm plates stretching over 0.9m onto any of the members of the portal frame. The
web of the I-beams making out the portal frame are also 12mm, such that the corners

1The portal frame are the first verticals and upper horizontal girder in the primary system, in combi-
nation with the second cross girder of the secondary system.

63



(a) First mode, unconstrained model. (b) Detail drawing, portal
frame.

(c) Overlaping regions. (d) Tie constraint enforce
continuity.

Figure 5.4: Figure (a) shows the first mode of the basic model, which is enlarged because
the basic model does not include the constraining detail in the portal frome showed in
drawing (b). Figure (c) shows that the vertical hangers are not tied to the cross girders,
(d) shows the result after tying the vertical hangers to the end node of the beam.

of the portal frame may be regarded as stiff over the entire span of the stiffener plates.
To model this detail in the finite element model, multi point constraints (*MPC,link)
are introduced such that the distance between any node within 0.9m of the corner node
is constant throughout the analysis. A consequence of these constraints, are that the
length to height ratio of the top and side beams of the portal frame become around 9,
and Timoshenko beams (B31) are introduced in the entire portal frame to ensure that
the shear deformations are properly included.

The second thing that reduces the shear stiffness in the z-direction in the finite element
model, is that the connection between the vertical hangers of the primary system and the
cross girders of the secondary system are not tied together, see figure 5.4c. The vertical
hangers will have reduced stiffness from an increased effective length and lower rotational
stiffness at the connection point. To remedy this, a node is introduced in the vertical
hangers corresponding to the height at the top of the cross girder. This node is then in
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a tied multipoint constraint (*MPC,tied) with the end node of the cross girder and the
lower node of the vertical hangers, see result in figure 5.4d. The eigenvalue analysis of
the basic model also revealed another deficiency in the basic finite element model. In the
basic model, the secondary system is only constrained in the length axis of the beam by
bending about the weak axis of the cross girders, see figure 5.5a.

(a) Longnitudal movement of secondary system.

(b) Detail drawing, constraint of secondary system.

(c) Detail drawing, crossbrace longitudinal girders in secondary system.

Figure 5.5: The figure (a) shows the unrealistic behavior of the basic finite element model,
where the secondary system moves in the longitudinal direction relative to the primary
system. Figure (b) shows the detail which braces the secondary system to the primary
system in the longitudinal direction. Figure (c) shows the crossbrace between the longi-
tudinal girders in the secondary system.

In the detail drawings a brace which constrains this longitudinal behaviour of the
secondary system is found, see figure 5.5b. The brace is therefore introduced in the
refined finite element model, it should be noted that the two outer braces indicated on
the figure was removed according to later drawings and are not included in the refined
model either.

Figure 5.5a also shows that the distance between longitudinal girders in the secondary
system is not constant along their length. Figure 5.5c shows a cross brace between the
longitudinal girders in the secondary system which does not permit this behavior. Al-
though the bracing discussed in the previous paragraph and shown in figure 5.5b removes
this problem for the mode shown in figure 5.5a, it does not for certain other modes. The
refined model therefore also includes the cross brace shown in figure 5.5c.

Natural frequencies of the bridge

In this subsection, the natural frequencies of the bridge alone are presented. A brief
analysis of the modes will be given, but the main purpose of this chapter is to provide a
basis for determining the damping of the bridge and to give data for the natural frequencies
of the bridge alone and later compare the natural frequencies against those of the complete
structure with bridge and track. The natural frequencies are given in table 5.1, and
figure C.2 in appendix C shows the corresponding modes.
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Table 5.1: The table shows the six first significant modes, their frequencies and a descrip-
tion of the deformation pattern.

Natural Frequency [rad s−1] Description
20.7 1st Horizontal bending mode
39.0 1st Torsional mode
41.4 1st Vertical bending mode
42.2 2nd Horizontal bending mode
72.1 2nd Torsional mode
77.6 2nd Vertical Bending mode

The first thing that is apparent is that the bridge has rather low stiffness in the hori-
zontal plane, the horizontal bending modes is the lowest mode and has a frequency about
half the next mode. In [28, p.79] the natural frequencies of a similar steel truss bridge
with a span of 50.4m is presented. The results in [28] also shows a similar characteristic
regarding the natural frequencies, the first natural frequency of the presented bridge is
even lower with 16.2 rad s−1, about half the next natural frequency. This implies that the
observed flexibility in the horizontal plane of the Tallerås railway bridge is reasonable,
and in the continuation this is assumed to be ok and no further investigations on this
characteristic are pursued.

The second thing that can be seen from the natural frequencies is that the third, fourth
and fifth significant modes have frequency of about ω ≈ 40 rad s−1. This may mean that
the response of the bridge may be significant when the configuration and velocity of the
train excites the bridge at this frequency.

As mentioned at the start of this section, the natural frequencies of the bridge will be
further discussed in the subsequent chapters on damping and natural frequencies of the
complete structure.

Damping in the finite element model

From the discussion on damping in chapters 2 and 3 it is evident that the response of the
structure close to resonance speeds is highly dependent on the level of damping in the
structure. As mentioned in section 2, a number of researchers have studied damping in
bridges and even railway bridges in particular. Frýba [4, chap. 5] discusses the difference
between the viscous, hysteretic and Coloumb damping models, and concludes that be-
cause of the relatively low damping values associated with railway bridges, the practical
difference between the models are negligible. As a result of the above and the fact that
the viscous damping model is relatively simply implemented compared to the two other
models, he advocates the use of the viscous damping model in dynamic analysis of railway
bridges.

Frýba further presents damping data from experiments made on a wide range of differ-
ent bridges. The results shows a great spread in damping ratios, and finds an dependence
between the damping ratio and the amplitude of the displacement of the bridge. This
again illustrates that damping in structures is a difficult subject, and that experiments
may be necessary on the specific bridge being analyzed. Nevertheless, Frýba recommends
a damping ratio of ξn ≈ 0.013 for steel bridges with spans over 20m.
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The governing Eurocode, NS-EN1991-2 [29] also has recommendations for damping
in dynamic analysis of railway bridges, and specifies that only lower bound estimates
of the damping should be used. For steel bridges with spans above 20m the Eurocode
recommend a damping ratio of ξn = 0.005.

The case study presented in this thesis will be conducted in Abaqus, using an im-
plicit numerical integration scheme. In light of the discussion about the efficiency of the
Rayleigh damping matrix in an implicit integration scheme made in chapter 3, and the
relative uncertainty of the damping ratios for railway bridges, the choice is made to use
Rayleigh damping in the analysis.
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Figure 5.6: Figure (a) shows the percentage of cummulated effective mass against the total
mass for the natural frequencies of the system. Figure (b) shows the resulting damping
ratios when a damping ratio of 0.5% is chosen in ω1 = 20.7 rad s−1 and 225 rad s−1

Recall from chapter 3.4.1 that two frequencies and corresponding damping ratios are
specified to define the Rayleigh coefficients a0 and a1. The first one is chosen to be the
first natural frequency ωp = ω1 = 20.7 rad s−1 with a damping ratio of ξ = 0.005. The
frequency range of the loading is not known a priori, because it depends on the config-
uration of the train, see discussion in section 4.4. It is important that a greater portion
of the modes in the system have a reasonable damping ratio. Overdamping of significant
modes will lead to non-conservative results, and may ”hide” resonance frequencies from
the response. Figure 5.6a shows the cummulated effective mass against the natural fre-
quencies of the system. The effective mass of a mode says something about how much
of the structure is involved in the displacement pattern of that mode. Adding up the
effective mass of all possible modes in a system, equals the total mass of the structure.
This means that if the cummulated effective mass in one direction of a set of extracted
modes are significantly less than the total mass of the structure, the extracted set of
modes lack significant modes in that direction [30, sec 2.5.2]. Therefore, choosing the
upper frequency for defining the Rayleigh damping at a frequency where, say 90% of the
cummulated mass is included in any direction ensures that most of the significant modes
does not have damping above the specified damping ratio. From figure 5.6a it can be
seen that at ω ≈ 225 rad s−1 the cummulated effective mass in any direction is larger than
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90%. Choosing a upper frequency equal to 225 rad s−1 with a damping ratio of ξ = 0.005
yields the damping shown in figure 5.6b.

Figure 5.6b shows that the damping ratios in the range does not exceed the values
recommended by Frýba. From equations (3.41) and figure 5.6b the minimum damping
ratio is found to be about 0.3%. The discussion earlier in this section has shown that
there is great uncertainty related to the damping ratios, such that these damping ratios
does not pose a concern. The effective damping ratios of the complete structure with the
track will be extracted in a complex frequency analysis in section 5.3 to verify that the
complete structure has reasonable damping ratios.

The Rayleigh coefficients with a damping ratio of ξ = 0.005 specified in ω = 20.7 rad s−1

and ω = 225 rad s−1 are a0 = 0.19 rad s−1 and a1 = 4.1× 10−5 rad−1 s.

5.2 Track used in the case study
In this section the geometry of the track and the physical properties of the track will
be discussed, especially some considerations regarding the link between the rails and the
bridge. Then two different finite element models for the track of the structure will be pre-
sented, one where the elastic, dissipative and inertial properties of the track are included
in the formulation and one simplified alternative where only the inertial properties of the
track are included.

The bridge has a ballastless track, where the sleepers are connected directly to the long
girders of the secondary system. It is assumed that rails are of the standard type ”UIC60”
with a distributed mass of 60.21 kgm−1 and cross-sectional properties are according to
the specification by Norwegian National Rail Administration’s Technical Regulations, see
[31]. The distance between the center of each rail is 1.435m. The sleepers are assumed
to be of type ”JBV97” specified in [31] with a total mass of 230 kg and a center distance
of 0.6m.

In the finite element model, the sleepers are not included in the model as structural
elements, but the mass of the sleepers are added to the track by introducing mass elements
at the center distance 0.6m. The reason for including the mass of the sleepers in the model
is that the mass of the track is relatively large in comparison to the mass of the bridge,
this will be discussed further in section 5.3. The reason for not including the sleepers
as structural elements in the finite element model is because there is some uncertainty
related to how much the sleepers contribute to the structural integrity of the bridge. The
connection between the sleepers and the bridge are made through a hook going through
the sleeper and grabbing the flange of the long girders, see figure 5.7.

Figure 5.7: The figure shows the hook which connects the sleeper and subsequently the
track to the flange of the long girders of the bridge.
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Whether this connection transfers moment and force depends on the direction of the
forces, the amount of tension in the screw and the friction between the sleeper and the
long girders of the bridge. It is also obvious that the latter two of these factors depend on
the level of maintenance and time in service of the connection. Because of the uncertainty
related to these factors and to avoid the implications of overconstraining the model, i.e
increasing natural frequencies of the model, the choice was made to not model the sleepers
as structural elements. It should be noted that the cross brace introduced in the refined
model in the proceeding section also ensures that the distance between the long girders
are constant, such that this behavior is already avoided.

Figure 5.7 shows that the position of the hook is on the ”outside” of the flange, this
means that as the curvature of the sleeper increases, torsion in the longgirders arise. The
distance is e = 182.5mm between the centerline of the rail and longgirder, the height of
the sleepers are about 180mm. Apart from the fact that a certain portion of the forces
are transfered as normal stress through the sleeper, it is assumed that the curvature in the
sleeper is kept small such that no moment is transfered to the longgirders of the bridge.
This means that each of the long girders are loaded mainly with translational forces from
the track.

5.2.1 Finite element model of the visco-elastic track
The finite element model of the track presented in this subsection is the same model as
”Model III” presented in [32], but without the sub model for the ballast layer. The finite
element model of the complete track is built up of a two idealized models of the rail, see
figure 5.8.

Msleep

Dsleep Dsleep

Rail

h1

h2
Long
girder

Cpad, Kpad

Csleep, Ksleep

mrail 60.21 kgm−1

Cpad 200× 103 Nsm−1

Kpad 500× 106 Nm−1

Msleep 230 kg
Csleep 120× 103 Nsm−1

Ksleep 538× 106 Nm−1

Dsleep 0.60m
h1 0.27m
h2 0.50m

Figure 5.8: The figure shows the finite element model for the track, the values for the
track properties are adopted from Rigueiro et al. [32]. Note that the dimensions h1 and
h2 are adopted from the actual geometry of the bridge.

Each rail consists of the three layers of nodes, the upper node layer defines the rail, the
middle node layer contain the mass of the sleepers and the lower node layer contains the
surface definition which makes contact with the long girders of the bridge. To model the
elastic and dissipative properties of the materials between the node layers, a spring and a
dashpot element is introduced between the nodes. The upper set of springs and dashpot
represent the elastic and dissipative properties of the shock pad between the rail and the
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sleeper, see figure 5.7. The lower set of springs and dashpots represents the elastic and
dissipative properties of the sleeper.

Regarding active DOFs in the upper node layer, i.e the nodes defining the rail, the
transversal node is constrained to the corresponding node in the long girder by linear
constraint equations. The rail is restrained at the nodes against torsion by introducing
boundary condition on the corresponding rotational degree of freedom, this ensures that
the finite element model captures the physical behavior imposed by the ties connecting
the rail and sleeper. All other DOFs are free at the upper node layer and take special
note of the fact that the longitudinal nodes of the upper layer are not constrained. This
is in accordance with the technical regulations [31, sec 530.3.1.2] where it is specified that
bridges with dilatational length between 10m and 100m should allow the rail to travel
freely in the length direction.

Regarding active DOFs in the middle node layer, i.e the nodes containing the mass
of the sleeper, only the vertical DOF is active, all other DOFs are constrained to the
corresponding node at the long girder by linear constraint equations.

The track is connected to the bridge through a tie (*TIE) connection of the lower
layer of nodes to the long girders of the bridge creating the complete structure.

5.2.2 Finite element model of the simplified track
The above finite element model for the track includes the dissipative and elastic properties
of the shock pad and the sleeper. As mentioned before, the values for these properties
are adopted from [32]. In comparison to values given by other authors in the literature,
for instance [27] and [33] the values are in the same order of magnitude. The static
displacement of the track under a 110 kN axle yields a displacement of ≈ 0.5mm which
seems to be an reasonable considering the thing pad and the height of the sleeper. It is
difficult to say if these values for the track properties should be considered high or low,
but the higher these property values are, the more rigid behavior they will exhibit. At a
certain stiffness, the behavior of the track presented above will be the same as a simplified
track where the elastic and dissipative elements are left out and only the mass and the
distribution of the mass are included in the model of the track.

The implementation of the simplified track in Abaqus will be exactly the same as for
the fully functional track, but the vertical DOF of the rail node layer and the sleeper node
layer will be constrained to the vertical DOF in the long girder through linear constraint
equations. Note that the longitudinal DOF in the rail layer is still unconstrained to allow
the rail to freely travel in the longitudinal direction.

5.3 Natural frequencies and effective damping ratios
of the complete structure

The bridge coupled with the track constitutes a different structure than the bridge alone.
It was implied in the previous section that the mass of the track was significant in compar-
ison to the total mass of the structure. A significant increase in mass will obviously affect
the natural frequencies of the system and warrants a new analysis of the natural frequen-
cies of the complete structure. What is not completely clear is whether the the natural
frequencies of the complete structure are the same with the visco-elastic track as with the
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simplified track. The natural frequencies for the complete structure with the visco-elastic
track are extracted and compared against the natural frequencies of the bridge alone.
The natural frequencies of the complete structure with the simplified track will then be
extracted and compared against the natural frequencies of the complete structure with
the visco-elastic track. Since the visco-elastic track may introduce non-classical damping,
the complex eigenvalue problem is employed to extract the complex natural frequencies
for both problems. At the end of this section, the effective modal damping ratios will be
extracted from the complex eigenvalues and evaluated to confirm that the structure has
reasonable damping ratios.

5.3.1 Natural frequencies with the visco-elastic track
The natural frequencies of the complete structure with a visco-elastic track are presented
in table 5.2.

Table 5.2: The table shows the natural frequencies of the bridge alone and the natural
frequencies of the complete structure with bridge and track.

Bridge Bridge + track Change Description
[rad s−1] [rad s−1] [%]
20.7 17.7 -14.6 1st Horizontal bending mode
39.0 33.0 -15.4 1st Torsional mode
41.4 35.9 -13.3 1st Vertical bending mode
42.2 42.2 0.0 2nd Horizontal bending mode
72.1 57.0 -21.1 2nd Torsional mode
77.6 81.2 4.7 2nd Vertical bending mode

The table shows that there is a significant decrease in the natural frequencies of the
system. The mass of the finite element model of the bridge alone is about 104 000 kg,
with a span of 52m this yields a rough estimate of the distributed mass of mBridge =
2000 kgm−1. Comparing this to the distributed mass of the ballastless track, mTrack =
(230/0.6+2·60)kgm−1 ≈ 500 kgm−1 reveals that the ballastless track adds 25% additional
mass to the structure. It should be noted that the estimated mass for the bridge is based
off of the effective area for axial load carrying ability. The actual mass of the bridge is
slightly higher than the estimate, see figure 5.9.

Figure 5.9: The figure shows a cross-brace whos mass is neglected in finite element model,
note that all cross-brace components are neglected.
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Even if the neglected mass amounts to 30% extra mass, a number which is grossely
exagerated, the track still adds about 20% to the total mass of the structure. Without fur-
ther investigation it is appropriate to conclude that the total mass added to the structure
from the track is significant.

From section 3.3 it is known that increasing the mass of a structure generally means
that the frequencies of the structure are reduced. This is in accordance with what was
found for four out of the six natural frequencies in table 5.2. It is not completely clear
why the 2nd horizontal and vertical bending modes does not change significantly.

In any case, the above analysis have shown that the track significantly changes the
natural frequencies of the Tallerås railway bridge and it is therefore important to include
the track when analyzing the dynamic properties of relatively light bridges. As a side
note, it should be mentioned that this has broader implications than the specific bridge.
In a time where the cost of materials was high and the cost of labor was low, older bridges
in general where built to minimize the use of materials, see discussion Larsen [34, p.74].
As a result, many of the older railway bridges are in fact light bridges, which means that
the above results are important in dynamic analysis of existing railway bridges in general.

5.3.2 Natural frequencies with the simplified track

The natural frequencies of the bridge with the simplified track in comparison with the
natural frequencies of the bridge with the visco elastic track are presented in table 5.3.

Table 5.3: The table shows the natural frequencies of the complete structure with the
visco-elastic track and with the simplified track.

Visco-elastic track Simplified track Change Description
[rad s−1] [rad s−1] [%]
17.7 17.7 0.0 1st Horizontal bending mode
33.0 32.9 -0.4 1st Torsional mode
35.9 35.9 0.0 1st Vertical bending mode
42.2 42.2 0.0 2nd Horizontal bending mode
57.0 57.0 0.0 2nd Torsional mode
81.2 81.2 0.0 2nd Vertical bending mode

The table shows that the natural frequencies of the two track types are the same.
The small difference of −0.4% seen for the 1st Torsional mode is negligible and will
have very little effect on the displacement response of the structure. This means that
the visco-elastic track does not introduce significant coupling or damping between the
primary modes of deformation. This implies that in order to obtain the displacement
response it is not necessary to utilize the visco-elastic model. Regarding other response
quantities such as accelerations or the stress history of components in the structure, it
is not necessarily so. In the following sections, the simplified track will be used as the
reference track, and investigations will be made on the effect of utilizing visco-elastic track
on different response parameters.
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5.3.3 Effective modal damping ratios of the complete structure
In section 5.1.2, damping of the railway bridge was discussed, and it was pointed out that
it is important that the damping ratios are kept at an reasonable level for the significant
modes of the structure. Excess damping in the structure may mask resonance frequencies
which are important in the design and assessment of any structure. In the previous section
it was shown that natural frequencies of the structure changed significantly as the track
was added, and the visco-elastic track does change the damping matrix. The complex
natural frequency analysis showed that the visco-elastic track and the simplified track
had the same natural frequencies, which indicates that the damping ratios are also the
same. The expression for the effective modal damping ratios was established in section 3.5
and will be extracted here through Abaqus to control that the bridge still has reasonable
damping ratios in the significant modes. Figure 5.10 shows the effective damping ratios
in the 150 first modes of the structure.
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Figure 5.10: The figure shows the effective modal damping ratios of the complete structure
with the two different track and the prescribed damping ratios of the bridge.

From the figure it can be seen that the effective damping ratios in all the extracted
modes are close to the specified damping ratios. It can also be seen that the damping
ratios for the two different tracks are the same, such that it can be concluded that the
visco-elastic track does not introduce significant coupling and damping to the primary
modes of deformation.

Furthermore, it can be seen that none of the damping ratios are larger than the
specified Rayleigh curve, but some of the damping ratios are smaller than the specified
damping ratios. The difference between the dynamic system with the specified damping
curve and the predicted curves is the track. Such that one might expect that the lower
ones might be those affected most by the addition of the track to the structure. An
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investigation of the damping ratios does not yield an immediate reason, for instance in
the previous section it was shown that the first horizontal bending mode, the first vertical
bending mode and the first torsional mode all change their natural frequencies with the
addition of the track. Considering the effective modal damping ratios, the horizontal
bending mode and the first torsional mode have lower damping ratios than the specified,
but the vertical bending mode has damping exactly on the specified curve. In any case,
the earlier discussion has pointed out the uncertainty related to the damping, such that
the figure shows effective damping ratios well within what can be considered as reasonable
damping ratios.

5.4 Trains used in the case study
In this study two different trains will be used to analyze the Tallerås railway bridge. The
configuration of the trains are variations of trains described in ”Train types for fatigue” in
[29, Annex D.3]. The alterations made to the selection of trains in [29] are based on historic
and contemporary trains frequenting Dovrebanen. The trains were obtained from an
internal report made for Jernbaneverket and was made available through correspondence
with Jernbaneverket [35]. Table 5.4 gives a summary of the trains utilized in the study,
it can be seen that Train 1 has a lower total load and number of axles than Train 2.

Table 5.4: The table shows a summary of the overall configuration of the trains utilized
in the study.

Total length [m] Total load [kN] Distributed load [kNm−1] Number of axles
Train 1 118.2 2260 22.5 20
Train 2 211.3 7650 36.2 34

In the following subsections, a brief description of the trains and their origin are given.

Train 1

4x225kN

3.33.3 6.7
(a) 1xLocomotive

4x110kN

2.5 2.516.5
(b) 4xCart

Figure 5.11: The figures show the vehicles making out train 1, the distances are in meters
[m].

The first train is modeling a locomotive-hauled passenger train, it is a truncated version
of ”Type 2 train” [29, Annex D.3]. It consists of a single locomotive, figure 5.11a, and
four passenger carts depicted in figure 5.11b. The position of the axles and the loads on
each axle are given in detail in appendix C.1.1. The total length of the train is 118.2m,
the total load is 2660 kN and a distributed load is 22.5 kNm−1.

74



Train 2

6x225kN

2.2 6.92.2 2.2 2.2
(a) 1xLocomotive

4x225kN

1.8 11.0 1.8
(b) 7xCart

Figure 5.12: The figures show the vehicles making out train 2, the distances are in meters
[m].

The second train is modeling a locomotive-hauled freight train, it is a truncated version
of ”Type 7 train” [29, Annex D.3]. It consists of a single locomotive, figure 5.12a, and
seven freight carts depicted in figure 5.12b. The position of the axles and the loads on
each axle are given in detail in appendix C.1.2. The total length of the train is 211.3m,
the total load is 7650 kN and a distributed load is 36.2 kNm−1.

5.5 Dynamic behavior of the Tallerås railway bridge.
When assessing the design and performance of a dynamic system, the primary issue is
related to avoiding the phenomenon of resonance. When resonance occurs in a dynamic
system, the displacement and subsequently the stresses become unduly large and in ex-
treme cases it results in failure of the structure. It is therefore important to establish the
velocities which induces resonance in the bridge, and what ranges of velocities which may
be considered safe in the operation of the bridge. The resonance velocities of the bridge
depend on the natural frequencies of the bridge, and it is therefore necessary to know the
natural frequencies of the structure. Since the simplified track is more computationally
efficient and the change in the natural frequencies of the structure are insignificant com-
pared to the visco-elastic track, the simplified track and its natural frequencies are chosen
as the reference for this section. The implications of choosing the simplified track will be
considered in section 5.8.

Regarding the load model, it was argued in chapter 4 that the moving force model is
more computationally efficient than the sprung mass model, and the response of the two
models are only different at resonance velocities, such that the moving force model will be
chosen as the reference load model when obtaining the resonance velocities of the bridge.
In section 5.9 an investigation of using the sprung mass model instead of the moving force
model will be conducted.

To determine the resonance velocities of the bridge, a simulation of each train at veloci-
ties between 20ms−1(72 kmh−1) and 140ms−1(504 kmh−1) at increments of 2.5ms−1(9 kmh−1)
was carried out.

The dynamic amplification factor (DAF) is usually defined as the maximum absolute
value of the response variable normalized against the maximum absolute value of the
the response variable at static or quasi static conditions, see the DAF for the vertical
displacement2 of the midpoint below.

2Recall from figure 5.3 that x, y, z denotes the coordinate in the longitudinal, vertical and horizontal
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DAFy =
∣∣∣∣∣ max(v(L/2, t))
max(vqst(L/2, t))

∣∣∣∣∣
The time domain response of the trains reveals an important characteristic regarding

the definition the dynamic amplification factor of the bridge. The time domain response of
the midpoint of the bridge is shown for the trains at quasi-static conditions in figure 5.13.
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(b) Train 2.

Figure 5.13: The figure shows the dynamic amplification factor of the vertical displace-
ment of the midpoint of the bridge.

Figure 5.13a shows that the maximum displacement of the midpoint for Train 1 occurs
very early in the time series and then the response subsides to a plateau at about 50%
of the minimum before the bridge returns to its initial position. The reason for this is
that the distributed load from the locomotive of the train qloc,1 = 67.7 kNm−1, is much
higher than the distributed load of the carts qcart,1 = 20.5 kNm−1, such that the maximum
displacement of the bridge occurs about the time when the locomotive is in the middle of
the bridge. For Train 2, this characteristic is less prominent than for Train 1, figure 5.13b
shows that the plateau for Train 2 is at about 85% of the minimum value. The reason for
this is that the distributed load from the locomotive of the train qloc,2 = 86.0 kNm−1, is
more comparable to the distributed load of the carts qcart,1 = 61.7 kNm−1.

The ratio between the distributed loading of the cart and the locomotive is about 0.3
for Train 1 and 0.7 for Train 2. This means, that the above definition of the dynamic
amplification factor, may not capture the resonance effect from the repeated loading of
the carts, especially in the case of Train 1.

It is therefore appropriate to define a second dynamic amplification factor, DAF2y and
DAF2z which captures these resonance effects, in this thesis the following definitions are
adopted for DAF2y and DAF2z .

direction of the bridge, and by traditional convention the displacement parameters are u, v, w, respectively.
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DAF2y =
∣∣∣∣∣ max(v(L/2, t))
max(vqst(L/2, t))

∣∣∣∣∣
t>0.5tmax

(5.1a)

DAF2z =
∣∣∣∣∣ max(w(L/2, t))
max(wqst(L/2, t))

∣∣∣∣∣
t>0.5tmax

(5.1b)

where the quasi static displacement vqst(L/2, t) and wqst(L/2, t) are obtained at a velocity
of vP = 5ms−1.

Figure 5.14 shows the dynamic amplification factors in both the vertical and horizontal
direction, with both the conventional definition and the alternative definition of dynamic
amplification factor.
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Figure 5.14: The figure shows the dynamic amplification factor of the vertical and hori-
zontal direction in the midpoint of the bridge. Note that the scale on the ordinate axis is
different for the vertical and horizontal amplification factor.
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Comparing the result in figure 5.14 for the DAF and DAF2 it can be seen that the
most prominent results are found with both definitions, but the figures also show that
the definition for DAF2 gives a more refined image of the dynamic effects than the DAF
definition. This is especially true for Train 1, for instance DAFz indicates that Train
1 reaches a maximum of 1.2 at a velocity of 140ms−1, while DAF2z indicates the same
dynamic amplification at 30ms−1. Without further justification, the DAF2 definition will
be utilized in the continuation of this thesis.

Figure 5.14b indicate that Train 1 have rather modest dynamic effects in the vertical
direction of the bridge, with a dynamic amplification DAF2y ≈ 1.05 for a discrete set of
the lower velocities. The dynamic amplification factor increases to a maximum of 1.15 as
the velocity increases to 140ms−1. Figure 5.14d shows that Train 1 induces a dynamic
amplification of DAF2z ≈ 1.25 for the lower velocity range in the horizontal direction of
the bridge, but a more prominent dynamic amplification of around DAF2z ≈ 1.45is found
around 90ms−1.

Figure 5.14b shows that Train 2 induces significant resonance effects in the vertical
direction of the bridge at about 100ms−1, and figure 5.14d shows that Train 2 induces
significant resonance effects in the horizontal direction of the bridge at velocities velocities
of about 50ms−1 and 100ms−1.

An important question is what should be considered a high value for the dynamic
amplification factor, especially with the alternative definition of the dynamic amplification
factor since there are little data compare the results with. In section 5.10 this issue will
be discussed further.

In chapter 4 it was shown that there are two different types of resonance to consider
when trains are moving over a bridge. The first type of resonance is related to the velocity
of a single moving load, section 5.6 will discuss the resonance velocities related to this type
for the Tallerås railway bridge. The second type of resonance is related to the harmonic
excitation given from a series of moving loads, section 5.7 considers this type of resonance
for the Tallerås railway bridge and the chosen trains. The focus in the continuation is
therefore to find the reason for dynamic effects in the bridge and the significance of the
dynamic effects.
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5.6 Resonance from velocity alone
In chapter 4, the condition for resonance in a simply supported beam with a single moving
load was found to be

vP,n = ωnL

nπ

The application of the above equation to the Tallerås bridge is not straight forward, since
the Tallerås bridge is not a simply supported beam. The equation was derived for a plane
problem while the Tallerås bridge is a spatial problem. To give an approximation of the
resonance velocity for a single moving load, the bridge can be viewed as an equivalent
beam in each respective plane. In table 5.5 the resonance velocity using the natural
frequencies for the first and second horizontal and vertical bending mode and the first
and second torsional mode, with L = 52m is given.

Table 5.5: The table shows the natural frequencies of the complete structure with the
visco-elastic track and with the simplified track.

ω [rad s−1] vP,n [ms−1] Description
17.7 293 1st Horizontal bending mode
42.2 350 2nd Horizontal bending mode

35.9 594 1st Vertical bending mode
81.2 672 2nd Vertical bending mode

33.0 546 1st Torsional mode
57.0 471 2nd Torsional mode

From table 5.5 it can be seen that the estimated resonance velocities from a single load
are high. The first horizontal bending mode is the lowest estimate and yields 293ms−1 ≈
1000 kmh−1. This is higher than any commercial train in the market today. The above
analysis therefore means that resonance from velocity alone is simply not feasible for the
Tallerås railway bridge. Figure 5.14 also confirms that resonance effects from velocity
alone does not occur for velocities up to 140ms−1. If resonance from velocity alone
had been introduced in the range, the dynamic amplification factor had increased for all
trains at the same velocity. These results are in accordance with Frýba [26] who also
considers it unlikely that any actual railway bridge reach resonance from velocity alone.
The conclusion is therefore that the resonance from velocity alone will not occur for the
Tallerås railway bridge.

5.7 Resonance from a series of moving loads
In section 4.5 it was shown that resonance from a series of moving loads could occur,
and it was discussed that the configuration of the train was important for this type of
resonance. The following section analyzes the trains by estimating the velocities which
may induce resonance effects in the Tallerås railway bridge. The condition for resonance
from a series of moving loads is restated below for convenience.
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vPn = ω1d

2πn (5.2)

Regarding the distance d between the moving loads, there are several possible com-
binations on a train, figure 5.15 shows as set of possible distances for a train with two
wheels per boggie, the shown set will be used in the continuation of this thesis.

D1
D2
D3
D4
D5

D6
D7
D8
D9

D10
D11
D12

D13
D14

Figure 5.15: The figure shows the distances which may cause resonance in the bridge.

It should be pointed out that there exist a very large number of distances in a train
with multiple wagons, and that the above scheme is simply a subset of the possible set.

5.7.1 Train 1
In this section the resonance from a series of moving loads will be considered for the vertical
and horizontal direction of Train 1. Figure 5.14 did not indicate a distinct velocity for
resonance for Train 1, such that the approach is to consider the configuration train, i.e
find the distance which may induce resonance, and then check the time domain response
to verify the dynamic amplification.

Vertical direction

The resonance velocities for the first vertical bending mode for Train 1 are given in the
table shown in figure 5.16. The velocities are estimated with equation (5.2) for the set of
distances D1−14 defined by figure 5.15 and multiples in the range n = 1− 4.

The table in figure 5.16 shows that the distances D13 = 5m, D11 = D14 = 7.5m
and D12 = 10m are multiples of D1 = D10 = 2.5m. The primary resonance velocity
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Train 1 d\n 1 2 3 4
D1, D10 2.5 14 7 5 4
D13 5 29 14 10 7
D11, D14 7.5 43 21 14 11
D12 10 57 29 19 14
D6 16.5 94 47 31 24
D2, D7 19 109 54 36 27
D3 21.5 123 61 41 31
D8 24 137 69 46 34
D4, D9 26.5 151 76 50 38
D5 29 166 83 55 41

Figure 5.16: The plot shows the dynamic ampliciation factor in the verical direction. The
table shows the resonance velocities estimated for Train 1 in the first vertical bending
mode with frequency ω = 35.9 rad s−1 for the distances defined by figure 5.15 and the
multiples n = 1− 4.

of distance 2.5m, which excites the first vertical bending mode with natural frequency
ω = 35.9 rad s−1 is 14ms−1 and this velocity is also found for the multiples of this distance.
It would therefore be expected that the response in the vertical direction of the bridge
around 14ms−1 would exhibit enhanced dynamic behavior. Figure 5.17 shows the vertical
response of the midpoint of the bridge with Train 1 at a velocity of 14ms−1, the response
of the same train with velocity of 17ms−1 is also given for comparison.
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Figure 5.17: The figure shows the vertical displacement of the bridge at the midpoint
for the first vertical resonance velocity 14ms−1 of Train 1, compared against a velocity
17ms−1.
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Figure 5.17a shows that the overall response is largely the same for the two veloc-
ities 14ms−1 and 17ms−1. Even if the overall response is the same, it can be seen
that both in the time domain response plot, figure 5.17a and the frequency domain re-
sponse plot, figure 5.17b Train 1 at 14ms−1 does excite the bridge in its first bending
mode ω = 35.9 rad s−1 to a larger degree than the Train 1 at velocity 17ms−1. The
frequency response plot shows that the amplitude of the added frequency component is
about 0.1mm, comparing this to the total span of the bridge at 52m the dynamic effect
may be negligible.

From the table in figure 5.16 it can be seen that a velocity of about 30ms−1 alot of the
distances predict resonance in the bridge, the dynamic amplification plot also indicates a
small peak at this velocity. The response in the time and frequency domain at a velocity
of 30ms−1 is given in figure 5.18.

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

t/tmax

ve
rt
ic
al

di
sp
la
ce
m
en
t
m
id
po

in
t
[m

m
]

30.0 ms-1
32.5 ms-1

(a) Time domain

10 20 30 40 50 60 700

0.1

0.2

0.3

ω [rad s−1]

ab
so
lu
te

ve
rt
ic
al

di
sp
la
ce
m
en
t
[m

m
]

30.0 ms-1
32.5 ms-1

(b) Frequency domain

Figure 5.18: The figure shows the vertical displacement of the bridge at the midpoint for
the second vertical resonance velocity 30ms−1 of Train 1, compared against a velocity
32.5ms−1.

The results for the train at 30ms−1 show the same characteristic results as for the
train at 14ms−1, the overall response is the same but the resonance velocity does induce
a slight dynamic effect in the predicted mode.

From the table in figure 5.16, it can be seen that a large number of velocities may
induce resonance in the bridge. Most of the primary resonance velocities, i.e velocities in
the column with n = 1, does indeed induce dynamic effects as the ones shown in figure 5.17
and figure 5.18 for velocities 14 and 30ms−1. It can be seen from the time domain response
in figure 5.18a that the dynamic effect is bound, i.e it does not grow as the train passes the
bridge. The reasons for the bound response was discussed in section 4.5. Firstly, damping
will provide bounds for the response by dissipating energy from the system, secondly the
phenomena of cancellation will create bounds for the response. The third reason is simply
that the series of moving loads working in the same phase is not long enough. This is the
case for the train at a velocity of 14ms−1, even though there are six distances on each
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cart which induce a dynamic effects at this velocity only four loads at a time work in the
same phase, see figure 5.19.

nD1

D4

Figure 5.19: The figure shows the distances which may cause resonance in the bridge.

Figure 5.19 illustrates that although there exists several distances which are multiples
of D1 = 2.5m, only four at time work in the same phase. This is because the distance
D6, i.e the distance between the two boggies on a cart, is not a multiple of D1, such that
each series of four is ”broken” and the build up of dynamic effects stops. The series of
distances nD1 might even work against each other in cancellation.

This is not the case for the distance D4, as figure 5.19 shows the series of the loads
with distance D4 is continuous throughout the length of the train. From the table in
figure 5.16 it can be seen that for the distance D4 = 26.5m the resonance velocities are
38, 50, 76 and 151ms−1.

Figure 5.20 shows the time domain response at these velocities, and it can be seen
from figure 5.20a, 5.20b and 5.20d that the response for the velocities 38, 50 and 151ms−1

grows as the train travels across the bridge, all showing clear signs of resonance behavior.
Regarding the response of the train at 76ms−1 figure 5.20c shows that the response

of the bridge at this velocity does not share this characteristic, the reason is most likely
cancellation, bounds by damping would have created a constantly sized amplitude as the
train passed.

Most of the velocities shown in figure 5.20 does induce some dynamic effect similar to
the ones shown in figure 5.17, and the dynamic amplification factor reflects the magnitude
of these dynamic effects. It can be concluded that the above method may be used to
predict velocities where dynamic effects occur and that resonance effects induced by Train
1 are due to the series of moving loads. As mentioned in section 5.5, an interesting question
is what should be considered a high dynamic amplification factor? In section 5.10 the
effects of the dynamic amplification will be addressed.
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Figure 5.20: The figure shows the time domain simulation for Train 1 at velocities which
are expected to induce resonance behavior.
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Horizontal direction

The resonance velocities for the first horizontal bending mode for Train 1 are given in the
table shown in figure 5.16. The velocities are estimated with equation (5.2) for the set of
distances D1−14 defined by figure 5.15 and multiples in the range n = 1− 4.
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Train 1 d\n 1 2 3 4
D1, D10 2.5 7 4 2 2
D13 5 14 7 5 4
D11, D14 7.5 21 11 7 5
D12 10 28 14 9 7
D6 16.5 46 23 15 12
D2, D7 19 54 27 18 13
D3 21.5 61 30 20 15
D8 24 68 34 23 17
D4, D9 26.5 75 37 25 19
D5 29 82 41 27 20

Figure 5.21: The plot shows the dynamic ampliciation factor in the transversal direction.
The table shows the resonance velocities estimated for Train 1 in the first transversal
bending mode with frequency ω = 17.7 rad s−1 for the distances defined by figure 5.15
and the multiples n = 1− 4.

The dynamic amplification factor for Train 1 shown in figure 5.21 is around 1.2 up
to ≈ 90ms−1 where it increases to 1.5, before it subsides to a level of 1.2 again. The
plot shows that the horizontal dynamic amplification curve is generally higher than the
dynamic amplification curve for the vertical direction shown in the previous subsection.
It should also be pointed out that it is continuously high, i.e it does not drop to zero as
opposed to the amplification factor for the vertical direction. The reason for this is that
the torsional and the vertical modes has a component in the horizontal direction, such
that dynamic resonance effects in these modes also translates to resonance effects in the
horizontal direction.

In figure 5.22 the time and frequency domain response of the midpoint of the bridge
in the horizontal direction is given for Train 1. The figure contains the plot for the train
that the quasi static velocity, 5ms−1 and at the velocity of with the estimated maximum
dynamic amplification of 90ms−1.

The time domain representation, figure 5.22a, shows that there are significant dynamic
effects for the train at 90ms−1, but that the total displacements are still rather modest.
Even at the estimated maximum of the dynamic amplification factor, the total displace-
ment in the transversal direction is below 1mm, with a total span of the bridge being
52m this seems to be a negligible deformation. In section 5.10 the effects of the dynamic
amplification will be addressed further.

The frequency response plot in figure 5.22b shows that the first transversal mode is
dominant in the deformation in the horizontal direction (ω = 17.7 rad s−1), but also the
first torsional mode (ω = 32.9 rad s−1) and modes in between the two significant modes
contributes to the total dynamic amplification.
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Figure 5.22: The figure shows the horizontal displacement of the bridge at the midpoint
for the horizontal resonance velocity 90ms−1 of Train 1, compared against a velocity
5ms−1.

It should be noted that the velocity of 90ms−1 is not predicted in figure 5.21, at
this velocity the predicted distance for the first horizontal bending mode is 31.9m. It is
not possible to find a continuous distance which equals 31.9m on Train 1. Similarly, the
predicted distance for the torsional mode is 17.2m and not found as a continuous distance
on Train 1 either. The reason that 90ms−1 yields the largest dynamic amplification is
not straight forward, but perhaps the answer lies in the way the vertical displacements
translates to displacements in the horizontal direction. Note that the moving force model
does not have any component in the horizontal direction, such that the structure is not
directly loaded in this plane. Nevertheless, figure 5.22a shows that even for the quasi
static velocity, 5ms−1, the structure has displacement in the horizontal direction. Since
there are no forces working in this direction, the reason for these displacement have to
be that there are un-symmetries in the bridge structure and placement of the vertical
loading. Perhaps this coupling effect between the vertical and horizontal displacement
through un-symmetries are the reason for the observed behavior.

Considering the distance D4, which in the previous section was shown to have a con-
tinuous excitation of the bridge, the table in figure 5.21 shows that the corresponding
resonance velocities are 19, 25, 37 and 75ms−1. The dynamic amplification plot in fig-
ure 5.21 confirms that there are dynamic effects at these velocities.
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5.7.2 Train 2
For Train 2 the dynamic amplification factor in figure 5.14 indicated resonance at velocities
of 102.5ms−1 in the vertical direction and 50 and 100ms−1 in the horizontal direction.
In this section, the reasons for the enhanced dynamic effects at these velocities will be
examined.

Vertical direction

The distinct dynamic amplification of Train 2 was found at 102.5ms−1, figure 5.23 shows
the displacement of the bridge at the midpoint at this velocity, both in the time and
frequency domain.
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Figure 5.23: The figure shows the vertical displacement of the bridge at the midpoint for
the vertical resonance velocity 102.5ms−1 of Train 2, compared against the conditions
under quasi static velocity 5ms−1.

Figure 5.23a shows that the system is clearly in resonance when Train 2 is at a speed of
102.5ms−1, the response is growing at a linear rate with a similar characteristic as shown
in section 4.5 for resonance from a series of moving loads. The frequency domain repre-
sentation of the displacement of the midpoint at 102.5ms−1 shows that the train excites
the first mode, with frequency ω = 35.9 rad s−1. It can be seen that the amplitude of the
oscillations are in the same magnitude as the static deflections, the maximum deflection
is increased by ≈ 40%. This will lead to a significant increase in stresses throughout the
structure, and stress cycles in the structure which are important in assessing the remaining
fatigue life. This will be discussed further in section 5.10.

Regarding the distance on Train 2 which excites the bridge in its vertical bending
mode at a velocity of 102.5ms−1, equation (5.2) yields d = 17.9m. This is approximately
the distance D4 = D9 = 17.8m in figure 5.15, i.e the distance between the mth load of
cart i to the mth load on cart i + 1. This is the same distance which proved to induce
resonance behavior in the vertical direction in Train 1, and the reason was shown to be
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that the loads at this distance continuously excited the bridge throughout the length of
the train.

Horizontal direction

The distinct dynamic amplification in the horizontal direction for Train 2 was found in
figure 5.14d at velocities 55ms−1 and 100ms−1. Figure 5.24 shows the displacement of
the bridge at the midpoint at these velocities, both in the time and frequency domain. In
addition the response for the quasi static velocity 5ms−1 is shown for comparison.
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Figure 5.24: The figure shows the vertical displacement of the bridge at the midpoint for
the vertical resonance velocity 102.5ms−1 of Train 2, compared against the conditions
under quasi static velocity 5ms−1.

Figure 5.24a shows that the system is clearly in resonance when Train 2 is at the
two resonance velocities. The frequency domain representation of the displacement shows
that Train 2 excites the first transversal bending mode, with frequency ω = 17.7 rad s−1

at the velocity of 55ms−1 and the first torsional mode with frequency ω = 32.9 rad s−1

at the velocity 100ms−1. The magnitude of the displacements the maximum transversal
displacement is about 2mm.

With equation (5.2), the distance between a series of loads are found to be d = 19.5m
for the velocity of 55ms−1 and first transversal bending mode with frequency 17.7 rad s−1.
This is approximately the distance D5 = 19.6m in figure 5.15, i.e the distance between
the first axle on cart i to the second axle on cart i+ 1.

The distance calculated for the resonance at velocity of 100ms−1 and first torsional
mode with frequency 32.9 rad s−1 is 19.1m, which is approximately the distance D5 =
19.6m.

The distance D5 is not continuously repeatable along the full length of the train in
the same way that the distance 2.5m and its multiples was not repeatable for Train 1.
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Again it is not completely clear why the maximum horizontal dynamic effects are found
to be at a distance on the train which is not a repeatable distance. The coupling between
the vertical and the horizontal displacements discussed in the previous section on Train
1 may be the reason system exhibits this behavior.
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5.8 The effect of including the Visco-Elastic track
In section 5.3 it was shown that the natural frequencies of the complete structure with the
Visco-Elastic track and the simplified track were the same. Since the simplified track is
more computationally efficient than the Visco-Elastic track, and the natural frequencies
were the same, the simplified track was chosen as the reference track for the study. In
this section, the response of the structure with the Visco-Elastic track will be compared
to the response of the structure with the simplified track. A series of simulations were
run for Train 2 with the Visco-Elastic track to give the data for comparison. Figure 5.25
shows the results of these simulations.
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Figure 5.25: The figure shows the results from the simulations of with Train 2 on the
bridge with a Visco-Elastic track and a simplified track. Figure (a) and (b) show the
dynamic amplification factor for the displacement in the vertical and horizontal direction,
while (c) and (d) show the peak acceleration in the vertical and horizontal direction.

Figure 5.25a and figure 5.25b show that the dynamic amplification factors in the verti-
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cal and horizontal direction are exactly the same. Time domain simulations and dynamic
amplification factors at the 3rd points of the bridge also confirms that the displacements
with the two systems are the same, and stresses in the two simulations are also the same.
Regarding the peak accelerations shown in figure 5.25c and figure 5.25d the results show
that the simplified track and the Visco-Elastic track are largely the same. The negligible
difference which can be seen in the figures, might be due to the highly volatile nature of
the accelerations, see figure 5.26.
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Figure 5.26: The figure shows a time domain accelerations of Train 2 at the midpoint
with a velocity of 62.5ms−1 both for the Visco-Elastic and the Simplified track.

Figure 5.26 shows that the overall characteristics and magnitude of the accelerations
are the same, but the absolute peaks are not always captured by either plot. One peak is
larger for the Simplified track while the other is larger for the Visco-elastic track. If the
frequency of which the data is extracted is not very large, and there is a slight shift in
the time of extraction of the accelerations between the two simulations the readings may
not capture the absolute peak of the acceleration.

Given that the elastic and dissipative properties utilized in this study are realistic,
the conclusion is that the difference between the Visco-Elastic and the simplified track
are negligible when the moving force model is used. It should be noted that the above
results are specific to tracks which have relatively high stiffness. If the stiffness of the
track became lower, for instance due to a ballasted track, the results might be different
for the displacements and the accelerations. Another interesting question is whether the
visco-elastic track changes the response of the system when the sprung-mass model is
employed. These subjects are suitable for further work.
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5.9 Sprung-Mass vs. Moving-Force load model
In chapter 4 it was shown that the difference between the moving force model and the
moving mass/sprung-mass model was a result of the inertia effects associated with the
train. It was also shown that the inertia effects became large as the accelerations of the
bridge increased. The moving force model was chosen as the reference model for the
case study in this thesis because it is more computationally efficient than the sprung-
mass model and the response of the two load models where expected to be similar for all
cases except resonance. In this section, the response of the structure with the moving-
force model will be compared to the response of the structure with the sprung-mass load
model. A series of simulations where run for Train 1 with the sprung-mass load model
to give the data for comparison. Ideally the same simulations should have been run for
Train 2, since this train showed a more dramatic dynamic profile than Train 1, but Train
2 was found to be very computationally expensive compared to Train 1. The reason that
Train 2 is more computationally expensive than Train 1, is due to two things. First of
all, Train 2 has 70% more axles than Train 1 such that it has more contact points which
needs to be iterated to equilibrium. Secondly Train 2 is 80% longer than Train 1, such
that the total time of one passing of Train 2 is 55% longer than Train 1. In any case, the
conclusions drawn for the simulations of Train 1 are universal and provides the necessary
foundation for the discussion in this section.

The properties of the sprung-mass model are chosen with background in the numbers
provided in [20].

M2

M1

K C

110kN 225kN
M1 1000 kg 1000 kg
M2 4600 kg 10 456 kg
K 5.5× 105 Nm−1 1.13× 106 Nm−1

C 4× 104 Nsm−1 8× 104 Nsm−1

Figure 5.27: The figure shows the sprung mass model, and the properties used in the case
study.

Figure 5.28 shows the results of the simulations with Train 1 and the moving load
model and the sprung mass model.

Figure 5.28a and figure 5.28b show that the dynamic amplification factors in the
vertical and horizontal direction are in the same magnitude for both load models, but
there are some differences between the predicted amplifications.

For the vertical amplification factor, values for the sprung-mass load model are largely
the same. The amplification factor at 120ms−1 seems to be larger for the sprung mass
model, but the time domain response reveals that the difference is negligible, see fig-
ure 5.29a.

Going through the time domain simulations, and comparing the results, a more general
trend is that the response in the vertical direction estimated from the sprung-mass load
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Figure 5.28: The figure shows the results from the simulations of with Train 1 on the
bridge with a moving force load model and a sprung-mass load model. Figure (a) and (b)
show the dynamic amplification factor for the displacement in the vertical and horizontal
direction, while (c) and (d) show the peak acceleration in the vertical and horizontal
direction.

model is lower than the corresponding response obtained from the moving force model.
An example of this is given in, figure 5.29b, where the response of the midpoint of the
bridge is shown for the moving force model and the sprung mass model at a velocity of
50ms−1. The reason that the response obtained from the sprung-mass model is lower
than the response obtained moving-force model was discussed in section 4.3, the sprung
mass model dissipates energy from the system through the dashpot in the suspension.
This is an important finding for the discussion about the significance of dynamic effects,
section 5.10. In figure 5.20d in the discussion about resonance from a series of moving
loads for Train 1, it was shown that Train 1 induced resonance in the bridge at a velocity
of 151ms−1. In figure 5.29c the response of the two load models are compared at the
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(a) vP = 120ms−1

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

t/tmax

ve
rt
ic
al

di
sp
la
ce
m
en
t
m
id
po

in
t
[m

m
]

Moving force
Sprung Mass

(b) vP = 50ms−1
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(c) vP = 151ms−1
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(d) vP = 152.5ms−1

Figure 5.29: The figure shows the vertical displacement of the bridge at the midpoint for
the sprung mass and the moving force model. The figure shows that the response in the
vertical direction is largely the same for the two load models, but at resonance velocities
the reponse is different.

resonance velocity of 151ms−1. The figure shows that the response for the sprung mass
model is very different from the response obtained by the moving load model. This was
expected because at this velocity the inertia effects are expected to be significant such
that the effective loading of the two load models are significantly different. It should be
noted that the obtained response for the sprung mass model in figure 5.29c is probably
not the actual response of the train at this velocity. It is possible that the contact
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algorithm is running into problems due to the violent nature of resonance at this velocity.
In figure 5.29d the response of the two different systems are again similar, but here the
response of the sprung mass model is slightly higher than the moving force model. A
possible explanation is that the added loading from the inertia effects is higher than the
dissipated energy from the dashpot.

The horizontal amplification factor is shown in figure 5.28b, the figure shows that
predicted amplification are in the same magnitude. The time and frequency domain
response shows that the response in the system in the horizontal direction is different
for the sprung-mass and the moving force model. In figure 5.30 the time and frequency
response for the two load models are compared for the velocity 60ms−1. Note that at
60ms−1 the dynamic amplification factor in the horizontal direction shown in figure 5.28b
are the same.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

t/tmax

tr
an

sv
er
sa
ld

isp
la
ce
m
en
t
m
id
po

in
t
[m

m
]

Moving force
Sprung Mass

(a) Time domain.

10 20 30 40 50 60 700

2

4

6

8 ·10−2

ω [rad s−1]

ab
so
lu
te

tr
an

sv
er
sa
ld

isp
la
ce
m
en
t
[m

m
]

Moving force
Sprung Mass

(b) Frequency domain.

Figure 5.30: The figure shows the horizontal displacement of the bridge at the midpoint
with the sprung-mass and the moving force load model for Train 1 at a velocity of 60ms−1.
The figure illustrates that the response in the horizontal direction are different for the
two load models.

To explain the reason that the two load models are different in horizontal direction,
first recall that the moving load model does not have any load component in the horizon-
tal direction, any horizontal displacement seen for this load model is due un-symmetric
components in the structural system, or un-symmetrical loading of the structure in the
vertical direction. For the sprung-mass model, there is additional loading in the horizontal
direction due to the inertia effects of the mass. The mass in this direction is not sprung,
nor damped such that the full mass and inertia effects of the sprung-mass are included in
this direction.

It is questionable whether this behavior is actually physical. First of all, the trains
in real life are not attached to the rail in the sense that horizontal movement is strictly
prohibited. In real trains, the wheel may slide relative to the rail in the horizontal di-
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rection. Secondly, real trains may have elastic and dissipative elements in the horizontal
direction to allow for better comfort and train-track safety. In the vehicle-interaction
models discussed in section 4.4 there are several models which includes elastic and dis-
sipative elements in the horizontal direction of the train. An interesting study would
be to compare the response of the bridge obtained with the moving force, sprung mass
and such a vehicle interaction model to determine the influence these models have on the
horizontal displacement of the bridge. The total displacements in the horizontal direction
are still modest, figure 5.30a indicates that the total displacements are below 1mm, the
significance of these displacements will be discussed further in section 5.10.

Regarding the peak accelerations shown in figure 5.28c and figure 5.28d, the magnitude
of the peak acceleration in both the vertical and horizontal directions are the same for
both load models. It can be seen that the general trend is that the peak accelerations
in the vertical direction are larger for the sprung mass model than the moving force
model, while in the horizontal direction the accelerations are the same. As mentioned
in section 5.8 the peak accelerations are highly volatile and it is difficult to pinpoint the
exact reason for this observed behavior. Considerations about the contact algorithm and
the sliding direction may provide the answer for this. Without going further into this
discussion a deeper analysis of the time and frequency domain response the question is
left over to further work.

As a conclusion to this section on the comparison of the sprung-mass model and the
moving force model the above discussion have shown that the sprung mass model and the
moving force model are largely the same in the vertical direction. In cases where there are
resonance effects induced in the bridge, either the sprung mass model underestimates the
response in comparison to the moving force model because the energy dissipated exceeds
the added loading from inertia effects or the sprung mass model overestimates the response
in comparison to the moving force model because the added inertia effects are larger than
the dissipated energy. This means that the moving force model may be used to indicate
resonance velocities in the vertical direction of the given configuration of the trains, but
the response might not be in the correct magnitude. For the horizontal direction, it is
found that the displacements are in the same magnitude for the two load models, but
that the given response is different for the two load models. The reason for this is most
likely due to the fact that the mass is unsprung and undamped in this direction such that
the inertia effects in become significant.
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5.10 The significance of the dynamic effects on the
stresses in the bridge.

This section focuses on the additional stress induced by the dynamic effects in the vertical
and the horizontal direction.

5.10.1 Horizontal direction
In section 5.5 and 5.7 it was shown that the maximum dynamic amplification of the bridge
in the horizontal direction was found with Train 2 at a velocity of 55ms−1. Figure 5.31a
shows that the dynamic amplification in the vertical direction for Train 2 at velocity
55ms−1 is negligible.
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(a) Train 2, vertical direction.
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(b) Train 2, horizontal direction.

Figure 5.31: The figure shows the vertical and horizontal response of the bridge with
Train 2 at a velocity of 55ms−1.

A study of the stresses induced by Train 2 at a velocity of 55ms−1 will therefore
isolate the effect of horizontal displacements on the stresses in the bridge. For most of
the structure, the stresses remain largely the same for this state. The largest differences
in the stresses are found in the structural members furthest away from the neutral plane
for bending in the horizontal direction, i.e the vertical plane following the longitudinal
direction of the bridge. Figure 5.32a shows the position of the member with the highest
difference in stress, and figure 5.32b shows the stresses in the observed structural member
for Train 2 at velocity 55ms−1 and at the quasi static velocity 5ms−1 for comparison.

The figure shows that the difference in stress is barely noticeable, even in the member
with the highest difference in stress and even in the configuration where the deformation
of the bridge is at its maximum in this direction. The reason for this is that the ac-
tual deformation in the horizontal direction is only ≈ 2.5mm, and the amplitude of the
fluctuation is merely 1.5mm. Comparing this to the total span of the bridge, 52m it is
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(a) Observed structural member.
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(b) Stress history of observed member.

Figure 5.32: The figure shows the stress history in the observed member for Train 2 at
velocities 5 and 55ms−1.

actually quite obvious that the added dynamic effect is negligible. Even if Train 2 was
considerable longer than it actually is it is difficult to imagine that the displacements in
the horizontal direction alone might cause significant increase in stress fluctuations. In
light of the discussion regarding the sprung-mass model in section 5.9, it is appropriate
to ask the question if the use of the moving force model is the reason that the horizontal
displacements are rather small. The discussion on the sprung mass model showed that
the response of the structure was not the same in the horizontal direction for the two load
models, but the discussion also showed that the magnitude of the displacements where
largely the same. Again, it may be appropriate to consider a more sophisticated model
to ensure that the displacements in the horizontal direction is properly represented.
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5.10.2 Vertical direction
In section 5.5 and 5.7 it was shown that the maximum dynamic amplification of the bridge
in the vertical direction was found with Train 2 at a velocity of 102.5ms−1. The same
sections also showed that the horizontal dynamic amplification at this velocity was large
due to the fact that the torsional mode was excited at this velocity by Train 2. This
means that the bridge is in a state of resonance in several of the modes which implies that
the stresses and the fluctuation of the stresses in the bridge are large. Stress history plots
of the structural members all over the structure confirms this, two examples are given in
figure 5.33.

(a) Vertical hanger.
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(b) Stress history of vertical hanger.

(c) Cross girder.

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

t/tmax

St
re
ss

[M
Pa

]

5.0 ms-1
102.5 ms-1

(d) Stress history of cross girder.

Figure 5.33: The figure shows the stress history in the observed member for Train 2 at
velocities 5 and 102.5ms−1. Note that the stresses in the cross girder, figure 5.33d, are
taken from the upper flange and contains the bending and normal stresses.

The results in figure 5.33 show that the stresses for both the vertical hanger 5.33a in
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the primary carrying system and the cross-girder in the secondary carrying system are
increasing throughout the history. It should be pointed out that this is the general trend
for nearly all structural members in this state, and is to be expected when the structure
is in resonance. Without going into further details it seems obvious that this state should
be avoided in design and operation of the structure.

In section 5.5 and 5.7 it was shown that the bridge had more moderate dynamic effects
where the response showed dynamic effects, but was bound either by cancellation or that
the series of loads was not long enough. Train 1 showed this characteristic at velocities
14ms−1 and 30ms−1. Considering the stress history of the structure at 30ms−1, most of
the members in the structure are not affected by the dynamic amplification. In figure 5.34
the stress history of one of the most affected members is shown.

(a) Observed structural member.
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(b) Stress history of observed member.

Figure 5.34: The figure shows the stress history in the observed member for Train 1 at
velocities 5 and 30ms−1.

The resulting stress fluctuation in the observed member is about ∆σ ≈ 2MPa. The
given stress range will obviously increase when the effective area of the member is taken
into account, or when a specific detail on the member introduce stress singularities. For
the full area of the given member, this stress fluctuation seems to be negligible, and
well within margin of error. Taking into account the fact that the sprung mass model
damps out these lower dynamic effects in the vertical direction also indicate that these
low velocity dynamic effects may be negligible.
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Chapter 6

Concluding remarks and further
work

The main topics of this thesis have been classical viscous damping models, the quadratic
eigenvalue problem, load models and resonance phenomena associated with the moving
load problem.

From the study of viscous damping models, it was found that there is great uncertainty
related to damping in dynamic systems. Furthermore it was found that the main difference
between the different classical viscous damping models was the level of control over the
damping ratios and the computational efficiency of the damping model. Rayleigh damping
provided lower control, but better computational efficiency than the direct damping model
and Caughey damping model. The direct damping model provided the highest level of
control, but lower computational efficiency than the two other models due to the topology
of the resulting damping matrix.

It was shown that the quadratic eigenvalue problem could be used to determine the
response of a classically and non-classically damped dynamic system and to determine
the effective modal damping ratios and resonance frequencies of damped multi degree of
freedom systems. It was also discussed that the quadratic eigenvalue problem could be
used to establish a non-classical damping matrix from experimental data.

From the study on the moving load problem it was found that the difference between
the moving force model, the moving mass model and the sprung mass model was the level
of inertia effects included by the different load models and the energy dissipated by the
load model. The limiting cases of the sprung mass model was found to be the moving force
and moving mass model. Furthermore the study on the moving load problem showed that
there are two different types of resonance. The first type is associated with the velocity of
a single moving load, while the second type is associated with the repeated loading from
a series of moving loads.

In the case study of the Tallerås railway bridge, the main points were:

• Resonance in the Tallerås railway bridge was due to the repeated loading from the
railway axles. Resonance from velocity alone was found to be unlikely due to very
high predicted velocities needed for this type of resonance in the Tallerås railway
bridge.

• The displacements in the horizontal direction of the bridge proved to be small for
the moving force model, even under resonance conditions. The stresses from these
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displacements did not seem to be significant.

• The study showed that it is important to include the mass of the track in the sim-
ulations, the track contributed significantly to the total mass of the structure. The
result was that the natural frequencies of the complete structure was significantly
different from the bridge alone.

• The Visco-Elastic track utilized in the case study did not change the response of
the structure significantly compared to the simplified track. For ballastless tracks
on railway bridges where the stiffness of the track is relatively high, like the track
utilized in this case study, the effect of including a visco-elastic track is negligible.

• Simulations with the sprung-mass load model indicated that the response in the
vertical direction of the bridge was similar to the response obtained by the moving
force model. The response in the horizontal direction for the sprung mass model was
different from the response obtained by the moving force model in the horizontal
direction because the unsprung mass in this direction added load effects and change
the effective structure during the passing.

6.1 Further work
Through the work in this thesis the following topics might be interesting for further work.

• The horizontal displacements of the Tallerås railway bridge was found to be different
for the moving force model and the sprung mass model due to the unsprung and
undamped mass in this direction and the rigidity of the contact formulation in
this direction. A literature study on the contact rigidity and structural elements
in the train in this direction is warranted and a numerical study involving a more
sophisticated vehicle interaction model may be interesting.

• A deeper analysis of the possible significance of the stress fluctuations at lower
velocities in regards to fatigue.

• The peak accelerations of the sprung mass model was found to be generally higher
in the vertical direction than the peak accelerations obtained by the moving force
model. A study of the time domain and frequency domain characteristics of these
accelerations may reveal the reason.

• A study of the visco-elastic track in combination with the sprung-mass model to see
the effect of this combination on the response of the bridge.

• The moving force model was far more computationally efficient than the sprung
mass model. An investigation of other ways to implement the contact relation,
might yield a more efficient solution for the sprung mass model.
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Appendix A

Element matrices for examples 1 and
2.

M =



278.57 0 48.21 −43.53 0 0 0 0
0 100.45 43.53 −37.67 0 0 0 0

48.21 43.53 278.57 0 48.21 −43.53 0 0
−43.53 −37.67 0 100.45 43.53 −37.67 0 0

0 0 48.21 43.53 278.57 0 48.21 −43.53
0 0 −43.53 −37.67 0 100.45 43.53 −37.67
0 0 0 0 48.21 43.53 139.29 −73.66
0 0 0 0 −43.53 −37.67 −73.66 50.22



K = 103



758.52 0 −379.26 711.11 0 0 0 0
0 3555.56 −711.11 888.89 0 0 0 0

−379.26 −711.11 758.52 0 −379.26 711.11 0 0
711.11 888.89 0 3555.56 −711.11 888.89 0 0

0 0 −379.26 −711.11 758.52 0 −379.26 711.11
0 0 711.11 888.89 0 3555.56 −711.11 888.89
0 0 0 0 −379.26 −711.11 379.26 −711.11
0 0 0 0 711.11 888.89 −711.11 1777.78



CDir =



1184.92 −186.77 −366.82 142.01 7.19 −2.48 11.63 −7.85
−186.77 1688.56 −169.92 −139.23 3.96 −7.79 6.72 −6.01
−366.82 −169.92 863.54 −12.20 −412.74 172.70 35.59 −20.33

142.01 −139.23 −12.20 1484.00 −177.03 −148.79 18.78 −16.58
7.19 3.96 −412.74 −177.03 722.18 −65.71 −286.15 216.62
−2.48 −7.79 172.70 −148.79 −65.71 1398.17 −117.29 −56.63
11.63 6.72 35.59 18.78 −286.15 −117.29 234.88 −187.51
−7.85 −6.01 −20.33 −16.58 216.62 −56.63 −187.51 424.65



CRay =



1102.38 0 −514.42 973.72 0 0 0 0
0 4931.00 −973.72 1220.44 0 0 0 0

−514.42 −973.72 1102.38 0 −514.42 973.72 0 0
973.72 1220.44 0 4931.00 −973.72 1220.44 0 0

0 0 −514.42 −973.72 1102.38 0 −514.42 973.72
0 0 973.72 1220.44 0 4931.00 −973.72 1220.44
0 0 0 0 −514.42 −973.72 551.19 −996.71
0 0 0 0 973.72 1220.44 −996.71 2465.50
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Appendix B

Scripts for examples

B.1 Function ModalSolutionLinEig
function u=ModalSolutionLinEig(M,C,K,P0,W,t,u0,dotu0)

%Establishing the matrices and vectors
[Q,S]=eig(K,M);
%Normalizing the eigenvectors Q.’*M*Q=I
for n=1:length(Q(1,:))

Q(:,n)=Q(:,n)/sqrt(Q(:,n).’*M*Q(:,n));
end

wn=sqrt(diag(S));
Pt0=Q.’*P0;
Xi=Q.’*C*Q; %only diagonal elements are interesting
for n=1:length(Xi(:,1))

Xi(n,n)=Xi(n,n)/(2*wn(n));
end

y0=Q.’*M*u0;
doty0=Q.’*M*dotu0;

y=zeros(length(y0),length(t));
u=y;
for n=1:length(t)

for m=1:length(y0)
b=W/wn(m);
xi=Xi(m,m);
wdn=wn(m)*sqrt(1-xi^2);
rho=Pt0(m)/wn(m)^2*1/sqrt((1-b^2)^2+(2*xi*b)^2);
phi=atan(2*xi*b/(1-b^2));
if phi<0

phi=phi+pi;
end
A=y0(m)-rho*sin(-phi);
B=(doty0(m)+xi*wn(m)*y0(m)-W*rho*cos(-phi))/wdn;
y(m,n)=exp(-xi*wn(m)*t(n))*(A*cos(wdn*t(n))+B*sin(wdn*t(n)))...
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+rho*sin(W*t(n)-phi);
end
u(:,n)=Q*y(:,n);

end

B.2 Function ModalSolutionQuadraticEig
function [u,dotu]=ModalSolutionQuadraticEig(M,C,K,P0,W,t,u0,dotu0)

%Establishing the matrices and vectors
N=M*0;
A=[N M;M C];
B=[-M N;N K];
R0=[P0*0;P0];
x0=[dotu0;u0];
[Q,~]=eig(B,-A);

%Normalizing the eigenvectors Q.’*A*Q=I
for n=1:length(Q(1,:))

Q(:,n)=Q(:,n)/sqrt(Q(:,n).’*A*Q(:,n));
end
S=Q.’*B*Q; %spectral matrix
Rt0=Q.’*R0;
y0=Q.’*A*x0;
D=(W^2*eye(length(S))+S*S)\eye(length(S));

x=zeros(length(y0),length(t));
for n=1:length(t)

x(:,n)=Q*(expm(-S*t(n))*(Q.’*A*x0+W*D*Rt0)...
+(S*sin(W*t(n))-W*eye(length(S))*cos(W*t(n)))*D*Rt0);

end

Tu=[N eye(length(M(:,1)))];
Tdotu=[eye(length(M(:,1))) N];
u=Tu*x;
dotu=Tdotu*x;

B.3 Function NewmarkMethod
function u = NewmarkMethod(M,C,K,P,t,u0,dotu0,b,g)
u=zeros(length(u0),length(t));
dotu=u;
ddotu=u;
u(:,1)=u0;
dotu(:,1)=dotu0;
ddotu(:,1)=M\(P(:,1)-C*dotu(:,1)-K*u(:,1));

for n=1:length(t)-1
dt=t(n+1)-t(n);
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Keff=1/(b*dt^2)*M+g/(b*dt)*C+K;
Peff=P(:,n+1)...

+M*(1/(b*dt^2)*u(:,n)+1/(b*dt)*dotu(:,n)+(1/(2*b)-1)*ddotu(:,n))...
+C*(g/(b*dt)*u(:,n)+(g/b-1)*dotu(:,n)+dt*(g/(2*b)-1)*ddotu(:,n));

u(:,n+1)=Keff\Peff;
ddotu(:,n+1)=1/(b*dt^2)*(u(:,n+1)-u(:,n)-dt*dotu(:,n))...

-(1/(2*b)-1)*ddotu(:,n);
dotu(:,n+1)=g/(b*dt)*(u(:,n+1)-u(:,n))-(g/b-1)*dotu(:,n)...

-dt*(g/(2*b)-1)*ddotu(:,n);
end

B.4 Function SimplySupportedBeam
function [t,x]=SimplySupportedBeam(P_train,v_train,k_train,c_train,...

m_train1,m_train2,L,a_section,b_section,N_elements,jobName,loadModel,...
a0,a1,ExtractPoint,cpus)

%%%File parameters
if strcmp(loadModel,’MF’)||strcmp(loadModel,’MS’)||strcmp(loadModel,’MM’);
else

fprintf(’%s is not a valid load model.\n’,loadModel)
return

end
fidS=fopen(sprintf(’%s%s.inp’,jobName,loadModel),’w+’);
%%%Numerical parameters
t_max=L/v_train;
t_inc=0.01*t_max;
t_min=0.01*t_inc;
dL_elements=L/N_elements;
rail_elements_type=’B23’;

%%%Material
density_steel=7850;
E_steel=210e9;
poisson_steel=0.33;

%%%Section
I_section=1/12*a_section*b_section^3;
A_section=a_section*b_section;
fprintf(’The ratio of the weight of the train to the weigth
of the bridge is %.4f\n’,...

(m_train1+m_train2)/(density_steel*A_section*L))
fprintf(fidS,’*Heading\n’);
fprintf(fidS,’*Preprint,echo=yes,model=yes,history=yes\n’);
fprintf(fidS,’**\n**Model definition\n**\n’);
fprintf(fidS,’*Part,Name=Bridge\n’);
fprintf(fidS,’*Node,nset=nAll\n’);
for n=1:N_elements+1

fprintf(fidS,’%i, %.4f,0.\n’,n,dL_elements*(n-1));
end
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fprintf(fidS,’*Nset,nset=LBC\n1\n’);
fprintf(fidS,’*Nset,nset=MidPoint\n%i\n’,ceil((N_elements+1)/ExtractPoint));
fprintf(fidS,’*Nset,nset=RBC\n%i\n’,N_elements+1);
fprintf(fidS,’*Element,elset=elAll,type=%s\n’,rail_elements_type);
for n=1:N_elements

fprintf(fidS,’%i, %i,%i\n’,n,n,n+1);
end
fprintf(fidS,’*Elset,elset=MidPoint\n%i\n’,ceil(N_elements/2));
fprintf(fidS,’*Beam Section,elset=elAll,material=Steel,section=Rect\n’);
fprintf(fidS,’%.4f,%.4f\n’,a_section,b_section);
fprintf(fidS,’*Surface,name=SurfRail\nelAll,SPOS\n’);

fprintf(fidS,’*End part\n**\n**\n’);

fprintf(fidS,’*Part,name=MassSprung\n’);
fprintf(fidS,’*Node,nset=nAll\n’);
fprintf(fidS,’1, 0.,0.\n’);
fprintf(fidS,’2, 0.,1.\n’);
fprintf(fidS,’*Nset,nset=nWheel\n1\n’);
fprintf(fidS,’*Nset,nset=nWagon\n2\n’);
fprintf(fidS,’*Element,type=MASS,elset=elWheel\n1, 1\n’);
fprintf(fidS,’*Element,type=MASS,elset=elWagon\n2, 2\n’);
fprintf(fidS,’*Element,type=DashpotA,elset=elDashpot\n4, 1,2\n’);
fprintf(fidS,’*Element,type=SpringA,elset=elSpring\n3, 1,2\n’);
fprintf(fidS,’*Mass,elset=elWheel\n%.4f\n’,m_train1);
fprintf(fidS,’*Mass,elset=elWagon\n%.4f\n’,m_train2);
fprintf(fidS,’*Dashpot,elset=elDashpot\n\n%.4f\n’,c_train);
fprintf(fidS,’*Spring,elset=elSpring\n\n%.4f\n’,k_train);
fprintf(fidS,’*Equation\n2\nnWagon,1,-1., nWheel,1,1.\n’);
fprintf(fidS,’*Surface,name=SurfWheel,type=node\nnWheel,1.\n’);
if strcmp(loadModel,’MM’)

fprintf(fidS,’*Equation\n2\nnWagon,2,-1., nWheel,2,1.\n’);
end
fprintf(fidS,’*End Part\n**\n**\n’);

fprintf(fidS,’*Material,name=Steel\n’);
fprintf(fidS,’*Elastic\n%.4f,%.4f\n’,E_steel,poisson_steel);
fprintf(fidS,’*Density\n%.4f\n’,density_steel);
fprintf(fidS,’*Damping,alpha=%f,beta=%f\n’,a0,a1);

fprintf(fidS,’*Assembly,name=assemblyBridge\n’);
fprintf(fidS,’*Instance,name=instanceBridge,part=Bridge\n0.,0.,0.
\n*End Instance\n’);
if strcmp(loadModel,’MS’)||strcmp(loadModel,’MM’);

fprintf(fidS,’*Instance,name=instanceTrain,part=MassSprung
\n0.,0.,0.\n*End Instance\n’);

end

fprintf(fidS,’*Nset,nset=nXBC\ninstanceBridge.LBC\n’);
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fprintf(fidS,’*Nset,nset=nYBC\ninstanceBridge.LBC\ninstanceBridge.RBC\n’);
fprintf(fidS,’*End Assembly\n’);

if strcmp(loadModel,’MS’)||strcmp(loadModel,’MM’);
fprintf(fidS,’*Surface Interaction,name=surfaceInteraction\n1.,\n’);
fprintf(fidS,’*Friction\n0.,\n’);
fprintf(fidS,’*Surface Behavior,no separation\n’);
fprintf(fidS,’*Contact Pair,interaction=surfaceInteraction
,type=node to surface\n’);
fprintf(fidS,’assemblyBridge.instanceTrain.SurfWheel,
assemblyBridge.instanceBridge.SurfRail\n’);

end

fprintf(fidS,’*Step,name=ApplyGravity,inc=10000\n’);
fprintf(fidS,’*Static\n1,1,1e-3,1\n’);
fprintf(fidS,’*Dload\n,GRAV,9.82,0,-1.\n’);
fprintf(fidS,’*Boundary,type=displacement\n’);
fprintf(fidS,’assemblyBridge.nXBC,1\nassemblyBridge.nYBC,2\n’);
if strcmp(loadModel,’MS’)||strcmp(loadModel,’MM’);

fprintf(fidS,’assemblyBridge.instanceTrain.nWheel,1\n’);
end
fprintf(fidS,’*End Step\n’);
fprintf(fidS,’*Step,name=RunTrain,inc=%i\n’,ceil(t_max/t_min+1));
fprintf(fidS,’*Dynamic,application=Transient fidelity
\n%.4f,%.4f,%.4f,%.4f\n’,...

t_inc,t_max,t_min,t_inc);
fprintf(fidS,’*Boundary,op=new,type=displacement\n’);
fprintf(fidS,’assemblyBridge.nXBC,1\nassemblyBridge.nYBC,2\n’);
if strcmp(loadModel,’MS’)||strcmp(loadModel,’MM’);

fprintf(fidS,’*Boundary,op=new,type=velocity\n’);
fprintf(fidS,’assemblyBridge.instanceTrain.nWheel, 1,1,%.4f\n’,v_train);

else
for i=1:N_elements+1
fprintf(fidS,’*Amplitude, name=AmpCLoadNode%s,
definition=tabular\n’,num2str(i));

tstart=((i-2)*dL_elements)/v_train;
tmid=((i-1)*dL_elements)/v_train;
tend=(i*dL_elements)/v_train;
fprintf(fidS,’%f,0., %f,1., %f,0.\n’,tstart,tmid,tend);
end
for i=1:N_elements+1
fprintf(fidS,’*Cload,amplitude=AmpCLoadNode%s\n’,num2str(i));
fprintf(fidS,’%s, 2,
%f\n’,sprintf(’assemblyBridge.instanceBridge.%i’,i),P_train);
end

end
fprintf(fidS,’*OUTPUT,HISTORY,TIME INTERVAL=%.4f\n’,t_inc);
fprintf(fidS,’*NODE OUTPUT
,NSET=assemblyBridge.instanceBridge.Midpoint\nU2,A2\n’);
fprintf(fidS,’*Element OUTPUT
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,ELSET=assemblyBridge.instanceBridge.MidPoint\nSF\n’);
fprintf(fidS,’*End Step\n’);
[status,cmdout] = system(sprintf(’abaqus job=%s%s interactive cpus=%i’,...

jobName,loadModel,cpus),’-echo’)
[t,x]=OdbExtract(sprintf(’%s%s’,jobName,loadModel),...

’RunTrain’,’U2’,N_elements,ExtractPoint);
fclose(’all’);
end

B.5 Function analyticalSSB
function [t,u]=analyticalSSB(x,P_train,v_train,L,EI,m,a0,a1)
t_max=L/v_train;
t_inc=0.001*t_max;
t=linspace(0,t_max,ceil(t_max/t_inc));
u=t*0;
for n=1:30

wn=(n*pi/L)^2*sqrt(EI/m);
Wn=n*pi*v_train/L;
bn=Wn/wn;
xin=1/2*(a0/wn+a1*wn);
if xin<1
wdn=wn*sqrt(1-xin^2);
u=u+2*P_train*L^3/(n^4*pi^4*EI)*sin(n*pi*x/L)/((1-bn^2)^2+(2*xin*bn)^2)...

*(2*xin*bn*cos(Wn*t)-(1-bn^2)*sin(Wn*t)+exp(-xin*wn*t)...
.*(bn*(1-bn^2-2*xin^2)/sqrt(1-xin^2)*sin(wdn*t)-2*xin*bn*cos(wdn*t)));

else
fprintf(’The damping ratio is larger or equal to 1, mode %i’,n)

end
end
end

B.6 Function MultipleLoadsSimplySupportedBeam
function [t,x]=MultipleLoadsSimplySupportedBeam(P_train,N_loads,...

d_loads,v_train,L,a_section,b_section,N_elements,jobName,a0,a1,...
ExtractPoint,cpus)

%%%File parameters
fidS=fopen(sprintf(’%s.inp’,jobName),’w+’);
%%%Numerical parameters
t_max=L/v_train+(N_loads-1)*d_loads/v_train;
t_inc=0.01;
t_min=0.01*t_inc;
dL_elements=L/N_elements;
rail_elements_type=’B23’;

%%%Material
density_steel=7850;%%%% OBS
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E_steel=210e9; %%%% OBS
poisson_steel=0.33;

%%%Section
I_section=1/12*a_section*b_section^3;
A_section=a_section*b_section;
fprintf(fidS,’*Heading\n’);
fprintf(fidS,’*Preprint,echo=yes,model=yes,history=yes\n’);
fprintf(fidS,’**\n**Model definition\n**\n’);
fprintf(fidS,’*Part,Name=Bridge\n’);
fprintf(fidS,’*Node,nset=nAll\n’);
for n=1:N_elements+1

fprintf(fidS,’%i, %.4f,0.\n’,n,dL_elements*(n-1));
end
fprintf(fidS,’*Nset,nset=LBC\n1\n’);
fprintf(fidS,’*Nset,nset=MidPoint\n%i\n’,ceil((N_elements+1)/ExtractPoint));
fprintf(fidS,’*Nset,nset=RBC\n%i\n’,N_elements+1);
fprintf(fidS,’*Element,elset=elAll,type=%s\n’,rail_elements_type);
for n=1:N_elements

fprintf(fidS,’%i, %i,%i\n’,n,n,n+1);
end
fprintf(fidS,’*Elset,elset=MidPoint\n%i\n’,ceil(N_elements/2));
fprintf(fidS,’*Beam Section,elset=elAll,material=Steel,section=Rect\n’);
fprintf(fidS,’%.4f,%.4f\n’,a_section,b_section);
fprintf(fidS,’*End part\n**\n**\n’);

fprintf(fidS,’*Material,name=Steel\n’);
fprintf(fidS,’*Elastic\n%.4f,%.4f\n’,E_steel,poisson_steel);
fprintf(fidS,’*Density\n%.4f\n’,density_steel);
fprintf(fidS,’*Damping,alpha=%f,beta=%f\n’,a0,a1);

fprintf(fidS,’*Assembly,name=assemblyBridge\n’);
fprintf(fidS,’*Instance,name=instanceBridge,part=Bridge\n0.,0.,0.
\n*End Instance\n’);
fprintf(fidS,’*Nset,nset=nXBC\ninstanceBridge.LBC\n’);
fprintf(fidS,’*Nset,nset=nYBC\ninstanceBridge.LBC\ninstanceBridge.RBC\n’);
fprintf(fidS,’*End Assembly\n’);

fprintf(fidS,’*Step,name=RunTrain,inc=%i\n’,ceil(t_max/t_min+1));
fprintf(fidS,’*Dynamic,application=Transient fidelity
\n%.4f,%.4f,%.4f,%.4f\n’,...

t_inc,t_max,t_min,t_inc);
fprintf(fidS,’*Boundary,type=displacement\n’);
fprintf(fidS,’assemblyBridge.nXBC,1\nassemblyBridge.nYBC,2\n’);
xP0=0:d_loads:(N_loads-1)*d_loads;
xP0=-xP0;
for j=1:N_loads

for i=2:N_elements
fprintf(fidS,’*Amplitude, name=AmpNode%iLoad%i\n’,i,j);
tstart=((i-2)*dL_elements-xP0(j))/v_train;
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tmid=((i-1)*dL_elements-xP0(j))/v_train;
tend=(i*dL_elements-xP0(j))/v_train;
fprintf(fidS,’%f,0., %f,1., %f,0.\n’,tstart,tmid,tend);

end
end
for j=1:N_loads

for i=2:N_elements
fprintf(fidS,’*Cload,amplitude=AmpNode%iLoad%i\n’,i,j);
fprintf(fidS,’%s, 2, %f\n’,...

sprintf(’assemblyBridge.instanceBridge.%i’,i),P_train);
end

end

fprintf(fidS,’*OUTPUT,HISTORY,TIME INTERVAL=%.4f\n’,t_inc);
fprintf(fidS,’*NODE OUTPUT
,NSET=assemblyBridge.instanceBridge.Midpoint\nU2,A2\n’);
fprintf(fidS,’*OUTPUT,FIELD,TIME INTERVAL=%.4f\n’,t_inc);
fprintf(fidS,’*NODE OUTPUT\nUT\n’);
fprintf(fidS,’*Element OUTPUT
,ELSET=assemblyBridge.instanceBridge.MidPoint\nSF\n’);
fprintf(fidS,’*End Step\n’);
status=system(sprintf(’abaqus job=%s interactive cpus=%i’,...

jobName,cpus));
[t,x]=OdbExtract(sprintf(’%s’,jobName),...

’RunTrain’,’U2’,N_elements,ExtractPoint);
fclose(’all’);
end

B.7 Main script for example 3
clear all
close all
clc

set(0,’DefaultAxesColorOrder’,[0 0 0;0.5 0.5 0.5]...
,’DefaultAxesLineStyleOrder’,’-|--|:’,’DefaultLineLineWidth’,1.5)

% Cross sectional properties, box profile
b_sec=0.10; %m
h_sec=0.10; %m
I_sec=1/12*b_sec*h_sec^3; %m^4
A_sec=b_sec*h_sec; %m^2;
E_sec=200e9;
density_sec=10000; %kg/m^3
EI=E_sec*I_sec
m_sec=A_sec*density_sec
% Definition elemental matrices
m_el = @(rho,A,L) rho*A*L/420*[156 22*L 54 -13*L;22*L 4*L^2 13*L -3*L^2;...

54 13*L 156 -22*L;-13*L -3*L^2 -22*L 4*L^2];
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k_el = @(E,I,L) E*I/L^3*[12 6*L -12 6*L;6*L 4*L^2 -6*L 2*L^2;...
-12 -6*L 12 -6*L;6*L 2*L^2 -6*L 4*L^2];

N1 = @(x,L) 1-3*(x/L)^2+2*(x/L)^3;
N2 = @(x,L) L*(x/L)-2*L*(x/L)^2+L*(x/L)^3;
N3 = @(x,L) 3*(x/L)^2-2*(x/L)^3;
N4 = @(x,L) -L*(x/L)^2+L*(x/L)^3;
N_el = @(x,L)[N1(x,L) N2(x,L) N3(x,L) N4(x,L)];

L=15; %length of beam
N=4; %number of elements

%Establishing mass and stiffness matrix at system level
K=zeros(2*(N+1),2*(N+1));
M=K;
k=k_el(E_sec,I_sec,L/N);
m=m_el(density_sec,A_sec,L/N);
for n=1:N

a=zeros(4,2*(N+1));
a(1,2*n-1)=1;
a(2,2*n)=1;
a(3,2*n+1)=1;
a(4,2*(n+1))=1;
K=K+a’*k*a;
M=M+a’*m*a;
a_mat{n}=a;
clearvars a

end
%Imposing boundary conditions
K=K(3:end,3:end);
M=M(3:end,3:end);

%Solving eigenvalueproblem and mass normalizing eigenvectors
[Q,S]=eig(K,M);
for m=1:length(Q);

Q(:,m)=Q(:,m)/sqrt(Q(:,m)’*M*Q(:,m));
end
wn=diag(sqrt(S));

%Definition Rayleigh damping matrix
a0Rayleigh = @(w1,w2,xi1,xi2) 2*w1*w2*(w1*xi2-w2*xi1)/(w1^2-w2^2);
a1Rayleigh = @(w1,w2,xi1,xi2) 2*(w1*xi1-w2*xi2)/(w1^2-w2^2);
C_Rayleigh = @(M,K,w1,w2,xi1,xi2) 2*w1*w2*(w1*xi2-w2*xi1)/(w1^2-w2^2)*M...

+2*(w1*xi1-w2*xi2)/(w1^2-w2^2)*K;
xi_Rayleigh= @(wn,w1,w2,xi1,xi2)
1/2*(2*w1*w2*(w1*xi2-w2*xi1)/(w1^2-w2^2)./wn...

+2*(w1*xi1-w2*xi2)/(w1^2-w2^2).*wn);
%Definition Direct damping matrix
C_Direct = @(M,Q,S,xi0) 2*xi0*M*Q*sqrt(S)*Q’*M;
%Definition Coupled damping matrix
% C_CoupledM=ones(length(K))-eye(length(K));
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C_CoupledM=zeros(length(K));
C_CoupledM(1,2)=1;
C_CoupledM(2,1)=1;
C_Coupled= @(M,Q,xi_c) xi_c*M*Q*C_CoupledM*Q’*M;

%Definition Load vector
P_Load = @(P0,w,t) P0*sin(w.*t);

%Definition frequency response
U_Freq =@(M,C,K,w,P)
sqrt(real((K-w^2*M+1i*w*C)\P).^2+imag((K-w^2*M+1i*w*C)\P).^2);

%ExampleDefinition
xi0=0.05;
P0=zeros(length(K),1);
P0(end-1)=1000;
W=10;
xi_c=0*7.5;

C{1}=C_Direct(M,Q,S,xi0)+C_Coupled(M,Q,xi_c)

% The time domain simulations.
t=0:0.01:15;
u0=zeros(length(M),1);
dotu0=u0;

P0=P0*1;
ust=K\P0;
P=zeros(length(P0),length(t));
for n=1:length(t)

P(:,n)=P0*sin(W*t(n));
end
figure
hold all
% u = NewmarkMethod(M,C,K,P,t,u0,dotu0,b,g)
uModal=ModalSolutionLinEig(M,C{1},K,P0,W,t,u0,dotu0);
uNewmark=NewmarkMethod(M,C{1},K,P,t,u0,dotu0,1/4,1/2);
uComplexModal=ModalSolutionQuadraticEig(M,C{1},K,P0,W,t,u0,dotu0);
plot(t(1:15:end),uModal(end-1,1:15:end)/ust(end-1),’-o’)
plot(t(1:5:end),uNewmark(end-1,1:5:end)/ust(end-1),’-’,’Color’,[1 1 1]*0.45)
plot(t(1:15:end),uComplexModal(end-1,1:15:end)/ust(end-1)...

,’x’,’Color’,[1 1 1]*0.75)

legendentry={’Classic modal analysis’,’Newmark \beta-method’
,’Complex modal analysis’}
legend(legendentry,’Location’,’NorthEast’)
xlabel(’$t$[\SI{}{\second}]’,’Interpreter’,’Latex’)
ylabel(’$w_{\text{tip}}/w_{\text{st}}$’,’Interpreter’,’Latex’)
legend boxoff
cleanfigure
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matlab2tikz(’.\..\..\..\LaTex\Figures\DampedEigExample1.tikz’
,’width’,’\ftwowidth’)

B.8 Main script for example 5
clear all
close all
clc
fclose(’all’)

% %%%%%%%%%% Inndata %%%%%%%%%%
%Loading
m_train1=500; %mass of the wheel
m_train2=500; %mass of wagon
P_train=-10000

v_train=25;
k_train=3000000;
c_train=20000;

%Geometry
L=25;
a_section=0.2; %width of beam, out of plane
b_section=0.5; %height of beam
Abeam=a_section*b_section;
Ibeam=1/12*a_section*b_section^3;
EIbeam=210e9*Ibeam;
mbeam=Abeam*7850;
Mbeam=mbeam*L;
xi0=0.05

%File parameters
jobName=’Beam’;

%Numerical parameters
cpus=8;

wn = @(n) (n*pi/L)^2*sqrt(EIbeam/mbeam);
a0 = @(w1,w2,x1,x2) 2*w1*w2*(w1*x2-w2*x1)/(w1^2-w2^2);
a1 = @(w1,w2,x1,x2) 2*(w1*x1-w2*x2)/(w1^2-w2^2);
vpn= @(n) n*pi/L*sqrt(EI/m);

count=0;
N_elementsM=[3 5 10];
for N_elements=N_elementsM;

count=count+1;
[tMF{count},u_FEMMF{count}]=SimplySupportedBeam(P_train,v_train,...

k_train,c_train,m_train1,m_train2,L,a_section,b_section,...
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N_elements,jobName,’MF’,a0(wn(1),wn(2),xi0,xi0),...
a1(wn(1),wn(2),xi0,xi0),2,cpus);

end
[tanal,u_anal]=analyticalSSB(L/2,-P_train,v_train,L,EIbeam,mbeam,...

a0(wn(1),wn(2),xi0,xi0),a1(wn(1),wn(2),xi0,xi0));
set(0,’DefaultAxesColorOrder’,[0 0 0;0.5 0.5 0.5;0.75 0.75 0.75],...

’DefaultAxesLineStyleOrder’,’-|-.|:’,’DefaultLineLineWidth’,1.5);
figure
hold all
for n=1:count

plot(tMF{n}/tMF{n}(end),(u_FEMMF{n}-u_FEMMF{n}(1))/abs(min(u_anal)));
legendEntry{n}=sprintf(’FEM, %i elements\n’,N_elementsM(n));

end
legendEntry{n+1}=’analytical’;
plot(tanal/tanal(end),u_anal/abs(min(u_anal)),’--’);
xlabel(’$\frac{t}{t_{max}}$’,’Interpreter’,’Latex’);
ylabel(’$\frac{w(L/2)}{|w_{max}(L/2)|}$’,’Interpreter’,’Latex’);
legend(legendEntry,’Location’,’North’);
legend boxoff
xlim([0 1]);
ylim([-1 0.2]);
cleanfigure
matlab2tikz(’.\..\..\..\LaTex\Figures\VerificationMF.tikz’,...

’width’,’\fwidth’);

B.9 Main script for example 6, 7, 8 and 9
clear all
close all
clc
fclose(’all’)

% %%%%%%%%%% Inndata %%%%%%%%%%
%Loading
m_train1=1000; %mass of the wheel
m_train2=9000; %mass of wagon
P_train=-(m_train1+m_train2)*9.82;

v_train=25;
k_train=3000000;
c_train=20000;

%Geometry
L=25;
a_section=0.2; %width of beam, out of plane
b_section=0.5; %height of beam
Abeam=a_section*b_section;
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Ibeam=1/12*a_section*b_section^3;
EIbeam=210e9*Ibeam;
mbeam=Abeam*7850;
Mbeam=mbeam*L;
xi0=0.05

%File parameters
jobName=’Beam’;

%Numerical parameters
cpus=8;
N_elements=30;

wn = @(n) (n*pi/L)^2*sqrt(EIbeam/mbeam);
a0 = @(w1,w2,x1,x2) 2*w1*w2*(w1*x2-w2*x1)/(w1^2-w2^2);
a1 = @(w1,w2,x1,x2) 2*(w1*x1-w2*x2)/(w1^2-w2^2);
vpn= @(n) n*pi/L*sqrt(EIbeam/mbeam);
beta1= @(v) pi*v/(wn(1)*L);

v_trainM=[1];

count=0;
for v_train=v_trainM;

count=count+1;
[tMF{count},u_FEMMF{count}]=SimplySupportedBeam(P_train,v_train,...

k_train,c_train,m_train1,m_train2,L,a_section,b_section,...
N_elements,jobName,’MF’,a0(wn(1),wn(2),xi0,xi0),...
a1(wn(1),wn(2),xi0,xi0),2,cpus);

[tMM{count},u_FEMMM{count}]=SimplySupportedBeam(P_train,v_train,...
k_train,c_train,m_train1,m_train2,L,a_section,b_section,...
N_elements,jobName,’MM’,a0(wn(1),wn(2),xi0,xi0),...
a1(wn(1),wn(2),xi0,xi0),2,cpus);

end

[tanal,u_anal]=analyticalSSB(L/2,-P_train,v_train,L,EIbeam,mbeam,...
a0(wn(1),wn(2),xi0,xi0),a1(wn(1),wn(2),xi0,xi0));

set(0,’DefaultAxesColorOrder’,[0 0 0;0.4 0.4 0.4;0.75 0.75 0.75],...
’DefaultAxesLineStyleOrder’,’-|:|-.’,’DefaultLineLineWidth’,1.5);

figure
hold all
plotstyle={’-’,’:’,’-.’,’--’};
plotcount=0;
for n=1:count

plotcount=plotcount+1;
h{plotcount}=plot(tMF{n}/tMF{n}(end),(u_FEMMF{n}-u_FEMMF{n}(1))/...

abs(min(u_FEMMF{n}-u_FEMMF{n}(1))),plotstyle{n},’Color’,[0,0,0]);
legendEntry{plotcount}=sprintf(’Moving force\n’);

end
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for n=1:count
plotcount=plotcount+1;
h{plotcount}=plot(tMM{n}/tMM{n}(end),(u_FEMMM{n}-u_FEMMM{n}(1))/...

abs(min(u_FEMMF{n}-u_FEMMF{n}(1))),’--’,’Color’,[0.75,0.75,0.75]);
legendEntry{plotcount}=sprintf(’Moving mass\n’);

end

xlabel(’$t/t_{\max}$’,’Interpreter’,’Latex’);
ylabel(’$w(L/2)/\abs{w_{\max}}$’,’Interpreter’,’Latex’);
legend(legendEntry,’Location’,’North’);
legend boxoff
xlim([0 1]);
ylim([-1.2 0.2]);
cleanfigure
matlab2tikz(’.\..\..\..\LaTex\Figures\ExampleMM.tikz’,...

’width’,’\fwidth’);

B.10 Main script for example 10
clear all
close all
clc
fclose(’all’)

% %%%%%%%%%% Inndata %%%%%%%%%%
%Loading
m_train1=500; %mass of the wheel
m_train2=9500; %mass of wagon
P_train=-(m_train1+m_train2)*9.82;

v_train=90;
k_train=1e4;
c_train=100;

%Geometry
L=25;
a_section=0.2; %widt of beam, out of plane
b_section=0.5; %height of beam
Abeam=a_section*b_section;
Ibeam=1/12*a_section*b_section^3;
EIbeam=210e9*Ibeam;
mbeam=Abeam*7850;
Mbeam=mbeam*L;
xi0=0.05

%File parameters
jobName=’Beam’;
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%Numerical parameters
cpus=8;
N_elements=100;

wn = @(n) (n*pi/L)^2*sqrt(EIbeam/mbeam);
a0 = @(w1,w2,x1,x2) 2*w1*w2*(w1*x2-w2*x1)/(w1^2-w2^2);
a1 = @(w1,w2,x1,x2) 2*(w1*x1-w2*x2)/(w1^2-w2^2);
vpn= @(n,m) n*pi/L*sqrt(EIbeam/m);
beta1= @(v) pi*v/(wn(1)*L);

v_trainM=v_train*[1];

count=0;
for v_train=v_trainM;

count=count+1;
[tMF{count},u_FEMMF{count},SM1_FEMMF{count}]=SimplySupportedBeam(
P_train,v_train,k_train,c_train,m_train1,m_train2,L,a_section
,b_section,N_elements,jobName,’MF’,a0(wn(1),wn(2),xi0,xi0)
,a1(wn(1),wn(2),xi0,xi0),2,cpus);
[tMM{count},u_FEMMM{count},SM1_FEMMM{count}]=SimplySupportedBeam(
P_train,v_train,k_train,c_train,m_train1,m_train2,L,a_section
,b_section,N_elements,jobName,’MM’,a0(wn(1),wn(2),xi0,xi0)
,a1(wn(1),wn(2),xi0,xi0),2,cpus);
[tSM{count},u_FEMSM{count},SM1_FEMSM{count}]=SimplySupportedBeam(
P_train,v_train,k_train,c_train,m_train1,m_train2,L,a_section
,b_section,N_elements,jobName,’MS’,a0(wn(1),wn(2),xi0,xi0)
,a1(wn(1),wn(2),xi0,xi0),2,cpus);
[tSM2{count},u_FEMSM2{count},SM1_FEMSM2{count}]=SimplySupportedBeam(
P_train,v_train,1e9,1e5,m_train1,m_train2,L,a_section
,b_section,N_elements,jobName,’MS’,a0(wn(1),wn(2),xi0,xi0)
,a1(wn(1),wn(2),xi0,xi0),2,cpus);

end

[tanal,u_anal]=analyticalSSB(L/2,-P_train,v_train,L,EIbeam,mbeam,...
a0(wn(1),wn(2),xi0,xi0),a1(wn(1),wn(2),xi0,xi0));

set(0,’DefaultAxesColorOrder’,[0 0 0;0.4 0.4 0.4;0.75 0.75 0.75],...
’DefaultAxesLineStyleOrder’,’-|:|-.’,’DefaultLineLineWidth’,1.5);

figure
hold all
plotstyle={’-’,’:’,’-.’,’--’,’-’,’-.’};
plotcount=0;
for n=1:count
plotcount=plotcount+1;
h{plotcount}=plot(tMF{n}/tMF{n}(end),(u_FEMMF{n}-u_FEMMF{n}(1))/...

abs(min(u_FEMMF{n}-u_FEMMF{n}(1))),plotstyle{n},’Color’,[0,0,0]);
legendEntry{plotcount}=sprintf(’Moving force\n’);
end
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for n=1:count
plotcount=plotcount+1;
h{plotcount}=plot(tMM{n}/tMM{n}(end),(u_FEMMM{n}-u_FEMMM{n}(1))/...

abs(min(u_FEMMF{n}-u_FEMMF{n}(1))),’--’,’Color’,[0.75,0.75,0.75]);
legendEntry{plotcount}=sprintf(’Moving mass\n’);
end
for n=1:count
plotcount=plotcount+1;
h{plotcount}=plot(tSM{n}(1:5:end)/tSM{n}(end),
(u_FEMSM{n}(1:5:end)-u_FEMSM{n}(1))/abs(min(u_FEMMF{n}-u_FEMMF{n}(1)))
,’o’,’Color’,[0.75,0.75,0.75]);
legendEntry{plotcount}=sprintf(’Sprung mass, flexible\n’);
end
for n=1:count

plotcount=plotcount+1;
h{plotcount}=plot(tSM2{n}(1:5:end)/tSM2{n}(end)
,(u_FEMSM2{n}(1:5:end)-u_FEMSM2{n}(1))/...

abs(min(u_FEMMF{n}-u_FEMMF{n}(1))),’s’,’Color’,[0.,0.,0.]);
legendEntry{plotcount}=sprintf(’Sprung mass, stiff\n’);

end
xlabel(’$t/t_{\max}$’,’Interpreter’,’Latex’);
ylabel(’$w(L/2)/\abs{w_{\max}}$’,’Interpreter’,’Latex’);
legend(legendEntry,’Location’,’West’);
% legend(legendEntry,’Position’,’South’);

legend boxoff
xlim([0 1]);
ylim([min((u_FEMMM{1}-u_FEMMM{1}(1)))/abs(min(u_FEMMF{1}-u_FEMMF{1}(1)))
*1.1 0.2]);
cleanfigure
matlab2tikz(’.\..\..\..\LaTex\Figures\ExampleSM1.tikz’,...

’width’,’\fwidth’);

B.11 Main script for example 11 and 12
clear all
close all
clc
fclose(’all’)

% %%%%%%%%%% Inndata %%%%%%%%%%
% Loading
P_train=-50000

v_train=10;
N_loads=20;
d_loads=1;
% Geometry
L=25;
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a_section=0.2; %width of beam, out of plane
b_section=0.5; %height of beam
Abeam=a_section*b_section;
Ibeam=1/12*a_section*b_section^3;
EIbeam=210e9*Ibeam;
mbeam=Abeam*7850;
Mbeam=mbeam*L;
xi0=0.00

% File parameters
jobName=’Beam’;
d_resonance=2*v_train/pi*sqrt(mbeam*L^4/EIbeam)
% Numerical parameters
cpus=8;
N_elements=33;

wn = @(n) (n*pi/L)^2*sqrt(EIbeam/mbeam);
a0 = @(w1,w2,x1,x2) 2*w1*w2*(w1*x2-w2*x1)/(w1^2-w2^2);
a1 = @(w1,w2,x1,x2) 2*(w1*x1-w2*x2)/(w1^2-w2^2);
vpn= @(n) n*pi/L*sqrt(EIbeam/mbeam);
d_resonance2=2*pi*v_train/wn(1);

d_loadsM=[0.1 1:0.5:2.5];
u_FEMMF_MAX=d_loadsM*0;
count=0;
for d_loads=d_loadsM;

count=count+1;
fprintf(’Run %i of %i\n’,count,length(d_loadsM));
[tMF{count},u_FEMMF{count}]=MultipleLoadsSimplySupportedBeam(...

P_train,N_loads,d_loads,v_train,L,a_section,b_section,...
N_elements,jobName,a0(wn(1),wn(2),xi0,xi0),a1(wn(1),wn(2),...
xi0,xi0),2,cpus);

u_FEMMF_MAX(count)=max(abs(u_FEMMF{count}));
end
[tanal,u_anal]=analyticalSSB(L/2,-P_train,v_train,L,EIbeam,mbeam,...

a0(wn(1),wn(2),xi0,xi0),a1(wn(1),wn(2),xi0,xi0));
set(0,’DefaultAxesColorOrder’,[0 0 0;0.4 0.4 0.4;0.75 0.75 0.75],...

’DefaultAxesLineStyleOrder’,’-|:|-.’,’DefaultLineLineWidth’,1.5);
figure
hold all
for n=1:count

plot(tMF{n}/tMF{n}(end),(u_FEMMF{n}-u_FEMMF{n}(1))/abs(min(u_anal)));
legendEntry{n}=sprintf(’FEM, d=%.2f\n’,d_loadsM(n));

end
legendEntry{n+1}=’analytical’;
plot(tanal/tanal(end),u_anal/abs(min(u_anal)),’--’);
xlabel(’$t/t_{\max}$’,’Interpreter’,’Latex’);
ylabel(’$w(L/2)/\abs{w_{\max}}$’,’Interpreter’,’Latex’);
legend(legendEntry,’Location’,’North’);
legend boxoff

123



xlim([0 1]);
% ylim([-1 0.2]);

figure
hold all
plot(d_loadsM,u_FEMMF_MAX)

D=[d_loadsM’ u_FEMMF_MAX’];
save(’Run5.mat’,’D’);
load Run3.mat
load Run4.mat

C=[A;B;D];
[C(:,1),ind]=sort(C(:,1));
C(:,2)=C(ind,2);

figure
hold all
plot(C(:,1),C(:,2)/C(1,2))
xlabel(’$d [m]$’,’Interpreter’,’Latex’);
ylabel(’$\abs{w_{\max}/w_{\max,d=0}}$’,’Interpreter’,’Latex’);
legend(’Response series of moving loads’,’Location’,’North’);
legend boxoff

cleanfigure
matlab2tikz(’.\..\..\..\LaTex\Figures\MultipleLoads.tikz’,...

’width’,’\fwidth’);
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Appendix C

Tallerås bridge

Figure C.1: The figure shows a picture of the original hand drawings of the bridge.
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(a) Mode 1, 20.7 rad s−1 (b) Mode 8, 39.0 rad s−1

(c) Mode 13, 41.4 rad s−1 (d) Mode 14, 42.2 rad s−1

(e) Mode 39, 72.1 rad s−1 (f) Mode 40, 77.6 rad s−1

Figure C.2: The figure shows the six first significant modes of the bridge.
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C.1 Train configuration

C.1.1 Train 1

Axle position [m] Axle load [kN]

0 225
3.3 225
10 225
13.3 225
17.2 110
19.7 110
36.2 110
38.7 110
43.7 110
46.2 110
62.7 110
65.2 110
70.2 110
72.7 110
89.2 110
91.7 110
96.7 110
99.2 110
115.7 110
118.2 110
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C.1.2 Train 2
Axle position [m] Axle Load [kN] Axle position [m] Axle load [kN]

0 225 107.7 225
2.2 225 109.5 225
4.4 225 120.5 225
11.3 225 122.3 225
13.5 225 125.5 225
15.7 225 127.3 225
18.7 225 138.3 225
20.5 225 140.1 225
31.5 225 143.3 225
33.3 225 145.1 225
36.5 225 156.1 225
38.3 225 157.9 225
49.3 225 161.1 225
51.1 225 162.9 225
54.3 225 173.9 225
56.1 225 175.7 225
67.1 225 178.9 225
68.9 225 180.7 225
72.1 225 191.7 225
73.9 225 193.5 225
84.9 225 196.7 225
86.7 225 198.5 225
89.9 225 209.5 225
91.7 225 211.3 225
102.7 225
104.5 225
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C.2 Main script for moving force model

clear all
close all
clc

%Inndata
kpad=500e6;
cpad=200e3;
msleep=230/2;
ksleep=538e6;
csleep=120e3;
mbal=412;
kbal=1000e6;
cbal=50e3;

UIC60_A=60.21/7850; %m^2
UIC60_I11=3038.30e-8; %m^4
UIC60_I12=0; %m^4
UIC60_I22=512.30e-8; %m^4
UIC60_J=UIC60_I11+UIC60_I22;

LB=52;

CC_sleepers=0.6;
CC_rail=1.435;

v_TrainM=[5 20:2.5:140]
for TrainN=1:2

for SpeedN=1:length(v_TrainM)
jobName=sprintf(’Train%iSpeed%.0f’,TrainN,v_TrainM(SpeedN)*10);
partFilename=’BridgeTalleraasRefined.mypart’;
fidPart=fopen(partFilename,’r+’);
fid=fopen(sprintf(’%s.inp’,jobName),’w+’);
TrainM=load(sprintf(’Train%i.txt’,TrainN));
LT=TrainM(end,1);
v_Train=v_TrainM(SpeedN);
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Parts %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generating the rails
generatePartTrack(fid,’LeftRail’,’Left’,LB,LT,CC_sleepers,CC_rail,kpad,ksleep,...

kbal,cpad,csleep,cbal,msleep,mbal,1)
generatePartTrack(fid,’RightRail’,’Right’,LB,LT,CC_sleepers,CC_rail,kpad,ksleep,...

kbal,cpad,csleep,cbal,msleep,mbal,1)

% Importing the bridge.
tline=fgets(fidPart);
while ischar(tline)

fprintf(fid,tline);
tline=fgets(fidPart);

end
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%Assembly
fprintf(fid,’*Assembly,name=AssemblyBridge\n’);

fprintf(fid,’*Instance,name=leftRail,part=LeftRail\n’);
fprintf(fid,’0, 0., %f\n’,-CC_rail/2);
fprintf(fid,’*End instance\n’);

fprintf(fid,’*Instance,name=rightRail,part=RightRail\n’);
fprintf(fid,’0, 0., %f\n’,CC_rail/2);
fprintf(fid,’*End instance\n’);

fprintf(fid,’*Instance,name=Bridge,part=Bridge\n’);
fprintf(fid,’0,%f,%f,\n’,-(0.77+0.721),-2.5);
fprintf(fid,’*End instance\n’);

fprintf(fid,’*Nset,nset=BC1\nBridge.BC1,leftRail.BC1,rightRail.BC1\n’);
fprintf(fid,’*Nset,nset=BC2\nBridge.BC2\n’);
fprintf(fid,’*Nset,nset=BC3\nBridge.BC3\n’);
fprintf(fid,’*Nset,nset=BC4\nleftRail.BC4,rightRail.BC4\n’);
fprintf(fid,’*Nset,nset=BCFixed\nleftRail.BCFixed,rightRail.BCFixed\n’);

fprintf(fid,’*Tie,position tolerance=%f,adjust=no
,name=RailToBridgeTie,type=node to surface,no thickness\n’,0.01);
fprintf(fid,’leftRail.TrackBridgeInterface,Bridge.LongGirders\n’);
fprintf(fid,’rightRail.TrackBridgeInterface,Bridge.LongGirders\n’);
fprintf(fid,’*End assembly\n’);

fprintf(fid,’*Step,name=ApplyGravity,inc=10000\n’);
fprintf(fid,’*Static\n’);
fprintf(fid,’%f, %f, %f, %f\n’,1,30,1e-5,30);
fprintf(fid,’*Dload\n’);
fprintf(fid,’,GRAV,9.82,0,-1,0\n’);
fprintf(fid,’*Boundary,type=displacement\n’);
fprintf(fid,’AssemblyBridge.BCFixed,Encastre\n’);
fprintf(fid,’AssemblyBridge.BC1,1\n’);
fprintf(fid,’AssemblyBridge.BC2,2\n’);
fprintf(fid,’AssemblyBridge.BC3,3\n’);
fprintf(fid,’AssemblyBridge.BC4,4\n’);
fprintf(fid,’*End step\n’);

fprintf(fid,’*Step,name=MoveTrain,inc=10000\n’);
fprintf(fid,’*Dynamic\n’);
fprintf(fid,’%f, %f, %f, %f\n’,1e-2,(LT+LB)/v_Train,1e-3,1e-2);
fprintf(fid,’*Output,history,frequency=1\n’);
fprintf(fid,’*Node output,nset=AssemblyBridge.Bridge.OutputMidnode\nUT,AT\n’)
fprintf(fid,’*Node output
,nset=AssemblyBridge.Bridge.Output3rdPoint\nUT,AT\n’)
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fprintf(fid,’*Element output
, elset=AssemblyBridge.Bridge.OutputSpotS\n\nS\n’);
fprintf(fid,’*Boundary,op=new,type=displacement\n’);
fprintf(fid,’AssemblyBridge.BCFixed,Encastre\n’);
fprintf(fid,’AssemblyBridge.BC1,1\n’);
fprintf(fid,’AssemblyBridge.BC2,2\n’);
fprintf(fid,’AssemblyBridge.BC3,3\n’);
fprintf(fid,’AssemblyBridge.BC4,4\n’);
x0P=-TrainM(:,1)-0.2;
dL=CC_sleepers;
for n=1:87

for m=1:length(x0P)
t1=((n-2)*dL-x0P(m))/v_Train;
t2=((n-1)*dL-x0P(m))/v_Train;
t3=(n*dL-x0P(m))/v_Train;
fprintf(fid,’*Amplitude,name=AmpNode%iAxle%i\n’,n,m);
fprintf(fid,’%.4f,0\n %.4f,1\n %.4f,0\n’,t1,t2,t3);

end
end
for n=1:87

node=1000+n;
for m=1:length(x0P)

fprintf(fid,’*Cload,amplitude=AmpNode%iAxle%i\n’,n,m);
fprintf(fid,’AssemblyBridge.leftRail.%i,2,%.2f\n’
,node,-TrainM(m,2)/2*1000);
fprintf(fid,’AssemblyBridge.rightRail.%i,2,%.2f\n’
,node,-TrainM(m,2)/2*1000);

end
end
fprintf(fid,’*End step\n’);

system(sprintf(’abaqus job=%s interactive cpus=8’,jobName),’-echo’);
fclose(’all’)

end
end
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C.3 Main script for sprung mass model

clear all
close all
clc

% Inndata
kpad=500e6;
cpad=200e3;
msleep=230/2;
ksleep=538e6;
csleep=120e3;
mbal=412;
kbal=1000e6;
cbal=50e3;

UIC60_A=60.21/7850; %m^2
UIC60_I11=3038.30e-8; %m^4
UIC60_I12=0; %m^4
UIC60_I22=512.30e-8; %m^4
UIC60_J=UIC60_I11+UIC60_I22;

LB=52;

CC_sleepers=0.6;
CC_rail=1.435;

v_TrainM=[20:10:140];

for TrainN=1:2
for SpeedN=1:length(v_TrainM)

jobName=sprintf(’Train%iSpeed%.0f’,TrainN,v_TrainM(SpeedN)*10);
partFilename=’BridgeTalleraasRefined.mypart’;
fidPart=fopen(partFilename,’r+’);
fid=fopen(sprintf(’%s.inp’,jobName),’w+’);
TrainM=load(sprintf(’Train%i.txt’,TrainN));
LT=TrainM(end,1);
v_Train=v_TrainM(SpeedN);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Parts %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generating the rails
generatePartTrack(fid,’LeftRail’,’Left’,LB,LT,CC_sleepers,CC_rail,kpad,ksleep,...

kbal,cpad,csleep,cbal,msleep,mbal,1)
generatePartTrack(fid,’RightRail’,’Right’,LB,LT,CC_sleepers,CC_rail,kpad,ksleep,...

kbal,cpad,csleep,cbal,msleep,mbal,1)

% Importing the bridge.
tline=fgets(fidPart);
while ischar(tline)

fprintf(fid,tline);
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tline=fgets(fidPart);
end

% Generating the Sprung masses
mWheel=1000;
KSM110=5.55e5;
CSM110=4e4;
KSM225=1.125e6;
CSM225=8e4;
generatePartMS(fid,’SM110’,110/2*1000/9.82-mWheel,mWheel,KSM110,CSM110);
generatePartMS(fid,’SM225’,225/2*1000/9.82-mWheel,mWheel,KSM225,CSM225);
generatePartSurfMS(fid,’SurfMS’);

%Assembly
fprintf(fid,’*Assembly,name=AssemblyBridge\n’);
fprintf(fid,’*Instance,name=leftRail,part=LeftRail\n’);
fprintf(fid,’0, 0., %f\n’,-CC_rail/2);
fprintf(fid,’*End instance\n’);

fprintf(fid,’*Instance,name=rightRail,part=RightRail\n’);
fprintf(fid,’0, 0., %f\n’,CC_rail/2);
fprintf(fid,’*End instance\n’);

fprintf(fid,’*Instance,name=Bridge,part=Bridge\n’);
fprintf(fid,’0,%f,%f,\n’,-(0.77+0.721),-2.5);
fprintf(fid,’*End instance\n’);
xposAxle=-(TrainM(:,1)+0.01);
for m=1:length(xposAxle)

fprintf(fid,’*Instance,name=leftMS%i,part=SM%i\n’,m,TrainM(m,2));
fprintf(fid,’%f, 0., %f\n’,xposAxle(m),-CC_rail/2);
fprintf(fid,’*End instance\n’);
fprintf(fid,’*Instance,name=rightMS%i,part=SM%i\n’,m,TrainM(m,2));
fprintf(fid,’%f, 0., %f\n’,xposAxle(m),CC_rail/2);
fprintf(fid,’*End instance\n’);
fprintf(fid,’*Instance,name=leftSurf%i,part=SurfMS\n’,m);
fprintf(fid,’%f, 0., %f\n’,xposAxle(m),-CC_rail/2);
fprintf(fid,’*End instance\n’);
fprintf(fid,’*Instance,name=rightSurf%i,part=SurfMS\n’,m);
fprintf(fid,’%f, 0., %f\n’,xposAxle(m),CC_rail/2);
fprintf(fid,’*End instance\n’);
fprintf(fid,’*Equation\n’);
for n=1:6

fprintf(fid,’2\n leftMS%i.connectNode,%i,-1
, leftSurf%i.connectNode,%i,1\n’,m,n,m,n)
fprintf(fid,’2\n rightMS%i.connectNode,%i,-1
, rightSurf%i.connectNode,%i,1\n’,m,n,m,n)

end
end
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fprintf(fid,’*Nset,nset=BC1\nBridge.BC1,leftRail.BC1,rightRail.BC1\n’);
fprintf(fid,’*Nset,nset=BC2\nBridge.BC2\n’);
fprintf(fid,’*Nset,nset=BC3\nBridge.BC3\n’);
fprintf(fid,’*Nset,nset=BC4\nleftRail.BC4,rightRail.BC4\n’);
fprintf(fid,’*Nset,nset=BCFixed\nleftRail.BCFixed,rightRail.BCFixed\n’);
fprintf(fid,’*Nset,nset=BCROT\n’);
for n=1:length(TrainM(:,1))

fprintf(fid,’leftSurf%i.BCROT\n’,n);
fprintf(fid,’rightSurf%i.BCROT\n’,n);

end

fprintf(fid,’*Tie,position tolerance=%f,adjust=no,
name=RailToBridgeTie,type=node to surface,no thickness\n’,0.01);
fprintf(fid,’leftRail.TrackBridgeInterface,Bridge.LongGirders\n’);
fprintf(fid,’rightRail.TrackBridgeInterface,Bridge.LongGirders\n’);
fprintf(fid,’*End assembly\n’);

%%%Contact pair
fprintf(fid,’*Surface interaction,name=TrainTrackSurfaceInteraction\n1\n’);
% fprintf(fid,’*Friction,anisotropic\n0.,1e4\n’);
fprintf(fid,’*Friction\n0.,\n’);
fprintf(fid,’*Surface behavior,no separation\n’);
fprintf(fid,’*Contact pair,type=node to surface
,interaction=TrainTrackSurfaceInteraction\n’);
for n=1:length(TrainM(:,1))

fprintf(fid,’AssemblyBridge.leftRail.RailSurf
,assemblyBridge.leftSurf%i.Wheel\n’,n);
fprintf(fid,’AssemblyBridge.rightRail.RailSurf
,assemblyBridge.rightSurf%i.Wheel\n’,n);

end
%%%End contact pair

fprintf(fid,’*Step,name=ApplyGravity,inc=10000\n’);
fprintf(fid,’*Static\n’);
fprintf(fid,’%f, %f, %f, %f\n’,1,30,1e-5,30);
fprintf(fid,’*Dload\n’);
fprintf(fid,’,GRAV,9.82,0,-1,0\n’);
fprintf(fid,’*Boundary,type=displacement\n’);
fprintf(fid,’AssemblyBridge.BCFixed,Encastre\n’);
fprintf(fid,’AssemblyBridge.BC1,1\n’);
fprintf(fid,’AssemblyBridge.BC2,2\n’);
fprintf(fid,’AssemblyBridge.BC3,3\n’);
fprintf(fid,’AssemblyBridge.BC4,4\n’);
fprintf(fid,’AssemblyBridge.BCROT,1\n’);
fprintf(fid,’AssemblyBridge.BCROT,3\n’);
fprintf(fid,’AssemblyBridge.BCROT,4\n’);
fprintf(fid,’AssemblyBridge.BCROT,5\n’);
fprintf(fid,’AssemblyBridge.BCROT,6\n’);
fprintf(fid,’*End step\n’);
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fprintf(fid,’*Step,name=MoveTrain,inc=10000\n’);
fprintf(fid,’*Dynamic\n’);
fprintf(fid,’%f, %f, %f, %f\n’,1e-2,(LT+LB)/v_Train,1e-5,1e-2);
fprintf(fid,’*Output,history,frequency=1\n’);
fprintf(fid,’*Node output
,nset=AssemblyBridge.Bridge.OutputMidnode\nUT,AT\n’);
fprintf(fid,’*Node output
,nset=AssemblyBridge.Bridge.Output3rdPoint\nUT,AT\n’);
fprintf(fid,’*Element output
, elset=AssemblyBridge.Bridge.OutputSpotS\n\nS\n’);
fprintf(fid,’*Boundary,op=new,type=displacement\n’);
fprintf(fid,’AssemblyBridge.BCFixed,Encastre\n’);
fprintf(fid,’AssemblyBridge.BC1,1\n’);
fprintf(fid,’AssemblyBridge.BC2,2\n’);
fprintf(fid,’AssemblyBridge.BC3,3\n’);
fprintf(fid,’AssemblyBridge.BC4,4\n’);
fprintf(fid,’AssemblyBridge.BCROT,4\n’);
fprintf(fid,’AssemblyBridge.BCROT,5\n’);
fprintf(fid,’AssemblyBridge.BCROT,6\n’);
fprintf(fid,’*Boundary,op=new,type=velocity\n’);
fprintf(fid,’AssemblyBridge.BCROT,1,1,%f\n’,v_Train);
fprintf(fid,’*End step\n’);

system(sprintf(’abaqus job=%s interactive cpus=8’,jobName),’-echo’);
fclose(’all’);

end
end

C.4 Function generatePartTrack
function generatePartTrack(fid,partName,LeftRight,LB,LT...
,CC_sleepers,CC_rail,kpad,ksleep,...

kbal,cpad,csleep,cbal,msleep,mbal,Nrail)
% This script generates a part with "partName" in file with fileID "fid"
% "fid" has to be open before script is run.
% LeftRight ~ ’Left’/’Right’ whether the rail is the left or right one.
% LB ~ length of bridge
% LT ~ length of train
% CC_sleepers ~ CC sleepers
% kpad ~ stiffness of pad between sleepers and rail
% ksleep ~ stiffness of sleeper
% kbal ~ stiffness of ballast
% cpad ~ damping for pad
% csleep ~ damping for sleeper
% cbal ~ damping for ballast
% msleep ~ mass of sleeper
% mbal ~ mass of ballast
% NR ~ number of elements on rail between sleepers.
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UIC60_A=60.21/7850; %m^2
UIC60_I11=3038.30e-8; %m^4
UIC60_I12=0; %m^4
UIC60_I22=512.30e-8; %m^4
UIC60_J=UIC60_I11+UIC60_I22;

if strcmp(LeftRight,’Left’)
bridgeZ=-abs(CC_rail/2-0.9);

elseif strcmp(LeftRight,’Right’)
bridgeZ=abs(CC_rail/2-0.9);

else
disp(’The option LeftRight has to be either "Left" or "Right"\n’)

end

x0Bridge=(LB-floor(LB/CC_sleepers)*CC_sleepers)/2;
LPrePostRail=ceil((LT)/CC_sleepers)*CC_sleepers+CC_sleepers-x0Bridge;
x_nodesRail=-LPrePostRail:CC_sleepers:(LPrePostRail+LB);
x_nodesRailExtra=-LPrePostRail:CC_sleepers/2:(LPrePostRail+LB);
[~,ia]=setdiff(int16(x_nodesRailExtra*10),int16(x_nodesRail*10));
x_nodesRailExtra=x_nodesRailExtra(ia);
y_nodesRailBridge=[0 -0.221 -(0.221+0.500)];
nodeBridgeStart=find(x_nodesRail>0.01,1);
nodeBridgeEnd=find(x_nodesRail>(LB-CC_sleepers),1);
nsetPreBridge=1:1:nodeBridgeStart-1;
nsetBridge=nodeBridgeStart:1:nodeBridgeEnd;
nsetPostBridge=nodeBridgeEnd+1:1:length(x_nodesRail);
fprintf(fid,’*Part,name=%s\n’,partName);
fprintf(fid,’*Node,nset=nodesBridge\n’);
for m=1:3

for n=1:length(nsetBridge)
if m<3

fprintf(fid,’%i, %f, %f, %f\n’,m*1000+n...
,x_nodesRail(nsetBridge(n)),y_nodesRailBridge(m),0);

else
fprintf(fid,’%i, %f, %f, %f\n’,m*1000+n...

,x_nodesRail(nsetBridge(n)),y_nodesRailBridge(m),bridgeZ);
end

end
end
nsetExtra=1000001:1:(1000000+length(x_nodesRailExtra));
fprintf(fid,’*Node,nset=nodesRailExtra\n’);
for n=1:length(nsetExtra)

fprintf(fid,’%i, %f, %f, %f\n’,nsetExtra(n),x_nodesRailExtra(n),0,0);
end

fprintf(fid,’*Nset,nset=BridgeContactNodes,generate\n%i,%i,1\n’...
,3001,3000+length(nsetBridge));

fprintf(fid,’*Node,nset=nodesPreBridge\n’);
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for m=1:4
for n=1:length(nsetPreBridge)

fprintf(fid,’%i, %f, %f, %f\n’,m*10000+n...
,x_nodesRail(nsetPreBridge(n)),-(m-1)*0.1,0);

end
end

fprintf(fid,’*Node,nset=nodesPostBridge\n’);
for m=1:4

for n=1:length(nsetPostBridge)
fprintf(fid,’%i, %f, %f, %f\n’,m*100000+n...

,x_nodesRail(nsetPostBridge(n)),-(m-1)*0.1,0);
end

end
fprintf(fid,’*Nset,nset=Rail,generate\n%i,%i,1\n%i,%i,1\n%i,%i,1\n’...

,1001,1000+length(nsetBridge),10001,10000+length(nsetPreBridge)...
,100001,100000+length(nsetPreBridge));

%
fprintf(fid,’*Nset,nset=BCFixed,generate\n%i,%i,1\n%i,%i,1\n’...

,40001,40000+length(nsetPreBridge)...
,400001,400000+length(nsetPostBridge));

fprintf(fid,’*Nset,nset=BC1\n1001\n’);
fprintf(fid,’*Nset,nset=BC4\nRail\n’);
n_els=0;
nodesetRail=[10001:1:10000+length(nsetPreBridge) ...

1001:1:1000+length(nsetBridge) 100001:1:100000+length(nsetPostBridge)];
A=[nodesetRail nsetExtra];
B=[x_nodesRail x_nodesRailExtra];
[B,ic]=sort(B);
A=A(ic);
% Rail elements
fprintf(fid,’*Element,type=B33,elset=Rail\n’);
for n=1:length(A)-1

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,A(n),A(n+1));

end
% Spring elements
fprintf(fid,’*Element,type=Spring2,elset=Kpad\n’);
for n=1:length(nsetPreBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,10000+n,20000+n);

end
for n=1:length(nsetBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,1000+n,2000+n);

end
for n=1:length(nsetPostBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,100000+n,200000+n);

end
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fprintf(fid,’*Element,type=Spring2,elset=Ksleep\n’);
for n=1:length(nsetPreBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,20000+n,30000+n);

end
for n=1:length(nsetBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,2000+n,3000+n);

end
for n=1:length(nsetPostBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,200000+n,300000+n);

end
fprintf(fid,’*Element,type=Spring2,elset=Kbal\n’);
for n=1:length(nsetPreBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,30000+n,40000+n);

end
for n=1:length(nsetPostBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,300000+n,400000+n);

end
% Damper elements.
fprintf(fid,’*Element,type=Dashpot2,elset=Cpad\n’);
for n=1:length(nsetPreBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,10000+n,20000+n);

end
for n=1:length(nsetBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,1000+n,2000+n);

end
for n=1:length(nsetPostBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,100000+n,200000+n);

end
fprintf(fid,’*Element,type=Dashpot2,elset=Csleep\n’);
for n=1:length(nsetPreBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,20000+n,30000+n);

end
for n=1:length(nsetBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,2000+n,3000+n);

end
for n=1:length(nsetPostBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,200000+n,300000+n);

end
fprintf(fid,’*Element,type=Dashpot2,elset=Cbal\n’);
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for n=1:length(nsetPreBridge)
n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,30000+n,40000+n);

end
for n=1:length(nsetPostBridge)

n_els=n_els+1;
fprintf(fid,’%i, %i, %i\n’,n_els,300000+n,400000+n);

end
fprintf(fid,’*Element,type=mass,elset=Msleep\n’);
for n=1:length(nsetPreBridge)

n_els=n_els+1;
fprintf(fid,’%i,%i\n’,n_els,20000+n);

end
for n=1:length(nsetBridge)

n_els=n_els+1;
fprintf(fid,’%i,%i\n’,n_els,2000+n);

end
for n=1:length(nsetPostBridge)

n_els=n_els+1;
fprintf(fid,’%i,%i\n’,n_els,200000+n);

end
fprintf(fid,’*Element,type=mass,elset=Mbal\n’);
for n=1:length(nsetPreBridge)

n_els=n_els+1;
fprintf(fid,’%i,%i\n’,n_els,30000+n);

end
for n=1:length(nsetPostBridge)

n_els=n_els+1;
fprintf(fid,’%i,%i\n’,n_els,300000+n);

end

fprintf(fid,’*Beam General Section, elset=Rail
,poisson=0.33,density=7850.,section=GENERAL\n’);
fprintf(fid,’%f, %f, %f, %f, %f\n’,UIC60_A,UIC60_I11,UIC60_I12,UIC60_I22,UIC60_J);
fprintf(fid,’0.,0.,-1\n’);
fprintf(fid,’%f, %f\n’,2.1e+11,8.1e+10);
fprintf(fid,’*Spring,elset=Kpad\n2,2\n%f\n’,kpad);
fprintf(fid,’*Spring,elset=Ksleep\n2,2\n%f\n’,ksleep);
fprintf(fid,’*Spring,elset=Kbal\n2,2\n%f\n’,kbal);
fprintf(fid,’*Dashpot,elset=Cpad\n2,2\n%f\n’,cpad);
fprintf(fid,’*Dashpot,elset=Csleep\n2,2\n%f\n’,csleep);
fprintf(fid,’*Dashpot,elset=Cbal\n2,2\n%f\n’,cbal);
fprintf(fid,’*Mass,elset=Msleep\n%f\n’,msleep);
fprintf(fid,’*Mass,elset=Mbal\n%f\n’,mbal);
fprintf(fid,’*Equation\n’);
% SET pM to pM=[1 3 4 5 6] to get fully functional rails!!
pM=[1 2 3 4 5 6];
% pM=[1 3 4 5 6];
for n=1:length(nsetPreBridge)

for m=2:3
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for p=pM
fprintf(fid,’2\n%i,%i,-1,%i,%i,1\n’,m*10000+n,p...

,40000+n,p);
end

end
end
for n=1:length(nsetPostBridge)

for m=2:3
for p=pM
fprintf(fid,’2\n%i,%i,-1,%i,%i,1\n’,m*100000+n,p...

,400000+n,p);
end

end
end
for n=1:length(nsetBridge)

for m=2:2
for p=pM
fprintf(fid,’2\n%i,%i,-1,%i,%i,1\n’,m*1000+n,p...

,3000+n,p);
end

end
end
% %%% Constrain railnodes
pM=[1 2 3];
% pM=[1 3];

for n=1:length(nsetPreBridge)
for m=1

for p=pM
fprintf(fid,’2\n%i,%i,-1,%i,%i,1\n’,m*10000+n,p...

,40000+n,p);
end

end
end
for n=1:length(nsetPostBridge)

for m=1
for p=pM
fprintf(fid,’2\n%i,%i,-1,%i,%i,1\n’,m*100000+n,p...

,400000+n,p);
end

end
end

pM=[2 3];
% pM=[3];
for n=1:length(nsetBridge)

for m=1
for p=pM
fprintf(fid,’2\n%i,%i,-1,%i,%i,1\n’,m*1000+n,p...

,3000+n,p);
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end
end

end
fprintf(fid,’*Surface,name=RailSurf,type=element\nRail\n’);
fprintf(fid,’*Surface,name=TrackBridgeInterface,type=node\nBridgeContactNodes,1\n’);
fprintf(fid,’*End part\n’);

C.5 Function generatePartSurfMS
function generatePartSurfMS(fid,partName)
% This script generates a part with "partName" in file with fileID "fid"
% "fid" has to be open before script is run.
% Mwa ~ mass of the wagon.
% Mwh ~ mass of one wheel.
% K ~ stiffness of spring in MS model.
% C ~ viscous damping coeff in MS model.

h1=0.2;
h2=0.1;
h3=0.2;

fprintf(fid,’*Part,name=%s\n’,partName);
fprintf(fid,’*Node,nset=allNodes\n’);
fprintf(fid,’1, %f,%f,%f\n’,-h1/2,-h2,h3/2);
fprintf(fid,’2, %f,%f,%f\n’,h1/2,-h2,h3/2);
fprintf(fid,’3, %f,%f,%f\n’,h1/2,-h2,-h3/2);
fprintf(fid,’4, %f,%f,%f\n’,-h1/2,-h2,-h3/2);
fprintf(fid,’5, %f,0,%f\n’,h1/2,0);
fprintf(fid,’6, %f,0,%f\n’,-h1/2,0);
fprintf(fid,’*Nset,nset=BCROT\n1\n’);
fprintf(fid,’*Nset,nset=connectNode\n1\n’);
fprintf(fid,’*Element,type=R3D4,elset=Wheel\n1, 1,2,5,6\n2, 6,5,3,4\n’);
fprintf(fid,’*Rigid body,elset=Wheel,ref node=1\n’);
fprintf(fid,’*Surface,name=Wheel,type=element\nWheel,SNEG\n’);
fprintf(fid,’*End part\n’);

C.6 Function generatePartMS
function generatePartMS(fid,partName,Mwa,Mwh,K,C)
% This script generates a part with "partName" in file with fileID "fid"
% "fid" has to be open before script is run.
% Mwa ~ mass of the wagon.
% Mwh ~ mass of one wheel.
% K ~ stiffness of spring in MS model.
% C ~ viscous damping coeff in MS model.

fprintf(fid,’*Part,name=%s\n’,partName);
fprintf(fid,’*Node,nset=allNodes\n’);
fprintf(fid,’1, 0,0,0\n’);
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fprintf(fid,’2, 0,1,0\n’);
fprintf(fid,’*Nset,nset=connectNode\n1\n’);
fprintf(fid,’*Element,type=mass,elset=massWheel\n1, 1\n’);
fprintf(fid,’*Element,type=mass,elset=massWagon\n2, 2\n’);
fprintf(fid,’*Mass,elset=massWheel\n%f\n’,Mwh);
fprintf(fid,’*Mass,elset=massWagon\n%f\n’,Mwa);
fprintf(fid,’*Element,type=springA,elset=spring\n3, 1,2\n’);
fprintf(fid,’*Spring,elset=spring\n\n%f\n’,K);
fprintf(fid,’*Element,type=dashpotA,elset=dashpot\n4, 1,2\n’);
fprintf(fid,’*Dashpot,elset=dashpot\n\n%f\n’,C);
fprintf(fid,’*Equation\n’);
for n=[1 3 4 5 6]

fprintf(fid,’2\n 2,%i,-1, 1,%i,1\n’,n,n);
end
fprintf(fid,’*End part\n’);
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