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Abstract

Since their discovery in the late 1800s, liquid crystals have become an im-
portant part of the technology of the modern world. As a consequence the
study of anisotropic liquids in general, and liquid crystals in particular, has
grown into a large interdisciplinary field involving physics, mathematics,
chemistry and biology to name a few.

In a series of papers we consider numerical solution of the evolution of
the director, a vector valued field giving the local average orientation of the
long axis of molecules in nematic liquid crystals. The flow field is assumed
to be stationary throughout this work. We consider both the free elastic
dynamics of the director as well as the case with applied electric fields on a
finite domain.

We study the dynamics of the 1D Fréedericksz transition, where an
applied electric field forces reorientation in the director field. The director
is assumed strongly anchored and the boundaries. Herein, we study the
role of inertia and dissipation on the time evolution of the director field
during the reorientation. In particular, we show through simulations that
inertia will introduce standing waves that might effect transition time of
the reorientation, but only for very small time scales or extremely high
molecular inertia.

The Fréedericksz transition is also numerically studied with weak bound-
ary anchoring. For this problem it has been shown analytically that there
exists a hierarchy of meta-stable equilibrium configurations. This is in sharp
contrast to the strongly anchored case, where the equilibrium is globally well
defined. We derive an implicit numerical scheme for this problem and show
the well-posedness of the discrete equation system. The method can be
used for the fully nonlinear model with coupled electric field. Through sim-
ulations we show that the director can transition into different meta-stable
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states given different small perturbations to the initial data.
The numerical solution of variational wave equations describing the elas-

tic dynamics of nematic liquid crystals is considered in both 1D and 2D.
Using energy respecting Runge–Kutta Discontinuous Galerkin methods we
show that numerical solutions that either conserve or dissipate a discrete
version of the energy can be obtained by efficient time marching. The dissi-
pative scheme uses a dissipative up-winding at the cell interfaces combined
with a shock-capturing method.

Finally, we consider the application of nonintrusive sampling methods
for uncertainty quantification for the elastic problem with uncertain Frank
constants. The multi-level Monte Carlo (MLMC) method has been success-
fully applied to systems of hyperbolic conservation laws, but its applicability
to other nonlinear problems is unclear. We show that MLMC is 5-10 times
more efficient in approximating the mean compared to regular Monte Carlo
sampling, when applied to variational wave equations in both 1D and 2D.
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4.7 The Fréedericksz cell with weak anchoring . . . . . . . . . . . 50

Bibliography 53

II Research articles 59

5 Paper A: The role of inertia and dissipation 61

6 Paper B: The dynamics of the weak Fréedericksz transition 83
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Chapter 1
Introduction to liquid crystals

The classical view in the physical sciences describes three basic states of
matter: gas, liquid and solid. By varying pressure and temperature, a
phase transition can be induced between any of these. However, it turns out
that this picture is not entirely accurate for all substances. Certain organic
compounds have intermediate phases, often referred to as mesophases, with
properties in between those of a liquid and those of a solid. Consequently,
a substance in any of these phases is called a liquid crystal.

The essential features of liquid crystals can be understood by considering
which aspects of liquids and solids they inherit. In general, the solid state
is characterized by strongly bound atoms in a rigid configuration. The
geometry can be completely irregular, like in the case of glass, or in the
form of an ordered lattice as is the case for diamonds and metals. The
latter case is often referred to as a crystalline configuration and involves
ordering in both the position and orientation of the constituent molecules.
On the other hand, the identifying property of a liquid is that its molecules
are free to flow. Here no correlation exists between the position of the center
of gravity of different molecules, apart from the average particle density.

As its name suggests, a liquid crystal flows like a liquid while inheriting
some crystalline properties of the solid phase. In practice, the type of or-
dering in liquid crystals can vary greatly, depending on the geometric and
physical properties of their molecules. For something to be defined as a
liquid crystal, it has to exhibit fluid-like properties in at least one spatial
dimension while having some crystalline anisotropy on the molecular level
[13].

The liquid crystal literature is extensive, owing to many decades of ex-
perimental and theoretical interdisciplinary research. An exhaustive liter-
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4 Introduction to liquid crystals

ature survey will not be given here, but a few essential sources should be
mentioned. The books of Collings [11, 10] serve as excellent introductions to
this vast topic both from a historical and a technical perspective. Kelker’s
survey [34] gives a comprehensive and detailed account of the history of
liquid crystals. De Gennes and Prost [13] have written what has become a
classical reference on the physics and modeling of liquid crystals. Other ex-
cellent sources include the books of Chandrasekhar [9] and Blinov [3]. The
book of Virga [58] is a rigorous account of the mathematical framework of
modern liquid crystal theory. Stewart’s recent book [56] is an accessible and
comprehensive introduction to the mathematical modeling of liquid crystals.

1.1 A brief history of liquid crystals

Liquid crystals were observed by several scientists in the mid to late nine-
teenth century. However, the discovery of liquid crystals is usually at-
tributed to the Austrian botanist Friedrich Reinitzer in 1881 [10]. While
studying the role of cholesterol derivatives in plants, Reinitzer described a
substance he was studying as having two melting points. While heating a
sample of solid cholesteryl benzoate he noticed that at 145.5 ◦C it melts into
a cloudy liquid. When raising the temperature further he noticed a second
phase transition occurring at 178.5 ◦C, leaving the sample as a clear liquid.

Two decades after his initial discovery, Reinitzer mentioned his obser-
vations in a letter to the German physicist Otto Lehmann. This initial
correspondence proved very fruitful, and it prompted the systematic study
of liquid crystals by Lehmann using precise instruments for studying mate-
rials using polarized light. It is Lehmann that eventually coined the term
“liquid crystal” (“Flüssige Krystalle” in German).

Today we know that the substance studied by Reinitzer, cholesteryl ben-
zoate, belongs to an important sub-group of liquid crystals called cholesteric
(or chiral) liquid crystals. Lehmann continued his work on liquid crystals
and eventually experimented on what is now known as nematic liquid crys-
tals, a class of particular importance in modern applications. It would take
decades for Lehmann’s ideas about liquid crystals to become part of the
mainstream theory. Meanwhile, several established scientists would oppose
the concept of a fourth state of matter and offer alternative explanations
for Reinitzer and Lehmann’s observations.

From the beginning of the 20th century, Daniel Vörlander’s group at
the University of Halle continued the experimentation on liquid crystals.
Together with his coworkers Vörlander was able to put out an enormous
volume of results. They were able to identify essential features of materials



1.2. The nematic mesophase 5

that have a liquid crystal phase and synthesized a large number of the liquid
crystals known today.

The 1930s saw the first major developments in the theoretical work on
liquid crystals. In particular, the Swedish physicist Carl Wilhelm Oseen
[51] developed a continuum theory for the elastic properties of nematic liq-
uid crystals. This enabled the mathematical modeling of the ordering in
liquid crystals for the first time, which in turn made theoretical explana-
tions for experimental observations possible. In the same period, Zocher
[65] pioneered the theoretical research into the interaction between nematic
liquid crystals and electromagnetic fields. This would later pave the way
for applications in liquid crystal displays.

In the time following the Second World War, the group of the British
chemist George William Gray worked on synthesizing a large number of
liquid crystals. Gray went on to publish one of the classic texts in the
understanding of which substances will exhibit a liquid crystal state [25].

Oseen’s pioneering work on elasticity in nematics was continued in the
1950s by the British physicist Frederick Charles Frank [19]. Today the
Oseen–Frank elastic continuum theory is a cornerstone in the theoretical
description of nematic liquid crystal.

In 1962 scientists of the Radio Corporation of America labs demon-
strated for the first time that the optical properties of a liquid crystal layer
can be manipulated by applying an electric field. This discovery laid the
groundwork for the first liquid crystal display (LCD), arguably the most
important application of liquid crystals in the modern world. Applications
in consumer devices such as LCDs prompted research into substances that
remain in the liquid crystal mesophase at room temperatures. MBBA and
5CB are examples of liquid crystals that are stable at room temperatures;
they were both synthesized during this era because of their specific temper-
ature profile.

In 1991, the crucial role of liquid crystal theory and the theory of com-
plex fluids was recognized by the Nobel prize in physics being awarded to
Pierre-Gilles de Gennes. The prize was awarded in part for de Gennes’ ma-
jor contribution to the general continuum theory for nematic liquid crystals,
the Landau–de Gennes theory [45, 13].

1.2 The nematic mesophase

One of the most studied liquid crystal mesophases is the nematic phase.
Usually, nematic liquid crystals consist of elongated organic molecules. Be-
cause of the geometry, the long axis of neighboring molecules will tend to
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align. This causes macroscopic order in the molecular orientation, as illus-
trated in Figure 1.1, while the centers of mass as free to flow like a liquid.

Figure 1.1: Illustration of the orientational ordering in nematic liquid crys-
tals. The elongated molecules tend to align their long axes while flowing
like a liquid.

The origin of the word nematic is the Greek word for thread. This comes
from the thread-like patterns (discliniations) often observed in nematic liq-
uid crystals. Disclinations can be seen as singularities in the director field,
the average local orientation of the long axes.

The first nematic liquid crystal, p-azoxyanisole (PAA), was synthesized
in the late 1800s by Gattermann and Ritschke [22]. PAA is in the nematic
phase between 118 ◦C and 136 ◦C and was one of the liquid crystals exten-
sively studied by Lehmann in his early work.

One of the most important applications of nematics is in display de-
vices. This has prompted a great interest in liquid crystals that have a
stable nematic phase at room temperature. First synthezised by Kelker
and Scheurle [35], the liquid crystal 4-methoxybenzylidene-4-butylabiline
(MBAA) was the first discovered liquid crystal with a nematic phase a
room temperature. The liquid crystal 4-pentyl-4-cyanobiphenyl (5CB) was
designed specifically for use in liquid crystal display devices and is in the
nematic state for temperatures from 18 ◦C to 35 ◦C. Shown in Figure 1.2,
the long axis of 5CB is about 20 Å and the short axis about 5 Å.

1.3 The cholesteric mesophase

In the cholesteric phase, the geometry of the molecules causes a helical
configuration of the long axes. In the ground state, the director (average
orientation of the long axis) will twist around a common axis. The charac-
teristic length scale of the twist (the pitch) is usually orders of magnitude
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H11C5 CN5Å

20Å

4-Pentyl-4-cyanobiphenyl (5CB)

Figure 1.2: Schematic representation of the nematic liquid crystal 4-pentyl-
4-cyanobiphenyl (designated 5CB).

larger than the size of the molecules.

Cholesteric liquid crystals were the first liquid crystals to be discovered
by Reinitzer in the late 1800s. The name has a historic origin; even though
cholesterol itself is not a cholesteric liquid crystal, many cholesterol deriva-
tives are. The inaccuracy of this naming convention has caused many to
refer to this as the chiral phase.

1.4 The smectic mesophase

In the smectic liquid crystal phase, the molecules form layers. Within the
layers, the molecules behave much like in nematic liquid crystals, having a
preferred orientation among a common local director. Smectic liquid crys-
tals is an example of a liquid with both positional and orientational molecu-
lar ordering. There is positional ordering along the direction perpendicular
to the layer planes, while inside the layers the molecules are free to flow like
a liquid.

As illustrated in Figure 1.3, it is common to denote different types of
smectic liquid crystals depending on how the molecules are oriented within
the layers. In particular, if the average molecular orientation is orthogonal
to the layer plane it is defined as a smectic A type material. If the orientation
is at an angle compared to the normal, we refer to it as a smectic C liquid
crystal.

It should be noted that different types of mesophases can in some cases
be observed in the same material. An often-seen picture is the following: at
low temperatures a material will be solid. When the sample is heated up it
will undergo a phase transition into the smectic liquid crystal phase. When
it is heated further, it then transitions into the nematic phase. Lastly, at
high temperatures, the liquid crystal will be in an isotropic liquid state with
no positional or orientation ordering.
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(a) Smectic A (b) Smectic C

Figure 1.3: Illustration of the smectic mesophase. For the smectic A phase
(left) the molecules align in layers with the orientation normal to the layer
interface. In the smectic C phase (right) the average orientation is tilted.

1.5 Application: Display devices

One of the best known applications of liquid crystals is in display devices.
Since the discovery of the basic technology in the 1960s and the commer-
cialization in the 1990s, liquid crystal displays (LCDs) have since surpassed
the traditional cathode ray tube (CRT) technology for the use in televisions.
Benefits of LCDs include low power consumption, compact design and safe
disposal. This has helped make LCDs omnipresent in the modern world
and they can be found in everything from computer monitors to cell phones
and calculators.

An LCD screen is composed of a matrix of pixels. Many different varia-
tions on this technology exist, but the basic principle behind a single pixel
in an LCD is illustrated in Figure 1.4. A liquid crystal cell is placed be-
tween two glass plates fitted with electrodes. The liquid crystal used has a
natural twist in the molecular ordering. Furthermore, the glass substrate is
designed so that the molecular orientation near the back plate is vertical,
and the length of the cell is designed specifically to allow the molecules to
twist 90 ◦C before hitting the front plate. A vertical polarizer is placed in
the back of the cell and a horizontal polarizer is placed in the front.

In its ON state there is no voltage applied to the electrodes and the
configuration is a shown in the top part of Figure 1.4. Unpolarized light
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ON state V = 0

Incoming light

OFF state V > 0

Incoming light

Figure 1.4: Schematic illustration of a TFT LCD display. A liquid crystal
cell with twisted molecular orientation is placed between crossed polarizers.
The polarization of the light is twisted by the liquid crystal, allowing it to
pass through the second polarizer. A voltage difference can be applied to
the cell in order to straighten out the orientation of the molecules, thus
stopping light from passing through.
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enters from the back and gets vertically polarized before entering the liquid
crystal. The twist of the molecular orientation acts to twist the polarization
of the light by 90 ◦C over the length of the cell. The light then passes
through the horizontal polarizer in the front and goes on to hit the front of
the display.

In the OFF state a voltage difference is applied over the electrodes. This
induces an electric field in the cell which, because of the dielectric anisotropy
of the molecules, will induce a torque favoring the alignment along a common
axis. For sufficiently high voltages these torques will overcome the natural
twist in the liquid crystal, as shown in the bottom part of Figure 1.4. In
this case the light will remain vertically polarized when passing through the
liquid crystal and will be stopped by the horizontal polarizer.



Chapter 2
Static continuum theory for
director fields in nematics

In an ideal nematic liquid crystal, all molecules will be aligned along a com-
mon direction enforced by bounding surfaces or external fields. However,
in many practical situations there will be a competition between different
external influences on the liquid crystal cell, potentially leading to nontriv-
ial configurations. In addition, thermal excitations means that individual
molecules will not be perfectly aligned, which introduces the concept of
different degrees of orientation.

Since the typical correlation length in nematic liquid crystals is of the
order of µm while the molecular size is measured in nm, a continuum de-
scription is often adopted. Herein, the orientational state of a nematic liquid
crystal can be represented by two objects, as illustrated in Figure 2.1: the
first one is the director field, a vector n(r) of unit length, giving the average
molecular orientation in some small ball B. The second is the order param-
eter S(r) giving the local degree of orientation, often given in terms of the
second Legendre polynomial as

S = 〈P2(cos(θ))〉 =

〈
3 cos2(θ)− 1

2

〉
. (2.1)

Here the brackets indicate the weighted average

〈g(θ)〉 =

∫

B
g(θ)f(θ) dV, (2.2)

where f(θ) is the statistical distribution of the molecular angles θ. Special
cases of the order parameters are:

11



12 Static continuum theory for director fields in nematics

• S = 1: Perfect alignment along the director

• S = 0: No orientation (isotropic)

• S = -1/2: Perfect alignment orthogonal to the director

The order parameter can be defined in terms of higher order Legendre poly-
nomials in cases where the higher accuracy is needed.

It should be noted that the picture above only applies to uniaxial nemat-
ics. Certain nematic liquid crystals are biaxial, i.e. consisting of molecules
having a shape that must be described by two anisotropic axes. The most
general continuum theory for nematics thus requires two vector valued quan-
tities n1 and n2, as well as two scalar order parameters S1 and S2 [45]. The
common general framework for describing nematic liquid crystals is the so-
called Landau–de Gennes theory. Herein, the continuum state is given by
the tensor

Q = S1(n1 ⊗ n1) + S2(n2 ⊗ n2)− 1

3
I(S1 + S2).

The tensor Q is symmetric and has, due to the last term, trace zero.
Q-tensor theory has been widely successful in part for its ability to describe
defects and phase transitions in nematics. It should also be mentioned that
MacMillan [41] in his thesis developed a similar theory for biaxial nematics.
However, this topic is outside the scope of this text as we will focus on
models for uniaxial molecules.

The degree of which the Oseen–Frank picture can be seen as is a special
case of the more general Landau–de Gennes theory is a nontrivial issue that
has received some attention lately [42]. In some simplified geometries, the
equilibrium solutions of the two models coincide. However, counterexamples
can be constructed for which this is not the case [1]. This is due to the fact
that the director picture does not implicitly respect the physical symmetry
of the states n and −n being equivalent.

A common simplifying assumption in the modeling of nematic liquid
crystals is to assert a constant order parameter S. Indeed, this is the
paradigm that will be considered presently. It should be mentioned that
theory exists including effects of variable degree of molecular orientation.
The modeling of elastics given variable orientation was introduced by Er-
icksen [17] in 1991 as a proposed tool for describing defects in nematics
(often referred to as disclinations). For a detailed account of the theory of
nematics of variable orientation, Virga’s book [58] is an excellent starting
point.
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n

θi

Figure 2.1: The continuum description of a uniaxial nematic liquid crys-
tal involves a director field n and a local degree of orientation along this
direction, given by a scalar S = 〈P2(cos(θ))〉.

2.1 The Oseen–Frank elastic energy

In a nematic liquid crystal, inter-molecular forces will favor the alignment
of the director field along a common direction. The free energy WOF (per
volume) associated with distortions from a constant alignment is given by
the Oseen–Frank functional. It is based on the following constraints:

• WOF should vanish for undistorted director fields (∇n = 0)

• Since the states n and −n are physically indistinguishable, the energy
must be an even function of n

• Rotationally invariance prohibits terms linear in ∇n

• Assuming moderate distortions, only terms of order (∇n)2 are in-
cluded.

The derivation of the general form of the free energyWOF(n,∇n) satis-
fying the constraints above is a cumbersome exercise which is omitted from
this text. An interested reader is referred to the book of de Gennes [13,
Ch. 3] for a detailed discussion. The final form of the Oseen–Frank energy,
given by

WOF(n,∇n) =
1

2
α1|n× (∇× n)|2 +

1

2
α2(∇ · n)2 +

1

2
α3(n · (∇× n))2

+
1

2
(α2 + α4)∇ · ((∇n)n− (∇ · n)n), (2.3)

is a result of decades of discussions dating back to the early work by Os-
een [51] and Zocher [65] and later modifications by Frank [19]. The material
constants α1, α2 and α3 correspond to the three basic types of elastic distor-
tions of the director field, bend, splay and twist, respectively, as illustrated
in Figure 2.2. Finding stable equilibrium configurations with respect to this
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energy has been a key topic in the static continuum theory of nematics. The
existence and partial regularity of minimizers to the Oseen–Frank energy
functional (2.3) was established by Hardt et al. [27] in their now classic
paper.

Bend Splay Twist

Figure 2.2: The three basic types of distortions that go into the Oseen–Frank
elastic energy (2.3).

The last term of (2.3) is a saddle-splay term and is in the form of a pure
divergence. Therefore, by using the divergence theorem, it can be written as
a surface integral. This term will not contribute to the static theory when
using fixed (anchored) director fields at the boundaries. Also, the term will
vanish identically in certain commonly studied cases. One example is the
bend-splay geometry in 1D,

n(x) = (cos(ψ(x)), sin(ψ(x)), 0). (2.4)

As a result of this, the term is often ignored in the literature. Indeed, this
will also be the case for the remainder of this text.

A common additional assumption seen in the literature is the one-
constant approximation

α1 = α2 = α3 = α4. (2.5)

The assertion of equality of the different elastic constants is made purely
out of mathematical convenience. For common nematic liquid crystals the
values of these material constants can differ significantly, as seen in Table
2.1. However, the simplified form of (2.3) resulting from the one-constant
approximation can significantly ease the analysis of nematics. Therefore,
(2.5) is almost ubiquitous in the theoretical analysis of nematics.
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Elastic constants (10−12 N)

MBBA (25 ◦C) 5CB (26 ◦C) PAA (122 ◦C)
[26] [14] [40]

α1 6.0 6.2 6.9
α2 3.8 3.9 3.8
α3 7.5 8.2 11.9

Table 2.1: Experimentally measured values for the elastic constants appear-
ing in the Oseen–Frank energy (2.3) representing bend (α1), splay (α2) and
twist (α3).

2.2 Electric fields

The interaction between electromagnetic fields and the director field has
historically been central both in the experimental study of nematic liquid
crystals as well as in applications. In general, applying an electric field to
a liquid crystal sample will produce temporary dipoles moments. The size
of these will, because of the anisotropic nature of the molecules, depend on
the orientation of the director field.

The polarization P (electric dipole moment per unit volume) is in a
dielectric proportional with the electric field E and given by

P = ε0χE,

where ε0 ≈ 8.854× 10−12 F m−1 is the permittivity of free space. Nematic
liquid crystals are anisotropic, so the constant of proportionality is a sus-
ceptibility tensor and the polarization will in general not be parallel to the
applied field. In a coordinate system defined by the director, i.e. by letting
n = (1, 0, 0), we can write (for uniaxial nematics)

χE =



χE,‖ 0 0

0 χE,⊥ 0
0 0 χE,⊥


 ,

where χE,‖ and χE,⊥ are the electric susceptibilities parallel and perpendic-
ular to the long axis of the molecules, respectively.

The electric displacement D is defined as

D = ε0E + P . (2.6)

In the case of linear polarization, it is common to combine the terms of the
displacement into

D = ε0εE (2.7)
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using the dielectric tensor

ε =



ε‖ 0 0

0 ε⊥ 0
0 0 ε⊥


 =




1 + χE,‖ 0 0

0 1 + χE,⊥ 0
0 0 1 + χE,⊥


 , (2.8)

where ε‖ and ε⊥ are the relative (dimensionless) electric susceptibilities
parallel and perpendicular to molecular long axis, respectively. In terms of
the relative susceptibilities, we can write (2.7) in the form

D = ε0ε⊥E + ε0εa(n ·E)n, (2.9)

where εa = ε‖−ε⊥ is the dielectric anisotropy. The displacement can always
be described locally in this way by choosing the appropriate coordinate
system, hence the form (2.9) is the general form most commonly used in
modeling.

The bulk energy density associated with the electric field is given by

WE = −1

2
D ·E = −1

2
ε0

(
ε⊥|E|2 + εa(n ·E)2

)
. (2.10)

The negative sign in (2.10) can be a source of confusion for readers used
to the standard energy density of dielectrics used in electrostatics. The
reason for this is that (2.10) comes from considering the energy required to
maintain a constant voltage difference across the liquid crystal. For a more
detailed derivation an interested reader can turn to Collings and Hird’s
excellent book [11, Ch. 10].

The first (isotropic) term on the right hand side of (2.10) does not
depend on the director configuration if the electric field is assumed constant.
In this case the isotropic term will not affect the equilibrium equation for
the director field and is often ignored in the literature. In the current work,
both terms in the electric energy are kept both for completeness and due
to the fact that the electric field will be coupled to the director through
Maxwell’s equations.

Some basic quantitative features of the model are immediately apparent
from (2.10), see Figure 2.3. In particular, for εa > 0, the alignment of
the director field along the electric field (n ·E = 1) is energetically favored.
Conversely, a negative electric anisotropy will cause alignment perpendicular
to the electric field. The dielectric constants for some common nematic
liquid crystals can be found in Table 2.2.

Electric fields are known to couple strongly with the director field in a
nematic liquid crystal. In general, the configuration of an electric field in
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εa = ε‖ − ε⊥ < 0

E

V0
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-
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εa = ε‖ − ε⊥ > 0

E

Figure 2.3: Illustration of the orientation of liquid crystal molecules under
the influence of an electric field. The orientation of the long axis will be
perpendicular or parallel to the applied field, depending on the sign of the
dielectric anisotropy.

Dielectric constants (dimensionless)

MBBA (25 ◦C) 5CB (26 ◦C) PAA (122 ◦C)
[55] [40] [55]

ε‖ 4.7 18.5 5.538

ε⊥ 5.4 7 5.705
εa -0.7 11.5 -0.167

Table 2.2: Experimentally measured values for the dielectric constants ap-
pearing in the dielectric tensor (2.8) for some common liquid crystals.
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the presence of a dielectric is given Maxwell’s equations. In the absence of
free charge they are given by

∇ ·D = 0 and ∇×E = 0. (2.11)

The equations (2.11) must be solved together with the equilibrium equations
for the director field to give the correct configuration. However, in many
simplified settings the assumption is made that εa � 1 allowing for the
solution of Maxwell’s equation in a vacuum. In this case, the electric field
E is treated as a constant in the nematic energy (2.10).

2.3 Magnetic fields

The theory on applied magnetic fields in nematics is similar to that for
electric fields described in Section 2.2. An external magnetic field H will
induce a magnetic moment M (per unit volume) given as

M = χMH. (2.12)

Like for electric fields, the magnetization will depend on the orientation of
the director field n. In the coordinate system of the director, the magnetic
susceptibility tensor χM can be written as

χM =



χM,‖ 0 0

0 χM,⊥ 0
0 0 χM,⊥


 ,

for uniaxial nematics. In the above, χM,‖ and χM,⊥ are the magnetic suscep-
tibilities parallel and perpendicular to the molecular long axis, respectively.
A straightforward calculation then allows for the magnetization M to be
divided into an isotropic and an anisotropic term, written as

M = χM,⊥H + χM,a(n ·H)n, (2.13)

where χM,a = χM,‖ − χM,⊥].
The magnetic induction B in the presence of magnetization is defined

as
B = µ0(H +M),

where µ0 = 4π × 10−7 H m−1 is the vacuum permeability. By inserting for
the magnetization (2.13), and introducing the quantities

µ‖ = 1 + χM,‖, µ⊥ = 1 + χM,⊥ (2.14)
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we obtain

B = µ0µ⊥H + µ0µa(n ·H)n, (2.15)

where µa = µ‖ − µ⊥.

The bulk magnetic energy density is, analogously as in Section 2.2, given
by

WM = −1

2
B ·H = −1

2
µ0µ⊥|H|2 −

1

2
µ0µa(n ·H)2. (2.16)

Comparing (2.16) to (2.10) reveals a striking resemblance in the theoretical
treatment of electric and magnetic fields. Also in this case it is common
to disregard the term in (2.16) that is independent of n, as it does not
influence the equilibrium configuration of the director. However, it might
be kept in cases where the total energy dependence on the applied electric
field is of interest. A simple inspection of (2.16) reveals that for µa > 0, the
alignment of the director along the magnetic field is energetically preferred.
Conversely, for negative magnetic anisotropy, the orthogonal configuration
is preferred.

The configuration of a magnetic field is in general given by Maxwell’s
equations, similarly to the situation for electric fields. However, unlike elec-
tric fields, magnetic fields are known to be virtually unaffected by the pres-
ence of a liquid crystal [56]. Therefore, it is usually seen as sufficient to
consider the vacuum equations

∇ ·H = 0 and ∇×H = 0.

The solution of these will in many simple geometries be a constant magnetic
field.

2.4 Weak and strong boundary anchoring

Surface effects are essential in the understanding of the basic physics of
nematics as well as in applications such as optical devices. The bounding
plates in a liquid crystal cell can be treated chemically or mechanically in
such a way that a specific molecular orientation is energetically preferred
near the boundary. In the modeling, the simplifying assumption is often
made that the director is fixed a priori to some set value at the boundary.
This is often referred to as strong anchoring.

In most optical liquid crystal devices the surface anchoring is sufficiently
strong so that the assumption of a fixed director at the boundary is appropri-
ate [8]. However, in cases with e.g. strong applied fields the electromagnetic
torques might be able to compete with, or even overcome, the boundary
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anchoring. Rapini and Papoular [53] are credited with being the first to in-
troduce a weak anchoring in the modeling of nematic liquid crystals. They
proposed adding a penalty term to the free energy in the form

WB = −1

2
w(n · nA)2, (2.17)

where nA is some preferred orientation at the boundary and w is the an-
choring strength. Rapini and Papoular’s form (2.17) has since been widely
used in modeling and its validity indicated by experiments [46].

2.5 Equilibrium equations

Given the free energy associated with elastic, electric, magnetic and bound-
ary effects, the static equilibrium configuration for the director field can be
obtained using the calculus of variations. Variational techniques have been
central in the theoretical treatment of liquid liquid crystals, and a vast and
comprehensive literature exists, including advanced topics such as defects
and variable domains. Herein, a good starting point is Virga’s book [58],
which gives a rigorous and in-depth account of variational theories applied
to liquid crystals. In this section the discussion is limited to a brief summary
of the principles needed in the scope of this thesis.

Consider a liquid crystal on a regular domain Ω with boundary denoted
by ∂Ω. Summarizing the results from the preceding sections, we can write
the total free energy as the functional

W [n] =

∫

Ω
(WOF +WE +WM) dx+

∫

∂Ω
WB dS. (2.18)

For strong anchoring the boundary energy can be set to zero and replaced
by an a priori assumption n = n0 on ∂Ω.

Following the principles of classical mechanics, we look for an equilib-
rium solution for the director field n by looking for stationary points of the
energy (2.18) [58]. This is done by considering variations of the director
configurations in the form

nε = n+ εu (2.19)

for some smooth vector u and some small ε ∈ [−ε0, ε0]. For strong anchoring,
u is chosen in such a way that nε fulfills that boundary condition for any ε.
For a given u, nε then gives a path of configurations parameterized by ε.

We say that a solution n is a stationary (equilibrium) configuration with
regard to the energy (2.18) if the first variation vanishes for all u, i.e.

∂

∂ε
W [n+ εu]

∣∣∣
ε=0

= 0. (2.20)
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We note that given strong anchoring, any term in the bulk energy density
that can be written in the form of a pure divergence will not affect the
equilibrium solution. An example of such a term is the saddle-splay term
in the Oseen–Frank energy (2.3). Such a term is often referred to as a null
Lagrangian.
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Chapter 3
The Fréedericksz transition

The interaction between electromagnetic fields and the director field is an
essential part of liquid crystal theory and a key component in applications.
Herein, the Fréedericksz transition is the classical example. In its simplest
form, it can be seen as a competition between elastic torques resisting dis-
tortions in the director and dielectric torques aligning the director with the
electric field, see Figure 3.1. Consider a one-dimensional liquid crystal cell
of finite length with strong anchoring at the boundary fixing the director
parallel to the surfaces. A voltage difference is applied across the cell, re-
sulting in a torque aligning the director with the electric field in the bulk
of the liquid crystal. For low applied voltages, and hence low electric fields,
the homogeneous unperturbed state remains a stable configuration. How-
ever, when the electric field exceeds a specific threshold, E > EF, there is
an abrupt reconfiguration.

The Fréedericksz transition can be observed experimentally due to the
optical birefringence of liquid crystals. This was first done in 1927 by
Fréedericksz1 [20] by using applied magnetic fields. In particular, he ob-
served an inverse relationship between the critical field strength and the
sample thickness. Soon after, Zocher [65] was able to formulate a theory for
the transition which predicted the same behavior.

The Fréedericksz transition is omnipresent in the liquid crystal litera-
ture. It is a simple example which illustrates essential features of the inter-
action between a liquid crystal and an external field. At the same time, the
mechanism of the abrupt transition is precisely what allows for switch-on
and switch-off in display devices. Also, the phenomenon allows for the ex-

1The brilliant Russian physicist Vsevolod Fréedericksz’ last name is also often written
Frederiks.

23
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V0

E < EF

V0

EF < E

ψ

Figure 3.1: Illustration of the Fréedericksz transition. Left: For a low
electric field the anchoring forces dominate and the director field is in a
homogeneous (ψ = π/2) configuration. Right: For electric fields above
the Fréedericksz threshold but below the saturation threshold there is a
competition between electric and anchoring forces leading to a nontrivial
configuration.

perimental determination of certain material constants, since they directly
influence the value of the critical field.

3.1 The bend-splay geometry in 1D

In the following we consider a liquid crystal cell in one spatial dimension
of length L. For simplicity, we will focus the discussion of the Fréedericksz
transition on the bend-splay geometry, i.e. we consider the director

n(x) = (cos(ψ(x)), sin(ψ(x)), 0), (3.1)

where ψ(x) is the angle between the director and the x-axis. We assume
the director is strongly anchored at the boundary with ψ(0) = ψ(L) = π/2.

In the bend-splay geometry the elastic energy, obtained by integrating
the Oseen–Frank energy density (2.3) over the domain, becomes

WOF[ψ] =
1

2

∫ L

0
c2(ψ)ψ2

x dx, (3.2)

where we have introduced the function

c(ψ) =

√
α1 cos2(ψ) + α2 sin2(ψ). (3.3)
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As the name suggests, in the bend-splay geometry the contribution from
the twist term is absent from the elastic energy.

We assume that the applied electric field E is constant through the bulk
of the cell. The electric contribution to the bulk energy is then obtained
from the integral of the energy density (2.10) over the cell, yielding

WE[ψ] = −1

2
ε0E

2

∫ L

0

(
ε⊥ + εa cos2(ψ)

)
dx. (3.4)

The equilibrium configuration ψ(x) is then given as a minimizer of the
energy functional

W [ψ] =
1

2

∫ L

0

(
c2(ψ)ψ2

x − ε0E
2
(
ε⊥ + εa cos2(ψ)

))
dx, (3.5)

under the constraint of the strong anchoring boundary condition.

The calculus of variations can be used to derive an equation for the
director configuration. Looking for stationary points in the energy (3.5), we
calculate

∂

∂ε

∣∣∣
ε=0

W [ψ + εφ] =
∂

∂ε

∣∣∣
ε=0

1

2

∫ L

0

(
c2(ψ + εφ)(ψx + εφx)2

− ε0E
2
(
ε⊥ + εa cos2(ψ + εφ)

))
dx

=
1

2

∫ L

0

(
2c(ψ + εφ)c′(ψ + εφ)(ψx + εφ)2φ

+ 2c2(ψ + εφ)(ψx + εφx)φx

+ ε0εaE
2 sin(2(ψ + εφ))φ

)
dx
∣∣∣
ε=0

=
1

2

∫ L

0

(
−2c(ψ)(c(ψ)ψx)x + ε0εaE

2 sin(2ψ)
)
φ dx = 0,

(3.6)
where we have used integration by parts and the strong anchoring at the
boundary. If (3.6) is to hold for all φ, the director angle needs to satisfy

c(ψ) (c(ψ)ψx)x −
1

2
ε0εaE

2 sin(2ψ) = 0, x ∈ (0, L). (3.7)

A dimensionless version of (3.7) can be derived by introducing the ex-
trapolation length

ξ =
1

E

√
α1

ε0εa
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as well as the dimensionless quantities h = L/ξ and

c̃(ψ) =
1√
α1
c(ψ) =

√
cos2(ψ) +

α2

α1
sin2(ψ).

The equilibrium equation (3.7) can then be written in the form

c̃(ψ) (c̃(ψ)ψX)X −
1

2
h2 sin(2ψ) = 0, X ∈ (0, 1), (3.8)

where X = x/L is the unit-scaled length.

3.2 Critical threshold for transition

The threshold for which the transition occurs can be approximated using
linear analysis. We introduce θ = π/2 − ψ and linearize the energy (3.5)
around θ = 0 to obtain

W =

∫ L

0

(
α2θ

2
x − ε0εaE

2θ2
)

dx, (3.9)

where constant terms have been ignored. Now, following the approach of
de Gennes [13, Ch. 3], we consider strongly anchored perturbations in the
form of the Fourier series

θ(x) =
∑

k

δk sin

(
kπx

L

)
. (3.10)

By inserting (3.10) into (3.9) and integrating over the length of the domain,
we arrive at

W =
1

2

∑

k

δk

(
α2
π2

2L
− ε0εa

2k
E2L

)
. (3.11)

For the unperturbed state to remain stable, the change in energy associated
with the modes (3.10) must be positive. We can therefore conclude that for

α2
π2

2L
>
ε0εa

2
E2L (3.12)

the homogeneous state is linearly stable. Hence, the critical threshold for
the Fréedericksz transition is approximated as

EF =
π

L

(
α2

ε0εa

) 1
2

. (3.13)
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Note the inverse relationship between the critical field strength and the cell
length L, as originally observed by Fréedericksz. In terms of the dimension-
less parameter h we obtain the critical value

hF =

√
α1

α2
π. (3.14)

The nature of this abrupt transition is illustrated in Figure 3.2. Us-
ing the one-constant approximation, equation (3.8) was solved numerically
for different values of h. Indeed, for h < hF = π, the solution is a ho-
mogeneous (ψ = π/2) director configuration. When the field strength h
is increased beyond the Fréedericksz threshold hF the solution becomes a
nontrivial symmetric profile with π/2 ≤ ψ ≤ π.
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h=5

h=7

h=9
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h

1.5

2.0
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3.0
ψ
(0
.5

)

hF

Figure 3.2: Solutions of (3.8) using α2/α1 = 1, illustrating the Fréedericksz
transition with strong anchoring. For h < hF = π the equilibrium solution
is a constant state ψ = π/2. When h > hF there is an abrupt reorientation
into a nontrivial even-symmetric state.

3.3 Weak anchoring

Introducing weak boundary anchoring, as described in Section 2.4, will sig-
nificantly affect the modeling of the Fréedericksz transition. Crucially, hav-
ing a finite energy penalty for deviations from the preferred direction allows
for the electric torques to overcome the anchoring torques. Therefore, in the
weak Fréedericksz transition, there are two critical points when changing the
electric field strength, as illustrated in Figure 3.3. For sufficiently low ap-
plied fields, similar as in the standard case, the stable configuration is an
unperturbed homogeneous state with the director aligned with the easy di-
rection at the boundary. When the field is increased beyond the Fréedericksz
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threshold, the equilibrium configuration represents a nontrivial balance be-
tween the different torques involved. If the field is increased further, it will
eventually reach the saturation threshold. Here, electric torques are large
enough to overcome the boundary anchoring, and the stable configuration
is homeotropic.

V0

E < EF

V0

EF < E < ES

ψ

V0

ES < E

Figure 3.3: Illustration of the weak Fréedericksz transition. Left: For a low
electric field the anchoring forces dominate and the director field is in a
homogeneous (ψ = π/2) configuration. Middle: For electric fields above the
Fréedericksz threshold but below the saturation threshold there is a compe-
tition between electric and anchoring forces leading to a nontrivial configu-
ration. Right: For strong electric fields (over the saturation threshold) the
electric forces overcome the anchoring and the configuration is homeotropic
(ψ = 0).

Adding boundary energy terms, the total energy for the weak Fréedericksz
cell in the bend-splay geometry becomes

W [ψ] =
1

2

∫ L

0

(
c2(ψ)ψ2

x − ε0E
2
(
ε⊥ + εa cos2(ψ)

))
dx

+
w

2
cos2(ψ) (|x=0+|x=L) , (3.15)

where w is the anchoring strength. Using the same technique as before, we
look for equilibrium solutions of (3.15). Calculating the variation, this time
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with smooth test functions φ that are nonzero at the boundaries, we obtain

∂

∂ε

∣∣∣
ε=0

W [ψ + εφ] =
∂

∂ε

∣∣∣
ε=0

1

2

∫ L

0

(
c2(ψ + εφ)(ψx + εφx)2

− ε0E
2
(
ε⊥ + εa cos2(ψ + εφ)

))
dx

+
w

2
cos2(ψ + εφ) (|x=0+|x=L)

=
1

2

∫ L

0

(
2c(ψ + εφ)c′(ψ + εφ)(ψx + εφ)2φ

+ 2c2(ψ + εφ)(ψx + εφx)φx

+ ε0εaE
2 sin(2(ψ + εφ))φ

)
dx
∣∣∣
ε=0

− w

2
sin (2(ψ + εφ))φ (|x=0+|x=L)

∣∣∣
ε=0

=
1

2

∫ L

0

(
−2c(ψ)(c(ψ)ψx)x + ε0εaE

2 sin(2ψ)
)
φ dx

+
(
c2(ψ(L))ψx(L)− w

2
sin(2ψ(L))

)
φ(L)

+
(
−c2(ψ(0))ψx(0)− w

2
sin(2ψ(0))

)
φ(0) = 0.

(3.16)

If (3.16) is to hold for all test functions φ, the director angle must satisfy
the equation

c(ψ) (c(ψ)ψx)x −
1

2
ε0εaE

2 sin(2ψ) = 0, x ∈ (0, L), (3.17)

with boundary conditions

ψx +
1

2

w

c2(ψ)
sin(2ψ) = 0, x = 0, (3.18a)

ψx −
1

2

w

c2(ψ)
sin(2ψ) = 0, x = L. (3.18b)

We can derive a dimensionless version of this model. By introducing the
extrapolation length

` =
α1

w

and the number β = L
` , we can rewrite the equations (3.17)–(3.18) in the

form

c̃(ψ)(c̃(ψ)ψX)X −
1

2
h2 sin(2ψ) = 0, X ∈ (0, 1) , (3.19)
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with boundary conditions

ψX +
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 0, (3.20a)

ψX −
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 1. (3.20b)

The critical transition thresholds for the electric field strength will de-
pend on the anchoring [58, Ch. 5]. As before, the critical field for the
Fréedericksz transition can be analyzed by introducing θ = π/2 − ψ and
linearizing the energy (3.15) around θ = 0. In terms of the dimensionless
parameters h and β we obtain

W [θ] =

∫ 1

0

(
α2

α1
θ2
X − h2θ2

)
dX +

β

2
θ2
(∣∣
X=0

+
∣∣
X=1

)
, (3.21)

where constant terms have been ignored. The Euler–Lagrange equation
corresponding to the energy (3.21) is

θXX +
α1

α2
h2θ = 0, X ∈ (0, 1), (3.22)

with boundary conditions

θX +
α1

α2
βθ = 0, X = {0, 1}. (3.23)

An even (w.r.t. the cell centre) solution to (3.22) is given by

θ(X) = θ0 cos

(√
α1

α2
h

(
X − 1

2

))
. (3.24)

By inserting (3.24) into the boundary equation (3.23) we obtain the con-
straint

h =

√
α1

α2
β cot

(√
α1

α2

h

2

)
. (3.25)

We refer to the smallest h that satisfies (3.25) as the Fréedericksz threshold
hF.

Similarly, the saturation threshold hS can be obtained by linearizing the
energy around ψ = 0. Here we obtain

W [ψ] =

∫ 1

0

(
ψ2
X + h2ψ2

)
dX − β

2
ψ2
(∣∣
X=0

+
∣∣
X=1

)
, (3.26)
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with the corresponding equilibrium equation

ψXX − h2ψ = 0, X ∈ (0, 1), (3.27)

with boundary equation

ψX − βψ = 0, X = {0, 1}. (3.28)

An even solution to the bulk equation (3.27) is given by

ψ(X) = ψ0 cosh

(
h

(
X − 1

2

))
. (3.29)

As before, we insert the solution (3.29) into the boundary equation (3.28)
to obtain the saturation threshold [47, 58, 48]

hS = β coth

(
hS

2

)
.

Figure 3.4 shows both critical fields for the weak Fréedericksz transition
for different values of the anchoring strengths β. Note that in the strongly
anchored limit β →∞ the critical field hF = π

√
α1/α2 is recovered.
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Figure 3.4: The Fréedericksz threshold hF and the saturation threshold hS

for the weakly anchored case. The Fréedericksz threshold is shown for the
one-constant approximation (α2/α1 = 1) and α2/α1 = 1± 0.4.

The question of well-posedness for the weak Fréedericksz transition is
more complicated than in the case for strong anchoring. Only recently,
Costa et al. [12] were able to prove the long conjectured existence of a unique
solution ψ ∈ [0, π/2] to the boundary value problem (3.19)–(3.20), where
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the one-constant approximation was assumed. However, in a recent experi-
mental work by Kumar and coworkers [37], director states of odd parity with
regard to the cell center were observed. This interesting result prompted
a theoretical investigation by Bevilacqua and Napoli [2] where the unique-
ness of equilibrium states was investigated on the full interval ψ ∈ [0, π]. By
calculating exact solutions in terms of Jacobi elliptic functions, a technique
dating back to the classic work of Nehring [48], they were able to show the
existence of a hierarchy of stable excited director states. These states come
in addition to the even symmetric ground states described by the classic
theory. Moreover, the energy difference between the ground state and the
first excited state is relatively small for certain h and β. This indicates that
odd configurations might play an important role in the weak Fréedericksz
transition. This issue will be explored numerically in Paper B.



Chapter 4
The dynamic problem in the
bend-splay geometry

So far we have only considered static equilibrium solutions for the director
configuration. In what follows, we will apply similar energy variational
principles to formulate a dynamic theory. We will restrict ourselves to the
bend-splay geometry, as described in Section 3.1. Specifically, we assume a
director field in the form

n(r, t) = (cos(ψ(r, t)), sin(ψ(r, t), 0), (4.1)

where ψ(r, t) denotes the angle between the first coordinate axis and the
director. In this case, the twist term of the Oseen–Frank elastic energy (2.3)
will vanish identically.

The classic macroscopic description of the dynamic flow of liquid crystals
was developed by Ericksen [15, 16] in the early 1960s and later completed
by Leslie [38, 39] and Parodi [52]. In their full form, the Leslie–Ericksen
equations are a set of balance laws and constitutive relations for mass and
momentum, involving both the fluid flow and the director field. Starting
with the experimental verifications by Fishers and Fredrickson [18], this
model has since been firmly established as the accepted theory for liquid
crystal flow.

In this work we will assume a stationary flow field and focus on the dy-
namics of the director. This warrants a simpler approach than the frame-
work of Leslie and Ericksen. Using principles of classical mechanics, we use
an energy variational approach to derive the governing equations for the di-
rector angle ψ. The relationship between the governing equations derived by

33



34 The dynamic problem in the bend-splay geometry

this method and Leslie–Ericksen theory will be briefly discussed in Section
4.3

4.1 The dynamic energy balance

In order to formulate a dynamic theory, the energy equation (2.18) must be
appended with the effect of inertia and dissipation. If the liquid crystal is
assumed to consist of rigid rods, the kinetic energy density associated with
rotational moment of inertia is given by

K =
1

2
σ|nt|2 =

1

2
σψ2

t , (4.2)

where σ > 0 is an inertial material constant. As an example, for the nematic
liquid crystal MBAA, experiments indicate σ ∼ 10−13 kg m−1 [21].

Liquid crystals are in general viscous, resulting in a loss of macroscopic
energy (entropy production) due to shear stresses, similar to what is seen in
isotropic fluids. However, in the case of liquid crystals the viscous stresses
will in general depend on the relative orientation of the director field. In
addition, as discussed by e.g. de Gennes [13], there is entropy production as
a result of the rotation of the optical axis of the molecules relative to the
surrounding fluid. Under the present assumption of a stationary flow field,
only the latter effect comes into play. As explained by e.g. Stewart [56], this
dissipation per volume is proportional with the square of the rate of change
of the director, which under the assumption (4.1) is given by

D =
1

2
κ|nt|2 =

1

2
κψ2

t , (4.3)

where κ > 0 is a viscosity coefficient. The material constant κ can be
experimentally determined, and has been measured to be κ = 0.1093 Pa s
at T = 25 ◦C for MBAA and κ = 0.0777 Pa s at T = 26 ◦C for 5CB [36].

The full energy balance for the director field can now be assembled.
By including the contributions from the elasticity, electric fields, magnetic
fields and boundary anchoring discussed in Chapter 2, we assert the energy
balance equation

d

dt

(∫

Ω

(
1

2
σ|nt|2 +WOF +WE +WM

)
dx+

∫

∂Ω
WB dS

)

= −1

2
κ

∫

Ω
|nt|2 dx. (4.4)
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For typical nematic liquid crystals, dissipative effects will dominate over
inertial forces. It is for this reason the inertial energy is often ignored all
together when modeling nematics [21, 57]. However, as was noted early
by Leslie [39], the effect of molecular rotational inertia might influence the
dynamics when the director is subject to large accelerations. Speaking in
general terms, dissipation is a long-time effect while inertia is more im-
portant on smaller time scales. This suggests that the inclusion of inertia
might be warranted for example in the modeling of liquid crystals under
high-frequency mechanical oscillations [59] and liquid crystal acoustics [33].
Also, as discussed by Yun [60], the effect is also measurable when a liquid
crystal is under the influence of a quickly oscillating electromagnetic field.
In the present discussion we will keep both the effect of inertial and dissi-
pation in the energy balance for completeness. Paper A will be devoted to
an in-depth numerical analysis of the influence of these on the dynamics of
the Fréedericksz transition.

4.2 Variational principles

Variational principles are a cornerstone of the classic static theory of nematic
liquid crystals [58]. Similar techniques can be applied to obtain governing
equations for the evolution of the director field, given the energy balance
equation (4.4).

Hamilton’s principle of classical mechanics describes the motion of a
conservative system [24]. Let the system be described by n generalized
coordinates q1, · · · , qn with a Lagrangian

L = L(q1, · · · , qn, q1,t, · · · , qn,t, t)

depending explicitly only on the coordinates qi, their time derivatives qi,t
and time t. Hamilton’s principle states that the evolution of the system
between times t0 and t1 is given by the path in configuration space for
which the time integral of the Lagrangian is stationary. Specifically, the
mechanical system follows the path where

δ

∫ t1

t0

L(q1, · · · , qn, q1,t, · · · , qn,t, t) dt = 0, (4.5)

where δ denotes the first variation.

Example 1 (Variational wave equation) As an example we can con-
sider the evolution of a fully elastic (conservative) nematic liquid crystal on
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an infinite domain. Further, we disregard any coupling with electromagnetic
fields. Here, the degrees of freedom are the components of the director field
n and the Lagrangian is given by

L =

∫

R3

(
1

2
σ|nt|2 −WOF(n,∇n)

)
dx.

Using variations of the director field in the form

nε = n+ εu,

where u decays at infinity, we obtain

δ

∫ t1

t0

Ldt =
∂

∂ε

∣∣∣
ε=0

∫ t1

t0

∫

R3

(
1

2
σ (nt + εut) · (nt + εut)

−WOF(n+ εu,∇n+ ε∇u)

)
dx dt

=

∫ t1

t0

∫

R3

(
σ (nt + εut)ut −

∂WOF

∂n
u− ∂WOF

∂∇n ∇u
)

dx dt
∣∣∣
ε=0

=

∫ t1

t0

∫

R3

(
−σntt −

∂WOF

∂n
+∇ · ∂WOF

∂∇n

)
u dx dt = 0.

(4.6)
In the above, we used integration by parts together with the decaying director
at infinity to obtain the last equality. If (4.6) is to hold for any u, the
variational wave equation

σntt +
∂WOF

∂n
−∇ · ∂WOF

∂∇n = 0 (4.7)

must be satisfied in the whole domain. The equation (4.7) in the bend-splay
geometry will be discussed in the 1D and 2D case in Sections 4.4 and 4.5,
respectively.

Hamilton’s principle as described above gives the equations of motion
for a conservative system. In order to obtain evolution equations satisfying
the energy law (4.4) for κ > 0, a different approach has to be adopted. The
question of how to describe nonequilibrium dynamics of mechanical systems
is indeed an old one, and remains to some extent an active field of research
to this date. Here we consider a dissipative variational formulation based
on the principle of maximum entropy production. This approach can be
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traced back to Onsager’s early work on nonequilibrium dynamics [49, 50],
and comes in many different forms depending on the particular field in
question. Martyushev and Seleznev [43] gives an excellent review of the
use of this technique in the physical sciences. Maximov [44] shows how the
Lagrangian can be modified to account for the dissipation, allowing for a
similar formalism as in the conservative case. A common approach, which
we will use in this work, involves adding a “dissipative” force to the balance
equation given by the least action principle. This method has been used
by Hyon et al. [32] to described the dissipative dynamics of complex fluids,
and can be broken down into three steps:

1. Hamilton’s principle (4.5) is used to calculate the sum fc of the con-
servative forces

2. The “dissipative” forces fd are given by the variation

δ

∫ t1

t0

∫

R3

D dx dt = 0

3. The evolution equation given by the force balance

fc = fd

will then satisfy the dissipative energy law.

4.3 Relationship to the classic Leslie–Ericksen the-
ory

It is instructive to look at the relationship between the comprehensive
Leslie–Ericksen theory and the simplified mechanical principles used in this
text. Indeed, for consistency, the latter should follow from the former. The
classic Leslie–Ericksen equations for the dynamic incompressible flow a ne-
matic liquid crystals with constant density ρ are [56]:

Conservation of mass

∇ · u = 0 (4.8)

Conservation of linear momentum

ρu̇+ σn̈ · ∇n = ρF +G · ∇n+∇ · τ (4.9)
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Conservation of angular momentum

σn̈+ λn = G+ g̃ − ∂WOF

∂n
+∇ · ∂WOF

∂∇n (4.10)

Here a dot denotes the usual material derivative

ẇ := wt + u · ∇w.

In the above, we have the following variables and parameters:

• u ∈ R3: Velocity field of the liquid crystal flow

• F ∈ R3: Vector of external body forces

• G ∈ R3: Vector of generalized body forces

• λ: Lagrange multiplier corresponding to the constraint |n| = 1

• τ = −pI − ρ∂WOF
∂∇n ∇n+ τ̃ : Stress tensor

• p: Pressure of the liquid

• τ̃ ∈ R3 × R3: Viscous stress tensor

In order to define the viscous stress tensor t̃ and the vector g̃, we intro-
duce the rate of strain tensor and the vorticity tensor, given by

A =
1

2
(∇u+ (∇u)ᵀ) and Ω =

1

2
(∇u− (∇u)ᵀ) ,

respectively. Using these we define the co-rotational time flux

N = ṅ− Ωn,

observing that the constraint n ·n = 0 implies n ·N = 0. In terms of these
quantities, the viscous stress tensor is given by [56, Eq. (4.121)]

τ̃ = µ1 (nᵀAn)n⊗ n+ µ2N ⊗ n+ µ3n⊗N + µ4A

+ µ5An⊗ n+ µ6n⊗An, (4.11)

where µi, i ∈ 1, · · · , 6, are viscosity constants. There are several constraints
on the constants µi, including

γ1 := µ3 − µ2 ≥ 0
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due to the positivity of the dissipation function [56, Eqs. (4.91)–(4.95)]. In
addition Parodi [52] derived

γ2 := µ3 + µ2 = µ6 − µ5

from Onsager’s reciprocity relations. The vector g̃ is given by [56, Eq. (4.122)]

g̃ = −γ1N − γ2An.

In order to verify the consistency with Hamilton’s principle, we now
make the same assumptions as in Example 1 on page 35. Specifically we
disregard flow (u = 0), assume no external forces acting on the liquid crystal
(F = 0, G = 0), and assume vanishing viscosity

µi = 0, i = 1, · · · , 6.
The mass conservation (4.8) is then trivially satisfied, while the equations
for linear and angular momentum become

σntt · ∇n+∇ ·
(
pI + ρ

∂WOF

∂∇n ∇n
)

= 0 (4.12)

and

σntt + λn+
∂WOF

∂n
−∇ · ∂WOF

∂∇n = 0, (4.13)

respectively. Note that when disregarding flow, material derivatives turn
into regular partial derivatives. We see that apart from the term with the
Lagrange multiplier, which can usually be eliminated by adding or sub-
tracting the components of the equation, the simplified equation (4.13) is
precisely the variational wave equation (4.7) obtained through Hamilton’s
principle.

If we keep the assumption above, but also allow for nonzero viscosity,
the vector g̃ comes into play. The equation for the balance of angular
momentum (4.10) is in this case given by

σntt + λn+
∂WOF

∂n
−∇ · ∂WOF

∂∇n = −γ1nt. (4.14)

Again, a short calculation reveals that the extra term is precisely what
is given when applying the dissipative variational principle described in
Section 4.2. If κ = γ1 in (4.3) then

∂

∂ε

∣∣∣
ε=0

∫ t1

t0

∫

R3

1

2
γ1|nt + εut|2 dxdt =

∫ t1

t0

∫

R3

γ1ntut dxdt, (4.15)

which gives the “dissipative force”

fd = γ1nt.
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4.4 The 1D variational wave equation

A simplified model for the elastic dynamics in the bend-spay geometry can
be derived by making the following assumptions:

1. The director angle only depends on x and t:

ψ(r, t) = ψ(x, t)

2. There is no energy dissipation:

κ = 0

3. The domain is infinite:

Ω = R

In this case the action is

S[ψ] =
1

2

∫ t1

t0

∫

R

(
σψ2

t − c2(ψ)ψ2
x

)
dx dt, (4.16)

where again c(ψ) is given by (3.3) on page 24. Looking for stationary
solutions w.r.t. the action, using compactly supported φ, we obtain

∂

∂ε

∣∣∣
ε=0

S[ψ + εφ] =

∫ t1

t0

∫

R

(
σ(ψt + εφt)φt − c2(ψ + εφ)(ψx + εφx)φx

− c(ψ + εφ)c′(ψ + εφ)(ψx + εφx)φ
)

dx dt
∣∣
ε=0

=

∫ t1

t0

∫

R

(
σψtφt − c2(ψ)ψxφx − c(ψ)c′(ψ)ψxφ

)
dx dt

=

∫ t1

t0

∫

R

(
−σψtt + c2(ψ)ψxx + c(ψ)c′(ψ)ψ2

x

)
φ dx dt = 0.

(4.17)
If (4.17) is to hold for all φ then the director field must satisfy the variational
wave equation

σψtt − c(ψ) (c(ψ)ψx)x = 0. (4.18)

By multiplying (4.18) with ψt and integrating in space, we can easily verify
that sufficiently smooth solutions of (4.18) satisfy

d

dt

(∫

R
(σψ2

t + c2(ψ)ψ2
x)dx

)
= 0. (4.19)
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Since it was first introduced by Hunter and Saxton [54, 30], the Cauchy
problem (obtained by setting σ = 1 in (4.18))

ψtt − c(ψ) (c(ψ)ψx)x = 0, (x, t) ∈ R× [0, T ), (4.20a)

ψ(x, 0) = ψ0(x), x ∈ R, (4.20b)

ψt(x, 0) = ψ1(x), x ∈ R, (4.20c)

has been the subject of much study, due to its interesting mathematical
properties. It has been long established that solutions of (4.20) might ex-
hibit blow up in finite time [23], which means one has to consider solutions
in the weak sense:

Definition 1 Set ΠT = R× (0, T ). A function

ψ(t, x) ∈ L∞
(
[0, T ];W 1,p(R)

)
∩ C(ΠT ), ψt ∈ L∞ ([0, T ];Lp(R)) ,

for all p ∈ [1, 3 + q], where q is some positive constant, is a weak solution
of the initial value problem (4.20) if it satisfies:

1. For all test functions ϕ ∈ D(R× [0, T ))

∫ ∫

ΠT

(
ψtϕt − c2(ψ)ψxϕx − c(ψ)c′(ψ)(ψx)2ϕ

)
dx dt = 0.

2. ψ(·, t)→ ψ0 in C
(
[0, T ];L2(R)

)
as t→ 0+.

3. ψt(·, t)→ ψ1 as a distribution in ΠT when t→ 0+.

A key property of the variational wave equation (4.20) is the existence of
different classes of weak solutions. In particular, one can show the exis-
tence of both conservative and dissipative weak solutions with respect to
the energy

E(t) =

∫

R

(
ψ2
t + c2(ψ)ψ2

x

)
dx. (4.21)

A conservative solution means in this case a solution for which the energy
(4.21) stays constant for almost every time t ∈ R+. This ambiguity of
weak solutions is similar to the situation for the related Hunter–Saxton
equation [31] and Camassa–Holm equation [5, 6], and it makes the question
of well-posedness of the initial value problem particularly delicate.

There is a significant volume of research in the literature on weak solu-
tions to the Cauchy problem (4.20). Herein, the papers by Zhang and Zheng
[61, 62, 63, 64], Bressan and Zheng [7] and Holden and Raynaud [29] should
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all be mentioned. In [64], the authors show existence of a global weak solu-
tion using the method of Young measures for initial data ψ0 ∈ H1(R) and
ψ1 ∈ L2(R). The function c(ψ) is assumed to be smooth, bounded, positive
with derivative that is nonnegative and strictly positive on the initial data
ψ0. This means that the analysis in [61, 62, 63, 64] does not directly apply
to the case where c(ψ) is given by (3.3) on page 24.

A different approach was taken by Bressan and Zheng [7]. Here, they
rewrote the equation a set of variables for which the singularities disap-
peared. They show that for ψ0 absolutely continuous with (ψ0)x, ψ1 ∈
L2(R), the Cauchy problem (4.20) allows a global weak solution with the
following properties: the solution ψ is locally Lipschitz continuous and the
map t → ψ(t, ·) is continuously differentiable with values in Lploc(R) for
1 ≤ p < 2.

Holden and Raynaud [29] prove the existence of a global semigroup
for conservative solutions of (4.20), allowing for concentration of energy
density on sets of zero measure. Furthermore they also allow for initial data
ψ0, ψ1 that contain measures. The proof involves constructing the solution
by introducing new variables related to the characteristics, leading to a
characterization of singularities in the energy density. They also prove that
energy can only focus on a set of times of zero measure or at points where
c′(ψ) vanishes.

The uniqueness of weak solutions within the two different classes of
solutions has also proved challenging. In their recent paper, Bressan et
al. [4] were able to prove uniqueness of conservative solutions for a general
set of initial data ψ0 ∈ H1(R) and ψ1 ∈ L2(R). The uniqueness of dissipative
weak solutions to (4.20) remains an open problem.

It is common to study (4.20) by rewriting it as a system of first-order
equations. By introducing the Riemann invariants

R = ψt + c(ψ)ψx and S = ψt − c(ψ)ψx,

we obtain

Rt − c(ψ)Rx =
c′(ψ)

4c(ψ)

(
R2 − S2

)
, (4.22a)

St + c(ψ)Sx = − c
′(ψ)

4c(ψ)

(
R2 − S2

)
. (4.22b)

The equations (4.22) are similar to a system of conservation laws, but
with nonlinear source terms. Where the singularities of conservation laws
(shocks) comes from the crossing of characteristics, the blow-up mecha-
nism in (4.22) can be traced to its source terms. As discussed in detail
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by Glassey [23], one can have initial data for which the quadratic term on
the right hand side of (4.22a) causes R to blow up before c′(ψ) changes
sign, as long as S remains small. The same argument can be made when
interchanging the roles of R and S.

The system (4.22) is not a conservation law, and it can not be cast in a
conservative form. However, it can be written as

Rt − (c(ψ)R)x = −cx(ψ)

2
(R− S) , (4.23a)

St + (c(ψ)S)x = −cx(ψ)

2
(R− S) , (4.23b)

with a left-hand side like that of a conservation law. It is straightforward
to show that the a priori energy principle from which the variational wave
equation (4.20) was derived is inherited by the systems (4.22) and (4.23).
By multiplying (4.23a) by R and (4.23b) by S and adding them together
we obtain the conservation law

(
1

2

(
R2 + S2

))

t

−
(

1

2
c(ψ)

(
R2 − S2

))

x

= 0. (4.24)

If both functions R and S decay at infinity, the equation (4.24) can be
integrated in space to give

d

dt

(
1

2

∫

R

(
R2 + S2

)
dx

)
= 0. (4.25)

The numerical study of the initial-value problem (4.20) has so far not
received much attention. Glassey et al. [23] presented some numerical sim-
ulations using a simple dissipative scheme in order to emphasize some as-
pects of their analysis. A convergent dissipative finite difference scheme
was developed by Holden et al. [28]. Also, in their recent work, Holden and
Raynaud [29] derived a numerical scheme giving a conservative solution.
This scheme does however not involve time marching, and it requires the
solution to be calculated in all of space-time.

4.5 The 2D variational wave equation

We can derive a model for the elastic dynamics in the bend-splay geometry
in two spatial dimensions in a similar way as in Section 4.4. Spesifically, the
following assumptions are made:
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1. The director angle only depends on x, y and t:

ψ(r, t) = ψ(x, y, t)

2. There is no energy dissipation:

κ = 0

3. The domain is infinite:

Ω = R

Under the assumptions above, the Oseen–Frank energy density (2.3)
takes the form

W(ψ,ψx, ψy) =
1

2
c2(ψ)ψ2

x +
1

2
b2(ψ)ψ2

y + a(ψ)ψxψy,

which gives the action

S[ψ] =
1

2

∫ t1

t0

∫

R2

(
σψ2

tt − c2(ψ)ψ2
x − b2(ψ)ψ2

y − 2a(ψ)ψxψy
)

dx dy dt.

In the above, we have introduced the shorthands

a(ψ) =
α1 − α2

2
sin(2ψ),

b(ψ) =

√
α1 sin2(ψ) + α2 cos2(ψ),

in addition to (3.3) on page 24.

As before, the evolution equation of the conservative system is obtained
by finding a stationary solution w.r.t. the action. For the first variation we
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obtain

∂

∂ε

∣∣∣
ε=0

S[ψ + εφ] =

∫ t1

t0

∫

R2

(
σ(ψt + εφt)φt − c2(ψ + εφ)(ψx + εφx)φx

− c(ψ + εφ)c′(ψ + εφ)(ψx + εφx)2φ

− b2(ψ + εφ)(ψy + εφy)φy

− b(ψ + εφ)b′(ψ + εφ)(ψy + εφy)
2φ

− a′(ψ + εφ)ψxψyφ− a(ψ + εφ)(ψy + εφy)φx

− a(ψ + εφ)(ψx + εφx)φy

)
dx dy dt

∣∣
ε=0

=

∫ t1

t0

∫

R2

(
σψtφtφt − c2(ψ)ψxφx − c(ψ)c′(ψ)ψ2

xφ

− b2(ψ)ψyφy − b(ψ)b′(ψ)ψ2
yφ

− a′(ψ)ψxψyφ− a(ψ)ψyφx

− a(ψ)ψxφy

)
dx dy dt

∣∣
ε=0

= 0.

By assuming compactly supported test functions φ we can use integration
by parts to arrive at

∫ t1

t0

∫

R2

(
− σψtt + c(ψ) (c(ψ)ψx)x + b(ψ) (b(ψ)ψy)y

+ a′(ψ)ψxψy + 2a(ψ)ψxy

)
φ dx dy dt = 0.

(4.26)

If (4.26) is to hold for any φ, the director angle must satisfy the equation

σψtt− c(ψ) (c(ψ)ψx)x− b(ψ) (b(ψ)ψy)y−a′(ψ)ψxψy−2a(ψ)ψxy = 0 (4.27)

for (x, y) ∈ R2 and t ∈ R+.
The Cauchy problem (obtained from the scaling σ = 1 in (4.27))

ψtt − c(ψ) (c(ψ)ψx)x − b(ψ) (b(ψ)ψy)y − a′(ψ)ψxψy − 2a(ψ)ψxy = 0,

(x, y, t) ∈ R2 × [0, T ), (4.28a)

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ R2, (4.28b)

ψt(x, y, 0) = ψ1(x, y), (x, y) ∈ R2, (4.28c)

is far less studied than its one-dimensional counterpart (4.20). However, it
is clear that there is a close relationship between the models. Indeed, (4.20)
can be easily recovered from (4.28) for functions ψ(x, y, t) = ψ(x, t).
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By introducing the matrix

T (ψ) =

( √
α1 cos(ψ)

√
α1 sin(ψ)

−√α2 sin(ψ)
√
α2 cos(ψ)

)
,

we can write the equation (4.28a) in the more aesthetic form

ψtt − (T (ψ)∇) · (T (ψ)∇ψ) = 0. (4.29)

It is tempting to attempt to rewrite (4.28) in terms of Riemann invari-
ants, similarly as was done for (4.20). However, introducing the variables

P = ψt + c(ψ)ψx, Q = ψt − c(ψ)ψx,

R = ψt + b(ψ)ψt, S = ψt − b(ψ)ψy,

will not give a system of linearly independent equations. An alternative
formulation can be obtained by introducing the quantities

p = ψt,

v = cos(ψ)ψx + sin(ψ)ψy,

w = sin(ψ)ψx − cos(ψ)ψy.

Then, for smooth solutions, we see that

vt = cos(ψ)ψxt − sin(ψ)ψtψx + sin(ψ)ψyt + cos(ψ)ψtψy

= (cos(ψ)ψt)x − ψt(cos(ψ))x + (sin(ψ)ψt)y − ψt(sin(ψ))y

− ψt
(
sin(ψ)ψx − cos(ψ)ψy

)
,

and

wt = sin(ψ)ψxt + cos(ψ)ψtψx − cos(ψ)ψyt + sin(ψ)ψtψy

= (sin(ψ)ψt)x − ψt(sin(ψ))x − (cos(ψ)ψt)y + ψt(cos(ψ))y

+ ψt (cos(ψ)ψx + sin(ψ)ψy) .

Moreover, a straightforward calculation using equation (4.28a) reveals that

pt − (α1 − α2)
(
cos(ψ) sin(ψ)ψ2

x − cos2(ψ)ψxψy + sin2(ψ)ψxψy

− cos(ψ) sin(ψ)ψ2
y

)

= α1 (cos(ψ)(cos(ψ)ψx + sin(ψ)ψy))x
+ α1 (sin(ψ)(cos(ψ)ψx + sin(ψ)ψy))y

+ α2 (sin(ψ)(sin(ψ)ψx − cos(ψ)ψy))x
− α2 (cos(ψ)(sin(ψ)ψx − cos(ψ)ψy))y .
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Hence, for smooth solutions, equation (4.28a) is equivalent to the system

pt − α1(f(ψ)v)x − α1(g(ψ)v)y − α2(g(ψ)w)x + α2(f(ψ)w)y

− α1vw + α2vw = 0, (4.30a)

vt − (f(ψ)p)x + pf(ψ)x − (g(ψ)p)y + pg(ψ)y + pw = 0, (4.30b)

wt − (g(ψ)p)x + pg(ψ)x + (f(ψ)p)y − pf(ψ)y − pv = 0, (4.30c)

ψt = p, (4.30d)

where f(ψ) = cos(ψ), and g(ψ) = sin(ψ).
Similarly as for the 1D variational wave equation, the energy principle

for which the model was derived is inherited by the system (4.30). Indeed,
a straightforward calculation reveals that any smooth solution of (4.30)
satisfies the conservation law

(
p2 + α1 v

2 + α2w
2
)
t
+ 2 (α1 p f(u) v + α2 p g(u)w)x

+ 2 (α1 p g(u) v − α2 p f(u)w)y = 0. (4.31)

Consequently, if the functions p, v and w all decay at infinity, we can inte-
grate (4.31) in space to obtain

d

dt

(∫

R2

(
p2 + α1 v

2 + α2w
2
)

dx dy

)
= 0.

4.6 The Fréedericksz cell with strong anchoring

In the derivation of the models considered in Sections 4.4 and 4.5 an infinite
domain was assumed. Arguably, the evolution of director fields on a finite
domain while under the influence of electromagnetic fields is of great practi-
cal interest. As discussed in Chapter 3, the Fréedericksz transition is closely
related to the fundamental mechanism behind switch-on and switch-of in a
pixel of a liquid crystal display.

Using the same principles as in the preceding sections, we venture to
derive a simple model for the director on a finite domain under the influence
of an electric field. To that end, we make the following assumptions:

1. The director angle only depends on x and t:

ψ(r, t) = ψ(x, t)

2. The liquid crystal is restricted to a finite domain:

Ω = [0, L]
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3. An applied voltage difference V0 leads to an electric field

E = E(x, t)x̂

which is assumed to only have a component in the x-direction.

4. The director is assumed to be strongly anchored at the boundaries:

ψ(0, t) = ψ(L, t) =
π

2

We include both the effects of inertia and dissipation, hence the evolution
equation is obtained by applying the dissipative variational principle as
described in Section 4.2.

First, we consider the balance of conservative forces. It is convenient to
denote the electric field as the gradient of a scalar electric potential, i.e.

E = −Ux.

Due to Gauss’ law, the potential must satisfy

(d(ψ)Ux)x = 0, (4.32)

where we have introduced the shorthand

d(ψ) = ε0

(
ε⊥ + εa cos2(ψ)

)
.

Using the electric free energy density (2.10) on page 16, the action is in this
case

S[ψ] =
1

2

∫ t1

t0

∫ L

0

(
σψ2

t − c2(ψ)ψ2
x −

1

2
d(ψ)U2

x

)
dx dt. (4.33)

By considering variations φ that are zero at the boundary (due to strong
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anchoring) we obtain

∂

∂ε

∣∣∣
ε=0

S[ψ + εφ] =

∫ t1

t0

∫ L

0

(
σ(ψt + εφt)φt − c2(ψ + εφ)(ψx + εφx)φx

− c(ψ + εφ)c′(ψ + εφ)(ψx + εφx)φ

+
1

2
d′(ψ + εφ)U2

xφ
)

dx dt
∣∣
ε=0

=

∫ t1

t0

∫ L

0

(
σψtφt − c2(ψ)ψxφx − c(ψ)c′(ψ)ψxφ

+
1

2
d′(ψ)U2

xφ
)

dx dt

=

∫ t1

t0

∫ L

0

(
−σψtt + c(ψ)(c(ψ)ψx)x +

1

2
d′(ψ)U2

x

)
φ dx dt

= 0.
(4.34)

If this is to hold for any strongly anchored φ, the conservative force balance
becomes

fc = −σψtt + c(ψ)(c(ψ)ψx)x +
1

2
d′(ψ)Ux. (4.35)

The bulk energy dissipation is assumed to take the form

D =
1

2
κ

∫ L

0
ψ2
t dx. (4.36)

The “dissipative” force can then be calculated similarly as in (4.15) on page
39 and is given by

fd = κφt. (4.37)

Following the principle of maximum dissipation we assemble conservative
and dissipative forces to arrive at the evolution equation

σψtt+κψt−c(ψ)(c(ψ)ψx)x−
1

2
d′(ψ)Ux = 0, (x, t) ∈ (0, L)×R+. (4.38)

Under the present simplifying assumptions, Gauss’ law can be solved
for the electric potential given a director configuration ψ(x). By integrating
the equation (4.32) we obtain

U(x)[ψ] =

∫ x

0

C

d(ψ(ξ))
dξ + U(0) , C =

(∫ L

0

1

d(ψ(ξ))
dξ

)−1

U(L) ,

(4.39)
for x ∈ (0, L) with boundary conditions U(0) = 0 and U(L) = V0, where V0

is the applied voltage.
The numerical solution of this model will be the topic of Paper A.
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4.7 The Fréedericksz cell with weak anchoring

In Section 3.3 we discussed issues related to the existence of excited director
states for the Fréedericksz transition with weak anchoring. This situation
makes the study of the dynamics of the problem of particular interest. To
this end, the basic 1D Fréedericksz cell discussed in Section 4.6 can be
extended to take into account weak anchoring. Specifically, we make the
following assumptions:

1. The director angle only depends on x and t:

ψ(r, t) = ψ(x, t)

2. The liquid crystal is restricted to a finite domain:

Ω = [0, L]

3. An applied voltage difference V0 leads to an electric field

E = E(x, t)x̂

which is assumed to only have a component in the x-direction.

4. The director is assumed to be weakly anchored with a surface energy
in the form of (2.17) on page 20 with nA = (0, 1, 0)

The model assumptions are the same as for the system considered in
Section 4.6 except for the treatment of the boundaries. Here, the strong
anchoring condition ψ(0) = ψ(L) = π/2 is replaced by a boundary energy
term [53] in the form

WB =
1

2
w cos2(ψ)

(∣∣∣
x=0

+
∣∣∣
x=L

)
. (4.40)

From (4.40) one can easily deduce that for w > 0 the alignment ψ = π/2
will be energetically favored at the cell boundary. Conversely, for w < 0,
the alignment ψ = 0 is favored.

The energy balance equation for the weak Fréedericksz cell then takes
the form

d

dt

(1

2

∫ L

0

(
σψ2

t + c2(ψ)ψ2
x − d(ψ)U2

x

)
dx+

1

2
w cos2(ψ) (|x=0+|x=L)

)

= −1

2
κ

∫ L

0
ψ2
t dx.

(4.41)



4.7. The Fréedericksz cell with weak anchoring 51

As before we calculate the conservative dynamics via the first variation of
the Lagrangian. In this case the variation φ is not zero at the boundaries,
and we obtain

∂

∂ε

∣∣∣
ε=0

S[ψ + εφ] =

∫ t1

t0

∫ L

0

(
σ(ψt + εφt)φt − c2(ψ + εφ)(ψx + εφx)φx

− c(ψ + εφ)c′(ψ + εφ)(ψx + εφx)φ

+
1

2
d′(ψ + εφ)U2

xφ
)

dx dt
∣∣
ε=0

+
1

2
w sin (2(ψ + εφ))φ (|x=0+|x=L)

∣∣
ε=0

=

∫ t1

t0

∫ L

0

(
σψtφt − c2(ψ)ψxφx − c(ψ)c′(ψ)ψxφ

+
1

2
d′(ψ)U2

xφ
)

dx dt

+

∫ t1

t0

1

2
w sin (2ψ)φ (|x=0+|x=L) dt

=

∫ t1

t0

∫ L

0

(
−σψtt + c(ψ)(c(ψ)ψx)x +

1

2
d′(ψ)U2

x

)
φ dx dt

+

∫ t1

t0

c2(ψ)ψxφ (|x=0−|x=L) dt

+

∫ t1

t0

1

2
w sin (2ψ)φ (|x=0+|x=L) dt

= 0.
(4.42)

If (4.42) is to hold for any φ, the director field must (in the conservative
case) satisfy the equations

σψtt − c(ψ)(c(ψ)ψx)x −
1

2
d′(ψ)E2 = 0, (x, t) ∈ (0, L)× R+ ,

with boundary conditions

c2(ψ)ψx +
w

2
sin(2ψ) = 0, x = 0, (4.43a)

c2(ψ)ψx −
w

2
sin(2ψ) = 0, x = L. (4.43b)

The dissipation is assumed to be in the same form as in Section 4.6, and
can be included using the principle of maximum dissipation. This gives the
full bulk equation

σψtt+κψt−c(ψ)(c(ψ)ψx)x−
1

2
d′(ψ)E2 = 0, (x, t) ∈ (0, L)×R+ . (4.44)
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The electric field can also be calculated in the same way as in the pre-
vious section. Summarizing, the weak Fréedericksz cell under the present
assumptions is governed by the bulk equation (4.44) with boundary condi-
tions (4.43), where the electric potential U is given by (4.39).
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Paper A

The role of inertia and dissipation in the dynamics of the
director for a nematic liquid crystal coupled with an electric field

Peder Aursand and Johanna Ridder

Published in Communications in Computational Physics.

Preface

The idea for this study came from a wish to understand the quantitative
and qualitative differences between the variational wave equation (no dissi-
pation) and the dissipative evolution equations (without inertia) more used
in modeling. By deriving a model including both inertia and dissipation we
were able to numerically study the transition between the two extremes for
a basic Fréedericksz transition.

This was a joint work with my good friend and fellow PhD student
Johanna Ridder at the University of Oslo. Together we developed and
implemented an object-oriented MATLAB code able to solve the general
director equation together with Maxwell’s equations for the electric field.
Personally, the work on this paper gave me a lot of intuition and physical
understanding of the qualitative aspects of these models.

61



62 Paper A: The role of inertia and dissipation



Commun. Comput. Phys.
doi: 10.4208/cicp.220414.231214a

Vol. 18, No. 1, pp. 147-166
July 2015

The Role of Inertia and Dissipation in the Dynamics

of the Director for a Nematic Liquid Crystal Coupled

with an Electric Field
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Abstract. We consider the dynamics of the director in a nematic liquid crystal when
under the influence of an applied electric field. Using an energy variational approach
we derive a dynamic model for the director including both dissipative and inertial
forces.

A numerical scheme for the model is proposed by extending a scheme for a re-
lated variational wave equation. Numerical experiments are performed studying the
realignment of the director field when applying a voltage difference over the liquid
crystal cell. In particular, we study how the relative strength of dissipative versus in-
ertial forces influence the time scales of the transition between the initial configuration
and the electrostatic equilibrium state.

AMS subject classifications: 76A15, 82D30, 65M06

Key words: Nematic liquid crystals, Fréedericksz transition, dynamics of director fields.

1 Introduction

Liquid crystal refers to a state of matter that exhibits free flow similarly to a liquid, but
with certain crystalline properties commonly associated with solids. In the nematic liquid
crystal state, the long axis of the constituent molecules tend to align. This results in long-
range orientational order with no long-range correlation of the centre-of-mass. In the
classical continuum theory, the configuration of a nematic liquid crystal is described by a
velocity field and a director field.

∗Corresponding author. Email addresses: peder.aursand@math.ntnu.no (P. Aursand),
johanrid@math.uio.no (J. Ridder)

http://www.global-sci.com/ 147 ©2015 Global-Science Press

63



148 P. Aursand and J. Ridder / Commun. Comput. Phys., 18 (2015), pp. 147-166

The behaviour of a finite sample of a liquid crystal under the influence of an electric
field is of particular importance. When applying an electric field there is a competition
between the boundary energy and the elastic and electrostatic forces. In the Fréedericksz
transition, the liquid crystal cell will realign when the applied field (electric or magnetic)
is above a certain critical threshold. These kinds of switching-phenomena under ap-
plied fields are of great importance because of the application to Liquid Crystal Displays
(LCDs).

In this paper we will focus on the director field and use numerical experiments to
simulate its dynamics under the influence of an electric field. In particular, we aim to
quantify the influence of the inertia term in comparison with the dissipation term on the
dynamics of the director when the electric field is switched on. The present model is de-
rived from the Oseen-Frank elastic energy, the electric energy, and a dissipation function
by the least action principle and the principle of maximum dissipation. The resulting
equation can be seen as a special case of the classical Ericksen-Leslie dynamic equations.
More precisely, for a planar director field ψ and an electric potential U depending only
on one space variable x and time, we will derive the equation

σψtt+κψt−c(ψ)(c(ψ)ψx)x−
1

2
d′(ψ)U2

x =0, (1.1)

where

c(ψ)=


αcos2(ψ)+βsin2(ψ) , d(ψ)= ε0(ε⊥+εa cos2(ψ)),

and σ is an inertial constant, κ is a dissipation coefficient, α and β are the bend and splay
elastic constants, ε0 is the vacuum permittivity, and ε⊥ and εa are dielectric constants.

The current model is closely related to the variational wave equation

ψtt−c(ψ)(c(ψ)ψx)x =0. (1.2)

This equation was first introduced by Saxton [24], and has since been subject to a consid-
erable amount of research, see, e.g., [8, 10–12]. In the current context, (1.2) can be seen as
a special case of (1.1) when there is neither an electric field nor dissipation. Also, Chen
and Zheng [2] investigated the equations without electric field that include both inertia
and dissipation.

Disregarding inertial terms is almost ubiquitous in the modeling of nematic liquid
crystals, and herein lies the main interest of the present paper. The behavior of nemat-
ics under an electric field has been studied extensively during the last decades [3–6, 23,
25]. However, to the authors’ knowledge, analytical and numerical investigations have
mostly been conducted for the static equations to find equilibrium solutions or for the
parabolic equations where the inertia of the director is neglected. As discussed by Gang
et al. [7] and van Doorn [26], in many cases there are good physical reasons why inertial
terms are neglected. However, it was early noted by Leslie [19] that the rotational ki-
netic energy might play a role when the director is subjected to large accelerations. More
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recently, its relevance has been argued specifically in the modeling of liquid crystals un-
der mechanical vibrations [27], acoustics [20], and, more generally, for liquid crystals
with large moment of inertia that are subject to high-frequency excitation [1]. In gen-
eral, inertial effects become more significant for problems of certain geometrical scalings,
e.g., for very small time scales. The main purpose of this paper is to study a model
which includes both inertial and dissipative terms. Moreover, we will not restrict our-
selves to the one-constant approximation, which is commonly used in the literature as
a simplification. Through numerical experiments using a non-dimensional form of the
equations, we wish to study the transition from the viscosity-dominated regime to the
inertia-dominated regime.

The basic equation derived in this work can also be derived from the general theory
of anisotropic fluids, see, e.g., the fundamental work of McMillan [21]. The novel con-
tribution of this paper lies first and foremost in the systematic numerical study of the
qualitative and quantitative influence of inertia in these models for a standard test case.
To do this we arguably push some physical parameters beyond the scope of present day
liquid crystal devices (e.g. sub-nanosecond time scales), as was also done in the related
work by Lenzi and Barbero [18].

To keep the focus on the influence of the inertia and dissipative term on the dynamics
of the director field, we have restricted ourselves to a simplified setting. In the general
case, the coupling between velocity and director field can lead to complicated effects,
but for simplicity we will in this work assume that the velocity field is zero. In the case
of the splay Fréedericksz transition this means that we neglect the so called backflow
and kickback effects, which can be physically reasonable under some circumstances [25].
Furthermore, we restrict our study to a director and an electric field that vary only in
one space dimension, x, and assume that the director lies in the x−y plane, while the
electric field only has a component in x direction. This last assumption also implies that
Maxwell’s equations, which govern the electric field, reduce to the stationary equations.
In other words, the electric field is assumed to be in constant electrostatic equilibrium
with the changing director field.

The outline of the paper is as follows. In Section 2 we will present the derivation of
our model using the least action principle and the maximum dissipation principle with
the Oseen-Frank energy, the electric energy and Maxwell’s equations, and a dissipation
function as starting point. We will also derive a non-dimensional form of the equations,
which we will be more convenient in the numerical experiments. Section 3 contains a
suggested numerical method which can be used for the model. The scheme is adapted
from a numerical method used for the nonlinear variational wave equation (1.2). In Sec-
tion 4 we present results of numerical experiments of the Fréedericksz transition from a
homogeneous initial state when applying an electric field. The observed time scales of
the transition are compared to a linear analysis. Furthermore, in Section 5, we perform
similar numerical experiments on a transition in a pi-cell when applying an electric field.
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2 The model

2.1 The general approach

We will derive the model for the director field of a nematic liquid crystal using the least
action principle for the conservative part of the equation and the maximum dissipation
principle that allows us to include the effect of dissipation. To do this, we need to de-
termine the free energy of the liquid crystal, which is the sum of the kinetic energy, the
Oseen-Frank elastic energy, and the electric energy.

In the following, n(x,t) denotes the director field of the liquid crystals. Note that at
any point in time and space, n has unit length, i.e., n·n=1. For simplicity, we will assume
that the liquid crystal does not flow, i.e., the fluid velocity is zero. The kinetic energy for
the director is then given by

K =
1

2
σ|nt|2 , (2.1)

where σ denotes an inertial constant. A typical value for σ is ∼ 10−13kgm−1 (for the
nematic MBBA [7]). The Oseen-Frank elastic energy, which describes the tendency of the
directors to align parallel, is

WOF =
1

2
α|n×(∇×n)|2+ 1

2
β(∇·n)2+

1

2
γ(n·(∇×n))2 , (2.2)

where α, β, and γ are the Frank elastic constants for bend, splay, and twist, typical val-
ues being 8.2×10−12 N, 6.2×10−12 N, and 3.9×10−12N, respectively (for 5CB [25]). The
contribution to the total energy density from the electric field is given by

Wel =−
1

2
D·E, (2.3)

where E is the electric field and D is the electric displacement. For a uniaxial nematic, if
we consider only dielectric contributions to the polarization, D is related to E through

D= ε0(ε⊥E+εa(n·E)n), (2.4)

where ε0 = 8.854×10−12 Fm−1 is the permittivity in free space, ε⊥ is the relative permit-
tivity perpendicular to the director (ε⊥=7 for 5CB [25]) and εa is the dielectric anisotropy
(εa = 11.5 for 5CB [25]). The electric displacement is also subject to Gauss’ law, which
reads (in the absence of free charges)

∇·D=0. (2.5)

Altogether, the total free energy is

E =


(K(nt)+WOF(n,∇n)+Wel(n))dx,
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with the corresponding Lagrangian L= K(nt)−WOF(n,∇n)−Wel(n). The conservative
system would then be described by the Euler-Lagrange equation

d

dt



∂L
∂nt



+
d

dx



∂L
∂nx



+
d

dy



∂L
∂ny



+
d

dz



∂L
∂nz



−
∂L
∂n

=0,

which is derived from the least action principle for the action functional A=


Ldx. For
dissipative systems we can write the energy law

d

dt





(K(nt)+WOF(n,∇n)+Wel(n))dx



=−


D(nt)dx (2.6)

for some non-negative dissipation function D(nt). To obtain the evolution equation cor-
responding to (2.6), it is common practice [13, 16, 22, 28] to apply Onsager’s maximum
dissipation principle to incorporate it in the Euler-Lagrange equation by

d

dt



∂L
∂nt



+
d

dx



∂L
∂nx



+
d

dy



∂L
∂ny



+
d

dz



∂L
∂nz



−
∂L
∂n

=−
∂D
∂nt

.

In the present case the dissipation function, as given, e.g., in [25], is

D=
1

2
κ|nt|2 , (2.7)

where κ >0 is a viscosity coefficient (for MBBA, κ =0.0777Pas, [25]).

2.2 The one-dimensional case

For the experiments in this paper, we restrict ourselves to the one-dimensional case,
i.e., we assume that both the director field and the electric field depend only on the x-
coordinate and time. Furthermore, we will assume that the electric field can be written as
the gradient of a scalar potential and hence only has a component in the x-direction. This
simplifies the equations considerably, but still allows us to model physically interesting
phenomena, like the Fréedericksz transition. More precisely, we consider a liquid crys-
tal cell that only differs in x dimension on an interval [0,L] and assume that the director
field is strongly anchored at the boundary, i.e., we have Dirichlet boundary conditions
n(0,t)=n0 and n(L,t)=nL. We assume further that the director lies in the xy plane and
thus can be described by an angle ψ(x,t) through

n(x,t)=(cos(ψ(x,t)),sin(ψ(x,t)),0).

Expressed in terms of ψ, the kinetic energy (2.1) and the Oseen-Frank energy (2.2) then
become

K =
1

2
σψ2

t , WOF =
1

2
c2(ψ)ψ2

x ,
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where

c(ψ)=


αcos2(ψ)+βsin2(ψ)).

We write E as the gradient of an electric potential U, i.e.,

E(x,t)=(E(x,t),0,0)=−∇U(x,t)=(U(x,t)x,0,0),

with boundary conditions U(0,t) = 0 and U(L,t) = V0 > 0, corresponding to the applied
voltage. The electric displacement (2.4) is then given by

D(x,t)=


−d(ψ)Ux,
1

2
d′(ψ)Ux,0



,

where d(ψ)= ε0(ε⊥+εacos2(ψ)). The electric energy (2.3), written in terms of ψ, becomes

Wel =−
1

2
d(ψ)U2

x .

In addition, due to Gauss’ law (2.5), the electric potential must satisfy

(d(ψ)Ux)x =0, (2.8)

which implies

U(x)=
 x

0

C

d(ψ(ξ))
dξ+U(0), where C=



 L

0

1

d(ψ(ξ))
dξ

−1

U(L). (2.9)

Finally, insert the Lagrangian,

L(ψt,ψx,ψ)=K−WOF−Wel =
1

2



σψ2
t −c2(ψ)ψ2

x+d(ψ)U2
x



,

and the dissipation function (2.7),

D(ψt)=
1

2
κψ2

t ,

into the modified Euler-Lagrange equation for the dissipative system,

d

dt



∂L
∂ψt



+
d

dx



∂L
∂ψx



−
∂L
∂ψ

=−
∂D
∂ψt

,

to arrive at the equation for the director field,

σψtt+κψt−c(ψ)(c(ψ)ψx)x−
1

2
d′(ψ)U2

x =0. (2.10)

Note that in the derivation we followed common practice and neglected the dependency
of U on ψ.
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2.3 The nondimensional form

To quantify the impact of the inertial constant in comparison with the dissipation con-
stant, we derive a nondimensional version of Eq. (2.10). As scaling parameters, we use
the interval length L, the electric potential at the boundary, V0, and some fixed time scale
τ, which results in the dimensionless length X = x/L, electric potential u = U/V0, and
time T = t/τ. Furthermore, define

c̃(ψ)=



cos2(ψ)+
β

α
sin2(ψ) , d̃(ψ)=1+

εa

ε⊥
cos2(ψ)

and the parameters

κ̃ =
κτ

σ
, λ̃=

τ

L

α

σ

1/2
, ε̃=

1

2

τ2

L2

ε0ε⊥
σ

V2
0 .

Then, Eq. (2.10) is equivalent to

ψTT+κ̃ψT−λ̃2 c̃(ψ)(c̃(ψ)ψX)X− ε̃d̃′(ψ)(uX)2 =0. (2.11)

Similarly, (2.8) and (2.9) become

(d̃(ψ)uX)X =0, i.e., u(X)=




[0,1]

1

d̃(ψ(ξ))
dξ

−1 X

0

1

d̃(ψ(ξ))
dξ . (2.12)

If σ∼ 10−13kgm−1 and κ ∼ 10−1Pas, as it is the case for example for MBBA or 5CB,
then κ̃∼1 for τ∼10−12s, i.e., for very small time scales. For materials with larger moment
of inertia, the time scale corresponding to κ̃∼1 increases.

2.4 The inertialess model

In many physical situations it is argued that the inertia is negligible, i.e., σ ≈ 0 and
κ̃,λ̃, ε̃≫1. Then the term ψTT in the above equations vanishes and (2.11) reduces to

κ̃ψT−λ̃2 c̃(ψ)(c̃(ψ)ψX)X− ε̃d̃′(ψ)(uX)2 =0, (2.13)

which is the model that is widely applied in the literature and that we will use to compare
our numerical results.

3 Numerical scheme

We proceed to derive a numerical scheme for solving the non-dimensional equations (2.11)-
(2.12). Introducing the auxiliary variables v=ψT and w= λ̃c̃(ψ)ψX, we can rewrite (2.11)
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as a system of first-order equations,

vT +κ̃v−λ̃(c̃(ψ)w)X =−λ̃c̃(ψ)Xw− ε̃d̃′(ψ)(uX)2 , (3.1a)

wT−λ̃(c̃(ψ)v)X =0, (3.1b)

ψT =v, (3.1c)

which we want to solve for X ∈ [0,1], T > 0, and some given initial data ψ0(X). As a
basic first-order scheme, we adapt a semi-discrete energy preserving method presented
by Koley et al. [15]. This scheme was developed for the variational wave equation

ψtt−c(ψ)(c(ψ)ψx)x =0, (3.2)

but it extends straightforwardly to the present case with an electric field and dissipation
term.

Let ΔX = 1/N for some positive integer N and denote any grid function fj(T) =
f (jΔX,T). Furthermore, we introduce the shorthands

āj+1/2 =
aj+1+aj

2

and the interface jump
�a�j+1/2 = aj+1−aj.

Now let uX,j be the discrete electric field given by

uX,j =



N

∑
i=0

1

d̃(ψi)

−1 j

∑
i=0

1

d̃(ψi)
. (3.3)

The evolution of the semi-discrete approximations vj, wj and ψj is then given by the
scheme



vj



T
+κ̃vj−

λ̃

ΔX



c̃j+1/2wj+1/2− c̃j−1/2wj−1/2



=−
λ̃

2ΔX



�c̃�j+1/2wj+1/2+�c̃�j−1/2wj−1/2



+ ε̃d̃′(ψj)


uX,j

2
, (3.4)



wj



T
−

1

ΔX



c̃vj+1/2− c̃vj−1/2



=0, (3.5)

and


ψj



T
=vj. (3.6)

For the temporal integration, we let

ΔT =
ΔX

λ̃


1+ β
α

 (3.7)
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and denote Tn=nΔT and a fully discrete grid function as f n
j = fj(nΔT). The semi-discrete

form (uj)T = g(u) is integrated using the third-order SSP Runge-Kutta scheme [9]

u∗=un
j +ΔT g(un),

u∗∗=
3

4
un

j +
1

4
u∗+

1

4
ΔT g(u∗),

un+1
j =

1

3
un

j +
2

3
u∗∗+

2

3
ΔT g(u∗∗).

4 Fréedericksz transition from homogeneous initial state

Consider a liquid crystal cell initially in a near homogeneous state. When a sufficiently
large electric field is applied, the Fréedericksz transition changes the director configu-
ration corresponding to a new electrostatic equilibrium. We venture to use the current
model to study the dynamics of this transition in the case of significant inertial forces. To
be precise, we consider the initial-boundary problem







































ψTT+κ̃ψT−λ̃2 c̃(ψ)(c̃(ψ)ψX)X− ε̃d̃′(ψ)u2
X =0, (X,T)∈ [0,1]×[0,∞),

uX = 1
d̃(ψ)





[0,1]
1

d̃(ψ)
dξ

−1
,

ψ(X,0)= π
2 +δsin(πX), X∈ [0,1],

ψT(X,0)=0, X∈ [0,1],

ψ(0,T)=ψ(1,T)= π
2 , T∈ [0,∞).

(4.1)

4.1 Linear analysis for the dissipation-dominated case

Following the procedure from [25], we analyze the Fréedericksz transition dynamics in
the dissipation-dominated case. Also, for the present analysis, we make the one-constant
approximation (α=β). Disregarding the inertial term in (2.11), we consider the following
simplified form of (2.13),

κ̃ψT = λ̃2ψXX + ε̃d̃′(ψ)(uX)2, (4.2)


d̃(ψ)uX



X
=0 (4.3)

for the initial data

ψ(X,0)=ψ0(X),





ψ0(X)−

π

2






≪1 (4.4)

and boundary conditions

ψ(0,T)=ψ0(1,T)=
π

2
, u(0,T)=0, u(1,T)=0. (4.5)

71



156 P. Aursand and J. Ridder / Commun. Comput. Phys., 18 (2015), pp. 147-166

By introducing θ =ψ−π/2 we can linearize (4.2) around θ =0 to obtain

κ̃θT = λ̃2θXX +2ε̃
εa

ε⊥
(uX)2θ, (4.6)

uXX =0. (4.7)

Notice that in this case (4.7) simply implies uX =1. Furthermore, we can introduce

η =
λ̃2

κ̃
T and c=2

ε̃

λ̃2

εa

ε⊥
(4.8)

as well as the transformation

θ(X,η)=Θ(X,η)exp(cη) (4.9)

in order to write (4.6) as

Θη =ΘXX . (4.10)

By standard techniques, the solution to (4.10) can be written in the form

Θ(X,η)=
∞

∑
n=1

Ansin(nπX)exp


−(nπ)2 η


(4.11)

which gives the solution

θ(X,T)=
∞

∑
n=1

Ansin(nπX)exp



−
T

τn



, (4.12)

with

τn =
κ̃

2 εa
ε⊥

ε̃c



n2− ε̃
ε̃c

 , (4.13)

where we have introduced the critical non-dimensional electric field

ε̃c :=
1

2

ε⊥
εa

π2λ̃2. (4.14)

From (4.12) we see that all Fourier modes decay exponentially if ε̃ < ε̃c. For ε̃ > ε̃c the
initial state is not linearly stable and we get the onset of the Fréedericksz transition. For
a near-critical electric field ε̃> ε̃c, it is then natural to define the switch-on time as [25]

τon =:−τ1 =
κ̃

2 εa
ε⊥

ε̃c



ε̃
ε̃c
−1

 . (4.15)

72 Paper A: The role of inertia and dissipation



P. Aursand and J. Ridder / Commun. Comput. Phys., 18 (2015), pp. 147-166 157

4.2 Numerical experiments

We wish to numerically study the evolution of the numerical solution compared to the
stationary solution for different values of the parameters involved. To this end, we define
the following: Let ψeq(X) be the stationary solution of (4.1). Given a solution ψ(X,T), we
define the normalized distance function

d2(T) :=
ψ(·,T)−ψeq(·)L2

ψ(·,0)−ψeq(·)L2

. (4.16)

Numerical experiments were performed demonstrating how the dynamics of the
Fréedericksz transition depends on the relationship between rotational inertia and the
dissipation. We set δ = 0.01 and the physical parameters β/α = 0.756 and εa/ε⊥ = 1.643,
consistent with the liquid crystal 5CB [25]. Moreover, we let λ̃=1 and ε̃=100, thereby en-
suring that we are well above the critical electric field ε̃c≈3 for the onset of the Fréedericksz
transition. The problem (4.1) was solved numerically using the finite-difference scheme
(3.4)-(3.6) with N =100. Figs. 1, 2 and 3 show the numerical solution and distance (4.16)
for κ̃ = 1, 5 and 10, respectively. The results show that the presence of inertial forces
causes standing waves to occur in the director field. For κ̃ = 1 these are of a significant
magnitude and cause the distance d2(T) to oscillate around zero. For stronger dissipation
the standing waves are suppressed and the Fréedericksz transition is more monotone.

In light of the standing waves seen in Figs. 1, 2 and 3, we wish to determine the in-
fluence of these oscillations on the transition time from the initial state to the electrostatic
equilibrium state. To that end, we in addition to (4.16) define the alternative distance
function

e2(T) :=
ψ(·,T)−ψ(·,0)L2

ψ(·,0)−ψeq(·)L2

. (4.17)
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Figure 1: The numerical solution of the homogeneous switch-on case (4.1) using κ̃ =1. Left: ψ at different
times. The solid line is the stationary solution and the dotted line the initial data. Right: The evolution of the
distance from equilibrium (4.16). The dashed line is the corresponding solution from the inertialess model (2.13).
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Figure 2: The numerical solution of the homogeneous switch-on case (4.1) using κ̃ =5. Left: ψ at different
times. The solid line is the stationary solution and the dotted line the initial data. Right: The evolution of the
distance from equilibrium (4.16). The dashed line is the corresponding solution from the inertialess model (2.13).
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Figure 3: The numerical solution of the homogeneous switch-on case (4.1) using κ̃ =10. Left: ψ at different
times. The solid line is the stationary solution and the dotted line the initial data. Right: The evolution of the
distance from equilibrium (4.16). The dashed line is the corresponding solution from the inertialess model (2.13).

While (4.16) is a normalized distance to the equilibrium, the function (4.17) gives the
corresponding distance to the initial state. Using these we can now define the switch-on
time

T∗ :=sup{T : e2(T)<e−1} (4.18)

and the relaxation time

T∗ :=sup{T : d2(T)>e−1}. (4.19)

Fig. 4 shows the switch-on and relaxation time using the definitions above. As before,
the numerical solutions were obtained using N = 100 with λ̃ = 1. We set the physical
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Figure 4: Transition times for λ̃=1 as a function of κ̃ for different values of the scaled non-dimensional electric
field.
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Figure 5: Transition times for λ̃=1 as a function of ε̃/ε̃c for different values of the non-dimensional dissipation
constant.

parameters to β/α=0.756 and εa/ε⊥=1.643. For large values of κ̃ the transition times are
close to linear, a result that agrees with the characteristic time scale (4.15) from the linear
analysis. However, when the inertial terms become significant, the standing waves cause
and increase in the relaxation time. This effect does not influence the switch-on time.

Fig. 5 shows the switch-on and relaxation time as a function of the scaled non-
dimensional electric field. Here, the linear analysis predicts an inverse relationship (4.15).
Indeed, the results indicate that this is also the case for the full transition. However,
also in this case the standing waves for low κ̃ increase the relaxation time, as shown in
Fig. 5(b).

Fig. 7 shows the switch-on time (4.18) and the relaxation time (4.19) for the current
model compared to the inertialess model (2.13) over a wide range of κ̃. As expected, the
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Figure 6: The numerical solution of the homogeneous switch-on case (4.1) for physical values of the inertia and
dissipation coefficient. Left: ψ at different times. The solid line is the stationary solution and the dotted line the
initial data. Right: The evolution of the distance from equilibrium (4.16). The dashed line is the corresponding
solution from the inertialess model (2.13).

models seem to agree in the dissipation dominated limit κ̃ →∞. However, a significant
difference in transition times becomes apparent when κ̃ approaches ∼10 from above. Val-
ues for the viscous constant κ are usually reported in the order of 10−1Pas [25]. Quoted
values for the rotational inertia varies from 10−11–10−16kgm−1 [7, 29]. Even with the
highest reported values for the molecular inertia, κ̃ ∼ 10 still requires time scales in the
nano-second range. This is outside the physical domain of most current liquid crystal
devices and experiments—the effect of inertia is here rightfully ignored.

We note that, under extreme conditions and within small time scales, inertial ef-
fects can become significant in the dynamics of the Fréedericksz transition. To illus-
trate this, we consider the Fréedericksz transition in the liquid crystal 5CB (with the
physical parameters as before according to [25] and an estimated rotational inertia of
σ=10−13kgm−1) under the influence of a strong electric field (UL=5.00×104 V). As length
scale and thickness of the liquid crystal sample we choose as before L = 10−6m, and as
the time scale we let τ =2×10−11s. This gives the non-dimensional parameters κ̃ =15.5,
λ̃ = 1.8×10−4, and ε̃ = 3.1×102. The plots in Fig. 6 as well as the resulting switch-on
time T∗ =0.1040 (0.0715 without inertia) and relaxation time T∗ =0.1375 (0.0865 without
inertia) show the qualitative and quantitative effect of including inertia in this case.

Two other experiments where inertia becomes significant were suggested by Yun [29].
In the first one, the liquid crystal is subjected to a rapidly rotating magnetic field that is
turned off abruptly. In the second one, the magnetic field is assumed to oscillate, leading
to oscillations also in the director field with amplitude and phase lag depending on the
inertia.

Finally we note that, because of the small time scales involved, the inclusion of inertia
might also be warranted in, e.g., models for liquid crystal systems under high-frequency
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Figure 7: Transition times for the inertialess model (2.13) compared to the current model for λ̃=1 and ε̃/ε̃c=20.

mechanical vibrations [27], liquid crystal acoustics [14] and studies of the light-induced
Freedericksz transition [17].

5 The pi-cell

We now consider the transition from a stationary non-trivial initial state when applying
an electric field. More precisely, we consider the initial-boundary problem











































ψTT+κ̃ψT−λ̃2 c̃(ψ)(c̃(ψ)ψX)X− ε̃d̃′(ψ)u2
X =0, (X,T)∈ [0,1]×[0,∞),

uX = 1
d̃(ψ)





[0,1]
1

d̃(ψ)
dξ

−1
,

(c̃(ψ)ψX)X =0, X∈ [0,1], T =0,

ψ(0,T)=−π
2 +ψbc, T∈ [0,∞),

ψ(1,T)= π
2 −ψbc, T∈ [0,∞).

(5.1)

This experiment was studied by Mottram and Newton [23] in the stationary case using
the one-constant approximation (α= β) and by ignoring the inertial term. Note that in
that case the equilibrium solution of (5.1) without electric field is a linear profile, while
for the present nonlinear model it is nontrivial.

As before, we perform numerical experiments in order to study the dynamics of the
transition occurring when applying an electric potential over the liquid crystal cell. For
the initial data we follow Mottram and Newton [23] and use the equilibrium solution
for the equation without electric field. In the nonlinear case α = β this solution is cal-
culated numerically beforehand. For the boundary condition we define the parameter
ψbc=π/30. Furthermore, we let λ̃=1 and set the non-dimensional electric field to ε̃=100.
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Figure 8: The numerical solution of the Pi-cell initial value problem (5.1) using κ̃ =1. Left: ψ at different times.
The solid line is the stationary solution and the dotted line the initial data. Right: The evolution of the distance
from equilibrium (4.16). The dashed line is the corresponding solution from the inertialess model (2.13).
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Figure 9: The numerical solution of the Pi-cell initial value problem (5.1) using κ̃ =5. Left: ψ at different times.
The solid line is the stationary solution and the dotted line the initial data. Right: The evolution of the distance
from equilibrium (4.16). The dashed line is the corresponding solution from the inertialess model (2.13).

Figs. 8, 9 and 10 show the numerical solution and the distance (4.16) for κ̃ = 1, 5 and
10, respectively. The physical parameters were β/α=0.756 and εa/ε⊥ =1.643, consistent
with the liquid crystal 5CB [25]. The results all agree with the qualitative behavior that
was observed for the homogeneous switch-on case. When dissipative forces are weak
(compared to inertial forces) the initial part of the transition happens faster, but standing
waves slow down the final relaxation towards equilibrium.

Similarly as in previous section, we now look at the transition times (4.18) and (4.19)
under variations of the electric field and rate of dissipation. Fig. 11 shows the switch-on
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Figure 10: The numerical solution of the Pi-cell initial value problem (5.1) using κ̃ =10. Left: ψ at different
times. The solid line is the stationary solution and the dotted line the initial data. Right: The evolution of the
distance from equilibrium (4.16). The dashed line is the corresponding solution from the inertialess model (2.13).
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Figure 11: Transition times for the Pi-cell initial value problem (5.1) using λ̃=1, β/α=0.756 and εa/ε⊥=1.643.

and relaxation time as a function of the non-dimensional dissipation κ̃. The numerical
solutions were obtained using N=100 with λ̃=1 with physical parameters to β/α=0.756
and εa/ε⊥ =1.643. We note that also for the Pi-cell we have that the transition times are
close to linear for large values of κ̃. Furthermore, when the κ̃ approaches 5 from above
we observe an increase in the relaxation time due to the formation of standing waves.

Fig. 12 shows the switch-on and relaxation time as a function of the scaled non-
dimensional electric field. Also here, the results agree (for large κ̃) with the inverse rela-
tionship (4.15) predicted by the linear analysis. However, also in this case we observe an
increase in the relaxation time, shown in Fig. 12(b).
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Figure 12: Transition times for the Pi-cell initial value problem (5.1) using λ̃=1, β/α=0.756 and εa/ε⊥=1.643.

6 Summary

We have derived a model for the dynamics of the director of a nematic liquid crystal
under the influence of an electric field using an energy variational approach. Contrary to
most of the literature, we have included both inertial forces and dissipation in our model.
The model is coupled with the stationary Maxwell’s equation for the electric field.

A semi-discrete numerical scheme has been proposed for solving the model. The
method is an adaptation of a previously proposed scheme for a related variational wave
equation modeling liquid crystals.

Numerical experiments have been performed demonstrating the influence of the rel-
ative strength between dissipative and inertial forces on two well-known cases from the
literature. Both cases involve the reorientation of director field on a finite domain when
applying an electric voltage. We observe that for moderate dissipation the transition
times are proportional to the dissipation constant. However, when the scaling of the
problem is such that the inertial term becomes dominant, this behavior breaks down as
standing waves slow down or prevent the relaxation to electrostatic equilibrium.
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On the dynamics of the weak Fréedericksz transition for nematic
liquid crystals
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Preface

The origin of this work is a personal communication between Johanna Rid-
der, Gaetano Napoli and myself regarding Paper A. Professor Napoli is
an expert on weak anchoring effects in the Fréedericksz transition and ex-
pressed interest in the dynamics of this problem. In the work that followed,
we were able to numerically show how introducing weak boundaries make
the dynamic problem ill-posed, since several stable equilibriums exist.

Together with Johanna, and following the advice of professor Napoli,
we extended the code from Paper A in order to account for weak boundary
conditions. A big part of this work was figuring out a stable and efficient
numerical scheme that was able to handle a large range of electric fields
and boundary strengths. Then, having a robust code, we could go on to
systematically study how the different aspects of the static theory manifest
in the dynamic problem.
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ON THE DYNAMICS OF THE WEAK FRÉEDERICKSZ
TRANSITION FOR NEMATIC LIQUID CRYSTALS

P. AURSAND, G. NAPOLI, AND J. RIDDER

Abstract. We consider the dynamics of the director in a nematic
liquid crystal cell with an applied electric field. The bend-splay
geometry is assumed, and the director is weakly anchored at the
boundary. For this setting, excited equilibrium states of odd parity
have been observed experimentally by Kumar et al. (2010) and
investigated analytically by Bevilacqua and Napoli (2012), but the
dynamics of the transition between them has so far not been the
subject of much study.

An implicit finite difference method is derived for studying the
time-evolution of the director field under varying voltages and an-
choring strengths. The scheme solves the general nonlinear equa-
tions, i.e., it does not assert the one-constant approximation, and
allows coupling with Gauss’ law for the electric field. Through nu-
merical simulation of basic transition experiments, we show how
excited states of odd parity can manifest, also in the general non-
linear case.

1. Introduction

1.1. Background. Nematic liquid crystals usually consist of rod-shaped
organic molecules for which it is energetically favorable for neighboring
molecules to align. This causes macroscopic correlation in the orien-
tation of their long axis, while the molecules themselves are free to
flow like a liquid. Nematic liquid crystals have seen widespread use
in display devices, due to the optical birefringence associated with the
anisotropy of the molecules. Since the orientation of the long axis can
be manipulated by applied electromagnetic fields, polarized light can
be either stopped by or let through a liquid crystal cell, depending on
the applied voltage difference.

Under the assumption of constant degree of orientation, the state of
a nematic liquid crystal is often represented in terms of two linearly
independent vector fields: the velocity field giving the flow and the

Date: June 21, 2015.
Key words and phrases. Nematic liquid crystals; Fréedericksz transition; Weak

anchoring.
1
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2 P. AURSAND, G. NAPOLI, AND J. RIDDER

director field giving the local average molecular orientation. In this
work we will assume a steady flow field and focus on the dynamics of the
director. This implies disregarding phenomena such a back-flow, which
can be important in the rheology of liquid crystals [5]. Furthermore,
we will restrict our discussion to a one-dimensional liquid crystal cell
on x ∈ [0, L] in the bend-splay geometry. Specifically, we assume the
director n is fixed to the x− y plane, i.e.,

n(x, t) = (cos(ψ(x, t)), sin(ψ(x, t)), 0), (1)

where ψ is the angle between the x-axis and the director. Herein, we
will consider numerical solutions to the initial-value problem

qψT − c̃(ψ)(c̃(ψ)ψX)X +
1

2
h2 sin(2ψ)Ẽ2 = 0, (X,T ) ∈ (0, 1)× R+,

(2a)

ψ(X, 0) = ψ0(X), X ∈ (0, 1), (2b)

with boundary conditions

ψX +
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 0, (3a)

ψX −
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 1. (3b)

In the above, the dimensionless constants q, h and β represent dissipa-
tion, field strength and anchoring strength, respectively, and

c̃(ψ) =

√
cos2(ψ) +

α2

α1

sin2(ψ).

The classical example of interaction between the director field and an
external electric or magnetic field is the Fréedericksz transition. In its
most basic form, it can be described as a competition between elastic
torques resisting distortions in the director field, and electromagnetic
torques aligning molecules along a preferred direction: Consider e.g. a
liquid crystal cell where the the easy direction at the surfaces is fixed at
ψ = π/2. The equilibrium configuration is then a homogeneous director
field. An electric field is applied twisting the director towards the
angle π. When the applied field is below some critical value, E < EF,
elastic forces dominate and the constant director state ψ = π/2 is
stable. However, when the field is sufficiently strong, E > EF, the
equilibrium state becomes a nontrivial configuration where π/2 < ψ ≤
π in the interior of the domain. This sudden realignment is what is
often referred to as the Fréedericksz transition.
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Usually, the surfaces of liquid crystals are designed in such a way
that the director remains strongly anchored at normal operating volt-
ages in display devices [3]. However, it has been theorized that having
more weakly anchored director fields at the surfaces could allow for
lower operating voltages and quicker response times [10]. In the mod-
eling, this can be introduced by applying weak boundary conditions,
i.e., introducing an energy penalty for deviations from the anchoring
angle [11]. As shown in Figure 1, in the weak Fréedericksz transi-
tion there are two critical points. The first one, as in the classic case,
represents electric forces overcoming the elastic. The second, the satu-
ration threshold, is reached when the electric torque is strong enough
to overcome the boundary anchoring. Here, the stable configuration is

V0

E < EF

V0

EF < E < ES

ψ

V0

ES < E

Figure 1. Illustration of the weak Fréedericksz transi-
tion. Left: For a low electric field the anchoring forces
dominate and the director field is in a homogeneous
(ψ = π/2) configuration. Middle: For electric fields
above the Fréedericksz threshold but below the satura-
tion threshold there is a competition between electric
and anchoring forces leading to a nontrivial configura-
tion. Right: For strong electric fields (over the saturation
threshold) the electric forces overcome the anchoring and
the configuration is homeotropic (ψ = 0).

a constant homeotropic (ψ = π) state.
Since it was proposed by Rapini and Papoular [11], the weak Fréedericksz

transition has been an important part of the liquid crystal literature
[5, 13, 12]. In their recent paper, Costa et al. [4] were able to prove a
uniqueness property for stationary solutions of the weak Fréedericksz
transition. Specifically, they showed that for any given values of the
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applied field, field susceptibility, elastic constants and anchoring en-
ergy, there exists a unique solution ψ(x) ∈ [0, π/2] of the equations
describing the force balance of the director field.

However, in their recent work, Kumar et al. [7] observed experimen-
tally director states that break the even symmetry around the center
of the cell. This discovery led Bevilacqua and Napoli [2] to investi-
gate the uniqueness of minimizers of the free energy on the full interval
ψ ∈ [0, π]. Specifically, they studied the model

ψXX −
1

2
h2 sin(2ψ) = 0, X ∈ (0, 1), (4)

with boundary conditions

ψX +
1

2
β sin(2ψ) = 0, X = 0, (5a)

ψX −
1

2
β sin(2ψ) = 0, X = 1, (5b)

where h is the dimensionless field and β is the dimensionless anchoring
strength. By using direct methods and calculating exact solutions,
they showed that there exists a hierarchy of excited states satisfying
the stationary equations (4)–(5). Moreover, these solutions were shown
to be of different parities.

The nonuniqueness of stationary solutions for the weak Fréedericksz
transition makes the dynamics of the problem particularly interesting,
and herein lies the main purpose of this paper. Given a constant electric
field (Ẽ = 1) and the one-constant approximation (α1 = α2), the model
(2)–(3) reduces to that of Bevilacqua and Napoli (4)–(5). However, it
is not clear how the existence of excited stationary director states will
effect the dynamics of the Fréedericksz transition. We aim to derive a
robust and efficient numerical scheme for (2)–(3), and use this to study
the evolution of the director field. Specifically, we wish to address two
questions:

(1) How will excited equilibrium states manifest in the basic Fréedericksz
transition experiment?

(2) Will relaxing the one-constant approximation and coupling with
a nonconstant electric field influence the experiment?

To the best of our knowledge, this work is the first attempt to numer-
ically study the dynamic transition to excited director states in the
Fréedericksz transition with weak anchoring.

This paper is organized as follows: In Section 2 we use an energy
variational approach to derive the basic nondimensional model under
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5

consideration (2)–(3). Different simplifications with regard to the elec-
tric field and elasticity will be also be discussed. Section 3 concerns
an implicit numerical time-stepping scheme for solving the governing
equations. Herein, we show the well-posedness of the nonlinear implicit
equations of the discrete problem. In Section 4 we perform numerical
experiments addressing the questions posed above. In particular, we
will show that excited director states can be observed in numerical
experiments.

2. Variational derivation of the dynamic model

The governing equations for the director field will be derived by as-
sering an energy law for the system. The time evolution of the director
field is then given by a dissipative variational principle.

2.1. The full model. Under the assumption that n is given by (1), the
governing equations for the director field will be derived using the dif-
ferent contributions to the energy with an action principle. Expressed
in terms of ψ, the bulk kinetic energy can be written as

WK =
1

2

∫ L

0

σψ2
t dx,

where σ is an inertial constant. A typical value for σ is ∼ 10−13 kg m−1

(for the nematic MBBA [6]).
The elasticity of the liquid crystal will resist distortions in the direc-

tor field. The standard model for the elasticity in nematics is given by
the Oseen–Frank free energy density

WOF (n,∇n) =
1

2
α1|n×(∇×n)|2+

1

2
α2(∇·n)2+

1

2
α3(n·(∇×n))2 . (6)

The energy (6) is the most general form which is both quadratic in
∇n and invariant with respect to the transformation n → −n. The
constants α1, α2 and α3 represents bend, splay and twist distortions,
respectively. For the typical liquid crystal 5CB, values have been mea-
sured to α1 = 8.2× 10−12 N, α2 = 6.2× 10−12 N, and α3 = 3.9× 10−12 N.
Given the director field (1), the elastic bulk energy takes the form

WOF =
1

2

∫ L

0

c2(ψ)ψ2
x dx

with

c(ψ) =
√
α1 cos2(ψ) + α2 sin2(ψ)) .

The anisotropic nature of the molecules will cause the electric dis-
placement in the liquid crystal to depend on the director field. In what
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follows, we will assume that the contribution to the displacement is
purely dielectric and given by

D = ε0(ε⊥E + εa(n · E)n) , (7)

where ε0 = 8.854× 10−12 F m−1 is the permittivity in free space, ε⊥
is the relative permittivity perpendicular to the director (ε⊥ = 7 for
5CB [12]) and εa is the dielectric anisotropy (εa = 11.5 for 5CB [12]).
The contribution to the bulk energy from the electric field is then

WE = −1

2

∫ L

0

E ·D dx = −1

2

∫ L

0

d(ψ)E2 dx, (8)

where

d(ψ) = ε0(ε⊥ + εa cos2(ψ)).

We assume that the surfaces at each end of the cell has been treated
in such a way that a particular director orientation is energetically
preferred. To achieve this, we apply an anchoring potential, and let

WB =
1

2
w cos2(ψ), x = 0, L (9)

for some constant w representing the anchoring strength. We note
that for this choice the parallel (homogeneous) alignment will be en-
ergetically preferred at the boundary for w > 0 and, conversely, the
homeotropic for w < 0.

The energy dissipation rate is assumed to be of the form

D =
1

2
κ

∫ L

0

ψ2
t dx, (10)

where κ is a dissipation constant. For the liquid crystal MBBA, κ =
0.0777 Pa s, [12].

Taking into account elastic, electric and boundary energies, the total
energy balance takes the form

d

dt

(1

2

∫ L

0

(
σψ2

t + c2(ψ)ψ2
x − d(ψ)E2

)
dx+

1

2
w cos2(ψ) (|x=0+|x=L)

)

= −1

2
κ

∫ L

0

ψ2
t dx.

(11)
Following the approach from [1], we can use the dissipative principle of
least action to derive the evolution equation

σψtt + κψt − c(ψ)(c(ψ)ψx)x −
1

2
d′(ψ)E2 = 0, (x, t) ∈ (0, L)× R+ ,

(12)
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with boundary conditions

c2(ψ)ψx +
w

2
sin(2ψ) = 0, x = 0, (13a)

c2(ψ)ψx −
w

2
sin(2ψ) = 0, x = L. (13b)

In the rest of this paper, we will follow common practice and assume
that the inertial term can be neglected in favor of dissipative forces,
i.e. σ = 0.

In general, the electric field will depend on the director configuration
through Gauss’ law. Under the assumptions above, we can write the
field E = −Ux, and the equation to be solved is

(d(ψ)Ux)x = 0 ,

with boundary conditions U(0) = 0 and U(L) = V0. Hence, for a given
director configuration, Ux can be determined by

Ux(x) =
1

d(ψ(x))

(∫ L

0

1

d(ψ(x′))
dx′
)−1

V0 . (14)

In the interest of deriving a dimensionless version of the model (12)–
(13), we introduce the scalings X = x/L, T = t/τ and u = U/V0. Here,
τ is some characteristic time scale for the dynamics of the system.
Furthermore, we follow Bevilacqua and Napoli [2] and introduce the
extrapolation length

` =
α1

w

and the electric coherence length

ξ =
L

V0

√
α1

ε0εa

Moreover, we define the nondimensional quantities

c̃(ψ) =

√
cos2(ψ) +

α2

α1

sin2(ψ), h =
L

ξ
, β =

L

`
and q =

L2κ

α1τ
.

Using the numbers defined above, we can write (12) in the equivalent
form

qψT − c̃(ψ)(c̃(ψ)ψX)X +
1

2
h2 sin(2ψ)u2

X = 0, (X,T ) ∈ (0, 1)×R+ ,

(15)
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and for the boundary conditions (13),

ψX +
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 0, (16a)

ψX −
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 1. (16b)

2.2. Constant electric field approximation. The assumption that
the electric field remains constant, i.e., is unaffected by the state of the
director field, can be introduced by removing the coupling with Gauss’
law. The nondimensional electric field is then given by uX = 1, and we
can replace (15) with

qψT − c̃(ψ)(c̃(ψ)ψX)X +
1

2
h2 sin(2ψ) = 0, (X,T ) ∈ (0, 1)× R+ ,

(17)
endowed with the boundary condition (16).

2.3. One-constant approximation. A common simplification made
in the literature is the so-called one-constant approximation α1 = α2 =
α3. Under this assumption we have c̃(ψ) = 1, and the nondimensional
problem can be written as

qψT − ψXX +
1

2
h2 sin(2ψ) = 0, (X,T ) ∈ (0, 1)× R+ , (18)

with boundary conditions

ψX +
1

2
β sin(2ψ) = 0, X = 0, (19a)

ψX −
1

2
β sin(2ψ) = 0, X = 1. (19b)

Remark 2.1. A simple transformation X → X−1/2 and ψ → π/2−ψ
reveals that the stationary version of (18)–(19) is equivalent to the
problem studied by Bevilacqua and Napoli [2].

3. The numerical method

To define the numerical scheme, divide the interval [0, 1] into N cells
of length ∆X and choose a time step ∆T . This gives grid points

(Xi, T
n) = (i∆X,n∆T ),

where i = 0, . . . , N and n ∈ N. The numerical method defined below
will calculate values ψni that approximate the exact solution ψ on these
grid points.
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The discretization defined below is based on central differences. How-
ever, derivatives in space must be handled with care to accommo-
date the fact that the director describes the orientation of symmetric
molecules, i.e., n = −n. For example, ψn0 = 0 and ψn1 = π

2
describe

physically the same situation as ψn0 = 0 and ψn1 = 3π
2

, and should
thus give rise to the same elastic energy. Hence, the straightforward
discretization DXψ

n
i+ 1

2

= 1
∆X

(ψni+1 − ψni ) is adjusted to

DXψ
n
i+ 1

2
·∆X

= p[−π
2
,π
2

)(ψ
n
i+1 − ψni )

:=

{
(ψni+1 − ψni ) mod π if ((ψni+1 − ψni ) mod π) ∈ [0, π

2
),

((ψni+1 − ψni ) mod π)− π otherwise,

which guarantees DXψ
n
i+ 1

2

· ∆X ∈ [−π
2
, π

2
). For the discretization in

time such an adjustment is not necessary, because |ψn+1
i − ψni | < π/2

for sufficiently small time steps.
For better readability, define the averages

ψ
n+ 1

2
i =

1

2
(ψni + ψn+1

i ) , sin(2ψi)
n+ 1

2 =
1

2

(
sin(2ψni ) + sin(2ψn+1

i )
)
,

c
n+ 1

2
i =

1

2

(
c̃(ψni ) + c̃(ψn+1

i )
)
, c

n+ 1
2

i+ 1
2

=
1

2

(
c
n+ 1

2
i + c

n+ 1
2

i+1

)
,

and the difference operators

DTψ
n+ 1

2
i =

1

∆T
(ψn+1

i − ψni ) , DXψ
n+ 1

2

i+ 1
2

=
1

∆X
p[−π

2
,π
2

)(ψ
n+ 1

2
i+1 − ψ

n+ 1
2

i ) ,

and accordingly,

DX(cDXψ)
n+ 1

2
i =

1

∆X

(
c
n+ 1

2

i+ 1
2

(DXψ)
n+ 1

2

i+ 1
2

− cn+ 1
2

i− 1
2

(DXψ)
n+ 1

2

i− 1
2

)
.

The following implicit finite difference scheme discretizes the nonlinear
model with constant electric field (17) and weak anchroing boundary
conditions (16).

Definition 1 (The numerical method). Let some initial data ψ0
i , i =

0, . . . , N be given. For each time step n = 1, 2, 3, . . . , define ψn+1
1 , . . . , ψn+1

N−1

by

qDTψ
n+ 1

2
i − cn+ 1

2
i DX(cDXψ)

n+ 1
2

i +
1

2
h2 sin(2ψi)

n+ 1
2 = 0 , (20)
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and ψn+1
0 , ψn+1

N by

DXψ
n+ 1

2
1
2

+
β

2c
n+ 1

2
1
2

c
n+ 1

2
0

sin(2ψ
n+ 1

2
0 ) = 0 , (21a)

DXψ
n+ 1

2

N− 1
2

− β

2c
n+ 1

2

N− 1
2

c
n+ 1

2
N

sin(2ψ
n+ 1

2
N ) = 0 . (21b)

A corresponding discrete version of the energy (11) is given by

En =
∆X

2

(
N−1∑

i=1

(
cn
i+ 1

2

)2(
DXψ

n
i+ 1

2

)2 − h2

(
ε⊥
εa

+ cos2(ψni )

))

+
β

2

(
cos2(ψn0 ) + cos2(ψnN)

)
.

(22)

In the following we will show that the implicit equations that define
the scheme have a unique solution. Furthermore, we will prove that
scheme conserves approximately a discrete energy and converges to the
exact solution as ∆X and ∆T go to zero.

3.1. Well-definedness of the scheme. For fixed ψni , i = 0, . . . , N ,
equations (20)–(21) can be written in the fixed point form

(ψn+1
0 , . . . , ψn+1

N ) = F(ψn+1
0 , . . . , ψn+1

N ) ,

where F is given by

(F(ψn+1
0 , . . . , ψn+1

N ))i = ψni +
∆T

q
c
n+ 1

2
i DX(cDXψ)

n+ 1
2

i

− ∆T

2q
h2 sin(2ψi)

n+ 1
2 , (23a)

for i = 1, . . . , N − 1, and, for ∆X sufficiently small,

(F(ψn+1
0 , . . . , ψn+1

N ))0 = −ψn0 + 2ψ
n+ 1

2
1 +

β∆X

c
n+ 1

2
1
2

c
n+ 1

2
0

sin(2ψ
n+ 1

2
0 ) ,

(23b)

(F(ψn+1
0 , . . . , ψn+1

N ))N = −ψnN + 2ψ
n+ 1

2
N−1 +

β∆X

c
n+ 1

2

N− 1
2

c
n+ 1

2
N

sin(2ψ
n+ 1

2
N ) .

(23c)

Hence, (20)–(21) have a solution if F is a contraction.
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To show this, first define the constants

|c̃(ψ)| =
√

cos2(ψ) +
α2

α1

sin2(ψ) ≤ max

(
1,

√
α2

α1

)
=: C1 ,

|c̃′(ψ)| =
|α2

α1
− 1||sin(ψ) cos(ψ)|

√
cos2(ψ) + α2

α1
sin2(ψ)

≤
1
2
|α2

α1
− 1|

min
(

1,
√

α2

α1

) =: C2 ,

|c̃(ψ)| =
√

cos2(ψ) +
α2

α1

sin2(ψ) ≥ min

(
1,

√
α2

α1

)
=: C3 ,

and note that if ‖ψn‖l∞ ≤ K0, for some constant K0, then

|F(ψn+1)i| ≤ K0 +
∆T

q
C2

1

1

∆X2
(2(K0 + ‖ψn+1‖l∞)) +

∆T

2q
h2 ,

for i = 1, . . . , N − 1,

|F(ψn+1)0| ≤ K0 + 2

(
1

2
(K0 + F(ψn+1)1)

)
+

β

C2
3

∆X ,

and similarly for |F(ψn+1)N |.
Next, choose some K1, K2, K3 > 0 and ∆X, ∆T , such that

∆X ≤ C2
3

β
K1 , (24a)

∆T ≤ 2q

h2
K2 , (24b)

∆T ≤ q

2C2
1

K3∆X2

K0 + (3K0 +K1 +K2 +K3)
. (24c)

Then, for ‖ψn+1‖l∞ ≤ 3K0 +K1 +K2 +K3, we have

|F(ψn+1)i| ≤ K0 +K2 +K3 , for i = 1, . . . , N − 1,

|F(ψn+1)0| ≤ K0 + 2 · 1

2
(K0 + (K0 +K2 +K3)) +K1

= 3K0 +K1 +K2 +K3 ,

|F(ψn+1)N | ≤ 3K0 +K1 +K2 +K3 ,

i.e., ‖F(ψn+1)‖l∞ ≤ 3K0 +K1 +K2 +K3.
Since ψ describes the angle of the director, we can choose K0 = π.

For any K > 3K0, set Ki = K/3 −K0 for i = 1, 2, 3, and choose ∆T
and ∆X according to (24). Above we have shown that F maps

BK := {ψn+1|‖ψn+1‖l∞ ≤ K}
on (a subset of) itself. The following theorem states that F is also a
contraction on BK , from which follows that F has a unique fix point
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in BK and hence the implicit equations that define the scheme have a
unique solution.

Theorem 1. The function F defined in (23) is a contraction on BK

with respect to the l∞-norm if ∆T and ∆X satisfy (24) and in addition,

∆T

(
CA

∆X2
+ CB1

)
+ ∆XCB2 < 1

for CA, CB1, CB2 defined by (25) below, depending only on K and the
physical constants α1, α2, h, q, and β.

Proof. In the following, we will prove that for arbitrary ψn+1 and ψ̂n+1,

‖F(ψ̂n+1)−F(ψn+1)‖l∞ ≤ C‖ψ̂n+1 − ψn+1‖l∞ ,

for some C < 1. Note that ψn in the definition of F is the same for

both F(ψn+1) and F(ψ̂n+1). For the sake of brevity, define ĉ
n+ 1

2
i =

(c̃(ψni ) + c̃(ψ̂n+1
i ))/2.

For i = 1, . . . , N − 1,

|F(ψ̂n+1)i −F(ψn+1)i| ≤
∆T

q

(
|ĉn+ 1

2
i − cn+ 1

2
i ||DX(ĉDXψ̂)

n+ 1
2

i |

+ |cn+ 1
2

i ||DX((ĉ− c)DXψ̂)
n+ 1

2
i |

+ |cn+ 1
2

i ||DX(c(DX(ψ̂ − ψ)))
n+ 1

2
i |

)

+
h2∆T

2q
|sin(2ψi)

n+ 1
2 − sin(2ψ̂i)

n+ 1
2 | .

This can be further bounded by

|ĉn+ 1
2

i − cn+ 1
2

i ||DX(ĉDXψ̂)
n+ 1

2
i |

≤ 1

∆X
‖c̃′‖l∞‖c̃‖l∞|ψ̂n+1

i − ψn+1
i |‖DXψ̂

n+ 1
2

i+ 1
2

‖l∞

≤ 1

2∆X
C1C2|ψ̂n+1

i − ψn+1
i |(‖DXψ̂

n+1
i+ 1

2

‖l∞ + ‖DXψ
n
i+ 1

2
‖l∞)

≤ C1C2

∆X2
(‖ψ̂n+1‖l∞ + ‖ψn‖l∞)‖ψ̂n+1 − ψn+1‖l∞ ,
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and in the same manner

|cn+ 1
2

i ||DX((ĉ− c)DXψ̂)
n+ 1

2
i | ≤ C1C2

∆X2
(‖ψ̂n+1‖l∞ + ‖ψn‖l∞)

× ‖ψ̂n+1 − ψn+1‖l∞ ,

|cn+ 1
2

i ||DX(c(DX(ψ̂ − ψ)))
n+ 1

2
i | ≤ 2C2

1

∆X2
‖ψ̂n+1 − ψn+1‖l∞ ,

|sin(2ψi)
n+ 1

2 − sin(2ψ̂i)
n+ 1

2 | ≤ ‖ψ̂n+1 − ψn+1‖l∞ .

Putting the above estimates together, we arrive at

|F(ψn+1)i −F(ψ̂n+1)i|

≤
(

2

q
C1(C1 + C2(‖ψ̂n+1‖l∞ + ‖ψn‖l∞))

∆T

∆X2
+
h2

2q
∆T

)
‖ψ̂n+1 − ψn+1‖l∞ ,

for i = 1, . . . , N − 1. For i = 0,

|F(ψn+1)0 −F(ψ̂n+1)0| ≤ |ψn+1
1 − ψ̂n+1

1 |

+ β∆X

(∣∣∣∣
1

ĉ
n+ 1

2
1
2

− 1

c
n+ 1

2
1
2

∣∣∣∣
1

ĉ
n+ 1

2
0

|sin(2ψ̂
n+ 1

2
0 )|

+
1

c
n+ 1

2
1
2

∣∣∣∣
1

ĉ
n+ 1

2
0

− 1

c
n+ 1

2
0

∣∣∣∣|sin(2ψ̂
n+ 1

2
0 )|

+
1

c
n+ 1

2
1
2

1

c
n+ 1

2
0

∣∣∣sin(2ψ̂
n+ 1

2
0 )− sin(2ψ

n+ 1
2

0 )
∣∣∣
)
.

The terms on the right-hand side can be bounded by

|ψn+1
1 − ψ̂n+1

1 | = |F(ψn+1)1 −F(ψ̂n+1)1|

≤
(

2

q
C1(C1 + C2(‖ψ̂n+1‖l∞ + ‖ψn‖l∞))

∆T

∆X2
+
h2

2q
∆T

)

× ‖ψ̂n+1 − ψn+1‖l∞ ,

∣∣∣∣
1

ĉ
n+ 1

2
1
2

− 1

c
n+ 1

2
1
2

∣∣∣∣
1

ĉ
n+ 1

2
0

|sin(2ψ̂
n+ 1

2
0 )| =

|cn+ 1
2

1
2

− ĉn+ 1
2

1
2

|

ĉ
n+ 1

2
1
2

c
n+ 1

2
1
2

ĉ
n+ 1

2
0

|sin(2ψ̂
n+ 1

2
0 )|

≤ C2

2C3
3

‖ψ̂n+1 − ψn+1‖l∞ ,
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1

c
n+ 1

2
1
2

∣∣∣∣
1

ĉ
n+ 1

2
0

− 1

c
n+ 1

2
0

∣∣∣∣|sin(2ψ̂
n+ 1

2
0 )| = |c

n+ 1
2

0 − ĉn+ 1
2

0 |
c
n+ 1

2
1
2

ĉ
n+ 1

2
0 c

n+ 1
2

0

|sin(2ψ̂
n+ 1

2
0 )|

≤ C2

2C3
3

‖ψ̂n+1 − ψn+1‖l∞ ,

1

c
n+ 1

2
1
2

1

c
n+ 1

2
0

∣∣∣sin(2ψ̂
n+ 1

2
0 )− sin(2ψ

n+ 1
2

0 )
∣∣∣ ≤ 2

C2
3

‖ψ̂n+1 − ψn+1‖l∞ .

Hence we get the estimate

|F(ψn+1)0 −F(ψ̂n+1)0|

≤
(

2

q
C1(C1 + C2(‖ψ̂n+1‖l∞ + ‖ψn‖l∞))

∆T

∆X2
+
h2

2q
∆T

+

(
β
C2

C3
3

+
2β

C2
3

)
∆X

)
‖ψ̂n+1 − ψn+1‖l∞ .

Analogously, one can derive a bound for i = N . Altogether,

‖F(ψ̂n+1)−F(ψn+1)‖l∞

≤
(
CA

∆T

∆X2
+ CB1∆T + CB2∆X

)
‖ψ̂n+1 − ψn+1‖l∞ ,

where

CA =
2

q
C1(C1 + C2(K + π)) , (25a)

CB1 =
h2

2q
, (25b)

CB2 = β
C2

C3
3

+
2β

C2
3

, (25c)

and hence, for suitable ∆T and ∆X, the function F is a contraction.
�

In practice, we solve the implicit equations (20)–(21) using a Newton-
Rhapson iteration.

3.2. Varying electric field. The numerical method from Definition
1 can be extended to solve the full model (15)–(16). Given a numerical

98 Paper B: The dynamics of the weak Fréedericksz transition
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solution ψn = (ψn0 , . . . , ψ
n
N) for the director field, the discrete electric

field is approximated as

(uX,i)
n =

1

∆X

1

d̃(ψni )

(
N∑

j=0

1

d̃(ψnj )

)−1

, (26)

where d̃(ψ) is the nondimensional version of d(ψ),

d̃(ψ) = 1 +
εa
ε⊥

cos2(ψ) .

By defining the shorthand notation

(u2
X,i)

n+ 1
2 =

1

2

(
(unX,i)

2 + (un+1
X,i )2

)
, (27)

we can propose the following numerical scheme:

Definition 2 (The numerical method with coupled electric field). Let
some initial data ψ0

i , i = 0, . . . , N be given. For each time step n =
1, 2, 3, . . . , define (uX,1)n, . . . , (uX,N−1)n by (26), ψn+1

1 , . . . , ψn+1
N−1 by

qDTψ
n+ 1

2
i −cn+ 1

2
i DX(cDXψ)

n+ 1
2

i +
1

2
h2 sin(2ψi)

n+ 1
2 (u2

X,i)
n+ 1

2 = 0, (28)

and ψn+1
0 , ψn+1

N by (21).

Again, the time stepping can be performed by solving the 2N non-
linear implicit equations(26), (28), and (21) for ψn+1 and unX .

4. Numerical experiments

The purpose of this section is to perform numerical experiments on
the dynamics of the weak Fréedericksz transition, using the numerical
scheme described in Section 3. Two experiments will be considered,
illustrated in Figure 2. Both involve studying the evolution of the di-
rector configuration when h and β are changed to cross the Fréedericksz
threshold hF and the saturation threshold hS, given implicitly by

hF =

√
α1

α2

β cot

(√
α1

α2

hF

2

)
and hS = β coth

(
hS

2

)
, (29)

respectively [9, 13].
The first experiment illustrates the classic weak Fréedericksz tran-

sition shown in Figure 1. The director state is initially homogeneous
(ψ = π/2) and h < hF. The field is then increased gradually until it
is above the Fréedericksz threshold, and finally above the saturation
threshold.

The second experiment involves a director initially in the homeotropic
(ψ = 0) state. First, the liquid crystal is cooled, giving an increase in
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(2,13) (10,13)

(10,8)
(2,5)

(3,5)
(6,5)

Figure 2. The two basic numerical experiments. Bot-
tom: The anchoring β = 5 is kept constant while the field
is increased gradually until it gets above hF, and then fi-
nally until it crossed the saturation threshold hS. Top:
A cooling increases the anchoring to cross the saturation
threshold, then a field reduction brings the state below
hF. Dashed lines indicate the Fréedericksz threshold hF
for α2/α1 = 1± 0.4.

the anchoring strength β. Then, the field is reduced until h < hF,
where the ground state is the homogeneous configuration.

A constant equilibrium state ψ is a stationary solution to (2), inde-
pendently of the values of h and β. In order to facilitate the transition
from a non-stable equilibrium state, we therefore add small stochas-
tic perturbations to the homogeneous (ψ = π/2) and the homeotropic
(ψ = 0) initial data in the numerical experiments. Specifically, we
generate a zero-averaged fractional Brownian motion

{Sn}Nn=1,

N∑

n=1

Sn = 0, |Sn+1 − Sn| ≤ 1, (30)

with Hurst parameter H = 0.9. We then let the discrete initial data
be given as

ψ0
i =

π

2
+ δ Si + r δS, (31)

where r ∈ [−0.5, 0.5] is a uniformly distributed random number and
δ, δS > 0 are small parameters. In the following we will use δ = 0.01
and δS = 0.015.

All numerical simulations in this section are performed using N =
100 computational cells, if not stated otherwise. The time step is set
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according to

∆T = 0.3
∆X

1 + α2/α1

. (32)

The dimensionless number q is set to 1 for all experiments. For typ-
ical values of κ ≈ 1× 10−1 and α1 ≈ 1× 10−11, and assuming L =
1× 10−6 m, this implies a characteristic time scale τ ≈ 1× 10−2 s.

For the time stepping, the implicit N nonlinear equations (including
the boundary conditions) are solved using a standard Newton–Raphson
scheme. In each time step, the configuration from the previous step is
taken as an initial guess and the iteration is performed until machine
precision has been reached.

4.1. Convergence. The convergence behavior of the implicit scheme
is investigated in the following. A numerical solution was calculated
for a perturbed homogeneous (ψ = π/2) initial data with h = 4 and
β = 5 and grid size N = N0 = 100. The grid was refined according
to Nk = 2kN0 with k = 0, · · · , 4, generating numerical solutions ψ(k)

at T = 1. The error between consecutive solutions was calculated
according to

Ek =
‖ψ(k) − ψ(k−1)‖L2(0,1)

‖ψ(k−1)‖L2(0,1)

. (33)

In addition to the convergence of the numerical solutions, we also
verify that the energy law (11) is fulfilled in the discrete sense. Speci-
fially, we look at the residual

Resn+ 1
2 = DTE

n+ 1
2 − 1

2
q∆X

N∑

i=0

DTψ
n+ 1

2
i , (34)

where En+ 1
2 = (En + En+1)/2 is the discrete energy defined in (22),

and calculate ∆T
∑

n(Resn+ 1
2 )2 as the grid is refined. Figure 3 shows

the convergence results, and it indicates that the numerical solutions
converge to second order both in the norm and in the energy balance.

4.2. Weak Fréedericksz transition. In order to verify the basic
force balance of the weak Fréedericksz transtion shown in Figure 1,
we perform the following numerical experiment: Initially, we set h = 2
and β = 5, consistent with a stable homogeneous (ψ = π/2) configura-
tion. Also, for simplicity, we assume the one-constant approximation.
At T ∈ (0.5, 1) the field h is increased linearly to h = 3, which is be-
yond the critical thereshold hF. The director field is then allowed to
stabilize until T = 3.5, for which the field is again increased linearly
until it reaches a value beyond the saturation threshold (h = 6). Fig-
ure 4 shows the evolution of both the director configuration and the
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Figure 3. Convergence of the error under grid refine-
ment (33) at T = 1 (left) and the integrated residual
of the discrete energy law (34) from T = 0 to T = 1
(right). Dashed lines indicate the slope corresponding to
second-order convergence.

energy. The behavior is as expected according to the classical picture
of the weak Fréedericksz transition.
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Figure 4. Evolution of the director field (left) and the
discrete energy (22) (right) for the gradual increase of the
electric field from h = 2 to h = 6. The anchoring is held
constant at β = 5 and the one-constant approximation
is assumed.

4.3. Relaxing the one-constant approximation. The basic tran-
sition experiment from Section 4.2 can also be studied numerically in
the nonlinear case, i.e., by letting α1 6= α2. The extrapolation length
and coherence length will be defined using α1 as before for comparison.

Figure 5 shows a snapshot of the director configuration during the
Fréedericksz transition (T = 2) and during the saturation (T = 3.75).
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In the first case the influence of the nonlinearity is significant, even
for modest perturbations from the one-constant approximation. For
comparison, α2/α1 ≈ 0.75 at room temperature for the liquid crystal
5CB [8]. Note that in general both the equilibrium configurations and
the time evolution will be different when replacing the one-constant
approximation with an α2/α1 6= 1.

0.0 0.5 1.0

X

π/2

π

ψ

0.0 0.5 1.0

X

π/2

π

ψ

α2/α1 =0.6

α2/α1 =0.8

α2/α1 =1.0

α2/α1 =1.2

α2/α1 =1.4

Figure 5. The director configuration at T = 2 (left)
and at T = 3.75 (right) for the weak Fréedericksz transi-
tion experiment for different values of α2/α1. The electric
field is assumed constant.

4.4. Coupling with an electric field. Using the method from Sec-
tion 3.2, the weak transition experiment can also be performed with a
coupled electric field. Since in this case the value of the electric field
is not given a priori, the parameter h must be interpreted in a slightly
weaker sense. Since it is based on the applied voltage difference V0,
h now represents represents the average field strength V0/L, not the
actual electric field E since this will vary both in space and in time.

Figure 6 shows the director configuration and the electric field at
T = 2, for different values of the relative electric anisotropy εa/ε⊥. For
simplicity, the one-constant approximation (α1 = α2) was used. The
case εa/ε⊥ = 0 represents an uncoupled electric field, and the results
indicate significant differences in the director only for large values of
the electric anisotropy. As a comparison, εa/ε⊥ ≈ 1.64 at room tem-
perature for the liquid crystal 5CB [8].

Explicit general solutions for the case with a fully coupled electric
field are not available. However, certain approximate solutions can be
found given simplifying assumptions. In particular, Napoli [9] considers
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Figure 6. The director configuration (left) and the
electric potential (right) at T = 2 for the weak
Fréedericksz transition experiment for different values of
εa/ε⊥ using the one-constant approximation.

the fully coupled problem with an applied electric field. Using asymp-
totic matching, an explicit approximate solution is calculated for large
voltages V0 and assuming the one-constant approximation.

To compare with the approximate solution, the fully coupled problem
was solved using h = 25 and β = 30 with the one-constant approxi-
mation. Figure 7 shows the evolution of the director configuration
compared with the approximation. A small, but noticable, difference
can be observed between the steady-state solution and the large-voltage
approximation.

4.5. Solutions of different parity. In this experiment we consider a
director field initially in the homeotropic state with h = 10 and β = 8.
At T ∈ [0, 0.5] we increase β linearly to 13, simulating a cooling of the
sample. The stronger boundary anchoring will then initiate an inverse
Fréedericksz transition near the ends of the sample, giving a nontrivial
even or odd symmetric state, depending on the initial perturbation. At
T ∈ [0.8, 1.2] we reduce h linearly to 2, representing a gradual reduction
in the electric field. Because of the reduced electric bulk energy, the
new ground state will then be a homogeneous director configuration.

The results show that, depending on the initial perturbation, the
final state might end up in the ground state or an excited high-energy
state. Figure 8 shows that for one of the perturbations (solid lines) we
first have a transition to the even symmetric ground state for β = 13
and h = 10 at around T = 0.6. When the electric field is reduced at
T = 0.8 the director then relaxes to the homogeneous ground state.
For the second random initial perturbation the cooling at T ∈ [0, 0.5]
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Figure 7. The evolution of the director configuration
for the fully coupled problem using h = 25 and β =
30 and assuming the one-constant approximation. The
initial data was a perturbed homogeneous configuration.
The dotted line is the analytical approximation given by
Napoli [9].

leaves the director in an excited odd symmetric state. When the field is
reduced we then obtain an excited state also for β = 13, h = 2. Figure
9 shows the different contributions to the energy, for both solutions, as
a function of time.
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(a) Initial pertubations (T = 0)
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T=1.4

T=2.0

(b) Director evolution

Figure 8. The evolution of the director field for the
two different initial pertubarions. The initial perturba-
tion displayed with the solid (respectively dashed) line at
the left corresponds to the evolution showed with solid
(respectively dashed) lines to the right.

These results were reproduced in the nonlinear case (α2/α1 = 0.75)
and with a coupled electric field with εa/ε⊥ = 1.64. The director
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Figure 9. Evolution of the different terms in the dis-
crete energy (22) as a function of time for two different
realizations of the initial data.

evolution was almost indistinguishable from that seen in Figure 8, and
is omitted here for brevity. These results indicate that odd director
states also exist for models more general than the linear uncoupled
case that was analyzed in [2].

5. Summary

We have studied the dynamics of the director field for the classical
Fréedericksz transition in the bend-splay geometry with weak anchor-
ing. For the dimensionless problem we have derived a simple, robust
and efficient numerical method. The scheme can be used both for
unequal elastic constants and with a coupled electric field. We have
proved that the nonlinear discrete equations are well-posed for suffi-
ciently small time steps.

Numerical experiments have been performed for basic transition ex-
periments where the applied electric field and the anchoring strength
are varied. Herein, the transition from a ground state to an excited
(odd parity) state have been observed in a basic cooling experiment.
The existence of such states has recently been shown experimentally [7]
and theoretically in the stationary case [2]. However, to the best of the
authors’ knowledge, this is the first dynamic study of how excited (odd
parity) director states manifest in the weak Fréedericksz transition.

Moreover, the sensitivity of the time evolution of the weak Fréedericksz
transition with regard to common modeling assumptions has been in-
vestigated. Herein, the one-constant approximation was shown to im-
pact the dynamics of the problem when using elastic constants com-
parable to those of the liquid crystal 5CB. Also, to some extent, the
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problem was sensitive to the assumption of a constant electric field.
However, substantial deviations when coupling with Maxwell’s equa-
tions could only be observed for very high values of εa/ε⊥.

Acknowledgements

The work of Peder Aursand and Johanna Ridder has been funded by
the Research Council of Norway (project numbers 213638 and 214495,
respectively).

References

[1] P Aursand and U. Koley. Local discontinuous Galerkin methods
for a nonlinear variational wave equation modeling liquid crystals.
Preprint, 2014.

[2] G. Bevilacqua and G. Napoli. Parity of the weak fréedericksz
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Local discontinuous Galerkin schemes for a nonlinear variational
wave equation modeling liquid crystals

Peder Aursand and Ujjwal Koley
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Preface

The research that makes up this paper dates back to the earliest days of
my PhD work. Looking at the mathematical issues regarding conservative
and dissipative weak solutions to the 1D variational wave equation, we be-
came interested in how to go about numerically solving these initial value
problems. Specifically we asked if we could design numerical schemes that
are guaranteed to either conserve or dissipate a discrete version of the en-
ergy, and if so, can we use these to numerically obtain conservative and
dissipative weak solutions?

Different approaches were tested together with Dr. Koley and under the
advice of Professor Siddhartha Mishra. The decision was made to look at
DG methods because of their flexibility and high accuracy. The field of
DG was largely unknown to me initially, and I spent a significant amount
of time familiarizing myself with the formalism, notation, and techniques.
Also, developing the actual object oriented DG code from the bottom up was
a huge learning experience for me. In the end, the results were interesting
and shows promise for the role of numerics in the investigation of these
equations.
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LOCAL DISCONTINUOUS GALERKIN SCHEMES FOR
A NONLINEAR VARIATIONAL WAVE EQUATION

MODELING LIQUID CRYSTALS

P. AURSAND AND U. KOLEY

Abstract. We consider a nonlinear variational wave equation that models the dynamics
of nematic liquid crystals. Discontinuous Galerkin schemes that either conserve or dissi-
pate a discrete version of the energy associated with these equations are designed. Nu-
merical experiments illustrating the stability and efficiency of the schemes are presented.
An interesting feature of these schemes is their ability to approximate two distinct weak
solutions of the underlying system.

1. Introduction

1.1. The model. The dynamics of liquid crystals is of utmost significance to the makers
of visual displays such as LCDs. Liquid crystals are mesophases, i.e. intermediate states of
matter between the liquid and the crystal phase. They exhibit characteristics of fluid flow
and have optical properties typically associated with crystals. One of the most common
phases in liquid crystals is the nematic phase. Nematic liquid crystals consist of strongly
elongated molecules that can be considered invariant under rotation by an angle of π. The
flow of a liquid crystal is commonly described by two linearly independent vector fields;
one describing the fluid flow and one describing the orientation of the so-called director
field that gives the orientation of the rod-like molecule. In this paper we will only consider
stationary flow, and hence focus exclusively on the dynamics of the director field

n = n(x, t) ∈ S2.

Given a director field n, the well known Oseen-Frank free-energy density W associated
with this field is given by

W(n,∇n) = α |n× (∇× n)|2 + β (∇ · n)2 + γ (n · (∇× n))2 . (1.1)

The positive constants α, β and γ are elastic constants of the liquid crystal. Note that
each term on the right hand side of (1.1) arises from different types of distortions. In
particular, the term α |n× (∇× n)|2 corresponds to the bending of the medium, the term
β (∇ · n)2 corresponds to splay, and the term γ (n · (∇× n))2 corresponds to the twisting
of the medium.

For the special case of α = β = γ, the free-energy density (1.1) reduces to

W(n,∇n) = α |∇n|2 ,

Date: June 15, 2015.
1
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which corresponds to the potential energy density used in harmonic maps into the sphere
S2. The constrained elliptic system of equations for n, derived from the potential (1.1)
using a variational principle, and the parabolic flow associated with it, are widely studied,
see [6, 11, 13] and references therein.

In the regime where inertial effects are dominating over viscosity, it is natural to model
the propagation of orientation waves in the director field by employing the principle of
least action [26], i.e.

δ

δn

∫∫ (
n2
t −W(n,∇n)

)
dx dt = 0, n · n = 1. (1.2)

Again, in the special case of α = β = γ, this variational principle (1.2) yields the equation
for harmonic wave maps from (1 + 3)-dimensional Minkowski space into the two sphere,
see [9, 27, 28] and references therein.

In this paper, we will restrict ourselves to one-dimensional planar waves; the director
field n is given by

n(x, t) = cosψ(x, t)ex + sinψ(x, t)ey,

where ex and ey are the coordinate vectors in the x and y directions, respectively. That
is to say the dynamics of the liquid crystal is described by some unknown function ψ,
which represents the angle of the director field relative to the x-direction. In this case, the
variational principle (1.2) reduces to [26, 21, 16]





ψtt − c(ψ) (c(ψ)ψx)x = 0, (x, t) ∈ ΠT ,

ψ(x, 0) = ψ0(x), x ∈ R,
ψt(x, 0) = ψ1(x), x ∈ R,

(1.3)

where ΠT = R× [0, T ] with fixed T > 0 , and the wave speed c(ψ) given by

c2(ψ) = α cos2 ψ + β sin2 ψ. (1.4)

The form (1.3) is the standard form of the nonlinear variational wave equation considered
in the literature.

For the one-dimensional planar waves the energy is given by

E(t) =

∫

R

(
ψ2
t + c2(ψ)ψ2

x

)
dx. (1.5)

A simple calculation shows that smooth solutions of the variational wave equation (1.3)
satisfy

dE(t)

dt
= 0. (1.6)

1.2. Mathematical difficulties. Despite its apparent simplicity, the mathematical anal-
ysis of (1.3) is complicated. Independently of the smoothness of the initial data, due to
the nonlinear nature of the equation, singularities may form in the solution ψx. Therefore,
we consider solutions in the weak sense:
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Definition 1.1. Set ΠT = R× (0, T ). A function

ψ(t, x) ∈ L∞
(
[0, T ];W 1,p(R)

)
∩ C(ΠT ), ψt ∈ L∞ ([0, T ];Lp(R)) ,

for all p ∈ [1, 3 + q], where q is some positive constant, is a weak solution of the initial
value problem (1.3) if it satisfies:

D.1 For all test functions ϕ ∈ D(R× [0, T ))∫∫

ΠT

(
ψtϕt − c2(ψ)ψxϕx − c(ψ)c′(ψ)(ψx)

2ϕ
)
dx dt = 0. (1.7)

D.2 ψ(·, t)→ u0 in C ([0, T ];L2(R)) as t→ 0+.
D.3 ψt(·, t)→ v0 as a distribution in ΠT when t→ 0+.

An important aspect of the variational wave equation is that there exist both conservative
and dissipative weak solutions, see e.g. [30] for a more detailed discussion. To illustrate
this difference, one can consider initial data for which the solution vanishes identically
at some specific (finite) time. At this point, at least two possibilities exist: to continue
with the trivial zero solution, termed as the dissipative solution. Alternatively, one can
show that there exists a nontrivial solution that appears as a natural continuation of the
solution prior to the critical time. This solution is denoted the conservative solution as
it preserves the total energy (1.5) of the system. This dichotomy makes the question of
well-posedness of the initial value problem (1.3) very difficult. Additional admissibility
conditions are needed to select a physically relevant solution. The specification of such
admissibility criteria is still open.

Although the problem of global existence and uniqueness of solutions to the Cauchy
problem of the nonlinear variational wave equation (1.3) is still open, several recent papers
have explored related questions or particular cases of (1.3). It has been demonstrated in
[17] that (1.3) is rich in structural phenomena associated with weak solutions. In fact, by
rewriting the highest derivatives of (1.3) in conservative form

ψtt −
(
c2(ψ)ψx

)
x

= −c(ψ)c′(ψ)ψ2
x,

we see that the strong precompactness in L2 of the derivatives {ψx} of a sequence of
approximate solutions is essential in establishing the existence of a global weak solution.
However, the equation shows the phenomenon of persistence of oscillations [12] and anni-
hilation in which a sequence of exact solutions with bounded energy can oscillate forever
so that the sequence {ψx} is not precompact in L2. Still, the weak limit of the sequence is
a weak solution.

There has been a number of papers concerning the existence of weak solutions of the
Cauchy problem (1.3), starting with the papers by Zhang and Zheng [30, 31, 32, 33, 34, 35],
Bressan and Zheng [7] and Holden and Raynaud [19]. In [34], the authors show existence
of a global weak solution using the method of Young measures for initial data ψ0 ∈ H1(R)
and ψ1 ∈ L2(R). The function c(ψ) is assumed to be smooth, bounded, positive with
derivative that is non-negative and strictly positive on the initial data ψ0. This means
that the analysis in [30, 31, 32, 33, 34, 35] does not directly apply to (1.3) when using the
physical wave speed (1.4).
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A different approach to the study of (1.3) was taken by Bressan and Zheng [7]. Here, they
rewrote the equation in new variables such that the singularities disappeared. They show
that for ψ0 absolutely continuous with (ψ0)x, ψ1 ∈ L2(R), the Cauchy problem (1.3) allows
a global weak solution with the following properties: the solution ψ is locally Lipschitz
continuous and the map t→ u(t, ·) is continuously differentiable with values in Lploc(R) for
1 ≤ p < 2.

In [19], Holden and Raynaud prove the existence of a global semigroup for conservative
solutions of (1.3), allowing for concentration of energy density on sets of zero measure.
Furthermore they also allow for initial data ψ0, ψ1 that contain measures. The proof in-
volves constructing the solution by introducing new variables related to the characteristics,
leading to a characterization of singularities in the energy density. They also prove that
energy can only focus on a set of times of zero measure or at points where c′(ψ) vanishes.

1.3. Numerical Schemes. There are no elementary and explicit solutions available for
(1.3), except for the trivial case where c is constant. Consequently, robust numerical
schemes for approximating the variational wave equation are very important in the study
of nematic liquid crystals. However, there is a paucity of efficient numerical schemes
for these equations. Also, traditional finite difference schemes will not yield conservative
solutions, but rather dissipative solutions due to the intrinsic numerical diffusion in these
methods.

Within the existing literature we can refer to [16], where the authors present some nu-
merical examples to illustrate their theory. In recent years, a semi-discrete finite difference
scheme for approximating one-dimensional equation (1.3) was considered in [20]. The au-
thors were even able to prove convergence of the numerical approximation, generated by
their scheme, to the dissipative solution of (1.3). However, the underlying assumptions
on the wave speed c (positivity of the derivative of c) precludes consideration of realistic
wave speeds given by (1.4). Another recent paper dealing with numerical approximation
of (1.3) is [19]. Here, the authors use their analytical construction to define a numerical
method that can approximate the conservative solution. However, the method is compu-
tationally very expensive as there is no time marching. Another recent paper [22] deals
with first order finite different schemes based on either the conservation or the dissipa-
tion of the energy associated with (1.3). In the one-dimensional case, they rewrote the
variational wave equation (1.3) in the form of two equivalent first-order systems. Energy
conservative as well as energy dissipative schemes approximating both these formulations
were derived. Moreover, they also designed an energy conservative scheme based on a
Hamiltonian formulation of the variational wave equation.

Furthermore, there are some works on the Ericksen–Leslie (EL) equations [1], a simple
set of equations describing the motion of a nematic liquid crystal. In [5], authors have
presented a finite element scheme for the EL equations. Their approximations are based
on the ideas given in [3] which utilize the Galerkin method with Lagrange finite elements
of order 1. Convergence, even convergence to measure-valued solutions, of such schemes is
an open problem. In [2], a saddle-point formulation was used to construct finite element
approximate solutions to the EL equations.
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A penalty method based on well-known penalty formulation for EL equations has been
introduced in [23] which uses the Ginzburg–Landau function. Convergence of such approx-
imate solutions, based on an energy method and a compactness result, towards measure
valued solutions has been proved in [24].

1.4. Scope and outline of the paper. In view of the above discussion, there seem to
exist no robust and efficient high-order numerical schemes currently available for solving the
nonlinear variational wave equation (1.3). Furthermore, one can expect conservative as well
as dissipative solutions of the variational wave equation (1.3) after singularity formation.
Hence, there is a need for higher-order schemes (energy conservative and energy dissipative)
that approximate these different types of solutions. Typically, energy conservative schemes
produce oscillations at shocks. This is expected as energy needs to be dissipated at shocks.
A suitable numerical diffusion operator added to energy conservative scheme results in a
energy stable scheme. To the best of our knowledge, this is the first attempt to construct
high-order conservative and dissipative schemes for (1.3).

We will require our numerical methods to be shock capturing, exhibit high-order ac-
curacy and low numerical dissipation away from shocks. Shock capturing Runge-Kutta
Discontinuous Galerkin methods are high-order accurate away from discontinuities, thus
they are a candidate method for carrying out such simulations. Discontinuous Galerkin
(DG) methods were first introduced by Hill and Reed [18] for the neutron transport equa-
tions (linear hyperbolic equations). These methods were then generalized for systems of
hyperbolic conservation laws by Cockburn and co-workers [10] and references therein. In
space the solution is approximated using piecewise polynomials on each element. Exact or
approximate Riemann solvers from finite volume methods are used to compute the numer-
ical fluxes between elements. Limiters or shock capturing operators are used to achieve
non-oscillatory approximate solutions, if they contain shocks [8]. For these reasons, DG
methods can be seen as generalization of finite volume methods to higher order.

Given this background, we present a class of schemes in this paper that has following
properties:

(1) All the schemes are (formally) high-order accurate.
(2) All the designed schemes resolved the solution (including possible singularities in

the angle ψ) in a stable manner.
(3) The energy conservative schemes converge to a limit solution (as the mesh is re-

fined), whose energy is preserved. This solution is a conservative solution of (1.3).
(4) The energy dissipative schemes also converge to a limit solution with energy being

dissipated with time. This solution is a dissipative solution of the variational wave
equation.

The rest of the paper is organized as follows: In Section 2, we present energy conser-
vative and energy dissipative schemes for the one-dimensional equation (1.3). Details of
implementation presented in Section 3 and finally numerical experiments illustrating all
these designed schemes are presented in Section 4.
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2. Numerical schemes for the variational wave equation

2.1. The grid and notation. We begin by introducing some notation needed to define
the DG schemes. Let the domain Ω ⊂ R be decomposed as Ω = ∪jΩj where Ωj =
[xj−1/2, xj+1/2] for j = 1, · · · , N . We denote ∆xj = xj+1/2 − xj−1/2 and xj = (xj−1/2 +
xj+1/2)/2.

Let u be a grid function and denote u+
j+1/2 as the function evaluated at the right side

of the cell interface at xj+1/2 and let u−j+1/2 denote the value at the left side. We can then

introduce the jump, and respectively, the average of any grid function u across the interface
as

uj+1/2 :=
u+
j+1/2 + u−j+1/2

2
,

JuKj+1/2 := u+
j+1/2 − u−j+1/2.

Now let v be another grid function. The following identity is readily verified:

JuvKj+1/2 = uj+1/2JvKj+1/2 + JuKj+1/2vj+1/2 (2.1)

2.2. A first-order system of Riemann invariants. It is easy to check that the vari-
ational wave equation (1.3) can be rewritten as a first-order system by introducing the
Riemann invariants:

R : = ψt + c(ψ)ψx

S : = ψt − c(ψ)ψx

For smooth solutions, equation (1.3) is equivalent to the following system in non-conservative
form for (R, S, ψ): 




Rt − c(ψ)Rx = c′(ψ)
4c(ψ)

(R2 − S2)

St + c(ψ)Sx = − c′(ψ)
4c(ψ)

(R2 − S2)

ψt = R+S
2

(2.2)

Observe that one can also rewrite the equation (1.3) in conservative form for (R, S, ψ) as




Rt − (c(ψ)R)x = − cx(ψ)
2

(R− S) ,

St + (c(ψ)S)x = − cx(ψ)
2

(R− S) ,

ψt = R+S
2
.

(2.3)

The corresponding energy associated with the system (2.2) is

E(t) =
1

2

∫

R

(
R2 + S2

)
dx. (2.4)

A simple calculation shows that smooth solutions of (2.2) satisfy the energy identity:

(R2 + S2)t −
(
c(ψ)(R2 − S2)

)
x

= 0. (2.5)

Hence, the fact that the total energy (2.4) is conserved follows from integrating the above
identity in space and assuming that the functions R, S decay at infinity.

116 Paper C: Energy respecting DG schemes in 1D



DG SCHEMES 7

2.3. Variational formulation. We seek an approximation (R, S, ψ) of (2.3) such that for
each t ∈ [0, T ], R, S, and ψ belong to finite dimensional space

Xp
∆x(Ω) =

{
u ∈ L2(Ω) : u|Ωj

polynomial of degree ≤ p
}
.

The variational form is derived by multiplying the strong form (2.3) with test functions
φ, η, ζ ∈ Xp

∆x(Ω) and integrating over each element separately. After integrating by parts
we obtain

N∑

j=1

∫

Ωj

Rt φdx+
N∑

j=1

∫

Ωj

cRφx dx−
N∑

j=1

(cR)(ψ(xj+1/2, t))φ
−
j+1/2

+
N∑

j=1

(cR)(ψ(xj−1/2, t))φ
+
j−1/2

=
1

2

N∑

j=1

∫

Ωj

c(Rφ)x dx− 1

2

N∑

j=1

c(ψ(xj+1/2, t))R
−
j+1/2φ

−
j+1/2

+
1

2

N∑

j=1

c(ψ(xj−1/2, t))R
+
j−1/2φ

+
j−1/2 −

1

2

N∑

j=1

∫

Ωj

c(Sφ)x dx

+
1

2

N∑

j=1

c(ψ(xj+1/2, t))S
−
j+1/2φ

−
j+1/2 −

1

2

N∑

j=1

c(ψ(xj−1/2, t))S
+
j−1/2φ

+
j−1/2,

(2.6)

N∑

j=1

∫

Ωj

St ηdx−
N∑

j=1

∫

Ωj

cSηx dx+
N∑

j=1

(cS)(ψ(xj+1/2, t))η
−
j+1/2

−
N∑

j=1

(cS)(ψ(xj−1/2, t))η
+
j−1/2

=
1

2

N∑

j=1

∫

Ωj

c(Rη)x dx− 1

2

N∑

j=1

c(ψ(xj+1/2, t))R
−
j+1/2η

−
j+1/2

+
1

2

N∑

j=1

c(ψ(xj−1/2, t))R
+
j−1/2η

+
j−1/2 −

1

2

N∑

j=1

∫

Ωj

c(Sη)x dx

+
1

2

N∑

j=1

c(ψ(xj+1/2, t))S
−
j+1/2η

−
j+1/2 −

1

2

N∑

j=1

c(ψ(xj−1/2, t))S
+
j−1/2η

+
j−1/2

(2.7)

and

N∑

j=1

∫

Ωj

ψt ζdx =
N∑

j=1

∫

Ωj

R + S

2
ζ dx. (2.8)
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To obtain a numerical scheme, the numerical fluxes (cR)(ψ(xj±1/2, t)), (cS)(ψ(xj±1/2, t))
and (c)(ψ(xj±1/2, t)) all need to be determined.

2.4. Energy Preserving Scheme Based On System of Riemann Invariants. Our
objective is to design a (semi-discrete) DG scheme such that the numerical approximations
conserve a discrete version of the energy (2.26). To this end, we suggest the following:

For a conservative scheme, we use the numerical flux

(c)(ψ(xj±1/2, t)) = cj±1/2 and (cf)(ψ(xj±1/2, t)) = cj±1/2f j±1/2.

Thus, for the RS-formulation the DG scheme then becomes: Find R, S, ψ ∈ Xp
∆x(Ω) such

that
N∑

j=1

∫

Ωj

Rtφdx+
N∑

j=1

∫

Ωj

cRφxdx−
N∑

j=1

cj+1/2Rj+1/2φ
−
j+1/2 +

N∑

j=1

cj−1/2Rj−1/2φ
+
j−1/2

=
1

2

N∑

j=1

∫

Ωj

c (Rφ)x dx− 1

2

N∑

j=1

cj+1/2R
−
j+1/2φ

−
j+1/2

+
1

2

N∑

j=1

cj−1/2R
+
j−1/2φ

+
j−1/2 −

1

2

N∑

j=1

∫

Ωj

c (Sφ)x dx

+
1

2

N∑

j=1

cj+1/2S
−
j+1/2φ

−
j+1/2 −

1

2

N∑

j=1

cj−1/2S
+
j−1/2φ

+
j−1/2

(2.9)

for all φ ∈ Xp
∆x(Ω),

N∑

j=1

∫

Ωj

Stηdx−
N∑

j=1

∫

Ωj

cSηxdx+
N∑

j=1

cj+1/2Sj+1/2η
−
j+1/2 −

N∑

j=1

cj−1/2Sj−1/2η
+
j−1/2

=
1

2

N∑

j=1

∫

Ωj

c (Rη)x dx− 1

2

N∑

j=1

cj+1/2R
−
j+1/2η

−
j+1/2

+
1

2

N∑

j=1

cj−1/2R
+
j−1/2η

+
j−1/2 −

1

2

N∑

j=1

∫

Ωj

c (Sη)x dx

+
1

2

N∑

j=1

cj+1/2S
−
j+1/2η

−
j+1/2 −

1

2

N∑

j=1

cj−1/2S
+
j−1/2η

+
j−1/2

(2.10)

for all η ∈ Xp
∆x(Ω) and

N∑

j=1

∫

Ωj

ψt ζdx =
N∑

j=1

∫

Ωj

R + S

2
ζ dx, (2.11)

for all ζ ∈ Xp
∆x(Ω).
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The energy conservative property of this semi-discrete scheme is presented in the follow-
ing theorem:

Proposition 2.1 (Energy conservation). Let R, S ∈ Xp
∆x(Ω) be a numerical solution of

the semi-discrete scheme (2.9)–(2.11) with periodic boundary conditions. We then have

(
N∑

j=1

∫

Ωj

R2 + S2

2
dx

)

t

= 0. (2.12)

Proof. Since R and S are a numerical solution then (2.9) and (2.10) hold for any functions
φ, η ∈ Xp

∆x(Ω). In particular, they hold for the choice φ = R and η = S. We can then
calculate

N∑

j=1

∫

Ωj

RtRdx = −1

2

N∑

j=1

∫

Ωj

c (SR)x dx+
1

2

N∑

j=1

cj+1/2R
+
j+1/2R

−
j+1/2

− 1

2

N∑

j=1

cj−1/2R
−
j−1/2R

+
j−1/2 +

1

2

N∑

j=1

cj+1/2S
−
j+1/2R

−
j+1/2

− 1

2

N∑

j=1

cj−1/2S
+
j−1/2R

+
j−1/2

(2.13)

and

N∑

j=1

∫

Ωj

StSdx =
1

2

N∑

j=1

∫

Ωj

c (SR)x dx− 1

2

N∑

j=1

cj+1/2S
+
j+1/2S

−
j+1/2

+
1

2

N∑

j=1

cj−1/2S
−
j−1/2S

+
j−1/2 −

1

2

N∑

j=1

cj+1/2S
−
j+1/2R

−
j+1/2

+
1

2

N∑

j=1

cj−1/2S
+
j−1/2R

+
j−1/2.

(2.14)
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Putting these together we obtain

(
N∑

j=1

∫

Ωj

R2 + S2

2
dx

)

t

=
N∑

j=1

∫

Ωj

(RRt + SSt) dx

=
1

2

N∑

j=1

cj+1/2

(
R+
j+1/2R

−
j+1/2 − S+

j+1/2S
−
j+1/2

)

− 1

2

N∑

j=1

cj−1/2

(
R−j−1/2R

+
j−1/2 − S−j−1/2S

+
j−1/2

)

=
1

2
cN+1/2

(
R+
N+1/2R

−
N+1/2 − S+

N+1/2S
−
N+1/2

)

− 1

2
c1/2

(
R−1/2R

+
1/2 − S−1/2S+

1/2

)
= 0,

(2.15)

where we have used the periodic boundary conditions in the last equality. �

Remark 2.1. Proposition 2.1 and similar results to follow are presented for periodic bound-
ary conditions. Naturally, these results also hold when the numerical solution decays at the
boundary.

2.5. Energy dissipating Scheme Based On System of Riemann Invariants. We
expect the above designed energy conservative scheme (2.9)–(2.11) to approximate a con-
servative solution of the underlying system (1.3). In order to be able to approximate a
dissipative solution of (1.3), we add numerical viscosity (scaled by the maximum wave
speed) as well as a shock capturing operator (similar to Barth [4]) to the energy conserva-
tive scheme (2.9)–(2.11). We propose the following modification of the energy conservative
scheme (2.9)–(2.11):

Denoting

sj+1/2 = max{c−j+1/2, c
+
j+1/2}
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for the maximal local wave velocity, a dissipative version of the DG scheme is then given
by the following: Find R, S, ψ ∈ Xp

∆x(Ω) such that

N∑

j=1

∫

Ωj

Rtφdx+
N∑

j=1

∫

Ωj

cRφxdx−
N∑

j=1

(
(cj+1/2Rj+1/2 +

1

2
sj+1/2JRKj+1/2

)

︸ ︷︷ ︸
Diffusive flux

φ−j+1/2

+
N∑

j=1

(
cj−1/2Rj−1/2 +

1

2
sj−1/2JRKj−1/2

)

︸ ︷︷ ︸
Diffusive flux

φ+
j−1/2

=
1

2

N∑

j=1

∫

Ωj

c (Rφ)x dx− 1

2

N∑

j=1

cj+1/2R
−
j+1/2φ

−
j+1/2

+
1

2

N∑

j=1

cj−1/2R
+
j−1/2φ

+
j−1/2 −

1

2

N∑

j=1

∫

Ωj

c (Sφ)x dx

+
1

2

N∑

j=1

cj+1/2S
−
j+1/2φ

−
j+1/2 −

1

2

N∑

j=1

cj−1/2S
+
j−1/2φ

+
j−1/2

−
N∑

j=1

εj

∫

Ωj

Rxφxdx

︸ ︷︷ ︸
shock capturing operator

(2.16)
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for all φ ∈ Xp
∆x(Ω),

N∑

j=1

∫

Ωj

Stηdx−
N∑

j=1

∫

Ωj

cSηxdx+
N∑

j=1

(
cj+1/2Sj+1/2 −

1

2
sj+1/2JSKj+1/2

)

︸ ︷︷ ︸
Diffusive flux

η−j+1/2

−
N∑

j=1

(
cj−1/2Sj−1/2 −

1

2
sj−1/2JSKj−1/2

)

︸ ︷︷ ︸
Diffusive flux

η+
j−1/2

=
1

2

N∑

j=1

∫

Ωj

c (Rη)x dx− 1

2

N∑

j=1

cj+1/2R
−
j+1/2η

−
j+1/2

+
1

2

N∑

j=1

cj−1/2R
+
j−1/2η

+
j−1/2 −

1

2

N∑

j=1

∫

Ωj

c (Sη)x dx

+
1

2

N∑

j=1

cj+1/2S
−
j+1/2η

−
j+1/2 −

1

2

N∑

j=1

cj−1/2S
+
j−1/2η

+
j−1/2

−
N∑

j=1

εj

∫

Ωj

Sxηxdx

︸ ︷︷ ︸
shock capturing operator

(2.17)

for all η ∈ Xp
∆x(Ω) and

N∑

j=1

∫

Ωj

ψt ζdx =
N∑

j=1

∫

Ωj

R + S

2
ζ dx, (2.18)

for all ζ ∈ Xp
∆x(Ω).

The scaling parameter εj in the shock capturing operator is given by

εj =
∆xj C Res

(∫
Ωj

(R2
x + S2

x)dx
)1/2

+ ∆xθj

(2.19)

where C > 0 is a constant, θ ≥ 1/2 and

Res =

(∫

Ωj

(Res)2dx

)1/2

(2.20)

with

Res = (R2 + S2)t −
(
c(ψ)(R2 − S2)

)
x
. (2.21)

Note that εj vanishes for smooth solutions.
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We have the following theorem illustrating the energy dissipation associated with (2.16)–
(2.18).

Proposition 2.2 (Energy stability). Let R, S ∈ Xp
∆x(Ω) be a numerical solution of the

semi-discrete scheme (2.16)–(2.18) with periodic boundary conditions. We then have

(
N∑

j=1

∫

Ωj

R2 + S2

2
dx

)

t

≤ 0. (2.22)

Proof. First, we calculate

1

2

N∑

j=1

sj+1/2JRKj+1/2R
−
j+1/2 −

1

2

N∑

j=1

sj−1/2JRKj−1/2R
+
j−1/2

+
1

2

N∑

j=1

sj+1/2JSKj+1/2S
−
j+1/2 −

1

2

N∑

j=1

sj−1/2JSKj−1/2S
+
j−1/2

= −1

2

N∑

j=1

sj+1/2

(
JRK2

j+1/2 + JSK2
j+1/2

)
≤ 0, (2.23)

since sj+1/2 ≥ 0 for all j. Since R and S are a numerical solution, we can use (2.16)–(2.17)
with φ = R and η = S, and proceed in a manner similar to the proof of Proposition 2.1 to
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estimate(
N∑

j=1

∫

Ωj

R2 + S2

2
dx

)

t

=
N∑

j=1

∫

Ωj

(RRt + SSt) dx

=
1

2
cN+1/2

(
R+
N+1/2R

−
N+1/2 − S+

N+1/2S
−
N+1/2

)

− 1

2
c1/2

(
R−1/2R

+
1/2 − S−1/2S+

1/2

)
+

1

2

N∑

j=1

sj+1/2JRKj+1/2R
−
j+1/2

− 1

2

N∑

j=1

sj−1/2JRKj−1/2R
+
j−1/2 +

1

2

N∑

j=1

sj+1/2JSKj+1/2S
−
j+1/2

− 1

2

N∑

j=1

sj−1/2JSKj−1/2S
+
j−1/2 −

N∑

j=1

εj

∫

Ωj

(R2
x + S2

x) dx

=
1

2
cN+1/2

(
R+
N+1/2R

−
N+1/2 − S+

N+1/2S
−
N+1/2

)

− 1

2
c1/2

(
R−1/2R

+
1/2 − S−1/2S+

1/2

)

− 1

2

N∑

j=1

sj+1/2

(
JRK2

j+1/2 + JSK2
j+1/2

)
−

N∑

j=1

εj

∫

Ωj

(R2
x + S2

x) dx

≤ 0,
(2.24)

where we have used the compact support in the last inequality. �

Hence, the scheme (2.16)–(2.18) is energy stable (dissipating) and we expect it to con-
verge to a dissipative solution of (1.3) as the mesh is refined. We remark that energy
dissipation results from adding numerical viscosity (scaled by the maximum wave speed)
and a shock capturing operator to the energy conservative scheme (2.9)–(2.11).

2.6. An alternative first-order system. It is easy to check that the variational wave
equation (1.3) can be rewritten as a first-order system by introducing the independent
variables:

v := ψt

w := c(ψ)ψx

Again, for smooth solutions, equation (1.3) is equivalent to the following system for
(v, w, ψ): 




vt − (c(ψ)w)x = −cx(ψ)w

wt − (c(ψ)v)x = 0

ψt = v

(2.25)
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Furthermore, the energy associated with the above equation is

E(t) =

∫

R

(
v2 + w2

)
dx. (2.26)

Again, we can check that smooth solutions of (2.25) preserve this energy. Weak solutions
can be either energy conservative or energy dissipative.

2.7. Variational formulation. As before, we seek an approximation (v, w, ψ) of (2.25)
such that for each t ∈ [0, T ], v, w, and ψ belong to finite dimensional space

Xp
∆x(Ω) =

{
u ∈ L2(Ω) : u|Ωj

polynomial of degree ≤ p
}
.

The variational form is derived by multiplying the strong form (2.25) with test functions
φ, η, ζ ∈ Xp

∆x(Ω) and integrating over each element separately. After using integration-by-
parts, we obtain

N∑

j=1

∫

Ωj

vt φdx+
N∑

j=1

∫

Ωj

c(ψ)wφx dx−
N∑

j=1

(cw)j+1/2φ
−
j+1/2 +

N∑

j=1

(cw)j−1/2φ
+
j−1/2

=
N∑

j=1

∫

Ωj

c(ψ) (wφ)x dx−
N∑

j=1

(c)j+1/2w
−
j+1/2φ

−
j+1/2 +

N∑

j=1

(c)j−1/2w
+
j−1/2φ

+
j−1/2 (2.27)

and

N∑

j=1

∫

Ωj

wt ηdx+
N∑

j=1

∫

Ωj

c(ψ)vηx dx−
N∑

j=1

(cv)j+1/2η
−
j+1/2 +

N∑

j=1

(cv)j−1/2η
+
j−1/2 = 0, (2.28)

and
N∑

j=1

∫

Ωj

ψt ζdx =
N∑

j=1

∫

Ωj

v ζ dx. (2.29)

As before, the numerical fluxes (cv)j+1/2, (cw)j+1/2 and (c)j+1/2 all need to be determined.

2.8. Energy Preserving Scheme. As before, for a conservative scheme, we use the nu-
merical flux

(c)j±1/2 = cj±1/2 and (cf)j±1/2 = cj±1/2f j±1/2.

Then, for the vw-formulation the DG scheme becomes: Find v, w, ψ ∈ Xp
∆x(Ω) such that

N∑

j=1

∫

Ωj

vt φdx+
N∑

j=1

∫

Ωj

c(ψ)wφx dx−
N∑

j=1

cj+1/2wj+1/2φ
−
j+1/2 +

N∑

j=1

cj−1/2wj−1/2φ
+
j−1/2

=
N∑

j=1

∫

Ωj

c(ψ) (wφ)x dx−
N∑

j=1

cj+1/2w
−
j+1/2φ

−
j+1/2 +

N∑

j=1

cj−1/2w
+
j−1/2φ

+
j−1/2 (2.30)

and
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N∑

j=1

∫

Ωj

wt ηdx+
N∑

j=1

∫

Ωj

c(ψ)vηx dx−
N∑

j=1

cj+1/2vj+1/2η
−
j+1/2 +

N∑

j=1

cj−1/2vj−1/2η
+
j−1/2 = 0,

(2.31)

and

N∑

j=1

∫

Ωj

ψt ζdx =
N∑

j=1

∫

Ωj

v ζ dx, (2.32)

for all φ, η, ζ ∈ Xp
∆x(Ω).

We have the following theorem for the scheme:

Proposition 2.3 (Energy conservation). Let v, w ∈ Xp
∆x(Ω) be a numerical solution of

the semi-discrete scheme (2.30)–(2.32) with periodic boundary conditions. We then have

(
N∑

j=1

∫

Ωj

(
v2 + w2

)
dx

)

t

= 0. (2.33)

Proof. Since v and w are a numerical solution then (2.30) and (2.31) hold for any functions
φ, η ∈ Xp

∆x(Ω). In particular, they hold for the choice φ = v and η = w. We can then
calculate

(
N∑

j=1

∫

Ωj

(
v2 + w2

)
dx

)

t

= 2
N∑

j=1

∫

Ωj

(vtv + wtw) dt

= 2
N∑

j=1

(
cj+1/2

(
wj+1/2v

−
j+1/2 − w−j+1/2v

−
j+1/2 + vj+1/2w

−
j+1/2

)

+ cj−1/2

(
−wj−1/2v

+
j−1/2 + w+

j−1/2v
+
j−1/2 − vj−1/2w

+
j−1/2

))

= 2
N∑

j=1

cj+1/2

(
−wj+1/2JvKj+1/2 + JwvKj+1/2 − vj+1/2JwKj+1/2

)

= 0,
(2.34)

where we have used the periodic boundary conditions and the identity (2.1). �

2.9. Energy Dissipating Scheme. In-order to approximate dissipative solutions, we
again add some numerical viscosity and a shock capturing operator to the energy conserva-
tive scheme (2.30)–(2.32) to obtain the following dissipative scheme: Find v, w, ψ ∈ Xp

∆x(Ω)
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such that
N∑

j=1

∫

Ωj

vt φdx+
N∑

j=1

∫

Ωj

c(ψ)wφx dx

−
N∑

j=1

(
cj+1/2wj+1/2 +

1

2
sj+1/2JvKj+1/2

)
φ−j+1/2

+
N∑

j=1

(
cj−1/2wj−1/2 +

1

2
sj−1/2JvKj−1/2

)
φ+
j−1/2

=
N∑

j=1

∫

Ωj

c(ψ) (wφ)x dx−
N∑

j=1

cj+1/2w
−
j+1/2φ

−
j+1/2

+
N∑

j=1

cj−1/2w
+
j−1/2φ

+
j−1/2 −

N∑

j=1

εj

∫

Ωj

vxφxdx.

(2.35)

for all φ ∈ Xp
∆x(Ω),

N∑

j=1

∫

Ωj

wt ηdx+
N∑

j=1

∫

Ωj

c(ψ)vηx dx

−
N∑

j=1

(
cj+1/2vj+1/2 +

1

2
sj+1/2JwKj+1/2

)
η−j+1/2

+
N∑

j=1

(
cj−1/2vj−1/2 +

1

2
sj−1/2JwKj−1/2

)
η+
j−1/2 = −

N∑

j=1

εj

∫

Ωj

wxηxdx, (2.36)

for all η ∈ Xp
∆x(Ω) and

N∑

j=1

∫

Ωj

ψt ζdx =
N∑

j=1

∫

Ωj

v ζ dx, (2.37)

for all ζ ∈ Xp
∆x(Ω).

Expressed in v and w, the parameter εj is given by

εj =
∆xj C Res

(∫
Ωj

(v2
x + w2

x)dx
)1/2

+ ∆xθj

(2.38)

where C > 0 is a constant, θ ≥ 1/2 and

Res =

(∫

Ωj

(Res)2dx

)1/2

, Res =
(
v2 + w2

)
t
− (2c(ψ)vw)x . (2.39)

We show that the above scheme dissipates energy in the following theorem:
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Proposition 2.4 (Energy stability). Let v, w ∈ Xp
∆x(Ω) be a numerical solution of the

semi-discrete scheme (2.35)–(2.37) with periodic boundary conditions. We then have

(
N∑

j=1

∫

Ωj

v2 + w2

2
dx

)

t

≤ 0. (2.40)

Proof. Since v and w are a numerical solution, we can use (2.35)–(2.36) with φ = v and
η = w and estimate

(
N∑

j=1

∫

Ωj

v2 + w2

2
dx

)

t

=
N∑

j=1

∫

Ωj

(vtv + wtw) dx

=
N∑

j=1

(
cj+1/2

(
wj+1/2v

−
j+1/2 − w−j+1/2v

−
j+1/2 + vj+1/2w

−
j+1/2

)

+ cj−1/2

(
−wj−1/2v

+
j−1/2 + w+

j−1/2v
+
j−1/2 − vj−1/2w

+
j−1/2

))

+
1

2

N∑

j=1

(
sj+1/2

(
JvKj+1/2v

−
j+1/2 + JwKj+1/2w

−
j+1/2

)

− sj−1/2

(
JvKj−1/2v

+
j−1/2 + JwKj−1/2w

+
j−1/2

))

−
N∑

j=1

εj

∫

Ωj

(
v2
x + w2

x

)
dx

=
N∑

j=1

cj+1/2

(
−wj+1/2JvKj+1/2 + JwvKj+1/2 − vj+1/2JwKj+1/2

)

+
1

2

N∑

j=1

(
sj+1/2

(
JvKj+1/2v

−
j+1/2 + JwKj+1/2w

−
j+1/2

)

− sj−1/2

(
JvKj−1/2v

+
j−1/2 + JwKj−1/2w

+
j−1/2

))

−
N∑

j=1

εj

∫

Ωj

(
v2
x + w2

x

)
dx

= −1

2

N∑

j=1

sj+1/2

(
JvK2

j+1/2 + JwK2
j+1/2

)
−

N∑

j=1

εj

∫

Ωj

(
v2
x + w2

x

)
dx

≤ 0,
(2.41)

where we have used the identities (2.1) as well as the periodic boundary conditions. �
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3. Details on the Implementation

All numerical experiments in this article are performed with an uniform grid spacing
∆xj = ∆x. The time step is determined according to

∆t = 0.1
∆x

sup
ψ∈[0,π)

c(ψ)
.

Furthermore, for the shock capturing operator, we use C = 0.1 and θ = 1.

3.1. Choice of basis. Let Ω̃ = [−1, 1] be the usual reference domain. As a basis for Pp(Ω̃),
the space of polynomials on Ω̃ of degree at most p, we use the Lagrangian interpolants

`k(ξ) =
∏

0≤j≤p
j 6=k

ξ − ξj
ξk − ξj

, (3.1)

where ξj, j = 1, . . . , p, are the interpolation points. Note that the Lagrangian interpolants
satisfy `i(ξα) = δiα and thus the discrete orthogonality property

∫

Ωj

`j(ξ)`k(ξ)dξ =

p∑

α=0

ρα`j(ξα)`k(ξα) = ρjδjk, (3.2)

where ρα, α = 0, . . . , p, are quadrature weights.
We introduce the necessary notation required for representing grid functions and quad-

rature formulas in terms of the basis (3.1). Defining the mapping ηj : Ωj → Ω̃ by

ηj(x) = 2
x− xj

∆x
, (3.3)

a function f : Ω× [0, T ]→ R with f(·, t) ∈ Xp
∆x(Ω) can be written as

f(x, t) =
N∑

j=1

χΩj
(x)

p∑

k=0

f
(k)
j (t)`k(ηj(x)), (3.4)

in terms of time dependent coefficients f
(k)
j (t). Moreover, we can use the shorthand notation

f̃j(ξ, t) = f(η−1
j (ξ), t) (3.5)

for evaluating f on the reference domain. In addition, it is convenient to denote

cj(ξ) = c
(
ψ̃j(ξ)

)
.

The integrals appearing in the DG formulation must be approximated using quadrature.
Let f ∈ Xp

∆x(Ω) and represented by (3.4). We can then readily calculate the approxima-
tions
∫

Ωj

f(x, t)t`i(ηj(x)) dx =
∆x

2

∫

Ω̃

(
f̃j

)
t
`i(ξ) dξ =

∆x

2

p∑

α=0

ρα

(
p∑

k=0

(
f

(k)
j

)
t
`k(ξα)

)
`i(ξα)
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=
∆x

2

p∑

α=0

ρα

(
p∑

k=0

(
f

(k)
j

)
t
δkα

)
δiα =

∆x

2
ρi

(
f

(i)
j

)
t
,

(3.6)

∫

Ωj

c(ψ)f(x, t)`i(ηj(x))x dx =

∫

Ω̃

cj(ξ)f̃j(ξ, t)`
′
i(ξ) dξ

=

p∑

α=0

ραcj(ξα)

(
p∑

k=0

f
(k)
j `k(ξα)

)
`′i(ξα)

=

p∑

α=0

ραcj(ξα)

(
p∑

k=0

f
(k)
j δkα

)
`′i(ξα)

=

p∑

α=0

ραcj(ξα)f
(α)
j Dαi,

(3.7)

∫

Ωj

c(ψ)f(x, t)x`i(ηj(x)) dx =

∫

Ω̃

cj(ξ)f̃j(ξ, t)ξ`i(ξ) dξ

=

p∑

α=0

ραcj(ξα)

(
p∑

k=0

f
(k)
j `′k(ξα)

)
`i(ξα)

=

p∑

α=0

ραcj(ξα)

(
p∑

k=0

f
(k)
j `′k(ξα)

)
δiα

= ρicj(ξi)

p∑

k=0

f
(k)
j Dik,

(3.8)

∫

Ωj

f(x, t)x`i(ηj(x))xdx =
2

∆x

∫

Ω̃

f̃(ξ, t)ξ`i(ξ)ξdξ =
2

∆xj

p∑

α=0

p∑

k=0

ραf
(k)
j DαkDαi, (3.9)

and
∫

Ωj

(f(x, t)x)
2 dx =

2

∆x

p∑

α=0

ρα

(
p∑

k=1

f
(k)
j Dαk

)2

, (3.10)

where we have introduced the derivative matrix Dij = `′j(ξi).
For the interpolation points ξα on the reference domain we use the Gauss–Lobatto–

Legendre (GLL) points. This is a set of points particularly convenient for the implementa-
tion since they contain the end points. In this paper we will present numerical experiments
for p = 0, 1, 2, 3. The GLL points, weights, Lagrangian interpolants and their correspond-
ing derivative matrices are omitted here, but can be found in Appendix A.
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3.2. Runge–Kutta time discretization. The schemes derived in this paper are all in a
semi-discrete form

ut = f(t, u∆x),

where u∆x is the discrete solution. The RKDG method utilizes the Runge–Kutta (RK)
time marching scheme to advance the solution. Herein, the spatial accuracy in the semi-
discrete scheme should be matched with an equally accurate RK scheme to obtain the
desired order of accuracy for smooth solutions. Therefore, the following fifth-order RK
algorithm was used in this work [25]: Let un∆x be the discrete solution at time tn and let
∆tn = tn+1 − tn. The solutions is then advanced according to

k1 = f(tn, un∆x)

k2 = f

(
tn +

4∆tn

11
, un∆x +

4∆tn

11
k1

)

k3 = f

(
tn +

2∆tn

5
, un∆x +

∆tn

50
(9k1 + 11k2)

)

k4 = f

(
tn + ∆tn, un∆x +

∆tn

4
(−11k2 + 15k3)

)

k5 = f

(
tn + (6−

√
6)

∆tn

10
, un∆x

+
∆tn

600

(
(81 + 9

√
6)k1 + (255− 55

√
6)k3 + (24− 14

√
6)k4

))

k6 = f

(
tn + (6 +

√
6)

∆tn

10
, un∆x

+
∆tn

600

(
(81− 9

√
6)k1 + (255 + 55

√
6)k3 + (24 + 14

√
6)k4

))

un+1 = un∆x +
1

36
∆tn

(
4k1 + (16 +

√
6)k5 + (16−

√
6)k6

)
.

4. Numerical experiments

In the following, we perform numerical experiments to demonstrate the properties of the
present DG schemes for p = 0, 1, 2, 3. Henceforth, the schemes (16 in total) will be named
according to 〈formulation〉〈p〉〈c/d〉. For example, the piecewise linear conservative scheme
using the RS formulation will be referred to as RS1c and the piecewise cubic dissipative
scheme using the vw formulation will be referred to as vw3d.

4.1. Order of convergence to manufactured solution. One of the main attractions
of the discontinuous Galerkin scheme is the easy construction of high-order methods. In
the following, we numerically demonstrate the order of convergence for smooth solutions.
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As previously discussed, the non-linear variational wave equation exhibits blow up in finite
time and thus no global smooth solutions are known. However, the order of accuracy can
be obtained by using the method of manufactured solutions. If we assert that

ψ(x, t) = sin(x− t) (4.1)

then we can for the formulation (2.3) calculate the residual

Q(x, t) := Rt − (c(ψ)R)x +
cx(ψ)

2
(R− S)

= St + (c(ψ)S)x +
cx(ψ)

2
(R− S) = sin(x− t)

(
c2(ψ)− 1

)
− c(ψ)c′(ψ) cos2(x− t). (4.2)

Also, for the formulation (2.25) we have

vt − c(ψ)wx = Q(x, t) (4.3)

and

wt − (c(ψ)v)x = 0. (4.4)

Thus, (4.1) will be a smooth solution to the problems

Rt − (c(ψ)R)x = −cx(ψ)

2
(R− S) +Q(x, t)

St + (c(ψ)S)x = −cx(ψ)

2
(R− S) +Q(x, t)

and

vt − (c(ψ)w)x = −cx(ψ)w +Q(x, t)

wt − (c(ψ)v)x = 0,

which differ from the original problems only through the local source terms Q(x, t). The
spatial and temporal accuracy of the schemes can then be calculated by solving with the
extra source terms, using periodic boundary conditions and approximating the error as

e∆x
L2 =

(
∆x

2

N∑

j=1

p∑

α=0

ρα
∣∣sin(xαj , t)− ψ∆x

j (xαj , t)
∣∣2
)1/2

, (4.5)

where xαj = x0 + ∆x
(
j + 1

2
ξα
)
.

Table 4.1 shows the error and the rate of convergence for the RS schemes and Table 4.2
for the vw schemes. The piecewise constant (p = 0) schemes demonstrate second order
convergence. For odd polynomial orders p the conservative schemes exhibit sub-optimal
convergence rates, a type of behavior that has been observed for the discontinuous Galerkin
method when using central fluxes [29]. For the other schemes the order of convergence is
optimal (p+ 1).
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Table 4.1. The order of convergence at t = 1.0 for the manufactured sine
solution (4.1) for the RS formulation using N = 20× 2i.

i 4 5 6 7 8

RS0c e∆x
L2 2.279 · 10−3 5.698 · 10−4 1.424 · 10−4 3.561 · 10−5 8.901 · 10−6

rate - 2.000 2.000 2.000 2.000
RS0d e∆x

L2 4.053 · 10−2 2.063 · 10−2 1.041 · 10−2 5.231 · 10−3 2.622 · 10−3

rate - 0.974 0.986 0.993 0.996
RS1c e∆x

L2 3.925 · 10−2 1.962 · 10−2 9.811 · 10−3 4.906 · 10−3 2.453 · 10−3

rate - 1.000 1.000 1.000 1.000
RS1d e∆x

L2 3.590 · 10−3 9.068 · 10−4 2.275 · 10−4 5.695 · 10−5 1.425 · 10−5

rate - 1.985 1.995 1.998 1.999
RS2c e∆x

L2 1.820 · 10−5 2.255 · 10−6 2.812 · 10−7 3.513 · 10−8 4.390 · 10−9

rate - 3.013 3.003 3.001 3.000
RS2d e∆x

L2 2.090 · 10−5 2.594 · 10−6 3.235 · 10−7 4.040 · 10−8 5.049 · 10−9

rate - 3.010 3.003 3.001 3.001
RS3c e∆x

L2 2.445 · 10−6 3.058 · 10−7 3.822 · 10−8 4.777 · 10−9 5.971 · 10−10

rate - 2.999 3.000 3.000 3.000
RS3d e∆x

L2 2.577 · 10−7 1.609 · 10−8 1.005 · 10−9 6.282 · 10−11 3.926 · 10−12

rate - 4.001 4.001 4.000 4.000

Table 4.2. The order of convergence at t = 1.0 for the manufactured sine
solution (4.1) for the vw formulation using N = 20× 2i.

i 4 5 6 7 8

vw0c e∆x
L2 2.279 · 10−3 5.698 · 10−4 1.424 · 10−4 3.561 · 10−5 8.901 · 10−6

rate - 2.000 2.000 2.000 2.000
vw0d e∆x

L2 5.294 · 10−2 2.676 · 10−2 1.345 · 10−2 6.746 · 10−3 3.380 · 10−3

rate - 0.985 0.992 0.996 0.998
vw1c e∆x

L2 4.096 · 10−2 2.046 · 10−2 1.022 · 10−2 5.109 · 10−3 2.554 · 10−3

rate - 1.002 1.001 1.000 1.000
vw1d e∆x

L2 3.590 · 10−3 9.068 · 10−4 2.275 · 10−4 5.695 · 10−5 1.425 · 10−5

rate - 1.985 1.995 1.998 1.999
vw2c e∆x

L2 1.820 · 10−5 2.255 · 10−6 2.812 · 10−7 3.513 · 10−8 4.390 · 10−9

rate - 3.013 3.003 3.001 3.000
vw2d e∆x

L2 1.852 · 10−5 2.296 · 10−6 2.863 · 10−7 3.575 · 10−8 4.468 · 10−9

rate - 3.013 3.003 3.001 3.000
vw3c e∆x

L2 2.445 · 10−6 3.058 · 10−7 3.822 · 10−8 4.778 · 10−9 5.971 · 10−10

rate - 2.999 3.000 3.000 3.000
vw3d e∆x

L2 2.577 · 10−7 1.609 · 10−8 1.005 · 10−9 6.282 · 10−11 3.926 · 10−12

rate - 4.001 4.001 4.000 4.000
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4.2. Gaussian initial data. A basic test problem for the nonlinear variational wave equa-
tion is obtained by considering the smooth initial data

ψ(x, 0) =
π

4
+ exp

(
−x2

)
, (4.6)

ψt(x, 0) = −c(ψ(x, 0))ψx(x, 0), (4.7)

for x ∈ R. This problem has been tested numerically in the literature [16, 20]. It is an
example of an initial-value problem with smooth initial data that exhibits blow-up in finite
time.

The initial data (4.6)–(4.7) was solved numerically using the vw schemes with α = 0.5
and β = 1.5 for t ∈ [0, 10] using N = 1000. Results for the RS schemes are similar, and are
omitted here to avoid unnecessary redundancy. Figure 4.1 shows the results when using the
conservative schemes and Figure 4.2 using the dissipative schemes. Also, Figures 4.3 and 4.4
show the evolutions of the auxiliary variables v = ψt and w = c(ψ)ψx for the conservative
and dissipative piecewise cubic schemes, respectively. The results are consistent with those
reported by Holden et al. [20]. Despite the initial data being smooth, the solution develops
a singularity in ψx at around t = 6. After this time, spurious oscillations can be observed
in the numerical solutions when using the conservative schemes. This effect is not present
when using the dissipative schemes.

The schemes derived in this paper have been categorised into conservative and dissipative
schemes. Figure 4.5 shows the evolution of the discrete energy

E =
N∑

j=1

∫

Ωj

R2 + S2

4
dx =

∆x

8

N∑

j=1

p∑

k=0

ρk

((
R

(k)
j

)2

+
(
S

(k)
j

)2
)
, (4.8)

or alternatively for the vw formulation

E =
N∑

j=1

∫

Ωj

v2 + w2

2
dx =

∆x

4

N∑

j=1

p∑

k=0

ρk

((
v

(k)
j

)2

+
(
w

(k)
j

)2
)
, (4.9)

for the Gaussian test problem. The results demonstrate clearly the difference between the
dissipative and conservative schemes. Indeed, no significant change in the discrete energy
can be observed for any of the conservative schemes. Conversely, the dissipative schemes
all cause a reduction in the energy.

A key aspect of the nonlinear variational wave equation is the existence of both con-
servative and dissipative weak solutions. The schemes derived in this paper enables us to
investigate this numerically. Figure 4.6 show the numerical solution to the Gaussian test
problem with α = 0.5 and β = 4.5 using the conservative (vw3c) and dissipative (vw3d)
piecewise cubic schemes. The results clearly indicate that the solution, while initially
smooth, develops a singularity at about t = 5 (see Fig. 4.6a). After the formation of the
singularity we observe that the conservative and dissipative schemes give two distinct so-
lutions, as shown in Figure 4.6b. Table 4.4 shows that the rest of the conservative schemes
indeed converge to the conservative reference solution shown in Figure 4.6b. Conversely,
the dissipative schemes converge to the dissipative (dashed) solution in Figure 4.6b, as
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Figure 4.1. The numerical solution of the Gaussian test problem with α =
0.5 and β = 1.5 using the conservative schemes based on the vw formulation
with N = 1000.

shown in Table 4.5. We note that in both cases the convergence is in N as well as in p.
Also, as can be expected, after the blow up of ψx the rate of convergence is slower than for
the smooth manufactured solution.

4.3. Travelling wave. Glassey et al. [17] discuss weak travelling wave solutions

ψ(x, t) = ψ(x− st)
for the non-linear variational wave equation. Such a solution must fulfil

ψ′
√
|s2 − α cos2(ψ)− β sin2(ψ)| = k, (4.10)

where k is some integration constant. By choosing s = α1/2 we can write

ψ′ sin(ψ) =
k

|α− β|1/2 . (4.11)
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Figure 4.2. The numerical solution of the Gaussian test problem with α =
0.5 and β = 1.5 using the dissipative schemes based on the vw formulation
with N = 1000.

Then by integrating (4.11) with boundary conditions ψ(0) = 0 and ψ(1) = π, we obtain a
travelling-wave solution given explicitly as

ψ(x, t) =





0 x ≤ √αt
cos−1 (−2(x−√αt) + 1)

√
αt < x < 1 +

√
αt

π x ≥ 1 +
√
αt

(4.12)

with

ψx(x, t) =





0 x ≤ √αt
1√
x−x2

√
αt < x < 1 +

√
αt

0 x ≥ 1 +
√
αt

. (4.13)

We numerically solve the initial value problem given by the nonlinear variational wave
equation and the initial data (4.12)–(4.13) with α = 0.5 and β = 1.5. Figure 4.7 and
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Figure 4.3. The numerical solution of the Gaussian test problem with
α = 0.5 and β = 1.5 using the vw3c scheme with N = 1000.
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Figure 4.4. The numerical solution of the Gaussian test problem with
α = 0.5 and β = 1.5 using the vw3d scheme with N = 1000.

Figure 4.8 show the numerical solution at t = 1 with N = 1000 using the conservative
and dissipative RS schemes, respectively. Results for the vw schemes are similar, and are
omitted here to avoid unnecessary redundancy. The numerical solutions are consistent with
those reported by Koley et al. [22]. We observe that the strong singularities at the break
points cause some numerical irregularities, but overall the schemes are able to capture the
travelling wave and become more accurate for higher polynomial order p.

5. Conclusion

We have considered a nonlinear variational wave equation that models one-dimensional
planar waves in nematic liquid crystals. The variational wave equation (1.3) was written
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Figure 4.5. Evolution of the discrete energy (4.8) and (4.9) for the numer-
ical solution of the Gaussian test problem with α = 0.5 and β = 1.5 using
N = 1000.

Table 4.3. The error ‖ψ − ψref‖2 for the vw schemes at t = 1 for the
Gaussian test problem with α = 0.5 and β = 1.5 using N = 20 × 2i. The
reference solution was computed using the vw3c scheme with N = 25000.

i 3 4 5 6

vw0c 7.221 · 10−2 3.176 · 10−2 1.528 · 10−2 7.561 · 10−3

vw0d 1.902 · 10−1 1.047 · 10−1 5.533 · 10−2 2.851 · 10−2

vw1c 8.465 · 10−2 4.180 · 10−2 2.083 · 10−2 1.041 · 10−2

vw1d 3.490 · 10−2 9.704 · 10−3 2.523 · 10−3 6.396 · 10−4

vw2c 7.566 · 10−4 7.650 · 10−5 9.288 · 10−6 1.151 · 10−6

vw2d 7.373 · 10−4 7.770 · 10−5 9.384 · 10−6 1.164 · 10−6

vw3c 5.547 · 10−5 6.870 · 10−6 8.568 · 10−7 1.070 · 10−7

vw3d 2.612 · 10−5 1.634 · 10−6 1.023 · 10−7 6.397 · 10−9
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Figure 4.6. The numerical solution of the Gaussian test problem with
α = 0.5 and β = 4.5 using the conservative vw3c (solid) and dissipative
vw3d (dashed) schemes using N = 10000. The dotted line is the Gaussian
initial data.

Table 4.4. The error ‖ψ−ψref‖2 for the conservative vw schemes at t = 12
for the Gaussian initial with α = 0.5 and β = 4.5 with N = 20 × 2i. The
reference solution was computed using the vw3c scheme with N = 10000.

i 3 4 5 6 7

vw0c 2.8578 4.5302 4.2199 3.5382 3.0693
vw1c 4.9764 4.3353 3.5673 3.0770 2.8096
vw2c 2.3927 1.3466 1.2581 1.1201 1.0295
vw3c 1.1941 0.7812 0.5205 0.3233 0.1284

Table 4.5. The error ‖ψ − ψref‖2 for the dissipative vw schemes at t = 12
for the Gaussian initial with α = 0.5 and β = 4.5 with N = 20 × 2i. The
reference solution was computed using the vw3d scheme with N = 10000.

i 3 4 5 6 7

vw0d 2.1145 2.5536 2.3978 1.9990 1.5677
vw1d 1.7964 1.8323 1.3663 0.8331 0.4608
vw2d 1.5586 1.2176 0.8640 0.4668 0.2050
vw3d 0.6370 0.3370 0.1764 0.0897 0.0417

in the form of two equivalent first-order systems. An intrinsic property of this equation
is the formation of singularities in finite time and the existence of both conservative and
dissipative weak solutions. We have constructed robust discontinuous Galerkin schemes
for approximating the variational wave equation in one space dimension. The key design
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Figure 4.7. Numerical solution of the travelling wave initial-value problem
with α = 0.5 and β = 1.5 at t = 1 using the conservative schemes based on
the RS formulation with N = 1000.

principle was energy conservation (dissipation), and we have designed high-order semi-
discrete schemes that either conserve or dissipate the discrete energy.

Extensive numerical experiments have been presented to illustrate the properties of
the DG schemes. The high-order accuracy of the methods was demonstrated using a
manufactured smooth solution. It has been shown numerically that the energy conservative
and energy dissipative schemes converge to two different solutions when the mesh is refined.
To the best of our knowledge, these are the first high-order accurate schemes that can
approximate the conservative solutions of the one-dimensional variational wave equation.

There exists a generalization to the current model for 2D. Similar numerical schemes
can be developed in this case. Herein, the vw formulation must be used since the Riemann
invariants are not defined. This will be the topic of an upcoming paper.
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Figure 4.8. Numerical solution of the travelling wave initial-value problem
with α = 0.5 and β = 1.5 at t = 1 using the dissipative schemes based on
the RS formulation with N = 1000.

Appendix A. GLL points, Lagrangian interpolants and derivative matrices

A.1. Piecewise constant (p = 0). For the piecewise constant case the single GLL point
is ξ0 = 0 with quadrature weight ρ0 = 2. The derivative matrix is in this case simply given
by D = 0.

A.2. Piecewise linear (p = 1). In this case the two GLL points are ξ0 = −1, ξ1 = 1, the
weights are ρ0 = ρ1 = 1.

The Lagrangian interpolants are then given explicitly by

`0(ξ) =
1− ξ

2
, `1(ξ) =

1 + ξ

2
, (A.1)
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and the derivative matrix is

D =

(
−1

2
1
2

−1
2

1
2

)
.

A.3. Piecewise quadratic (p = 2). In the piecewise quadratic case the GLL points are
ξ0 = −1, ξ1 = 0 and ξ2 = 1 and the weights are ρ0 = 1/3, ρ1 = 4/3 and ρ2 = 1/3.

The Lagrangian interpolants are then given explicitly by

`0(ξ) =
1

2
ξ(ξ − 1), `1(ξ) = 1− ξ2, `2(ξ) =

1

2
ξ(ξ + 1). (A.2)

The derivative matrix then becomes

D =



−3

2
2 −1

2
−1

2
0 1

2
1
2
−2 3

2


 . (A.3)

A.4. Piecewise cubic (p = 3). For a piecewise cubic scheme we use the GLL points

ξ0 = −1, ξ1 = −
√

1/5, ξ2 =
√

1/5 and ξ3 = 1. The quadrature weights are given by
ρ0 = ρ3 = 1/6 and ρ1 = ρ2 = 5/6.

The Lagrangian interpolants are given explicitly as

`0(ξ) = −5

8
(x− 1)

(
x2 − 1

5

)
= −5

8

(
x3 − x2 − 1

5
x+

1

5

)
, (A.4)

`1(ξ) =
5

8

√
5
(
x2 − 1

)
(
x−

√
1

5

)
=

5

8

√
5

(
x3 −

√
1

5
x2 − x+

√
1

5

)
, (A.5)

`2(ξ) = −5

8

√
5
(
x2 − 1

)
(
x+

√
1

5

)
= −5

8

√
5

(
x3 +

√
1

5
x2 − x−

√
1

5

)
, (A.6)

`3(ξ) =
5

8
(x+ 1)

(
x2 − 1

5

)
=

5

8

(
x3 + x2 − 1

5
x− 1

5

)
, (A.7)

which gives the derivative matrix

D =




−3 10
8

√
5
(

1 +
√

1
5

)
−10

8

√
5
(

1−
√

1
5

)
−1

2

−10
8

(
1
5

+
√

1
5

)
0 4

8

√
5 10

8

(
1
5
−
√

1
5

)

−10
8

(
1
5
−
√

1
5

)
−4

8

√
5 0 −10

8

(
1
5

+
√

1
5

)

0.5 10
8

√
5
(

1−
√

1
5

)
10
8

√
5
(

1 +
√

1
5

)
3



. (A.8)
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Preface

The research making up this paper is a continuation of the work in Paper
C. We realized that while the 2D variational wave equation can be seen as
a natural generalization of the equation considered in Paper C, the mathe-
matical theory for weak solutions to this equation has not been established.
Given the promise of the numerical methods developed in the 1D case, we
aimed to use similar techniques for the 2D equation to be at the forefront
of the analysis.

The method used is essentially the same as for the 1D equation. The
extra complexity mostly comes from the added algebra and the implemen-
tation becoming more involved. In addition, 2D simulations require more
computational work. Ultimately the investigation proved successful. DG
schemes could be derived satisfying the same energy respecting properties
as in the 1D case, and the results indicate that there might exist different
classes of weak solutions.
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HIGH-ORDER ENERGY STABLE NUMERICAL SCHEMES FOR A
NONLINEAR VARIATIONAL WAVE EQUATION MODELING

NEMATIC LIQUID CRYSTALS IN TWO DIMENSIONS

PEDER AURSAND AND UJJWAL KOLEY

Abstract. We consider a nonlinear variational wave equation that models the dynamics
of the director field in nematic liquid crystals with high molecular rotational inertia. Being
derived from an energy principle, energy stability is an intrinsic property of solutions to
this model. For the two-dimensional case, we design numerical schemes based on the
discontinuous Galerkin framework that either conserve or dissipate a discrete version of
the energy.

Extensive numerical experiments are performed verifying the scheme’s energy stability,
order of convergence and computational efficiency. The numerical solutions are compared
to those of a simpler first-order Hamiltonian scheme. We provide numerical evidence that
solutions of the 2D variational wave equation loose regularity in finite time. After that
occurs, dissipative and conservative schemes appear to converge to different solutions.

1. Introduction

1.1. The Equation. Liquid crystals (LCs) are mesophases, i.e., intermediate states of
matter between the liquid and the crystal phase. They possess some of the properties
of liquids (e.g. formation, fluidity) as well as some crystalline properties (e.g. electrical,
magnetic, etc.) normally associated with solids. The nematic phase is the simplest of
the liquid crystal mesophases, and is close to the liquid phase. It is characterized by long-
range orientational order, i.e., the long axes of the molecules tend to align along a preferred
direction, which can be considered invariant under rotation by an angle of π. The state
of a nematic liquid crystals is usually given by two linearly independent vector fields; one
describing the fluid flow and the other describing the dynamics of the preferred axis, which
is defined by a vector n giving its local orientation. Under the assumption of constant
degree of orientation, the magnitude of the director field n is usually taken to be unity. In
the present work we focus exclusively on the dynamics of the director field (independently
of any coupling with the fluid flow), a map

n : R3 × [0,∞)→ S2

from the Euclidean space to the unit ball.

Date: June 15, 2015.
2010 Mathematics Subject Classification. Primary 65M99; Secondary 65M60, 35L60.
Key words and phrases. Nonlinear variational wave equation, Energy preserving scheme, Energy stable

scheme, Discontinuous Galerkin method, Higher order scheme.
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We consider the elastic dynamics of the liquid crystal director field in the inertia-
dominated case (zero viscosity). Associated with the director field n, the classical Oseen-
Frank elastic energy density W is given by

W(n,∇n) = α |n× (∇× n)|2 + β (∇ · n)2 + γ (n · (∇× n))2 . (1.1)

The constants α, β and γ are elastic material constants of the liquid crystal, and are
associated with the three basic types of deformations of the medium; bend, splay and twist;
respectively. Each of these constants must be positive in order to guarantee the existence
of the minimum configuration of the energy W in the undistorted nematic configuration.

The one constant approximation (α = β = γ) often provides a valuable tool to reach
a qualitative insight into distortions of nematic configurations. Observe that, in this case
the potential energy density (1.1) reduces to the Dirichlet energy

W(n,∇n) = α |∇n|2 .
This corresponds to the potential energy density used in harmonic maps into the sphere
S2. The stability of the general Oseen–Frank potential energy equation, derived from the
potential (1.1) using a variational principle, is studied by Ericksen and Kinderlehrer [8].
For the parabolic flow associated to (1.1), see [3, 7] and references therein.

In the regime in which inertial effects dominate viscosity, the dynamics of the director
n is governed by the least action principle

J(n) =

∫∫ (
n2
t −W(n,∇n)

)
dx dt, n · n = 1. (1.2)

Standard calculations reveal that the Euler-Lagrange equation associated to J is given by

ntt = div (W∇n(n,∇n))−Wn(n,∇n), (1.3)

and is termed the variational wave equation. Introducing the energy and energy density

E(t) =

∫ (
n2
t +W(n,∇n)

)
dx, E(t, x) = n2

t +W(n,∇n),

it is easy to check the identities

E ′ = 0, Et = div (W∇n(n,∇n)nt) ,

in light of (1.3). Given the formidable difficulties in the mathematical analysis of (1.3), it
is customary to investigate the particular case of a planar director field configuration.

The physical implications of considering the inertia-dominated regime warrants a com-
ment. Indeed, in many experimental situations the inertial forces acting on the director are
orders of magnitude smaller than the dissipative. For this reason, the inertial term is often
neglected in modelling [25, 26, 9]. It was however noted early by Leslie [21] that inertial
forces might be significant in cases where the director field is subjected to large accelera-
tions. In general, inertia will be more significant in the small time-scale dynamics of the
director. For this reason, their inclusion can be warranted in, e.g., liquid crystal acoustics
[19], mechanical vibrations [27] and in cases with and external oscillating magnetic field
[28].
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1.1.1. One-dimensional planar waves. Planar deformations are central in the mathematical
study of models for nematic liquid crystals. A simple such model can be derived by
assuming that the deformation depends on a single space variable x and that the director
field n in confined to the x-y plane. In this case we can write the director as

n = (cosu(x, t), sinu(x, t), 0).

Geometrically, the molecules are lined up vertically on the x-y plane, and at each column
(located at x) u(x, t) measures the angle of the director field to the x-direction. With the
above simplifications, the variational principle (1.2) reduces to





utt − c(u) (c(u)ux)x = 0, (x, t) ∈ ΠT ,

u(x, 0) = u0(x), x ∈ R,
ut(x, 0) = u1(x), x ∈ R,

(1.4)

where ΠT = R× [0, T ] with fixed T > 0 , and the wave speed c(u) given by

c2(u) = α cos2 u+ β sin2 u. (1.5)

Initially considered by Hunter and Saxton [23, 17], (1.4) is the simplest form of the nonlinear
variational wave equation (1.3) studied in the literature.

1.1.2. Two-dimensional planar waves. Planar deformations can also be studied in two di-
mensions. Specifically, if we assume that the deformation depends on two space variables
x, y, the director can be written in the form

n = (cosu(x, y, t), sinu(x, y, t), 0)

with u being the angle to the x-z plane. The corresponding variational wave equation is
given by




utt − c(u) (c(u)ux)x − b(u) (b(u)uy)y − a′(u)uxuy − 2a(u)uxy = 0, (x, y, t) ∈ QT ,

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,

ut(x, y, 0) = u1(x, y), (x, y) ∈ R2,

(1.6)
where QT = R2 × [0, T ] with T > 0 fixed, u : QT → R is the unknown function and a, b, c
are given by

c2(u) = α cos2 u+ β sin2 u,

b2(u) = α sin2 u+ β cos2 u,

a(u) =
α− β

2
sin(2u).

In this picture, c(u) is the wave speed in the x-direction and b(u) is the wave speed in the
y-direction.
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For smooth solutions of (1.6) it is straightforward to verify that the energy

E(t) =

∫∫

R2

(
u2
t + c2(u)u2

x + b2(u)u2
y + 2a(u)uxuy

)
dx dy

=

∫∫

R2

u2
t + (α(cos(u)ux + sin(u)uy))

2 + (β(sin(u)ux − cos(u)uy))
2 dx dy

(1.7)

is conserved, i.e., we have
dE(t)

dt
≡ 0. (1.8)

Moreover, for all t ∈ [0, T ] we have
∫∫

R2

(
u2
t + min{α, β}(u2

x + u2
y)
)
dx dy ≤ E(t) ≤

∫∫

R2

(
u2
t + max{α, β}(u2

x + u2
y)
)
dx dy.

In particular, it follows that E(t) ≥ 0 for all t ∈ [0, T ]. To see this, first we consider α ≥ β
(for α ≤ β, we argue in the same way). Then

c2(u)u2
x + b2(u)u2

y + 2a(u)uxuy

=
(
α cos2(u) + β sin2(u)

)
u2
x +

(
α sin2 u+ β cos2 u

)
u2
y + 2(α− β) sin(u) cos(u)uxuy

≤
(
α cos2(u) + β sin2(u)

)
u2
x +

(
α sin2 u+ β cos2 u

)
u2
y + 2(α− β) |sin(u) cos(u)uxuy|

= α
(
cos2(u)u2

x + sin2(u)u2
y + 2 |sin(u) cos(u)uxuy|

)

+ β
(
sin2(u)u2

x + cos2(u)u2
y − 2 |sin(u) cos(u)uxuy|

)

= α (|cos(u)ux|+ |sin(u)uy|)2 + β (|sin(u)ux| − |cos(u)uy|)2

≤ α
[

(|cos(u)ux|+ |sin(u)uy|)2 + (|sin(u)ux| − |cos(u)uy|)2
]

= α(u2
x + u2

y),

and

c2(u)u2
x + b2(u)u2

y + 2a(u)uxuy

=
(
α cos2(u) + β sin2(u)

)
u2
x +

(
α sin2 u+ β cos2 u

)
u2
y + 2(α− β) sin(u) cos(u)uxuy

≥
(
α cos2(u) + β sin2(u)

)
u2
x +

(
α sin2 u+ β cos2 u

)
u2
y − 2(α− β) |sin(u) cos(u)uxuy|

= α
(
cos2(u)u2

x + sin2(u)u2
y − 2 |sin(u) cos(u)uxuy|

)

+ β
(
sin2(u)u2

x + cos2(u)u2
y + 2 |sin(u) cos(u)uxuy|

)

= α (|cos(u)ux| − |sin(u)uy|)2 + β (|sin(u)ux|+ |cos(u)uy|)2

≥ β
[

(|cos(u)ux| − |sin(u)uy|)2 + (|sin(u)ux|+ |cos(u)uy|)2
]

= β(u2
x + u2

y).

1.2. Mathematical Difficulties. There exists a fairly satisfactory well posedness theory
for the one dimensional equation (1.4). However, despite its apparent simplicity, the math-
ematical analysis of (1.4) is complicated. Independently of the smoothness of the initial
data, due to the nonlinear nature of the equation, singularities may form in the solution
[10, 12, 11]. Therefore, solutions of (1.4) should be interpreted in the weak sense:
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Definition 1.1. Set ΠT = R× (0, T ). A function

u(t, x) ∈ L∞
(
[0, T ];W 1,p(R)

)
∩ C(ΠT ), ut ∈ L∞ ([0, T ];Lp(R)) ,

for all p ∈ [1, 3 + q], where q is some positive constant, is a weak solution of the initial
value problem (1.4) if it satisfies:

(D.1) For all test functions ϕ ∈ D(R× [0, T ))
∫∫

ΠT

(
utϕt − c2(u)uxϕx − c(u)c′(u)(ux)

2ϕ
)
dx dt = 0. (1.9)

(D.2) u(·, t)→ u0 in C ([0, T ];L2(R)) as t→ 0+.
(D.3) ut(·, t)→ u1 as a distribution in ΠT when t→ 0+.

In recent years, there has been an increased interest to understand the different classes
of weak solutions (conservative and dissipative) of the Cauchy problem (1.4), under the
restrictive assumption on the wave speed c (positivity of the derivative of c). The literature
herein is substantial, and we will here only give a non-exhaustive overview. Within the
existing framework, we mention the papers by Zhang and Zheng [29, 30, 31, 32, 33, 34],
Bressan and Zheng [4] and Holden and Raynaud [15]. In fact, taking advantage of Young
measure theory, existence of a global weak solution with initial data u0 ∈ H1(R) and
u1 ∈ L2(R) has been proved in [33]. However, the regularity assumptions on the wave
speed c(u) (c(u) is smooth, bounded, positive with derivative that is non-negative and
strictly positive on the initial data u0) in the analysis of [29, 30, 31, 32, 33, 34] precludes
consideration of the physical wave speed given by (1.5).

A novel approach to the study of (1.4) was taken by Bressan and Zheng [4]. They
have constructed the solutions by introducing new variables related to the characteristics,
leading to a characterization of singularities in the energy density. The solution u, con-
structed by the above principle, is locally Lipschitz continuous and the map t → u(t, ·) is
continuously differentiable with values in Lploc(R) for 1 ≤ p < 2.

Drawing preliminary motivation from [4], Holden and Raynaud [15] provides a rigorous
construction of a semigroup of conservative solutions of (1.4). Since their construction
is based on energy measures as independent variables, the formation of singularities is
somewhat natural and they were able to overcome the non-physical condition on wave
speed (c′(u) > 0). Moreover, their analysis can incorporate initial data u0, u1 that contain
measures.

On the other side, the existence of solutions to two dimensional planar waves (1.6) is
completely open. Contrary to its one dimensional counterpart, it is not possible to rewrite
(1.6) as a system of equations in terms of Riemann invariants (for a brief justification, see
Sec 2). Therefore, the same proofs do not apply mutatis mutandis in the two dimensional
case. Having said this, one can of course rewrite (1.6) as a first order system using different
change of variables (see Sec 2). However, due to lack of “symmetry” of this formulation,
it is hard to establish well posedness of such equations using this approach.

1.3. Numerical Schemes. Except under very simplifying assumptions, there does not
exist elementary and explicit solutions for (1.4). Moreover, the existence of two classes
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of weak solutions renders the initial value problem ill-posed after the formation of sin-
gularities. Consequently, robust numerical schemes are important in the study of the
variational wave equation. Furthermore, capturing conservative solutions numerically is
indeed a delicate issue since we expect that traditional finite difference schemes will not
yield conservative solutions, due to the intrinsic numerical diffusion in these schemes.

There is a sparsity of efficient numerical schemes for the 1D equation (1.4) available in
the literature. We can refer to [11], where the authors present some numerical examples
to illustrate their theory. By the way of the theory of Young’s measure-valued solutions,
Holden et. al. [16] proved convergence of the numerical approximation generated by a
semi-discrete finite difference scheme for one-dimensional equation (1.4) to the dissipative
weak solution of (1.4), under a restrictive assumption on the wave speed (c′(u) > 0). To
overcome such non-physical assumptions, Holden and Raynaud [15] used their analytical
construction, as mentioned earlier, to define a numerical method that can approximate the
conservative solution. However, the main drawback of this method is that it is computa-
tionally very expensive as there is no time marching.

Finally, we mention recent papers [20, 1] which deals with finite difference schemes and
discontinuous Galerkin schemes, respectively, for (1.4). Their main idea was to rewrite
(1.4) in the form of a first order systems and design numerical schemes for those systems.
The key design principle was either energy conservation or energy dissipation. In that
context, they have presented schemes that either conserve or dissipate the discrete energy.
They also validated the properties of the schemes via extensive numerical experiments.

Numerical results for the two-dimensional variational wave equation (1.6) are even more
sparse than for the one-dimensional case. In fact, to the best of the authors’ knowledge,
the only available numerical experiments are given in the final section of the recent paper
by Koley et al. [20].

1.4. Scope and Outline of the Paper. The purpose of this paper is to develop efficient
high-order schemes for the two-dimensional nonlinear variational wave equation (1.6). By
using the Runge–Kutta Discontinuous Galerkin (RK-DG) framework we aim to derive
schemes that either conserve or dissipate a discrete version of the energy inherited from
the variational formulation of the problem. Since the behavior of solutions to the 2D
equation (1.6) is largely unknown, these schemes will allow us to begin investigate if cru-
cial properties of the 1D equation (1.4) carry over in the two-dimensional case. To the
best of our knowledge, this is the first systematic numerical study of the two-dimensional
variational wave equation (1.6).

Our approach for constructing high-order schemes is the RK-DG method [13, 6], where
the test and trial functions are discontinuous piecewise polynomials. In contrast to high
order finite-volume schemes, the high order of accuracy is already built into the finite
dimensional spaces and no reconstruction is needed. Exact or approximate Riemann solvers
from finite volume methods are used to compute the numerical fluxes between elements.
For an energy dissipative scheme we will employ a combination of dissipative fluxes and, in
order to control possible spurious oscillations near shocks, shock capturing operators [18,
5, 2]. These methods have recently been shown to be entropy stable for conservation laws
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[14]. In contrast to for finite volume methods, entropy stability has gained more attention
in finite element methods since one advantage of this method is that the formulation
immediately allows the use of general unstructured grids.

The shock capturing DG schemes in this paper have the following properties:

(1) The schemes are arbitrarily high-order accurate.
(2) The schemes are robust and resolved the solution (including possible singularities

in the angle u) in a stable manner.
(3) The energy conservative scheme preserve the discrete energy at the semi-discrete

level. Using a high-order time stepping method, this property also holds in the
fully discrete case for all orders of accuracy tested.

(4) The energy dissipative scheme dissipate the discrete energy at the semi-discrete
level. Using a high-order time stepping method, this property also holds in the
fully discrete case for all orders of accuracy tested.

In the current presentation we consider, for simplicity, a Cartesian grid. The schemes
can however be generalized to more general geometries. For such applications, it might be
useful to write (1.6) in the form

utt − (T (u)∇) (T (u)∇u) = 0 (1.10)

where

T (u) =

( √
α cos(u)

√
α sin(u)

−√β sin(u)
√
β cos(u)

)
.

The rest of the paper is organized as follows: In Section 2, we present energy conservative
and energy dissipative schemes for the one-dimensional equation (1.6). Section 3 concerns
a first-order Hamiltonian (energy preserving) scheme for comparison. Section 4 contains
numerical experiments verifying the order of convergence, energy stability and efficiency
of the schemes.

2. Discontinuous Galerkin Schemes in Two-space Dimensions

Drawing primary motivation from the one-dimensional case [1], we aim to design energy
conservative and energy dissipative discontinuous Galerkin schemes of the two-dimensional
version of the nonlinear variational wave equation (1.6), by rewriting it as a first-order
system. First, we briefly mention why formulation based on Riemann invariants does not
work in two dimensional case.

2.1. The system of equations. We introduce three new independent variables:

p := ut,

v := cos(u)ux + sin(u)uy,

w := sin(u)ux − cos(u)uy.

Then, for smooth solutions, we see that

vt = cos(u)uxt − sin(u)utux + sin(u)uyt + cos(u)utuy

= (cos(u)ut)x − ut(cos(u))x + (sin(u)ut)y − ut(sin(u))y − ut (sin(u)ux − cos(u)uy) ,
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and

wt = sin(u)uxt + cos(u)utux − cos(u)uyt + sin(u)utuy

= (sin(u)ut)x − ut(sin(u))x − (cos(u)ut)y + ut(cos(u))y + ut (cos(u)ux + sin(u)uy) .

Moreover, a straightforward calculation using equation (1.6) reveals that

pt − (α− β)
(
cos(u) sin(u)u2

x − cos2(u)uxuy + sin2(u)uxuy − cos(u) sin(u)u2
y

)

= α (cos(u)(cos(u)ux + sin(u)uy))x + α (sin(u)(cos(u)ux + sin(u)uy))y

+ β (sin(u)(sin(u)ux − cos(u)uy))x − β (cos(u)(sin(u)ux − cos(u)uy))y .

Hence, for smooth solutions, equation (1.6) is equivalent to the following system for
(p, v, w, u),





pt − α(f(u)v)x − α(g(u)v)y − β(g(u)w)x + β(f(u)w)y − αvw + βvw = 0,

vt − (f(u)p)x + pf(u)x − (g(u)p)y + pg(u)y + pw = 0,

wt − (g(u)p)x + pg(u)x + (f(u)p)y − pf(u)y − pv = 0,

ut = p,

(2.1)

where f(u) := cos(u), and g(u) := sin(u). Furthermore, the corresponding energy associ-
ated with the system (2.1) is

E(t) =

∫∫

R2

(
p2 + α v2 + β w2

)
dx dy. (2.2)

A simple calculation shows that smooth solutions of (2.1) satisfy the energy identity:
(
p2 + α v2 + β w2

)
t
+ 2 (α p f(u) v + β p g(u)w)x + 2 (α p g(u) v − β p f(u)w)y = 0. (2.3)

Hence, the fact that the total energy (2.2) is conserved follows from integrating the above
identity in space and assuming that the functions p, u, v and w decay at infinity.

2.2. The grid. We begin by introducing some notation needed to define the DG schemes.
Let the domain Ω ⊂ R2 be decomposed as Ω = ∪i,jΩij with Ωij := Ωi × Ωj where Ωi =
[xi−1/2, xi+1/2] and Ωj = [yj−1/2, yj+1/2] for i, j = 1, · · · , N . Moreover, we denote ∆xi =
xi+1/2 − xi−1/2 and ∆yj = yj+1/2 − yj−1/2. Furthermore, we also denote xi = (xi−1/2 +
xi+1/2)/2 and yj = (yj−1/2 + yj+1/2)/2.

Let u be a grid function and denote u+
i+1/2(y) as the function evaluated at the right side

of the cell interface at xi+1/2 and let u−i+1/2(y) denote the value at the left side. Similarly,

we let u+
j+1/2(x) be the function evaluated at the upper side of the cell interface at yi+1/2

and let u−j+1/2(x) denote the value at the lower side. We can then introduce the jump and,

respectively, the average of any grid function u across the interfaces as

ui+1/2(y) :=
u+
i+1/2(y) + u−i+1/2(y)

2
, uj+1/2(x) :=

u+
j+1/2(x) + u−j+1/2(x)

2
,

JuKi+1/2(y) := u+
i+1/2(y)− u−i+1/2(y), JuKj+1/2(x) := u+

j+1/2(x)− u−j+1/2(x).
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Moreover, let v be another grid function. Then the following identities are readily verified:

JuvKi+1/2 = ui+1/2JvKi+1/2 + JuKi+1/2vi+1/2, JuvKj+1/2 = uj+1/2JvKj+1/2 + JuKj+1/2vj+1/2

(2.4)

2.3. Variational Formulation. We seek an approximation (p, v, w, u) of (2.1) such that
for each t ∈ [0, T ], p, v, w, and u belong to finite dimensional space

Xs
h(Ω) =

{
u ∈ L2(Ω) : u|Ωij

polynomial of degree ≤ p
}
.

The variational form is derived by multiplying the strong form (2.1) with test functions
φ, ν, ψ, ζ ∈ Xs

h(Ω) and integrating over each element separately. After using integration-
by-parts, we obtain

N∑

i,j=1

∫

Ωij

pt φ dx dy + α

N∑

i,j=1

∫

Ωij

f(u) v φx dx dy − α
N∑

i,j=1

∫

Ωj

(fv)i+1/2 φ
−
i+1/2 dy

+ α

N∑

i,j=1

∫

Ωj

(fv)i−1/2 φ
+
i−1/2 dy + α

N∑

i,j=1

∫

Ωij

g(u) v φy dx dy − α
N∑

i,j=1

∫

Ωi

(gv)j+1/2 φ
−
j+1/2 dx

+ α

N∑

i,j=1

∫

Ωi

(gv)j−1/2 φ
+
j−1/2 dx+ β

N∑

i,j=1

∫

Ωij

g(u)w φx dx dy − β
N∑

i,j=1

∫

Ωj

(gw)i+1/2 φ
−
i+1/2 dy

+ β

N∑

i,j=1

∫

Ωj

(gw)i−1/2 φ
+
i−1/2 dy − β

N∑

i,j=1

∫

Ωj

f(u)w φy dx dy + β

N∑

i,j=1

∫

Ωi

(fw)j+1/2 φ
−
j+1/2 dx

− β
N∑

i,j=1

∫

Ωi

(fw)j−1/2 φ
+
j−1/2 dx− α

N∑

i,j=1

∫

Ωij

v w φ dx dy + β

N∑

i,j=1

∫

Ωij

v w φ dx dy = 0,

(2.5)

and

N∑

i,j=1

∫

Ωij

vt ν dx dy +
N∑

i,j=1

∫

Ωij

f(u) p νx dx dy −
N∑

i,j=1

∫

Ωj

(f p)i+1/2 ν
−
i+1/2 dy

+
N∑

i,j=1

∫

Ωj

(f p)i−1/2 ν
+
i−1/2 dy −

N∑

i,j=1

∫

Ωij

f(u) (p ν)x dx dy +
N∑

i,j=1

∫

Ωj

(f)i+1/2 p
−
i+1/2 ν

−
i+1/2 dy

−
N∑

i,j=1

∫

Ωj

(f)i−1/2 p
+
i−1/2 ν

+
i−1/2 dy +

N∑

i,j=1

∫

Ωij

g(u) p νy dx dy −
N∑

i,j=1

∫

Ωi

(g p)j+1/2 ν
−
j+1/2 dx

+
N∑

i,j=1

∫

Ωi

(g p)j−1/2 ν
+
j−1/2 dx−

N∑

i,j=1

∫

Ωij

g(u) (p ν)y dx dy +
N∑

i,j=1

∫

Ωi

(g)j+1/2 p
−
j+1/2 ν

−
j+1/2 dx
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−
N∑

i,j=1

∫

Ωi

(g)j−1/2 p
+
j−1/2 ν

+
j−1/2 dx+

N∑

i,j=1

∫

Ωij

pw ν dx dy = 0, (2.6)

and

N∑

i,j=1

∫

Ωij

wt ψ dx dy +
N∑

i,j=1

∫

Ωij

g(u) pψx dx dy −
N∑

i,j=1

∫

Ωj

(g p)i+1/2 ψ
−
i+1/2 dy

+
N∑

i,j=1

∫

Ωj

(g p)i−1/2 ψ
+
i−1/2 dy −

N∑

i,j=1

∫

Ωij

g(u) (pψ)x dx dy +
N∑

i,j=1

∫

Ωj

(g)i+1/2 p
−
i+1/2 ψ

−
i+1/2 dy

−
N∑

i,j=1

∫

Ωj

(g)i−1/2 p
+
i−1/2 ψ

+
i−1/2 dy −

N∑

i,j=1

∫

Ωij

f(u) pψy dx dy +
N∑

i,j=1

∫

Ωi

(f p)j+1/2 ψ
−
j+1/2 dx

−
N∑

i,j=1

∫

Ωi

(f p)j−1/2 ψ
+
j−1/2 dx+

N∑

i,j=1

∫

Ωij

f(u) (pψ)y dx dy−
N∑

i,j=1

∫

Ωi

(f)j+1/2 p
−
j+1/2 ψ

−
j+1/2 dx

+
N∑

i,j=1

∫

Ωi

(f)j−1/2 p
+
j−1/2 ψ

+
j−1/2 dx−

N∑

i,j=1

∫

Ωij

p v ψ dx dy = 0, (2.7)

and
N∑

i,j=1

∫

Ωij

ut ζ dx dy =
N∑

i,j=1

∫

Ωij

p ζ dx dy. (2.8)

Remark 2.1. Admittedly, the notation used in (2.5)–(2.8) is more cumbersome than the
vector notation often seen in the DG literature. The purpose of this is to be able to treat
the fluxes in the different equations differently in order to ensure energy conservation.

In order to complete the description of the above schemes, we need to specify numerical
flux functions.

2.4. Energy Preserving Scheme. For a conservative scheme, we use the central numer-
ical flux

(f)k±1/2 = fk±1/2 and (fg)k±1/2 = fk±1/2gk±1/2,

for any grid functions f, g ∈ Xs
h(Ω). An energy preserving RK-DG scheme based on the

weak formulation (2.5)–(2.8) becomes: Find p, v, w, u ∈ Xs
h(Ω) such that

N∑

i,j=1

∫

Ωij

pt φ dx dy + α

N∑

i,j=1

∫

Ωij

f(u) v φx dx dy

− α
N∑

i,j=1

∫

Ωj

f i+1/2 vi+1/2 φ
−
i+1/2 dy + α

N∑

i,j=1

∫

Ωj

f i−1/2 vi−1/2 φ
+
i−1/2 dy
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+ α

N∑

i,j=1

∫

Ωij

g(u) v φy dx dy − α
N∑

i,j=1

∫

Ωi

gj+1/2 vj+1/2 φ
−
j+1/2 dx

+ α

N∑

i,j=1

∫

Ωi

gj−1/2 vj−1/2 φ
+
j−1/2 dx+ β

N∑

i,j=1

∫

Ωij

g(u)w φx dx dy

− β
N∑

i,j=1

∫

Ωj

gi+1/2wi+1/2 φ
−
i+1/2 dy + β

N∑

i,j=1

∫

Ωj

gi−1/2wi−1/2 φ
+
i−1/2 dy

− β
N∑

i,j=1

∫

Ωj

f(u)w φy dx dy + β
N∑

i,j=1

∫

Ωi

f j+1/2wj+1/2 φ
−
j+1/2 dx

− β
N∑

i,j=1

∫

Ωi

f j−1/2wj−1/2 φ
+
j−1/2 dx− α

N∑

i,j=1

∫

Ωij

v w φ dx dy

+ β

N∑

i,j=1

∫

Ωij

v w φ dx dy = 0, (2.9)

for all φ ∈ Xs
∆x(Ω),

N∑

i,j=1

∫

Ωij

vt ν dx dy +
N∑

i,j=1

∫

Ωij

f(u) p νx dx dy −
N∑

i,j=1

∫

Ωj

f i+1/2 pi+1/2 ν
−
i+1/2 dy

+
N∑

i,j=1

∫

Ωj

f i−1/2 pi−1/2 ν
+
i−1/2 dy −

N∑

i,j=1

∫

Ωij

f(u) (p ν)x dx dy

+
N∑

i,j=1

∫

Ωj

f i+1/2 p
−
i+1/2 ν

−
i+1/2 dy −

N∑

i,j=1

∫

Ωj

f i−1/2 p
+
i−1/2 ν

+
i−1/2 dy

+
N∑

i,j=1

∫

Ωij

g(u) p νy dx dy −
N∑

i,j=1

∫

Ωi

gj+1/2 pj+1/2 ν
−
j+1/2 dx

+
N∑

i,j=1

∫

Ωi

gj−1/2 pj−1/2 ν
+
j−1/2 dx−

N∑

i,j=1

∫

Ωij

g(u) (p ν)y dx dy

+
N∑

i,j=1

∫

Ωi

gj+1/2 p
−
j+1/2 ν

−
j+1/2 dx−

N∑

i,j=1

∫

Ωi

gj−1/2 p
+
j−1/2 ν

+
j−1/2 dx

+
N∑

i,j=1

∫

Ωij

pw ν dx dy = 0, (2.10)

for all ν ∈ Xs
h(Ω),
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N∑

i,j=1

∫

Ωij

wt ψ dx dy +
N∑

i,j=1

∫

Ωij

g(u) pψx dx dy −
N∑

i,j=1

∫

Ωj

gi+1/2 pi+1/2 ψ
−
i+1/2 dy

+
N∑

i,j=1

∫

Ωj

gi−1/2 pi−1/2 ψ
+
i−1/2 dy −

N∑

i,j=1

∫

Ωij

g(u) (pψ)x dx dy

+
N∑

i,j=1

∫

Ωj

gi+1/2 p
−
i+1/2 ψ

−
i+1/2 dy −

N∑

i,j=1

∫

Ωj

gi−1/2 p
+
i−1/2 ψ

+
i−1/2 dy

−
N∑

i,j=1

∫

Ωij

f(u) pψy dx dy +
N∑

i,j=1

∫

Ωi

f j+1/2 pj+1/2 ψ
−
j+1/2 dx

−
N∑

i,j=1

∫

Ωi

f j−1/2 pj−1/2 ψ
+
j−1/2 dx+

N∑

i,j=1

∫

Ωij

f(u) (pψ)y dx dy

−
N∑

i,j=1

∫

Ωi

f j+1/2 p
−
j+1/2 ψ

−
j+1/2 dx+

N∑

i,j=1

∫

Ωi

f j−1/2 p
+
j−1/2 ψ

+
j−1/2 dx

−
N∑

i,j=1

∫

Ωij

p v ψ dx dy = 0, (2.11)

for all ψ ∈ Xs
h(Ω) and

N∑

i,j=1

∫

Ωij

ut ζ dx dy =
N∑

i,j=1

∫

Ωij

p ζ dx dy. (2.12)

for all ζ ∈ Xs
h(Ω).

The above scheme preserves a discrete version of the energy, as shown in the following
theorem:

Theorem 2.1. Let p, v and w be approximate solutions generated by the scheme (2.9)–
(2.12) with periodic boundary conditions. Then

d

dt

N∑

i,j=1

∫

Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dx dy = 0.

Proof. Let p, v and w be numerical solutions generated by the scheme (2.9)–(2.12). Since
those equations hold for any φ, ν, ψ ∈ Xs

h(Ω), they hold in particular for φ = p, ν = v and
ψ = w. We can then calculate

d

dt

N∑

i,j=1

∫

Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dx dy = 2

N∑

i,j=1

∫

Ωij

(ppt + α vvt + β wwt) dx dy
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= 2α
N∑

i,j=1

∫

Ωj

f i+1/2

(
vi+1/2JpKi+1/2 + pi+1/2JvKi+1/2 − JpvKi+1/2

)
dy

+ 2α
N∑

i,j=1

∫

Ωi

gj+1/2

(
vj+1/2JpKj+1/2 + pj+1/2JvKj+1/2 − JpvKj+1/2

)
dx

+ 2β
N∑

i,j=1

∫

Ωj

gi+1/2

(
vi+1/2JpKi+1/2 + pi+1/2JwKi+1/2 − JpwKi+1/2

)
dy

+ 2α
N∑

i,j=1

∫

Ωi

f j+1/2

(
−wj+1/2JpKj+1/2 − pj+1/2JwKj+1/2 + JpwKj+1/2

)
dx = 0,

where we have used the periodic boundary conditions and the identities (2.4). �

Remark 2.2. Theorem 2.1 and similar results to follow explicitly assume periodic boundary
conditions. It is however straightforward to show that these results also hold for certain
other situations such as with compactly supported or decaying data.

2.5. Energy Dissipating Scheme. Note that the above designed energy conservative
scheme (2.9)–(2.12) is expected to approximate a conservative solution of the underlying
system (1.6). To attempt to approximate a dissipative solution of (1.6), one has to add
numerical viscosity. In this work we propose adding viscosity in the numerical fluxes (scaled
by the maximum wave speed) as well as a shock capturing operator dissipating energy near
shocks or discontinuities. Specifically, we propose the following modification of the energy
conservative scheme (2.9)–(2.12):

Denoting

si±1/2 = max{c−i±1/2, c
+
i±1/2} and sj±1/2 = max{b−j±1/2, b

+
j±1/2}

for the maximal local wave velocity, a dissipative version of the DG scheme is then given
by the following: Find p, v, w, u ∈ Xs

h(Ω) such that

N∑

i,j=1

∫

Ωij

pt φ dx dy + α

N∑

i,j=1

∫

Ωij

f(u) v φx dx dy

− α
N∑

i,j=1

∫

Ωj

(
f i+1/2 vi+1/2 +

1

2
si+1/2JpKi+1/2

)

︸ ︷︷ ︸
diffusive flux in x-direction

φ−i+1/2 dy

+ α

N∑

i,j=1

∫

Ωj

(
f i−1/2 vi−1/2 +

1

2
si−1/2JpKi−1/2

)

︸ ︷︷ ︸
diffusive flux in x-direction

φ+
i−1/2 dy
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+ α

N∑

i,j=1

∫

Ωij

g(u) v φy dx dy − α
N∑

i,j=1

∫

Ωi

(
gj+1/2 vj+1/2 +

1

2
sj+1/2JpKj+1/2

)

︸ ︷︷ ︸
diffusive flux in y-direction

φ−j+1/2 dx

+ α
N∑

i,j=1

∫

Ωi

(
gj−1/2 vj−1/2 +

1

2
sj−1/2JpKj−1/2

)

︸ ︷︷ ︸
diffusive flux in y-direction

φ+
j−1/2 dx+ β

N∑

i,j=1

∫

Ωij

g(u)w φx dx dy

− β
N∑

i,j=1

∫

Ωj

gi+1/2wi+1/2 φ
−
i+1/2 dy + β

N∑

i,j=1

∫

Ωj

gi−1/2wi−1/2 φ
+
i−1/2 dy

− β
N∑

i,j=1

∫

Ωj

f(u)w φy dx dy + β

N∑

i,j=1

∫

Ωi

f j+1/2wj+1/2 φ
−
j+1/2 dx

− β
N∑

i,j=1

∫

Ωi

f j−1/2wj−1/2 φ
+
j−1/2 dx− α

N∑

i,j=1

∫

Ωij

v w φ dx dy

+ β

N∑

i,j=1

∫

Ωij

v w φ dx dy = −
N∑

i,j=1

εij

∫

Ωij

(px φx + py φy) dx dy

︸ ︷︷ ︸
shock capturing operator

, (2.13)

for all φ ∈ Xs
h(Ω),

N∑

i,j=1

∫

Ωij

vt ν dx dy +
N∑

i,j=1

∫

Ωij

f(u) p νx dx dy

−
N∑

i,j=1

∫

Ωj

(
f i+1/2 pi+1/2 +

1

2
si+1/2JvKi+1/2

)

︸ ︷︷ ︸
diffusive flux in x-direction

ν−i+1/2 dy

+
N∑

i,j=1

∫

Ωj

(
f i−1/2 pi−1/2 +

1

2
si−1/2JvKi−1/2

)

︸ ︷︷ ︸
diffusive flux in x-direction

ν+
i−1/2 dy

−
N∑

i,j=1

∫

Ωij

f(u) (p ν)x dx dy +
N∑

i,j=1

∫

Ωj

f i+1/2 p
−
i+1/2 ν

−
i+1/2 dy

−
N∑

i,j=1

∫

Ωj

f i−1/2 p
+
i−1/2 ν

+
i−1/2 dy +

N∑

i,j=1

∫

Ωij

g(u) p νy dx dy
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−
N∑

i,j=1

∫

Ωi

(
gj+1/2 pj+1/2 +

1

2
sj+1/2JvKj+1/2

)

︸ ︷︷ ︸
diffusive flux in y-direction

ν−j+1/2 dx

+
N∑

i,j=1

∫

Ωi

(
gj−1/2 pj−1/2 +

1

2
sj−1/2JvKj−1/2

)

︸ ︷︷ ︸
diffusive flux in y-direction

ν+
j−1/2 dx

−
N∑

i,j=1

∫

Ωij

g(u) (p ν)y dx dy +
N∑

i,j=1

∫

Ωi

gj+1/2 p
−
j+1/2 ν

−
j+1/2 dx

−
N∑

i,j=1

∫

Ωi

gj−1/2 p
+
j−1/2 ν

+
j−1/2 dx+

N∑

i,j=1

∫

Ωij

pw ν dx dy

= −
N∑

i,j=1

εij

∫

Ωij

(vx νx + vy νy) dx dy

︸ ︷︷ ︸
shock capturing operator

, (2.14)

for all ν ∈ Xs
h(Ω),

N∑

i,j=1

∫

Ωij

wt ψ dx dy +
N∑

i,j=1

∫

Ωij

g(u) pψx dx dy

−
N∑

i,j=1

∫

Ωj

(
gi+1/2 pi+1/2 +

1

2
si+1/2JwKi+1/2

)

︸ ︷︷ ︸
diffusive flux in x-direction

ψ−i+1/2 dy

+
N∑

i,j=1

∫

Ωj

(
gi−1/2 pi−1/2 +

1

2
si−1/2JwKi−1/2

)

︸ ︷︷ ︸
diffusive flux in x-direction

ψ+
i−1/2 dy

−
N∑

i,j=1

∫

Ωij

g(u) (pψ)x dx dy +
N∑

i,j=1

∫

Ωj

gi+1/2 p
−
i+1/2 ψ

−
i+1/2 dy

−
N∑

i,j=1

∫

Ωj

gi−1/2 p
+
i−1/2 ψ

+
i−1/2 dy −

N∑

i,j=1

∫

Ωij

f(u) pψy dx dy

+
N∑

i,j=1

∫

Ωi

(
f j+1/2 pj+1/2 −

1

2
sj+1/2JwKj+1/2

)

︸ ︷︷ ︸
diffusive flux in y-direction

ψ−j+1/2 dx
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−
N∑

i,j=1

∫

Ωi

(
f j−1/2 pj−1/2 −

1

2
sj−1/2JwKj−1/2

)

︸ ︷︷ ︸
diffusive flux in y-direction

ψ+
j−1/2 dx

+
N∑

i,j=1

∫

Ωij

f(u) (pψ)y dx dy −
N∑

i,j=1

∫

Ωi

f j+1/2 p
−
j+1/2 ψ

−
j+1/2 dx

+
N∑

i,j=1

∫

Ωi

f j−1/2 p
+
j−1/2 ψ

+
j−1/2 dx−

N∑

i,j=1

∫

Ωij

p v ψ dx dy

= −
N∑

i,j=1

εij

∫

Ωij

(wx ψx + wy ψy) dx dy

︸ ︷︷ ︸
shock capturing operator

, (2.15)

for all ψ ∈ Xs
h(Ω),

N∑

i,j=1

∫

Ωij

ut ζ dx dy =
N∑

i,j=1

∫

Ωij

p ζ dx dy. (2.16)

for all ζ ∈ Xs
h(Ω).

The scaling parameter ε in the shock capturing operator is given by

εij =
hij C Res

(∫
Ωij

(p2
x + v2

x + w2
x)dx dy +

∫
Ωij

(p2
y + v2

y + w2
y)dx dy

)1/2

+ hθij

(2.17)

where C > 0 is a constant, θ ≥ 1/2, hij = max{∆xij,∆yij} and

Res =

(∫

Ωij

(Res)2dx dy

)1/2

(2.18)

with

Res =
(
p2 + α v2 + β w2

)
t
+ (α p f(u) v + β p g(u)w)x + (α p g(u) v − β p f(u)w)y . (2.19)

The rationale for the scaling parameter is as follows: For smooth solutions of (2.1) the con-
servation law (2.3) is fulfilled. The numerical solution is then expected to fulfill the same
conservation law up to the spatial and temporal accuracy of the scheme. The shock captur-
ing operator will therefore vanish in smooth regions, while introducing added dissipation
near shocks and discontinuities.

The above scheme dissipates a discrete version of the energy, as shown in the following
theorem:
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Theorem 2.2. Let p, v and w be approximate solutions generated by the scheme (2.9)–
(2.12) with periodic boundary conditions. Then

d

dt

N∑

i,j=1

∫

Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dx dy ≤ 0.

Proof. By using the result from Theorem 2.1, we can write

d

dt

N∑

i,j=1

∫

Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dx dy

= −2
N∑

i,j=1

εij

∫

Ωij

(
p2
x + p2

y + v2
x + v2

y + w2
x + w2

y

)
dx dy

+ α

N∑

i,j=1

∫

Ωj

(
si+1/2JpKi+1/2p

−
i+1/2 − si−1/2JpKi−1/2p

+
i−1/2

)
dy

+ α

N∑

i,j=1

∫

Ωi

(
sj+1/2JpKj+1/2p

−
j+1/2 − sj−1/2JpKj−1/2p

+
j−1/2

)
dx

+ α

N∑

i,j=1

∫

Ωj

(
si+1/2JvKi+1/2v

−
i+1/2 − si−1/2JvKi−1/2v

+
i−1/2

)
dy

+ α

N∑

i,j=1

∫

Ωi

(
sj+1/2JvKj+1/2v

−
j+1/2 − sj−1/2JvKj−1/2v

+
j−1/2

)
dx

+ β

N∑

i,j=1

∫

Ωj

(
si+1/2JwKi+1/2w

−
i+1/2 − si−1/2JwKi−1/2w

+
i−1/2

)
dy

+ β

N∑

i,j=1

∫

Ωi

(
sj+1/2JwKj+1/2w

−
j+1/2 − sj−1/2JwKj−1/2w

+
j−1/2

)
dx

(2.20)

Now, since the periodic boundary condition lends the relation

N∑

i,j=1

(
si+1/2JaKi+1/2a

−
i+1/2 − si−1/2JaKi−1/2a

+
i−1/2

)
= −

N∑

i.j=1

si+1/2JaK2
i+1/2, (2.21)
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we can write

d

dt

N∑

i,j=1

∫

Ωij

(
p2(t) + α v2(t) + β w2(t))

)
dx dy

= −2
N∑

i,j=1

εij

∫

Ωij

(
p2
x + p2

y + v2
x + v2

y + w2
x + w2

y

)
dx dy

− α
N∑

i,j=1

∫

Ωj

si+1/2JpK2
i+1/2dy − α

N∑

i,j=1

∫

Ωi

sj+1/2JpK2
j+1/2dx

− α
N∑

i,j=1

∫

Ωj

si+1/2JvK2
i+1/2dy − α

N∑

i,j=1

∫

Ωi

sj+1/2JvK2
j+1/2dx

− β
N∑

i,j=1

∫

Ωj

si+1/2JwK2
i+1/2dy − β

N∑

i,j=1

∫

Ωi

sj+1/2JwK2
j+1/2dx.

(2.22)

The result then follows from the positivity of εij, s and the physical parameters α and
β. �

3. Energy Preserving Scheme Based On a Variational Formulation

It is worth noting that all the previous schemes were designed by rewriting the variational
wave equation (1.6) as first-order systems and approximating these systems. However, one
can also design a scheme for the original variational wave equation (1.6). To achieve this,
we design an energy conservative scheme by approximating the nonlinear wave equation
(1.6) directly. We proceed by rewriting the nonlinear wave equation (1.6) in the general
form:

utt = −δH
δu

, (3.1)

with

H = H(u, ux, uy) :=
1

2
c2(u)u2

x +
1

2
b2(u)u2

y + a(u)ux uy.

Here, H is the “Hamiltonian”, and δH
δu

denotes the variational derivative of function
H(u, ux, uy) with respect to u.

A simple calculation, in light of (3.1), reveals that

d

dt

∫

R

(
1

2
u2
t +H(u, ux, uy)

)
dx = 0. (3.2)

To be more precise, this is a direct consequence of the simple identity:

δH

δu
=
∂H

∂u
− d

dx

(
∂H

∂ux

)
− d

dy

(
∂H

∂uy

)
. (3.3)
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We also note that for equation (1.6),

δH

δu
= c(u)c′(u)u2

x −
(
c2(u)ux

)
x

+ b(u)b′(u)u2
y −

(
b2(u)uy

)
y

+ a′(u)uxuy

− (a(u)uy)x − (a(u)ux)y

= −c2(u)uxx − c(u)c′(u)u2
x − b2(u)uyy − b(u)b′(u)u2

y − a′(u)uxuy − 2a(u)uxy

= −c(u) (c(u)ux)x − b(u) (b(u)uy)y − a′(u)uxuy − 2a(u)uxy.

Based on above observations, we propose the following scheme for (1.6)

(uij)tt + c(uij)c
′(uij)(D

xuij)
2 −Dx

(
c2(uij)D

xuij
)

+ b(uij)b
′(uij)(D

yuij)
2 −Dy

(
b2(uij)D

yuij
)

+ a′(uij)D
x(uij)D

y(uij)

−Dx (a(uij)D
yuij)−Dy (a(uij)D

xuij) = 0,

(3.4)

where the central differences Dx and Dy are defined by

Dxzij =
zi+1,j − zi−1,j

2∆x
, and Dyzij =

zi,j+1 − zi,j−1

2∆y
.

This scheme is energy preserving as shown in the following theorem:

Theorem 3.1. Let uij(t) be an approximate solution generated by the scheme (3.4) using
periodic boundary conditions. Then we have

d

dt

(
∆x∆y

2

∑

i,j

(uij)
2
t + c2(uij) (Dxuij)

2 + b2(uij) (Dyuij)
2 + 2a(uij)D

x(uij)D
y(uij)

)
= 0.

Proof. We start by calculating

d

dt

(
∆x∆y

2

∑

i,j

(uij)
2
t + c2(uij) (Dxuij)

2 + b2(uij) (Dyuij)
2 + 2a(uij)D

x(uij)D
y(uij)

)

= ∆x∆y
∑

i,j

(
(uij)t(uij)tt + c(uij)c

′(uij) (Dxuij)
2 (uij)t + c2(uij)D

xuijD
x(uij)t

)

+ ∆x∆y
∑

i,j

(
b(uij)b

′(uij) (Dyuij)
2 (uij)t + b2(uij)D

yuijD
y(uij)t

)

+ ∆x∆y
∑

i,j

(
a′(uij)D

x(uij)D
y(uij)(uij)t + a(uij)D

x(uij)tD
yuij

+ a(uij)D
xuijD

y(uij)t

)

= ∆x∆y
∑

i,j

(
(uij)t(uij)tt + c(uij)c

′(uij) (Dxuij)
2 (uij)t −Dx

(
c2(uij)D

xuij
)

(uij)t
)

+ ∆x∆y
∑

i,j

(
b(uij)b

′(uij) (Dyuij)
2 (uij)t −Dy

(
b2(uij)D

yuij
)

(uij)t
)
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+ ∆x∆y
∑

i,j

(
a′(uij)D

x(uij)D
y(uij)(uij)t −Dx (a(uij)D

yuij) (uij)t

−Dy (a(uij)D
xuij) (uij)t

)

= 0. (follows from (3.4))

�

4. Numerical Experiments

For the numerical experiments, the computational domain is subdivided into N × N
rectangular cells. All cells are of size ∆x×∆y. A uniform time step

∆t = 0.1
min{∆x,∆y}

max{α, β} (4.1)

is used throughout the computation. Moreover, in all experiments the parameters for
the shock capturing operator are C = 0.1 and θ = 1. To keep focus on the spatial
discretization, we will use a fifth-order Runge–Kutta scheme [22] ensuring a satisfactory
temporal accuracy. Periodic boundary conditions are used in all experiments.

4.1. Gaussian disturbance to homogeneous director state. In this section we con-
sider the initial value problem (1.6) with the initial data

u0(x, y) = exp
(
−16

(
x2 + y2

))
(4.2a)

u1(x, y) = 0 (4.2b)

on (x, y) ∈ R2. The physical parameters are α = 1.5 and β = 0.5. A numerical solution was
computed using N = 32 with the dissipative piecewise quadratic (s = 2) scheme. Figure
4.1 shows the time evolution of the numerical solution, demonstrating the non-isotropic
nature of this model.

A key property of the schemes derived in this paper is that they are designed, at the
semi-discrete level, to either conserve or dissipate the energy. Figure 4.2 shows the time
evolution of the discrete energy

E =
N∑

i,j=1

∫

Ωij

p2 + αv2 + βw2

2
dx

=
∆x∆y

8

N∑

i,j=1

s∑

k,l=0

ρkρl

((
p

(kl)
ij

)2

+ α
(
v

(kl)
ij

)2

+ β
(
w

(kl)
ij

)2
)
, (4.3)

for the Gaussian initial value problem using both conservative and dissipative schemes for
s ∈ {0, · · · , 3}. The results clearly indicate that the energy preserving (and dissipating)
properties carry over to the fully discrete case when using a higher-order time integrator.
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Figure 4.1. Numerical solution of the initial value problem (1.6) with the
initial data (4.2) using the dissipative piecewise quadratic scheme with N =
32. The parameters are α = 1.5 and β = 0.5.

4.2. Loss of regularity. A crucial property for the 1D variational wave equation is that
solutions loose regularity in finite time even for smooth initial data. For the 2D case this
is still an open problem. We investigate this numerically by considering the initial value
problem (1.6) with data

u0(x, y) = exp
(
−
(
x2 + y2

))
(4.4a)

u1(x, y) = −c(u0(x, y))u0,x(x, y) (4.4b)

for (x, y) ∈ R2. A numerical experiment was performed using N = 64 computational cells
with the conservative and dissipative piecewise quadratic schemes. The results, shown in
Figure 4.3, indicates a clear steepening of the gradient as the solution evolves.

Smooth solutions of (1.6) satisfies the conservation law (2.19). The root-mean-square
of the residual (2.18)can therefore be an indicator function for loss of regularity in the
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Figure 4.2. Evolution of the discrete energy (4.3) for the numerical solu-
tions of the initial value problem (1.6) with the initial data (4.2) using both
conservative and dissipative schemes. The parameters were α = 1.5 and
β = 0.5 and a N = 32 grid size was used.

solution. Figure 4.4 shows the residual at t = 10 for both the conservative and dissipative
schemes. The results indicate that the solution looses smoothness near the front of the wave
propagating in the positive x direction. Moreover, as expected, the dissipative scheme with
the shock capturing operator is able to maintain a higher degree of numerical smoothness
(as measured by the residual) than the conservative scheme.

4.3. Bifurcation of solutions. Another critical feature of the 1D nonlinear variational
wave equation (1.4) is the existence of different classes of weak solutions. However, the
existence and well-posedness for the initial value problem in the 2D generalization remains
an open problem.

In order to investigate this issue numerically, we consider the initial data 4.3 and study
the convergence of the three schemes; the conservative DG scheme, the dissipative DG
scheme and the Hamiltonian scheme; after the loss of regularity. Figure 4.5 shows the L2

distance between the numerical solutions for different times and under grid refinement.
The results indicate that the conservative DG scheme and the Hamiltonian scheme indeed
converge to the same solution as the grid is refined. However, the distance between the
dissipative and conservative DG schemes seems to converge to a non-zero value that in-
creases as a function of time. This may indicate that the question of well-posedness for
the 2D variational wave equation is as delicate as in the 1D case.

4.4. Order of Convergence and Efficiency. In the following, we demonstrate the order
of convergence and efficiency of both the conservative and dissipative schemes for smooth
solutions. As before, we consider the initial value problem (1.6) with the initial data (4.2)
with physical parameters α = 1.5 and β = 0.5. A reference solution uref was calculated at
t = 0.1 using the conservative piecewise cubic scheme (s = 3) with N = 1024. Figure 4.6
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Figure 4.3. The numerical solution at for left) the piecewise quadratic
conservative scheme and right) the piecewise quadratic dissipative scheme of
the initial value problem (1.6) with initial data (4.4) with N = 64 cells. The
physical parameters were α = 1.5 and β = 0.5.
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(b) Dissipative scheme

Figure 4.4. The root-mean-square of the residual (2.18) at t = 10 for the
initial value problem (1.6) with initial data (4.4). At the left: the piecewise
quadratic conservative scheme and at the right: the piecewise quadratic
dissipative scheme, both with N = 64 cells. The physical parameters were
α = 1.5 and β = 0.5.
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(b) Conservative - dissipative

Figure 4.5. The L2 distance between left: the conservative DG scheme
and the Hamiltonian scheme and right: the conservative DG scheme and the
dissipative DG scheme, for the initial value problem (1.6) with initial data
(4.4). The physical parameters were α = 1.5 and β = 0.5.

shows the error

e = ‖uN − uref‖2 (4.5)

for different grid cell numbers N = Nx = Ny. The results indicate a suboptimal order
of convergence for odd s when using the conservative numerical flux. For the dissipative
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Figure 4.6. The error (4.5) for the numerical solution of the Gaussian
initial value problem (4.2) as a function of N , using α = 1.5 and β = 0.5.
The dashed lines indicate the different orders of convergence.

scheme the order of convergence is optimal. This behavior has been observed also in the
1D case [1], and for certain DG schemes in the literature [24]. The Hamiltonian scheme
converges to first order.

Figure 4.7 shows the error (4.5) compared to a a reference solution as a function of
computational cost (CPU wall time). The results indicate that the higher-order schemes
mostly make up for their increased computational complexity in better accuracy per CPU
time. One exception is the conservative piecewise linear scheme, which for this case re-
quires more computational work than the piecewise constant scheme in order to obtain the
same accuracy. A possible explanation for this is that enforcing energy preservation us-
ing piecewise linear elements results in an un-physically jagged solution in certain regions.
This happens despite the fact that the converged solution does not exhibit this behavior.
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For the piecewise linear dissipative scheme, this effect is suppressed by the added artificial
viscosity.
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Figure 4.7. The error (4.5) for the numerical solution of the Gaussian
initial value problem (4.2) at t = 0.5 as a function of CPU time (wall time),
using α = 1.5 and β = 0.5. The reference solution was calculated using the
piecewise cubic conservative scheme with N = 1024 cells.

4.5. Relaxation from a standing wave. For this experiment we consider the initial
value problem

u0(x, y) = 2 cos(2πx) sin(2πx) (4.6a)

u1(x, y) = sin(2π(x− y)) (4.6b)

on (x, y) ∈ [0, 1]× [0, 1] with periodic boundary conditions. The initial value problem can
be seen as describing the following: Initially, a standing wave is induced in the director
field using e.g. an external electromagnetic field or mechanical vibrations. At t = 0, the
external influence is removed, and the evolution of the director is purely governed by elastic
forces.

Figure 4.8 shows the numerical solution using both conservative and dissipative piecewise
quadratic schemes with N = 64 cells. For comparison, a numerical solution was also
computed using the Hamiltonian scheme derived in Section 3. The physical parameters
were, as before, α = 1.5 and β = 0.5. For t > 0 the non-isotropic elasticity of the director
field deteriorates the initial standing wave and the pattern becomes more complicated. At
t = 2 the solution given by the dissipative DG scheme is visibly more regular that the
solutions given by the conservative schemes (DG and Hamiltonian).

5. Summary

Using the Discontinuous Galerkin framework we have derived arbitrarily high-order nu-
merical schemes for the 2D variational wave equation describing the director field in a type
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Figure 4.8. The numerical solution at left: t = 1 and right: t = 2 of the
initial value problem (1.6) with initial data (4.6) using the conservative and
dissipative piecewise quadratic schemes (s = 3) with N = 64 cells. The
bottom row shows the numerical solution using the Hamiltonian scheme.
The physical parameters were α = 1.5 and β = 0.5.
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of nematic liquid crystals. By design, these schemes either conserve or dissipate the total
mechanical energy of the system. The energy conserving scheme is based on a centralized
numerical flux, while the dissipative scheme employs a dissipative flux combined with a
shock capturing operator.

We have performed extensive numerical experiments both to verify the performance of
the schemes and to investigate the behavior of solutions to the variational wave equation.
In particular:

• The schemes converge to a high order of accuracy for smooth solutions.
• The high-order schemes outperform low-order scheme in terms of error per CPU

time.
• The energy respecting properties (proven at the semi-discrete level) also hold on

the fully discrete level when using a high-order numerical integration in time.
• Experiments show that the solution can loose regularity in finite time even for

smooth initial data.
• After loss of regularity, results indicate that the conservative and dissipative schemes

converge to different solutions as the grid is refined.

To the best of our knowledge, this is the first systematic numerical study of the 2D
generalization of the nonlinear variational wave equation (1.4). Indeed, the results here
indicate that the mathematical treatment of (1.6) might be as delicate as in the 1D case.
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Preface

This research contained in this paper was performed during my research
stay imbedded in Professor Siddhartha Mishra’s group at ETH in Zürich.
Professor Mishra and his former student Jonas Šukys are experts on ap-
plying the multi-level Monte Carlo method to hyperbolic conservation laws.
With their help, I proceeded to apply this scheme to the variational wave
equations considered in Papers C and D.

For me, the field of uncertainty quantification for PDEs in general and
MLMC in particular represented something completely new. During this
research I had to both familiarize myself with the theory and the new ter-
minology, as well as to learn how to run simulations on high performance
computer clusters. As numerical schemes I opted, for simplicity, to use
conservative Hamiltonian methods.
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UNCERTAINTY QUANTIFICATION FOR NONLINEAR
WAVES IN LIQUID CRYSTALS USING MULTI-LEVEL

MONTE CARLO

PEDER AURSAND AND JONAS ŠUKYS

Abstract. We consider a variational wave equation giving the
evolution of the director field of a nematic liquid crystal. The
nonlinearity of this wave equation is strongly dependent on the
material constants describing the elasticity of the system. Us-
ing the multi-level Monte Carlo (MLMC) Finite-Volume sampling
method we quantify the influence of uncertain material constants
and uncertain initial data on the initial-value problem. The MLMC
scheme involves sampling solutions of the Stochastic PDE on a hi-
erarchy of nested meshes. We present results from uncertainty
quantification on waves in the director field in both 1D and 2D.
Herein, we observe that 5-10 times the computational work is re-
quired to achieve a desired accuracy in the estimated mean when
using a standard Monte Carlo method compared to when using the
MLMC scheme.

1. Introduction

The term liquid crystal refers to a state of matter with both crys-
talline characteristics as well as properties normally associated with
liquids. For specific materials, the liquid crystal phase can be observed
in certain ranges of temperature, mixture concentrations, or both. Ne-
matic liquid crystals usually consists of elongated molecules for which it
is energetically favorable for neighboring molecules to align. Therefore,
even though the molecules are free to flow, one can observe macroscopic
correlation of the orientation of their long axis. Since the refractive in-
dex of the material depends on the molecular orientation, and since
the orientation can be influenced by external electromagnetic fields,
nematic liquid crystals have seen widespread use in display devices.

Under the assumption of constant local degree of orientation, the
state of a nematic liquid crystal is traditionally represented in terms
of two linearly independent vector fields: the velocity field and the

Date: June 21, 2015.
1
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2 P. AURSAND AND J. ŠUKYS

director field. The latter is a map

n : R3 × [0,∞)→ S2

from Euclidean space to the unit ball. In the present work we assume
a stationary flow field and will focus on the dynamics of the director
field.

The dynamics of the director field can be derived using an energy
variational approach. Herein, the elastic energy density associated with
distortion of the director field is given by the Oseen–Franck functional

W(n,∇n) = α |n× (∇× n)|2 + β (∇ · n)2 + γ (n · (∇× n))2 . (1.1)

It can be shown that (1.1) is the general form of an energy that is
quadratic in ∇n and invariant under the transformation n → −n [5].
The constants α, β and γ are material constants of the liquid crystal,
and are associated with the three basic types of deformations of the
medium; bend, splay and twist; respectively. Assuming zero dissipa-
tion, the evolution of the director n is then given by the principle of
least action

δ

∫∫ (
n2
t −W(n,∇n)

)
dx dt = 0, n · n = 1. (1.2)

Standard calculations reveal that the Euler-Lagrange equation associ-
ated with (1.2) is the variational wave equation

ntt = div (W∇n(n,∇n))−Wn(n,∇n).

A simple one-dimensional model can be derived by assuming that
the director field depends on a single space variable x, and, that the
director field n in confined to the x-y plane. The director can then be
written as

n = (cosu(x, t), sinu(x, t), 0).

Here, u denotes the angle between the long axis of the molecules and
the x-axis. The variational wave equation describing the dynamics of
planar waves in 1D is then given by

utt − c(u) (c(u)ux)x = 0, (1.3)

where

c(u) =
√
α cos2(u) + β sin2(u)

is the nonlinear wave speed. The equation (1.3) was first introduced
by Saxton [22], and has since been subject the numerous studies due
to its interesting nonlinear properties [13, 9, 12]. Recently, there has
also been some effort towards making efficient, stable and convergent
numerical schemes for the initial-value problem [11, 15].

182 Paper E: Uncertainty quantification using MLMC



UNCERTAINTY QUANTIFICATION USING MLMC 3

A similar model can be derived in 2D by asserting

n = (cosu(x, y, t), sinu(x, y, t), 0) .

In this case, the variational wave equation takes the form

utt − (T (u)∇) · (T (u)∇u) = 0 (1.4)

with

T (u) =

(√
α cos(u)

√
α sin(u)√

β sin(u) −√β cos(u)

)
.

The material constants α and β play a crucial role in the nonlin-
ear dynamics of the planar waves described by (1.3) and (1.4). In the
modeling of nematic liquid crystals, the value of these can be subject
to uncertainties based on e.g. errors bars in their experimental mea-
surement and simplifications in their dependence on temperature [6].
Moreover, one might wish to study the dynamics of the director field
over a range of temperatures. To this end, the problems (1.3) and (1.4)
can be recast as the stochastic initial-value problems

utt − c(u, ω) (c(u, ω)ux)x = 0, (x, t) ∈ R× [0, T ], (1.5a)

u(x, 0) = u0(x, ω), x ∈ R, (1.5b)

ut(x, 0) = u1(x, ω), x ∈ R, (1.5c)

and

utt − (T (u, ω)∇) · (T (u, ω)∇u) = 0, (x, y, t) ∈ R2 × [0, T ], (1.6a)

u(x, y, 0) = u0(x, y, ω), (x, y) ∈ R2, (1.6b)

ut(x, y, 0) = u1(x, y, ω), (x, y) ∈ R2, (1.6c)

where ω ∈ Ω, for some probability space (Ω,F).
Uncertainty quantification for solutions of partial differential equa-

tions has been an active field of research in recent years [24, 4, 17, 21].
In practical modeling, the physical parameters, initial data, and bound-
ary conditions are often all subject to uncertainty. How to efficiently
determine the effect this has on the solutions of nonlinear initial-value
problems is a nontrivial issue of great interest in applied sciences and
engineering. This is especially true for hyperbolic partial differential
equations where solutions might develop shocks and discontinuities
[24, 21].

An important class of methods for uncertainty quantification for
PDEs is the so-called non-intrusive methodology [2]. The main benefit
of these types of schemes is that existing code for solving the determin-
istic problem can be used with few or no changes. Herein, the Monte
Carlo sampling method is one of the most notable examples. It relies
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on sampling the underlying probability space for the initial-value prob-
lem, and in each instance solving the deterministic PDE. The ensemble
of solutions can then be used to estimate statistical quantities such as
the mean and variance.

While non-intrusive and simple to implement, the Monte Carlo sam-
pling method suffers from a low rate of convergence [18]. This issue
can be detrimental to performance, especially for uncertainty quantifi-
cation for PDEs in high spatial dimensions. Here, obtaining even a
single deterministic solution can be computationally expensive. Sev-
eral techniques have been proposed to assuage the performance issue
of Monte Carlo methods. Examples include variance reduction [8] and
quasi Monte Carlo methods [7]. In this work we will focus on the
multi-level Monte Carlo method, first introduced by Heinrich [10] for
numerical quadrature. It has since then been successfully applied to hy-
perbolic conservation laws in conjunction with finite-volume methods
[18, 19, 20]. The method relies on performing Monte Carlo sampling on
a hierarchy of nested computational grids. By drawing more samples
from realizations on coarser grids, where solving the PDE numerically
is cheaper, one can efficiently estimate the statistics of the problem.

The asymptotic efficiency of the MLMC method has been rigorously
proven for scalar conservation laws, and its performance demonstrated
for systems of conservation laws [2]. The potential applicability of this
scheme for uncertainty quantification for other nonlinear models in the
applied sciences is therefore of great interest. The main purpose of
this work is to perform uncertainty quantification for nonlinear waves
in liquid crystals in 1D (1.5) and 2D (1.6), using both the MC and
MLMC methods. By doing this, we will demonstrate that significant
gains in efficiency can be obtained by using MLMC for these variational
wave equations. This has, to the best of the authors’ knowledge, so far
not been the subject of much study.

The paper is organized as follows: Section 2 concerns the determin-
istic solution of the variational wave equation in 1D and in 2D. Herein,
we derive a simple finite-difference scheme that by design preserves the
energy stability of the model. In Section 3 we outline how the MC
and MLMC methods can used in conjunction with the deterministic
solver to perform uncertainty quantification. Section 4 and 5 contains
the numerical experiments for 1D and 2D planer waves, respectively.
Here, we perform uncertainty quantification using both the basic MC
method and the MLMC scheme, and compare their error and efficiency.
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2. A Hamiltonian finite-difference method

In order to give a deterministic solution of the initial-value problems
(1.5) and (1.6), we employ a finite difference scheme based on the
Hamiltonian formulation

utt = −δH
δu

. (2.1)

This gives an efficient and robust numerical method that, on the semi-
discrete level, respects the underlying energy stability of the model.
For time integration we will employ the Leapfrog method.

2.1. The 1D model. In the 1D case (1.3), we have

δH

δu
= −c(u) (c(u)ux)x = c(u)c′(u)u2x −

(
c2(u)ux

)
x
. (2.2)

For a spatial computational domain [x0, xN ] we denote xi = x0 + i∆x
for i ∈ {0, · · · , N}. Any grid function u(x, t) can then be written
ui(t) = u(xi, t). Further, by defining the central difference operator as

D0ui :=
ui+1 − ui−1

2∆x
, (2.3)

we can write down the semi-discrete numerical scheme

(ui)tt = c(ui)c
′(ui) (D0ui)

2 −D0

(
c2(ui)D0ui

)
. (2.4)

It is straightforward to show that this scheme preserves a discrete ver-
sion of the energy [15]. Specifically, at the semi-discrete level, we have

d

dt

(
∆x

2

N∑

i=0

(
(ui)

2
t + c2(ui) (D0ui)

2)
)

= 0 (2.5)

given periodic boundary conditions or decaying data.

2.2. The 2D model. For the 2D equation (1.4), we have,

δH

δu
= c(u)c′(u)u2x −

(
c2(u)ux

)
x

+ b(u)b′(u)u2y −
(
b2(u)uy

)
y

+ a′(u)uxuy

− (a(u)uy)x − (a(u)ux)y

= −c2(u)uxx − c(u)c′(u)u2x − b2(u)uyy − b(u)b′(u)u2y − a′(u)uxuy

− 2a(u)uxy

= −c(u) (c(u)ux)x − b(u) (b(u)uy)y − a′(u)uxuy − 2a(u)uxy.

Similarly as before, we can for a computational domain [x0, xN ] ×
[y0, yN ] denote uij(t) = u(xi, yj, t), where xi = x0 + i∆x and yj =
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y0 + j∆y. Again, we define central difference operators

Dx
0uij :=

ui+1,j − ui−1,j
2∆x

and Dy
0uij =

ui,j+1 − ui,j−1
2∆y

. (2.6)

This allows us to write down the semi-discrete finite-difference scheme

(uij)tt + c(uij)c
′(uij)(D

x
0uij)

2 −Dx
0

(
c2(uij)D

x
0uij

)
+ b(uij)b

′(uij)(D
y
0uij)

2

−Dy
0

(
b2(uij)D

yuij
)

+ a′(uij)D
x
0(uij)D

y
0(uij)

−Dx
0 (a(uij)D

y
0uij)−Dy

0 (a(uij)D
x
0uij) = 0.

(2.7)
Note that in the above we have assumed that the grid parameter N
is the same in the x and y dimensions. This is a simplification made
for the purpose of this exhibition, and not a limitation inherent to the
scheme.

The scheme (2.7) can be shown to preserve a discrete version of the
energy of the model [1]. Specifically, solutions fulfill

d

dt

(
∆x∆y

2

∑

i,j

(uij)
2
t + c2(uij) (Dx

0uij)
2 + b2(uij) (Dy

0uij)
2

+ 2a(uij)D
x
0(uij)D

y
0(uij)

)
= 0

given periodic boundary conditions or decaying data.

3. Uncertainty quantification using multi-level Monte
Carlo

Given a stable and efficient numerical scheme for solving the deter-
ministic initial value problems (1.3) and (1.4), a Monte Carlo (MC)
type scheme can be applied to perform uncertainty quantification (for
instance, to estimate the mean value and the variance of the solution
u) for the stochastic initial-value problems (1.5) and (1.6).

3.1. The Monte Carlo Finite-Volume method. The Monte Carlo
Finite-Volume sampling method can be summed up to three basic steps:

(1) Draw M independent identically distributed samples of αk, βk,
uk0 and uk1 for k = 1, . . . ,M .

(2) For each realization {αk, βk, uk0, uk1} we solve the initial-value
problem using the deterministic numerical method with a fixed
mesh. The numerical solutions are denoted by uk, k = 1, . . . ,M .
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(3) Estimate the expectation of the random solution field by calcu-
lating the sample mean

EM [u] :=
1

M

M∑

k=1

uk. (3.1)

Higher statistical moments such as the variance can also be
estimated [23].

Different strategies exist for choosing the number of samples M for a
given mesh number N [23]. In this work we will use M = N for all MC
calculations.

3.2. The multi-level Monte Carlo Finite-Volume method. The
deterministic solution of the initial value problem can be expensive,
especially in higher dimensions. Indeed, calculating a large number
of samples using a very fine mesh can in many cases be computation-
ally infeasible. The multi-level Monte Carlo Finite-Volume (MLMC)
method is one way of assuaging this concern. It relies on taking Monte
Carlo samples on a hierarchy of nested grids. By taking more samples
on the coarser grid, where the numerical approximation of the deter-
ministic problem is computationally cheaper, one can obtain the same
order of accuracy at a significantly lower cost compared to the MC
method.

In this work we use Cartesian grids, and for the level ` ∈ {0, · · · , L}
we denote

∆x` = 2−`∆x0,

for some fixed coarsest mesh size ∆x0. For simplicity, we assume equal
spatial mesh sizes in both dimensions for the 2D model. The MLMC
method consists of the three main steps:

(1) For each level ` ∈ {0, . . . , L}, draw a level-dependent number
M` independent identically distributed samples αk` , β

k
` , uk0,` and

uk1,` for k = 1, . . . ,M`.

(2) For each realization {αk` , βk` , uk0,`, uk1,`} of the parameters solve
the deterministic initial value problem. The numerical solutions
are denoted by uk` , k = 1, . . . ,M`.

(3) Estimate the expectation of the random solution field by using
the estimator

EL[u] := EM0 [u0] +
L∑

`=0

EM`
[u` − u`−1], (3.2)

where EM [u] denotes the MC estimator (3.1). Higher statistical
moments can be calculated in a similar manner [23].
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There are different strategies for choosing the level-dependent num-
ber of samples M`. In this work we will use

M` = ML22(L−`),

a choice designed to equilibrate the error contributions from each suc-
cessive level, given a first-order deterministic solver [23]. Note, however,
that rigorous error estimates for MLMC only exist for scalar conserva-
tion laws [16].

For the reader’s reference, we emphasize that the MLMC estimates
in the rest of this paper are all determined by the following list of
parameters:

ML Number of samples on the finest mesh level
NL Number of cells in each direction in finest mesh
L Number of levels of refinement

3.3. Computation of sample statistics. When the number of sam-
ples is large, storage saving techniques should be used when assembling
statistical estimates. For efficient and stable computation of the mean
and variance we employ the following on-line algorithm due to Knuth
[14]: Let ū0 = 0 and Φ0 = 0. Given samples ui, i ∈ {1, . . . ,M} we can
proceed iteratively to calculate

ūi =
i∑

j=1

uj − ūj−1
i

, Φi = Φi−1 +
(
uj − ūj−1

) (
uj − ūj

)
.

Unbiased estimates for the mean and variance of the population are
then given by

EM [u] = ūM and VarM [u] =
ΦM

M − 1
,

respectively. This allows us to update the statistical estimates after
calculating each individual samples, eliminating the need for storing
all solutions and thereby significantly reducing memory requirements.

Since individual samples only interact when combining the statistical
estimates, the MC and MLMC methods are both highly parallelizable.
In practice, a parallel implementation will require us to be able to
combine statistical estimates from smaller subsets of samples. To this
end, the following algorithm proposed by Chan et al. [3] can be used:
Let EMA

[u] and EMB
[u] be estimates for the mean for sample sizes MA

and MB, respectively, with M = MA + MB. The combined mean can
then be calculated as

EM [u] =
MAEMA

[u] +MBEMB
[u]

M
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and for the variance

ΦM [u] = ΦMA
[u] + ΦMB

[u] +
MAMB

M
(EMA

[u]− EMB
[u])2 ,

with

VarM [u] =
ΦM [u]

M − 1
.

3.4. L2 stability for the MC mean estimator. The equation (1.3)
can be derived from an energy law. Hence, it inherits an L2-stability
from the underlying energy functional. It is straightforward to verify
that smooth solutions u(x, t) of (1.3) satisfy

d

dt
Eu(t) =

d

dt

∫ (
u2t + c2(u)u2x

)
dx = 0.

For positive (and nonzero) α and β this implies

∫ (
u2t + min{α, β}u2x

)
dx ≤ Eu(t) ≤

∫ (
u2t + max{α, β}u2x

)
dx (3.3)

giving a basic stability estimate. In Section 2 we showed that this
energy principle is shared by the deterministic solvers at the semi-
discrete level.

We can verify that this stability also holds for the MC mean estima-
tor as follows: Assume that u and v are two smooth solutions of (1.3),
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thus satisfying (3.3). For the mean w = (1/2)(u+ v) we then have

Ew(t) =

∫ (
w2
t + c2(w)w2

x

)
dx =

1

4

∫ (
u2t + c2(w)u2x

)
dx

+
1

4

∫ (
v2t + c2(w)v2x

)
dx

+
1

2

∫ (
vtut + c2(w)uxvx

)
dx

≤ 1

4

∫ (
u2t + max{α, β}u2x

)
dx

+
1

4

∫ (
v2t + max{α, β}v2x

)
dx

+
1

2

∫
(|vtut|+ max{α, β}|uxvx|) dx

≤ 1

4

∫ (
u2t + max{α, β}u2x

)
dx

+
1

4

∫ (
v2t + max{α, β}v2x

)
dx

+
1

4

∫ (
u2t + v2t + max{α, β}(u2x + v2x

)
dx

=
1

2

∫ (
u2t + max{α, β}u2x

)
dx

+
1

2

∫ (
v2t + max{α, β}v2x

)
dx.

(3.4)
That the same holds for the MC mean estimator (3.1), i.e.

EEM [u](t) ≤
1

M

M∑

k=1

∫ ((
ukt
)2

+ max{α, β}
(
ukx
)2)

dx,

follows by induction.
An analogous result for the 2D equation can be obtained in an anal-

ogous way.

4. 1D planar waves

In the following, we investigate the propagation of nonlinear 1D
planar waves with uncertain, uniformly distributed elastic constants.
Specifically, we let the material constants be independent identically
distributed variables with

α ∼ U(0.3, 0.7), β ∼ U(1.3, 1.7), (4.1)
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and study the initial value problem (1.5) with

u0(x) =
π

4
+ exp(−x2) (4.2a)

u1(x, ω) = −c(u0, ω)u0,x(x). (4.2b)

Notice that this introduces uncertainty in both the flux term as well as
in the initial data.

Figure 4.1 shows the estimated mean and standard deviation of the
director field using the MC method with M = N = 512. Figure 4.2

15 10 5 0 5 10 15
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

EM [u]

EM [u]−
√

VarM [u]

EM [u] +
√

VarM [u]

(a) t = 5

15 10 5 0 5 10 15
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
u

EM [u]

EM [u]−
√

VarM [u]

EM [u] +
√

VarM [u]

(b) t = 10

Figure 4.1. The mean and standard deviation of the
director field for the initial value problem (4.2) with α
and β given by (4.1). Calculated using the MC method
with M = N = 512.

shows the same estimates, but using the MLMC method with ML = 64,
L = 7 and NL = 8192. From the results, it is clear that the uncertainty
in the elastic constants introduce uncertainties in both the magnitude
and position of the propagating disturbance. The error bars for the
director field, shown in the filled yellow area, are of the order of ∼ 10%.

The MLMC estimates, the variance in particular, are more irregular
than their MC counterparts, as can be seen in Figure 4.2. This is not
unexpected in regions where the solution may vary greatly between
levels of mesh refinement, e.g. near shocks and discontinuities.

4.1. Convergence and efficiency. We estimate the order of conver-
gence of the MC and MLMC methods for the initial value problem
(4.2).

Since the MC and MLMC estimators are themselves random, the
root mean square error estimator is employed to extract statistical
convergence rates from the fluctuating error measurements. Let Eref[u]
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(b) t = 10

Figure 4.2. The mean and variance of the director field
for the initial value problem (4.2) with α and β given by
(4.1). Calculated using the MLMC method with ML =
64, L = 7 and NL = 8192.

be an accurate reference solution, calculated using the MLMC scheme
with a high accuracy. To estimate the error of an MC or MLMC
estimator EM [u] we calculate a sequence of estimates

E
(k)
M [u], k = 1, · · · , K

for some number K. We then define the root-mean-square relative
error as

E =

√√√√ 1

K

K∑

k

(
E (k)M

)2
, (4.3)

where

E (k)M =
‖Eref[u]− E(k)

M [u]‖L2

‖Eref[u]‖L2

.

Figure 4.3 shows the error in the mean and the standard deviation
for both the MC and MLMC schemes using K = 20. For a given
mesh refinement N , the MC scheme outperforms the MLMC scheme.
This is not unexpected, since the MC estimator is a combination of
a large number of samples on the finest grid. However, in terms of
computational efficiency, we see a clear advantage of using the MLMC
scheme. In fact, the results show that obtaining the same accuracy
in the mean using the MC scheme requires approximately 8 times the
computational effort. For the standard deviation the gain is not as big,
but the MLMC scheme is also more efficient in this case.
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Figure 4.3. Error of the mean and standard deviation
for the MC and MLMC method for the initial value prob-
lem (4.2) at t = 5. The reference solution was calculated
using ML = 64, NL = 8196 and L = 7. The error ε
was calculated using the estimator (4.3) with K = 20.
Dashed lines indicate expected orders of convergence for
scalar conservation laws.

5. 2D planar waves

In what follows, we investigate the evolution of the 2D variational
wave equation given uncertain elastic constants α and β. For the de-
terministic numerical solution of the initial value problem (1.6) we use
the Hamiltonian scheme described in Section 2.2.

5.1. Gaussian disturbance. We consider the following initial data,
representing a Gaussian disturbance to an initially homogeneous initial
state:

u0(x, y) = exp
(
−
(
x2 + y2

))
(5.1a)

u1(x, y, ω) = −c(u0, ω)u0,x(x, y) (5.1b)
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Furthermore, we let the elastic constants be independent identically
distributed random variables given by

α ∼ U(0.3, 0.7) and β ∼ U(1.3, 1.7). (5.2)

Note that this introduces uncertainty in both the governing equation
as well as in the initial data.

Figure 5.1 shows the mean and the standard deviation of the director
angle and its gradient at t = 10, calculated using the Monte Carlo
method with M = N = 512. Similarly, Figure 5.2 shows the mean

(a) Mean (b) Standard deviation

Figure 5.1. The mean and standard deviation of the
director field u at t = 10 for the initial value problem
(5.1). Calculated using the MC method with M = N =
512.

and the standard deviation calculated using the MLMC scheme with 6
levels (L = 5), ML = 8 samples on the fines level with 2048×2048 grid
cells. The results illustrate the effect of the nonlinearity. There is a
clear preferred direction of propagation, and herein a steepening of the
slope can be observed. We also observe that the uncertainty is greatest
closest to this propagation front, and the relative standard deviation
here is about ∼ 10%.

5.2. Convergence and efficiency. We study the convergence of the
MC and MLMC methods using the initial value problem (5.1). As
a reference we use the solution displayed in Figure 5.2. Similarly as
before, we use a root-mean-square estimate (4.3) for the error.

Figure 5.3 shows the error (4.3) for both the MC and MLMC schemes
using K = 20. For a fixed grid accuracy N the MC scheme outperforms
the MLMC scheme, which is not unexpected. However, as in the 1D
case, the efficiency of the MLMC scheme (error per CPU second) is
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(a) Mean (b) Standard deviation

Figure 5.2. The mean and standard deviation of the
director field u at t = 10 for the initial value problem
(5.1). Calculated using the MLMC method withML = 8,
L = 5 and NL = 2048.

far superior. In fact, obtaining a lower error in the mean with the MC
method requires more than five times the computational efforts. For
the standard deviation the difference is not as obvious, but also here
the MLMC scheme is superior in terms of efficiency.

5.3. Relaxation from standing wave. A second test case is given
by the initial data

u0(x, y) = 2 cos(2πx) sin(2πx) (5.3a)

u1(x, y) = sin(2π(x− y)) (5.3b)

on (x, y) ∈ [0, 1] × [0, 1] with periodic boundary conditions. Initially,
the director field is a standing wave, something that can be caused by
the influence of e.g. an electric field or mechanical vibrations. At t = 0
the external influence is switched off, and the dynamics of the director
field is governed by the elasticity of the liquid crystal.

We consider the stochastic initial value problem consisting of (1.4)
with the initial data (5.3). The elastic constants are assumed to be
identically uniformly distributed as

α ∼ U(0.45, 0.55) and β ∼ U(1.45, 1.55). (5.4)

Figure 5.4 shows the estimated mean and standard deviation of the
director field at t = 2 using the MC method with M = N = 512.
Similarly, Figure 5.5 shows the estimated mean and standard deviation
of the director field using the MLMC method with ML = 8, L = 5 and
NL = 2048. The results show the sinusoidal initial wave deteriorating
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Figure 5.3. Error of the mean and standard deviation
of the director field u for the MC and MLMC method
for the initial value problem (5.1). The reference solution
was calculated usingML = 8, NL = 2048 and L = 6. The
error ε was calculated using the estimator (4.3) with K =
20. Dashed lines indicate expected orders of convergence
for scalar conservation laws.

into a more irregular pattern, while the mean still maintains the same
periodicity. The variance is clearly largest between the local maxima,
indicating that the elastic constants strongly affect both the position
and shape of these.

5.4. Convergence and efficiency. We can study the convergence of
the MC and MLMC methods also for this case. Figure 5.6 shows the
RMS error (4.3) at t = 2 for both the MC and MLMC schemes using
K = 20. The results read similar as before. In terms of error per grid
size the MC method is superior. However, since most of the sampling
in the MLMC method is done on coarse grids, the efficiency of this
method is much greater. Specifically, Figure 5.6 shows that obtaining
the same error in the mean using the MC method requires more than
10 times the computational effort.
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(a) Mean (b) Standard deviation

Figure 5.4. The mean and standard deviation of the
director field u at t = 2 for the initial value problem (5.3).
Calculated using the MC method with M = N = 512.

(a) Mean (b) Standard deviation

Figure 5.5. The mean and standard deviation of the
director field u at t = 2 for the initial value problem (5.3).
Calculated using the MLMC method withML = 8, L = 5
and NL = 2048.

6. Summary

We have studied the evolution of a class of nonlinear waves in the
director field of nematic liquid crystals with uncertain elastic constants
and uncertain initial data. Herein, we perform uncertainty quantifi-
cation on the stochastic initial-value problem in 1D and 2D using the
Monte Carlo and the multi-level Monte Carlo methods. As the de-
terministic solver we have used a Hamiltonian finite-difference scheme
designed to preserve the energy stability inherent to the model.
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Figure 5.6. Error of the mean and standard deviation
of the director field u for the MC method with M = N
and the MLMC method with ML = 8 and L = 4 for the
initial value problem (5.3). The reference solution was
calculated using ML = 32, NL = 2048 and L = 6. The
error ε was calculated using the estimator (4.3) with K =
20. Dashed lines indicate expected orders of convergence
for scalar conservation laws.

The results, both in 1D and 2D, indicate that the MLMC method
can be applied successfully to estimate statistical quantities for models
of this kind. In terms of error per computational effort, we observed
that the MLMC clearly outperformed the regular MC method. In
particular, the results show that in order to obtain the same error in
the expectation, the MC method requires 5-10 times the computational
work. The efficiency of the MLMC method for the estimation of the
variance is lower. However, the obtained numerical results show a clear
advantage from using the MLMC scheme also here.
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