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Abstract

The purpose of this study is to evaluate a numerical material model for thermoplas-
tics developed at SIMLab, NTNU. Several experimental tests, using both HDPE and
PVC, were conducted in order to have a basis for calibrating the material model. The
focus of this thesis has been on optimizing the methods for retrieving the results of
the experimental tests and numerical simulations.

3D digital image correlation (DIC) was used to obtain the strains from the experi-
mental tests. This proved very successful for the tension tests, but did not work well
for longitudinal strains of the compression tests, which had to be calculated from the
displacement. The 3D DIC analysis also allows for test specimens with circular cross
sections to be used. These specimens proved to get better results than the quadratic
specimens used in previous studies.

Obtaining the strains from the numerical simulations was done by two different meth-
ods. One method was getting the strains directly from all the elements in one cross
section; the other was calculating the strains from the displacement of the nodes on
the surface of the specimen. This last method is equivalent to the DIC analysis, and
resulted in a better match between the experimental and simulation results of the
tension tests.

The numerical model was largely able to reproduce the results of the experimen-
tal tests. The biggest problem seems to stem from the simulations having a higher
strain rate than the experimental tests.





Sammendrag

Hensikten med denne studien er å evaluere en numerisk materialmodell for plastma-
terialer utviklet ved SIMLab, NTNU. Flere eksperimentelle tester, med b̊ade HDPE
og PVC, ble utført som en basis for kalibrering av materialmodellen. Fokus for denne
oppgaven har vært p̊a optimaliseringen av metoder for å hente ut resultatene fra
eksperimentelle tester og numeriske simuleringer.

3D digital bilde korrelasjon (DIC) ble anvendt for å hente ut tøyningene fra de
eksperimentelle testene. Dette viste seg å være svært vellykket for strekktestene,
men fungerte ikke s̊a bra for lengdetøyningene i kompresjonstestene, som måtte bereg-
nes ut fra forskyving. 3D DIC analyse gjør det ogs̊a mulig å benytte prøvestykker
med sirkulært tverrsnitt. Disse prøvestykkene viste seg å gi bedre resultater enn de
kvadratiske prøvestykkene brukt i tidligere studier.

Uthenting av tøyninger fra de numeriske simuleringene ble gjort med to forskjellige
metoder. En metode var å f̊a tøyningene direkte fra alle elementene i et tverrsnitt;
den andre var å beregne tøyningene fra forskyvningen av nodene p̊a overflaten av
prøven. Denne siste metoden er ekvivalent med DIC analyse, og ga bedre samsvar
mellom resultatene fra de eksperimentelle og simulerte strekktestene.

Den numeriske modellen var i stor grad i stand til å reprodusere resultatene fra de
eksperimentelle testene. Det største problemet synes å stamme fra at simuleringene
har en høyere tøyningshastighet enn de eksperimentelle testene.
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Chapter 1

Introduction

Due to their relatively low strength, polymers have historically been used mostly for
packaging, and not as a structural material. More recently, however, polymers have
also come into use for structural purposes. The low weight of polymers have made
them attractive materials for many industries. Using additives, the material proper-
ties of polymers can also be changed in order to meet specific needs.

In order to study the material behavior of polymers, NTNU’s Structural Impact
Laboratory (SIMLab) has developed a numerical material model for polymers in the
finite element program LS-DYNA. This thesis will use experimental results to cali-
brate the parameters in the material model, and try to reproduce the experimental
tests using numerical simulations. Experimental tests using two different materials,
high-density polyethylene (HDPE) and polyvinyl chloride (PVC), have been carried
out. The study will focus on determining the most accurate ways to evaluate the
results of both experiments and simulations.

The report will start with theory on polymers in general, the material model used
in this study and the method of determining the strains of the experimental tests.
Then, the testing procedure and the results from the tests are presented. A descrip-
tion of how the material model was calibrated from the experimental results is then
given. Next, the numerical simulations are presented. And lastly, a conclusion and
suggestions to further work is given.
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Chapter 2

Theory

This chapter will present the theory behind the experiments and analyses performed in
this study. First is a description of polymers, especially focusing on the two materials
tested in this study. Then, an explanation is given of the material model used for the
numerical simulations in Chapter 6. Lastly, a presentation of digital image correlation
will be given; this is a method used for obtaining strains from the experimental tests.

2.1 Polymers

This section will give an introduction to polymers in general, with extra details about
high-density polyethylene (HDPE) and polyvinyl chloride (PVC), the two materials
used in this study. The information here is largely based on two books, where Ram[1]
explains the polymerization process, and Rösler et al.[2] describes the material be-
havior.

Polymers are large macromolecules that consist of long chains of identical parts called
mers. Mers are made from monomers, which are molecules that are able to go through
the process of polymerization. To do this, the molecule must have either a covalent
double bond or two functional groups.

Monomers with two functional groups, e.g. one hydroxyl (OH) group and one car-
boxyl (COOH) group, go through a process called stepwise polymerization. This
process is characterized by condensation reactions between the molecules. The func-
tional groups react and are bound together, also creating H2O as a byproduct. At the
start of the stepwise polymerization process, many small chains of two to four mers
are created. Since there are always functional groups at both ends of every chain,
these smaller chains can connect to make longer chains.

The monomers with covalent double bonds are created by a different process, called
chain polymerization, characterized by addition reactions. These reactions are initi-
ated by adding a chemical with a free radical to the monomers. This chemical can
react with a monomer by breaking the double bond, and at the same time create a
free radical on the monomer. This can in turn attach itself to another monomer by
breaking its double bond. Thus, the monomers are added to the chain one by one.
The addition reactions do not create any byproducts.
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2.1. POLYMERS

Ethylene is the simplest form of a monomer with a covalent double bond. It consists
of two carbon atoms with a double bond between them, and two hydrogen atoms
bound to each carbon atom. Ethylene is the basis of a whole group of monomers,
called vinyls. All vinyls have the same molecular structure as ethylene, except that
one of the hydrogen atoms is substituted by either another atom or a whole group,
e.g. CH3 which results in propylene.

Polymer chains can consist up to several thousand mers. The average chain length is
a measure of the degree of polymerization. Polymers can be divided into three main
groups, thermoplastics, elastomers and thermosets. Elastomers and thermosets also
have covalent bonds between the chains, which inhibits almost all relative movement
of the chains. This gives these polymers a rubbery effect, and no plastic deformation
is possible. The two materials tested in this study are both thermoplastics, and have
therefore no cross-bonds between the chains.

A property that is unique to thermoplastics, due to the lack of cross-bonds, is crys-
tallinity. This means that the polymer chains in some areas of the material fold
up neatly and get more tightly packed here than in other parts. It is impossible
to achieve full crystallinity, and there will always be some areas with an amorphous
structure. Figure 2.1 illustrates this, with two crystalline areas and an amorphous
part in between. A high degree of crystallinity increases both the stiffness and the
yield strength of the material.

Figure 2.1: Crystalline polymer[2]

Even though thermoplastics do not form cross-bonds between the chains, they can
have shorter branches going off the main stem of the molecule. More branches means
less crystallinity, as the chains are not able to form the regular structure of crystalline
materials. This results in a more amorphous structure, which gives the material lower
stiffness and strength, but higher ductility.

There are two sources of elastic resistance in polymers. At small deformations, the van
der Waals or hydrogen bonds between the chains accounts for most of the resistance.

4



CHAPTER 2. THEORY

At larger deformations, straightening of the molecule chains causes an increased re-
sistance. During elastic deformation the points of entanglement between the chains
remains the same, as illustrated in Figure 2.2. Since the chains have not moved in
relation to each other, this deformation is completely reversible.

Figure 2.2: Elastic deformation of a polymer[2]

The plastic deformation starts when the forces are so large that the polymer chains
start sliding relative to each other. Figure 2.3 shows a polymer chain inside a larger
polymer structure. Due to the dense structure around the chain, the angles of the
atoms in the molecule have to go through a reconfiguration in order to move in relation
to the other chains. As seen in Figure 2.4, a rotation of the polymer chains demands
an energy potential to be passed in order to reach a new stable configuration. This
type of deformation is plastic, and will not be reverted when the material is unloaded.

Figure 2.3: A polymer chain[2] Figure 2.4: Potential energy of different chain
configurations[2]

If a polymer is subjected to tensile stress, as seen in Figure 2.5, a region with an
initial weakness will reach yielding first. The polymer chains in this region will start
to straighten out and glide past each other. The material will then start necking,
concentrating the stress in this region. Further yielding is also helped by a rise in
temperature due to friction between the chains.

5



2.1. POLYMERS

Figure 2.5: Propagation of neck[2]

When the chains at the neck are straightened out in the tensile direction, the stiffness
in this region increases. The capacity of the covalent bonds in the chains is much
higher than the intermolecular resistance. Further straightening the chains at both
ends of the neck therefore requires less energy than breaking the already straight
parts of the chains. This causes the neck to propagate along the material until all
the polymer chains are stretched in the tensile direction.

2.1.1 High-density polyethylene

High-density polyethylene (HDPE) is made through polymerization of ethylene. Fig-
ure 2.6 shows the molecular structure of these compounds.

(a) Ethylene (b) Polyethylene

Figure 2.6: Molecular structures of ethylene and polyethylene

HDPE consists of long chains with very few branches. This allows for a very high
degree of crystallininty, up to 80-90%. The chains are packed very tightly, hence the
high density. The high degree of crystallinity makes HDPE stiffer and stronger than
other types of polyethylene with more branches on the chains, but the ductility is
somewhat reduced.

2.1.2 Polyvinyl chloride

Polyvinyl chloride (PVC) is made through polymerization of vinyl chloride. This is a
vinyl where one hydrogen atom of ethylene is substituted by a chloride atom, as seen

6



CHAPTER 2. THEORY

in Figure 2.7.

(a) Vinyl chloride (b) Polyvinyl chlo-
ride

Figure 2.7: Molecular structures of vinyl chloride and polyvinyl chloride

The substitution of hydrogen for chloride causes the polymer chains to have a much
higher polarity. This means that the forces between the chains become stronger and
give the material a higher stiffness and yield strength.

2.2 Material model

The material model used for the numerical simulations in Chapter 6 was developed
by Polanco-Loria et al.[3] at SIMLab. It is described by the rheological model in
Figure 2.8. This section will describe the equations and principles behind the model;
it is based on the description of the model by Polanco-Loria et al. and previous work
done by Hovden[4].

The resistance is split into two parts; part A describes the intermolecular resistance,
while part B describes the resistance due to orientation of the polymer network. Part
A of the rheological model consists of an elastic spring describing the initial stiffness,
a friction element describing yielding and plastic flow, and a dashpot describing the
rate dependence. Part B consists of a spring that has an evolving resistance due to
molecular orientation.

Figure 2.8: Rheological model
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2.2. MATERIAL MODEL

From the rheological model, it can be seen that the deformation gradient is the same
for both parts:

F = FA = FB (2.1)

This means that the volume change, given as the determinant of the deformation
gradient, is also the same for both parts:

JA = JB = J = detF (2.2)

The Cauchy stress tensor is obtained by summing the contributions from the two
parts:

σ = σA + σB (2.3)

The stress-strain curve for each part, and the combined curve is shown in Figure 2.9.
The dashed lines illustrates an extra effect of hardening or softening in the material
that can occur after yielding.

Figure 2.9: Stress-strain curve of each part

2.2.1 Part A: Intermolecular resistance

The spring in part A, is defined by two elastic parameters λ0 and µ0. These can be
determined starting with the elastic constitutive law in terms of the Kirchhoff stress
τA, defined by

τA = λ0 lnJ e
AI + µ0 (Be

A − I) (2.4)

which relates to the Cauchy stress according to Equation (2.5)

τA = J e
AσA (2.5)

8



CHAPTER 2. THEORY

Combining Equations (2.4) and (2.5) yields

σA =
λ0

J e
A

lnJ e
AI +

µ0

J e
A

(Be
A − I) (2.6)

where I is the second-order unit tensor, and B
e
A = F

e
A (F e

A)
T

is the left Cauchy-Green
deformation tensor. λ0 and µ0 are the Lamé constants, and can be substituted by
Young’s modulus E and Poisson’s ratio ν through Equations (2.7) and (2.8) [5]

λ0 =
νE

(1 + ν)(1 − 2ν)
(2.7)

µ0 =
E

2(1 + ν)
(2.8)

The friction element in part A, which controls yielding in the material, is governed
by Equation (2.9)

fA = σ̄A − σT − R (εp
A) = 0 (2.9)

Each term in this expression will be explained in the following text. The yield criterion
used is one proposed by Raghava[6]; this criterion has been shown to be accurate for
polymers in uniaxial and biaxial tension, and in bending[4][7]. The Raghava yield
function is given as

(σ1 − σ2)
2+(σ2 − σ3)

2+(σ3 − σ1)
2+2 (|σC| − |σT |) (σ1 + σ2 + σ3) = 2 |σCσT | (2.10)

where σ1, σ2 and σ3 are the three principal stresses, and σC and σT are the yield
stresses in compression and tension respectively.

The first principal invariant of the total stress I1, and the second principal invari-
ant of the deviatoric stress J2 are defined by Equations (2.11) and (2.12) [5]

I1 = σ1 + σ2 + σ3 (2.11)

J2 =
1

6

[

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2
]

(2.12)

Introducing these into Equation (2.10), it can be rewritten as

3J2 + (|σC| − |σT |) I1 = |σCσT | (2.13)

A parameter α is defined as the ratio between the yield stresses in compression and
tension

α =

∣

∣

∣

∣

σC

σT

∣

∣

∣

∣

≥ 1 (2.14)

Equation (2.13) can now be further simplified to

ασ2

T − (α − 1) I1σT − 3J2 = 0 (2.15)

9



2.2. MATERIAL MODEL

The yield criterion can then be written on the form

fA (I1, J2) = ασ2

T − (α − 1) I1σT − 3J2 = σ̄A − σT = 0 (2.16)

where σ̄A is the equivalent stress defined by

σ̄A =
(α − 1) I1A +

√

(α − 1)
2
I2

1A + 12αJ2A

2α
(2.17)

The yielding follows a non-associated flow rule with a plastic potential gA which has
an expression similar to the equivalent stress in Equation (2.17). It is given as

gA =
(β − 1) I1A +

√

(β − 1)2
I2

1A + 12βJ2A

2β
(2.18)

where the parameter β ≥ 1 controls the volumetric plastic strain.

An alteration to the Raghava yield criterion is introduced by adding an option of
hardening or softening after yielding[4]. This behavior is governed by two parame-
ters, the saturation stress σS and a ramping parameter H which controls the material
behavior between σT and σS. These parameters are implemented into the model by
the expression

R (εp
A) = (σS − σT ) [1 − exp (−Hε

p
A)] (2.19)

where ε
p
A is the plastic strain in part A. It can be seen from Equations (2.9) and (2.19)

that a higher σS than σT means there is hardening in the material after yielding, while
a σS lower than σT means the material softens after yielding. This is illustrated in
Figure 2.10. The parameter H is here shown determining the radius of the curve
between σT and σS.

10



CHAPTER 2. THEORY

(a) Hardening (b) Softening

Figure 2.10: Illustration of the hardening/softening parameters σS and H

The dashpot in part A controls the strain rate dependence of the material. The
plastic strain rate is found from Equation (2.20)

˙̄εp
A =

{

0 if fA ≤ 0

ε̇0A

{

exp
[

1

C

(

σ̄A

σT

− 1
)]

− 1
}

if fA > 0
(2.20)

where fA is the yield criterion from Equation (2.9). The two parameters that has
to be determined are a reference strain rate ε̇0A and a temperature-dependent strain
rate sensitivity parameter C . These can easily be obtained from experimental tests
with varying strain rates.

2.2.2 Part B: Network resistance

The spring in part B represents the resistance of the molecular network as the molecule
chains are stretched out in the tensile direction. The elastic constitutive law in terms
of the Kirchhoff stress τB is defined as

τB =
CR

3

λ̄L

λ̄
L

−1

(

λ̄

λ̄L

)

(

B
∗

B − λ̄2
I
)

+ κ (lnJB) I (2.21)

The parameter κ is a bulk modulus mostly used when simulating materials like rubber,
it will therefore be set equal to zero and not used any further in this thesis. Since
the relation between Kirchhoff and Cauchy stress given in Equation (2.5) also can be

11



2.2. MATERIAL MODEL

used for part B, the Cauchy stress is given as

σB =
CR

3JB

λ̄L

λ̄
L

−1

(

λ̄

λ̄L

)

(

B
∗

B − λ̄2
I
)

(2.22)

B
∗

B = F
∗

B (F ∗

B)T is here the distortional left Cauchy-Green deformation tensor, and

F
∗

B = J
−1/3

B FB is the distortional part of FB . JB is the Jacobian from Equation (2.2),
and L −1 is the inverse function of the Langevin function defined as

L (x) = cothx −
1

x
(2.23)

λ̄ is the distortional stretch and can be determined by

λ̄ =

√

1

3
tr (B∗

B) (2.24)

The two remaining parameters that need to be determined through experimental tests
are the initial stiffness of spring B, denoted CR, and the locking stretch λ̄L.

2.2.3 Summary

All the parameters that have to be determined for the numerical material model are
given in Table 2.1.

Table 2.1: Material parameters

Part A parameters

Spring

E Young’s modulus
ν Poisson’s ratio

Friction element

σT Yield stress in tension
α Ratio of yield stress in compression and tension
β Parameter controlling plastic volumetric strain
σS Saturation stress
H Ramping parameter between σT and σS

Dashpot

ε̇0A Reference strain rate
C Strain rate sensitivity parameter

Part B parameters

Spring

CR Initial stiffness
λ̄L Locking stretch

12



CHAPTER 2. THEORY

In addition, LS-DYNA requires the shear modulus G and the bulk modulus K to be
input into this material model. These values can be calculated directly from Young’s
modulus and Poisson’s ratio using these equations:

G =
E

2(1 + ν)
(2.25)

K =
E

3(1 − 2ν)
(2.26)

2.3 Digital image correlation

This section will provide a description of digital image correlation (DIC), and how
this can used for obtaining the strains from the experimental tests. The DIC program
used in this study is called eCorr and was developed by Egil Fagerholt[8] at SIMLab.
Digital image correlation is in essence the tracking of random patterns over a series
of digital images. Spray-painting the test specimens with a black and white spotted
pattern, and then taking a series of pictures during the tests, allows DIC to be used
to obtain the strains of the specimens.

Using DIC, each pixel of the images is given a grayscale value between 0 and 255. The
program then uses a correlation function to minimize the difference in grayscale val-
ues between the current and reference images. The DIC program used in this study,
eCorr, uses a ”finite element” type of mesh. Every element of the mesh has four nodes
with two degrees of freedom each, as illustrated in Figure 2.11. The deformation of
an element is governed by eight parameters, one for each degree of freedom, that
have to be optimized in the correlation function. Using this type of element ensures
a continuity of the displacement across element boundaries.[8]

Figure 2.11: A Q4 element using the ”finite element” DIC method[8]
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A new feature of eCorr is 3D DIC. This method uses two cameras directed at the
specimen, and the parts of the surface that are picked up by both cameras can be
analyzed using 3D DIC. Given a camera calibration with information about the dis-
tances and angles between the specimen and the cameras, the program can combine
the images from the two cameras into a 3D representation of the specimen. This is
very useful for specimens with curved surfaces, or for materials that show a significant
necking.

After the DIC analysis is completed for the whole image series, the strain history
of selected elements can be written to a text file by eCorr.
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Chapter 3

Experimental testing

Experimental tests were performed in order to determine the parameters describing
the material behavior. These parameters were later used to accurately recreate the
experiments in a finite element method simulation program. This chapter will describe
the testing procedure and present the results obtained from the tests.

3.1 Materials and geometry

For this thesis, two different materials were tested, high-density polyethylene (HDPE)
and polyvinyl chloride (PVC). For each material, three different specimen geometries
were used, two for uniaxial tension and one for uniaxial compression. The first tension
geometry is shown in Figure 3.1(a). This specimen has a gauge length of 4 mm and a
quadratic cross section with sides of 6 mm, and will be called TQ (tension quadratic)
is this thesis.

From previous tests performed with the TQ geometry, it has been observed that
the corners of the cross section show a stiffer behavior than the middle. A new cylin-
drical geometry, shown in Figure 3.1(b), was therefore tested in order to eliminate
this behavior and get a more uniform strain state. It has a 4 mm gauge length and
a circular cross section with a diameter of 6 mm, and is called TC (tension circular).

The specimen used for compression is shown in Figure 3.1(c), it is a cylinder of
height 10 mm and diameter 8 mm. It will be called CC (compression circular) for
short.
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(a) TQ. Front and top faces

(b) TC

(c) CC

Figure 3.1: Geometries of test specimens

3.2 Test setup

All tests were carried out on a ZWICK/ROELL Z030 test machine. Determining
the rate of displacement the machine should be set to, an initial strain rate of ε̇0 =
10−2.5s−1 was chosen. Using Equation (3.1), the velocity of the machine could be
determined.

V = L0 × ε̇0 (3.1)

where V is the velocity of the machine and L0 is the initial gauge length of the speci-
men. A gauge length of 4 mm for the tension tests yielded a displacement velocity of
0.013 mm/s, while the 10 mm gauge length of the compression tests gave a velocity
of 0.032 mm/s.

Some of the tension test specimens were subjected to cyclic loading. When the ma-
chine reached a given displacement, the direction of the displacement was reverted,
using the same speed as before. When the force was equal to zero, the direction
would be reverted again, continuing to pull in the tensile direction. This thesis will
primarily focus on the monotonically loaded tests, and not that much on the cyclic
tests.

Before each test, the specimen was spray-painted with a black and white spotted
pattern so that the strains could later be retrieved using digital image correlation
(DIC), as explained in Section 2.3. Figure 3.2 shows the test specimen in the ma-
chine and the placement of the cameras used for 3D DIC.
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CHAPTER 3. EXPERIMENTAL TESTING

Figure 3.2: Camera setup for 3D DIC.

A: Test specimen
B: Camera 1

C: Camera 2

3.2.1 TQ

For HDPE, a total of six tests with geometry TQ were performed, with two different
camera setups. The first four tests of the TQ specimens were performed with the
two cameras directed at two perpendicular sides of the specimen. This would only
allow for 2D DIC analysis to be performed on each side, but it would show if the
non-quadratic handles of the specimens would affect the behavior of the sides of the
gauge area. The last two tests were performed with two cameras directed at the
same face of the specimens, this would allow for 3D DIC to be used for retrieving the
strains of the specimens. Three of the tests were subjected to cyclic loading. The two
camera setups are illustrated in Figure 3.3. Table 3.1 and Figure 3.4(a) shows which,
and when loading was reverted.

17



3.2. TEST SETUP

(a) 2D DIC (b) 3D DIC

Figure 3.3: Camera setups

Table 3.1: HDPE TQ tests

Test DIC Displacements where the loading was reverted

TQ-1 2D Monotonic
TQ-2 2D Monotonic
TQ-3 2D 36 mm
TQ-4 2D 5 mm, 15 mm, 25 mm, 35 mm
TQ-5 3D Monotonic
TQ-6 3D 2.60 mm, 4.00 mm, 5.75 mm, 8.55 mm, 32.95 mm

Only the four first HDPE TQ tests were performed with cameras directed at two
perpendicular sides. All other tests in this study had a camera setup for 3D DIC.

Five PVC tests with geometry TQ were performed. The first test did not have a
satisfactory camera setup for DIC analysis and was therefore discarded. Of the four
remaining tests, two were subjected to monotonic loading until failure and two were
subjected to cyclic loading. Table 3.2 and Figure 3.4(b) shows the displacements
where the loading was reverted for these tests. Based on the displacement at which
the two monotonic tests reached failure, the last cycle was planned for around 9 mm.
However, the cyclic tests failed long before the monotonic tests, and the last cycle
could not be performed. The last cycle of test 5 was initiated after the force started
dropping due to failure in the specimen.
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Table 3.2: PVC TQ tests

Test Displacements where the loading was reverted

TQ-2 Monotonic
TQ-3 Monotonic
TQ-4 1.2 mm, 1.8 mm, 2.5 mm, 4.0 mm
TQ-5 1.2 mm, 1.8 mm, 2.5 mm, 4.0 mm, 6.6 mm

(a) HDPE (b) PVC

Figure 3.4: Displacement history of TQ tests

3.2.2 TC

As this was a completely new specimen geometry, and there were only two specimens
of each material, all tests were monotonically loaded until failure. It was preferable to
have a backup monotonic test instead of running any cyclic tests with this geometry,
in case the camera setup or lighting would disturb the DIC analysis.

3.2.3 CC

A problem with compression tests is the barreling effect. This happens because of
the friction between the test machine and the specimen. The top and bottom of the
specimen is held back from expanding in the transverse direction by this friction. The
middle part of the specimen expands and gives it a barrel shape as seen in Figure 3.5.
Several methods of reducing the friction by lubricating the specimen and machine
have been tried, as is explained later in this section.
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Figure 3.5: Barreling

Four PVC compression tests were performed. A displacement of about 7.35 mm
were applied to all four specimens. The methods of reducing friction between the
test machine and specimen is given in Table 3.3. Observing the two first tests, the
edges of the specimens seemed to dig into the tape stuck to the machine. This could
actually hold back the top and bottom faces from expanding, therefore one test with
rounded edges was performed. As this did not make any noticeable difference, the
last test was performed with the tape stuck directly onto the specimen.

Table 3.3: PVC CC tests

Test Method of reducing friction

CC-1 Teflon tape on machine, oil on specimen
CC-2 Teflon tape on machine, oil on specimen
CC-3 Teflon tape on machine, oil on specimen, rounded edges
CC-4 Teflon tape on specimen

Three HDPE compression tests were performed. The method of reducing friction
from the last PVC test of using teflon tape directly on the specimen worked quite
well. All the HDPE tests have therefore been performed in this manner, in addi-
tion to lubricating the surfaces of the test machine with oil. All tests were loaded
monotonically to a given displacement, at which point they were unloaded. Table 3.4
shows the maximum displacement of the different tests.

Table 3.4: HDPE CC tests

Test Maximum displacement

CC-1 6.58 mm
CC-2 7.02 mm
CC-3 8.49 mm
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3.3 Post-processing

For all the experimental tests, the procedure of obtaining the time histories of the
displacement, force, strain and stress were done in a similar manner. The force and
displacement were logged and written to a file by the test machine. The longitudinal
and transverse strains were obtained using the DIC program eCorr. Later, the trans-
verse strains from the DIC analysis were used to find the cross section area, and from
this the stress was determined.

3.3.1 DIC

This was the first time 3D DIC had been used with eCorr, but it worked very well.
In addition to the usual 2D image results seen in Figures 3.6(a) and (b), these images
were combined into a 3D representation of the specimen surface seen in Figure 3.6(c).

(a) Camera 1 (b) Camera 2 (c) 3D

Figure 3.6: Images from test HDPE TQ-5 and the resulting 3D strain field map

As can be seen in Figure 3.6(c), 3D DIC captures the curvature away from the cam-
era at necking, which cannot be picked up by a single camera. Especially for HDPE,
where there is a significant contraction at necking, this difference can have a signifi-
cant effect on the results.

For the tension tests, only the strains of the elements at the neck were used for
further calculations. For the compression tests, some elements from the middle of the
specimens were used, see Figure 3.7.
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(a) HDPE TC-1 (b) PVC CC-2

Figure 3.7: Elements from which strains were obtained

As far as it was possible, all 12 elements from Figure 3.7(b) were used. Towards the
end of some of the tests, a few of these elements were extremely deformed because
the program was not able to correctly track the pattern on the specimens. In these
cases, only the elements that remained close to rectangular were selected.

The longitudinal strains εl and transverse strains εt from the selected elements were
written directly to a text file by eCorr.

3.3.2 Further processing

After writing the longitudinal and transverse strains from eCorr to a file, Matlab was
used to further process the results. The transverse strains were used to calculate a
time history of the cross section area at necking. For the quadratic TQ geometry,
Equation (3.2) was used.

A = d2

0
× eεt × eεt (3.2)

where d0 = 6mm is the initial side length.

Deriving an equation for the area of the cylindrical specimens TC and CC started
with the relation between the radius r, angle θ and arc length S, given as:

rθ = S (3.3)

Assuming that the sector covered by the elements has a constant angle throughout
the tests we get

θ =
S0

r0

=
S

r
(3.4)

where r0 and S0 are the initial radius and arc length respectively, see Figure 3.8
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Figure 3.8: Variables in Equation (3.4)

The arc length S can be defined by the initial length multiplied by the transverse
strain:

S = S0 × eεt (3.5)

Equation (3.4) can then be rewritten as:

S0

r0

=
S0 × eεt

r

r = r0 × eεt (3.6)

From Equation (3.6), an equation for the cross section area is obtained:

A = π × r2

0
× eεt × eεt (3.7)

where r0 = 3mm and r0 = 4mm are the initial radii of TC and CC respectively.

Using the force history taken directly from the test machine and the cross section
area calculated from Equation (3.7), the true stress can be found using Equation
(3.8)

σ =
F

A
(3.8)

In order to determine the volumetric strain of the test, the area strain is first found
using Equation (3.9)

εA = ln
A

A0

(3.9)

Summing the longitudinal and area strains then gives the volumetric strain:

εV = εl + εA (3.10)
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Chapter 4

Results from experimental tests

In this chapter, the results of all the experimental tests will be presented, accompanied
by short discussions. These results will provide the basis of the calibration of the
numerical model, which will be explained in detail in Chapter 5.

4.1 HDPE

4.1.1 Tension tests

The test setup for 2D DIC had two cameras directed at two perpendicular sides of the
specimen. The most relevant result from these tests is whether the two perpendicular
sides have the same behavior. Figure 4.1 shows curves of the transverse strain plotted
against the longitudinal strain for two of the tests.

(a) TQ-1 (b) TQ-2

Figure 4.1: Transverse vs. longitudinal strains for perpendicular sides of two TQ specimens

The curves show that two perpendicular sides of the specimen deform identically, and
that the gauge section’s behavior is not affected by the shape of the handles of the
specimen. This can therefore also be assumed for the 3D tests, where the cameras
were directed at only one side.

The resulting force-displacement curves of all HDPE TQ tests are shown in Fig-
ure 4.2. For better visibility of the curves, they have been split into two plots, one
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with the 2D tests and one with the 3D tests. There is practically no spread in the
results of the monotonic tests.

(a) 2D tests (b) 3D tests

Figure 4.2: Force-displacement curves from HDPE TQ tests

For the cyclically loaded tests, the force is greater than that of the monotonic tests
right after each cycle . After being stretched a bit further, the cyclic tests again sta-
bilize exactly at the monotonic curve. All the tests also fracture at about the same
displacement, so the unloading does not seem to affect the capacity of the material.

The stress-strain curves of the HDPE TQ tests are given in Figure 4.3. Comparing
Figure 4.2(a) and 4.3(a), it can be seen that use of regular intervals of displacement
for the unloading cycles yields a stress-strain curve where almost all cycles are pushed
towards the end of the curve. Figure 4.4 was then used to determine which displace-
ments would give a stress-strain curve where the cycles are evenly spread out. The
3D cyclic test TQ-6 was performed using these displacement values.
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CHAPTER 4. RESULTS FROM EXPERIMENTAL TESTS

(a) 2D tests (b) 3D tests

Figure 4.3: Stress-strain curves from HDPE TQ tests

Figure 4.4: True strain plotted against displacement for TQ-1

The results of the HDPE TC tests are shown in Figure 4.5. The two tests have
yielded exactly the same results, this indicates that the 3D DIC camera calibration
is accurate and works very well for these cylindrical specimens. Since the initial cross
section area of the TC geometry is smaller than that of TQ, these tests reach yielding
at a lower force. But they also appear to reach a higher stress before failure than TQ
did.
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(a) Force-displacement (b) Stress-strain

Figure 4.5: Force-displacement and stress-strain curves from HDPE TC tests

4.1.2 Compression tests

The resulting force-displacement and stress-strain curves from the HDPE compression
tests are shown in Figure 4.6.

(a) Force-displacement (b) Stress-strain

Figure 4.6: Force-displacement and stress-strain curves from HDPE compression tests

The first two tests were compressed from the initial 10 mm to about 3 mm in height,
the last test was compressed to less than 2 mm in height. This difference doubled the
maximum applied force. From the stress-strain curve, it can be seen that the strain
does not increase at all due to the extra displacement in the last test; this can clearly
not be true. A maximum strain of -0.7, which all three tests show, is also very small
for a compression from 10 to 3 mm. Basing the strain on the displacement instead of
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the DIC results, the maximum strain should in this case be:

ε = ln
L

L0

= ln
3

10
= −1.2 (4.1)

which is significantly larger than the strain of -0.7 obtained from the DIC analysis.
Figure 4.7(a) shows the difference in the strain time history of the compression tests
when the strains are based on the displacement compared to DIC analysis. Calculat-
ing the strain from the displacements, the maximum strain of the tests becomes lager,
and they differ from each other based on how much the specimens were compressed.
This makes a lot more sense than the strains all flattening out at -0.7, and a longitu-
dinal strain measure based on the displacement will be used on the compression tests
from here on. The area of the specimens will still be determined from the transverse
strains obtained through DIC analysis.

New stress-strain curves, where the strain is determined using the displacement, are
shown in Figure 4.7(b), also comparing them to the old curves based on DIC.

(a) Longitudinal strain (b) Stress-strain

Figure 4.7: Comparison of the strain history and stress-strain curves, with strains based on

both displacement and DIC

The reason for the large error in the strains from DIC analysis is likely due to barreling.
When the middle section of the specimens bend outwards, the surface here is no longer
directly under the applied force. The surface is therefore less compressed than the
internal parts of the specimen. The barreling effect is so large towards the end of the
tests that the upper and lower parts of the specimens’ sides become horizontal and
is directly pushed on by the test machine. While the parts of the sides that can still
be seen are only pushed outward and is not further compressed in the longitudinal
direction, the internal parts of the specimens are subjected to very large strains.
Only observing the surface of the compression specimens therefore does not give an
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accurate picture of what happens inside. The barreling effect is illustrated in Figure
4.8.

(a) t = 0 s (b) t = 100 s

(c) t = 200 s (d) t = 250 s

Figure 4.8: HDPE compression test 3 at different times

4.1.3 Comparison of geometries

In order to give a better comparison of the results from the different geometries,
Figure 4.9 shows TQ-5, TC-1 and CC-3 in the same plots. Since the other tests for
each geometry yield very similar results, these three tests will represent each geometry
for the rest of the thesis.
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(a) Force-displacement (b) Stress-strain

Figure 4.9: Comparison of force-displacement and stress-strain curves for the different ge-
ometries of HDPE

The difference in the stress-strain curves in tension and compression can be explained
from the molecular structure of the material. Since the long polymer chains are not
stretched out in compression, these tests will not reach a locking stretch where the
strain ceases. Note that the stress-strain relationship in tension seems to be affected
by which geometry is used; this will be discussed further in Chapter 6.

The last plots that will be discussed here are the volumetric strains. In Figure 4.10(a),
a time history of the volumetric strain is plotted for the three different geometries.
The same three tests are shown in Figure 4.10(b), but here the volumetric strain is
plotted against the longitudinal strain. For both tension geometries, there is a nega-
tive volumetric strain in the elastic part of the curve, which is a very counterintuitive
result. Normally, the volume of a material subjected to tensile loading will either
increase or stay roughly the same, but HDPE seems to decrease in volume in the
beginning of the tensile tests. As with the stress-strain curve, the results from two
tension geometries differ here.
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(a) Volumetric strain time history (b) Volumetric vs. longitudinal strain

Figure 4.10: Volumetric strain of HDPE tests

4.2 PVC

Here, the results from the PVC experimental tests are presented. The calibration of
PVC for the numerical model done in Section 5.4, will be based on these results.

4.2.1 Tension tests

In Figure 4.11, the force-displacement and stress-strain curves of the TQ tests are
shown. As with HDPE, the cyclically loaded tests go back to the monotonically
loaded curves after each cycle. With PVC, however, the cyclic tests reached failure
before the monotonic tests, one at just half the displacement of the monotonic tests.
Since only four tests were performed, two monotonic and two cyclic, this could just
be random. More tests would have to be performed in order to determine whether
the unloading affects the material’s capacity.
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(a) Force-displacement (b) Stress-strain

Figure 4.11: Force-displacement and stress-strain curves from PVC TQ tests

As with HDPE, the PVC TC specimens’ behavior match exactly, see Figure 4.12.
The maximum force of both tension geometries is larger for PVC than HDPE, but
the PVC fractures at a much smaller displacements than HDPE. This shows that
PVC has a higher strength, but lower ductility than HDPE. From Figures 4.11(b)
and 4.12(b), it can be seen that PVC has a yield stress σT that is larger than the
saturation stress σS , which means this material softens after yielding.

(a) Force-displacement (b) Stress-strain

Figure 4.12: Force-displacement and stress-strain curves from PVC TC tests

4.2.2 Compression tests

The PVC compression tests suffered the same problem as HDPE with the longitu-
dinal strains from DIC. Figure 4.13 shows a time history of strains calculated from
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displacements and strains taken directly from DIC analysis. Figure 4.14 shows the
force-displacement and stress-strain curves from the PVC compression tests.

Figure 4.13: Comparison of the strain time history with strains based on both displacement

and DIC

(a) Force-displacement (b) Stress-strain

Figure 4.14: Force-displacement and stress-strain curves from PVC compression tests

4.2.3 Comparison of geometries

Comparing the different PVC geometries in Figure 4.15, it can be seen that, unlike
HDPE, the two tension geometries here match up perfectly. The compression test
also has a much larger yield stress than the tension geometries.
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(a) Force-displacement (b) Stress-strain

Figure 4.15: Comparison of force-displacement and stress-strain curves for the different
geometries of PVC

The curves for the volumetric strain in Figure 4.16 shows that there is no negative
volumetric strain in tension for PVC. The two tension geometries are also more con-
sistent here than for HDPE.

(a) Volumetric strain time history (b) Volumetric vs. longitudinal strain

Figure 4.16: Volumetric strain of PVC tests
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Chapter 5

Calibration of material model

Based on the experimental results, the material parameters from Table 2.1 had to be
determined. The calibration is primarily done by observing the results of the tensile
tests, except for α, where the yield strength in compression is needed.

5.1 Part A parameters

5.1.1 Spring

The initial stiffness given by Young’s modulus is simply determined by finding the
initial slope of the stress-strain curves from Chapter 4, using Equation (5.1)

E =
dσ

dε
(5.1)

Poisson’s ratio ν is defined by Equation (5.2) as the ratio of the transverse and
longitudinal strain in the elastic domain, i.e. up to a longitudinal strain of about 0.2

ν = −
εe

l

εe
t

(5.2)

A plot of this ratio against the longitudinal strain will give the value of Poisson’s
ratio by observing the curve in the elastic domain.

5.1.2 Friction element

The method for determining the yield stress in tension σT , is different depending on
whether the material hardens or softens after yielding. As seen in Figure 2.10, a ma-
terial that softens has a very clear yield stress that is easy to determine by reading the
maximum value of the stress-strain curve. For materials that harden, the transition
from elasticity to plasticity is more diffuse. Using the stress at 0.2 % plastic strain
as the yield stress is common for materials that do not have a very clear yield stress.
This has therefore been done for HDPE here, it is found by plotting a line parallel to
the Young’s modulus shifted 0.002 on the strain axis, and see where it intersects the
stress-strain curve.

In order to obtain a value for α, the yield stress in compression σC has to be de-
termined. This is done in exactly the same way as σT , only using the stress-strain
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curves from the compression tests. The values of σC and σT is then used in Equation
(2.14) to calculate α.

The parameter β controls the volumetric strain in the plastic domain of deforma-
tion. It is related to a retraction ratio ρ, which is defined the same way as Poisson’s
ratio from Equation (5.2), only in the plastic domain:

ρ = −
ε

p
2

ε
p
1

(5.3)

where ε
p
1

and ε
p
2

are the principal plastic strains. The relation between β and ρ can be
derived from the principle of maximum plastic dissipation, which results in Equation
(5.4) [5]

ε̇
p = λ̇

δg

δσ
(5.4)

The plastic strain rate matrix ε̇
p for uniaxial tension is given as

ε̇
p =





ε̇
p
1

0 0
0 ε̇p

2
0

0 0 ε̇p
3



 = ε̇
p
1





1 0 0
0 −ρ 0
0 0 −ρ



 (5.5)

For the uniaxial case, λ̇ = ε̇
p
1

also applies. The last part of Equation (5.4) is the
derivative of the plastic potential in Equation (2.18). This can be broken down into

δg

δσ
=

∂g

∂I1

∂I1

∂σ
+

∂g

∂J2

∂J2

∂σ
(5.6)

and each part is then calculated:

∂g

∂I1

=
β − 1

2β
+

(β − 1)2
I1

2β
√

(β − 1)2
I2

1
+ 12βJ2

(5.7)

∂g

∂J2

=
3

√

(β − 1)2
I2

1
+ 12βJ2

(5.8)

I1 and J2 are the invariants from Equations (2.11) and (2.12); their derivatives are
given as:

∂I1

∂σ
=





1 0 0
0 1 0
0 0 1



 (5.9)

∂J2

∂σ
=

σ

3





2 0 0
0 −1 0
0 0 −1



 (5.10)
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In uniaxial tension, the invariants I1 and J2 takes on the values

I1 = σ (5.11)

J2 =
1

3
σ2 (5.12)

Combining Equations (5.11) and (5.12) with Equations (5.7) and (5.8) yields:

∂g

∂I1

=
β − 1

2β
+

(β − 1)2
σ

2β
√

(β − 1)2
σ2 + 4βσ2

=
β − 1

2β
+

(β − 1)2

2β (β + 1)
=

β − 1

β + 1
(5.13)

∂g

∂J2

=
3

√

(β − 1)2
σ2 + 4βσ2

=
3

σ (β + 1)
(5.14)

Inserting all the parts back into Equation (5.6) gives the expression:

δg

δσ̄
=

β − 1

β + 1





1 0 0
0 1 0
0 0 1



 +
1

β + 1





2 0 0
0 −1 0
0 0 −1



 (5.15)

Equation (5.4) can now be rewritten as:




1 0 0
0 −ρ 0
0 0 −ρ



 =
β − 1

β + 1





1 0 0
0 1 0
0 0 1



 +
1

β + 1





2 0 0
0 −1 0
0 0 −1



 (5.16)

Using the two bottom equations, the relation between β and ρ is obtained:

−ρ =
β − 1

β + 1
−

1

β + 1
=

β − 2

β + 1
(5.17)

β =
2 − ρ

1 + ρ
(5.18)

Just like the yield stress, the saturation stress σS is determined differently depending
on whether the material hardens or softens after yielding. For the softening case,
there is an easily obtainable local minimum on the stress-strain curve that can be
used as σS. By this time in the test, part B stress will also affect the total stress
of the material, thus σS will be overestimated using this method. Even though it
is not an accurate value for the saturation stress, it an okay initial value which can
be adjusted using inverse modeling and curve fitting. For the case of hardening
materials, Considère’s criterion is used to determine σS[4]. This criterion is used to
find the point where necking starts for materials with diffuse necking. It is given as

f(λ, σ) = λ −
δλ

δσ
σ = 0 (5.19)
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where the stretch λ is defined as
λ = eεl (5.20)

This criterion locates the point where the tangent of the stretch-stress curve goes
through the origin of the σ-λ plane, as illustrated in Figure 5.1.

Figure 5.1: Considère’s criterion

The ramping parameter H is determined using Equation (2.19) with a target plastic
strain εp

A,S where the saturation stress σS is reached. Since the stress will go towards
σS, but never actually reach it, Hovden[4] proposes that 95% of the transition from
yield to saturation stress should be completed at the target strain. In other words,
this means that Equation (2.19) can be written as:

R = (σS − σT )
[

1 − exp
(

−Hεp
A,S

)]

= 0.95 (σS − σT ) (5.21)

which gives
[

1 − exp
(

−Hε
p
A,S

)]

= 0.95

exp
(

−Hεp
A,S

)

= 0.05

H = −
ln 0.05

ε
p
A,S

(5.22)

A value for the target plastic strain εp
A,S cannot be obtained directly from the exper-

imental results. In this thesis, an estimate has been set by subtracting the strain at
yielding from the strain at the saturation stress.

5.1.3 Dashpot

Since all the experimental tests in this study were performed at the same strain rate,
the results are inadequate for directly determining the rate dependent parameters
ε̇0A and C(θ). Hovden[4] performed experiments with different strain rates for both
materials for his master thesis. His values for rate dependence has therefore been
used also for this thesis.
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CHAPTER 5. CALIBRATION OF MATERIAL MODEL

5.2 Part B parameters

The part B parameters CR and λ̄L, initial stiffness and locking stretch respectively,
are best determined through inverse modeling. An estimate of the locking stretch can
however be obtained. Calculating the distortional part of the deformation gradient
from Section 2.2 yields

F
∗

B = J
−1/3

B FB = J
−1/3

B





λ1 0 0
0 λ2 0
0 0 λ2



 (5.23)

The distortional left Cauchy-Green deformation tensor then becomes

B
∗

B = F
∗

B (F ∗

B)T = J
−

2

3

B





λ2

1
0 0

0 λ2

2
0

0 0 λ2

2



 (5.24)

where the Jacobian is given by Equation (2.2) as

JB = det(FB) = λ1λ
2

2
(5.25)

Equation (2.24) can then be rewritten as

λ̄ =

√

1

3
tr (B∗

B) =

√

1

3
J
−

2

3

B (λ2

1
+ 2λ2

2
) =

√

1

3
(λ1λ

2

2
)
−

2

3 (λ2

1
+ 2λ2

2
) (5.26)

Using the relation between stretch and strain from Equation (5.20) gives

λ̄ =

√

1

3

{

exp

[

−
2

3
(ε1 + 2ε2)

]

[exp (2ε1) + 2 exp (2ε2)]

}

(5.27)

λ̄ =

√

1

3

{

exp

[

4

3
(ε1 − ε2)

]

+ 2exp

[

−
2

3
(ε1 − ε2)

]}

(5.28)

Introducing locking strain εL, and using the relation between transverse and longitu-
dinal strain from Equation (5.3) gives an expression for the locking stretch λ̄L:

λ̄L =

√

1

3

{

exp

[

4

3
ε1,L (1 + ρ)

]

+ 2exp

[

−
2

3
ε1,L (1 + ρ)

]}

(5.29)

Now, only the longitudinal locking strain has to be determined from the experimental
results.
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5.3. CALIBRATION OF HDPE

5.3 Calibration of HDPE

5.3.1 Part A

Starting with the Young’s modulus E, it can be seen from Figure 5.2 that there is a
difference between the 2D and 3D DIC results. The calibration of E is based on the
3D results, which has a steeper slope. A Young’s modulus of 1400 MPa is shown to
be a good fit in Figure 5.3.

Figure 5.2: HDPE TQ tests

(a) TQ (b) TC

Figure 5.3: Young’s modulus for HDPE

Figure 5.4 shows a plot of Poisson’s ratio for the HDPE TQ tests. The circular
tests suggest a lower Poisson’s ratio than the quadratic tests, but neither geometry
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gives a constant value in the elastic domain. A value of 0.43 has been chosen for the
numerical simulations.

Figure 5.4: Poisson’s ratio for HDPE

After determining the Young’s modulus E, the tension yield stress σT can be de-
termined. Assuming yielding at 0.2% plastic strain for materials with hardening, as
described in Section 5.1, gives the plot in Figure 5.5(a). Observing where the line
crosses the stress-strain curves, a yield stress of σT = 12.1 MPa is chosen.

Performing the same procedure for the compression tests, the yield stress in com-
pression is found to be equal to that in tension. This can be seen in Figure 5.5(b).
Using Equation (2.14) with equal values of σC and σT , gives α = 1.

(a) Determining σT (b) Determining σC

Figure 5.5: Yield stresses in tension and compression for HDPE

In order to determine σS for HDPE, Considère’s criterion has been used. Figure 5.6(a)
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5.3. CALIBRATION OF HDPE

shows the criterion from Equation (5.19) plotted against the stress for test TQ-5. The
stress value where this line crosses the x-axis is used as the saturation stress. This
corresponds to the stress value where the tangent of the stress-stretch curve intersects
the origin, as shown in Figure 5.6(b). Based on all the tests, the saturation stress is
determined to be σS = 28.6.

(a) Considère’s criterion (b) True stress plotted against stretch

Figure 5.6: Determining σS using Considère’s criterion

The ramping parameter H is calculated using Equation (5.22). For HDPE, a target
plastic strain of ε

p
A,S = 0.053 has been used, resulting in H = 56.

The plastic volumetric strain parameter β can be found by determining the con-
traction ratio ρ in the plastic domain, see Equation (5.3). This ratio is plotted in
Figure 5.7 for the tension tests; the results differ for the two geometries, so an average
of ρ = 0.44 is chosen. Using Equation (5.18), this gives β = 1.08.

Figure 5.7: Contraction ratio of HDPE tests
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CHAPTER 5. CALIBRATION OF MATERIAL MODEL

5.3.2 Part B

The value for CR was obtained from a previous specialization project about HDPE
performed by Røstum and Winjum [9]. There, a value of CR = 1.63 had been found
for the initial stiffness of the part B spring.

Using the experimental results, a rough estimate of the locking strain εL was chosen
as 2.3 and used in Equation (5.29). Thus, the locking stretch was determined to be
λ̄L = 5.26.

5.3.3 Summary

After performing numerical simulations with the parameter values obtained in this
section, some parameters were adjusted to give a better fit between the results from
the experiments and the simulations. For HDPE, only CR, λ̄L, σS and H were
adjusted slightly, and the final values used in the simulations are presented in Table
5.1.

Table 5.1: Parameters for HDPE

E ν ε̇0A C(θ) σT CR λ̄L α

1400 0.43 10−2 0.12 12.1 1.5 5.6 1.00
β σS H K G

1.07 26.1 56 3333 490

5.4 Calibration of PVC

5.4.1 Part A

Also for PVC, the first parameter to be determined is Young’s modulus E. Figure
5.8 shows the stress-strain curves for both the quadratic and cylindrical geometries,
with examples of different values of E. A value of 2800 MPa is chosen, as this follows
the curves very closely in the elastic domain.
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5.4. CALIBRATION OF PVC

(a) TQ (b) TC

Figure 5.8: Young’s modulus for PVC

As with HDPE, the TC tests show a slightly lower Poisson’s ratio than the TQ tests
in Figure 5.9. A value of ν = 0.38 seems to be a good fit and is chosen for the
numerical simulations of PVC.

Figure 5.9: Poisson’s ratio for PVC

As explained in Section 5.1, a different method for determining σT , σS and σC is
used for materials with softening after yielding. These values are found from the
local maximums and minimums of the stress-strain curves. Figure 5.10(a) shows how
σT and σS were determined for test TQ-3, while Figure 5.10(b) shows how σC was
determined for test CC-1.
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CHAPTER 5. CALIBRATION OF MATERIAL MODEL

(a) σT and σS of TQ-3 (b) σC of CC-1

Figure 5.10: Determining σT , σS and σC of PVC

After the results of all the PVC tests were processed, the following values were ob-
tained: The tensile yield stress is σT = 44.4 MPa, the yield stress in compression
is σC = 59.0 MPa, and the saturation stress was found to be σS = 42 MPa. The
parameter α can then be calculated:

α =
σC

σT
=

59.0

44.4
= 1.33 (5.30)

For PVC, the target plastic strain εp
A,S was set to 0.13. Using Equation (5.22), this

results in a ramping parameter of H = 23.

Figure 5.11 shows a highly nonlinear behavior of the contraction ratio ρ in the plastic
domain for PVC. It is therefore hard to determine an accurate constant value of ρ for
this material, but 0.39 has been chosen in this thesis. The parameter β in the plastic
potential function is then determined to be equal to 1.16, using Equation (5.18).

47



5.4. CALIBRATION OF PVC

Figure 5.11: Caption for PVC-rho

5.4.2 Part B

Results from Hovden’s work [4] was used to set a value for the initial stiffness CR

of the spring in part B, where this was determined to be equal to 6.07. From the
experimental results, an estimated locking strain of 1.41 was chosen. Using Equation
(5.29), the locking stretch was determined to be λ̄L = 2.27.

5.4.3 Summary

All the parameters used in the material model for PVC are listed in Table 5.2. After
the initial calibration, the parameters σT , CR, σS and H have been adjusted using
inverse modeling.

Table 5.2: Parameters for PVC

E ν ε̇0A C(θ) σT Cr λ α

2800 0.38 1−3 0.07 46.5 8.0 2.27 1.33
β σS H K G

1.16 33.0 15 3889 1015
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Chapter 6

Numerical simulations

This chapter will present the numerical simulations that were performed using the
parameters obtained in Chapter 5. All the simulations were performed in the finite
element method (FEM) program LS-DYNA. The first section gives a description of
how the different geometries were modeled. Then, there is one section on the sim-
ulation of each material, detailing how the simulations compare to the experimental
results.

6.1 Model geometries

Because of the curved surfaces of the specimens, they are hard to draw and mesh in
LS-DYNA. Another FEM program, Abaqus, was therefore used to draw and mesh
the geometries of the specimens. Since the material model was only available for
LS-DYNA, the mesh from the Abaqus input file had to be converted to an LS-DYNA
k-file using Matlab.

Since all the geometries have two symmetry planes along its center line, only one
quarter of the specimens have been modeled. This reduces the number of elements
in the model, and greatly decreases the computation time. Boundary conditions are
then applied in order to make the specimen behave correctly.

6.1.1 Tension geometries

Figure 6.1 and 6.2 show the TQ and TC geometries respectively. During the exper-
imental tests, about half the length of the specimens’ handles were clamped in the
test machine. Only 15 mm of the total 30 mm handles were therefore modeled. In
the simulations, one end of the specimen has held in place by boundary conditions,
while the other end was subjected to a prescribed displacement equal to that of the
experiments.
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6.1. MODEL GEOMETRIES

(a) Front

(b) Top

(c) End (d) 3D view

Figure 6.1: TQ geometry in LS-DYNA
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(a) Front

(b) Top

(c) End (d) 3D view

Figure 6.2: TC geometry in LS-DYNA

6.1.2 Compression geometry

The CC geometry is shown in Figure 6.3. Because of the friction between the test
machine’s surface and the specimen, a displacement cannot simply be applied to the
top of the specimen. In order to account for the friction in the model, two boxes
have to be included above and below the specimen. The box above the specimen is
then applied the displacement, and a friction coefficient determines the behavior in
the contact surfaces between the specimen and boxes.
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6.2. HDPE

(a) Front (b) Top (c) 3D view

Figure 6.3: CC geometry in LS-DYNA

6.2 HDPE

The following results are based on simulations using the parameters from Table 5.1.

6.2.1 Tension tests

Stress-strain

As the stress-strain curves are the primary basis of the calibration, these results will
be presented first. After a numerical analysis has been performed in LS-DYNA, the
strains and stresses of each element can be gathered from the output files of the
program. Previous studies[10][9] on this material model have used the elements in
the section where necking first start when presenting the results of the simulations.
Figure 6.5(a) and (b) shows these elements for the TQ and TC geometry, respectively.
The resulting stress-strain curves of these elements are compared to the experimental
tests in Figure 6.5(c). This method of obtaining the strains and stresses from the
simulations will be referred to as the element method in the rest of this thesis.
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(a) TQ (b) TC (c) Stress-strain curves

Figure 6.4: Stress-strain curves using the element method

As opposed to the experimental results, the results from the simulations show almost
no difference between the two geometries. This seems more logical, as a given material
should have the same stress-strain relation independent of the specimen geometry.
The reason for the difference in the experimental results become apparent when using
a different method of obtaining the strains and stresses, which will be referred to as
the node method. Using only the relative displacements of the nodes on the surface
of the specimens, the strains can be calculated by

ε = ln
L

L0

(6.1)

This is the same way the strains are obtained from the DIC analysis, and should
match the experimental results better. The stresses are calculated by determining
the cross-section area from the transverse strains, and dividing the force from the
simulation by this area. This is the same procedure as used for the experimental
results in Section 3.3. Figure 6.5(a) and (b) shows the nodes that were used, and
Figure 6.5(c) compares the stress-strain curves of the experimental tests and the node
method. This method gives a perfect match for both geometries.
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(a) TQ (b) TC (c) Stress-strain curves

Figure 6.5: Stress-strain curves using the node method

Even though the node method gives a better match of the experimental results, the
element method may give a better representation of the actual material behavior. In
the experimental results, it is only possible to study the surface of the specimens, and
this might not give an accurate picture of what happens inside. Given the perfect
match of the surface behavior using the node method, it can be assumed that the
element method accurately represents the material behavior inside the test specimens.
A material should have the same response regardless of the shape of the specimen,
and this is achieved by the element method.

Strain rate

The stress-strain curve is a perfect match when using the node method, but Figure
6.6(a) shows that the strain increases a lot faster in the simulations than the exper-
iments. The fact that the stress also increases faster in the simulations, as seen in
Figure 6.6(b), is why the stress-strain curve still matches. Only the TQ results are
shown here, as the TC results are very similar.
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(a) Strain-displacement (b) Stress-displacement

Figure 6.6: Comparing strains and stresses between experiments and simulations for TQ
using the node method

Figure 6.7(a) clearly shows how the simulations have a much higher strain rate at the
start of the tests. This can also be observed by comparing the pictures taken during
the test with the simulation, as in Figure 6.7(b). In the simulations, the deformation
is focused on the elements in the middle of the gauge area, and the neck does not
spread to the other elements until the middle ones have nearly reached locking. The
experimental tests have a more diffuse necking, and the strains are distributed more
uniformly along the gauge area.

(a) Strain rate (b) Simulation and experimental test
at 5 mm displacement

Figure 6.7: Strain rate
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Force-displacement

Figure 6.8 shows the force-displacement curves of the HDPE tension simulations. The
slope of the curve from the simulations are steeper than those of the experimental
test. This could be caused by the model being too stiff, but since the stress-strain
curve fit very well, this is most likely not the case. It can be explained by the higher
strain rate in the simulations. Figure 6.6 shows that yielding is reached at a smaller
displacement in the simulations.

(a) TQ (b) TC

Figure 6.8: Force-displacement curves

Volumetric strain

The results from the experimental tests showed a negative volumetric strain in the
tensile HDPE tests. Using the node method for obtaining the strains, these results
were reproduced in the simulations, as illustrated in Figure 6.9.
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(a) Volumetric vs. longitudinal strain (b) Volumetric strain vs. time

Figure 6.9: Volumetric strains using the node method

Since this material should not be able to have negative volumetric strain in tension,
it is likely that the element method gives a better description of the actual material
behavior; these results are presented in Figure 6.10.

(a) Volumetric vs. longitudinal strain (b) Volumetric strain vs. time

Figure 6.10: Volumetric strains using the element method

A comparison of the longitudinal, transverse and volumetric strains in the elastic
domain from both methods is shown in Figure 6.11. The negative volumetric strains
from the node method are caused by the difference in longitudinal strain, as the
transverse strains are fairly equal in this region. For both geometries, the longitudinal
strain eventually ends up at the same value. Only the TC geometry ends up with
an equal transverse strain. The TQ geometry ends up with higher transverse strains
when using the element method, and therefore a lower volumetric strain.
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(a) TQ (b) TC

Figure 6.11: Comparison of longitudinal, transverse and volumetric strains

The reason for the difference in longitudinal strains between the two methods can be
seen from Figures 6.12 and 6.13. For the TQ geometry in Figure 6.12(a), three pairs
of nodes were selected, one in the center, one on the side, and one on the corner of
the specimen. The different strain rates in these three areas are plotted in Figure
6.12(b).

(a) A: Center. B:
Side. C: Corner

(b) Strain rates

Figure 6.12: Strain rates for HDPE TQ

For the TC geometry, two pairs of nodes were selected as illustrated in 6.13(a), and
the resulting strain rates are shown in Figure 6.12(b).
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(a) A: Center. B:
Side

(b) Strain rates

Figure 6.13: Strain rates for HDPE TC

For both geometries, the center of the specimen has a much higher longitudinal strain
rate at the start of the test. The strain at the surface catches up later on, but this
delay gives the impression of a negative volumetric strain when observing the surface
of the specimen.

Cyclic loading

A cyclically loaded test based on the displacement history of HDPE TQ test 6 was
simulated. The resulting force-displacement and stress strain curves are given in
Figure 6.14. These results does not give a very good match. The higher strain rate
in the start of the simulations shifts the cycles towards the end of the stress-strain
curve. Using the displacements that unloaded the experiments to zero force actually
gives the simulations a negative force at small strains, but does not even reach zero
force for larger strains.
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(a) Force-displacement (b) Stress-strain

Figure 6.14: Caption for HDPEsimcycl-FD

6.2.2 Compression tests

Stress-strain

Since the material model was calibrated based on the tension tests, the results of
the compression simulations can not be expected to be as accurate as the tension
simulations. Figure 6.15 shows the results from the simulations using the element
method for obtaining the strains. Although the curves do not follow each other as
close as those of the tensile tests, the results are quite good. As explained in Chapter
4, the DIC analysis did not give an accurate result for the longitudinal strains. Since
the node method of the simulations is equivalent to the DIC analysis, these results
have been compared in Figure 6.15(b). The value at which the strains stops is highly
dependent on the friction coefficient used in the simulation. For these simulation
this coefficient has been set to 0.06. For the tensile tests, there was no good way
to compare the experimental tests to the element method; with the compression
tests there is, using the strains based on displacement from the experiments. The
good match in both node and element method suggests that the element method can
represent the whole material accurately when the node method matches the surface
behavior.
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(a) Element method (b) Node method

Figure 6.15: Force-displacement curves

Force-displacement

Figure 6.16(a) shows the force-displacement curve of the HDPE compression test
simulation. Compared to the experimental tests, this reaches a much higher maximum
force. This error is due to the specimen’s cross section area increasing a lot more in
the simulation, as seen in Figure 6.16(b). The simulations are only based on the
displacement history of the experimental tests, and when the material expands to a
larger cross section area, a higher force is required.

(a) Force-displacement (b) Cross section area

Figure 6.16: HDPE compression tests
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Volumetric strain

Figure 6.17 compares the longitudinal, area and volumetric strains of both the ex-
periment and simulation. The larger area strains of the simulations leads to positive
volumetric strains in compression.

Figure 6.17: Longitudinal, area and volumetric strains for HDPE compression experiment
and simulation

6.3 PVC

The parameters from Table 5.2 were used to simulate the material behavior of PVC.

6.3.1 Tension tests

Stress-strain

Figure 6.18 shows a comparison of the stress-strain relation from the PVC tension
experiments and simulations. Both the node and the element method is presented,
and the difference between these is smaller than for HDPE. The only difference is a
higher yield stress when using the element method.
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(a) TQ (b) TC

Figure 6.18: Stress-strain curves for PVC tension simulations using both node and element
method

Strain rate

The difference in strain rate at the start of the test between the experiment and
simulation is even more apparent for PVC than it was for HDPE. Figure 6.19 gives
the strain and stress from the PVC TC test plotted against displacement. Similar
results are found for the TQ geometry.

(a) Strain-displacement (b) Stress-displacement

Figure 6.19: Comparing strains and stresses between experiments and simulations for TC
using the node method

The strain rate for PVC is given in Figure 6.20(a) and shows a large difference in
the timing of the maximum strain rate. An image comparing the geometry at 1 mm
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displacement is shown in Figure 6.20(b). The simulation has started showing signs of
necking at this point, while the experimental test specimens still has a straight gauge
section.

(a) Strain rate (b) Simulation and experimental test at 1 mm
displacement

Figure 6.20: Strain rate

Force-displacement

Again, the force-displacement curves from the simulations are off due to the difference
in strain rate. The discrepancy is even larger for PVC than for HDPE.

(a) Volumetric vs. longitudinal strain (b) Volumetric strain vs. time

Figure 6.21: Force-displacement curves for PVC TQ simulations
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Volumetric strain

The volumetric strains of the PVC tension tests are presented in Figure 6.22 and 6.23.
In this case, the node method actually does not give a good match. The simulations
give a negative volumetric strain at the start of the test, which was not the case for
the experiments. This is due to the significant necking of the simulations, while the
PVC experiments actually had a very diffuse necking. This problem with reproducing
the volumetric strain results could be due to void growth in the specimens, something
the numerical model is not able to account for.

(a) Volumetric vs. longitudinal strain (b) Volumetric strain vs. time

Figure 6.22: Volumetric strain curves for PVC TQ simulations

(a) Volumetric vs. longitudinal strain (b) Volumetric strain vs. time

Figure 6.23: Volumetric strain curves for PVC TC simulations
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Cyclic loading

From Figure 6.24 it can be seen that the same problems arises for PVC when simulat-
ing cyclic loading. The unloading cycles result in negative forces for the simulations,
and the cycles are shifted towards the end of the stress-strain curve.

(a) Force-displacement (b) Stress-strain

Figure 6.24: Cyclically loaded simulation

6.3.2 Compression tests

Stress-strain

The PVC compression simulations show a much higher stress than the simulations in
Figure 6.25; this suggests a much larger force in the simulations. The node method
gives a good comparison to the DIC strains in Figure 6.25(b), using a friction coeffi-
cient of 0.06 also for PVC.
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(a) Element method (b) Node method

Figure 6.25: Force-displacement curves

Force-displacement

As expected from the stress-strain curve, the force is larger in the simulations than
the experiments, as seen in Figure 6.26. As for HDPE, this is due to the cross section
area becoming larger and increasing the resistance of the specimen. This can be seen
in Figure 6.26(b).

(a) Element method (b) Node method

Figure 6.26: Force-displacement and cross section area

Volumetric strain

Just like with HDPE, the area strain is larger in the simulations and gives a positive
volumetric strain for the compression tests; this is illustrated in Figure 6.27.
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Figure 6.27: Volumetric strain for PVC compression tests
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Chapter 7

Conclusion

Overall, the material model is able to reproduce the experimental tests very well. Both
the stress-strain and force-displacement relations from the numerical simulations give
a close match to those of the experimental tests. There are, however, certain problems
with reproducing the correct strain history. In the simulations, necking occurs earlier
and is more pronounced than in the experimental results. Almost all the deformation
in the early stages of the simulation is focused on the elements in the section where
necking first starts. There is almost no propagation of the neck until these elements
have reached locking stretch. The experimental tests show a more diffuse necking,
and the deformations are more evenly distributed along the gauge area at the early
stages of the tests. For the compression geometry, there was a problem of too much
expansion of the material in the transverse direction in the simulations. This resulted
in the cross-section area, and in turn the force, being too large; it also gave a positive
volumetric strain in compression.

In this thesis, two methods of determining the strains of the numerical simulations
have been suggested. One uses the strains directly from the elements, while the other
uses the relative displacement of the nodes on the surface of the specimen to calculate
the strains. The node method is equivalent to the way strains from the experimental
tests are determined using DIC, so this method is great for comparison between ex-
periments and simulations. As this method only observe the surface of the specimen,
this could lead to some small errors in the results. The strains from the element
method should therefore be assumed to give the correct representation of the mate-
rial behavior. The difference between the two methods may seem insignificant when
evaluating the stress-strain relation; but other results, like the volumetric strain, is
very sensitive to which method is used.

A new tension geometry, with a circular cross-section, was tested in this study. The
results from this geometry were overall better than those from the quadratic geom-
etry. The corners of the quadratic geometry give a strain field that varies along the
specimen’s surface. This problem is completely eliminated by using a circular geom-
etry. Also, the difference between the two methods of determining the strains of the
simulations is smaller for the circular geometry. This suggests that the difference in
strain rate between the center of the specimen and the surface is also smaller using
this geometry. It is therefore recommended that the circular geometry is used for
future experiments.
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Suggestions for further work

The reason behind the high strain rate at the start of the simulations should be looked
more into. A solution to this would greatly improve the accuracy of the numerical
simulations.

Due to time constraints, the cyclically loaded tests were not given much attention
in this thesis. The simulations of these tests did not produce accurate results, and
should be studied further.
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Appendix A

LS-DYNA k-files

The simulations were run using a k-file called main.k. This file used the *INCLUDE
command to include the material, mesh, load curve and contact conditions that were
defined in separate files. The main.k example given here is for the simulation of PVC
CC test number 1, but the files included can be changed depending on which test is
run.

A.1 main.k

*KEYWORD

*INCLUDE

CC.k

PVC.k

curve-PVCCC-1.k

contact.k

*CONTROL_TIMESTEP

$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.900000 0 0.000 0.000 0 0 0

$# dt2msf dt2mslc imscl

0.000 0 0

*DATABASE_BNDOUT

$# dt binary lcur ioopt

0.250000 1 0 1

*DATABASE_ELOUT

$# dt binary lcur ioopt

0.250000 1 0 1

*DATABASE_NODFOR

$# dt binary lcur ioopt

0.250000 1 0 1

*DATABASE_NODOUT

$# dt binary lcur ioopt dthf binhf

0.250000 1 0 1 0.000 0

*DATABASE_BINARY_D3PLOT

$# dt lcdt beam npltc psetid

0.500000 0 0 0 0

$# ioopt

0

1



A.2. MESH FILES

*DATABASE_EXTENT_BINARY

$# neiph neips maxint strflg sigflg epsflg rltflg engflg

0 0 3 1 1 1 1 1

$# cmpflg ieverp beamip dcomp shge stssz n3thdt ialemat

0 0 0 1 1 1 2 1

$# nintsld pkp_sen sclp unused msscl therm intout nodout

1 0 1.000000 0 0 0STRESS STRESS

*DATABASE_NODAL_FORCE_GROUP

$# nsid cid

1 0

*DATABASE_HISTORY_NODE_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

6 7 0 0 0 0 0 0

*DATABASE_HISTORY_SOLID_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

1 0 0 0 0 0 0 0

*BOUNDARY_PRESCRIBED_MOTION_RIGID

$# pid dof vad lcid sf vid death birth

3 1 2 2 1.000000 01.0000E+28 0.000

*PART

$# title

HDPE

$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 0 0 0 0 0

*SECTION_SOLID

$# secid elform aet

1 -1 0

*END

A.2 Mesh files

The mesh files include node and element list, node and element sets and boundary
conditions. The node and element lists are not included in the appendix.

A.2.1 TQ.k

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

2 0 1 0 0 0 0 0

*SET_NODE_LIST_TITLE

bottom

$# sid da1 da2 da3 da4 solver

2 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

2



APPENDIX A. LS-DYNA K-FILES

1730 1731 1732 1733 1734 1735 1736 1737

1738 1739 1740 1741 1742 1743 1744 1745

1746 1747 1748 1749 1750 1758 1763 1768

1772 1782 1783 1789 1791 1793 1795 1798

1801 1802 1810 1814 1815 1816 1817 1818

1821 1822 1823 1824 1825 1826 1827 1831

1832 1833 1834 1835 1837 1843 1845 1846

1849 1851 1853 1867 1868 1873 1876 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 0 0 0 0 1 1

*SET_NODE_LIST_TITLE

top

$# sid da1 da2 da3 da4 solver

3 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

568 569 570 571 572 573 574 575

576 577 578 579 580 581 582 583

584 585 586 587 588 596 601 606

610 620 621 627 629 631 633 636

639 640 648 652 653 654 655 656

659 660 661 662 663 664 665 669

670 671 672 673 675 681 683 684

687 689 691 705 706 711 714 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

4 0 0 1 0 1 0 1

*SET_NODE_LIST_TITLE

xz

$# sid da1 da2 da3 da4 solver

4 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 446

447 448 449 450 469 470 502 528

539 552 557 563 564 589 590 603

605 610 622 623 625 632 633 635

637 641 643 647 649 650 651 662

663 664 671 676 682 683 707 712
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A.2. MESH FILES

713 820 822 823 828 833 834 835

836 837 844 846 849 856 859 861

865 866 873 874 877 879 880 886

887 888 889 893 894 899 903 911

914 946 947 948 949 950 951 952

953 955 956 963 965 966 972 973

976 981 1163 1164 1165 1166 1167 1168

1169 1170 1171 1172 1173 1174 1175 1176

1177 1178 1179 1180 1181 1182 1183 1184

1185 1186 1187 1188 1189 1190 1191 1192

1193 1194 1195 1196 1197 1198 1199 1200

1201 1202 1203 1204 1205 1206 1207 1208

1209 1210 1211 1212 1213 1214 1215 1216

1217 1218 1608 1609 1610 1611 1612 1631

1632 1664 1690 1701 1714 1719 1725 1726

1751 1752 1765 1767 1772 1784 1785 1787

1794 1795 1797 1799 1803 1805 1809 1811

1812 1813 1824 1825 1826 1833 1838 1844

1845 1869 1874 1875 1982 1984 1985 1990

1995 1996 1997 1998 1999 2006 2008 2011

2018 2021 2023 2027 2028 2035 2036 2039

2041 2042 2048 2049 2050 2051 2055 2056

2061 2065 2073 2076 2108 2109 2110 2111

2112 2113 2114 2115 2117 2118 2125 2127

2128 2134 2135 2138 2143 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

5 0 0 0 1 1 1 0

*SET_NODE_LIST_TITLE

xy

$# sid da1 da2 da3 da4 solver

5 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1 8 15 22 29 36 43 50

57 64 71 78 85 92 99 106

113 120 127 134 141 148 155 162

169 176 183 190 197 204 211 218

225 232 239 246 253 260 267 274

281 288 295 302 309 316 323 330

337 344 351 358 365 372 379 386

393 400 407 414 421 428 435 443

444 445 457 462 468 469 491 499

511 521 522 526 529 539 546 550

562 589 590 591 595 596 598 602

607 611 614 615 618 621 630 638
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APPENDIX A. LS-DYNA K-FILES

642 644 645 666 669 674 682 683

684 687 689 690 691 694 695 696

697 698 699 700 706 824 825 827

835 849 854 860 863 871 872 878

883 885 891 897 916 917 918 919

920 921 922 923 924 925 931 934

935 936 937 938 939 940 941 947

948 949 950 951 958 959 968 969

971 974 975 978 983 987 1163 1170

1177 1184 1191 1198 1205 1212 1226 1233

1240 1247 1254 1261 1268 1275 1289 1296

1303 1310 1317 1324 1331 1338 1352 1359

1366 1373 1380 1387 1394 1401 1415 1422

1429 1436 1443 1450 1457 1464 1478 1485

1492 1499 1506 1513 1520 1527 1541 1548

1555 1562 1569 1576 1583 1590 1605 1606

1607 1619 1624 1630 1631 1653 1661 1673

1683 1684 1688 1691 1701 1708 1712 1724

1751 1752 1753 1757 1758 1760 1764 1769

1773 1776 1777 1780 1783 1792 1800 1804

1806 1807 1828 1831 1836 1844 1845 1846

1849 1851 1852 1853 1856 1857 1858 1859

1860 1861 1862 1868 1986 1987 1989 1997

2011 2016 2022 2025 2033 2034 2040 2045

2047 2053 2059 2078 2079 2080 2081 2082

2083 2084 2085 2086 2087 2093 2096 2097

2098 2099 2100 2101 2102 2103 2109 2110

2111 2112 2113 2120 2121 2130 2131 2133

2136 2137 2140 2145 2149 0 0 0

*SET_NODE_LIST_TITLE

center

$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

57 58 59 60 61 62 63 120

121 122 123 124 125 126 183 184

185 186 187 188 189 246 247 248

249 250 251 252 309 310 311 312

313 314 315 372 373 374 375 376

377 378 435 436 437 438 439 440

441 0 0 0 0 0 0 0

*SET_NODE_LIST_TITLE

disp

$# sid da1 da2 da3 da4 solver

6 0.000 0.000 0.000 0.000MECH
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A.2. MESH FILES

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

568 0 0 0 0 0 0 0

*SET_NODE_LIST_TITLE

strains

$# sid da1 da2 da3 da4 solver

7 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

56 63 119 126 182 189 245 252

308 315 371 378 434 441 0 0

*SET_SOLID_TITLE

section

$# sid solver

1MECH

$# k1 k2 k3 k4 k5 k6 k7 k8

43 44 45 46 47 48 91 92

93 94 95 96 139 140 141 142

143 144 187 188 189 190 191 192

235 236 237 238 239 240 283 284

285 286 287 288 0 0 0 0

A.2.2 TC.k

*TITLE

$# title

LS-DYNA keyword deck by LS-PrePost

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

2 0 1 0 0 0 0 0

*SET_NODE_LIST_TITLE

bottom

$# sid da1 da2 da3 da4 solver

2 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

998 999 1000 1002 1004 1009 1022 1023

1028 1030 1031 1032 1034 1055 1056 1057

1058 1059 1060 1061 1062 1063 1064 1065

1066 1067 1068 1069 1070 1071 1072 1073

1074 1075 1076 1077 1099 1100 1103 1108

1109 1110 1111 0 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 0 0 0 0 1 1

*SET_NODE_LIST_TITLE

top

$# sid da1 da2 da3 da4 solver
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APPENDIX A. LS-DYNA K-FILES

3 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

52 53 54 56 58 63 76 77

82 84 85 86 88 109 110 111

112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127

128 129 130 131 153 154 157 162

163 164 165 0 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

4 0 0 1 0 1 0 1

*SET_NODE_LIST_TITLE

xz

$# sid da1 da2 da3 da4 solver

4 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

24 25 30 32 33 34 39 44

46 47 52 53 54 58 59 61

62 63 65 66 74 79 82 83

89 90 95 98 99 100 101 102

103 104 105 106 107 108 155 157

159 166 259 260 261 262 263 264

265 266 267 268 269 270 271 272

273 274 275 276 277 278 279 280

281 282 283 284 285 393 395 397

400 401 402 403 416 417 418 419

422 426 427 428 429 433 435 436

437 441 442 444 446 448 449 450

453 477 478 479 480 481 482 483

484 682 686 695 696 697 698 699

701 702 703 704 705 706 707 708

709 710 711 712 713 714 717 718

719 720 721 722 723 724 725 726

727 728 729 730 764 765 766 767

768 769 770 771 772 773 774 775

776 777 970 971 976 978 979 980

985 990 992 993 998 999 1000 1004

1005 1007 1008 1009 1011 1012 1020 1025

1028 1029 1035 1036 1041 1044 1045 1046

1047 1048 1049 1050 1051 1052 1053 1054

1101 1103 1105 1112 1205 1206 1207 1208

1209 1210 1211 1212 1213 1214 1215 1216

1217 1218 1219 1220 1221 1222 1223 1224

1225 1226 1227 1228 1229 1230 1231 1339

1341 1343 400 401 402 403 1362 1363
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A.2. MESH FILES

1364 1365 1368 1372 1373 1374 1375 1379

1381 436 437 1387 1388 444 1392 1394

1395 1396 1399 1423 1424 1425 1426 1427

1428 1429 1430 1628 1632 1641 1642 1643

1644 1645 1647 1648 1649 1650 1651 1652

1653 1654 1655 1656 1657 1658 1659 1660

1663 1664 1665 1666 1667 1668 1669 1670

1671 1672 1673 1674 1675 1676 1710 1711

1712 1713 1714 1715 1716 1717 1718 1719

1720 1721 1722 1723 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

5 0 0 0 1 1 1 0

*SET_NODE_LIST_TITLE

xy

$# sid da1 da2 da3 da4 solver

5 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

24 27 31 35 36 37 43 45

49 50 56 59 61 80 82 89

132 133 134 135 136 137 138 139

140 141 142 143 144 145 146 147

148 149 150 151 153 162 163 164

165 166 335 336 337 338 339 340

341 342 343 344 345 346 347 348

349 350 351 352 353 354 355 356

357 358 359 360 361 362 363 364

365 366 367 368 369 395 396 398

399 411 412 413 414 415 416 417

418 421 422 424 425 426 430 432

434 436 438 439 442 443 445 448

452 646 647 648 649 650 651 652

653 654 655 656 657 658 659 660

661 662 663 664 665 666 667 668

669 670 671 672 724 725 726 727

728 729 730 731 732 733 734 735

736 737 778 779 780 781 782 783

784 785 970 973 977 981 982 983

989 991 995 996 1002 1005 1007 1026

1028 1035 1078 1079 1080 1081 1082 1083

1084 1085 1086 1087 1088 1089 1090 1091

1092 1093 1094 1095 1096 1097 1099 1108

1109 1110 1111 1112 1281 1282 1283 1284

1285 1286 1287 1288 1289 1290 1291 1292

1293 1294 1295 1296 1297 1298 1299 1300
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1301 1302 1303 1304 1305 1306 1307 1308

1309 1310 1311 1312 1313 1314 1315 1341

1342 1344 1345 411 412 413 414 415

1362 1363 1364 421 1368 1370 1371 1372

1376 1378 1380 436 1384 1385 1388 1389

1391 1394 1398 1592 1593 1594 1595 1596

1597 1598 1599 1600 1601 1602 1603 1604

1605 1606 1607 1608 1609 1610 1611 1612

1613 1614 1615 1616 1617 1618 1670 1671

1672 1673 1674 1675 1676 1677 1678 1679

1680 1681 1682 1683 1724 1725 1726 1727

1728 1729 1730 1731 0 0 0 0

*SET_NODE_LIST_TITLE

center

$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

370 371 372 373 374 375 376 377

378 379 380 381 382 383 384 385

386 387 388 389 390 391 392 400

401 402 403 404 405 406 407 408

409 410 411 412 413 414 415 421

436 437 444 370 371 372 373 374

375 376 377 378 379 380 381 382

383 384 385 386 387 388 389 390

391 392 400 401 402 403 404 405

406 407 408 409 410 411 412 413

414 415 421 436 437 444 0 0

*SET_NODE_LIST_TITLE

disp

$# sid da1 da2 da3 da4 solver

6 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

52 0 0 0 0 0 0 0

*SET_NODE_LIST_TITLE

strains

$# sid da1 da2 da3 da4 solver

7 0.000 0.000 0.000 0.000MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

419 437 404 316 319 405 406 322

325 407 408 334 331 409 410 328

443 421 0 0 0 0 0 0

*SET_SOLID_TITLE

section

$# sid solver
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A.3. MATERIAL FILES

1MECH

$# k1 k2 k3 k4 k5 k6 k7 k8

292 296 300 304 308 312 316 320

321 322 323 324 337 338 339 340

353 354 355 356 369 370 371 372

388 392 396 400 404 408 412 416

A.3 Material files

A.3.1 HDPE.k

*MAT_USER_DEFINED_MATERIAL_MODELS

$# mid ro mt lmc nhv iortho ibulk ig

1 9.400000 46 16 50 0 15 16

$# ivect ifail itherm ihyper ieos lmca unused unused

1 0 0 1 0 0 0 0

$ E PR Eps0 Ct St Cr Lam Alpha

1400 0.43 1.00E-02 0.12 12.1 1.5 5.6 1.00

$ beta Sigsat H Epsfail K G

1.07 0.0 26.10 56.00 3333 490

*END

A.3.2 PVC.k

*MAT_USER_DEFINED_MATERIAL_MODELS

$# mid ro mt lmc nhv iortho ibulk ig

1 940.00E-2 46 16 50 0 15 16

$# ivect ifail itherm ihyper ieos lmca unused unused

1 0 0 1 0 0 0 0

$ E PR Eps0 Ct St Cr Lam Alpha

2800 0.38 1.00E-03 0.07 44.4 10.2 2.28 1.33

$ beta Sigsat H Epsfail K G

1.16 0.0 31.20 12.00 3889 1015

A.4 Displacement curve

The displacement curves were created using the displacement history of the experi-
mental tests. The example given here is from the cyclic test HDPE TQ 6.

*CONTROL_TERMINATION

$# endtim endcyc dtmin endeng endmas

4854.0000 0 0.0000 0.0000 0.0000

*DEFINE_CURVE

10



APPENDIX A. LS-DYNA K-FILES

$# lcid sidr sfa sfo offa offo dattyp

2 0 1.000000 1.000000 0.000 0.000 0

$# a1 o1

0.000000 0.000000

206.000000 2.591300

314.000000 1.247615

530.000000 3.993521

630.000000 2.760988

864.000000 5.744325

978.000000 4.319742

1308.000000 8.542849

1448.000000 6.782837

3466.000000 32.942337

3780.000000 28.916528

4864.000000 42.833568

A.5 Contact conditions

This k-file is only used for the compression tests. It defines the material properties
of the two boxes used in the simulation, and the conditions of the contact surface.

*CONTACT_AUTOMATIC_SINGLE_SURFACE_ID

$# cid title

1

$# ssid msid sstyp mstyp sboxid mboxid spr mpr

1 0 2 0 0 0 0 0

$# fs fd dc vc vdc penchk bt dt

0.060000 0.000000 0.000 0.000 0.000 0 0.0001.0000E+20

$# sfs sfm sst mst sfst sfmt fsf vsf

10.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000

*PART

$# title

top

$# pid secid mid eosid hgid grav adpopt tmid

3 1 3 0 0 0 0 0

*MAT_RIGID_TITLE

top

$# mid ro e pr n couple m alias

35.0000E-10 1.000E+04 0.300000 0.000 0.000 0.000

$# cmo con1 con2

1.000000 5 7

$# lco or a1 a2 a3 v1 v2 v3

0.000 0.000 0.000 0.000 0.000 0.000

*PART
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A.5. CONTACT CONDITIONS

$# title

bottom

$# pid secid mid eosid hgid grav adpopt tmid

4 1 4 0 0 0 0 0

*MAT_RIGID_TITLE

bottom

$# mid ro e pr n couple m alias

45.0000E-10 1.000E+04 0.300000 0.000 0.000 0.000

$# cmo con1 con2

1.000000 7 7

$# lco or a1 a2 a3 v1 v2 v3

0.000 0.000 0.000 0.000 0.000 0.000

*SET_PART_LIST_TITLE

Slave

$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 3 4 0 0 0 0 0

*SET_PART_LIST_TITLE

Master

$# sid da1 da2 da3 da4 solver

2 0.000 0.000 0.000 0.000MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

3 4 0 0 0 0 0 0
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Appendix B

Matlab scripts

Here, the Matlab scripts used for obtaining the results of the experimental tests and
simulations are presented.

B.1 testdata.m

This script reads the file written by the test machine containing the force and dis-
placement of the experimental tests. It also reads the file written by eCorr that
contains the strains of the tests.

clear all

clc

mat = ’HDPE’;

geo = ’RUTS6’;

for test = 1:2

dir = [’C:\Master\’ mat ’\’ geo ’\’];

% Load log file

fLog = [geo ’-’ num2str(test) ’_Log.txt’];

A = importdata([dir fLog],’\t’,5); A = A.data;

col = size(A,2);

if col == 5

A(:,3) = [];

end

[removed,sm,steps,slutt] = testedit(mat,geo,test,A);

A(slutt:end,:) = [];

% Extract frame, time, force and displacement

fr = A(:,1);

t = A(:,2);

F = A(:,3);

D = A(:,4);

13



B.1. TESTDATA.M

if strncmp(mat,’HDPE’,4) && strncmp(geo,’RUT66’,5) && test <= 4

testdata2D;

else

% Load strains and sides

feps = [’strains\’ geo ’-’ num2str(test) ’_strains.txt’];

% Extract strains

eps = importdata([dir feps],’,’,4); eps = eps.data;

[row,col] = size(eps);

Nele = col/2;

if strncmp(geo,’Trykk’,5)

epsTe = eps(:,1:Nele);

epsLe = eps(:,Nele+1:col);

else

epsLe = eps(:,1:Nele);

epsTe = eps(:,Nele+1:col);

end

end

epsLe(slutt:end,:) = [];

epsTe(slutt:end,:) = [];

% Strain rate

Depse = zeros(size(epsLe));

for j = 1:size(epsLe,2)

for i = 2:size(epsLe,1)-1

Depse(i,j) = (epsLe(i+1,j)-epsLe(i-1,j))/(t(i+1)-t(i-1));

end

end

% Area and volumetric strain, and mean strains

if strncmp(geo,’RUT66’,5)

epsAe = 2*epsTe;

else

epsAe = log(exp(epsTe).^2);

end

epsVe = epsLe + epsAe;

epsL = mean(epsLe,2);

epsT = mean(epsTe,2);

epsA = mean(epsAe,2);

epsV = mean(epsVe,2);
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Deps = mean(Depse,2);

% Formatting data to start at zero

D(1:removed) = [];

F(1:removed) = [];

epsL(1:removed) = [];

epsT(1:removed) = [];

epsA(1:removed) = [];

epsV(1:removed) = [];

Deps(1:removed) = [];

if ~strcmp(mat,’PVC’) || ~strcmp(geo,’RUT66’) || test ~= 5

D = D - D(1);

F = F - F(1);

epsL = epsL - epsL(1);

epsT = epsT - epsT(1);

epsA = epsA - epsA(1);

epsV = epsV - epsV(1);

Deps = Deps - Deps(1);

end

D = [zeros(removed,1); D];

F = [zeros(removed,1); F];

epsL = [zeros(removed,1); epsL];

epsT = [zeros(removed,1); epsT];

epsA = [zeros(removed,1); epsA];

epsV = [zeros(removed,1); epsV];

Deps = [zeros(removed,1); Deps];

for i = 1:sm

D(1:steps) = smooth(D(1:steps));

D(1) = 0;

F(1:steps) = smooth(F(1:steps));

F(1) = 0;

epsL(1:steps) = smooth(epsL(1:steps));

epsL(1,:) = 0;

epsT(1:steps) = smooth(epsT(1:steps));

epsT(1,:) = 0;

epsA(1:steps) = smooth(epsA(1:steps));

epsA(1,:) = 0;

epsV(1:steps) = smooth(epsV(1:steps));

epsV(1,:) = 0;
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Deps(1:steps) = smooth(Deps(1:steps));

Deps(1,:) = 0;

end

% Cross section area

if strcmp(geo,’RUT66’)

d0 = 6;

d = d0*exp(epsT);

A = d.^2;

elseif strcmp(geo,’RUTS6’)

r0 = 3;

r = r0*exp(epsT);

A = pi*r.^2;

elseif strcmp(geo,’Trykk’)

r0 = 4;

r = r0*exp(epsT);

A = pi*r.^2;

end

H = 10 + D;

if strcmp(geo,’Trykk’)

epssecL = log(H/H(1));

epssecV = epssecL + epsA;

Depssec = zeros(size(epssecL));

for i = 2:length(epssecL)-1

Depssec(i) = (epssecL(i+1)-epssecL(i-1))/(t(i+1)-t(i-1));

end

end

% Stress

sig = 1000*F./A;

sig = sig - sig(1);

fclose all;

end

B.2 nodoutread.m

This script reads the nodout file from LS-DYNA, containing the displacement of the
nodes of the numerical simulations. It also reads the bndout file, which contains the
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force history of the simulations.

clear all

clc

mat = ’HDPE’;

geo = ’Trykk’;

test = ’nofric’;

dir = [’C:\Master\LS-DYNA\’ mat ’\’ geo ’\’ test];

nod = fopen([dir ’\nodout’]);

% Finding number of nodes

tline = fgetl(nod);

while ~strncmp(tline,’ nodal’,5)

tline = fgetl(nod);

end

Nnod = 0;

while ~strcmp(tline,’’)

Nnod = Nnod + 1;

tline = fgetl(nod);

end

fclose all;

Nnod = Nnod - 2;

% Extracting time, displacement and coordinates

nod = fopen([dir ’\nodout’]);

D = [0; 0];

F = D;

t = D;

k = 0;

s = 0;

while k < 20

k = k + 1;

tline = fgetl(nod);

if strncmp(tline,’ n o d’,6) == 1

s = s + 1;

t(s) = sscanf(tline,’%*104c%f’,[1 1]);

fgetl(nod);

fgetl(nod);

if ~strcmp(geo,’RUT66’)

tline = str2num(fgetl(nod));
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D(s) = tline(2);

end

for i = 1:Nnod

tline = str2num(fgetl(nod));

C(i,:,s) = [tline(11:13) tline(1) 0];

end

if strcmp(geo,’RUT66’)

tline = str2num(fgetl(nod));

D(s) = tline(2);

end

k = 0;

end

end

% Sorting coordinate matrix

C(:,:,1) = sortrows(C(:,:,1),[2 1]);

for i = 1:Nnod

nodnum(i,1) = i;

if i < Nnod && abs(C(i,2,1) - C(i+1,2,1)) < 0.01;

C(i,2,1) = C(i+1,2,1);

end

end

C(:,:,1) = sortrows(C(:,:,1),[2 1]);

nodnum(:,2) = C(:,4,1);

for i = 1:s

for j = 1:Nnod

for k = 1:size(nodnum,1)

if C(j,4,i) == nodnum(k,2)

C(j,5,i) = nodnum(k,1);

end

end

end

end

for i = 1:s

C(:,:,i) = sortrows(C(:,:,i),5);

end

% Converting coordinates to strains

[epsLe,epsTe] = coord2strains(C,Nnod,s);
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Depse = zeros(size(epsLe));

for j = 1:size(epsLe,2)

for i = 2:size(epsLe,1)-1

Depse(i,j) = (epsLe(i+1,j)-epsLe(i-1,j))/(t(i+1)-t(i-1));

end

end

% Area and volumetric strains

if strncmp(geo,’RUT66’,5)

epsAe = 2*epsTe;

else

epsAe = log(exp(epsTe).^2);

end

epsVe = epsLe + epsAe;

epsL = mean(epsLe,2);

epsT = mean(epsTe,2);

epsA = mean(epsAe,2);

epsV = mean(epsVe,2);

Deps = mean(Depse,2);

% Radius and area

if strcmp(geo,’RUT66’)

d0 = 6;

d = d0*exp(epsT);

A = d.^2;

else

r0 = pytagoras([0 0 0],C(Nnod-1,1:3,1));

r = r0*exp(epsTe(:,1));

A = pi*r.^2;

end

fclose all;

bnd = fopen([dir ’\bndout’]);

k = 0;

s = 0;

while k < 400

k = k + 1;
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tline = fgetl(bnd);

if strncmp(tline,’ xtotal=’,21) == 1

s = s + 1;

b = sscanf(tline,’%*22c%f’,[1 1]);

F(s) = 4*b/1000;

k = 0;

end

end

rev = reversal(mat,geo,test);

stop = 0;

if rev ~= 0

for j = 1:length(rev)

start = stop + 1;

stop = rev(j) - 1;

for k = 1:30

F(start:stop) = smooth(F(start:stop));

F(1) = 0;

end

F(rev(j)) = F(rev(j)-1);

end

F(end) = [];

else

for j = 1:30

F = smooth(F);

F(1) = 0;

end

end

sig = 1000*F./A;

fclose all;

B.3 eloutread.m

This script reads the elout file from LS-DYNA, containing the strains and stresses of
the elements of the numerical simulations.

dir = [’C:\Master\LS-DYNA\’ mat ’\’ geo ’\’ test];

el = fopen([dir ’\elout’]);

[Nele,center,corner,side] = sectionoutput(geo,test);

20



APPENDIX B. MATLAB SCRIPTS

Nsid = length(side);

k = 0;

i = 0;

while k < 50

k = k + 1;

tline = fgetl(el);

if strncmp(tline,’ e l e m e n t s t r e s s’,28) == 1

i = i + 1;

% Time

t(i) = sscanf(tline,’%*82c%*f%*12c%f’,[1 1]);

% Empty lines

for j = 1:4

fgetl(el);

end

for j = 1:Nele

fgetl(el);

tline = str2num(fgetl(el));

s11e(i,j) = tline(2);

s22e(i,j) = tline(3);

s33e(i,j) = tline(4);

s12e(i,j) = tline(5);

s23e(i,j) = tline(6);

s31e(i,j) = tline(7);

end

% Empty lines

for j = 1:7

fgetl(el);

end

for j = 1:Nele

fgetl(el);

tline = str2num(fgetl(el));

% Strains section

epssecLe(i,j) = tline(2);

epssecTye(i,j) = tline(3);
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epssecTze(i,j) = tline(4);

end

k = 0;

end

end

epssecAe = epssecTye + epssecTze;

epssecVe = epssecLe + epssecAe;

epssecL = mean(epssecLe,2);

epssecTy = mean(epssecTye,2);

epssecTz = mean(epssecTze,2);

epssecA = mean(epssecAe,2);

epssecV = mean(epssecVe,2);

sigsece = s11e;

sigsec = mean(sigsece,2);

Fs = sigsec.*A/1000;

fclose all;

22


