
Performance Evaluation of nsclick Simulator for
Mobile Ad Hoc Networks

Viet Thi Minh Do*, Lang Xie**, Øivind Kure*
*Q2S, the Centre for Quantifiable Quality of Service in Communication Systems

Norwegian University of Science and Technology, Norway
**Department of Telematics, Norwegian University of Science and Technology, Norway

viet@q2s.ntnu.no, langxie@item.ntnu.no, okure@q2s.ntnu.no

Abstract—In order to evaluate the behavior and performance
of protocols for Mobile Ad Hoc Networks (MANETs) both
simulation and test bed are often used. The simulation is used in
first stages and the test bed is used in final stages of development
process when real-world tests are needed. Click Modular Router
is known as an efficient software architecture for building flexible
and configurable routers for test bed. However, when moving
from simulation to test bed, source code usually needs to be reim-
plemented. As a result, there must be a cost of maintaining two
completely different code-bases. The tool nsclick was introduced
to address this issue. It is constructed by embedding the Click
Modular Router inside of the NS-2 network simulator. The source
code with nsclick may run both on actual systems as well as under
simulator with minor modifications. In this paper, we provided an
intensive performance comparison between nsclick and NS-2 by
carefully implementing a broadcast algorithm in both simulators.
In addition, we designed and implemented an efficient jitter
element in nsclick. Simulation results show that nsclick is a
useful and effective tool for evaluating protocols in MANETs.
The results also indicate that our jitter element can significantly
reduce packet collision and thus improve performance of nsclick.

Keywords—nsclick, Mobile Ad hoc Networks, performance
evaluation, NS-2.

I. INTRODUCTION

A mobile ad hoc network is composed of mobile nodes
connected without requiring any existing infrastructure or cen-
tralized administration. As a promising network type in future
mobile application, Mobile Ad Hoc Networks (MANETs) are
increasingly attracting researchers. Designing protocols for
ad hoc networks is challengeable due to frequent change of
network topology, unreliable wireless channel, and channel
contention. Simulation has been widely used for protocol
design in MANETs. It is more cost-effective to use sim-
ulation than real test bed. Simulation also can be used to
detect and correct many bugs and issues before testing on a
real system. Moreover, simulation is very useful for running
large, repeatable scenarios in MANETs. However, it is shown
that there are large divergences between simulators [1]. The
differences are not only quantitative (not the same absolute
value) but also qualitative (not the same general behavior). It is
therefore necessary to run real experiments for testing wireless
protocols in the final stages of developing process. Source code
in simulation is often much different from implementation
code in test bed. It is common that much effort need to

be taken when moving from simulation to test bed. It is
therefore of interest to develop one code base and run it
both in simulators and test beds. nsclick [2] is one of tools
which can perform this functionality. nsclick [2] is used as
a testing tool for protocols in ad hoc networks in various
works [3] [4] [5]. However, to the best of our knowledge, until
now there are only two works [6] [7] focusing on evaluating
performance of nsclick simulator. The work [6] evaluated end-
to-end delay and simulation run-time in nsclick based on two
AODV implementations. [7] compared the performance of
nsclick with NS-2 for the ad hoc routing protocol AODV
(Ad hoc On Demand Distance Vector). The paper provided
a comparison of goodput, latency, and memory used across
three different AODV implementations. Our contributions in
this paper are a comprehensive performance evaluation of
nsclick in MANETs and a design of jitter element dealing
with packet collision problem. In contrast to the works in
[6] [7], this paper used a simple broadcast algorithm to
evaluate the performance of nsclick and NS-2. The broadcast
algorithm is likely to help to evaluate the performance more
accurately due to the less impact of protocol implementation
on performance. Performance of nsclick was evaluated based
on Packet Delivery Ratio (PDR), packet overhead, simulation
run-time, and collision ratio. In addition, we added a new
jitter element which is intended to reduce packet collision
in nsclick. [6] and [7] also implemented a jitter element for
nsclick but their implementations have the problem of packet
reordering. Moreover, these works did not provide the effect
of jitter element on packet collision as we did in this paper.

The remainder of the paper is organized as follows. In Sec-
tion II we overview three network tools: Click Modular Router,
network simulator NS-2, and nsclick. Section III describes
evaluation methodology used in this paper. The simulation
setup and results are represented in Section IV. The paper is
concluded in Section V.

II. OVERVIEW OF TOOLS

A. Click Modular Router
Click Modular Router [8] is a software architecture for

building flexible and configurable routers. Click routers are
built from components called elements. To build a router con-
figuration, users choose a collection of elements and connect
them into a directed graph. Click uses a textual language

to specify how packets flow through the graph. To extend
a configuration, users can write new elements or compose
existing elements in new ways. The idea behind Click is to
represent the packet flow through a network router as a series
of packet manipulations executed by connected elements.
Click is widely used to build real systems (e.g., deploying
software routers and services) [9] [10] [11].

B. Network Simulator NS-2
NS-2, an object-oriented, discrete event driven network

simulator, is known as the most popular ad hoc network
simulator [12]. It is widely used in academic research and
has a lot of packages contributed by different groups. NS-2
is composed of C++ code and OTcl scripts. C++ is used to
implement the detailed protocol and OTcl is used for users
to control the simulation scenario and schedule the events.
For wireless network simulations, NS-2 offers a number of
features such as energy model, traffic and mobility models,
and so forth.

C. nsclick
The simulator nsclick [2] was introduced in 2002 as a

bridge between simulation and reality. nsclick is an integration
of network simulator NS-2 and Click Modular Router. It is
constructed by embedding the Click Modular Router inside
of the NS-2 network simulator. In nsclick, routing protocols
are implemented as Click routing graphs and the routing
protocols of NS-2 is not used. The Click routing graph may
run both on an actual system as well as under NS-2 with minor
modifications.

III. EVALUATION METHODOLOGY

In order to evaluate performance we implemented a simple
broadcast algorithm in both simulators nsclick and NS-2. If
forwarding nodes are not carefully designated, the broadcast
operation is prone to broadcast storm problem [13]. An
effective approach to this problem is to use jitter. This section
describes the broadcast algorithm and our implementation of
broadcast and jitter elements in nsclick and NS-2.

A. Broadcast Algorithm
There are two reasons to implement broadcast algorithm to

evaluate performance of nsclick. First, broadcast operation is a
fundamental service in MANETs. It is a basic building block
for various network protocols especially for routing protocols.
This operation is frequently used to spread information to the
whole network. The second reason is that the evaluation of
simulators might be more accurate due to the fact that with
simple algorithm the simulation results do not depend much
on the implementation of protocols when the implementation
is simple.

Our simple broadcast algorithm can be considered as a
flood algorithm. Source node floods packets to all neighbor
nodes. When a neighbor node receives a packet, if the node
have not seen the packet before it will process the packet
and reflood the packet to its neighbor nodes; otherwise, the

Fig. 1. Protocol stack of broadcast algorithm

packet is discarded. The process continues until all nodes in
the network receive the packet. The flooding algorithm was
implemented on top of MAC layer. There is no transport
protocol (e.g. UDP, TCP) in our implementation. Application
and MAC layer connect directly to the broadcast algorithm.
All broadcast packets are sent to the broadcast MAC address.
Figure 1 depicts broadcast architecture on nsclick and NS-2.
In nsclick, application and MAC physical of core NS-2 were
used while broadcast algorithm was implemented in Click
FloodClassifier element. In this paper, the term ”core NS-
2” determines the NS-2 integrated in nsclick. In NS-2 the
broadcast algorithm was implemented by a routing agent.

B. Broadcast and Jitter Implementation
In our implementation, a node does not immediately re-

broadcast the packet it receives for the first time, instead the
packet is delayed in its buffer for a random period called jitter.

As mentioned in introduction section, the previous works,
which implemented jitter element in nsclick (e.g. in [6] [7]),
have the problem of packet reordering. In these works, a timer
is created to pair to an arriving packet, the firing time of the
timer is randomly. As soon as the timer fires, the corresponding
packet is sent to all neighbor nodes. Consequently, the order
of packet is changed due to the random firing time of the
timer. This problem might be more serious in the situation
where the order of packet is important (e.g. when the transport
protocol TCP is used). We solved this problem in our jitter
implementation. In our implementation, when a node receives
a packet for the first time, it stores the packet in a table and
creates a timer with a random firing time. Unlike other works,
the created timer does not pair to the arriving packet. The
packet table is an array structure in which packets are stored
as the order of their arriving time. As soon as a timer fires,
the packet which has the earliest arriving time is sent to all
neighbor nodes. The earlier a packet arrives the earlier it is
sent, then the problem of packet reordering is avoided.

In nsclick, in order to implement broadcast algorithm and
jitter we added two new elements into Click, FloodClassifier
and JitterFlood. FloodClassifier element has one input port
and two output ports. This element uses a table to store recent
packets to detect the duplication of packets. When a packet
arrives the element, if the element has not seen the packet
before, the packet is stored in the table as well as pushed
to the first output port; otherwise, the packet is pushed to
the second output port. Each packet is removed from the

Fig. 2. a)(left) b)(right) Click routing graph for broadcast router configuration

table after five seconds by a timer. JitterFlood element has
one input port and one output port. When receives a packet,
this element stores the packet and its arriving time in a table
and creates a timer. The firing time of the timer is randomly
chosen from (0, JITTER MAX] in uniformly way. In this
paper, JITTER MAX is set to 10 mseconds. As soon as a
timer fires, the earliest arriving packet in the table will be
pushed to the output port.

nsclick routers use elements FromSimDevice and ToSimDe-
vice to receive and send packets. The simulated device
transmits ”raw packets” which will be transmitted using the
core NS-2 physical layer models. In this paper, nsclick use
802.11 MAC layer and power model provided by core NS-2.
Figure 2 presents the Click routing graph for broadcast router
configuration in our nsclick implementation. The new elements
are presented as brown blocks in Figure 2. Packets can reach
Click routing from simulator network interface (eth0) or from
application (tap0). Figure 2a) and Figure 2b) depict the routing
graph for packets from application and network interface,
respectively. After being read by FromSimDevice(tap0) ele-
ment, packets are pushed to CheckIPHeader element to check
their validity. Then GetIPAddress element sets destination IP
address annotation from packet data. IP header annotation is
set by MarkIPHeader element. After that EtherEncap ele-
ment encapsulates packets in Ethernet header. Finally, packets
are sent to simulated network device by ToSimDevice(eth0)
element. Packets through FromSimDevice(eth0) are pushed
to HostEtherFilter element. Ethernet packets sent to other
machines are dropped by this element. This element expects
Ethernet packets as input and acts basically like Ethernet
input hardware for a device with address as argument of this
element. Strip element is used to get rid of the Ethernet header.
IP header annotation and destination IP address annotation

are set by MarkIPHeader and GetIPAddress elements. Then
the packets are classified by FloodClassifier element. If the
packet have not been seen before, FloodClassifier sends the
packet to JitterFlood element; otherwise the packet is pushed
to and then discarded by Discard element. JitterFlood element
delays the packet for a randomly time jitter before sending it to
EtherEncap element. The packet is encapsulated in Ethernet
header before being pushed to simulated network device by
ToSimeDevice element. Implementing jitter in NS-2 is quite
simple. It was implemented in operations of the broadcast
routing agent.

IV. PERFORMANCE EVALUATION

We run simulations and implemented the same simulation
set-up in both simulators nslick and NS-2. All simulations run
on an Intel Pentium D workstation with 2GB of RAM, CPU
3.00GHz, Ubuntu Linux SMP 9.04. Our measurements were
taken using NS-2.34 and nsclick with Click-1.8.0. All results
provided were averages over five executions of each simulation
scenario. We used the confidence level of 0.95 and dropped
data from the initial of the simulation.

In all simulations 50 nodes are placed randomly in the
area of 1000m x 1000m. The transmission range of each
node is 200m. Network is 802.11 with the rate of 2 Mbps.
Mobility of nodes follows the Random Waypoint model with
pause time 100 seconds. Each node randomly selects moving
direction and move there at a random speed uniformly chosen
from (0, Vmax], where Vmax is the maximum speed of the
node. Upon reaching the destination the node stays there
for some pause time. Upon expiration of the pause time,
the next destination and speed are again chosen in the same
way and the process repeats until the simulation ends. Each
sender broadcasts total 100 packets (512 bytes/packet) with
different rates during the simulation. To avoid synchronized
transmitting, each sender starts to transmit packets at different
times. They broadcast packets continuously until 100 packets
are sent. We used constant traffic rate CBR as traffic type in
all simulations. The value of jitter is randomly generated from
(0, 10 mseconds] in uniformly way. Simulation time was set
to 300 seconds except where the simulated time was described
explicitly.

We considered four performance metrics to evaluate perfor-
mance of nsclick and NS-2 as follows.

∙ Packet delivery ratio (PDR) is computed as the ratio of
the total number of packets received by receivers to the
product of the total number of packets transmitted from
sources and the number of receivers.

∙ Packet overhead is measured as the total number of
duplicated packets received by all nodes in network.

∙ Simulation run-time is defined as the computation time
for a simulation.

∙ Collision ratio is computed as the ratio of the number
of collision packets to the total number of packets sent
by all senders multiply the number of network nodes. In
other words, collision ratio = # collision packets/(# sent
packets * 50)

Fig. 3. Packet delivery ratio

Fig. 4. Number of overhead packets

A. Packet Delivery Ratio and Packet Overhead

We conducted experiments to compare PDR and packet
overhead between nsclick and NS-2. Other purpose of these
experiments is to confirm the correctness of our implementa-
tion by comparing our results with results of previous work
in [1]. We set the explicit parameters in NS-2 and nsclick in this
run series as the same in the previous work [1]. In other words,
10 senders broadcast packets with the rate of 4 packets/second
(the packet size is 512 bytes so the source traffic rate is
32 Kbits/second). We extracted PDR and packet overhead of
NS-2 from the previous work [1] to make the comparison
more clearly. Figure 3 and Figure 4 depict PDR and packet
overhead of broadcast algorithm in both nsclick and NS-2,
respectively. The first thing to notice is that there is just small
difference between PDR as well as packet overhead of our

Fig. 5. Simulation run-time vs. number of senders

Fig. 6. Simulation run-time vs. simulated time

implementation and the previous work. This is likely due to the
difference of some implicit simulation parameters. However,
the trend and the value of PDR and packet overhead of NS-2
in our implementation are somehow similar to the previous
work. In addition to carefully debugging and implementing,
this similarity is contributed to validate our implementation.
The second thing to notice is that PDR of nsclick is a bit
lower than that of NS-2. The reason is that the size of packets
in nsclick is larger than packet size in NS-2 (nsclick has to
append Ethernet header to all data packets). Packets in nsclick
consume more bandwidth and packet loss ratio increases in
nsclick. As a result, PDR of nsclik is lower than that of NS-2.
The overhead of NS-2 is slightly higher than that of nsclick.
This difference is due to the difference of time management

in NS-2 and nsclick. However, the results indicate that nsclick
performs quite reasonably when compared to NS-2.

B. Simulation Run-time
In this section, we run three experiment series to evaluate

simulation run-time. This section aims to investigate the effect
of parameters (number of senders, simulated time, network
traffic rate) on simulation time in nsclick and NS-2. Network
traffic rate is defined as accumulation of source traffic rates of
all senders in the network.

Firstly, we performed experiments to test the effect of the
number of senders on simulation run-time. The number of
senders is set to 1, 4, 5, 8, 10 senders. Results are illustrated
in Figure 5. We can see that the simulation run-time of nsclick
is much higher than that of NS-2, especially when the number
of senders is large. The reason is that in nsclick there is a lot
of system calls inside Click to NS-2 for the current time and
this slows down the entire system (Click normally uses system
calls to determine the current time and transfer packets to and
from Ethernet devices and the kernel). As can be seen from
the results, the simulation run-time increases when the number
of senders rises up in both nsclick and NS-2. The increase
speed of NS-2 by mobility is lower than that of nsclick. For
example, the simulation run-time in both NS-2 and nsclick with
one sender is about 6 seconds; with 10 senders, simulation
run-time in NS-2 is 10 seconds, in nsclick is 43 seconds.
Nevertheless, the simulation run-time in nsclick increases in a
linear way with the number of senders.

Secondly, we performed experiments in nsclick and NS-
2 with different simulated times from 100 seconds to 600
seconds. The number of senders is fixed at 10 senders,
maximum speed of nodes is set to 20 m/s and source traffic
rate is fixed at 32 Kbits/second. Figure 6 represents simulation
run-time in nsclick and NS-2 with various simulated times. We
can see that the simulation run-time of NS-2 remains stable
while the simulation run-time of nsclick increases when the
simulated time grows up. Also, the simulation run-time of
nsclick increases in a linear way with the simulated time.

TABLE I
SIMULATION RUN-TIME IN NSCLICK FOR DIFFERENT NUMBER OF

SENDERS AND DIFFERENT SOURCE TRAFFIC RATES

senders 16 Kbps 8 Kbps 4 Kbps
2 11 15 31
4 19 16 6
5 47 21 15

10 34 24 17

Finally, we run experiments only in nsclick with different
number of senders and different source traffic rates. Table
I presents the simulation run-time of nsclick with different
number of senders and different source traffic rates. As seen
from Table I the simulation run-time of nsclick is different
in scenarios which have the same network traffic rate. For
example, the simulation run-time of nsclick in scenario with 5
senders and 16 Kbps source traffic rate is 47 seconds while the
simulation run-time in scenario with 10 senders and 8 Kbps

Fig. 7. Collision ratio with and without jitter in NS2

Fig. 8. Collision ratio with and without jitter in nsclick

is 24 seconds (the network traffic rate in this situation is 80
Kbps). Another thing to notice is that if the network traffic rate
increases, the simulation run-time can increases or decreases.
The scenario with 2 senders and 4 Kbit/s source traffic rate,
the scenario with 10 senders and 4 Kbit/s source traffic rate,
the scenario with 5 senders and 16 Kbit/s source traffic rate
are examples. Therefore, it could be included that the network
traffic rate does not directly affect on the simulation run-time
of nsclick.

Briefly, the number of senders and simulated time impact
on simulation run-time of nsclick while the network traffic
rate does not. The simulation run-time of nsclick increases
in a linear way with the number of senders as well as the
simulated time. In other words, it is possible to run nsclick
with the large scale simulation.

C. Collision ratio
In this section, we run two experiment series to evaluate

the effect of our jitter element, broadcast jitter was ignored
in the first series while it was included in the second se-
ries. Simulations were performed in both nsclick and NS-2.
Collision ratio in implementation with and without jitter are
illustrated in Figure 7 and Figure 8. As can be seen from
Figure 7, collision happens more frequently in NS-2 when
broadcast jitter is not used. In Figure 8 the collision is much
serious in nsclick when the broadcast jitter is ignored. The
results show that jitter implementation is more important in
nsclick than in NS-2. In NS-2 jitter helps to reduce collision
caused by the broadcast storm problem [13]. In nsclick jitter
not only deals with the broadcast storm problem, but also
helps to reduce collision caused by integration of simulator
NS-2 and Click of nsclick. In Click the time management is
performed using the gettimeofday system call. Routers in Click
are usually distributed, so the returned time is unique to each
computer and the time for different computers may not the
same. In other hand, in NS-2 the time between different nodes
is identical because it is a discrete event simulator. nsclick is
integration of NS-2 and Click, it uses simulation time as in
NS-2. In nsclick, the system calls is performed inside NS-2
and NS-2 feed simulation time to nsclick. The time between
different nodes in nsclick therefore is identical. The identical
time leads to collision in transmitting data of neighbor nodes.
Jitter in our broadcast implementation in nsclick helps to deal
with this collision type.

V. CONCLUSION

This paper presents an intensive performance evaluation of
nsclick in mobile ad hoc networks and a design for an effective
jitter element in nsclick. The simulation results show that it is
possible to use nsclick with large scale simulations and that it
is important to implement a jitter in nsclick to reduce collision.
nsclick is an effective tool to evaluate and test new protocols

in MANETs. It is a good tool for researchers who want to test
new protocols in both simulation and test bed. In near future,
we intend to move the code from nsclick to a real test bed
system in order to compare the performance of nsclick and
Click.

REFERENCES

[1] D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy of manet
simulators,” in POMC ’02: Proceedings of the second ACM international
workshop on Principles of mobile computing. New York, NY, USA:
ACM, 2002, pp. 38–43.

[2] M. Neufeld, A. Jain, and D. Grunwald, “Nsclick:: bridging network sim-
ulation and deployment,” in Proceedings of the 5th ACM international
workshop on Modeling analysis and simulation of wireless and mobile
systems. ACM Press, 2002, pp. 74–81.

[3] M. Voorhaen, E. Van de Velde, and C. Blondia, “Morhe: A transparent
multi-level routing scheme for ad hoc networks,” vol. 197, pp. 139–148,
2006.

[4] M. Voorhaen and C. Blondia, “Analyzing the impact of neighbor sensing
on the performance of the olsr protocol,” in Proceedings of 4th Intl.
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt06), APRIL 2006.

[5] A. Jain, M. Gruteser, M. Neufeld, and D. Grunwald, “Benefits of packet
aggregation in ad-hoc wireless network,” Tech. Rep., 2003.

[6] B. Braem, “Implementation and evaluation ad hoc on-demand distance
vector routing,” 2005.

[7] M. Neufeld, A. Jain, and D. Grunwald, “Network protocol development
with nsclick,” Wirel. Netw., vol. 10, no. 5, pp. 569–581, 2004.

[8] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 217–231,
1999.

[9] S. Doshi, S. Bhandare, and T. X. Brown, “An on-demand minimum
energy routing protocol for a wireless ad hoc network,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 6, no. 3, pp. 50–66, 2002.

[10] C. Kim, “Floodless in seattle: A scalable ethernet architecture for large
enterprises,” in SIGCOMM, 2008.

[11] R. Chertov, S. Fahmy, and N. B. Shroff, “A device-independent router
model,” in INFOCOM 2008, 2008.

[12] S. Kurkowski, T. Camp, and M. Colagrosso, “Manet simulation studies:
The incredibles,” ACM SIGMOBILE Mobile Computing and Communi-
cations Review, vol. 9, pp. 50–61, 2005.

[13] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in MobiCom ’99: Proceedings of
the 5th annual ACM/IEEE international conference on Mobile comput-
ing and networking. New York, NY, USA: ACM, 1999, pp. 151–162.

