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1 Assignment

Pressure and flow pulses originating in the heart, propagate and are reflected in the arterial
tree. The propagation may be estimated by hyperbolic one-dimensional differential equations
accounting for mass and momentum transport. The objective in this thesis will be to investi-
gate and implement adequate numerical methods for such hyperbolic differential equations. In
particular, the methods for the boundary conditions will be a focus. Further, the topology of
the network must be described, and the geometry and material properties of each blood vessel
must be accounted for.
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2 Abstract

vascular1Dflow is a program for simulating blood flow in vascular networks. It uses hyperbolic
one-dimensional partial differential equations with ordinary differential equations as boundary
conditions. The focus of this work has been the development boundary conditions, primarily a
time varying elastance model of the left ventricle has been implemented as a boundary condition.
The aortic and mitral valves were modeled using a mathematical valve model. The varying
elastance model is tested in lumped model and arterial network simulations. An improved
solution algorithm for computing pressure and flow at bifurcations is implemented and tested.
Also a improved discretization scheme for Windkessel models is presented.

3 Sammendrag

vascular1Dflow er eit program brukt til a simulere blodstrømning i blod̊arenettverk. Det bruker
hyperbolske ein-dimensjonale partielle differensiallikningar med ordinære differensiallikningar
som randbetingelsar. Fokus for dette arbeidet har vore utviklinga av randbetingelsar. Hovudsak-
leg har ein tidsvariant elastans-modell for venstre hjertekammer blitt implementert som ein rand-
betingelse. Aorta-klaffen og mitral-klaffen blei modellert med ein matematisk hjerteklaffmodell.
Hjertemodellen har blitt testa i simuleringar p̊a 0-dimensjonale modellar og i eit blod̊arenettverk.
Ein forbetra algoritme for utrekning av trykk og strømning i forgreiningar har blitt implementert
og testa. I tilegg blir eit forbetra diskretiseringsskjema for Windkessel-modellar presentert.
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4 Introduction

Figure 1: The cardiovascular system

The cardiovascular system is responsible for
transporting oxygen from the lungs and into all
the body’s organs as well as providing the or-
gans with neccesary nutrients. Blood is circulated
through two separate vascular systems. The pul-
monary circulation goes through the lungs where
the blood is oxygenated. The systemic circula-
tion transports the oxygenated blood to all the
body’s organs. The heart is the pump that drives
the circulation of blood through the two vascular
networks. It consists of four chambers, the right
atrium, the right ventricle, the left atrium and
the left ventricle. These work in pairs where the
first two are responsible for pumping blood into
the pulmonary circulation and the second into the
systemic circulation. The pumping action of the
heart is provided by periodic contractions of mus-
cles in the heart walls. Blood flow between the chambers is controlled by four valves which open
and close depending on pressure gradients only allowing blood to flow in one direction.

The vascular1Dflow software. The work done in this thesis builds on the software vascu-
lar1Dflow, which was developed by Paul Roger Leinan and Vinzenz Eck. This program simulates
bloodflow in vascular networks using a one dimensional model for fluid structure interaction in
the blood vessels. Boundary conditions are handled using prescribed flow and pressure or by
using lumped models where pressure and flow is related using ordinary differential equations.
The program can load network data from .xml-files and also has the ability to plot simulation
results in 2D and 3D and save results to the hard drive.

The purpose of this project has been to develop the vascular1Dflow software further. The
main task has been to implement and test a varying elastance heart model along with a dynamic
model for opening and closure of the aortic and mitral valves, the details of these implementa-
tions are shown in section 7.1. Furthermore the algorithm for solving the governing equations
for bifurcations was evaluated and a new algorithm was suggested. Also the solution method
for the two and three element windkessel boundary conditions was improved, specifically the
discretization scheme was altered.

5 Theory

5.1 Mechanical properties of blood vessels

The mechanical properties of the blood vessels are primarily described by the relationship be-
tween internal pressure and cross-sectional area. In a differential form this is given by the vessel
compliance C = dA

dp
. Laplaces law provides a relation between the transmural pressure and di-

latation of the vessel and is expressed as pint−pext = T
r
, where T is the surface tension or tensile

force per unit length of the vessel and pext is a constant external pressure. For a linearly elastic

material this tensile force becomes T =
Eε1

1− ν2
h where E is the elastic modulus, ν2 is Poisson’s

ratio and h is wall thickness. Derived from this is a simplified expression for the internal pressure
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of the vessel [10]

p = pext + β(
√
A−

√
A0) (5.1)

where A0 is a reference cross-sectional area corresponding to the area when p = pext. β is a
stiffness parameter characterizing the mechanical properties of the vessel and is given by

β =

√
πh0E

(1− ν2)A0

(5.2)

Differentiation of this expression gives the compliance:

C =
2
√
A

β
(5.3)

5.2 Governing equations

The variables describing blood flow in a compliant vessel are pressure, flow and cross-sectional
area (p, q, A). The system is however fully described by two independent system variables.
Choosing (p,q) as the independent state variables, the 1D governing equations for flow in com-
pliant vessels are [6, 10]

∂p

∂d
+

1

C

∂q

∂z
=0 (5.4a)

∂q

∂d
+ δ

∂

∂z
(
q2

A
) +

A

ρ

∂p

∂z
=− 2π(γ + 2)

µ

ρ

q

A
(5.4b)

which can be written in matrix notation as:

∂u

∂t
+ M(u)

∂u

∂z
= b(u),u =

[
p
q

]
(5.5)

5.3 Discretization

In the vascular1Dflow software the governing equations are discretized using the MacCormack
numerical scheme. This is an explicit numerical scheme in which the state variables are predicted
and then corrected. In the predictor step a forward difference is used to approximate the
spatial derivative while in the corrector step a backward difference is used. Giving the following
expressions for the predictor and corrector steps respectively [10]:

ûi =uni −∆t

(
M(uni )

uni+1 − uni
∆z

− b(uni )

)
(5.6a)

ui =
1

2

(
uni + ûi −∆t

(
M (ûni )

ûni+1 − ûni
∆z

− b(ûni )

))
(5.6b)

Being explicit this scheme is only conditionally stable. Its stability depends on the size of
the time step which must be below a critical value ∆tcr which is the shortest time it takes
for information to propagate between two neighbouring nodes in the system this is called the
Courant-Friedrichs-Lewy (CFL) condition. The condition can be expressed as [10]:

CFL ≥ (|u|+ c)
∆t

∆x
(5.7)

where the CFL number is 1. In the vascular1Dflow software the CFL number is given to the
program and the appropriate time step length is calculated accordingly.
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5.4 Lumped models

There is a long tradition of describing vascular networks using so called lumped models. In such
models the vascular network rather than being described by propagating waves is descriped by
a single pressure and a relation between pressure and flow.

5.4.1 The two element Windkessel model

Figure 2: The WK2 repre-
sented by it’s electric analog.

The most basic application of the lumped model approach is the
two element Windkessel (WK2) model. It was was originally
quatified and popularized by Otto Frank [21]. The model consists
of a compliance and a resistance coupled in parallel.The variables
of the model are pressure (p) and inflow (q), which are related by
the expression [6]:

dp

dt
+
p− p0

RC
=

q

C
(5.8)

where R is the resistance, and C is the compliance. p0 is the
peripheral pressure or reference pressure, if p = p0 the flow is zero. The lumped model when
prescribed an inflow Q(t) has the following general solution for the pressure [6]:

p(t) = pinite
− t−t0

τ +
1

C

t∫
t0

Q(t′)e
t′−t
τ dt′ (5.9)

where Q is the inflow, pinit is the initial pressure and τ = RC. Thus if there is no inflow to the
system, the pressure will decay exponentially according to:

p(t) = pinite
− t−t0

τ (5.10)

this is used in section 8.4.2 where a pressure decay in a network is simulated and τ is determined
by curve fitting the pressure decay function.

5.4.2 The three element Windkessel model

Figure 3: The WK3 repre-
sented by it’s electric analog.

More complicated lumped models can be build by adding more
elements either in series or parallel. Perhaps the most commonly
used model though is the three element windkessel (WK3) model
in which a second resistance is coupled in series to the two-element
model, as shown in figure 3. As for the names of the two re-
sistances the naming conventions can be different. The parallel
resistance is often called the peripheral resistance since it repre-
sents the resistive effect of the microcirculation which is peripheral
to the arterial network. The other resistance is often called the
characteristic impedance (Zc) of the model since it is somewhat
analogous to the characteristic impedance of the aorta. To avoid
confusion with the actual vessel characteristic impedance it is called Rf in this thesis. The
governing equation of the model is given by:

dp

dt
+
p− p0

τ
=
dq

dt
Rf +

q

τ
(R +Rf ) (5.11)
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5.4.3 Impedance of Windkessel models

The input impedance of a windkessel model is frequency dependent and is generally a complex
number. It is defined as:

Zin =
P

Q
(5.12)

where P and Q are the fourier transforms of the pressure and flow signals. The complex nature
of the input impedance means that pressure and flow are out of phase. The expression for the
WK2 can thus be found by taking the fourier transform of equation 5.8 which after reorganizing
gives:

ZWK2 =
P

Q
=

1

iωC + 1
R

(5.13)

The amplitude ratio of a oscillating pressure and flow signal at angular frequency omega is
therefore:

ap
aq

= |ZWK2| =
1√

1
R2 + ω2C2

(5.14)

and the phase shift is:
φ = arctan(−ωRC) (5.15)

This means that if the flow is given by q(t) = aq sin(ωt) the resulting pressure is:

p(t) = aq

√
1

R2
+ ω2C2 sin(ωt+ φ) (5.16)

5.5 Boundary conditions

In order to make meaningful and useful simulations of vascular networks some form of boundary
conditions must be prescribed at the open ends of the vascular tree. Essentially these boundary
condititions must describe some form of relation between pressure and flow at the boundaries.
This relation can be described by time varying functions, by differential equations or by com-
binations of the two. However to actually be used as boundary conditions the equations must
be rewritten in terms of forward and backward travelling wave components. This is achieved in
vascular1Dflow by using characteristic variables.

5.5.1 Characteristic variables

In order to handle boundary conditions correctly it is necessary to distinguish between forward
and backward propagating pressure and flow waves. This can be done conveniently by expressing
pressure and flow in terms of the Riemann-invariants or characteristic variables of the system ω1

and ω2, which represent pressure and flow waves travelling in positive and negative z-direction
respectively. They are generally linear combinations of pressure and flow. To derive the relation
between state variables the system matrix M is first decomposed and expressed in terms of its
diagonal eigenvalue matrix, as well as its right and left eigenvector matrices so that

M = RΛL (5.17)

where:

Λ =

[
λ1 0
0 λ2

]
(5.18a)

R =

[
1 −1
1
Z1
− 1
Z2

]
(5.18b)

L =
1

Z1 + Z2

[
Z1 Z1Z2

Z2 −Z1Z2

]
(5.18c)
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and R = L−1. Due to the scalability of eigenvectors, there are many different ways of expressing
the right and left eigenvector matrices. The expressions given above though are the formulation
currently implemented in vascular1Dflow. Z1 and Z2 are the characteristic impedances of forward
and backward travelling waves respectively and the eigenvalues λ1 and λ2 are the wavespeeds.
Using these definitions the equation system can be expressed as

L
∂u

∂t
+ ΛL

∂u

∂z
= Lb (5.19)

The characteristic variables are then introduced by

∂ω

∂u
= L (5.20)

And the equation system can be expressed in terms of the characteristic variables:

∂ω

∂t
+ Λ

∂ω

∂z
= Lb (5.21)

Integration of this expression from a reference state u0 to the current state u gives the state
variable increments in terms of the characteristic variables

∆u = R(un)∆ω (5.22)

Expressions for the pressure and flow increments thus become

∆p =R11ω1 +R12ω2 (5.23a)

∆q =R21ω1 +R22ω2 (5.23b)

Boundary conditions are then handled in the program by rewriting the given pressure-flow
relationship at the boundary in incremental form. Then substitute pressure and flow increments
according to equations 5.23a and then solve the equation for ω1 or ω2 depending on the position of
the boundary condition. If the boundary condition is located at the left boundary, with positive
z direction going from left to right, then the variable going into the system is ω1. The outgoing
variable at the boundary can then be extrapolated from the previous timestep by computing the
value of ω2 at a distance of λ2∆t from the boundary giving [6]

ω2 = ω2(tn, λ2∆t) (5.24)

5.5.2 Outgoing characteristic variable

The characteristic variable leaving the vessel at timestep n is generally unknown but can be
estimated by using the characteristic from the previous timestep located at a distance into the
vessel corresponding to the length that the outgoing wave travels in one timestep. The outgoing
characteristic variables at the two boundaries at timestep n+ 1 are thus:

ω2 =ω2(z1− λ2∆t, tn) at A1 (5.25a)

ω1 =ω1(z2− λ1∆t, tn) at A2 (5.25b)

The values of ω are computed from the pressure and flow increments ∆u, as:

ω2 = l2∆u (5.26a)

ω1 = l1∆u (5.26b)

The point where the value of the outgoing characteristic is extrapolated from is generally
located between the boundary node and the next node (node 0 and 1 on the A1 boundary).
The solution arrays therefore have to be interpolated to find values for P and Q at this point.
Further some kind of difference method must be used to find ∆u.

The currently implemented method is given by the expression:

∆un−1 = u(z1 − λ2∆t, tn−1)− u(z1, t
n) (5.27)
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5.5.3 Discretization of boundary conditions

Although the governing equations for lumped models such as the windkessel models are linear,
when used as boundary conditions they form non-linear systems because of the nonlinearity of
the equations describing the compliant vessels. This is the result of the vessels characteristic
impedance being dependent on the vessel pressure. For example in the case of a simple terminal
resistance where flow and pressure are related as p = Rq, when expressed in terms of forward
and backward propagating pressures this becomes:

pb + pf = R(
pf
Z1

− pb
Z2

) (5.28)

which is nonlinear because of the values of the characteristic impedances Z1 and Z2 being
dependent on the pressure. In vascular1Dflow the discretization is handled by introducing the
introducing the incremental relation:

∆u = R∆ω (5.29)

this also represents a linearization of the system since the value of R from timestep n is used as
an approximation. The solution for a resistance boundary condition located on the distal end
of a vessel thus becomes:

ω2 =
−(1−RR21)

1−RR22

(5.30)

The peripheral pressure and the initial pressure In vascular1Dflow it is possible to
define a few different pressure which depending on how they are used can be though of as initial
pressure, peripheral pressure or reference pressure. The initial pressure is a pressure that is
prescribed at the beginning of simulation for all the vessels. Depending on how the boundary
conditions are defined and implemented this pressure can also function as the peripheral pressure.

In the existing implementation of vascular1Dflow all the terminal boundary conditions act as
pure reflectors. The reason for this is that the discretisations of the Windkessel BCs are purely
incremental. This is also true for the resistance BC and the prescribed terminal reflection.
The initial pressure then becomes identical to a peripheral pressure or reference pressure. The
pressure at which there is no flow.

By discretizing the Windkessel BCs in a way so that the pressure and flow values from
the previous time-step also are included and thus also retaining the peripheral pressure, the
initial pressure gets a different meaning. If an initial pressure different from the peripheral
pressure of the boundary condition is prescribed, the windkessel will at the beginning of the
simulation generate a wave traveling into the vessel in order to satisfy the relation between
pressure difference and flow given by p− p0 = Rq. The details of the discretization of the WK2
is given in section 7.3.

This kind of discretization can not be done succesfully in the resistance BC, because here
because since there is no compliance in this model the equilibrium between pressure and flow
would be achieved immediately causing a step shaped wave that would cause numerical problems.

The interpretation of the different pressures thus depends on what kind of boundary condi-
tions are used and how they are implemented.

Nonlinearity and predictor-corrector scheme Where the values of the components of R
from timestep n are used when computing the pressure and flow increments ∆u from timestep n
to timestep n+1. This approximation is a possible source of inaccuracy however it could perhaps
be reduced by using a predictor corrector procedure when computing the boundary conditions.

û = un + R(un)∆ω (5.31a)

un+1 =
1

2
(û + un + R(û)∆ω̂) (5.31b)
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Figure 4: The reflection coefficient and phase shift for two- and three element windkessel models
as a function of frequency

where ∆ω and ∆ω̂ are computed using values using R and ω̂ respectively. It is however uncertain
whether this is necessary due to the relatively small timesteps. In the current implementation a
predictor-corrector scheme is not used for the boundary-conditions.

Reflection in boundary conditions. When the windkessel is used as a boundary condition
for a vessel of characteristic impedance Zc the reflection coefficient for a wave entering the
windkessel becomes:

ΓWK2 =
Pb
Pf

=
1
Zc
− 1

ZWK2

1
Zc

+ 1
ZWK2

=
1
Zc
− iωC − 1

R
1
Zc

+ iωC + 1
R

(5.32)

which is also complex and frequency dependent. Similarly the expression for the reflection
coefficient of the three element windkessel model is:

ΓWK3 =
Zc(1 + iωRcC)−Rc −Rf − iωRcRfC

Zc(1 + iωRcC) +Rc +Rf + iωRcRfC
(5.33)

A special and useful case of the WK3 is if the characteristic impedance of the vessel is matched
to that of the windkessel, (ie Rf = Zc. In this case F → 0 when ω → ∞, meaning that
higher frequencies are absorbed. The reflection coefficients with corresponding phase shifts for
the two models are shown in figure 4 Thus for any periodic signal that can be expressed as a
fourier series, an analytical solution can be obtained. This is utilized in section 7.3.3 where the
numerical solution of the windkessel model is verified.
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5.6 Network bifurcations

At bifurcations in the network some kind of physical model must be used to determine the dis-
tribution of pressure and flow in the vessels involved. The governing principles are conservation
of mass an conservation of kinetic energy.

5.6.1 The governing equations

The pressure through the bifurcation is described by Bernoulli’s principle so that:

p+
1

2
ρv2 = constant (5.34)

along a streamline. By assuming a flat velocity profile so that v = q
A

one gets the governing
equations [10]:

q1 = q2 + q3 (5.35a)

p1 +
ρ

2

q2
1

A2
1

= p2 +
ρ

2

q2
2

A2
2

(5.35b)

p1 +
ρ

2

q2
1

A2
1

= p3 +
ρ

2

q2
3

A2
3

(5.35c)

(5.35d)

Linear model. For flows approaching zero the nonlinear terms in equation 5.35 vanish and
the equations become:

q1 = q2 + q3 (5.36a)

p1 = p2 (5.36b)

p1 = p3 (5.36c)

where the subscript 1 denotes the mother vessel and subscripts 2 and 3 the daughter vessels.
This simple relation is accurate at low flow rates.

5.6.2 Reflection and transmission coefficients

Using this linear model allows us to think of the boundary condition as a sudden change in
impedance which causes waves to be reflected and transmitted according to reflection and trans-
mission coeficcients. These are obtained by expressing pressure and flow as a superposition of
forward and backward travelling waves so that:

p = pf + pb (5.37a)

q = qf + qb (5.37b)

and using the vessels characteristic impedances to relate pressure and flow:

Zc =
pf
qf

= −pb
qb

(5.38)

Inserting this into the equations in 5.36 gives the system:

1

Z1

(pf,1 − pb,1) =
1

Z2

(pf,2 − pb,2) +
1

Z3

(pf,3 − pb,3) (5.39a)

pf,1 + pb,1 = pf,2 + pb,2 (5.39b)

pf,1 + pb,1 = pf,3 + pb,3 (5.39c)
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which can then be solved for the reflection coefficient Γ = pb
pf

. A wave travelling from the mother

vessel (vessel 1) into the bifurcation is therefore reflected according to the reflection coefficient:

Γ =
1
Z1
− ( 1

Z2
+ 1

Z3
)

1
Z1

+ 1
Z2

+ 1
Z3

(5.40)

and accordingly transmitted, into the two daughter vessels with an amplitude described by the
transmission coefficient T = 1 + Γ.

5.7 The reservoir-wave approach

An experimental approach to understanding wave-propagation in vascular network is the reservoir-
wave approach. This tries to unite Windkessel, or reservoir, models of vascular networks, with
wave propagation models. The idea is that pressure and flow throughout a vascular network
can be separated into a reservoir component, which is equal for the whole network and a wave
component also called excess pressure and flow. For a pressentation of the concept see Tyberg
et al. [19]. If the network has a total volume compliance of Ctot the reservoir pressure increases
according to:

dPres
dt

=
Qin −Qout

Ctot
(5.41)

Where Pres is the reservoir pressure of the arterial network. The outflow is determined by:

Qout =
Pres − P0

Rres

(5.42)

Which is equivalent to a two element windkessel model, which has the analytical solution given
in equation 5.9.

In an experimental setting pressure and flow can be measured at the aorta, but Qout, Ctot,
P0 and Rres are generally unknown and must be determined from the governing equations and
the measured data. After having determined Pres, the reservoir of excess pressure, the wave
pressure is determined as Pwave = P − Pres. It is shown by Tyberg et al. [19], that the resulting
wave pressure when computed at the aortic root is proportional to the inflow. It can therefore
be seen as the driving force of the inflow or as a pressure gradient between the aortic root
and the reservoir which is imagined to be located some distance from the aorta. Further the
wave pressure can be subject to wavesplitting, it is shown by Tyberg et al. that the backward
component of this wavepressure is almost non-existing at the aortic root.

In section 8.4.4, the reservoir-wave approach is applied to the numerically simulated arterial
network along with a varying elastance model. In this case the determination of the reservoir
pressure is very straightforward, since both inflow and outflow are known. And the compliance
can be computed from vessel data.

6 The left ventricle and varying elastance

6.1 Physiological background - the ventricle

Figure 5: A diagram of the
human heart.

During each heart cycle the left ventricle receives oxygenated
blood from the pulmonary circulation via the left atrium and
ejects it into the systemic circulation through the ascending aorta.
The blood flow is driven by the periodic contraction of muscle
fibers in the heart wall. The flow between the left atrium and
the left ventricle is controlled by the mitral valve and blood flow
between the left atrium and ascending aorta by the aortic valve,
these valves only allow blood to flow in one direction.
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6.1.1 Phases of the ventricular cardiac cycle

The pumping cycle of the ventricle can be divided into four dis-
tinct phases. First are the two phases of diastole which starts
with the closing of the aortic valve. First there is an isovolumic
relaxation phase. In this phase both mitral and aortic valves are
closed and there is a relaxation of the heart muscles giving a de-
crease in pressure inside the ventricle. When the pressure has
decreased sufficiently that there is a positive pressure difference between the left atrium and the
left ventricle, the mitral valve opens and the next phase starts. This next phase is a passive fill-
ing phase. The ventricle is now filled with blood forced by the blood pressure in the pulmonary
veins.

Next are the two phases of systole. As the muscles in the heart wall start to contract there
is an increase in pressure. The mitral valve closes and systole starts. There is an isovolu-
mic contraction phase. In this phase pressure inside the ventricle increases, the aortic valve
opens and there is an ejection phase in which blood flows out of the ventricle and into the
ascending aorta. At the end of systole the aortic valve closes and the heart cycle is complete.

Figure 6: The four phases of the car-
diac cycle are shown in Wiggers dia-
gram

6.1.2 Mechanisms of heart contraction

The contractions are controlled by electric signals which
trigger a series of chemical reactions activating the slid-
ing mechanism of actin and myosin that cause the mus-
cle fibers to contract. This in combination with the elas-
ticity of the heart tissue makes the heart able to function
as a pump. When the heart muscle is relaxed the ven-
tricle acts as an elastic chamber that can be filled with
blood from the atrium. It can then contract in order to
pump blood into the aorta.

6.1.3 Heart pre-load

Higher venous pressure leads to a larger ventricular vol-
ume at the end of diastole (EDV). This again leads to
muscle fibers in the heart wall being more stretched out.

The initial stretch of the muscle fibers is called the heart pre-load. According to the Frank-
Starling law of the heart, higher preload results in a larger stroke volume and a greater work
done by the heart [9] when all other conditions are held constant.

6.1.4 Heart after-load and arterial reflections

The forces that opposes this pumping of blood is called the afterload on the heart. A higher
afterload increases ventricular pressure during systole and reduces outflow. There two main
components or sources of the afterload are the characteristic impedance of the aorta and pressure
wave reflections from the periphery. The characteristic impedance of the aorta is the only thing
that impedes ventricular outflow in the beginning of systole. The effect of reflections is slightly
delayed, the main part of the reflection comes during the second half of systole.

The heart afterload is thus characterized by the input impedance measured at the proximal
end of the aorta i.e. the pressure-flow ratio; due to the complex nature of the vascular system
with its many bifurcations and resulting reflections, this is a very complex relationship. However
it has been shown that it is well described by a three element windkessel model [21]
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6.1.5 Contractility and load-dependence

The contractility of the heart is a concept related to the ability of the heart itself, independent
of pre- and afterload, to contract and generate pressure. In other words how powerful the heart
is. A commonly used measure of the contractility is its end-systolic pressure-volume relationship
(ESPVR). This is the relation between pressure and fluid volume of the ventricle at the end of
systole, marked by the closing of the aortic valve. Various in-vitro experiments where a varying
afterload is applied to the same heart shows that this relationship is approximately linear for
a large range of afterloads. However for large variations of after-load the relationship becomes
non-linear. This shows that the ESPVR is a good measure for the contractility of a heart, but
not perfect as it is somewhat dependent on load [11,13].

ESPVR is closely related, but not identical, to the concept of maximum elastance (Emax)
introduced in the following section. The ESPVR is usually measured at the closing of the aortic
valve whereas the maximum elastance is the measured at the point on pressure-volume loop
where the ration of pressure and volume is the highest, in the upper left corner of the p-v loop.

6.1.6 Pressure-volume loops

A common way of presenting data from the ventricular pumping cycle is through the socalled
p-v loop, in which ventricular pressure and volume are plotted against each other with volume
on the x-axis and pressure on the y-axis. This approach is particularly useful when comparing
multiple results where one or more parameter has been changed. Typically preload and afterload
are varied to determine the effects on the shape of the loops. When a curve is drawn through
points of identical time on several p-v loops this is called an isochrone.

6.2 Varying elastance

The varying elastance concept simplifies the system of elasticity and active contraction of the
ventricle by viewing the heart as an elastic chamber where the elastance is allowed vary with
time. The classic definition of varying elastance was provided by Suga and Sagawa [16] and
is defined as the instantaneous relationship between pressure and fluid volume volume in the
ventricle given by:

E(t) =
p

V − V0

(6.1)

where the constant V0 is a referance volume that can be interpreted as the fluid volume at zero
pressure. When measured continously throughout a heart cycle the elastance becomes a function
of time. The shape and magnitude of this curve serves as a measure of the contractility of the
individual heart. It was initially conceived as a load independent measure of contractility. A
multitude of studies have shown that this is not true [1, 2, 8, 20]. Typically for variations in
preload cause convex isochrones during systole [8]. Little research has been made however on
the effect of changes in afterload on isochrones [18].

Load dependence. An elastance defined entirely as a function of time implies that isochrone
lines on the p-v loop are linear for variations in load. Due to load dependence this is generally
not the case. Rather than having a concrete physical interpretation the fixed and time varying
parameter can be seen as curve fitting parameters to these curved isochrones. The interpretation
of V0 as the zero-pressure volume is therefore invalidated and it can be seen more as a curve
fitting parameter.

A few modifications have been proposed to improve on the varying elastance model in how
well it can be fitted to isochrones, e.g. six different models are compared in Lankhaar et al. [8].
However few of them are suited to predictive simulations as they often have to many parameters.

17



Time-varying intercept One such modification is to allow the volume axis intercept to vary
with time so that V0 = V0(t). In a simulation context this requires the construction of two
independent time varying functions which adds to complexity. The model is shown by Lankhaar
et al. [8] to be an improvement over the standard varying elastance model, without too much
added complexity. The time varying intercept is however difficult to interpret physiologically.

Source resistance. Another simple modification of the definition of the elastance can be made
that ensures the convexity of the ESPVR while keeping the elastance function itself unchanged.
A modification to the definition of the elastance originally proposed by Shroff and Weber [14] is
made by introducing a source resistance, also called a systolic resistance, of the ventricle that is
proportional to the pressure. So that it becomes:

E(t) =
p

(V − V0)(1−KQ)
(6.2)

This approach only introduces one extra parameter, it does however introduce a non-linearity in
the equation which must be handled in the numerical scheme. This modification has the benefit
that it provides some load-dependence in the model without a significant increase in complexity.

No data was found for the value of the source resistance coefficient for the human heart. The
value used by Shroff in the original paper was K = 1500 s

m3 but this value was used for dogs [14].
The same same value was used by Lankhaar et al. [8] where the model was evaluated and
compared to other heart models with regards to how well they could be fitted to experimental
data from sheep.

The benefit of the source resistance model is that it introduces a load dependence to the
varying elastance model without introducing any additional time-varying parameters. Thus the
elastance function can be used as a load-independent parameters that produces load dependent
results. In the study by Lankhaar et al. simulations using the source resistance did not show
any improvement over the classical varying elastance model in terms of accuracy. However as is
also shown by Lankhaar et al. that the actual fitted time varying elastance function becomes
somewhat different when the systolic resistance is used. Emax is approximately 10 % larger and
the curve has a different shape. This was not taken into account when implementing the model
thus making the the use of the source resistance in the current implementation invalid. In some
of the simulations this error was compensated for by increasing the Emax.

Elastance function. When using the varying elastance concept in a simulation context, the
elastance must be precribed to the system by some kind of analytic function. It is not very
important what kind of function is used for the elastance as long as it roughly resembles the
curves found from experiments and is easily scalable in amplitude with respect to minimum and
maximum elastance, and in duration as prescribed by the time to peak elastance.

Such a funtion is the double-Hill function suggested by Stergiopolous [13]:

E(t) = (Emax − Emin)α

[
( t
α1T

)n1

1 + ( t
α1T

)n1

][
1

1 + ( t
α2T

)n2

]
+ Emin (6.3)

Where Emax and Emin are maximum and minimum elastances, α normalizes the double-Hill
function so that it has a maximum value of 1.0, T is the heart cycle period and α1, α2, n1andn2

are shape parameters given as:
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Table 1

α1 α2 n1 n2 α

0.303 0.508 1.32 21.9 1.672

Table 2: The parameters that determine the shape of the time varying elastance function.

By keeping the ratio
α1

α2

and parameters n1 and n2 constant, a scalable version of this equation

is obtained based on the time to peak tp:

E(t) = (Emax − Emin)α

[
( t

0.708tp
)1.32

1 + ( t
0.708tp

)1.32

][
1

1 + ( t
1.187tp

)21.9

]
+ Emin (6.4)

This formulation makes it possible to set tp and T independently. The three parameters deter-
mining the contractility of the ventricle are thus Emax, Emin and tp. A plot of the elastance
function is shown in figure 7.

Figure 7: The time-varying elastance function as defined in [13], Emax = 2.31, tp = 0.43

6.2.1 Arterial stiffness

As mentioned most of the reflected pressure pulse arrives at the heart after the closing of the
aortic valve thus not representing a heart afterload. One could say that the body is fine-tuned
in this way; the stiffness and geometry of the arteries determine the wavespeed of the pressure
pulses so that most of the reflected wave comes during diastole [12]

The reflection itself is wanted because it increases flow in the coronary arteries. This is
important since the subendocardial vessels are compressed, and therefore not able to receive
blood during systole [12]. The heart is therefore dependent on the heightened pressure during
diastole, directly after the dicrotic notch, in order to receive enough oxygen and nutrients.

In people with increased arterial stiffness, such as is often the case in elderly subjects [12],
there is a corresponding increase in the wave speed. This causes the reflected wave to arrive

19



sooner causing a larger part of the reflected wave to arrive at the ventricle during systole. This
again causes impaired blood perfusion in the coronary arteries as well as increasing the load on
the heart and reducing the total blood flow.

6.3 Aortic and mitral valves

There are four valves in the heart all situated in a plane. The two valves connected to the
left ventricle are the aortic and mitral valve. The aortic and mitral valves are essential to the
function of the left ventricle as a pump.

The two valves are similar in function, only allowing blood to flow in one direction. Anatom-
ically they differ in that the mitral valve has two cusps whereas the aortic valve has three. It is
the cusps that provide the mechanism that controls the blood blow. When the valve is closed
they form a tight seal allowing no blood to pass through the valve. In the open state the cusps
separate allowing blood to flow through the valve. It is the tranvalvular pressure gradient that
causes the cusps to separate or come together.

6.3.1 Pressure gradient across the aortic valve

The viscous resistance of blood passing through the valve is negligible [4, 5] and assuming that
the aortic root has the same cross-sectional area as the left-ventricular outflow tract there is no
net pressure difference due to conservation of kinetic energy.

The main causes of the pressure gradient are therefore the inertia of blood passing through
the valve and the energy lost in the turbulent vortices distal to the valve. In a healthy aortic
valve the pressure gradient is very small during most of systole it is only during the beginning of
systole that the pressure gradient becomes significant because of the rapid acceleration of flow.
In a stenosed valve the valve is not able to fully open, this can cause a large pressure gradient
thus reducing the amount of blood that the heart is able to eject and increase the load on the
heart. The pressure gradient across the valve is given by the expression:

∆p = Bq|q|+ L
dq

dt
(6.5)

where B is a Borda-Carnot resistance parameter and L is an inertance parameter. Even if the
pressure gradient is small it is important because it is responsible for opening and closing the
valve. In section 6.4 a dynamic valve model is presented which relates the pressure to the opening
and closing of the valve.

Turbulent resistance. The pressure loss due to turbulence can described analytically using
the Borda-Carnot effect. Blood flow through a cardiovascular valve can be compared with flow
in a pipe where the flow suddenly has to pass through a orifice with a smaller cross-sectional
area than the pipe itself. As the fluid jet exits the valve it is separated from the vessel walls and
turbulent vortices are formed. It is only after a certain distance, called the recovery distance,
that the flow goes back to being a laminar tube flow. Some energy is lost in the turbulent
vortices distal to the valve and the turbulent resistance is given by:

B =
ρ

2Aeff

(6.6)

where Aeff is a computed effective area given by:

Aeff =
1

1
Aeo
− 1

A

(6.7)
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where Aeo is the effective orifice area. This effective orifice area is generally different from the
actual geometrical opening area. In a fully open healthy valve the Aeo is approximately equal
to the aortic cross sectional area and there is almost no resistance.

In Mynard et al. [7] and Sun et al. [17] the expression used for the turbulent resistance was:

B =
ρ

2A2
eff

(6.8)

where Aeff, rather than being defined as in equation 6.7, is computed directly from an interpo-
lation between minimum and maximum aortic valve area. Using this definition is wrong and
misleading because then a fully open valve still only has Aeff = A, where A is the aortic cross-
sectional area. This again corresponds to an effective orifice are Aeo = 0.5A which is more
realistic in a stenosed valve.

Inertia in the aortic valve. As shown by Garcia et al. [4, 5] the orifice introduces an in-
ertia term that is related to the orifice area in a similar way as the Borda-Carnot resistance,
approaching infinity as the valve closes and becoming zero when the valve is completely open.
The major difference is that it is inversely proportional to the squareroot of the effective area
rather than the square. The expression is:

L = 4πρ

√
1

Aeo
− 1

A
(6.9)

This is also a deviation from the expression used in the valve model by Mynard et al. The
expression for inertance used by Mynard et al and Sun et al is correctly assumed to approach
infinity as the valve closes and the effective orifice area approaches zero. In this formulation
however the inertance is quantified by an effective length leff , which is not very well defined,
according to the expression:

L =
ρleff
Aeff

(6.10)

also here with the different definition of Aeff. Since the expression given by Garcia et al. is better
argumented for, this is what is used in the implementation of the varying elastance model.

6.4 Valve model

In the simplest case the aortic valve can be modelled as being either completely open for a
positive pressure difference or completely closed for a negative pressure difference. The effective
area is then Aeff = Aeff,max when it is open giving a constant resistance and zero when it is
closed giving an infinite resistance. The latter implying zero flow and complete reflection of
incoming pressure and flow waves. This type of aortic valve model can be considered the fluid
flow equivalent of a perfect diode.

This approach was implemented initially with the varying elastance model and worked fairly
well, but had the problem that the valve would flicker between the open and closed position
giving unwanted results. This unwanted behaviour could likely have been avoided by introducing
a threshold pressure for closing so that the closing criteria requires:

∆p = pventricle − paorta < −∆popen (6.11)

where ∆popen is somwhere in the region of 1-5 mmHg. However to get a better representation
of the aortic valve a dynamic valve model was implemented.
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Dynamic valve model. To get a more realistic representation of the aortic valve one can use
a dynamic valve model, such as the one developed by Mynard et al. [7], where the effective area
is allowed to vary continously depending on the pressure difference. This model uses an opening
parameter ζ so that for a completely open valve ζ = 1, for a closed valve ζ = 0. The effective
area is then interpolated between the two extremes so that:

Aeo = [Aeo,max(t)− Aeo,min(t)]ζ(t) + Aeo,min (6.12)

which has been modified from Mynard et al. by replacing Aeff with Aeo. The actual effective
area is the computed from the EOA and the aortic area according to eq 6.7. For a functioning
healthy aortic valve the minimum EOA is Aeo,min = 0. In the case of regurgitation Aeo,min > 0
meaning that some blood flows back into the heart during systole. The maximum and minimum
orifice areas are given by the parameters Mst and Mrg so that:

Aeo,max = MstA (6.13a)

Aeo,min = MrgA (6.13b)

Further the rate of opening, which is the time derivative of ζ, is related to the instantaneous
pressure:

dζ

dt
=


(1− ζ)Kvo(∆p−∆popen ∆p > ∆popen

ζKvc(∆p−∆pclose) ∆p < ∆pclose

0 ∆pclose < ∆p < ∆popen

(6.14)

Where Kvo and Kvc are the opening and closing rate coefficients respectively. ∆pclose and ∆pclose
are the threshold pressure differences for opening and closing.

7 Methods and implementations

7.1 Implementation of the varying elastance model as a boundary
condition

Figure 8: An approximate electrical analog to the
varying elastance heart model.

The varying elastance boundary condi-
tion is implemented by combining the
varying elastance model from equation
6.2 with the expressions for valve dynam-
ics and transvalvular pressure gradient
given in equations 6.14 and 6.5. Also to-
tal flow is related to volume by an integral
equation. The whole ventricle system can
thus be described as a coupled system of
the seven variables qm, ζm, pv, V, ζao, p and
q, where the m subscript refers to the mi-
tral valve and pv is the ventricular pres-
sure. This whole system is described by the five non-linear differential equations repeated below:

patr − pv = Bmqm|qm|+ Lm
dqm
dt

(7.1a)

dζmit
dt

=


(1− ζm)Kvo(∆pm −∆pm,open) if ∆pm > ∆pm,open

ζmitKvc(∆pm −∆pm,close) if ∆pm < ∆pm,close

0 if ∆pm,close < ∆p < ∆pm,open

(7.1b)
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pv = E(V − V0)(1−Kq) (7.1c)

dζao
dt

=


(1− ζao)Kvo(∆p−∆popen) if ∆p > ∆popen

ζaoKvc(∆p−∆pclose) if ∆p < ∆pclose

0 if ∆pclose < ∆p < ∆popen

(7.1d)

pv − p = Bq|q|+ L
dq

dt
(7.1e)

as well as the integral equation describing the relation between ventricular volume and flow:

V (t) = V (t0) +

t∫
t0

qm − q dt (7.2)

To avoid having to solve the entire system simultaneously the simplification was made that,
equations 7.1b and 7.1d, the equations describing the valve dynamics, are solved explicitly using
forward differences giving the expression

ζn+1 = ζn +


(1− ζn)Kvo((∆p)

n −∆popen) if (∆p)n > ∆popen)

ζnKvc((∆p)
n −∆pclose) if (∆p)n < ∆pclose

0 if ∆pclose < (∆p)n < ∆popen

(7.3)

where (∆p)n is the transvalvular pressure difference at timestep n given by (∆p)n = pv. The
values of Bn+1

m , Ln+1
m , Bn+1 and Ln+1 are then determined by equations 6.6 and 6.9 as well as

6.12. This leaves a system of three equations to be solved 7.1a, 7.1c and 7.1e.

Coupling between the equations. The coupling of the equations depends on the opening
state of the ventricles. It is only in the case when both valves are open that the entire system
is coupled and has to be solved simultaneously. If both the mitral and aortic valve are healthy
and fully functioning this is never the case. The aortic valve is closed during diastole and the
mitral valve is closed during systole. There are also short periods between systole and diastole
where both valves are closed. When used as a boundary condition for a vascular network it is
primarily systolic conditions that are of interest. In that case an accurate solution of equations
7.1c and 7.1e are most important. The diastolic filling is then only important as the determinant
of pre-load. Still the choice was made to implement a complete system that included diastolic
filling.

7.1.1 Discretization

The three equations were discretized at timestep n+1. Aortic pressure and flow increments were
expressed in terms of the characteristic variables and the components of the R matrix so that:

pn+1 = pn + ∆p = pn + ω1 + ω2 (7.4a)

qn+1 = qn + ∆q = qn +R21ω1 +R22ω2 (7.4b)

where the components R11 and R12 are ommited for simplicity since they are both equal to one
in the current implementation of vascular1Dflow. For R21 and R22 the values from timestep
n are used as an approximation. The characteristic variable ω2 is extrapolated from the field
according to equation 5.24. This leaves ω1 as an unknown variable. Since the system has to be
solved for this characteristic variables, which is an increment, the choice was made to solve for
the increments of the other variables as well. Equation 7.1c then becomes:

pnv + ∆pv = En+1(V n + ∆V − V0)(1−K(qn +R21ω1 +R22ω2)) (7.5)
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where the volume increment is determined from the mitral and aortic flows by numerical evalu-
ation integration using the trapezoidal rule:

V n+1 = V n − (qn − qnm +
1

2
(∆q −∆qnm)∆t (7.6)

The time derivatives in equations 7.1a and 7.1e are discretized using second order backward
differences so that:

(
dqm
dt

)n+1 =
3∆qm − qnm + qn−1

m

2∆t
(7.7)

for the mitral flow and

(
dq

dt
)n+1 =

3(R21ω1 +R22ω2)− qn + qn−1

2∆t
(7.8)

for the aortic flow. Remaining to be solved is now a system of three discretized non-linear
equations where the variables are the three increments x = [∆qm,∆pv, ω1]. The equations are:

f1(x) = Bn+1
m (qnm + ∆qm)|qnm + ∆qm|+ Ln+1

m

3∆qm − qnm + qn−1
m

2∆t
− patr + pn+1

v = 0 (7.9a)

f2(x) = En+1(V n−(qn−qnm+
1

2
(R21ω1+R22ω2−∆qm))∆t−V0)(1−K(qn+R21ω1+R22ω2))−pnv−∆pv = 0

(7.9b)

f3(x) = Bn+1(qn + ∆q)|qn + ∆q|+Ln+1 3(R21ω1 +R22ω2)− qn + qn−1

2∆t
− pnv −∆pv + pn +ω1 +ω2

(7.9c)

7.1.2 Iterative solution

Being non-linear the equations can not be solved directly but must be solved iteratively. The
equations were solved for each timestep by the Newton-Raphson method given by:

xi+1 = xi − (Ji)
−1fi (7.10)

where J is the Jacobian matrix. The increments from the previous timestep were used as the
starting estimate x0 and the Jacobian matrix was updated for each iteration. The iterations are
terminated when the relative error given by:

ε =
||xi − xi−1||
||xi−1||

(7.11)

is less than than the tolerance value which was set to εtol = 0.0001. The Jacobi matrix is given
by:

J =

a1 1 0
a2 −1 a3

0 −1 a4

 (7.12)

where:

a1 = 2Bn+1
m (qnm + ∆qm)sign(qnm + ∆qm) +

3Ln+1
m

2∆t
(7.13a)

a2 =
1

2
En+1∆t(1−K(qn +R21ω1 +R22ω2)) (7.13b)

a3 =− 1

2
En+1R21∆t(1−K(qn +R21ω1 +R22ω2))

− En+1R21K(V n − (qn − qnm +
1

2
(R21ω1 +R22ω2 −∆qm))∆t− V0)

(7.13c)

a4 = 2Bn+1(qn +R21ω1 +R22ω2)sign(qn +R21ω1 +R22ω2) +
3R21L

n+1

2∆t
+ 1 (7.13d)
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Numerical problems. When a valve is nearly closed, the B and L values of this valve approach
infinity. The Jacobi matrix is still invertible so the system can theoretically be solved, but the
system becomes very ill-conditioned and thus difficult to solve as the valve approaches closing.
At full closure the system is completely invalid, the effective orifice area is zero thus causing
division by zero in the expressions for B and L. At the same time the flow through the valve
is zero so that there is no coupling between what is happening on either sides of the valve. In
the case of the aortic valve being closed this means a complete reflection of incoming waves (i.e.
ω1 = ω2). In the cases where one or both valves are completely or nearly closed, a partial system
must be solved. To avoid the problem of having very high values of B and L the valve has to be
considered closed when the effective orifice area is too small. The condition used for this cut off
was chosen to be A

Aeo
> 105.

Another consideration must also be made; because the algorithm is not able to solve the
system all the way to closure there is always some residual flow through the valve, positive or
negative, when the valve is closed. The alorithm therefore needs make sure that flow is set to
zero at closure.

Four different solver cases If both valves are healthy and fully functioning and they open
and close at the right time the full system of three equations never needs to be solved. During
systole only the aortic valve is open and during diastole only the mitral valve is open. These
periods where one valve is open are separated by two short periods where both valves are closed.
For the sake of generality though, the case of both valves being open is also included in the
model. This allows another feature to be included in the model; the case where one or both
valves are regurgitant (leaking). The general algorithm thus involves four different cases:

Figure 9
Regurgitation
gives simultaneous
flow in both valves.

Both valves are open To incorporate the possibility of a leaking (re-
gurgitant) mitral or aortic valve the whole equation system must be solved
simultaneously. The iteration procedure becomes:

xi+1 = xi − 1

det(J)

a3 − a4 −a4 a3

−a2a4 a1a4 −a3

−a2 a1 −a2 − a1

f1

f2

f3

 (7.14)

where: det(J) = −a2a4−a1a4 +a1a3 is the determinant of the Jacobi matrix.
The volume is then updated:

V n+1 = V n + (Qn
m −Qn +

1

2
(∆Qm −R21ω1 −R22ω2))∆t (7.15)

Figure 10
Only flow through
the aortic valve
during systole.

Aortic valve open If the mitral valve is healthy it is fully closed during
systole and only equations 7.9b and 7.9c needs to be solved. Also a partial
Jacobi matrix must be used. This gives the iterative procedure:

xi+1
[2,3] = x[2,3] −

1

det(J[2,3])

[
a4 −a3

1 −1

] [
f2

f3

]
(7.16)

where x[2,3] = [∆pv, ω1] and det(J[2,3] = a3− a4. The flow through the mitral
valve is set to zero:

Qn+1
m = 0 (7.17)
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Figure 11
Only flow through
the mitral valve
during diastole.

Mitral valve open If the aortic valve is healthy it is fully closed during
diastole and only equations 7.9a and 7.9b need to be solved giving the iterative
procedure:

xi+1
[1,2] = x[1,2] −

1

det(J[1,2]

[
−1 −1
−a2 a1

] [
f1

f2

]
(7.18)

where x[1,2] = [∆Qm,∆pv] and det(J[1,2]) = −a1 − a2. Generally waves are
reflected at the boundary when the aortic valve is closed. However if flow is
non-zero it has to be corrected. To get a smooth transition to zero flow the
following expression was used for this correction:

ω1 =
−0.5Qn −R22ω2

R21

if Q 6= 0 (7.19)

Figure 12
For short periods
of time both valves
are closed giving no
ventricular flow.

Both valves are closed No equation system has to be solved. Mitral flow
is zero, incoming waves at the aortic root are reflected, only the ventricular
pressure has to be updated according to the change in elastance.

Qn+1
m = 0 (7.20a)

ω1 = ω2 (7.20b)

V n+1 = V n (7.20c)

pn+1
v = En+1(V n+1 − V0) (7.20d)

7.2 Solving the bifurcation equations

As shown in section 5.6 there are nine variables in the governing equations. For each vessel
pressure (p), flow (q) and area (A) is unknown. To complete the system six more equations are
needed.

The three vessel areas are related to the pressure through the vessel compliance defined as
C = dA

dp
. Pressure and flow increments are related incrementally to the characteristic variables

using the L matrix or its inverse the R matrix. Pressure and flow at the three vessel boundaries
connected to the bifurcation are thus described by six characteristic variables. The three vari-
ables ω1,1, ω2,2 and ω2,3 are entering the bifurcation and can be determined by extrapolation from
the internal field. The three variables leaving the bifurcation ω2,1, ω1,2 and ω1,3 are unknown.

In this section a new and improved algorithm for solving the bifurcation equations is pre-
sented. But first the existing algorithm is presented.

7.2.1 The existing algorithm

In the bifurcation algorithm currently used by vascular1Dflow, updated pressure and flow values
are found by solving a set of six equations for the six variables: pn+1

1 , qn+1
1 , pn+1

2 , qn+1
2 , pn+1

3 and
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qn+1
3 :

f1(x) = q1 − q2 − q3 = 0 (7.21a)

f2(x) = p1 +
ρ

2

q2
1

A2
1

− p2 −
ρ

2

q2
2

A2
2

(7.21b)

f3(x) = p1 +
ρ

2

q2
1

A2
1

− p3 −
ρ

2

q2
3

A2
3

(7.21c)

f4(x) = ω1,1 − lT1,1∆u,1 = 0 (7.21d)

f5(x) = ω2,2 − lT2,2∆u,2 = 0 (7.21e)

f6(x) = ω2,3 − lT2,3∆u,3 = 0 (7.21f)

Where all the variables are at timestep n+1. The three bottom equations provide the relation
between pressure and flow by ensuring that the relation:

ω = L∆u (7.22)

is fulfilled for the three known characteristic variables.

Non-linearity and iterative solution. Only equations 7.21b and 7.21c are non-linear with
respect to the variables the system is solved for. The system solved iteratively using the built
in function fsolve in numpy. This function is a wrapper around the hybrj and hybrd algorithms
found in the MINPACK library which is implemented in FORTRAN. Both of which are based
on the Newton-Raphson method of root-finding. When supplied with a function giving the
Jacobian-matrix of the system the hybrj algorithm is used. The inverse Jacobian-matrix is then
computed numerically by the system. The iterations are terminated when the relative error is
less than the tolerance set by the xtol parameter. The relative error is given by the formula:

ε =
||xi − xi−1||
||xi−1||

(7.23)

where euclidean norms are used. In the existing implementation this tolerance was not given to
the function meaning that the default value of xtol = 1.49012e-8 was used.

Reuse values from previous time step. There was also a feature in the implementation
that checked the size of the residual prior to calling the fsolve function, and if the size of the
residuals (i.e. the vector norm) i small enough, values from the previous time-step are instead
of finding a solution by iteration. The condition used was that ||f || < 1e− 4.

Updated values during the iterations. The (L) matrix used is updated according to pres-
sure and flow values from the previous iteration. There is no point in doing this. Because of the
mean value theorem we know that the value of L giving the correct increment is L(uε), where
un < uε < un+1 but generally unknown. There is therefore no reason to think that the updated
values of L are a better estimate than Ln. A better approach would therefore be to use the
average of the updated L and the value from the previous increment L = 1

2
(Ln +Li), where Li

is the value of L from the previous iteration. But this seems unnecessary because of the small
size of the time-steps.

The value of the area should also be updated for each iteration. In one version of the
implemented algorithm the value from the previous timestep is used as an approximation so
that An+1 = An. In another version an updated value from the previous iteration is used giving
a more accurate approximation but increasing computational cost.
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7.2.2 The new algorithm

Since only two of the equations in the system 7.21a - 7.21f are non-linear it should be unnecessary
to solve all of them using iterations. The new algorithm presented in this section takes advantage
of this by solving the linear part of the system analytically first, thus reducing the system to
two non-linear equations and two unknowns.

Instead of solving for absolute values values of the variables the equations are expressed in
terms of increments and solved for the incremental characteristic variables ω1,2 and ω1,3. The
choice of which two of the three unknown characteristics to solve for is however arbitrary. The
first three equations are discretized by introducing:

p = pn + ∆p (7.24a)

q = qn + ∆q (7.24b)

A = An + Cn∆p (7.24c)

Where Cn is the vessel compliance at the bifurcation at timestep n. The value of An+1 is thus
estimated by linear extrapolation in contrast to the existing algorithm where the value from the
previous increment (or iteration) is used.

Coupling of pressure and flow. Instead of coupling pressure and flow by demanding that
they satisfy equations (7.21d) - (7.21f), the inverse relation is used thus giving the following
expressions for the increments:

∆p = ω1 + ω2 (7.25a)

∆q = R21ω1 +R22ω2 (7.25b)

where R11 and R12 are omitted since they are equal to one. These expressions are then substi-
tuted into the discretized equations. What remains is a system of three equations with the three
characteristic variables ω2,1, ω1,2 and ω1,3 as the unknowns:

R21,1ω1,1 +R22,1ω2,1 −R21,2ω1,2 −R22,2ω2,2 −R21,3ω1,3 −R22,3ω2,3 = 0 (7.26a)

pn1 + ω1,1 + ω2,1 − pn2 − ω1,2 − ω2,2

+
ρ

2

[
qn1 +R21,1ω1,1 +R22,1ω2,1

An1 + C1(ω1,1 + ω2,1)
− qn2 +R21,2ω1,2 +R22,2ω2,2

An2 + C2(ω1,2 + ω2,2)

]
= 0

(7.26b)

pn1 + ω1,1 + ω2,1 − pn3 − ω1,3 − ω2,3

+
ρ

2

[
qn1 +R21,1ω1,1 +R22,1ω2,1

An1 + C1(ω1,1 + ω2,1)
− qn3 +R21,3ω1,3 +R22,3ω2,3

An3 + C3(ω1,3 + ω2,3)

]
= 0

(7.26c)

The system can then be further reduced by solving equation 7.26a for one of the three unknowns,
for example ω2,1, and introducing it into the two other equations. The bifurcation is now
described by a system of two nonlinear equations:

f1(x) = pn1 +ω1,1+g(x)−pn2−ω1,2−ω2,2+
ρ

2

[
qn1 +R21,1ω1,1 +R22,1g(x)

An1 + C1(ω1,1 + g(x))
−q

n
2 +R21,2ω1,2 +R22,2ω2,2

An2 + C2(ω1,2 + ω2,2)

]
= 0

(7.27a)
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and

f2(x) = pn1 +ω1,1+g(x)−pn3−ω1,3−ω2,3+
ρ

2

[
qn1 +R21,1ω1,1 +R22,1g(x)

An1 + C1(ω1,1 + g(x))
−q

n
3 +R22,3ω1,3 +R22,3ω2,3

An3 + C3(ω1,3 + ω2,3)

]
= 0

(7.27b)
where:

g(x) = ω2,1 =
1

R22,1

(R21,2ω1,2 +R22,2ω2,2 +R21,3ω1,3 +R22,3ω2,3 −R21,1ω1,1) (7.28)

The Jacobian matrix is therefore also simplified from a six-by-six matrix to a two-by-two matrix
given by:

J =
dF

dx
=



R21,2

R22,1

− 1 + ρ
h1

h3
2

(R21,2h2 − C1
R21,2

R22,1

h1)

− ρh3

h3
4

(R21,2h4 − C2h3)

R21,3

R22,1

+ ρ
h1

h3
2

(R21,3h2 − C1
R21,3

R22,1

h1)

R21,2

R22,1

+ ρ
h1

h3
2

(R21,2h2 − C1
R21,2

R22, 1
h1)

R21,3

R22,1

− 1 + ρ
h1

h3
2

(R21,3h2 − C1
R21,3

R22, 1
h1)

− ρh5

h3
6

(R21,3h5 − C3h6)


(7.29)

where:

h1 = qn1 +R21,1ω1,1 +R22,1g(x) (7.30a)

h2 = An1 + C1(ω1,1 + g(x)) (7.30b)

h3 = qn2 +R21,2ω1,2 +R22,2ω2,2 (7.30c)

h4 = An2 + C2(ω1,2 + ω2,2) (7.30d)

h5 = qn3 +R21,3ω1,3 +R22,3ω2,3 (7.30e)

h6 = An3 + C3(ω1,3 + ω2,3) (7.30f)

Another benefit of this system is that it is completely dimensionally homogeneous. All the
variables and all the functions have pressure as the dimension and hence also the Jacobian
matrix.

Non-linearity and number of iterations required Having determined the Jacobian matrix
the system can now be solved using Newton’s method. Using values of ω1,2 and ω1,3 from the
previous timestep as the starting point x0 the new values are computed using the Newton-
Raphson method:

xk+1 = xk − J−1(xk)f(xk) (7.31)

which was implemented in python rather than using fsolve. The error tolerance was set to
εtol = 0.001

Also the solution from the previous timestep was kept if the residuals were small enough.
However because the variables being solved for here are the increments x = [ω2,2, ω2,3] as opposed
to absolute values of pressure and flow, keeping the previous solution still changes the absolute
values of pressure and flow. The entire code for the implementation is shown in the appendix.

The degree of non-linearity of the equations depends on the flow rate so that at small flow
rates they become nearly linear and they become more non-linear with increasing flow.

Inspection shows however that they are actually quite linear in the region of interest in
all realistic cases cases. The solution obtained by Newton’s method should therefore converge
quickly.
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7.3 Improved discretization scheme for Windkessel boundary condi-
tions

The discretization schemes for the two- and three element Windkessel boundary conditions were
improved. The existing scheme for WK2 is presented as well as two alternative discretization
schemes. A method for obtaining the analytical solution for the reflection of a single pulse is also
presented. This method is later used to verify the boundary conditions by comparing analytical
and simulated result. The governing equation for the two-element windkessel model was given
in section 5.4 but is repeated here:

dp

dt
+
p− p0
RC

=
q

C
(7.32)

where R and C respectively are the resistance and compliance of the windkessel model and p0 is
a peripheral pressure assumed to be constant.

7.3.1 Existing solution

In the existing version of the vascular1Dflow software this equation was discretized by replacing
p and q in the equation with increments of the same values giving:

d(∆p)

dt
+

1

RC
∆p =

∆q

C
(7.33)

the reference pressure p0 being constant vanishes. The pressure and flow increments are then
written in terms of the characteristic variables. In particular the derivative is written as:

d(∆p)

dt
=
ωn+1

1 + ωn+1
2 − ωn1 − ωn2
∆t

(7.34)

In the case of the boundary condition being located at the distal end of a vessel the unknown
variable ω2 is given by:

ω2 =
−(1 + RC

∆t
−RR21)ω1 + RC

∆t
(ωn1 + ωn2 )

1 + RC
∆t
−RR22

(7.35)

7.3.2 Alternative solution

This discretization scheme works well but it seems that the purely incremental form would be
less accurate than a full discretization that included pressure and flow values from the previous
time steps as well as the increments.

Such a solution would also be able to retain the peripheral pressure p0 in the equation. If this
pressure is not included, the windkessel model acts purely as a reflector and is not able equalize
the pressure difference if the initial pressure of the network is different from the peripheral
pressure. This means that if no initial flow is prescribed in the network along with the initial
pressure, the pressure always returns to the initial pressure.

As shown in section 8.4.2 with the alternative discretization it is possible to initialize a
network at a high pressure and then allow the pressure to decay exponentially down to the
peripheral pressure. This is also utilized when testing the varying elastance model. Instead of
having to start the simulation at zero pressure and then letting the simulation run for several
heart cycles until the network has been inflated (i.e. there is a balance between inflow and
outflow), the pressure could be initiated somewhere in the region of 80-120 mmHg, and pressure
would still decay towards the peripheral pressure instead of the initial pressure. Two alternatives
to the existing discretization were implemented and tested.
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Alternative 1 - 2nd order backward difference: The equation is discretized at timestep
n+1 by setting:

p = pn + ∆p (7.36a)

q = qn + ∆q (7.36b)

The derivative is estimated using a second order backward differential given by:

(
dp

dt
)n+1 =

3pn+1 − 4pn + pn−1

2∆t
=

∆p− pn + pn−1

2∆t
(7.37)

When applied at the distal end of a vessel, the expression for the unknown backward travelling
characteristic variable thus becomes:

ω2 = −
(1 + 3RC

2∆t
−RR21)ω1 + pn − RC

2∆t(pn−pn−1)−p0−Rqn

1 + 3RC
2∆t
−RR22

(7.38)

Alternative 2 - Half-step central difference: Another approach is to write the equation
at timestep n+ 1

2
:

∆p

∆t
+

1

RC
(pn +

1

2
∆p− p0) =

1

C
(qn +

1

2
∆p) (7.39)

The derivative of the original equation is thus represented by a central difference between
timestep n and n+ 1. The resulting expression for ω2 is similar to the previous expression:

ω2 =
−(1 + 2RC

∆t
−RR21)ω1 + 2(Rqn − pn + p0)

1 + 2RC
∆t
−RR22

(7.40)

This is a similar but simpler expression in that it does not require the use of pn−1 which simplifies
the implementation somewhat

7.3.3 Test case and analytical solution

Test case In order to verify the simulated results and make a comparison of the discretization
schemes a simple test case was formulated. A single forward propagating pressure pulse is
imposed on one end of a vessel using a WK2 as the boundary condition at the other end. The
pulse travels through the vessel and into the boundary condition where it is reflected and travels
back to the origin. The amplitude of the prescribed pulse is low to prevent non-linear effects. In
the linear case it is possible to obtain an analytical solution of the reflected wave. The simulated
reflected wave can then be compared with the analytical solution.

Analytical solution As a first step in obtaining an analytical solution pressure and flow are
expressed in terms forward and backward propagating pressures so that:

p = pf + pb (7.41a)

q = qf + qb (7.41b)

where subscripts f and b denote forward and backward travelling waves respectively and the

relation
pf
qf

= −pb
qb

= Zc. The equation can now be seen as a non-homogeneous ODE of the

variable pb given by:

dpb
dt

+ (
1

RC
− 1

ZcC
)pb = −(

dpf
dt

+ (
1

RC
+

1

ZcC
)pf ) (7.42)
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where the right side of the equation is the driving function determined by the forward propagating
pressure. An easy way of solving this is using the reflection coeffient, which can be obtained by
taking the fourier transform of the equation and rearranging it so that:

Pb
Pf

=
Zc − R

1+iωRC

Zc + R
1+iωRC

(7.43)

which could also have been obtained directly from the input impedance. This complex number
then translates to a absolute value:

|Γ| =

√
(( 1
Zc
− 1

R
)2 − ω2C2)2 + 4( 1

Zc
− 1

R
)2ω2C2

( 1
Zc

+ 1
R

)2 + ω2
(7.44)

which gives the amplitude ratio between the bakward and forward propagating wave and a phase
shift:

φ = arctan(
y

x
)


+0 if x > 0

+π if x < 0and y > 0

−π if x < 0and y < 0

(7.45)

where:

x = (
1

Zc
− 1

R
)2 − ω2C2 (7.46a)

y = −2(
1

Zc
− 1

R
) (7.46b)

the added and subtracted π makes sure that the resulting angle is in the correct quadrant,
the expression corresponds to the atan2 function found in many programming languages and
which was used during the implementation of this verification procedure. Thus if the forward
propagating pressure is the harmonic function:

pf = af cos(ωt) (7.47)

the resulting backward pressure becomes:

pb = |Γ(ω)|af cos(ωt+ φ(ω)) (7.48)

This could be used directly to verify the boundary condition by prescribing a continuous forward
propagating harmonic signal for some length of time and then use wavesplitting to compare the
forward and backward propagating signals and see if the amplitude relation and phase shift are
correct.

Single pulse - fourier series solution. It is more difficult to obtain an exact solution for
this equation in the case where forward propagating pressure wave is a single pulse. However if
the forward propagating pulse is assumed to be a periodic train of pulses, it can be expressed
as a fourier series and the solution from 7.48. Using a half-range expansion of an even function
the forward pressure wave can be represented by the fourier cosine-series:

pf (t) = a0 +
∞∑
n=1

af,n cos
nπ

L
t (7.49)

where af,n are the fourier coefficient and L is the half the period of the pulse train. The resulting
backward pressure becomes:

pb(t) = −
1
RC
− 1

ZcC
1
RC

+ 1
ZcC

a0

∞∑
n=1

|Γ(ωn)af,n cos(
nπ

L
t+ φ(ωn)) (7.50)
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where ωn = nπ
L

. The resulting backward propagating pressure thus becomes an infinite train
of pulses of same period as the forward propagating pressure. If the pulses are spaced far
enough apart they to not have any significant influence on each other and make a very good
approximation of the analytical solution for a single pulse.

Prescribed pulse The pulse used for the simulations was a single pressure wave consisting of
a half cosine wave:

pf (t) =

{
a
2
(1 + cos π

2t0
t) for 0 < t < 2t0

0 for t > 2t0
(7.51)

This type of waveform has the benefit that it is continuous and smooth causing no numerical
difficulties and that its fourier coeficcients are easily obtained. The amplitude is chosen to be
small so that the system is approximately linear. The fourier coefficients are given by:

a0 =
2t0
L

(7.52a)

and

an =
sin(nt0

L
)

(nt0
L
− (nt0

L
)3)πL

t0

(7.52b)

The input waveform and the analytical solution of the reflection is shown in figure 13

Figure 13: A plot of the input waveform suberimposed on the fourier series solution of the
reflected wave

33



8 Results and discussion

8.1 Lumped model and single vessel testing of the varying elastance
model

The varying elastance boundary condition was tested in a single vessel network. The varying
elastance boundary condition was applied at one end of the vessel and the other end was termi-
nated by a three element windkessel model (WK3). The model parameters used were taken from
Stergiopulos et al. [13], in which a varying elastance model is simulated in a lumped model wind-
kessel. Simulations were done on a very short vessel, thus emulating a lumped model simulation
and on a longer vessel. The purpose of the tesing was to:

• See if a realistic pressure and flow waveform could be produced by the varying elastance
model in a lumped model.

• Investigate the usefulness of a single vessel simulation.

• See if the valve model worked properly, particularly with regards to closing.

• Demonstrate the two aortic valve features regurgitation and stenosis.

• Investigate the load dependence introduced by the systolic resistance K in the varying
elastance model.

Adaptation of parameters for single vessel. The characteristic impedance of the WK3
was matched to the impedance of the vessel and the peripheral resistance of the WK3 was set
so that the total resistance was equal to the total resistance given in the article. In the article
the characteristic impedance Rc = 0.51 mmHg s

ml
was used and a peripheral resistance Rp = 1.05

mmHg s
ml

, thus giving a total resistance of 1.56. The characteristic impedance of the model was
thus determined by vessel parameters only.

The parameters for the varying elastance model as well as the boundary conditions are given
in table 3.

Total resistance, mmHg s
ml

1.56
Total compliance, ml

mmHg
1.60

Heart period, s 1.00

Maximum elastance (Emax), mmHg
ml

2.31

Minimum elastance (Emin), mmHg
ml

0.06
Unloaded volume (Vd), ml 20.0
Venous pressure (Pv), mmHg 7.50
Time to peak elastance, (Tp), s 0.43

Table 3: Model parameters

The parameters for fluid properties and velocity profile were identical in all simulations and
were set to: As the diastolic phase of the cardiac cycle is of secondary importance in this study,
the mitral flow curves are not shown in the results. The diastolic filling does however have
some important as this determines the end diastolic volume (EDV) and thus the preload of the
ventricle. Mitral flow and mitral valve dynamics are simulated but the governing parameters
are very uncertain giving very uncertain results for the mitral flow curve. The atrial pressure
however, which largely determines the EDV, can be used as a parameter for preload because the
EDV is always approximately EDV = patr

Emin
+ V0
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Viscosity (µ), Pa s 3.5e-3

Mass density (ρ), kg
m3 1060.0

Velocity profile (δ) 0.33
Opening area ratio (Mst) 0.99
Atrial pressure (patr), mmHg 7.5

Table 4: Fluid parameters

The Young’s modulus was kept constant and the following parameters were varied for the
different simulations:

Table 5: Overview of changes in simulation parameters for different simulations

The Mst parameter determines the effective orifice area of the aortic valve at full opening. For
a healthy non-stenotic valve EOA = A, when the valve is completely open [4]. This corresponds
to Mst = 1.0 so that for a fully open valve (ζ = 1.0) B = L = 0 and there is no pressure gradient
at all. This is not desireable since the closure of the valve depends on a negative pressure
gradient. Thus for the simulations Mst = 0.99 was used so that there would always be a small
pressure gradient. This is still much higher than what was used by Mynard et al. [7], they used
Mst = 1, but by their definition of Aeff this represents just Mst = 0.5 by the definition used in
this thesis.

Forward and backward propagating pressure The total pressure is plotted together with
the forward- and backward-propagating pressures. These pressures are found using a non-linear
wavesplitting function inluded in the vascular1Dflow software. The total pressure consists of a
reference pressure in addition to the the two propagating parts, so that p = p0 + pf + pb. In
all these plots the wavesplitting function was applied for just the data that was plotted and not
the entire data set. The constant in the expression for the total pressure is thus not identical to
the initial pressure of the whole simulation but to the initial pressure of the set of data that the
wavesplit function was applied to which is then taken to be a reference pressure. This reference
pressure is shown as a horizontal dotted line, the propagating components are shifted, so that
they are displayed as fluctuations around this reference pressure.

Short vessel A simulation was made that was intended to replicate the lumped model ap-
proach using a short vessel. The characteristic impedance of the vessel was set equal to the
characteristic impedance used in the article. This characteristic impedance is much higher than
the characteristic impedance of for example the human aortic root. Vessel parameters are given
in table 6.

Length (l), cm 1.0
Youngs modulus (E), Pa 400000
Wall thickness (h), cm 0.1
Cross sectional area (A), cm2 0.9204

Table 6: Vessel parameters

The initial pressure is set to 80 mmHg and the simulation is run for three seconds giving
three full cardiac cycles. Thus allowing the system to reach a steady balance between inflow
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and outflow. The result of the simulation on the short vessel is shown in figure 14. The first
two simulations were made using a source resistance K set to zero and a aortic valve pressure
threshold for closing set to ∆pclose = 2.0 mmHg.

Figure 14: Varying elastance simulation on a short vessel of length 1 cm, with a source resistance
of K = 0

The resulting pressure and flow waveforms are not very realistic. The maximum pressure is
very high, there is no dicrotic notch and the reflected wave is very small compared to the forward
propagating wave. Also because there are almost no reflected waves, the flow waveform is almost
identical to the pressure waveform which it shouldn’t be. It is believed that the cause of this is
that the characteristic impedance of the vessel and windkessel is to high. Another simulation
was made where impedance of the vessel was reduced, thus also automatically reducing the
characteristic impedance of the windkessel model to about a tenth of the original value by

setting h = 1.63 mm and A = 6.78 cm2. The impedance of the vessel is now Zc = 0.053
mmHgs

ml
.
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Figure 15: Varying elastance simulation on a short vessel of length 1 cm, with a source resistance
of K = 0 and reduced characteristic impedance at Zc = 0.053.

The pressure waveform now looks more realistic. It has a lower maximum pressure and it
can also be seen that the flow waveform is different from the pressure waveform. It has a large
spike in the beginning and a small backflow at the end of systole causing the dicrotic notch.
The reflected pressure wave now also constitutes a larger part of the total pressure. It is clear
that the difference lies in the way the input impedance at the aortic root varies during systole.
The impedance is the result of two phenomena; one is the characteristic impedance of the vessel
the other is the presence of wave reflections. When using a high characteristic impedance this
dominates throughout systole. When using a low characteristic impedance and a high peripheral
resistance, reflections make up a large part of the impedance. Because of this impedance varies
greatly throughout systole thus giving a flow waveform that looks nothing like the pressure
waveform.

Systolic resistance To demonstrate the effects of the systolic resistance K, another simulation
was run on the short vessel where K = 1500 s

ml
. To compensate for the systolic resistance the

maximum elastance was increased by 20 %. The results are shown in figure 16
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Figure 16: Varying elastance simulation with K = 1500 s
ml

The flow waveform is dramatically changed and the peak at the beginning of systole has
completely disappeared. This might suggest that the value of K is to high.

Preload and afterload variation - Load dependence To determine the effects of pre- and
afterload on the varying elastance model simulations one were made on the short vessel. A low
vessel characteristic impedance was used and simulations were done for five different afterloads,
determined by the total resistance of the boundary condition, the results were then compared
by plotting pressure versus volume in p-v loops. As with the other simulations data three heart
cycles were simulated but only the last one was used in the plot. For each loop three isochrones
at times 0.035s, 0.2s and 0.5s were marked by circles. The end systolic points, defined as the
minimum of ventricular volume, was marked by solid black dots to give an impression of the
ESPVR. This was repeated using a systolic resistance of K = 1500 s

m3 . To compensate for the

systolic resistance Emax was increased by 10 % so that Èmax = 2.54. The results are shown in
figure 17.
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(a) Varying afterload, K = 0, Emax = 2.31 (b) Varying preload, K = 0, Emax = 2.31

(c) Varying afterload, K = 1500, Emax = 2.54 (d) Varying preload, K = 1500, Emax = 2.54

Figure 17: Pressure-volume loops for varying elastance simulations on a short vessel for different
pre- and afterloads. The three isochrones at times 0.035s, 0.2s and 0.5s are marked by circles.
Isochrones are chosen so that they take place during the isovolumic contraction, ejection and iso-
volumic relaxation phases respectively. End systole, defined as the point of minimum ventricular
volume is marked by dots.

39



Something very peculiar about the results when afterload is varied is that the end-diastolic
volume is reduced with increasing afterload. Increases in afterload should reduce the stroke-
volume but this should of course be an effect of a increased end-systolic volume. The EDV is
affected only by preload and should be roughly identical for variations in afterload. This suggests
that the parameters governing diastolic filling are not quite right, it seams that the inertia of
blood passing through the mitral valve leads to a greater EDV when the flow through the mitral
valve is larger (i.e. the stroke volume is larger).

The effects of the source resistance As seen in figure 17d the source resistance produces a
convex ESPVR when preload is varied. The ejection phase isochrone is also convex, whereas the
two other isochrones are linear which is as expected since there is no flow at these points in the
cycle. When the afterload is varied, as seen in figure 17c, the ESPVR is almost completely linear.
The isochrone during the ejection phase is also almost linear, there is however a remarkable
difference in angle, this is likely not caused by the source resistance, but as mentioned earlier by
problems with the diastolic filling.

Aortic valve regurgitation and aortic valve stenosis To demonstrate a regurgitant valve
a simulation was run on the short vessel with the Mrg parameter set to 0.02.This means that the
valve never fully closes and blood leaks back into the ventricle during diastole. The parameters
were otherwise the same as in the first simulation (K = 0). The resulting pressure and flow is
shown in figure 18.
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Figure 18: Regurgitation causes a negative flow during diastole.

As expected the flow is negative throughout the diastole. An aortic valve stenosis was then
simulated by setting Mst = 0.3. The other valve parameters were kept the same. The results
are shown in figure 19.

The pressure gradient is very large in the beginning of systole, then when the flow deccelerates
gradient becomes negative and the aortic valve closes prematurely and causes a bad results. From
Mynard et al. [7] the valve parameters should be Kvo = 0.01 and Kvc = 0.01 for a mild stenosis.
These values were also tested and the results are shown in figure 20. This makes the valve close
at at a much slower rate, making it more stable.
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Figure 19: The stenosis causes a large pressure gradient across the aortic valve. The opening
and closing rate parameters of the aortic valve causes it to flicker between the open and closed
state.

Figure 20: The stenosed valve becomes more stable when the opening and closing rate parameters
are reduced.
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Long vessel simulation Simulations were made on a longer vessel. The idea was to see the
effect of delaying the reflected wave. The vessel parameters were kept the same as for the previous
simulations thus giving a vessel characteristic impedance of Zc = 0.053 at zero pressure. Since
the vessel now has a significant volume compliance of its own, the compliance of the windkessel
model was reduced the total compliance of vessel and windkessel model was equal to the lumped
model compliance given in the article.

At the initial pressure of 80 mmHg the wavespeed was c = 5.2m
s

. The vessel length was set
to 30 cm thus delaying the reflection by approximately 0.12 seconds. The resistance of the vessel
assuming steady poiseuille flow is:

R =
8πµL

A2
= 0.00043

mmHg s

ml
(8.1)

which is very small compared to the resistance of the boundary condition. The simulation results
are shown in figure 21. The solution doesn’t look very realistic. This time it is caused by the

Figure 21: The rapid increase in outflow in the beginning followed by a decrease in flow causes
the aortic valve to start closing prematurely.

extreme spike in the flow at the beginning of systole when there are no reflections. There is
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almost no afterload and the heart is almost emptied giving a pressure drop in mid-systole. The
delay time for the reflection is too large it seems. A somewhat prettier result was obtained by
reducing the vessel length to 15 cm, giving half the delay time, as well as introducing a small
systolic resistance K = 250 s

m3 . The results are shown in figure 22.

Figure 22: The same simulation as shown in figure 21 but with K = 250 s
m3 and a shorter length.

The increased value of K smoothes out the large spike in early systole giving a more stable
solution.

When using a low impedance long vessel the reflected waves become the dominant deter-
mining factor of the input impedance. At the beginning of systole when there are no reflections
input impedance is low, causing the spike in ventricular outflow. At the end of systole the input
impedance increases due to the large influence of reflected waves. In this particular simulation
set-up with just a single vessel the variations in impedance become too large as can be seen in
figure 21. The absence of any wave reflections whatsoever in early systole gives an impedance
that is too low, giving very a very high flow rate (peaking at 1200ml

s
).

This leads to the conclusion that to get good simulation results in terms of both flow and
pressure, some early reflections are needed to limit the outflow, but that the impedance generally
needs to be low at the beginning of systole and high at the end of systole.
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The major reflection should also be somewhat delayed so that a larger part of it comes after
the aortic valve has closed. The weakness of a single vessel simulation is that it can not provide
all these characteristic in one simulation. In a long vessel the reflections are delayed creating
the dicrotic notch, but the impedance in early systole becomes too low. In a short vessel the
reflection arrives too early.

The valve model. There is a great deal of uncertainty concerning the valve model and perhaps
most of all when it comes to parameters. The size of the rate coefficients Kvo and Kvc seem to
be not very important as in most cases the valve opens and closes very quickly. The important
feature of the valve is that it opens and closes and does so at the right time.

The opening of the valve is no problem, the valve begins to open because the isovolumic
contraction of the LV increases ventricular pressure to a level higher than the aortic pressure.
At this phase the pressure gradient is always positive because both Q|Q| and dq

dt
are positive,

thus the valve continues till it is fully open. The threshold pressure ∆popen can be set to zero
without getting in trouble.

The problem lies in the closing of the valve. The pressure gradient is in many cases negative
during a large part of systole [4]. This is particularly true in a healthy valve, in a stenosed valve
the resistance part of the pressure gradient dominates and gives a positive pressure gradient as
long as the outflow from the ventricle is positive. In a healthy valve the inertance term becomes
dominant and causes the pressure gradient to become negative when the flow has reached its
peak early in systole and starts to decline. Using a zero pressure threshold for closing thus
leads to the valve closing prematurely. Some experimentation with the pressure threshold was
necessary. Setting it too low leads to premature valve closure, as shown in figure 21. Setting it
too high gives a very large backflow into the ventricle before the valve closes.

All in all there is room for improvement in determining the parameters for the valve model.
The most important trait however is that it closes at the right time, this can be achieved by
making adjustments to the ∆pclose parameter.

8.2 Verification of the Windkessel boundary condition and compar-
ison of the existing and alternative discretization schemes

The two-element Windkessel boundary condition (WK2) was tested by comparing the simulated
reflection of a single pulse to analytical solution. The discretization of WK2 is described in
section 7.3, the metod for obtaining an analytical solution is described in 7.3.3. The parameters
for the simulation are shown in table 7.

Parameter Value

Pulse half length (t0), s 0.05
Pulse half period (L), s 1.0

Vessel impedance (Z), mmHgs
ml

0.2
Vessel length (l), m 0.5
Vessel area (A), m2 3.14×10−4

Windkessel resistance (R), mmHgs
ml

1.0

Windkessel compliance (C), mmHgs
ml

0.5

Table 7: Parameters used for the prescribed pulse, the geometry and impedance of the vessel
and for the windkessel model

The reflected wave was recorded and superposed on a plot of the fourier series solution.
The results are shown in figure 23. As can be seen the simulation results converge for smaller
time steps. When comparing the possible discretization schemes it is seen that the 2nd order
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Figure 23: A comparison of numerical results from vascular1Dflow, using different numerical
schemes, with analytical results for decreasing time-step sizes. The new algorithms show a
slight improvement over the existing ones for large timestep sizes

backward difference scheme and the half step central difference scheme give nearly identical
results. They both represent an improvement over the incremental solution especially at large
time steps. All the alternatives converge to the correct solution.

Non-linear result. The algorithms were also tested for a larger pulse amplitude. The pulse
amplitude was thus set to 100 mmHg. Because of the resulting non linear effects an analyt-
ical solution could not be obtained. Instead a reference simulation was made using the new
discretization scheme and the node number set to 300 thus guaranteeing a converged result.
Simulation results using a lower number of nodes was then compared to this converged solution.
Alternatives 1 and 2 were still almost identical and were not plotted separately. The results are
shown in figure 24

A similar pattern can be seen in the non-linear solution. The alternative discretization
schemes converge slightly faster.
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Figure 24: A comparison of numerical results from vascular1Dflow, using different numerical
schemes, with analytical results for decreasing time-step sizes. The new algorithms show a
slight improvement over the existing ones for large timestep sizes

8.3 Testing of the new bifurcation algorithm and comparison of com-
putational efficiency

The bifurcation equations, being non-linear, can not be solved analytically. Just as in the case
of the boundary conditions it is difficult to verify the accuracy of the results because of the
non-linear nature of the equations. For small pressure-flow fluctuations however conditions are
almost linear. A minimum requirement for the solver should therefore be to be able to give a
correct reflection of a single pulse according to the formula for the reflection coefficient of the
bifurcation given in equation 5.40. A test is set-up similar to the verification of the existing
bifurcation algorithm presented in Leinan [10], to see if the new algorithm can handle this
minimum requirement.

Linear case The network setup, consists of three vessels forming a single bifurcation. All
three vessels have different cross-sectional areas thus giving them different impedances. At the
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proximal end of the mother vessel a forward propagating pressure pulse is prescribed according
to the equation 7.51. The values a = 1 mmHg and t0 = 0.05 s are used as the parameters fot
the pulse.

This setup should cause a reflection of the pulse as it hits the bifurcation having propagated
through the mother vessel. The pulse is then transmitted into the two daughter vessels. In the
linear case the pressure is transmitted equally into the two daughter vessels according to the
transmission coefficient in equation 5.40. However due to the different impedances, flow is not
distributed equally between the two vessels.

All three vessels are given the same Young’s modulus, wall thickness and length: E = 4e5 Pa,
h = 0.1 cm and l = 20 cm. The blood mass density is set to ρ = 1060 kg

m3
. Using the Laplacian

compliance model (eq. ??), the characteristic impedance of a vessel is given by:

Zc =

√
ρ
√
πhE

2A
5
2

(8.2)

The cross sectional areas with corresponding characteristic impedances are given in table 8:

Vessel A[cm2] Zc[
mmHg s

ml
] Γ T

1 2 0.011 0.67 1.67
2 0.5 0.061 -0.71 0.29
3 0.1 0.459 0.039 1.039

Table 8: Cross-sectional areas of the vessels, characteristic impedances and reflection and trans-
mission coefficients

Boundary conditions and reflections. To further test the system the two daughter vessels
are terminated differently. One with a full reflection (Γ = 1) and the other with no reflection
(Γ = 0). Thus a secondary reflection travels back through the system and hits the bifurcation,
is transmitted into the mother vessel and right daughter vessel. This is also recorded at the
proximal end of the mother vessel. This pulse has then traveled through the bifurcation twice.
The first reflection arriving at the root of the mother vessel should therefore have the amplitude
a1 = aΓ1 = 0.67 mmHg. The next reflection is transmitted first according to T1 = 1.67 then
completely reflected and transmitted again according to T2 = 0.29. It should have amplitude
a2 = aT1T2 = 0.49 mmHg. The results are shown in figure 25

The reflected waves have the correct amplitudes. This shows that the new algorithm works
just as well as the existing algorithm at linear conditions.
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Figure 25: Plot 1: Shows pressure at the root of vessel 1, the first peak is the outgoing wave
the next two are the reflected waves. As can be seen they have the correct amplitudes. Plot
2: Pressure in all three vessels at the bifurcation. All pressures are equal due to near-linear
conditions. Plot 3: Pressure at the distal end of vessels 2 and 3. In vessel 2 (blue line) one can
see that the pressure has been reflected negatively at the bifurcation

Non-linear case - comparison of the two algorithms The real test of the new bifurcation
algorithm is to see if it can outperform the existing algorithm in computational efficiency. This
was done on the same single bifurcation network as the previous test. The pressure amplitude
was now set to 50 mmHg and the pulse was run through the bifurcation. To avoid problems
with negative pressures the reflecting boundary condition was removed. Still the high pressure
amplitude in combination with the large differences in cross sectional area should provide a
challenge for the algorithms.

In all the tests the pressure and flow results from the two algorithms were identical and are
therefore not shown. Table 9 shows the results in terms of increments, subiterations and total
time required to complete the simulation.

In both cases the number of subiterations refers to the number of function calls. The fsolve
algorithm did only one computation of the Jacobian matrix per increment. This approach was
also used in the implementation of the new algorithm on the suspicion that the equations to be
solved were actually quite linear. As can be seen from the table there was a significant difference
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Algorithm Increments Increments
with
subiterations

Total
subiterations

Subiterations
per increment

Total
solution time,
s

Existing 142 112 533 4.76 1.074
New 142 107 287 2.68 0.774

Table 9: A comparison of the computational efficiency of the existing and new algorithm. The
subiterations per increment values does not take into account the increments where no iterations
were needed. The total solution time is the average of three simulation runs

in the number of subiterations. This might imply that the error tolerance of existing bifurcation
algorithm is too strict.This proved to be the biggest problem with the existing implementation.

Improvements on the existing algorithm. Having found the tolerance to be too strict it
was now set at a much higher level (i.e. xtol = 0.1). Which typically gave two iterations per
timestep as opposed to around five (or even more) when using the default tolerance. This proved
to be more than enough to get accurate results.

Also the tolerance for reusing the solution from the previous timestep could be increased to
||f || < 1 without losing accuracy.

The modified existing algorithm was tested and the results are shown in table 10.

One iteration. The new algorithm was finally tested using only one iteration per increment.
Also the tolerance for reusing the values from the previous time step was now set to 1. There
were still no differences in the produced results. The performance results are shown in table 10.

Algorithm Increments Increments
with
subiterations

Total
subiterations

Subiterations
per increment

Total
solution time,
s

Existing modified 142 102 295 2.89 1.015
One iteration 142 64 64 1.0 0.68

Table 10: The existing algorithm with modified tolerances and the new algorithm limited to
only one iteration per increment

The modifications to the existing algorithm greatly reduced the number of iterations how-
ever the computation time did not reduce significantly. This might suggest that it is the the
computation and inversion of the Jacobian matrix that takes up the most computational power
since this still is called only once per increment. The fact that the new algorithm worked so well
with only one iterations proves that the equation system is very linear and that there is no big
need for an iterative procedure for the boundary conditions.

Instability caused by low CFL-numbers The CFL condition for stability demands that
CFL = c∆t

∆z
≤ 1.0. In vascular1Dflow this condition is fulfilled by setting the time step size

so that this condition is fulfilled at the vessel (or node) where the ratio c
∆z

is greatest. If the
number of nodes in each vessel is not chosen so that c

∆z
is approximately equal in all vessels the

CFL-numbers will also be different for each vessel. Tests revealed that there was some intability
in the solution if one or more of the vessels in the bifurcation had a low CFL-number. This can
be seen in the oscillations in figure 26. The simulation was made using the same set-up as in
figure 25, but the node number of vessel 1 was reduced to 42 giving the vessel a CFL number of
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0.486, whereas the other two vessels still had CFL = 0.99. The resulting oscillations are shown
in figure 26 The reason for this instability is unknown. The results were identical in the two

Figure 26: Differences in CFL-numbers causes som unwanted oscillations.

different bifurcation algorithms suggesting that the cause is something else. This shows that it
is important to have the correct number of nodes to get good results at bifurcations.

8.4 Arterial network with varying elastance

The purpose of the test case is to see if the varying elastance when connected to a full size
arterial network model of a human is able function properly, in particular to see if a realistic
waveform can be produced and how these results compare to the results achieved in the single
vessel tests.

It is also meant to demonstrate all the implementations and algorithm improvements work-
ing together, the varying elastance boundary condition with the dynamic valve model and the
improvements on the bifurcation and windkessel models.

Arterial network. The arterial network shown in figure 27, is based on a already existing
XML file in vascular1Dflow used for simulations in the master thesis of Vinzenz Eck [3]. The
geometry and material data for this network is based on Stergiopulos et al. [15]. Vessel data are
given in table 11

id Name L[m] rp[mm] rd[mm] h[mm] E[MPa]
0 Ascending Aorta 0.04 14.7 14.4 1.63 0.4
1 Aortic Arch I 0.02 11.2 11.2 1.26 0.4
2 Brachiocephalic 0.034 6.2 6.2 0.8 0.4
3 R.Subclavia I 0.034 4.23 4.23 0.67 0.4
4 R.Carotid 0.177 3.7 3.7 0.63 0.4
5 R.Vertebral 0.148 1.88 1.83 0.45 0.8
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6 R.Subclavia II 0.422 4.03 2.36 0.67 0.4
7 R.Radial 0.235 1.74 1.42 0.43 0.8
8 R.Ulnar I 0.067 2.15 2.15 0.46 0.8
9 R.Interosseous 0.079 0.91 0.91 0.28 1.6

10 R.Ulnar II 0.171 2.03 1.83 0.46 0.8
11 R.Internal Carotid 0.176 1.77 0.83 0.45 0.8
12 R.External Carotid 0.177 1.77 0.83 0.42 0.8
13 Aortic Arch II 0.039 10.7 10.7 1.15 0.4
14 L.Carotid 0.208 3.7 3.7 0.63 0.4
15 L.Internal Carotid 0.176 1.77 0.83 0.45 0.8
16 L.External Carotid 0.177 1.77 0.83 0.42 0.8
17 Thoracic Aorta I 0.052 9.99 9.99 1.1 0.4
18 L.Subclavian I 0.034 4.23 4.23 0.66 0.4
19 L.Vertebral 0.148 1.88 1.83 0.45 0.8
20 l.Subclavian II 0.422 4.03 2.36 0.67 0.4
21 L.Radial 0.235 1.74 1.42 0.43 0.8
22 L.Ulnar I 0.067 2.15 2.15 0.46 0.8
23 L.Interosseous 0.079 0.91 0.91 0.28 1.6
24 L.Ulnar II 0.171 2.03 1.83 0.46 0.8
25 Intercostales 0.08 2 1.5 0.49 0.4
26 Thoracic Aorta II 0.104 6.75 6.45 1 0.4
27 Abdominal I 0.053 6.1 6.1 0.9 0.4
28 Celiac I 0.02 3.9 2 0.64 0.4
29 Gastric 0.071 1.8 1.8 0.45 0.4
30 Splentic 0.063 2.75 2.75 0.54 0.4
31 Superior Mesenteric 0.059 4.35 4.35 0.69 0.4
32 Abdominal II 0.02 6 6 0.8 0.4
33 R.Renal 0.032 2.6 2.6 0.53 0.4
34 Abdominal IV 0.116 5.8 5.2 0.75 0.4
35 R.Common Iliac 0.058 3.68 3.5 0.6 0.4
36 L.Common Iliac 0.058 3.68 3.5 0.6 0.4
37 L.External Iliac 0.144 3.2 2.7 0.53 0.8
38 L.Internal Iliac 0.05 2 2 0.4 1.6
39 L.Femoral 0.443 2.59 1.9 0.5 0.8
40 l.Deep Femoral 0.126 2.55 1.86 0.47 0.8
41 L.Posterior Tibial 0.321 2.47 1.41 0.45 1.6
42 L.Anterior Tibial 0.343 1.3 1.3 0.39 1.6
43 R.External Iliac 0.144 3.2 2.7 0.53 0.8
44 R.Internal Iliac 0.05 2 2 0.4 1.6
45 R.Femoral 0.443 2.59 1.9 0.5 0.8
46 R.Deep Femoral 0.126 2.55 1.86 0.47 0.8
47 R.Posterior Tibial 0.321 2.47 1.41 0.45 1.6
48 R.Anterior Tibial 0.343 1.3 1.3 0.39 1.6

Table 11: Vessel data for an arterial network taken from Stergiopulos et al. [15].
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Figure 27: The arterial network used for the simulations. Figure taken from Eck [3]

Boundary conditions. The boundaries are all terminated by three element windkessel mod-
els. The boundary condtions are thus able to account for the compliance and resistance found
in the smaller vessels after the point of termination [15]. The characteristic resistance of the
winkessel models were set to be equal to the characteristic impedances of the vessels thus ab-
sorbing higher frequency signals. This is done by vascular1Dflow automatically by not declaring
this parameter. It is also implemented so that the value used by the boundary condition is
updated for each timestep to the current impedance of the vessel which changes with pressure.
The peripheral resistances and compliances were also taken from Stergiopulos et al. [15] and is
presented in table ??.

It should be noted that the compliances of the boundary conditions are relatively small
making the BCs function almost like pure resistors. This also means that the compliances of the
BCs make only a small contribution of the system. For the resistances it is clear that it is the
other way around, where the BCs provide much more resistance than the viscous resistances of
the network.
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Vessel ID Resistance [mmHg s
ml

] Compliance [ ml
mmHg

]

5 45.08 0.004127
7 39.60 0.004698
9 632.30 0.0002942
10 39.60 0.004698
11 104.26 0.001784
12 104.26 0.001784
15 104.26 0.001784
16 104.26 0.001784
19 45.08 0.004127
21 39.60 0.004698
23 632.30 0.0002942
24 39.60 0.004698
25 10.43 0.01784
29 40.58 0.004585
30 17.40 0.01069
31 6.98 0.02667
33 8.48 0.02195
38 59.52 0.003125
40 35.78 0.005110
41 35.78 0.005110
42 41.93 0.004437
44 59.52 0.003125
46 35.78 0.005110
47 35.78 0.005110
48 41.93 0.004437

Table 12: Compliance and total resistance of all terminal boundary conditions

8.4.1 Network results

The varying elastance BC is initialized with the same parameters as in the single vessel simu-
lations, as given in table ??. When using all these standard parameters there was no problem
with the aortic valve. However to be on the safe side a small threshold pressure for the closing of
the aortic valve was used. The aortic valve parameters were thus set to Kvo = 0.12, Kvc = 0.12,
∆popen = 0, ∆pclose = 2.0mmHg and Mst = 0.99. The total simulation time is 3.0s, giving three
heart cycles with the data from the last cycle being presented. The initial pressure is set to 80
mmHg. The results from the simulation using the standard parameters from tables 12 and 11
are shown in figure 28
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Figure 28: Varying elastance simulation on an arterial network. The opening and closing of the
aortic valve represented by the valve parameter ζ is given by the dashed line. The horizontal
dotted line shows the reference pressure.

Variations in vessel stiffness Two simulations were made on the network where the stiffness
of the vessels were changed. This was done by multiplying all the vessels Young’s moduli with a
stiffness factor. The stiffness factors used were 0.6, 1.4. The pressure and flow in the aortic root
of these simulations are shown in figures 29, 28 and 30 along with the valve opening parameter
and the corresponding wavesplitted waveforms.

Changes in vessel stiffness have two important effects changing the total compliance of the
network as well as changing the wavespeed. With the decreased stiffness, shown in figure 29,
the compliance is reduced and so is the wavespeed. The decreased wavespeed makes reflections
arrive later, this means that more of the total reflection comes after the valve has closed. In
figure 30 the increased wavespeed makes more reflections during systole thus increasing the load
on the heart.
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Figure 29: Varying elastance simulation on an arterial network. Vessel stiffnesses are scaled by
a stiffness factor of 0.6. The opening and closing of the aortic valve represented by the valve
parameter ζ is given by the dashed line. The horizontal dotted line shows the reference pressure.
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Figure 30: Varying elastance simulation on an arterial network. Vessel stiffnesses are scaled by
a stiffness factor of 1.4. The opening and closing of the aortic valve represented by the valve
parameter ζ is given by the dashed line. The horizontal dotted line shows the reference pressure.
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Variations in afterload. The same network simulation was made but now changing the
afterload of the heart by varying the resistances of the boundary conditions. The total resistance
of each boundary conditions was now multiplied with the factors 0.5 and 1.5 while keeping all
other parameters constant. The results can be seen in figures 31 and 32.

Figure 31: Varying elastance simulation on an arterial network. The boundary condtition total
resistances were multiplied by a factor 0.5. The opening and closing of the aortic valve repre-
sented by the valve parameter ζ is given by the dashed line. The horizontal dotted line shows
the reference pressure.

58



Figure 32: Varying elastance simulation on an arterial network. The boundary condtition total
resistances were multiplied by a factor 1.5. The opening and closing of the aortic valve repre-
sented by the valve parameter ζ is given by the dashed line. The horizontal dotted line shows
the reference pressure.

8.4.2 Network pressure decay

Some simple simulations were made on the network, where the point was to see the pressure
in the network decayed similarly to a lumped windkessel model in the network. And to see if
the decay rate of the simulation could be predicted based on vessel properties and boundary
conditions.

Simulations where made by setting the initial pressure to 1 mmHg in the network and allowing
it to decay throughout the total simulation time of 2.0 seconds. All the boundary conditions
used were two element windkessel models using the parameter values given in 12, but with half
the compliance. In the aorta the varying elastance model was replaced by a complete reflection
(Γ = 1).

The pressure was recorded at the aortic root and τ was determined by curve-fitting the
exponential decay function as given in eq.5.10. The results of one such curve fitting is shown
in figure 33 where the simulated pressure is compared with the fitted analytical curve. The

59



simulations were repeated with different peripheral resistances and tau values were computed.
The scaling factors used were 0.5, 1.0 and 1.5. The resulting pressures curves are shown in figure
33.

The compliance of the whole system was computed from vessel so that:

Ctot = Cnetwork + CBC (8.3)

where the network compliance was computed as the sum of the volume compliances of all the
vessels, which was computed based on the Laplace compliance. For the vessels with a tapered
cross section this meant integrating along the length of the vessel giving the expression for the
volume compliance of a vessel:

Cv =
A2

2 − A2
1

2πhE(r2 − r1)
L (8.4)

where A1 and A2 are the cross sectional areas at each end and r1 and r2 are the radii. The total
resistance of the network was computed from the boundary condition total resistances:

Rtot =
1∑

BC

1

Rt

(8.5)

the viscous resistance of the network itself was considered negligible. The measured and fitted
pressures from the aortic root are shown in figure 33 along with plots of the pressures at all the
other boundary nodes. The calculated and fitted values of τ are shown in table 13.

Rtot,
mmHgs
ml

Ctot,
ml

mmHg
τcalc, s τfit, s

Simulation 1 0.61 0.878 0.53 0.530
Simulation 2 1.22 0.878 1.06 1.082
Simulation 3 1.83 0.878 1.59 1.637

Table 13: Table showing calculated and fitted values og τ

The intention of these pressure decay simulations was to investigate whether an arterial
network model exhibits windkessel-like pressure decay which it clearly does. It is also interesting
to see that this behaviour arises as the result of seemingly chaotic wave propagation which can
be seen particularly well in figure 33a. One could also say that the rate of pressure decay was well
predicted by the vessel and BC parameters with the biggest error being in the high resistance
simulation.

60



(a) Resistance scaling factor 0.5

(b) Resistance scaling factor 1.0

(c) Resistance scaling factor 1.5

Figure 33: Exponential pressure decay in a network. The red line is the pressure at the aortic
root, the thick black line is the fitted pressure decay function. The thin black lines are the
pressures at all the boundary nodes. The results show that the complex behaviour of the system
with wave propagation and reflections result in a reservoir-like behaviour.
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8.4.3 Comparison of network and lumped model

To study the similarities and differences of the full network varying elastance simulation and
lumped model simulations the results of two such studies were compared. The network simulation
using the standard parameters, as shown in figure 28, was recreated as a lumped model simulation
using a very short vessel and a three element windkessel model. The windkessel parameters C
and R were computed from the network in the same way as described in the previous section.
The results of this comparison is shown in figure 34.

(a) Comparison of pressures

(b) Comparison of flows

Figure 34: A comparison of pressure and flow at the aortic root between an arterial network and
lumped model simulation

The comparison shows a significant similarity between the arterial network model and the
three element windkessel model as an afterload on the heart. The maximum pressures are
similar, the closing of the aortic valve happens at the same time and the diastolic pressure decay
is similar. The main difference is that in the network model more of the reflected waves come
after the aortic valve has closed
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8.4.4 Reservoir-wave separation of pressure

The same simulation results were also subjected to the reservoir-wave separation technique
described in section 5.7. The network compliance was C = 0.88 ml

mmHg
The wave pressure and

reservoir pressure are shown in figure 35 along with the flow.

Figure 35: Pressure from the network simulation has been separated into reservoir and wave
pressure.

As can be seen from the figure the shape wave pressure does somewhat resemble the shape
of the flow, however not as obviously as in the results presented by Tyberg et al. [19].

8.5 Conclusion

The varying elastance model was successfully implemented with a functioning valve model for
the aortic and mitral valve. It was found out that the model was very sensitive to loading
conditions and in particular the premature closing of the aortic valve would cause problems.
With the right loading conditions and valve parameters the model was found to be quite robust.
The model was able function well with both lumped model simulations and in a arterial network.
The simulations on a long single vessel were not successful not very successful, this showed that
the varying elastance model was dependent on reflections in early systole to function properly,
something which both the lumped model and network simulations provide.

The varying elastance model was implemented using a source resistance. It did introduce a
load dependence in the model, however it is uncertain how well this worked, the source resistance
was also not tested with an appropriate varying elastance function. There is a lot of uncertainty
regarding the source resistance, and at this stage in the development it is probably not really
necessary to have it.

The varying elastance simulations on the arterial network were successful in producing re-
alistic pressures and flows at the aorta. The details of the wave-propagations throughout the
network were not studied, but it was shown that as a whole the arterial network worked very
similarly to a three-element windkessel model. This was shown both by the fact that pressure
decay in the network followed the exponential windkessel decay very closely and that it worked
similarly to the Windkessel model as an afterload on the heart.
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The bifurcation algorithm was improved, it was discovered that the non-linear equations were
actually quite linear and that one iteration per increment was enough to produce good results.
The new algorithm gives a significant reduction in computation time.

An alternative discretization scheme to the WK2 and WK3 models was provided. Numer-
ically the new schemes gave a slight increase in accuracy. Also the peripheral pressure was
included in the schemes thus allowing pressure decay from an initial pressure

8.6 Further work

There is a lot of uncertainty about the exact values of the valve parameters. Particularly the
closing time of the aortic valve has a big influence on the flow and thus the waveforms produced
by the varying elastance model. A study should therefore be done on the estimation of valve
parameters and perhaps also on the validity of valve the model itself.

Since a the varying elastance model is up and running with both aortic and mitral flow being
simulated, the next logical step is to expand the model to include a varying elastance left atrium
and have the model work as a connection between two 1D vessel segments or perhaps even in a
closed loop.
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A Varying elastance - implemented code

class VaryingElastance ( BoundaryConditionType2 ) :

def i n i t ( s e l f ) :
s e l f . type = 2

s e l f . s u b i t e r a t i o n s = 0
#D e f a u l t parameters
s e l f .T = 1
s e l f .Emax = 2.31 ∗ 133 .3 e6
s e l f . Emin = 0.06 ∗ 133 .3 e6
s e l f . Tpeak = 0 .4
s e l f . V0 = 20e−6
s e l f .K = 1 .5 e3

s e l f . a lpha = 1.672
s e l f . n1 = 1.32
s e l f . n2 = 21 .9

#n−1 v a l u e s
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#s e l f . aor t i cPressurePrev iousTimes tep
#s e l f . aor t icF lowPrev iousTimestep

s e l f . system = { ’ both open ’ : np . array ( [ 0 , 1 , 2 ] ) , ’ m i t ra l
open ’ : np . array ( [ 0 , 1 ] ) , ’ a o r t i c open ’ : np . array

( [ 1 , 2 ] ) }

s e l f . cycleNumber = 0
s e l f . venousPressure = 7 .5 ∗ 133 .32

s e l f . x0 = np . array ( [ 0 . 0 , 0 . 0 , 0 . 0 ] )

s e l f . i n i t i a l i z e V a l v e s ( )

def i n i t i a l i z e S o l u t i o n V e c t o r s ( s e l f , Tsteps ) :
s e l f . m i t ra l . i n i t i a l i z e S o l u t i o n s ( Tsteps )
s e l f . a o r t i c . i n i t i a l i z e S o l u t i o n s ( Tsteps )

s e l f . p r e s su r e = np . z e r o s ( Tsteps )
s e l f . volume = np . z e r o s ( Tsteps )
s e l f . mitralQ = np . z e r o s ( Tsteps )
s e l f . p r e s su r e [ 0 ] = s e l f . venousPressure
s e l f . volume [ 0 ] = s e l f . venousPressure / s e l f .E(0 ) + s e l f

. V0

def i n i t i a l i z e V a l v e s ( s e l f ) :
#Mitra l v a l v e parameters
s e l f . m i t r a l an nu l u s a r ea = 0.0007
mit ra l M st = 0 .7
mitra l M rg = 0 .0
m i t r a l d e l t a p o p e n = 0
m i t r a l d e l t a p c l o s e = 0
mitra l K v open = 0 .3
m i t r a l K v c l o s e = 0 .4
m i t r a l l e f f = 0

#Aort ic v a l v e parameters
#a o r t i c a n n u l u s a r e a = 0 #Updated v a l u e s are used in

s t e a d
a o r t i c M s t = 0.99
aor t i c M rg = 0.00
a o r t i c d e l t a p o p e n = 0∗133.32
a o r t i c d e l t a p c l o s e = 2 .0∗133 .32
aor t i c K v open = 0.12
a o r t i c K v c l o s e = 0 .12
a o r t i c l e f f = 0 .00

#Create v a l v e s
s e l f . m i t ra l = Valve ( mitra l M st , mitral M rg ,

m i t r a l d e l t a p open , \
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m i t r a l d e l t a p c l o s e ,
mitra l K v open ,

m i t r a l K v c l o s e ,
1060 , m i t r a l l e f f
)

s e l f . a o r t i c = Valve ( aor t i c M st , aort i c M rg ,
a o r t i c d e l t a p o p e n , \

a o r t i c d e l t a p c l o s e ,
aort i c K v open ,

a o r t i c K v c l o s e ,
1060 , a o r t i c l e f f
)

def c a l l ( s e l f , domega ,dO, du ,R, L , n , dt , P, bP , Q,bQ, A) :

s e l f . updateValves (P,A,Q, bQ, n , dt )
# Update the

s t a t e o f the m i t r a l and a o r t i c v a l v e at t i m e s t e p n
+ 1

s e l f . s t a r tNewCyc l e I fCr i t e r i a I sMet (n , dt )
#s e l f . computeMitralFlow (n , dt )

# Compute
the f l o w through the m i t r a l v a l v e at t i m e s t e p n+1
e x p l i c i t l y

domega = s e l f . returnFunct ion ( domega , dO, du , R, n ,
dt , P, bP , Q,bQ, A) # Compute the riemann
v a r i a n t go ing i n t o the v e s s e l

#s e l f . computeVolume (n , dt , Q, domega [ 0 ] , domega [ 1 ] , R
) # Compute the volume o f the v e n t r i c l e a t
t i m e s t e p n+1

#s e l f . computePressure (n , dt , Q, A, np . dot (R[ 1 , : ] ,
domega ) ) #
Compute the p r e s s u r e in the v e n t r i c l e a t t i m e s t e p
n+1

return domega

def updateValves ( s e l f , P, A,Q, Qn, n , dt ) :
m i t r a l P r e s s u r e D i f f e r e n c e = s e l f . venousPressure − s e l f

. p r e s su r e [ n ]

a o r t i c P r e s s u r e D i f f e r e n c e = s e l f . p r e s su r e [ n ] − P# −
1060∗0.02/A∗(Q − Qn) / dt

#p r i n t m i t r a l P r e s s u r e D i f f e r e n c e
s e l f . m i t ra l . updateValveState ( m i t r a l P r e s s u r e D i f f e r e n c e

, n , dt )
#p r i n t s e l f . a o r t i c . s t a t e [ n ]
s e l f . a o r t i c . updateValveState ( a o r t i c P r e s s u r e D i f f e r e n c e

, n , dt )
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def getCycleTime ( s e l f , n , dt ) :
return n∗dt − s e l f .T∗ s e l f . cycleNumber

def s ta r tNewCyc l e I fCr i t e r i a I sMet ( s e l f , n , dt ) :
i f s e l f . getCycleTime (n+1, dt ) > s e l f .T:

s e l f . cycleNumber += 1

def funcPos0 ( s e l f , domega , dO, du , R, n , dt , Pn , Pn1 , Qn, Qn1
, A) :

r21 , r22 = R[ 1 ] [ 0 ] ,R [ 1 ] [ 1 ]
#L = s e l f . a o r t i c . computeL (A, n+1)
LdivB = s e l f . a o r t i c . LdivideB (A, n+1)
B = s e l f . a o r t i c . computeB (A, n+1)
#mitrL = s e l f . m i t r a l . computeL ( s e l f .

m i t r a l a n n u l u s a r e a , n+1)
mitrLdivB = s e l f . m i t ra l . LdivideB (A, n+1)
mitrB = s e l f . m i t ra l . computeB ( s e l f . m i t ra l annu lu s a r ea

, n+1)
mitrQn = s e l f . mitralQ [ n ]
mitrQn1 = s e l f . mitralQ [ n−1]
venoP = s e l f . venousPressure
t = s e l f . getCycleTime (n+1, dt )
E = s e l f .E( t )
Vn = s e l f . volume [ n ]
ventrPn = s e l f . p r e s su r e [ n ]

B re f = 1060/(2∗A∗∗2)

n p = s e l f .Emax∗ s e l f . V0
n q = ( n p/ B re f ) ∗∗0.5
n o = n q/ r21

#n q = ( mitrQn − mitrQn1 ) ∗100
#i f n q == 0 . 0 : n q = 1e−3

#n p = 0.5∗ (Pn − Pn1 + ventrPn − s e l f . p r e s s u r e [ n−1])
∗100

#i f n p == 0 . 0 : n p = 1e3

#n q = 1e−3
#n p = 1e3

#p r i n t n q , n p

args = dt , mitrLdivB , mitrB , LdivB ,B, mitrQn1 , mitrQn ,
ventrPn , venoP , E, Vn, Qn, Qn1 , r21 , r22 , Pn ,
domega , n q , n p , B re f

#B l i m i t = 1e20
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i f not B and not mitrB :#== np . i n f :
#p r i n t ’ both c l o s e d ’
s e l f . mitralQ [ n+1] = 0
domega = domega
s e l f . volume [ n+1] = s e l f . volume [ n ] − 0 . 5∗ (Qn −

mitrQn )∗dt
s e l f . p r e s su r e [ n+1] = E∗( s e l f . volume [ n+1] −

s e l f . V0)
i f Qn == 0 :

domega = domega#return [ domega ,
domega ]

else :
domega = (−0.5∗Qn − r22∗ domega ) / r21

s e l f . x0 = np . array ( [ 0 , 0 , domega ] )
else :

i f not mitrB :
#p r i n t ’ a o r t i c open ’
x = s e l f . newtonSolver ( s e l f . x0 , args ,

par t ia lSys tem=’ a o r t i c open ’ )
#p r i n t x [ 0 ]∗ n p , x [ 1 ]∗ n p
s e l f . mitralQ [ n+1] = 0
s e l f . p r e s su r e [ n+1] = s e l f . p r e s su r e [ n ]

+ x [ 0 ] ∗ n p
domega = x [ 1 ] ∗ n o
s e l f . x0 = np . concatenate ( ( np . array

( [ 0 ] ) , x ) )
e l i f not B:

#p r i n t ’ m i t r a l open ’
x = s e l f . newtonSolver ( s e l f . x0 , args ,

par t ia lSys tem=’ mi t ra l open ’ )
#p r i n t x
s e l f . mitralQ [ n+1] = s e l f . mitralQ [ n ] +

x [ 0 ] ∗ n q
s e l f . p r e s su r e [ n+1] = s e l f . p r e s su r e [ n ]

+ x [ 1 ] ∗ n p
i f Qn == 0 :

domega = domega
else :

domega = (−0.5∗Qn − r22∗
domega ) / r21

s e l f . x0 = np . concatenate ( ( x , np . array
( [ 0 ] ) ) )

else :
#p r i n t ’ both open ’
x = s e l f . newtonSolver ( s e l f . x0 , a rgs )
s e l f . mitralQ [ n+1] = s e l f . mitralQ [ n ] +

x [ 0 ] ∗ n q
s e l f . p r e s su r e [ n+1] = s e l f . p r e s su r e [ n ]

+ x [ 1 ] ∗ n p
domega = x [ 2 ] ∗ n o
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s e l f . x0 = x
dQ = r21∗domega + r22∗ domega
s e l f . volume [ n+1] = Vn − (Qn + 0.5∗(− s e l f .

mitralQ [ n ] − s e l f . mitralQ [ n+1] + dQ) )∗dt

return [ domega , domega ]

def funcPos1 ( s e l f , domega , dO, du , R, L , n , dt , P, Q, A) :
pass

def E( s e l f , t ) :

alpha1 = 0.708∗ s e l f . Tpeak/ s e l f .T
alpha2 = 1.677∗ alpha1
T, n1 , n2 = s e l f .T, s e l f . n1 , s e l f . n2
shapeFunction1 = ( t /( alpha1∗T) ) ∗∗n1/(1+( t /( alpha1∗T) )
∗∗n1 )

shapeFunction2 = (1 + ( t /( alpha2∗T) ) ∗∗n2 ) ∗∗(−1)
return ( s e l f .Emax−s e l f . Emin)∗ s e l f . a lpha∗

shapeFunction1∗ shapeFunction2 + s e l f . Emin

def newtonSolver ( s e l f , x0 , args , par t ia lSys tem = ’ both open ’
) :

#dt , mitrL , mitrB , L ,B, mitrQn1 , mitrQn , venoP , E, Vn,
Qn, Qn1 , r21 , r22 , Pn, domega = args

#p r i n t p a r t i a l S y s t e m
i t e r a t i o n s = 0

#p r i n t np . s i z e ( args )
xn = x0 [ s e l f . system [ par t ia lSys tem ] ]
r e s = s e l f . s o l v e r R e s i d u a l s (xn ,∗ args , par t ia lSys tem =

part ia lSys tem )
#p r i n t p a r t i a l S y s t e m
e r r o r = np . l i n a l g . norm( res , 2)

#p r i n t x0 [ 1 ]
#p r i n t re s
while True :#i t e r a t i o n s <3:#

#p r i n t x0
i t e r a t i o n s +=1
J inv = s e l f . s o l v e r I n v e r s e J a c o b i a n (xn , ∗args ,

par t ia lSys tem = part ia lSys tem )
x = xn − np . dot ( J inv , r e s )
e r r o r = np . l i n a l g . norm( x − xn , 2) /np . l i n a l g .

norm(xn , 2)
i f e r r o r < 0 . 0 0 0 1 :

break
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xn = x
r e s = s e l f . s o l v e r R e s i d u a l s (x , ∗args ,

par t ia lSys tem = part ia lSys tem )

#J i n v = s e l f . s o l v e r I n v e r s e J a c o b i a n ( x0 , ∗args
, p a r t i a l S y s t e m = p a r t i a l S y s t e m )

i f i t e r a t i o n s > 20 :
x ∗= 0#x0 [ s e l f . system [ p a r t i a l S y s t e m ] ]
break

#p r i n t args [ 1 1 ]
#p r i n t x0 [ 1 ]
print i t e r a t i o n s
#p r i n t er ror

return x

def s o l v e r R e s i d u a l s ( s e l f , x p a r t i a l , dt , mitrLdivB , mitrB ,
LdivB ,B, mitrQn1 , mitrQn , ventrPn , atrP , E, Vn, Qn, Qn1 ,
r21 , r22 , Pn , domega , n q , n p , B ref , par t i a lSys tem = np
. array ( [ 0 , 1 , 2 ] ) ) :#dt , mitrL , mitrB , L ,B, mitrQn1 , mitrQn ,
venoP , E, Vn, Qn, Qn1 , r21 , r22 , Pn, domega ) :

# n −> v a l u e s at t i m e s t e p n ; n1 −> v a l u e s at
t i m e s t e p n−1; r e s t i s a t t i m e s t e p n+1

#dt , mitrL , mitrB , L ,B, mitrQn1 , mitrQn , venoP , E, Vn,
Qn, Qn1 , r21 , r22 , Pn, domega = args

x = np . array ( [ 0 . 0 , 0 . 0 , 0 . 0 ] )
x [ s e l f . system [ par t ia lSys tem ] ] += x p a r t i a l
dQm, dPv , domega = x

def f 1 ( ) :
a = mitrQn/n q + dQm
return a∗abs ( a ) + mitrLdivB /(2∗ n q∗dt ) ∗(3∗dQm

+ ( mitrQn1 − mitrQn ) /n q ) + ( n p∗dPv +
ventrPn − atrP ) /( mitrB∗n q ∗∗2)

def f 2 ( ) : return E/n p ∗(Vn − (Qn − mitrQn + 0 .5∗ ( n q∗
domega + r22∗ domega − n q∗dQm) )∗dt − s e l f . V0)
∗(1− s e l f .K∗(Qn + n q∗domega + r22∗ domega ) ) −
ventrPn/n p − dPv

def f 3 ( ) :
a = (Qn + r22∗ domega ) /n q + domega
return a∗abs ( a ) + LdivB /(2∗ n q∗dt ) ∗(3∗domega

+ (3∗ r22 − Qn + Qn1) /n q ) + ( n q/ r21∗
domega + domega + Pn − ventrPn − n p∗dPv
) /(B∗n q ∗∗2)

f u n c t i o n s = np . array ( [ f1 , f2 , f 3 ] )
return np . array ( [ f ( ) for f in f u n c t i o n s [ s e l f . system [

par t ia lSys tem ] ] ] )
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def s o l v e r I n v e r s e J a c o b i a n ( s e l f , x p a r t i a l , dt , mitrLdivB ,
mitrB , LdivB ,B, mitrQn1 , mitrQn , ventrPn , venoP , E, Vn, Qn,
Qn1 , r21 , r22 , Pn , domega , n q , n p , B ref , par t i a lSys tem
= np . array ( [ 0 , 1 , 2 ] ) ) :

# n −> v a l u e s at t i m e s t e p n ; n1 −> v a l u e s at
t i m e s t e p n−1; r e s t i s a t t i m e s t e p n+1

x = np . array ( [ 0 , 0 , 0 ] )
x [ s e l f . system [ par t ia lSys tem ] ] += x p a r t i a l
dmQ, dvP , domega = x
#p r i n t n q , n p , E, dt , s e l f .K, mitrL , mitrB , mitrQn ,

dmQ,

e x p r e s s i o n s = np . array ( [
’ 2∗( mitrQn/n q + dmQ)∗np . s i gn ( mitrQn/n q + dmQ) +

1.5∗mitrLdivB /( n q∗dt ) ’ ,
’ B re f /mitrB ’ ,
’ 0 .5∗ n q/n p∗E∗dt∗(1− s e l f .K∗(Qn + n q∗domega + r22∗

domega ) ) ’ ,#0.5∗(1 − s e l f .K∗(Qn + r21∗domega +
r22∗ domega ) )∗E∗ dt ∗∗2/ mitrL

’−0.5∗n q/n p∗E∗dt∗(1− s e l f .K∗(Qn + n q∗domega + r22∗
domega ) ) − E∗ s e l f .K∗n q/n p ∗(Vn −(Qn − mitrQn +

0 .5∗ ( n q∗domega + r22∗ domega − n q∗dmQ) )∗dt −
s e l f . V0) ’ ,

’−B re f /B ’ ,
’ 2∗ ( (Qn + r22∗ domega ) /n q + domega )∗np . s i gn ( (Qn +

r22∗ domega ) /n q + domega ) + 1.5∗LdivB /( n q∗dt ) +
1/( r21∗B∗n q ) ’ ] )

i f part ia lSys tem == ’ mi t ra l open ’ :
a1 , a2 , a3 = [ eva l ( e ) for e in e x p r e s s i o n s

[ [ 0 , 1 , 2 ] ] ]

J inv = np . array ( [ [ −1 , −a2 ] ,
[−a3 , a1 ] ] )

/(−a1−a2
∗a3 )

return J inv
e l i f part ia lSys tem == ’ a o r t i c open ’ :

a4 , a5 , a6 = [ eva l ( e ) for e in e x p r e s s i o n s
[ [ 3 , 4 , 5 ] ] ]

J inv =np . array ( [ [ a6 , −a4 ] ,
[−a5 , −1] ])

/(−a6 −
a4∗a5 )

return J inv
else :

a1 , a2 , a3 , a4 , a5 , a6 = [ eva l ( e ) for e in
e x p r e s s i o n s ]

J inv = np . array ( [ [ a6+a4∗a5 , a2∗a6 , −a2∗a4
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] ,
[ a3∗a6 , −a1
∗a6 , a1∗a4

] ,
[ −a3∗a5 , a1
∗a5 , a1+a2
∗a3 ] ] ) /( a3∗
a2∗a6 + a1∗
a6 + a1∗a4∗
a5 )

return J inv

class Valve :
def i n i t ( s e l f , M st , M rg , de l ta p open , d e l t a p c l o s e ,

K v open , K v c lose , rho , l e f f ) :
s e l f . M st = M st
s e l f . M rg = M rg
s e l f . de l ta p open = de l ta p open
s e l f . d e l t a p c l o s e = d e l t a p c l o s e
s e l f . K v open = K v open
s e l f . K v c lo s e = K v c lo s e

s e l f . l e f f = l e f f

s e l f . rho = 1060

def i n i t i a l i z e S o l u t i o n s ( s e l f , Tsteps ) :
s e l f . A s = np . z e r o s ( Tsteps )

#s e l f . L = np . z e r o s ( Tsteps )
s e l f . s t a t e = np . z e r o s ( Tsteps )

def computeB ( s e l f , A, n) :
A s = s e l f . e f f e c t i v e O r i f i c e A r e a (A, n)#s e l f . A s [ n ]
i f A s == 0 :

B = None
e l i f A/A s > 1e4 :

B = None
else :

B = 0.5∗ s e l f . rho ∗(1/ A s − 1/A) ∗∗2
return B

def computeL ( s e l f , A, n) :
A s = s e l f . e f f e c t i v e O r i f i c e A r e a (A, n)#s e l f . A s [ n ]
i f A s == 0 :

L = None
e l i f A/A s > 1e4 :

L = None
else :
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L = 2∗np . p i ∗ s e l f . rho ∗(1/ A s − 1/A) ∗∗0.5# +
s e l f . rho∗ s e l f . l e f f /A

return L

#d e f A e f f ( s e l f , A, s t a t e ) :
# A s = s e l f . A s (A, s t a t e )
# re turn A∗A s /(A−A s )

def LdivideB ( s e l f , A, n) :
A s = s e l f . e f f e c t i v e O r i f i c e A r e a (A, n)# s e l f . A s [ n ]
#s e l f . A s [ n ] = A s
i f A s == 0 :

return None
e l i f A/A s > 1e4 :

return None
else :

return 4∗np . p i ∗(1/ A s − 1/A) ∗∗(−1.5)# + 2∗
s e l f . l e f f ∗A∗A s ∗∗2/(A − A s ) ∗∗2

def e f f e c t i v e O r i f i c e A r e a ( s e l f , A, n) :
return ( s e l f . A max(A) − s e l f . A min (A) ) ∗ s e l f . s t a t e [ n

] + s e l f . A min (A)

def A max( s e l f , A) :
return s e l f . M st ∗ A

def A min ( s e l f , A) :
return s e l f . M rg ∗ A

def updateValveState ( s e l f , de l ta p , n , dt ) :

i f d e l t a p > s e l f . de l ta p open :
i f s e l f . s t a t e [ n ] == 1 . 0 :

s e l f . s t a t e [ n+1] = 1 .0
else :

#s e l f . s t a t e [ n+1] = s e l f . s t a t e [ n−1] +
2∗ dt∗(1− s e l f . s t a t e [ n ] ) ∗ s e l f .
K v open ∗( d e l t a p − s e l f .
d e l t a p o p e n )

s e l f . s t a t e [ n+1] = s e l f . s t a t e [ n ] + (1
− s e l f . s t a t e [ n ] ) ∗ s e l f . K v open ∗(
d e l t a p − s e l f . de l ta p open )∗dt

i f s e l f . s t a t e [ n+1] > 1 . 0 :
s e l f . s t a t e [ n+1] = 1 .0

e l i f d e l t a p < − s e l f . d e l t a p c l o s e :
i f s e l f . s t a t e [ n ] == 0 . 0 :

s e l f . s t a t e [ n+1] = 0 .0
else :

#s e l f . s t a t e [ n+1] = s e l f . s t a t e [ n−1] +
2∗ dt ∗ s e l f . s t a t e [ n ]∗ s e l f . K v open ∗(
d e l t a p − s e l f . d e l t a p c l o s e )
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s e l f . s t a t e [ n+1] = s e l f . s t a t e [ n ] +
s e l f . s t a t e [ n ]∗ s e l f . K v c lo s e ∗(
d e l t a p − s e l f . d e l t a p c l o s e )∗dt

i f s e l f . s t a t e [ n+1] < 0 :
s e l f . s t a t e [ n+1] = 0 .0

else :
s e l f . s t a t e [ n+1] = s e l f . s t a t e [ n ]

B Bifurcations - implemented code

def c a l l 1 ( s e l f , P, Q, A, dt ) :#( s e l f , P, Pn, Q, Qn, A, An, dt ) :

P1 , P2 , P3 , Q1, Q2, Q3, A1 , A2 , A3 = P[ 0 ] [ −1 ] , P [ 1 ] [ 0 ] , P
[ 2 ] [ 0 ] , Q[ 0 ] [ −1 ] , Q[ 1 ] [ 0 ] , Q[ 2 ] [ 0 ] , A[ 0 ] [ −1 ] , A [ 1 ] [ 0 ] , A
[ 2 ] [ 0 ]

C1 , C2 , C3 = s e l f . mothers [ 0 ] . C nID (P [ 0 ] , −1) , s e l f . daughters
[ 0 ] . C nID (P [ 1 ] , 0) , s e l f . daughters [ 1 ] . C nID (P [ 2 ] , 0)

#rho1 , rho2 , rho3 = s e l f . rho [ 0 ] , s e l f . rho [ 1 ] , s e l f . rho [ 2 ]
rho = s e l f . rho [ 0 ]

r221 , r212 , r213 = s e l f . systemEquations [ 0 ] . R[ − 1 ] [ 1 ] [ 1 ] , s e l f .
systemEquations [ 1 ] . R [ 0 ] [ 1 ] [ 0 ] , s e l f . systemEquations [ 2 ] . R
[ 0 ] [ 1 ] [ 0 ]

r211 , r222 , r223 = s e l f . systemEquations [ 0 ] . R[ − 1 ] [ 1 ] [ 0 ] , s e l f .
systemEquations [ 1 ] . R [ 0 ] [ 1 ] [ 1 ] , s e l f . systemEquations [ 2 ] . R
[ 0 ] [ 1 ] [ 1 ]

L1 , L2 , L3 = s e l f . systemEquations [ 0 ] . L [ −1 ] [ 0 ] , s e l f .
systemEquations [ 1 ] . L [ 0 ] [ 1 ] , s e l f . systemEquations [ 2 ] . L
[ 0 ] [ 1 ] ,

””” C a l c u l a t e domega 1 ”””
z1 = s e l f . z [ 0 ] [ −1 ] + s e l f . vz [ 0 ] ∗ s e l f . c func [ 0 ] (A[ 0 ] ,P

[0 ] ,−1) ∗ dt
du1 = np . array ( [ np . i n t e r p ( z1 , s e l f . z [ 0 ] ,P [ 0 ] ) − P1 ,np . i n t e r p (

z1 , s e l f . z [ 0 ] ,Q[ 0 ] ) − Q1 ] )
#du1 = np . array ( [ np . i n t e r p ( z1 , s e l f . z [ 0 ] ,P [ 0 ] ) − np . i n t e r p ( z1 ,

s e l f . z [ 0 ] , Pn [ 0 ] ) , np . i n t e r p ( z1 , s e l f . z [ 0 ] ,Q[ 0 ] ) − np . i n t e r p (
z1 , s e l f . z [ 0 ] ,Qn [ 0 ] ) ] )

domega 1 = np . dot (L1 , du1 )

””” C a l c u l a t e domega2 ”””
z2 = s e l f . z [ 1 ] [ 0 ] + s e l f . vz [ 1 ] ∗ s e l f . c func [ 1 ] (A[ 1 ] ,P [ 1 ] , 0 )

∗ dt
du2 = np . array ( [ np . i n t e r p ( z2 , s e l f . z [ 1 ] ,P [ 1 ] )−P2 ,np . i n t e r p ( z2

, s e l f . z [ 1 ] ,Q[ 1 ] )−Q2 ] )
domega2 = np . dot (L2 , du2 )

””” C a l c u l a t e domega2 ”””
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z3 = s e l f . z [ 2 ] [ 0 ] + s e l f . vz [ 2 ] ∗ s e l f . c func [ 2 ] (A[ 2 ] ,P [ 2 ] , 0 )
∗ dt

du3 = np . array ( [ np . i n t e r p ( z3 , s e l f . z [ 2 ] ,P [ 2 ] )−P3 , np . i n t e r p ( z3 ,
s e l f . z [ 2 ] ,Q[ 2 ] )−Q3 ] )

domega3 = np . dot (L3 , du3 )

s o l = s e l f . newtonSolver ( s e l f . domega previous t imestep , P1 , P2
, P3 , Q1, Q2, Q3, A1 , A2 , A3 , C1 , C2 , C3 , rho ,\

domega 1 , domega2 , domega3 ,
r221 , r212 , r213 , r211 , r222 ,

r223 )
s e l f . domega prev ious t imestep = s o l [ 0 : 2 ]
domega1 , domega 2 , domega 3 = s o l

”””
args = [ P1 , P2 , P3 , Q1, Q2, Q3, A1, A2, A3, C1 , C2 , C3 , rho ,\

r221 , r212 , r213 , r211 , r222 , r223 ,
domega 1 , domega2 , domega3 ]

er ror = sum ( [ abs ( i ) f o r i in s e l f . f s o l v e f u n c t i o n ( s e l f .
domega prev ious t imes tep , args ) ] )

i f e r ror < 1 .E−2:
re turn P1 , Q1, A1, P2 , Q2, A2, P3 , Q3, A3

so l , i n f o d i c t , a , b = f s o l v e ( s e l f . f s o l v e f u n c t i o n , s e l f .
domega prev ious t imes tep , args=args , fpr ime = s e l f .
j acob ianInverseMatr i x , f u l l o u t p u t = True , x t o l = 10 .0)

s e l f . s u b i t e r a t i o n s += i n f o d i c t [ ’ n fev ’ ]
p r i n t s e l f . s u b i t e r a t i o n s

domega 2 , domega 3 = s o l
domega1 = ( r212∗domega 2 + r222∗ domega2 + r213∗domega 3 +

r223∗ domega3 − r211∗domega 1 ) / r221
”””

domega1 = np . array ( [ domega 1 , domega1 ] )
domega2 = np . array ( [ domega 2 , domega2 ] )
domega3 = np . array ( [ domega 3 , domega3 ] )

R1 , R2 , R3 = s e l f . systemEquations [ 0 ] . R[−1] , s e l f .
systemEquations [ 1 ] . R[ 0 ] , s e l f . systemEquations [ 2 ] . R[ 0 ]

du1 = np . dot (R1 , domega1 )
du2 = np . dot (R2 , domega2 )
du3 = np . dot (R3 , domega3 )

P1 += du1 [ 0 ]
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Q1 += du1 [ 1 ]
A1 = s e l f . A func [ 0 ] ( [ P1] ,−1)

P2 += du2 [ 0 ]
Q2 += du2 [ 1 ]
A2 = s e l f . A func [ 1 ] ( [ P2 ] , 0 )

P3 += du3 [ 0 ]
Q3 += du3 [ 1 ]
A3 = s e l f . A func [ 2 ] ( [ P3 ] , 0 )

return P1 , Q1, A1 , P2 , Q2, A2 , P3 , Q3, A3

def newtonSolver ( s e l f , x0 , P1 , P2 , P3 , Q1, Q2, Q3, A1 , A2 , A3 , C1 ,
C2 , C3 , rho , domega 1 , domega2 , domega3 , r221 , r212 , r213 ,

r211 , r222 , r223 ) :
a rgs = [ P1 , P2 , P3 , Q1, Q2, Q3, A1 , A2 , A3 , C1 , C2 , C3 , rho ,\

r221 , r212 , r213 , r211 , r222 , r223 ,
domega 1 , domega2 , domega3 ]

r e s = s e l f . res idualFunctionNewAlgorithm ( x0 , args )
i t e r a t i o n s = 0

i f np . l i n a l g . norm( res , 2 )< 1 :# < 0.1:#
x = x0

else :
xn = x0
J inv = s e l f . jacobianInverseMatr ixNewAlgor ithm (xn , args )
while True :

i t e r a t i o n s +=1
x = xn − np . dot ( J inv , r e s )
#error = ( np . l i n a l g . norm( x − xn , 2) ) /np . l i n a l g . norm(

xn , 2 )
xn = x
i f i t e r a t i o n s >0:#error< 0.001:#

break
r e s = s e l f . res idualFunctionNewAlgorithm (x , args )

domega 2 , domega 3 = x
domega1 = ( r212∗domega 2 + r222∗ domega2 + r213∗domega 3 +

r223∗ domega3 − r211∗domega 1 ) / r221
return domega1 , domega 2 , domega 3

def res idualFunctionNewAlgorithm ( s e l f , x , a rgs ) :
domega 2 , domega 3 = x

P1 , P2 , P3 , Q1, Q2, Q3, A1 , A2 , A3 , C1 , C2 , C3 , rho ,\
r221 , r212 , r213 , r211 , r222 , r223 ,

domega 1 , domega2 , domega3 =
args
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domega1 = ( r212∗domega 2 + r222∗ domega2 + r213∗domega 3 +
r223∗ domega3 − r211∗domega 1 ) / r221

a = P1 + domega 1 + domega1 + 0.5∗ rho ∗ ( (Q1 + r211∗domega 1 +
r221∗ domega1 ) ∗∗2/(A1 + C1∗( domega 1 + domega1 ) ) ∗∗2)

b = P2 + domega 2 + domega2 + 0.5∗ rho ∗ ( (Q2 + r212∗domega 2 +
r222∗ domega2 ) ∗∗2/(A2 + C2∗( domega 2 + domega2 ) ) ∗∗2)

c = P3 + domega 3 + domega3 + 0.5∗ rho ∗ ( (Q3 + r213∗domega 3 +
r223∗ domega3 ) ∗∗2/(A3 + C3∗( domega 3 + domega3 ) ) ∗∗2)

f 1 = a − b
f2 = a − c

#p r i n t P1 , P2 , P3 , Q1, Q2, Q3, A1, A2, A3, C1 , C2 , C3 , rho ,
r221 , r212 , r213 , r211 , r222 , r223 , domega 1 , domega2 ,
domega3 , domega1 , domega 2 , domega 3

return [ f1 , f 2 ]

def jacobianInverseMatrixNewAlgorithm ( s e l f , x , a rgs ) :

domega 2 , domega 3 = x
P1 , P2 , P3 , Q1, Q2, Q3, A1 , A2 , A3 , C1 , C2 , C3 , rho ,\

r221 , r212 , r213 , r211 , r222 , r223 ,
domega 1 , domega2 , domega3 =
args

domega1 = ( r212∗domega 2 + r222∗ domega2 + r213∗domega 3 +
r223∗ domega3 − r211∗domega 1 ) / r221

h1 = Q1 + r211∗domega 1 + r221∗ domega1
h2 = A1 + C1∗( domega 1 + domega1 )
h3 = Q2 + r212∗domega 2 + r222∗ domega2
h4 = A2 + C2∗( domega 2 + domega2 )
h5 = Q3 + r213∗domega 2 + r223∗ domega3
h6 = A3 + C3∗( domega 3 + domega3 )

J11 = r212 / r221 − 1 + rho∗h1∗( r212∗h2 − C1∗ r212 / r221∗h1 ) /h2
∗∗3 − rho∗h3∗( r212∗h4 − C2∗h3 ) /h4∗∗3

J12 = r213 / r221 + rho∗h1∗( r213∗h2 − C1∗ r213 / r221∗h1 ) /h2∗∗3
J21 = r212 / r221 + rho∗h1∗( r212∗h2 − C1∗ r212 / r221∗h1 ) /h2∗∗3
J22 = r213 / r221 − 1 + rho∗h1∗( r213∗h2 − C1∗ r213 / r221∗h1 ) /h2
∗∗3 − rho∗h5∗( r213∗h5 − C3∗h6 ) /h6∗∗3

det = J11∗J22−J12∗J21

J inv = 1/ det∗np . array ( [ [ J22 ,−J12 ] ,
[−J21 , J11 ] ] )

return J inv

def jacobianMatrixNewAlgorithm ( s e l f , x , a rgs ) :
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domega 2 , domega 3 = x
P1 , P2 , P3 , Q1, Q2, Q3, A1 , A2 , A3 , C1 , C2 , C3 , rho ,\

r221 , r212 , r213 , r211 , r222 , r223 ,
domega 1 , domega2 , domega3 =
args

domega1 = ( r212∗domega 2 + r222∗ domega2 + r213∗domega 3 +
r223∗ domega3 − r211∗domega 1 ) / r221

h1 = Q1 + r211∗domega 1 + r221∗ domega1
h2 = A1 + C1∗( domega 1 + domega1 )
h3 = Q2 + r212∗domega 2 + r222∗ domega2
h4 = A2 + C2∗( domega 2 + domega2 )
h5 = Q3 + r213∗domega 2 + r223∗ domega3
h6 = A3 + C3∗( domega 3 + domega3 )

J11 = r212 / r221 − 1 + rho∗h1∗( r212∗h2 − C1∗ r212 / r221∗h1 ) /h2
∗∗3 − rho∗h3∗( r212∗h4 − C2∗h3 ) /h4∗∗3

J12 = r213 / r221 + rho∗h1∗( r213∗h2 − C1∗ r213 / r221∗h1 ) /h2∗∗3
J21 = r212 / r221 + rho∗h1∗( r212∗h2 − C1∗ r212 / r221∗h1 ) /h2∗∗3
J22 = r213 / r221 − 1 + rho∗h1∗( r213∗h2 − C1∗ r213 / r221∗h1 ) /h2
∗∗3 − rho∗h5∗( r213∗h5 − C3∗h6 ) /h6∗∗3

#det = J11∗J22−J12∗J21

J = np . array ( [ [ J11 , J12 ] ,
[ J21 , J22 ] ] )

return J
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