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Abstract

The use of shape memory alloys has seen a steady increase since its discovery.
Understanding the mechanical behavior behind a ductile fracture of these materials
is important to further the applicability of shape memory alloys. Some research
on spherical microvoids in shape memory alloys has been conducted, but there is
not much literature on non-spherical voids.

The effect of non-spherical microvoids on the mechanical behavior of shape mem-
ory alloys has been explored in this thesis. By running numerical simulations in
the commercial finite element software Abaqus, several different void shapes and
sizes were analyzed. The simulations were limited to uniaxial stress without su-
perplasticity. The results suggest that the width of the void, not the heigth/width
ratio or the void volume fraction, has the greatest influence on the transformation
stresses. Due to the limitations of this thesis, further studies should be conducted.

The results had some differences compared to similar studies. The nature of the
difference is unknown, and should be further explored. A more in-depth study
with more shapes and void volume fractions is also needed to confirm the findings
of this report. Both the effect of superplasticity, as well as a triaxial stress state
may produce different results. A study of the effect of superplasticity should be
emphasized, as plasticity is a very important part of a material’s behavior.



Summary in Norwegian

Bruken av hukommelseslegeringer har hatt en gradvis økning etter at de ble op-
pdaget. For å kunne utvide deres bruksområder, er det viktig å forstå mekanikken
bak duktile brudd i disse materialene. Effekten av sfæriske mikroporer har fått
litt oppmerksomhet, men det er lite litterature om ikke-sfæriske porer.

I denne oppgaven er effekten av ikke-sfæriske porer på de mekaniske egenskapene
til hukommelseslegeringer nærmere undersøkt. Numeriske simulasjoner er kjørt i
Abaqus, hvor forskjellige poreformer og porestørrelser ble studert. Simulasjonene
var begrenset til uniaksiell spenning uten superplastisitet. Resultatene antyder at
porebredden, ikke høyde/bredde forholdet eller pore-volum forholdet, har størst
påvirkning på transformasjons spenningene. På grunn av begrensningene i denne
oppgaven burde mer dypt-gående analyser utføres.

Resultatene har også ulikheter med tilsvarende studier. Årsaken til disse ulikhetene
er ukjente, men bør identifiseres. En dypere studie med flere pore-former og
pore-volum forhold trengs også for å verifisere resultatene. En analyse med su-
perplastisitet eller en triaksiell spenningstilstant bør også utføres for å danne et
mer komplett bilde av materialets oppførsel. Særlig superplastisitet bør studeres,
ettersom plastisitet er en naturlig del av materialets oppførsel.
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1 Introduction

Shape memory alloys are a group of alloys capable of "remembering" its original
state. It has two defining characteristics: the superelastic effect and the shape
memory effect. In later years the material has seen an increased range of applica-
tions due to its high power density, solid state actuation, high damping capacity,
durability and fatigue resistance [1].

Despite being discovered several years ago, little research has been done on shape
memory alloys. Due to the increasing use of shape memory alloys, it is important
to examine how a ductile fracture will affect the mechanical properties of the
material.

This thesis will study the effect of non-spherical voids. It builds upon the work
of Jim Stian Olsen and Zhiliang Zhang [2], where they examined the effect of
spherical micro-voids in shape memory alloys.

Several models with different void shapes and sizes are modelled in Abaqus. By
subjecting them to a uniaxial load, which is subsequently removed, produces the
characteristic hysteresis.

Only superelasticity in a uniaxial stress state is tested. Some guidance for a triaxial
stress test is supplied in chapter 3.2.

A basic look at the theory behind shape memory alloys and ductile fracture is
presented in chapter 2, along with some continuum mechanics and a quick overview
of the challenges in modeling ductile fracture.

In chapter 3 follows a description of how the models were modelled. The simu-
lations are run in the commercial finite element software SIMULIA Abaqus FEA
(Abaqus) and the results are processed in Microsoft Excel (Excel). It is assumed
that the reader has basic knowledge of how Abaqus work, as only details that are
somewhat unique for this type of problem are explained in detail.

The results are discussed in detail in chapter 4. The main points are divided into
sub-chapters, with a unifying discussion in chapter 4.5. Conclusions and recom-
mendations for further work are presented in chapter 5. The appendix contains
input-data for Abaqus.
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2 Theory

This thesis requires a basic understanding of shape memory alloys, ductile fracture
and continuum mechanics. A brief overview of the relevant parts of these subjects
is supplied in this chapter.

2.1 Shape memory alloys

Shape memory alloys are materials that are able to recover large strains, and
capable of reverting to the original shape (thus the name shape memory). Shape
memory alloys are known for the superelastic effect and the shape memory effect.

The superelastic effect allows the material to recover large strains without any
permanent damage. This process will also absorb large amounts of energy, making
it potentially useful for dampers and other energy absorbents. The shape memory
effect allows the material to regain its original shape after deformation.

Figure 1: Superelasticity with the characteristic hysteresis.
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Superelastic effect and the shape memory effect

These effects are governed by martensitic transformation. This is a diffusionless,
or displacive, phase transformation in solids. The change in the atomic structure is
a result of a cooperative movement of the atoms, not local diffusions. Martensitic
transformation may only occur when both:

• The chemical free energy of the martensitic phase is lower than that of the
original austenitic phase.

• The non-chemical free energy is smaller than the difference of chemical free
energy between the two phases [2].

Superelasticity is mostly the result of non-thermoelastic transformation, which
occurs when all non-chemical free energy (such as interface energy, elastic energy
and energy needed to induce plastic deformation) are used. Contrary, the shape
memory affect is mainly the result of thermoelastic transformation, where non-
chemical free energy is negligible.

In the original phase, the austenitic phase, a material have a highly ordered body-
centered cubic structure. When it is sufficiently cooled, phase transformation
to martensite starts. To accommodate this change, the atoms starts twinning.
Because of the low symmetry in the martensitic phase, several variations can form.
This is called multi-variant (or temperature-induced) martensite.

As the material is deformed, the atoms starts detwinning. When the deformations
are large enough, the atoms are forced into a single variant. This is called single-
variant (or stress-induced) martensite. The deformation will remain when the
stress is removed. This deformation differs from plastic deformations, as it is a
result of a change of phase, not dislocation.

By heating the material, a phase transformation from stress-induced martensite
to austenite is initiated. As the austenitic phase is highly symmetric, there is only
one path for the reverse transformation. The material then regains the original
shape.

The most common shape memory alloys are NiTi-based alloys, which are lightweight
(due to the low density of titanium), easy to install and proven reliable [3]. There
are alternatives to NiTi, such as Cu-based and Fe-based alloys. These are cheaper,
but at the cost of quality.
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Figure 2: Different phases of the shape memory alloy.

Modeling of shape memory alloys

The amount of martensite in a material is defined as the martensitic fraction, ξ,
which ranges from 0 to 1. Transformation between the phases starts and finishes
at certain temperatures. The forward transformation from austenite to martensite
starts at Ms and ends at Mf , while the reverse transformation starts at As and
ends at Af .

Due to the thermoelastic nature of shape memory alloys, there is an inverse rela-
tionship between stress and temperature. By increasing the stress in the material,
the critical transformation temperatures are reduced. Thus phase transformation
can be forced through applied stress.

The austenitic and martensitic phases of a shape memory alloy usually have dif-
ferent elastic modulus’. During transformation, the elastic modulus is modelled as
a function of the martensitic fraction.

E = E(ξ) = EA + ξ(EM − EA) (2.1)

The austenitic phase is generally stiffer than the martensitic phase. An example
of how the difference in elastic modulus can influence the stress-strain curve is
illustrated in figure 3.

During transformation, a small increase in stress will produce large strains. This is
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Figure 3: Comparison of different values of EM . The red curve with EM = 1/3EA.

called the transformation plateau. If the material is loaded further after completing
transformation, it will exhibit a normal elastic behavior until plastic yielding.

Plastic behavior stems from dislocations in the atom structure, which is different
from the twinning and detwinnig effect. Plastic strains are non-recoverable. Be-
cause the start of transformation depends on temperature, care should be taken
to ensure that the material does not yield to plasticity before transformation is
commenced.

Although shape memory alloys are relatively durable, functional fatigue is an issue
with prolonged use. Functional fatigue is a gradual diminishing of either the shape
memory effect or the superelastic effect (depending on the materials application).
The fatigue can be delayed by reducing the strain, or by using alloys with high
melting temperature and mechanically strong austenite [4].

2.2 Ductile fracture

Ductile fracture occurs when a material fractures due to extensive plastic defor-
mation. The process of ductile fracture has several stages.

When stress is applied to a material, a process called void nucleation is initiated.
Second-phase particles, either added by design or unavoidable impurities, act as
nucleation sites. Here the particles will break the local matrix material, either by
debonding or cracking. This process is dependent on several factors, such as tem-
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perature, particle size, shape, distribution, stress state and strength of the particle
and interface [5]. Because of the complexity of this process, it is hard to cre-
ate universal models. Different scenarios may require very different approaches in
modeling. In general, there are two types of models for void nucleation: dislocation
models and continuum models [6].

If the stress is maintained, the voids will grow. This is a continuum plastic defor-
mation process. During this stage voids may change shape, depending on the stress
state. As there is no internal pressure, the deformation of the voids is governed
by the plastic flow of the material. This is a relatively stable stage of deforma-
tion. Voids will grow in the principal direction during uniaxial load. However, in
a triaxial stress state the voids will grow laterally and flatten, independent of the
principal strain direction [5].

The associated flow rule of martensitic and austenitic transformation, is assumed
to be equivalent of the plastic flow due to yielding [7].

Figure 4: The different phases of ductile fracture [5].

The last stage is void coalescence. As long as stress is applied, the microvoids will
continue to expand until they rapidly start linking up with other voids. The crack
will propagate until failure.

Models describing the whole fracture process have been made. These are based
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on two different approaches: A global approach, where the ductile fracture is
regarded as a collective process controlled by global parameters. And a local
approach, where the sub-processes leading to fracture are separated. Classical
fracture mechanics has a global approach, while damage mechanics has a local
approach [6].

An example of the latter type of model is the Gurson model [8]. It is based upon
the upper bound theorem of plasticity. It states that a given kinematic admissible
mechanism where the external work is set equal to the internal plastic work, will
produce a capacity greater or equal to the real value [9].

The Gurson yield function, with additional parameters provided by Tvergaard [10],
is presented for spherical voids in equation (2.2).

Φ =
Σ2
eq

σ̄2 + 2q1f cosh
(

3q2Σhyd

2σ̄

)
− (1 + (q1f)2) = 0 (2.2)

Σeq = Conventional von Mises equivalent stress

σ̄ = Flow stress of the matrix material

Σhyd = Hydrostatic stress

f = Void volume fraction

qi = Tvergaard’s Constants

Notice that a void volume fraction of 0 reduces the equation to the conventional
Von Mises function for zero porosity.

To simulate the voids in a shape memory alloy, a unit-cell model is made. An
axisymmetric model with a single void in the center can be regarded as an element
in a doubly periodic array of regular hexagonal cylindrical cells. The hexagonal
shape is approximated by the cylinder produced by the axisymmetric model [6].

A Gurson model modified for shape memory alloys have been suggested by Jim
Stian Olsen [11]. He used the start of forward transformation stress as the matrix
yield stress.

Φtr(Σ,f,ξ) =
Σ2
eq

σ̄tr
2

f

+ 2q1f cosh
(

3q2Σhyd

2σ̄trf

)
− (1 + (q1f)2) = 0 (2.3)

Where σtrf = σtrf (ξ) is the transformation flow stress.
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2.3 Stress state

By calculating the stress and strain of the whole unit-cell model, the influence of
the void size and shape on the material can be found. The local quantities within
the unit-cell are denoted microscopic quantities and global quantities are called
mesoscopic quantities.. The mesoscopic stress and strain tensors are denoted Σij

and Eij respectively, while the microscopic stress and strain tensors are denoted
σij and εij.

When analysing the model, the mesoscopic quantities are used. As the unit-cell
model represents one element in a larger system, the mechanical behavior of the
whole unit-cell is needed. Just like a tiny element in the Abaqus model only
represents a part of a bigger model, the unit-cell is only a part of an even bigger
system. This way the voids in a ductile material may be studied, without modeling
more than one void.

Because of the axisymmetric model, there is no shear stress in the x- and y-
direction. Thus the axial, radial and tangential directions are also the principal
directions. Furthermore, due to symmetry, the radial and tangential stress and
strain will be of equal magnitude.

The mesoscopic strain tensors are:

Ex = ln
(

1 + uax
Lx0

)

Ey = ln

(
1 +

udy
Ly0

)

Eeq = 2
3 |Ey − Ex|

(2.4)

As the stress vector is constant along the edges of the model, the mesoscopic
stresses are found as:

Σx = Fy
4π(Lx0 + uax)(Ly0 + udy)

Σy = Fx
π(Lx0 + uax)2

(2.5)

The mesoscopic hydrostatic and equivalent stresses are found as:



10 2 THEORY

Σhyd = Σy + 2Σx

3

Σeq = |Σy − Σx|
(2.6)

The stress triaxiality is defined in equation (2.7), where ρ is the stress proportion-
ality factor. ρ = 0 (T = 1/3) represents a uniaxial stress state.

T = Σhyd

Σeq

= 1
3

(
1 + 2ρ
|1− ρ|

)
(2.7)

ρ = Σx

Σy

= 3T − 1
3T + 2 (2.8)

Where ρ is the loading parameter.

From equation (2.7) and equation (2.2) it can be seen that the intensity of the
hydrostatic stress depends on the stress triaxiality. Thus it is important to achieve
a constant stress triaxiality during the simulation. This will be further explored
in section 3.2.
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3 Method

3.1 Overview

The main purpose of this thesis is to study the effect of non-spherical voids on the
mechanical properties of shape memory alloys. This is achieved by comparing the
stress-strain plots and the start of transformation stresses of models with different
microvoid shapes and sizes.

The voids are modelled as ellipsoidals, while the hexagonal cells are approximated
as cylinders, thus enabling the use of axisymmetric models [10]. Two parameters
define non-spherical voids, the aspect ratio a and the void fracture f . To ensure a
wide range of data to analyse, several models with varying aspect ratios and void
fractions are made.

a = rh
rw

(3.1)

f = 2rhr2
w

3L2
x0Lz0

(3.2)

The models are made with void fractions of f = 0,001, f = 0,010 and f = 0,050,
and aspect ratios ranging from a = 0,25 to a = 4,00. A model with a = 4,00 and
f = 0,050 is not made because the height of the void exceeded the height of the
model.

Due to software problems, only uniaxial tests have been run. A theoretical imple-
mentation of a triaxial stress state is given in this chapter.

Figure 5: Example of different void shapes: a) Penny-shaped b) Oblate c) Sphere
d) Prolate [5].
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3.2 Modeling of test specimen in Abaqus

Creating an axisymmetric model is straightforward in Abaqus. In such a model
the y-axis is the axis of revolution, while the x-axis is the radial direction. Thus
only a cross section of the X-Y plane, with x ranging from x = 0 to x = Lx0 is
needed. To reduce computational time, the model is cut in half at y = 0 and
appropriate boundary conditions are added. The edge x = 0 is prevented from
moving in the radial direction and the edge y = 0 is prevented from moving in the
axial direction. The dimensions are shown in figure 6.

All models have a height of Ly0 and a radius of Lx0. Thus simulating a cylinder
with a height of H = 2Ly0 and a radius of R = Lx0, with a void in the center. As
this is a unit-cell, the units of the dimensions are not important.

Figure 6: Example of axisymmetric model.
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Figure 7: Boundary conditions and displacement of model with a = 0,50 and
f = 0,010.

The strains in this model are expected to exceed ε = 0,01, thus small strains
simplifications may not be used [9]. Non-linear geometry is thus enabled during
the simulations.

Achieving convergence may be an obstacle due to the highly non-linear nature of
the problem, but careful adjustment of increment sizes will provide satisfactory
results.

To prevent the model from exploding due to a poorly calibrated load, a forced
displacement is applied. It is placed along the top edge (y = Ly0) in the loading
step, and then subsequently removed in the unloading step.

With an axisymmetric model, the reaction force of each node is the sum of the
nodal force circumnavigating the figure, thus the sum of all the nodal axial reaction
forces is the total axial reaction force [12].

The mesh is structured and made of 8-node biquadratic elements with reduced
integration (called CAX8R in Abaqus), which is sufficient for this type of problem
[2]. Each model contains approximately 1500 elements.
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Figure 8: The mesh of the model in figure 7.

UMAT

Shape memory alloys requires material parameters that may not be entered into
Abaqus through the standard input method. Abaqus is bundled with several
user subroutines that are created to help users with problems that are not fully
implemented in the software. One such subroutine is the User Material subroutine
(UMAT in Abaqus/Standard). By entering the material parameters according to
instructions provided by Simulia [13], Abaqus can simulate the superelastic effect
(and superelastic-plastic).

Abaqus employs the algorithms by Auricchio and Taylor [14]. UMAT subroutines
are not usable with other material parameters, thus the Gurson model can cur-
rently not be combined with shape memory alloys. The input used in this thesis
is supplied in Appendix A, while the material data is presented in table 1.
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Parameter Value Description
EA 62000 MPa Austenite elasticity
νA 0,33 Austenite Poisson’s Ratio
EM 62000 MPa Martensite elasticity
νM 0,33 Martensite Poisson’s Ratio
εL 0,04 Transformation strain(
δσ
δT

)
L

6,7 MPa/◦C δσ/δT loading
σSL 440 MPa Start of transformation loading
σEL 540 MPa End of transformation loading
T0 11 ◦C Reference temperature(
δσ
δT

)
U

6,7 MPa/◦C δσ/δT unloading
σSU 250 MPa Start of transformation unloading
σEU 220 MPa End of transformation unloading
σSCL 0 Start of transformation stress during

loading in compression, as a positive value
εLV 0,04 Volumetric transformation strain
NA 0 Number of annealings to be performed

during the analysis

Table 1: Material data.

Multi-Point Constraints

Triaxiality is dependent on the ratio of Σx and Σy, which again depends on the
volume of the model. Because this volume is constantly changing due to the
applied deformation, it is hard to predict the volume after the deformation. Thus,
achieving constant triaxiality cannot be done by applying a radial deformation.

A system was created by Søvik to counteract this problem [6]. A set of springs are
added to the bottom right corner node, k1, and to the top left corner node, k2. As
F = uk. Equations (2.5) are then rewritten:

Σy =
(udy − ucy)ky
π(Lx0 + ubx)2 (3.3)
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Σx = (uax − ubx)kx
4π(Ly0 + ucy)(Lx0 + ubx)

(3.4)

Combining them gives the following relation:

uax = ubx + 2ρky
kx

(udy − ucy)(Ly0 + ucy)
Lx0 + ubx

(3.5)

By constraining the edge x = Lx0 to uax, the model will be in a constant state of
the given triaxiality. By setting ρ = 0, T = 0.33 a uniaxial stress state is achieved.

This can be implemented in Abaqus by use of the Multi-Point Constraint (MPC)
subroutine. The node uax is forced laterally according to equation (3.5), through
the MPC subroutine. The rest of the nodes along the edge x = Lx0 may then be
constrained to follow uax with use of the *Equation function. A suggestion for a
subroutine is supplied in Appendix A. Note that Abaqus requires an approved
Fortran compiler to run this subroutine.

Figure 9: Søvik’s spring model.
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4 Results

4.1 Overview

Several different combinations of void volume fractions and aspect ratios have been
considered.

4.2 Effect of void aspect ratio

As seen in figure 10 and 11, there is not much difference between void volume
fractions as low as f = 0,001 and f = 0,010. The void shape seems to be irrelevant
for void volume fractions of 1% and lower.

The results in figure 10 are indistinguishable from an analysis with no void (not
shown here). In figure 11 there is a slight decrease in the start of forward trans-
formation as the void shape flattens, with a = 0,25 being noticeably lower than
others.

Figure 12 shows a significant reduction in the start of forward transformation
stress for a = 0,25. There seems to be a pattern of a decreasing start of forward
transformation along with a decreasing aspect ratio. However, even at a void
volume fraction of f = 0,050, there is not much difference between sphere shaped
voids and prolate shaped voids (a ≥ 1,00).

Figure 10: Stress-strain curve with f = 0,001.
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Figure 11: Stress-strain curve with f = 0,010.

Figure 12: Stress-strain curve with f = 0,050.

Figure 12 also differs from the others in the elastic parts of the curves. With a
low aspect ratio the elastic slopes are more gradual than the higher aspect ratios,
despite all the curves having exactly the same elastic modulus both in the austenitic
and martensitic phases.

This reason might be because different part of the unit-cell completes transforma-
tion at different times. These patterns are clear with penny-shaped voids, while
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(a) a = 0,25 f = 0,010 (b) a = 1,00 f = 0,010

(c) a = 0,25 f = 0,050 (d) a = 1,00 f = 0,050

Figure 13: The martensitic fraction in the different models with a mesoscopic
stress of approximately 600 MPa. Red indicates a martensitic fraction of ξ = 1
and blue is ξ = 0.

being more diminutive as a increases. There are also signs of a delay of the end of
forward transformation.

The martensitic fraction

A comparison of the martensitic fractions with a mesoscopic stress of approxi-
mately 600 MPa can be seen for four models in figure 13. The martensitic fraction
follows a pattern in three of the four figures. By comparing these figures to the
curves in figures 11 and 12, a correlation between the decrease of start of transfor-
mation stress and lack of martensitic transformation can be seen.

A comparison of the martensitic fraction and stress field of two models is shown
in figure 14 and 15. The martensitic fraction corresponds the the stress field of
the unit-cell. The uneven stress distribution in figure 14b leads to the difference in
martensitic transformation seen in figures 14a and 13c (figures 14a and 13c were
made at a different time increments).

The stress in figure 14b does not envelop the void, but travels straight upwards
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(a) Martensitic fraction ξ. (b) Von Mises stress.

Figure 14: Comparison of the martensitic fraction and the stress field of model
with a = 0,25 and f = 0,050.

(a) Martensitic fraction ξ. (b) Von Mises stress.

Figure 15: Comparison of the martensitic fraction and the stress field of model
with a = 1,00 and f = 0,050.
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in the principal stress direction. Contrary, the stress in figure 15b is more evenly
distributed. The decrease in the start of transformation stress seems to be a
consequence of an uneven stress distribution in the unit-cell.

Plasticity

All the tests are run without plasticity, which may give inaccurate answers. As
the void-width of a = 0,25 with f = 0,050 is 2/3Lx0 there is a considerable elastic
deformation in the void walls. This part of the unit-cell will finish transformation
much faster than other parts, thus increasing both the overall stress and strain of
the model, which might be another reason for the curves shown in figure 12.

The stress field of a model with a = 0,25 and f = 0,050 is shown in figure 16. The
lack of plasticity means the stiffness of the elements is overestimated in some areas.
Instead the elements will continue to resist deformation during the simulations. In
reality, these critical zones would reach the yield stress and plastic flow would
occur.

The exact yield stress of the material used in this report is unknown. Yield strength
is highly dependent on temperature and alloy composition [15] and can range from
500 MPa to above 1400 MPa. The figure shows a considerable stress field across
the unit-cell wall, with extremely high stress in the void corner.

Figure 16: Stress field of model with a = 0,25 and f = 0,050.
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Figure 17: Start of forward transformation.

Figure 18: Start of backward transformation.

Start of transformation stresses

The differences in the start of transformation stresses is shown in figures 17 and
18. While there are large differences in the start of transformation stresses, there
are no discernable differences in the start of backward transformation stresses.

The stress at the start of transformation from austenite to martensite is here found
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as the stress in the first increment when µ < 1, where µ is defined as

µ = 10−4 ∆Σ
∆t (4.1)

The same criteria is used to find the start of transformation from martensite back to
austenite. The start of forward and backward transformation stress are presented
in figures 17 and 18.

There is a distinct reduction of the start of forward transformation stress for the
model with a = 0,25 and f = 0,050, as dicussed earlier. If aspect ratios of
a = 0,50 and lower are excluded, the start of transformation stresses seem to vary
little with increasing aspect ratios. While f = 0,001 and f = 0,010 only show
negligible differences, there is an overall clear reduction for f = 0,050.

At some point the void volume fraction seems to produce and overall reduction in
the start of transformation stresses. However for oblate and penny-shaped voids,
the aspect ratio seems to have more of an influence, likely due to the change in
the stress field, as discussed earlier.

What is curious in all these figures is the lack of change in the start of backward
transformation stress. Even the most extreme case of a = 0,25 with f = 0,050
shows no noticeable change in this stress.

4.3 Effect of void volume fraction

A rearrangement of the plots is shown in figure 19. These further illustrates the
remarks in section 4.2. In forward transformation, the aspect ratio appears to be
the dominant parameter for oblate shaped voids, while the void volume fraction
plays a bigger role in more prolate shapes.

Notice how the reduced aspect ratio only seem to change the start of transforma-
tion stresses, while the increase in void volume fraction produces a downward shift
of the entire upper part of the hysteresis.

As noted in the previous section, the start of the backward transformation remains
unchanged for all aspect ratios and all void volume fractions. This not only con-
tradicts the tendency of reduced transformation stress with a reduction of a and
increase of f , it also contradicts the results of other reports [11]. J. S. Olsen found
a downward shift of the entire hysteresis as the void volume fraction increased. He
only studied spherical voids, thus the model shown in figure 20 should show the
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(a) a = 0,25 (b) a = 0,50

(c) a = 0,75 (d) a = 1,00

(e) a = 1,50 (f) a = 2,00

Figure 19: Different void shapes.
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same downward shift. There is a downward shift on the left side of the hysteresis,
but no equivalent shift on the right side, as Olsen found.

Figure 20: Stress-strain diagram for spherical voids with EM = EA.

Even though Olsen used another material in the tests, the only notable difference
was a reduction in the elastic modulus in the martensitic phase. An analysis with
EM = 1/3EA is shown in figure 21.

Figure 21: Stress-strain diagram for spherical voids with EM = 1/3EA.

Although there is more of a downward shift, especially at the left side of the
hysteresis, the start of backward transformation clearly remains fixed on the same
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stress for all void volume fractions. The elastic phase of the martensite for f =
0,050 is more gradual than in figure 20, though this is most likely due to the same
mechanics discussed in section 4.2, exaggerated because of the reduction in EM .

The reason for the discrepancies between the models is unknown. It is suggested
in Olsen’s paper that he used superplasticity in all models. The lack of plasticity
may be the reason.

4.4 Effect of void width

To further test the influence of void shapes, models with a constant width are made.
These models have the same aspect ratios used earlier, with the corresponding void
volume fracture shown.

These figures show that the start of the forward transformation stress is barely
affected by the increasing height, and thus void volume fraction, of the void. As
seen in figure 25, an increase in the void width reduces the start of transformation,
but any further change to the void shape has a very limited effect.

Figure 22: Start of martensitic transformation with rw = 0,2Lx0.
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Figure 23: Start of martensitic transformation with rw = 0,4Lx0.

Figure 24: Start of martensitic transformation with rw = 0,6Lx0. A model with
a = 2 is not shown as the heigth of the void exceeds the heigth of the model.
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Figure 25: Effect of void width.

The increasing void volume fraction does not decrease the start of transformation
stresses notably. Thus it seems the void volume fraction is less important than
what was expected from the results in section 4.2.

From these figures it seems that only the width of the void, independent of void
volume fraction and aspect ratio, affects the start of the forward transformation
stress.

4.5 Discussions

Void width

The most noteworthy result of the simulations is the importance of the void width.
It is interesting that the void shape and void volume fraction have comparatively
little influence on the mechanical behavior of the material, despite their general
importance in ductile fracture.

Voids will grow in the principal direction during uniaxial load. This means a penny-
shaped void could expand into a prolate void, thus increasing the void volume
fraction considerably, without notably affecting the start of transformation stress.
A material in a uniaxial stress state may be subjected to considerable strain before
the critical stress is reduced.
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In a triaxial stress state the void will expand laterally and flatten, independent
of the principal stresses [5]. This will increase the woid vidth as stress is applied.
However, it is unknown whether the void width has the same influence on the
material in a triaxial stress state.

Figure 17 in section 4.2 shows an overall reduction in the start of transformation
stress for f = 0,050, compared to the similar stresses of f = 0,001 and f = 0,010.
While the latter is ten times the size of the smallest void, and only a fifth of the
largest void, only the largest void has a notable difference in start of transformation
stress. This suggests a non-linear relationship between the void volume fraction
(and thus void width) and the start of transformation stress.

Figure 26 compares the start of forward transformation stress with the area of
the cross-section of the void in the xz-plane. It suggests a linear relationship
between the area of the void perpendicular to the uniaxial stress direction and the
start of transformation stress. Thus the start of transformation stress may have a
quadratic relationship with the void widt. However, this result is highly uncertain
due to the lack of data points.

Figure 26: The start of forward transformation stress compared to the area of void
cross-section.
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Stress distribution

Section 4.2 suggests the reduction of the start of transformation stress stems from
a change in the stress field pattern. The transition from the relatively even stress
distribution seen in figure 15b, to the pillar-shaped distriuion in figure 14b is
uncertain. As the start of transformation stress may be critically reduced beyond
a certain void width, it is important to know at what threshold the stress field will
change.

In a triaxial stress state, the stress field will most likely behave differently. If the
impact of the void width is due to the distribution of the stress field, the void
width will probably not be as important in a triaxial stress state, though this
might depend on the triaxiality T .

This further suggests that it is the distribution of the stress field that influences
the start of transformation stress, while the void width influence this stress field.
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5 Conclusions and Further Work

Conclusions

These models have produced interesting results. There are strong indications that
the start of transformation stress is governed by the stress distribution in the
unit-cell, which seems to be controlled by the void width.

The simulations are all run in a uniaxial stress state. As the stress will be more
evenly distributed in triaxial stress state, there is reason to believe that the void
width in itself will be less important in non-uniaxial stress states.

There are some uncertainties in these results, such as the small range of void
volume fractions modelled and lack of a deeper study of the stress fields. The
lack of consistency with Olsen’s results are also noteworthy. As the reason for this
discrepancy is unknown, it might invalidate the results of this thesis.

Further work

This report has produced a very basic set of results, with many opportunities for
further study. Models with a wider range of void volume fractions and void widths
should be made to substantiate the results in this report.

An effort to reproduce these results would be very beneficial, as they might give a
better understanding of both the mechanics of the change of transformation stress,
but also help enlighten why these results differ from Olsen’s.

The effect of plasticity has only been mentioned briefly in this report. All the
simulations should be run with superplasticity as well. This may produce very
different results and could also explain the difference from Olsen’s paper.

As of now, the only way to model superelasticity in Abaqus is through the user
material subroutine, which cannot be combined with Gurson. By rewriting the
shape memory alloy subroutine to account for the modified Gurson, as proposed
by Olsen (equation (2.3)), the effect of spherical voids can be further studied. This
will require a good understanding of both the programming language Fortran as
well as the user subroutine algorithms employed by Abaqus.

The relationship between the void shape (and particularly the void width) and the
stress field should be further explored. By running the models in a triaxial stress
state, with varying triaxialities, a more complete picture may be produced.
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A Abaqus

UMAT

The following is entered into the property module either in Keywords or in the
input-file. The material name must start with ABQ_SUPER_ELASTIC_[type of element]
for the subroutine to know which algorithm to employ.

*Material, name=ABQ_SUPER_ELASTIC_N3D_superelastic

*user material,consta=15
62000,0.33,62000,0.33,0.04,6.7 ,440.,540.,
11.,6.7 ,250.,220.,,0.04,,
*depvar
24,

MPC

This is a suggestion for a subroutine running Søvik’s algorithm. It has not been
tested and should be thoroughly reviewed. Note that an Intel Fortran compiler is
required to run Fortran subroutines in Abaqus.

SUBROUTINE MPC(UE,A,JDOF,MDOF,N,JTYPE,X,U,UINIT,MAXDOF,
* LMPC,KSTEP,KINC,TIME,NT,NF,TEMP,FIELD,LTRAN,TRAN)

C
INCLUDE ’ABA_PARAM.INC’

C
DIMENSION A(N),JDOF(N),X(6,N),U(MAXDOF,N),UINIT(MAXDOF,N),

* TIME(2),TEMP(NT,N),FIELD(NF,NT,N),LTRAN(N),TRAN(3,3,N)

P = 0.4
LX0 = 10.0
LY0 = 10.0

A(1) = 1.0
A(2) = -1.0 + 2*P*(U(2,4)-U(2,3))*(LY0+U(2,3))/(LX0+U(1,2))^2
A(3) = -2*P*(U(2,4)-LY0-2*U(2,3))/(LX0+U(1,2))
A(4) = -2*P*(LY0+U(2,3))/(LX0+U(1,2))

JDOF(1) = 1
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JDOF(2) = 1
JDOF(3) = 2
JDOF(4) = 2

UE = U(1,2) + 2*P*(U(2,4)-U(2,3))*(LY0+U(2,3))/(LX0+U(1,2))

RETURN
END


