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SUMMARY  

The scope of the presented work has been to investigate the function and properties of a single-
shell waterproof sprayed concrete lining (SCL) system, and evaluate the possible use of this 
system as a permanent solution for modern rail and road tunnels.  The context which has been 
investigated is hard rock environment, exposure to groundwater under low to moderate 
hydrostatic pressures and freeze-thaw cycles as in seasonal Nordic climate. This study covers 
membrane materials based on Ethyl-Vinyl-Acetate co-polymers (EVA) in sprayable form 
embedded in fiber reinforced sprayed concrete constructed according to Norwegian practice for 
permanent rock support. This research work was started September 2011 and the last 
investigations were concluded in June 2015. 

The work has been organized as a conceptual study by firstly identifying the main functional 
and exposure related issues for an SCL structure, followed by field and laboratory 
investigations.   

SCL waterproofed with a sprayed membrane represents a continuously bonded structure from 
the rock surface to the lining surface. In its basic form there are no draining measures in the 
lining, although local or selective drainage can be included with several methods if found 
beneficial. The lining design which is covered in this study is a tunnel with lined walls and 
crown and a drained and unlined invert.  

This lining design implies a conceptual model for the waterproof SCL system with the 
following main elements: 

� Water flow into the tunnel through the drained invert
� Water migration in the rock mass and water exposure of the SCL through rock joints
� Occurrence of local water pressure at the interface between the rock mass and the lining
� The  tunnel space with seasonal variations of temperature and relative air humidity
� Possible water transport through the lining structure by capillary and vapor transport

mechanisms
� The lining  structure with the constituent materials, moisture absorption properties and

moisture condition under the given exposure from the ground water and tunnel air
� Mechanical loads on the membrane through the concrete layers on either side of the

membrane

The establishment of test sites included the construction of two full scale SCL sections, 
instrumentation of a recently constructed rail tunnel and the construction of a lining structure 
for realistic in-situ cured material samples in a road tunnel. Finally, valuable results from the 
monitoring of an SCL test section which was constructed May-June 2014 at the Forsmark 
underground nuclear waste storage could be included in this study. The investigations which 
were carried out at the test sites include the following: 

� Water pressure testing for hydraulic transmissivities of the rock mass
� Continuous in-situ monitoring of ground water pressure in the rock mass in the immediate

vicinity of the SCL structure
� Sampling of tunnel linings with core drilling for investigations of the in-situ moisture

content in the sprayed concrete and membrane materials
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� Thermal monitoring in the rock mass, the SCL structure and the climate on the tunnel air
� Testing of in-situ tensile bonding strength of the lining at intervals after construction

A large scale SCL-structure with sprayed membrane was constructed on a granitic rock mass 
in a specially designed freezing laboratory. Realistic moisture conditioning of the lining 
structure was achieved and several types of freezing loads were simulated physically in order 
to conduct accelerated freeze-thaw exposure and subsequent testing of the lining structure. 

The complete findings from this study are compiled to verify the main conceptual model.  The 
main findings can be summarized as follows: 

� The investigated type of SCL, represents a waterproof and vapor permeable structure which
allows a certain migration of water through the lining in the form of capillary and vapor
diffusion transport mechanisms

� The direct exposure of the lining structure to the ground water and exposure to the tunnel
climate represent critically important boundaries for the condition of the lining and the
properties of the constituent materials

� The moisture properties of the tested sprayed concrete and membrane and the exposure to
groundwater from the rock mass and climatic conditions in the tunnel air, result in a
characteristic moisture content profile for the concrete across the lining, with decreasing
water content from the rock surface towards the lining surface

� Under the found moisture condition range of the SCL structure, the membrane exhibits
high tensile bond strength, in the range of 1.1 – 1.5 MPa measured in-situ in linings.

� Accelerated cyclic freeze-thaw exposure of a large scale lining structure with -3oC
minimum temperature at the membrane location during each freezing cycle showed no
detrimental reduction of tensile strength after 35 freeze/thaw cycles

� The required resistance to rupture of a bonded membrane, is related to the maximum
expected movement (opening) over cracks in the concrete at the interface to the membrane.
The crack bridging capacity was found to be temperature sensitive with significantly lower
performance at 0oC and lower compared to standard testing conditions at 20oC. With
membrane thickness in the range of 3-4 mm, the tested membranes exhibited sufficient
elasticity to bridge crack openings of approximately 1 mm at temperatures down to – 3oC

� Results from testing of the sprayed concrete material for freeze-thaw resistance according
to commonly used test methods would theoretically disqualify the sprayed concrete for use
under freezing conditions. An assessment of the realistic freezing exposure and the
moisture contents in the SCL structure, together with results from a specially developed
functional freeze-thaw performance test for tunnel linings suggest that sprayed concrete
will not suffer any frost damage in a tunnel lining, even under severely cold climate

� Under the tested conditions, comprising low permeable jointed rock masses with typical
Scandinavian hard rock characteristics, low hydraulic conductivities of the rock mass
(range: 10-8 to 10-9 m/s) and groundwater pressures in the range of 680 – 780 kPa, a lining
design with a waterproof and undrained lining in the walls with a drained invert will result
in a certain water pressure in the rock mass in the immediate vicinity of the lining, which
is significantly lower than the full hydrostatic pressure

� Under the tested conditions, no effects on the ground water pressure in the rock mass in the
immediate vicinity of the lining, caused by the application of the membrane could be
measured, when a primary lining of fiber reinforced sprayed concrete had already been
applied
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� Effects of the excavation damaged zone and possibly unsaturated conditions in the rock
mass in the immediate vicinity of the lining are likely explanations for the observed water
pressure drop near the lining

� Destabilizing effects in the rock mass closely surrounding the undrained lining under the
tested conditions which would require an increased rock support level are very unlikely

The findings from this study indicate that the type of SCL which has been investigated can be 
used as a permanent lining solution for road and rail tunnels in hard rock under the following 
conditions:   

� Low to moderate ground water pressures up to approximately 700 kPa in the host rock
mass

� Fiber reinforced sprayed concrete material with certain material and surface properties
� No ground induced loads from the primary (rock support) lining on the membrane (stable

rock support lining)
� Thermal exposure with a minimum temperature of -3oC at the membrane location
� Thicknesses of concrete layers which provide a favorable moisture exposure of the

membrane
� Membrane thickness of minimum 3 mm

Further work is recommended to:

� Investigate the long term effects of exposure of the SCL lining to higher ground water
pressure, particularly the exposure of the membrane to pressurized water at cracks

� Investigate the effects of slow deformations and slow thermal fluctuations in order to
complement the finding from short-term accelerated testing the mechanical performance
parameters

� Investigate the longitudinal thermal profile of selected tunnels, combined with thermal
monitoring in the lining and rock mass in areas with severe freezing for precise
recommendation of areas of use for this lining system

� Improve constructability details for the application process of the  membrane
� Develop improved sprayable membrane materials which are less sensitive to exposure to

liquid water
� Develop specifications for excavation, support and pre-grouting of rock tunnels which

increase the feasibility of the waterproof SCL system. This includes careful contour
blasting, required watertightness achieved by pre-grouting and sprayed concrete mix
designs and application in order to produce a suitable substrate
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ABBREVIATIONS FREQUENTLY USED IN THIS THESIS 

 

COV Coefficient Of Variation, ratio of standard deviation to mean value 

DCS Degree of Capillary Saturation [%]. Degree of saturation of concrete with 

respect to total suction porosity, equal to ratio of moisture content of a concrete 

specimen to the moisture content at full submerged saturation at atmospheric 

pressure at mass equilibrium 

DS Degree of Saturation [%]. Degree of saturation of concrete with respect to total 

porosity, equal to ratio of moisture content of a concrete specimen to the 

moisture content at full submerged pressure saturation at 50 bars at mass 

equilibrium. For a polymeric membrane material DS is the ratio of the water 

content of a specimen to the water content at immersion at atmospheric 

pressure at mass equilibrium 

EDZ Excavation Damaged Zone. Zone of a certain thickness in the rock mass near 

the excavated contour of an underground opening which in which 

hydromechanical and geochemical modifications induce significant changes in 

flow and transport properties. These changes may, for example, include one or 

more orders-of-magnitude increase in flow permeability 

EVA Ethyl-Vinyl-Acetate copolymer, which together with several mineral and 

cementitious components forms a sprayable membrane material for tunnel 

waterproofing 

NPRA Norwegian Public Roads Administration 

NNRA Norwegian National Rail Administration 

RH Relative air humidity [%] 

SCL Sprayed Concrete Lining. Permanent tunnel lining system based on fiber 

reinforced sprayed concrete as the structural material with alternative possible 

waterproofing measures which are integrated into the sprayed concrete 

structure. Such linings may also include rock bolts for rock reinforcement 
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1 INTRODUCTION 

1.1 Background 

Waterproofing of sprayed concrete tunnel linings (SCL) is a critical issue for the successful use 

of such linings in modern rail and road tunnels. Although state-of-the-art sprayed concrete 

material used for ground support is literally impermeable for conductive water flow, cracks and 

imperfections in the concrete leak when exposed to groundwater. A waterproofing measure is 

therefore required. Waterproofing of an SCL structure can basically be approached in the 

following manners: 

 A spray-applied bonded membrane within the concrete structure which main function is to 

prevent water to flow into the tunnel through cracks and imperfections 

 A sprayed concrete layer which is designed to eliminate the effect of leaking cracks. This 

has been attempted by increasing the ductility of the concrete to strongly reduce the 

formation of shrinkage cracks (Bonin et al. 2012) or by introducing an agent in the concrete 

material which produces a growth of crystals in the shrinkage cracks, and hence reduces or 

eliminates leaking water through cracks (McGrath 1998) 

 Drainage measures in the form of half pipes, stripes of geotextile or membrane sheets 

which are installed locally at seepage points in order to drain water down to the invert and 

provide a waterproofing of the lining only where the water ingress occurs (Vereina rail 

tunnel, Switzerland; Röthlisberger 1994) 

This research work is aimed at investigating the first of the above mentioned methods for the 

waterproofing of an SCL structure by the use of spray-applied membranes. There exist several 

categories of sprayed membranes for this purpose, among them membranes based on ethyl-

vinyl-acetate (EVA) co-polymers, methacrylate based membranes and polyurea based 

membranes (Lemke 2013).  Until recently the EVA-based sprayed membranes have been the 

mostly used for the waterproofing of SCL.  In this work EVA-based membranes from the 

companies BASF Construction Chemicals and Orica International Ltd have been investigated. 

Both these companies had more than 10 years of experience with sprayed EVA-based 

membranes at the start of this research project. 

Spray-applied waterproofing membranes, also referred to as liquid waterproofing membranes 

(Maidl 2013, Lemke 2013) has seen gradually increased use in some countries over the last 

decade. Initially waterproofing projects of limited size and importance such as cross passages, 

elevator shafts and escape tunnels were realized with this method.  Hence, experience with this 

waterproofing technology was gained in a gradual manner. Suitable areas of use and the 

construction process has been gradually developed and improved. This process has also 

included construction of test sections under conditions where this system was not successful. 

When promising results under favorable conditions had been demonstrated, several projects 

with significant importance and modern requirements for service lifetime were realized with 

spray-applied membranes, such as Lausanne Métro L2, Tunel de Viret, Switzerland (Bridge et 

al 2010), the Hindhead road tunnel, UK (Holter et al 2010), Crossrail, UK (Pickett 2013), 

Prague Metro Line 2, Veleslavín station, Czech Republic (Hasík et al 2015) and the Gevingås 

rail tunnel, Norway (Nermoen et al. 2011). 

The traditional lining systems with cast-in-place concrete waterproofed with sheet membrane 

and the drainage and thermal insulation shield systems both represent drained lining systems. 

The use of a bonded waterproof membrane without any drainage measures fundamentally 
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changes the waterproofing function of the tunnel lining compared to the traditional drained 

lining systems.   In hard rock environment, traffic tunnels are normally constructed without 

waterproofing in the invert.  Water ingress is controlled by reducing the hydraulic conductivity 

of the rock mass surrounding the tunnel by pre-injection. Hence, the seepage into the tunnel is 

reduced to a certain required level. This facilitates the use of a drained tunnel lining approach 

also at locations below groundwater level. 

Several issues with the SCL and sprayed membrane lining system needed be documented in 

order to establish this method for permanent tunnel linings. The most important issues are: 

 Establish the precise waterproofing function of the bonded membrane 

 Determine type and magnitude of loads which act on the membrane 

 Determine the effects on possible water saturation of the concrete material on the rock side 

of the membrane 

 Determine the effects on rock joint water pressures and possibly resulting reduced stability 

of the rock mass in the immediate vicinity of the lining when using an undrained waterproof 

lining in the walls and crown of the tunnel below the ground water table 

 Specifically in cold climate, determine the effects of cyclic freezing and thawing when 

using this lining system without any thermally insulating measures 

 Suggest testing methods with acceptance criteria which address realistic loads, moisture 

and thermal exposure 

 Determine possible degrading mechanisms based on the different loading scenarios, water 

and thermal exposure and subsequently assess durability 

The objectives of this research project have been established in order to answer these questions. 

 

1.2 Research objectives 

The main objective of this research is to establish the properties of SCL waterproofed with 

EVA-based membranes for tunnels in hard rock and cold climate with typical Scandinavian 

lining designs. The suitability of this lining method for rail and road tunnels will be evaluated 

based on modern requirements for service lifetime and waterproofing function. Three secondary 

objectives have been established. 

Secondary objective 1: Loading and exposure conditions of the lining 

 Establish mechanical loading conditions for the lining and the waterproofing membrane 

and define realistic performance criteria for the membrane 

 Determine waterproofing function and the resulting moisture transport processes and 

moisture exposure to the lining 

 Determine realistic thermal exposure  

Secondary objective 2: Mechanical performance of the membrane  

 Determine mechanical behavior of membrane under realistic loading modes and climatic 

exposure 

 Conduct accelerated tests with freeze-thaw exposure followed by mechanical tests  

Secondary objective 3: Assessment of effects on ground water pressure of partially drained SCL 
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 Investigate the effect of the undrained property of the SCL structure on water pressure 

in the immediate rock mass around the lining 

 Evaluate if such effects on water pressure causes any reduced stability and a resulting 

need for increased level of rock support 

 Evaluate the effects of the ground water on the saturation, condition and properties of 

the lining structure 

 

1.3 Scope of work 

1.3.1 Lining design and constituent materials 

The tunnel lining design considered in this work is based on the Scandinavian permanent rock 

support philosophy which uses fiber reinforced sprayed concrete applied with the wet-mix 

method and rock bolts as a permanent rock support lining (NGI 2013, NCA 2011, STA 2014).  

The sprayed concrete material which has been used for all test sites and sample preparation has 

been produced as part of ongoing regular concrete production, subject to realistic quality 

requirements at tunnel sites under construction. The tested membrane materials are of the EVA 

co-polymer category. Altogether 5 sprayed membrane products from the two participating 

supplier companies have been included.  The construction of all lining sections at the test sites 

included an SCL design with sprayed concrete rock support lining, sprayed membrane and a 

covering layer of sprayed concrete. 

 

1.3.2 Construction of SCL sections, testing and age of materials 

In the very beginning of this project lining sections for in-situ testing as well as material testing 

with samples having sufficient age had to be constructed. Two full scale tunnel lining sections 

(the Karmsund and Ulvin test sites) were constructed in connection with ongoing tunnel 

construction. Furthermore the large scale lining structure in the freezing laboratory at SINTEF 

was re-established with new sprayed concrete and membrane, as well as detailed thermal 

instrumentation of the lining structure. In addition, the portion of the Gevingås rail tunnel with 

waterproof SCL, constructed 2010-2011, has been used as a test site. Hence, within the time 

frame of this research project the tested in-situ condition of tunnel linings covered the range 

from 5 to 37 months age. The material testing of sprayed concrete was deliberately conducted 

on hardened concrete with age in the range of 300 to 450 days.  Testing of the sprayed 

membrane material was conducted on samples with age ranging from 3 to 14 months. 

 

1.3.3 Tested conditions 

The engineering geological, hydrogeological and climatic conditions which could be included 

in this research project are the following: 

 Ground conditions which cover hard crystalline rock types and rock masses ranging from 

massive to densely jointed 

 In-situ rock stress conditions with a high horizontal to subhorizontal major principal stress 

 Hydrogeological conditions including saturated rock mass locations between 50 m and 122 

m below sea level. 
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 Hydraulic conductivities of rock masses in the range of 10-6 m/s to 10-8 m/s 

 The measured maximum background water pressures in the rock mass at the invert 

elevation were in the range 680 – 780 kPa 

 The thermal exposure of tunnel linings considered in this project covers Nordic seasonal 

variations in temperature and relative humidity, including severe winter climate 

 

1.3.4 Limitations of scope 

Several circumstances limited the conditions which could be included in this work. The tested 

site conditions for the moisture content and in-situ tensile bond strength covered environment 

with low ground water pressures, unlikely to be higher than 200 kPa at the lining surface. Hence 

effects caused by high water pressures at the rock/lining interface could not be investigated.  

The concrete material included in this project is limited to the wet-mix fiber reinforced sprayed 

concrete. For regulating layers for the membrane substrate special mortars, special concrete mix 

designs or dry mix shotcrete regulating layers were not tested. 

Regarding constructability of the membrane-concrete structure, the application and 

construction details for the membrane and lining structure followed the recommendations and 

practice provided by each of the two suppliers. Research intended to develop or improve the 

application methods was not part of this research. 

The tested products were proposed from the two suppliers, as well as the methodology for the 

application of the membrane. No work was undertaken to develop new or modify existing 

products as part of this research. 

 

1.4 Structure of this thesis 

This thesis is presented as a compilation of 4 published scientific papers, one prepared 

manuscript draft for a scientific paper and one published conference paper, preceded by a 

summarizing part. The summarizing part contains the conceptualization of this study, an 

overview of the executed work and an extract and compilation of the main findings presented 

in the papers. A synthesis and discussion is presented following the main findings. Finally 

further work is suggested in view of the obtained results and limitations of the conducted work 

in this study.  The summary part of the thesis is written in a manner so that the reader will get 

the complete overview of the work. The detailed analyses are presented in the papers.  Each of 

the scientific papers addresses a fundamental issue in the analysis of the function, properties of 

the waterproof SCL system. The conference paper addresses the process of comparing different 

tunnel lining methods, including the waterproof SCL, in view of modern requirements and 

analysis tools for the total cost-effectiveness of rail and road tunnels.  

Following the definition of the main conceptual model secondary conceptual models are 

presented to address a fundamental part of the SCL structure or a process of fundamental 

importance.  Each of the papers contains elements from several of the secondary conceptual 

models. An overview of the papers is shown in Table 1. 
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Table 1. Overview of papers submitted in this thesis 

Paper no Authors Type of paper, reference Title 

1 
K G Holter, B Nermoen, 

H Buvik, B Nilsen 

Conference paper, ITA/AITES 

World Tunnel Congress 2013, 

Geneva 

Future trends for tunnel lining 

design for modern rail and road 

tunnels in hard rock and cold 

climate 

2 K G Holter 

Scientific journal paper; published 

in Rock Mechanics and Rock 

Engineering, 2014,         DOI 

10.1007/s00603-013-0498-0 

Loads on sprayed waterproof 

tunnel linings in jointed hard 

rock; A study based on 

Norwegian cases 

3 K G Holter, S Geving 

Scientific journal paper; published 

in Rock Mechanics and Rock 

Engineering, 2015,         DOI 

10.1007/s00603-015-0730-1 

Moisture transport through 

sprayed concrete tunnel linings 

4 
K G Holter, S Smeplass, 

S Jacobsen 

Scientific journal paper; published 

in Materials and Structures, 2015,                     

DOI 10.1617/s11527-015-0705-4                 

Freeze-thaw resistance of 

sprayed concrete in tunnel 

linings 

5 K G Holter 

Scientific journal paper; published 

in Rock Mechanics and Rock 

Engineering, 2015,         DOI 

10.1007/s00603-015-0844-5 

Performance of EVA-based 

membranes for SCL in hard rock 

6 

K G Holter,                    

R Christiansson,            

C B Basnet  

Manuscript prepared for scientific 

journal paper in Bulletin of 

Engineering Geology and the 

Environment 

Effects on ground water pressure 

of partially drained waterproof 

SCL in hard rock 

 

1.4.1  Published papers, division of work,  structure and content 

 Paper 1: Future trends for tunnel linings and hard rock and cold climate. Authors: Holter KG, 

Buvik H, Nermoen B and Nilsen B. In: Proceedings of the World tunnel Congress, 

Geneva, 2013  

The paper is written by Holter. The aim and scope of the paper was defined together with 

Nermoen and Buvik. Nermoen, Buvik and Nilsen provided critical review of the paper. 

The main aim of paper 1 is to place the waterproof SCL in the context of the specification and 

design of tunnel linings subject to modern requirements. Such requirements relate to the total 

cost-effectiveness expressed as Life Cycle Cost (LCC) with the required service lifetime, 

reliability, accessability (minimum downtime) and maintainability of the tunnel lining. The 

structure and analysis approach of paper 1 is shown in Figure 1. 
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Figure 1. Approach of the analysis and content of paper 1. 

  

Paper 2: Loads in sprayed waterproof tunnel linings. A study based on Norwegian cases.  

Published in: Rock Mechanics and Rock Engineering, Vol 47: 1003 – 1020, Author: 

Holter KG 

The paper is written by Holter. The aim and scope was defined by Holter. 

The main aim of paper 2 is to assess which loads which be expected to expose the lining under 

normal hard rock conditions. The structure and analysis approach of paper 2 is shown in Figure 

2. 

 
Figure 2. Approach of the analysis and content of paper 2. 
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Paper 3: Moisture transport through sprayed concrete tunnel linings. Authors: Holter KG, 

Geving S.  Published online 11. March 2015 in: Rock Mechanics and Rock 

Engineering, DOI 10.1007/s00603-015-0730-1 

The paper is mainly written by Holter. Holter defined the aim and scope of the paper as well as 

planned and executed all investigations. Some of the material testing was assigned to the 

concrete laboratories at SINTEF (vapor conductivity) and NPRA (desorption testing).   Geving 

has written the section on moisture transport theory and conducted the numerical simulations 

for moisture transport in the software WUFI, as well as critically reviewing the manuscript. The 

structure and analysis approach of paper 3 is shown in Figure 3. 

 

 
Figure 3. Approach of the analysis and content of paper 3 

Paper 4: Freeze-thaw resistance of sprayed concrete in tunnel linings. Authors: Holter KG, 

Smeplass S, Jacobsen S. Published online 27. August 2015 in: Materials and 

Structures, DOI 10.1617/s11527-015-0705-4 

The paper is written by Holter. Smeplass and Jacobsen contributed substantially with defining 

the aim and scope, participated in the detailed planning of the freeze-thaw tests, discussion of 

findings and critical review of the manuscript. Holter planned and executed all in-situ material 

construction work in tunnels, sampling and conditioning of specimens and executed most of 

the freeze-thaw testing. Master student Mrs Tandberg executed parts of the tunnel lining freeze 

test and the salt frost scaling test. The latter was executed in Oslo at the laboratories of the 

NPRA. The structure and analysis approach of paper 4 is shown in Figure 4. 
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Figure 4. Approach of the analysis and content of paper 4 

 

Paper 5: Performance of EVA-based membranes for SCL in hard rock. Author: Holter KG. 

Published online 24. September 2015 in:  Rock Mechanics and Rock Engineering, 

DOI 10.1007/s00603-015-0844-5 

The paper is written by Holter. Holter defined the aim and scope as well as planned, organized 

and executed the site construction work, site investigation program and most of the laboratory 

investigations. The students Mrs Langås and Mrs Tandberg contributed with laboratory work 

executing a substantial part of the testing of membrane materials at NTNU as part of their 

master degree work.  Mr Bonin and Mrs Köster of Wacker Chemie AG contributed substantially 

with discussion of testing methods, testing conditions, membrane material properties as well as 

executing the SEM-analyses, the crack bridging testing and parts of the elongation tests. The 

structure and analysis approach of paper 5 is shown in Figure 5. 

 



12 

 

 
Figure 5. Approach of the analysis and content of paper 5 

 

Paper 6:  Effects on ground water pressure in the immediate rock mass of partially drained 

SCL with bonded waterproof membrane. Authors: Holter K G, Christiansson R, 

Basnet C B. Manuscript prepared for submittal to Bulletin of Engineering Geology 

and the Environment. 

The paper is written by Holter. Holter defined the aim and scope as well as planned the in-situ 

water pressure testing and water pressure monitoring at the Karmsund and Ulvin sites. The 

numerical simulations in FLAC3D were conducted by Basnet.  Karstein Monsen of Geoscan, 

Bergen, Norway conducted the simulations in UDEC BB. For the Forsmark test site 

Christiansson managed the construction and water pressure monitoring and Holter contributed 

with technical advice. The co-authors reviewed the manuscript critically. The structure and 

analysis approach of paper 6 is shown in Figure 6. 
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Figure 6. Approach of the analysis and content of paper 6 
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1.4.2 Presentation of work at conferences 

During this program several conference papers were prepared and presented. This involved the 

compilation of preliminary findings and interpretation of these at the time of writing. This 

enabled several useful discussions and exchange of points of views. The conferences which 

were attended with a presentation during this project are shown in Table 2. 

Table 2. Conferences where this PhD project has been presented  

Year Conference Topic/paper presented Publication of paper 

2011 

NPRA, Annual Technology 

Conference (Teknologidagene), 

Trondheim, Norway 

Waterproof permanent tunnel lining 

with sprayed concrete and sprayed 

membrane. Contents and layout of 

research project. 

None 

2012 
Norwegian Tunnelling Conference, 

Oslo, Norway 

 Waterproof permanent tunnel 

lining with sprayed concrete and 

bonded membrane. Status for 

ongoing research project 

In proceedings from 

the conference 

2013 
ITA/AITES World Tunnel 

Congress, Geneva, Switzerland 

Future trends of tunnel lining 

design for rail and road tunnels in 

hard rock and cold climate 

In proceedings from 

the conference, paper 

included in this thesis 

2013 

NPRA, Annual Technology 

Conference (Teknologidagene), 

Trondheim, Norway 

Waterproof permanent tunnel lining 

with sprayed concrete and sprayed 

membrane: Function, properties and 

test methods 

None 

2014 
ITA/AITES World Tunnel 

Congress, Iguassu Falls, Brazil 

Testing of sprayed waterproofing 

membranes for single shell sprayed 

concrete tunnel linings in hard rock 

In proceedings from 

the conference 

2014 
Concrete Innovation Conference, 

Oslo, Norway 

Assessment of freezing and thawing 

damage in waterproof sprayed 

concrete tunnel linings  

In proceedings from 

the conference 

2014 

International conference of wet-mix 

sprayed concrete, Sandefjord, 

Norway 

Testing of  sprayed water proofing 

membranes for single shell sprayed 

concrete linings in hard rock  

In proceedings from 

the conference 

2015 
ITA/AITES World Tunnel 

Congress, Dubrovnik, Croatia 

Testing of properties and 

constructability considerations of 

EVA-based sprayed membranes for 

waterproofing of tunnels  

In proceedings from 

the conference 

2015 

NPRA, Annual Technology 

Conference (Teknologidagene), 

Trondheim, Norway 

Findings from research project 

2011-2015: Waterproof tunnel 

linings based sprayed concrete and 

sprayed concrete 

None 
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2 TECHNICAL BACKGROUND  

2.1 Main requirements for service lifetime, serviceability and cost-effectiveness 

Due to several recent cases with costly rehabilitation and maintenance of relatively new rail and 

road tunnels, both rail and road administrations in Norway are reconsidering the lining 

methodology for modern tunnels.   A decision process for the approval of different tunnel lining 

systems for different tunnel categories which involves the use modern analysis tools such as 

LCC (Life Cycle Cost) and RAMS (Reliability, Accessability, Maintainability and Safety) is 

now the preferred approach. (NPRA 2012) 

 

2.2 Currently used lining systems for rail and road tunnels in hard rock and cold climate 

The currently used lining method for rail and road tunnels in hard rock in Norway consists of a 

rock reinforcement lining based on sprayed concrete and rock bolts and a separate inner 

drainage and thermal insulation shield system. The rock reinforcement lining is normally 

designed according to the Q-system (NGI 2013). The inner shield lining system is designed to 

provide drip protection in the traffic area, provide thermal insulation, resist mechanical loads 

as well as meeting the esthetic requirements (NNRA 2012, NPRA 2012).  The two main 

systems currently in use are:  

 Shield structure with polyethylene (PE) foam sheets with thickness normally 50 mm, 

covered with 60 mm fiber reinforced sprayed concrete 

 Light concrete segment structure with sheet membrane 

 A combination of the light concrete segments (for walls) and the PE-foam sheets 

(springline and crown)  

Both systems are constructed as a suspended structure mounted on bolts in a regular grid 

pattern. Hence, with this lining method there will be an air gap between the rock support sprayed 

concrete surface and the inner lining which can vary between 0.3 to approximately 1 m. Both 

rail and road administrations in Norway require manual/visual inspections of the rock support 

surface at certain time intervals to be conducted behind the inner lining structure. 

The drainage and thermal insulation lining system is illustrated in Figures 7 and 8. 

  
Figure 7.  Conceptual drawings illustrating the drainage and frost insulation lining system traditionally used in 

Norwegian rail and road tunnels, Left: 3D image of lining system for a road tunnel (NPRA 2012). Right: vertical 

section for a rail tunnel 
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Figure 8. Photos of interior of complete drainage and thermal insulation lining system. Left: The Bærum rail 

tunnel (completed 2010) with PE-foam-sheets covered with sprayed concrete. Right: The E6 Eidsvoll motorway 

tunnel (completed 2010) with light concrete segment lining. (courtesy: Ådne Homleid, Byggeindustrien) 

Analyses carried out by the NPRA for future modern tunnels (NPRA 2012) concluded that these 

lining systems could have an expected service lifetime of approximately 50 years. For modern 

high traffic tunnels, both the NNRA and NPRA (NPRA 2012, NNRA 2015) are therefore 

suggesting the use of the traditional central European lining system with cast-in-place concrete 

and sheet membrane waterproofing for a design service lifetime of 100 years. 

 

2.3 Cast concrete lining system adopted for rail and road tunnels in hard rock 

Cast concrete linings for rail and road tunnels are widely used in European countries outside 

Scandinavia. For the use in hard rock environment the study conducted by the NPRA “Modern 

Road Tunnels 2008-2011” suggests the use of the cast concrete lining system with sheet 

membrane as a pure waterproofing measure for tunnels with high traffic density (NPRA 2012). 

The permanent stability of the rock mass shall be granted by the rock reinforcement lining as 

the current practice (NGI 2013) suggests. Hence, a cast concrete lining would need to have only 

the minimum possible thickness to serve the purpose of keeping the sheet waterproofing 

membrane in place. Currently a lining structure with a minimum thickness of 250 mm of 

unreinforced cast-in-place concrete with sheet membrane waterproofing is proposed (NPRA 

2012), illustrated in Figure 9. In Norway, this proposal has so far only been realized by the 

NNRA during the construction of the double track rail tunnels, shown in Figure 10 at the E6-

Dovre Rail line joint project (Havik 2012).  
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Figure 9. Drawings showing a possible future technical solution for a dual carriageway road tunnel with cast 

concrete lining. Left: complete theoretical lining section for a dual carriageway tunnel. Right: lining detail (after 

NPRA 2012). 

 

  
Figure 10. Photos of the cast concrete lining system during the construction of the Ulvin rail tunnel at the E6-

Dovre rail line joint project, Norway, 2015. Left: installation of sheet membrane waterproofing. Right: interior of 

completed tunnel lining 

 

2.4 Alternative innovative lining system: waterproof SCL 

Tunnel linings based on waterproof SCL were introduced to the tunneling industry around 2000, 

and has seen increased use in some countries (Switzerland, UK, Czech Republic, Italy and 

Norway) over the last decade.  

The basic idea with spray-applied waterproofing in an SCL context in hard rock, is to utilize 

the rock reinforcement lining as the final lining structure, and include an elastic, bonded 

membrane embedded within the sprayed concrete structure which provides the required 

waterproofing. The construction process of the waterproofing is a sequence of operations which 

includes surface preparation, temporary handling of water ingress points, application of the 

membrane and the application of the final inner lining (ITA/AITES 2013, Holter & Foord 

2015). Examples of spray application of the waterproofing membrane is shown in Figure 11. 

Figure 12 shows the robotic application of sprayed concrete 
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Figure 11. Construction of waterproof SCL. Left: Manual spray-application of membrane at the Ulvin test site 

(2011). Right: Robotic spray-application of membrane during the construction of the Hindhead motorway tunnels, 

UK (2009) 

 

 
 

Figure 12. Construction of waterproof SCL, application of final inner layer of sprayed concrete. Test section with 

SCL in the Bærum rail tunnel, Norway (2009) 
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Figure 13. Photos of completed SCL with sprayed EVA based membrane. Left: The Gevingås rail tunnel, Norway 

(2011). Right: completed lining for a section of the twin track Holmestrand rail tunnel, Norway (2015). 

 

3 RESEARCH METHODOLOGY 

3.1 Conceptualisation and approach to task 

Evaluating the properties of the waterproof SCL system is a multidisciplinary task which 

involves rock engineering, hydrogeology, concrete technology, waterproofing technology and 

building physics (Figure 14, right). The working method of conceptualizing the main task was 

chosen as the approach. In this way the main task is broken down in modules of secondary 

research tasks. The main reason for following this approach is to increase the clarity of each 

task, identify separate working modules and structure the work.  For this purpose a main 

conceptual model is presented, in which the main task is subdivided in several modules. Each 

of these modules represent important issues in the understanding of the function and properties 

of the waterproof SCL system, and form more detailed secondary conceptual models. Thus, the 

conducted investigations are oriented towards verifying a detailed conceptual model for each 

of the special items. A synthesis of these findings constitute the verification of the main 

conceptual model 

The main conceptual model contains the rock mass with the underground opening, the rock 

support including the tunnel lining, the exposure to groundwater and exposure to the climate in 

the tunnel space, and is illustrated in Figure 14, left. The main items are summarized in Table 

3.  
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Figure 14. Left: Main conceptual model with configuration of lining and processes which influence the condition 

of the lining. Right. Conceptual diagram illustrating the multidisciplinary character of the case waterproof SCL 

 

Table 3. Conceptual model, main elements 

Main element in model Condition, processes Described in paper 

Lining structure, with constituent 

materials 

Details of sprayed concrete 

Details of membrane 

 

3 

4 

5 

Mechanical loads which act on the 

membrane 

Cracking of concrete, shear and tensile loads on 

membrane, moisture content at given exposure 

3 

5 

Effect of undrained waterproofing in 

walls and crown. Loads on lining 

Water pressure gradient causes flow of water 

towards tunnel invert on rock joints. Increased 

joint water pressure in immediate rock mass 

2 

6 

Moisture transport through the tunnel 

lining 

Saturation of the sprayed concrete from the rock 

side and exposure to air at the lining surface 

causes capillary transport and vapor diffusion 

through lining 

3 

Freezing exposure of lining and 

effects of freeze-thaw on the 

constituent lining materials 

Heat flux from rock mass towards lining surface 

which gives a certain minimum possible 

temperature at the location of the membrane at 

a certain thermal exposure at the lining surface 

4 

5 

 

3.2 Secondary conceptual models  

3.2.1 Tunnel lining structure: constituent materials  

The SCL structure considered in this study consists of a multilayered bonded structure with  

fiber reinforced sprayed concrete with water/binder ratios in the range of 0.44-0.47. All sprayed 

concrete layers have fiber reinforcement (steel or structural polypropylene). One or two layers 

of sprayed concrete is normally applied for the rock support, and a separate layer will be 

required as a smoothening layer. The thicknesses of the sprayed concrete is given by the 

required rock support level. The minimum required thickness of the sprayed concrete for rock 

support is 80 mm (NCA 2011, NPRA 2012). The membrane considered in this study has a 

minimum thickness of 3 mm. The inner lining sprayed concrete has a minimum required 
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thickness of 60 mm, corresponding to the required cover of waterproofing sheets.  Rock bolts 

are required to be fully grouted and completely embedded in the sprayed concrete before the 

membrane is applied. The SCL structure is shown in Figure 15. 

 
Figure 15. Conceptual diagram with section of SCL lining structure with main materials 

 

3.2.2 Mechanical loading of lining 

The main assumption made in this study is that the primary rock support lining is stable and 

hence, further deformations caused by rock mechanical loads are not expected. This will 

normally be the case, since the waterproofing and final lining presumably will be constructed 

several months after excavation of the tunnel and construction of the rock support lining.  The 

loads on the membrane found to be important in this study are the deformations which occur 

across cracks in the concrete and thermal and shrinkage induced shear deformations.  

 
Figure 16. Conceptual drawing showing type of deformations in the concrete which can expose and load the 

membrane 

 

 



22 

 

3.2.3 Effects of undrained tunnel lining in walls and crown 

The undrained property of the SCL structure in the walls and the crown of the tunnel will direct 

the flow of groundwater towards the invert of the tunnel. This can possibly lead to a higher 

groundwater pressure in the surrounding rock mass and at the rock/concrete interface compared 

to a case with a drained lining surface. This is illustrated in Figure 17.  

 

Figure 17.  Conceptual vertical sections of three main lining configurations with respect to waterproofing. Left: 

Rock support lining without waterproofing with separate drained waterproof (and often thermally insulating) 

shield structure. Middle: Waterproof lining in entire tunnel perimeter. Fully tanked lining structure exposed to full 

hydrostatic pressure. Right: Partially drained tunnel with waterproof undrained lining in the walls and crown, and 

drained invert 

 

3.2.4 Moisture exposure and moisture transport 

The continuous and bonded property of the different layers in the lining resulting from the spray 

application, implies that the interfaces between the materials are perfect hygric contacts. The 

unilateral exposure to groundwater on the rock side of the lining will result in an absorption and 

migration of water into the lining materials. Cracks and imperfections in the concrete materials 

will most likely be saturated with water in a long term perspective. Exposure to dry air on the 

lining surface will result in vapor pressure gradients, and hence create a certain moisture 

transport through the lining.  A model of the lining structure with water exposure processes is 

shown in Figure 18. 

The moisture condition of the membrane and the concrete materials are important for the 

assessment of the possible degrading mechanisms which can occur. Such degrading 

mechanisms could possibly include softening of the membrane due to water exposure and risk 

of delamination, pore pressure in the concrete on the rock side of the membrane, water pressure 

in fissures and cracks in the concrete which expose the membrane. 
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Figure 18. Conceptual drawing showing a model of the SCL structure with constituent materials and water 

exposure 

3.2.5 Freezing exposure  

The freezing exposure of a tunnel lining will depend on several factors, which can be divided 

into two main issues: 

 The longitudinal climatic profile of the tunnel with typical fluctuations, governed by the 

outdoor climate, the ventilation characteristics of the tunnel and the traffic type in the 

tunnel 

 The heat conduction from the rock mass through the tunnel lining to the tunnel space 

The longitudinal thermal profile will be unique for each tunnel case and will be governed by 

the ventilation characteristics, the outdoor climate, the length of the tunnel and the temperature 

of  the rock mass.  With a prevailing ventilation direction, warm air during summer and cold 

air during winter will penetrate significantly longer into the tunnel from one side with respect 

to the other side, as shown in Figure 19. This is confirmed by a detailed study carried out in 

two Swedish rail tunnels (STA 2012a, STA2012b). 

 
Figure 19. Longitudinal section of a tunnel with a certain length and indication of range of air temperatures in 

the tunnel space with a prevailing wind direction. Compiled from Swedish studies (STA2012a, STA2012b) 
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A conceptual model for the thermal exposure of a tunnel lining is shown in Figure 20. In this 

study thermal measurements in the freezing range in the lining could be done in the large scale 

freezing laboratory and at the Ulvin test site. Details are given in Paper 5, Section 4.4. 

 

 
Figure 20. Conceptual model for thermal exposure of the tunnel lining. Top: Cross section illustrating the rock 

mass and zone influenced by thermal fluctuations. Bottom: Profile along a radial axis from the tunnel surface with 

indication of (1) material types, (2) visualization of cooling from the lining surface and (3) the range of 

temperatures along the radial axis with a certain thermal exposure on the lining surface. 
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4 EXECUTED WORK 

4.1  Main goal, purpose 

The main intention of the work was to construct several full scale tunnel lining sections and 

subsequently verify the properties of the lining system through monitoring, investigations of 

in-situ condition and strength combined with detailed laboratory investigations of material 

properties. 

The conceptual models described in Section 3 have been subject to continuous development 

and refining during the project. Hence, the finally executed work was a result of a process where 

initial findings lead to the final executed work in order to verify the final updated conceptual 

models.  

The executed work can be divided in the following six main items: 

 Construction work at selected test sites and establishment of full scale or large scale SCL 

sections and installation of different types of instrumentation 

 Construction of a large scale SCL section on a homogenous rock mass in a freezing 

laboratory 

 Field investigation work at the test sites with mapping of engineering geological 

conditions, monitoring of water pressure, temperatures, relative humidities, as well as in-

situ freeze exposure tests, strength testing and extraction of realistic material samples for 

laboratory testing 

 Laboratory testing of sprayed concrete material for water transport and moisture absorption 

processes, porosity and freeze-thaw resistance  

 Laboratory testing of sprayed membrane material for mechanical performance parameters, 

moisture absorption and moisture transport processes 

 Numerical simulations of selected tasks in order to verify the findings from field and 

laboratory investigations and make further assessments 

The main content of these work modules are presented in the following sections, 4.2 – 4.6. 

 

4.2 Field work – construction of test sections and instrumentation 

In order to conduct field investigations with realistic conditions, two full scale lining section 

were constructed as early as possible at two different tunnel sites, the Karmsund and Ulvin 

tunnel sites (Figure 21) These projects were under construction at the time. Hence, construction 

materials and infrastructure was available for spayed concrete and constructing the lining under 

realistic conditions. Furthermore, a portion of the Gevingås rail tunnel, completed in 2011 of 

which 1.85 km of totally 4 km had been constructed with SCL waterproofed with sprayed EVA 

based membrane, was made available as a test site. Thus, a lining structure with age up to 

approximately 3 years could be included in this project. In order to have sufficient quantity of 

material specimens of realistic type and curing history available for laboratory testing, a small 

test field in the Harangen road tunnel, which was under construction at the time, was 

established. 

In order to conduct precise freezing testing of the lining structure, the freezing laboratory 

facility, originally constructed in 2009 (SINTEF 2011, Nermoen et al. 2011), was re-established 

for this study with new sprayed concrete lining, 4 different membrane products and thermal 
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instrumentation in both concrete layers on either side of the membrane. An additional feature 

was included, with 36 holes of 20 mm diameter drilled through the lining, slightly dipping, in 

order to add water to the concrete at the rock-concrete interface. In this way exposure to 

groundwater by capillary absorption was simulated. This is explained in Section 4.4. 

The location of the test sites is shown in figure 21. 

 

 

 
 

Figure 21. Locations of test sites 

 

The main features of the test sites are illustrated in Figure 22. The layout and main features of 

freezing laboratory with lining structure is shown in Figure 23. The conducted construction and 

site installation work is shown in Table 4.  
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Figure 22. Conceptual cross sections of the four tunnel test sites, illustrating layout of lining structure, 

hydrogeological context and location of executed investigations 
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Table 4. Executed construction and instrumentation work 

Site Executed work Time (year/month) Main purposes 

Karmsund subsea tunnel 

(K), ventilation cavern 

Construction of complete 

lining system in 20 linear 

meter. 

Installation of water 

pressure sensors in three 

drill holes 

2011 / 09-11 

1. Investigate any effects of 

rock joint water pressure 

when using an undrained 

waterproof lining in walls 

and crown, but leaving the 

invert drained 

Ulvin South access tunnel 

(U) 

Construction of complete 

lining system in 60 linear 

meters. 

Installation of water 

pressure sensors in three 

drill holes 

2011 / 11-12 (construction, 

water pressure monitoring) 

2012 /12 (thermal 

instrumentation) 

1. Investigate any effects of 

rock joint water pressure 

when using an undrained 

waterproof lining in walls 

and crown, but leaving the 

invert drained 

2. Determine condition of 

lining and provide basis for 

assessments of durability 

Gevingås rail tunnel (G) 

Installation of thermal 

instrumentation in 4 drill 

holes in rock mass and 

tunnel lining with lengths 

up to 2 m  

2012 / 12 

1. Obtain data for tunnel 

climate and thermal 

conditions in rock mass and 

tunnel lining: basis for 

hygrothermal simulation 

2. Determine condition of 

lining and provide basis for 

assessments of durability 

Harangen road tunnel (H) 

Construction of complete 

lining system in a 5 m by 3 

m on the tunnel wall   

2013 / 02-03 

1. Production of material 

samples for laboratory 

testing with realistic history, 

production method and in-

situ curing 

Large scale lining structure 

freezing laboratory (F) 

Demolition of old lining 

system from initial testing 

(2010). Reconstruction of 

lining complete system 

including 4 different 

membrane products. 

Installation of thermal 

instrumentation in lining 

structure and core drilling 

of through rock mass for 

water exposure of lining 

2012 / 06 - 09 

1. Large scale simulation of 

tunnel lining with moisture 

condition, different thermal 

exposure settings 

2. Basis for assessments of 

durability 

 

 

 

4.3 Field work: monitoring and in-situ testing 

The main purpose of the monitoring and site testing was to obtain as much data as possible in 

order to substantiate the conceptual models. Results from the field investigations formed a basis 

to execute laboratory testing under realistic conditions, as well as making assessments on the 

validity of laboratory results with respect to the  

 Obtain field data for verification of the conceptual model 

 Obtain basis for realistic conditions for laboratory testing 

 Assess validity of laboratory results 

 Assess realistic boundary conditions and input parameters for numerical simulations 

 

An overview of the executing site testing is shown in Table 5. 
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Table 5. Executed investigations and monitoring and at the tunnel sites 

Site Executed work Time Purpose 
K

ar
m

su
n

d
 s

u
b

se
a 

tu
n
n

el
, 

v
en

ti
la

ti
o

n
 

ca
v

er
n

 (
K

) 
1.Water pressure testing in 0.5m sections in 3 radially core 

drilled holes with 9 m length 

2. Monitoring of water pressure in the rock mass in drill hole 

sections 

3. Video of  interior of core holes 

4. Investigations of core material from the rock mass 

 joint roughness coefficient JRC and joint compressive 

strength JCS (Bandis-Barton index parameters) 

 samples for measurement of Young modulus and uniaxial 

compressive strength¨ 

 rock joints: location and angle 

5. Mapping of rock joints in lower walls 

6. Recording of wet spots through final lining surface 

7. Investigations of core material from the tunnel lining 

1. 2011/10 

 

2. 2011/10 – 

2012/5 

 

3. 2011/10 

 

4. 2012-2013 

 

5. 2011/10 

 

6. 2012/05 

 

7. 2013 

1.  Measure hydraulic 

transmissivity of sections 

in the rock mass 

2. Measure water pressure 

situation in immediate 

rockmass around lining, 

and any changes over 

time 

3, 4 and 5. Obtain rock joint 

data for test site 

6. Assess final state of 

tunnel lining 

 

U
lv

in
 a

cc
es

s 
tu

n
n

el
 (

U
) 

1. Water pressure testing in 0.5m sections in 3 radially core 

drilled holes with 9 m length 

2. Monitoring of water pressure in the rock mass in drill hole 

sections 

3. Video of interior of core holes 

4. Investigations of core material from the rock mass 

 rock joints: location and angle 

 measurement of thermal conductivity of rock material 

5. Mapping of rock joints in lower walls and in some sections 

at the tunnel face 

6. Recording of remaining wet-spots in the tunnel lining 

7. Thermal monitoring in tunnel lining and rock mass in 4 

holes up to 2 m depth from lining surface 

8. Full scale freezing exposure experiment of entire portion of 

SCL test section with 36 hours of forced ventilation with 

cold air from outside 

9. Investigations of the in-situ condition of the tunnel lining at 

different ages 

 Moisture content profiles of concrete 

 Moisture content in membrane material 

10. Measurements of in-situ tensile bond strength at different 

ages 

1. 2011/12 

 

2. 2011/12 

2012/06 

 

3. 2011/12 

 

4. 2012-2013 

 

5. 2011/12 

 

6. 2013/12 

 

7. 2012/12- 

2013/06 

 

8. 2013/01 

 

9. 2013/12-

2015/08 

 

10. 2014/04 – 

2015/08 

1. Measure hydraulic 

transmissivity of sections 

in the rock mass 

2. Measure water pressure 

situation in immediate 

rockmass around lining, 

and any changes over 

time 

3, 4 and 5. Obtain rock joint 

data for test site 

6. Assess final state of 

tunnel lining 

7.Verify thermal condition 

of lining and rock mass 

during freezing exposure 

8. Obtain data for a full scale 

field freezing test.  

9.  Determine in-situ 

moisture condition of 

lining, and any changes 

over time 

10. Determine in-situ tensile 

strength and any change 

over time 

G
ev

in
g

ås
 r

ai
l 

tu
n
n

el
 (

G
) 

1. Investigations of the in-situ condition of the tunnel lining at 

different ages (24, 36, and 50 months) 

 Moisture content profiles of concrete 

 Moisture content in membrane material 

2. Measurements of in-situ tensile bond strength at different 

ages  

3. Thermal monitoring in tunnel lining and rock mass in 4 

holes up to 2 m depth from lining surface 

4. Measurements of temperature and relative humidity in 

tunnel air 

 

1. 2013/04, 

2014/04, 

2015/08 

 

2. 2014/04, 

2015/08 

 

3. 2012/12 – 

continuously 

 

4. 2012/12 - 

continuously 

1. Verify in-situ moisture 

content of lining, and any 

changes over time 

2. Determine in-situ tensile 

strength and any change 

over time 

3. Verify thermal condition 

of lining with seasonal 

variations. Input for 

hygrothermal simulation 

4. Verify climate in tunnel 

space with seasonal 

variations. Input for 

hygrothermal simulations 

H
ar

an
g

en
 

ro
ad

 

tu
n
n

el
 (

H
) 

1. Extraction of samples of sprayed concrete and complete 

lining structure by core drilling 

2. Investigations of the in-situ condition of the tunnel lining at 

5 months age 

 Moisture content profiles of concrete 

 Moisture content in membrane material 

 

1. 2013/08 

 

2. 2013/08 

1. Prepare specimens of 

realistic sprayed concrete 

material for freeze-thaw 

laboratory testing 

2. Verify moisture condition 

of lining at 5 months age 
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4.4 Freezing laboratory with large scale lining structure on rock mass 

The large scale laboratory for physical simulations of freezing loads and subsequent testing of 

the lining was originally constructed 2009-2010 for freezing load assessment prior to the 

construction of the Gevingås rail tunnel. For the purpose of this study, the rock mass and the 

two rooms with thermal insulation and freezing/refrigeration units could be re-utilized. The old 

lining structure was demolished and a new lining structure based on fiber reinforced sprayed 

concrete and EVA-based membranes was constructed in June-August 2012. Four different 

membrane products were applied, each covering an 800 mm wide vertical field on the wall. The 

substrate of fiber reinforced sprayed concrete was floated without adding water, in order to 

produce an even and homogenous surface for all membranes. 

The new and important feature which was added to the model for this study, was the exposure 

of the lining structure to water through 20 mm diameter drillholes with the intention of 

achieving a moisture content in the lining materials which was comparable to the in-situ 

condition found in the tunnel sections. The holes were drilled with a slight dipping angle 

towards the lining in order have the holes constantly filled with water and give exposure with 

atmospheric pressure.  The lining structure was conditioned at high relative air humidities by 

keeping the tunnel room constantly wet at ambient temperature (20-23oC) and closed for 13 

months. The sequence of activities which then followed is shown in Table 6. By adding water 

in the drillholes an increase of the water content in the lining structure was observed, and the 

found moisture contents were in the same range as the finding from the in-situ investigations 

of moisture content in the tested tunnel sections. This moisture conditioning of the lining 

structure enabled the further execution of freeze-thaw testing of the lining under realistic 

moisture exposure.  The rock mass surface with the location of the drillholes for water exposure 

is shown in Figure 23 (left). The four tested membrane products applied on the rock wall are 

shown in Figure 23, right. The laboratory lining structure is shown in Figure 24. 

 

  
Figure 23. Photos of the freezing laboratory during the construction phase of the lining structure. Left: Rock mass 

surface after demolition of previous lining. The holes for water exposure are indicated. Right: Surface of lining 

structure with 4 different membrane products prior to the application of the inner lining of fiber reinforced sprayed 

concrete. 
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Figure 24. Conceptual drawings of the freezing laboratory with large scale lining structure constructed on a rock 

mass of granodiorite blocks. Top: 3D view with layout of rock mass with lining structure. Middle: longitudinal 

section through the model. Bottom: Detail of the lining structure with layer thicknesses and a hole for simulation 

water exposure 
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Table 6. Executed investigations in the large scale lining structure in the freezing laboratory   

Executed work Time Purpose 

1. Adding of water to the lining structure through drillholes in the 

rock to simulate exposure to ground water 

2. Freeze-thaw exposure of the lining structure with 35 cycles with -

3oC minimum temperature in each cycle at the location of the 

membrane  

3.  Freeze-thaw exposure of the lining structure with 20 cycles with 

-7oC minimum temperature in each cycle at the location of the 

membrane  

4. Isothermic freezing exposure of the lining structure with   - 7oC 

air temperature in the tunnel space for 40 days 

5. Moisture transport test. Uniform temperature of 6oC held in entire 

model. Possibly constant RH 80% held in tunnel room. 

Measurement of water added through drill holes 

6. Investigations of the in-situ condition of the lining structure after 

complete curing of the concrete, after 5 months water saturation, 

after each of the cyclic freeze-thaw exposure levels and after the 

final moisture transport test 

 Moisture content profiles of concrete 

 Moisture content in membrane material 

7.  Measurements of in-situ tensile bond strength at different stages 

in the history of the lining structure (after freezing exposure)  

1. 2013/09- 

2015/08 

 

2. 2014/02-05 

 

3. 2014/05-08 

 

4. 2014/09-10 

 

5. 2014/10 – 

2015/08 

 

6. 2013/09, 

2014/01, 

2014/05, 

2014/08. 

2015/08 

 

7. 2014/01, 

2014/05, 

2014/08.  

1. Condition the lining structure 

to realistic moisture contents 

2. Accelerated cyclic freeze-

thaw exposure of lining, with 

moderate freezing load 

3. Accelerated cyclic freeze-

thaw exposure of lining, with 

severe freezing load 

4. Simulate steady state 

conditions in the model and 

measure thermal profile 

5. Measure moisture transport 

though lining structure with 

controlled boundary 

conditions 

6. Verify moisture condition of 

lining structure during the 

different tests 

7. Determine any change of 

strength after freezing 

exposure 

 

4.5 Laboratory investigations of sprayed concrete material 

The main purpose of the laboratory testing of the sprayed concrete material was to find out if 

freezing damage can be expected with the given moisture contents and freeze-thaw exposure 

characteristics. Material properties pertaining to the actual material constructed in tunnel linings 

and realistic exposure to moisture and freezing were emphasized.   Such material parameters 

relate to porosity characteristics, water absorption, permeability and resistance to freeze-thaw 

damage with the realistic exposure. An overview of the executed laboratory investigations of 

sprayed concrete material is shown in Table 7. 

The exposure severity of the commonly used test methods for freeze-thaw resistance of concrete 

(salt frost scaling and rapid freeze/thaw) was recognized, and a need to test the sprayed concrete 

with more realistic parameters for the tunnel exposure case was identified. The main reason for 

this is to avoid to reject materials which will fail according to a very severe test procedure with 

unrealistic conditions, but still might be suitable and exhibit durability under the conditions in 

a tunnel lining.  The development and pilot testing of this test method was carried out in 

conjunction with a master thesis work (Tandberg 2014), and presented at Concrete Innovation 

Conference CIC in Oslo June 2014 (Holter et al. 2014) 
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Table 7. Executed laboratory testing of sprayed concrete material from tunnel sites 

Investigation 
Laboratory, 

location 

Concrete 

from 

site1 

Age of 

concrete at 

testing [days] 

Time 
Number of 

specimens 
Purpose 

Porosity and 

moisture 

content 

Optical air void 

analyses 

ASTM C457 

NTNU H 400 2014/06 5 

Determine air 

void parameters 

for frost 

resistance 

Suction 

porosity, air 

voids and 

moisture 

content, 

according to 

the PF method 

NTNU 

G 360 -1100 
2012-

2014 
80 

Determine 

degrees of water 

saturation, 

porosity 

characteristics 

for frost 

resistance  

U 180 - 800 
2012-

2014 
79 

H 150 2013 39 

F 400 - 650 
2012-

2014 
49 

Standard frost 

resistance 

tests 

Salt frost 

scaling, 

CEN/TS 

12390-9 

NPRA2 H 300 2014/02 8 

Determine 

resistance salt 

scaling 

Resistance to 

rapid freeze 

thaw, ASTM 

C666, 

procedure A 

SINTEF3 H 300 2014/02 5 

Determine 

resistance to 

internal frost 

damage during 

rapid freeze-

thaw exposure 

Freezing 

induced 

dilation, 

ASTM C681 

NTNU H 350 2014/05 4 

Determine 

freezing 

induced dilation 

at high degree 

of capillary 

saturation 

Frost 

resistance 

under tunnel 

lining 

conditions 

Functional 

performance 

freezing test, 

developed at 

NTNU 

NTNU H 250-300 
2013-

2014 
8 

Determine frost 

resistance under 

realistic 

exposure 

Water vapor 

permeability 

Nordtest NT 

Build 369 
SINTEF3 

H 

G 

H: 300 

G: 1000 

2013/10-

2014/01 

 

H: 5 

G: 6 

Moisture 

transport 

analysis 

Hydraulic 

conductivity 
SOP 

LPM, 

Switzerland 

H 

G 

U 

H: 300 

G: 1050 

U: 750 

2013/12-

2014/03 

H: 10 

G: 10 

U: 15 

Moisture 

transport 

analysis 

Thermal 

conductivity 

and specific 

heat capacity 

 NTNU 
G 

U 

G: 800 

U: 570 
2014 

G: 2 

U: 2 

Heat flux and 

thermal 

exposure 

analysis 

Unidirectional 

water 

absorption 

SINTEF, 1988 NTNU H 250-300 2014 14 

Moisture 

transport 

analysis 
1 Abbreviations for site locations are explained in Figure 21. 
2 Norwegian Public Roads Administration, central laboratories, Oslo 
3 SINTEF Building and Infrastructure, Trondheim 

 

4.6 Laboratory testing of membrane material 

The laboratory testing of the membrane material was aimed at measuring material parameters 

according to realistic loading and exposure scenarios, based on the field investigations. Initially 

4 membrane products from the two suppliers were included. Later a fifth membrane product 

was also delivered to this study. An overview of the tested products is shown in Table 8. 
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Table 8. Tested membrane products in this study 

Product designation in this 

study 
Supplier Product Name 

Lot no / production 

date 

Polymeric content3 

[weight %] 

M1 BASF1 Masterseal 345 56 30 04 / 2009 73.7 

M2 BASF MEYCO TSL865 11-28-081 / 08.2011 54.6 

M3 Orica2 Tekflex DS-T 301 / 22.05.2012 62.4 

M4 Orica Tekflex DS-M 303 / 08.11.2011 48.3 

M5 Orica Tekflex DS-W 001 / 20.05.2013 71.2 
1 BASF Construction Chemicals Europe AG 
2 Orica International Ltd (Minova International Ltd at the commencement of this project) 
3 Measured with thermo-gravimetric analysis (TGA) up to 800oC with Argon-6 as test gas (Laboratory: SINTEF Materials and 

Chemistry) 

 

Based on poor findings for elasticity and tensile bond strength for the membranes M2, M3 and 

M4 early in this study, these three products were not included in the complete test program. 

The complete test program for the membrane testing is shown in Table 9.  
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Table 9.  Executed tests for membrane properties 

Issue tested,   

parameter 

Test method, 

applicable 

standard 

Test location, 

laboratory 

Tested  

membrane 

products 

Thermal 

exposure 

range 

Moisture condition 

modes 

Number of 

specimens 

Tensile bond 

strength 
EN-ISO 4624 NTNU 

M1 

M2 

M3 

M4 

M5 

20 to -7oC 

 Dry 

 Conditioned by 

immersion at 

atmospheric 

pressure 

M1 : 35 

M2  :  7 

M3:  11 

M4 :  7  

M5: 27 

Shear 

deformability 

and strength 

Direct shear 

testing with 

special 

adopted 

procedure 

NTNU 
M1 

M5 
20oC only 

Conditioned by 

immersion at 

atmospheric 

pressure 

M1: 5 

M5: 4  

Elasticity DIN 53504 

BASF 1 

Orica 2 

Wacker 3 

M1 

M2 

M3 

M4 

M5 

23 to -12oC 

Moisture 

conditioned at RH 

50 and 95% 

M1: 41 

M2 :  5 

M3 :  5 

M4 :  5 

M5 : 41 

Crack bridging 
DIN EN 1062-

7 
Wacker 3 

M1 

M5 
23 to -3oC 

Moisture 

conditioning at RH 

50 and 95% 

M1: 

M5: 

Watertightness 
CEN/TS 

12390-8 

Hagerbach 

Test Gallery, 

Switzerland 

M1 

M5 
20oC n.a. 

M1 : 3 

M5 : 6 

Polymeric 

content 

Thermo-

gravimetric 

analysis 

SINTEF 4 

M1 

M2 

M3 

M4 

M5 

n.a. n.a. 
One sample 

per product 

Water vapor 

permeability 

NS-EN ISO 

12572 

 

SINTEF 5 
M1 

M5 
20oC 

Wet cup method 

with humidity range 

RH 50 to 94% 

M1: 6 

M5: 9 

Unidirectional 

water 

absorption rate 

PF-Method 

(SINTEF 

1988) 

NTNU M1 20oC 

Specimens 

conditioned at RH 

50% 

6 

Water content 

in hygroscopic 

range 

(desorption 

isotherms) 

-  NPRA 6 
M1 

M5 
20oC n.a. 

M1:25 

M5:25 

Concrete –

membrane 

interface 

characteristics 

SEM-analysis Wacker 2 M1 n.a. 

n.a. M1: 2 

1 BASF Construction Chemicals Europe AG, Kaisten, Switzerland 
2 Orica International Ltd (at the time of testing: Minova International Ltd), Siemianovice Slaskie, Poland 
3 Wacker Chemie AG, Burghausen, Germany 
4 SINTEF Materials and Chemistry, Trondheim 
5 SINTEF Building and Infrastructure, Trondheim 
6 Norwegian Public Roads Administration, central laboratories, Oslo 

 

4.7 Numerical simulations 

Numerical simulations were carried out for two different purposes in this study: 

 Assess moisture transport through SCL with EVA based membrane and explain observed 

moisture condition in the investigated tunnel linings 

 Assess trends in ground water pressure in the immediate rock mass of an undrained SCL 

structure and investigate of the ground water flow mechanisms represented in the numerical 

codes and possible explain the measured ground water pressures 

The executed numerical simulations are shown in Table 10. 
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Table 10.  Executed numerical simulations 

Main task Software Type of simulation Purpose 

Hygrothermal, 

simulations of 

moisture transport 

through tunnel 

lining 

WUFI 

Simultaneous heat 

and moisture flux 

through building 

materials 

Quantify moisture transport by vapor 

and capillary conduction through the 

lining. Assess effects of such 

moisture transport 

Rock joint water 

pressure around 

partially drained 

SCL 

UDEC BB 

Distinct element 

simulation of rock 

mass. 

Discontinuous rock 

mass model 

Assessment of possible effect of 

undrained SCL on rock joint water 

pressure with mapped rock joint 

parameters 

Rock mass pore 

pressure around 

partially drained 

SCL 

FLAC3D Finite element  

Assessment of possible effect of 

undrained SCL on pore pressure in 

rock mass using a simplified 

continuum model 
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5 MAIN FINDINGS 

5.1 Overview 

The main results from the executed investigations are presented in this section as shown in 

Table 11. The publication of these results is indicated with the assigned numbering of the 

papers, included in this thesis. 

 

Table 11.  Overview, presentation of main findings 

Section 

in thesis 
Issue Details published in paper  

5.2 
Measured and simulated ground water pressures in the immediate 

rock mass  
2, 6 

5.3 
Loading and exposure conditions on the lining structure and the 

membrane  
2, 3, 5, 6 

5.4 Sprayed concrete: main data and measured porosities  3, 4 

5.5 
Moisture absorption and permeability properties of sprayed 

concrete and sprayed membrane 
3, 5 

5.6 
Moisture content in sprayed concrete and sprayed membrane in 

tunnel linings 
3, 5 

5.7 Moisture transport mechanisms through sprayed concrete linings 3 

5.8 Freeze-thaw resistance of the sprayed concrete material 4 

5.9 
Mechanical properties and performance of the tested membranes 

under found loading and exposure conditions 
5 

 

 

5.2 Measured and simulated ground water pressures  

The main aim of the water pressure investigations was to study the effects of an undrained and 

waterproof lining structure, when constructing the lining in the walls and crown and leaving the 

invert drained. Initially the test sites Karmsund and Ulvin were planned to provide the basis for 

this study. The conditions at the Ulvin site with a drained and unsaturated rock mass made this 

site unsuitable for assessments of effects of ground water pressures acting on the lining. Some 

field data from the Gevingås site were added.  An additional SCL test section with monitoring 

of groundwater pressure in one of the access tunnels to the Forsmark nuclear waste storage in 

Sweden was constructed May-June 2014 by the Swedish Nuclear Fuel and Waste Management 

Company in conjunction with this study.  The water pressure measurement data from the 

Forsmark test site were made available for this study. 

 

5.2.1 Conditions at test sites for investigations of ground water pressure 

An overview of the constructed sites with the conducted test is shown in Table 12. The   

conditions at the four test sites for the water pressure study are presented in Table 13.  
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Table 12. Constructed SCL sections for the investigations and conducted tests 

Site Lining section Conducted tests 

Karmsund road  

tunnel (subsea) 

24 linear m of ventilation 

cavern 

Water pressure testing in sectioned holes with four 

sections in each hole. Water pressure monitoring over 

8 months in sectioned  9 m long holes 

Ulvin access 

tunnel 
60 linear m of construction adit 

Water pressure testing in sectioned holes with four 

sections in each hole. Water pressure monitoring over 

8 months in sectioned  9 m long holes 

Gevingås 
1.85 km of 4.2 km constructed 

with SCL method  

Water pressure monitoring at the rock/concrete 

interface over a period of 4 months in one profile at a 

location with higher seepage than average in the 

tunnel 

Forsmark nuclear 

storage site, 

(subsea) 

15 linear m of a service tunnel  
Water pressure monitoring in single sections of holes 

up to 3 m length 

 

Table 13. Main Engineering geological and rock mechanical conditions for the four test sites for water pressure 

investigations 

Parameter Karmsund Forsmark Ulvin Gevingås 

Rock overburden [m] 130 100 55 40-50 

Distance below ground  

water table [m] 
75 122 0 30-40 

Major principal rock 

stress, value, dip angle 

[MPa],  [o] 

8.1 (8) 7.6 (0) 7.1 (4) Not measured 

Rock type 
Massive granitic 

gneiss 

Medium to fine 

grained granite to 

granodiorite 

Banded 

amphibolitic 

gneiss 

Dark mica schist 

Uniaxial compressive 

strength of intact rock 

[MPa] 

137-238 139 - 280 148 – 285 Not measured 

Young’s modulus of intact 

rock [GPa] 
64 – 73 66 – 105 43 - 49 Not measured 

Number of joint sets / joint 

spacings [m] 

2 + random   0.7 – 

1 

2 + random 

0.1 – 0.5 

3 

0.2 - 0 .5 

2 -3 

0.2 – 0.8 

Number of joints per m 

drillcore 
1 – 3 6-9 1 - 7 Not measured 

Rock mass quality Q, 

range and typical value 

(in brackets) 

6 – 66 (23) 5 – 25  (11) 5 – 12  (8) 3 -17  (5) 

Estimated average 

hydraulic conductivity of 

rock mass [m/s] 

10-8 to 10-9 10-8 to 10-9 10-7 to 10-8 10-7 

Calculated hydraulic 

transmissivities of rock 

joints [m2/s] 

10-8 to 10-9    
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5.2.2 Results from pressure monitoring  

The pressure monitoring at the test sites Karmsund and Forsmark were both conducted in rock 

masses with hydraulic saturation with background ground water pressures in the range of 680 

– 750 kPa. The test at Karmsund had to be terminated approximately 10 months after 

commencement of the measurements. Hence, long term effects could not be observed.   The 

results from the Karmsund site (Figure 25) show consistent trends for all holes with pressure 

reduction towards the undrained lining.  The background ground water pressure at the invert 

level is assumed to be approximately 780 kPa. The measured pressures in hole 2 and 3 closest 

to the lining, are noteworthy. The likely explanation for this is an unsaturated situation locally 

close to the tunnel lining. This is unlikely to be a long term condition, since the rock mass is 

under long term hydraulic saturation and air and vapor will tend to migrate through the lining. 

 
Figure 25. Results from the in-situ water pressure monitoring and water pressure tests conducted at the Karmsund 

site, with measured pressures in hole sections after 4 months after installation, calculated hydraulic transmissivities 

for hole sections with length 0.5 m and rock jointing given as RQD. The length of the measurement holes is 9 m 

 

The measured ground water pressures at Forsmark exhibit to important features: 

 A trend with higher water pressure for longer holes, indicating lower pressures closer to the 

tunnel lining 

 Significant differences in measured pressure in holes with the approximately same lengths 

within relative short distances 
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Figure 26. Measured water pressures at the Forsmark site in single bore hole sections (indicated in blue) after 6 

months after installation. The background water pressure at the invert level of the tunnel was measured to 

approximately 700 kPa 

5.2.3 Results from numerical simulations – comparison with measurements 

For the Karmsund case the discontinuum model UDEC BB and continuum model FLAC3D 

simulations both predict a trend of increasing water pressures in the immediate rock mass at 

decreasing distance from the lining the first 1-2 m from the lining. At 3-4 m distance, the 

discontinuous model predicts water pressures in good agreement with the measured. Neither of 

the models were designed to take into account any possible effects of the EDZ or the vapor 

transport through the lining (vapor transport explained in Section 5.7 in the thesis).  

  

Figure 27. Compilation of rock joint 

transmissivity, rock joint data and 

measured and simulated ground 

water pressures in an investigation 

hole at the Karmsund test site 
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5.3 Loading and exposure conditions of the lining structure and the membrane 

The loading conditions were studied in order to plan the laboratory testing and define realistic 

acceptance criteria. 

The results from the study of loading and exposure conditions are summarized in Table 14. 

Table 14. Main loads and exposure conditions for SCL in hard rock and cold climate 

Load type Relevant value / size Implication for laboratory testing 

Rock mechanical loads None. Only local loads None 

Groundwater pressure induced 

loads 

Very unlikely for the 

investigated cases. Not 

considered 

None for cases with low or no hydrostatic 

pressure 

Dynamic loads from traffic 

area 

10 kPa amplitude of air 

pressure (pressure + suction 

loads) 

None 

Tensile loads 
Gravity induced load from 

inner lining: 2 kPa 
Not realistic requirement 

Maximum crack width in 

concrete and thermal 

opening/closing 

Typical crack width range: 

0.1 – 0.3 mm. Maximum 

crack width 0.8 mm  

Thermally induced opening 

and closure : 0.6 mm 

Testing of elasticity under relevant  

temperatures  and moisture contents required 

Crack bridging performance at 1 mm crack 

width proposed 

Shear deformation along 

interfaces 
0.5 – 0.6 mm / m 

1 mm shear deformation within linear shear 

elasticity behavior 

Moisture exposure 

15-18 % moisture content 

range in the membrane 

material for membranes M1 

and M5  

Pre-conditioning of membrane to relevant 

moisture content 

Thermal exposure 

Possible temperature range 

+15 to  -6 oC at membrane 

location in tunnel lining 

Testing at realistic temperatures 

 

5.4  Sprayed concrete: material composition and measured porosities 

The sprayed concrete tested in this program was produced at tunnel sites under construction, 

and followed the current quality requirements for rock support sprayed concrete in road and rail 

tunnels (NCA 2011). Hence, this study covers state-of-the art sprayed concrete applied with the 

wet-mix method. 

Sprayed concrete is compacted through the kinetic energy and impact on the rock wall during 

spraying and undergoes a transition from a liquid state to solid state in a few seconds. Cast 

concrete, on the contrary, remains liquid long enough for a controlled compaction through 

vibration to take place. Hence the properties pertaining to the hardened sprayed concrete on the 

rock wall need to be understood in order to make assessments of porosity and permeability 

characteristics, and related material behavior for moisture transport and freeze-thaw resistance. 
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The material testing of sprayed concrete in this study has been conducted following the 

established practice regarding sampling and test methods currently used in Norway. This was 

realized through a collaboration with the concrete laboratory at SINTEF Building and 

Infrastructures in Trondheim, the concrete group at the Department of Structural Engineering 

at NTNU and the Tunnel and Concrete section at the Norwegian Public Roads Administration. 

The tunnel linings at the test sites were sampled by core drilling and both sprayed concrete and 

membrane materials were testes. The main used test method for the sprayed concrete was the 

PF Method (STF 1986, SINTEF 1988) from which the in-situ moisture condition, suction 

porosities and macro porosities (air void volumes) were obtained. The adopted method is 

explained in detail in paper 3.  Tunnel linings from four of the test sites were sampled at several 

age. This provides a substantial database on in-situ pore characteristics and moisture condition 

of the sprayed concrete. A compilation of the main results from the field investigations of the 

sprayed concrete is shown in Table 15. 

Table 15. Concrete composition data and measured porosities obtained with the PF-method for sprayed concrete 

linings from four different tunnel linings 

Concrete mix 

design / site 

Concrete mix data Measured porosity data for concrete1 PF Value 

Age at testing 

[days] 

Number of 

specimens 

Binder2 content [kg/m3] 

Fiber reinforcement 

[kg/m3, % by volume] 

Water/binder 

ratio3 

Suction porosity,   

psuc [%]4 

Macro porosity,     

pair [%]5 Mean 
COV 

[%] 

Mean COV [%] Mean COV [%] 

Ulvin access 

tunnel (U) 6 

CEM II A-V 42.5:  391 

CEM I 42.5 :            92 

Micro silica fume:    26 

Steel fiber:        35,  0.5  

0.45 
19.1 

(18.7) 
7 4.2 25 0.18 24 180 - 850 78 

Gevingås rail 

tunnel (G) 6 

CEM II A-V 42.5:  513 

Micro silica fume:    21 

PP-fiber8 :          7,  0.8 

0.44 
20.8 

(19.3) 
12 4.6 19 0.18 18 360 - 1100 80 

Harangen road 

tunnel (H)7 

CEM II A-V 42.5 : 502 

Micro silica fume:    25 

PP-fiber:             9,  1.0 

0.46 
21.1 

(20.2) 
4 4.5 10 0.17 9 150 27 

Laboratory 

lining  

structure (F) 7 

CEM II A-V 42.5:  489 

Micro silica fume:    26 

PP-fiber:            7,  0.8 

0.47 
20.9 

(20.5) 
8 4.9 13 0.18 14 150 - 540 49 

1 Calculated suction porosities according to classic concrete theory are shown in brackets  

2 Cement materials: CEM II A-V 42.5: Norcem Standard FA (fly ash cement), CEM I 42.5: Norcem Industrisement 

3 Including water added with the set accelerator during the spray application. Accounting for equivalent binder 

content: cement + 2microsilica 

4  Pores which are saturated by storage under water at atmospheric pressure for 7 days 

5 Pores which are additionally saturated after storage under water at 50 bars pressure for 3 days 

6 Nominal concrete composition obtained from the batching plant log 

7 Actual fresh concrete composition measured at the batching plant 

8 PP: Structural polypropylene (macro) fibers 
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5.5 Moisture properties of sprayed concrete and sprayed membrane  

The three properties pertaining to water absorption and water content of the concrete and 

membrane materials are illustrated in Figure 28.  

 

  

 
Figure 28. Conceptual diagram showing the three moisture properties which were tested for membrane and 

sprayed concrete materials. Left: water content at immersion at atmospheric pressure. Middle: Unidirectional water 

absorption (sorptivity). Right: Moisture retaining property at different air humidities obtained by isothermic 

desorption (representation as desorption isotherms) 

The water content at immersion at atmospheric pressure can be regarded as the maximum water 

content the material can contain. For concrete this relates to the saturation of the capillary and 

gel pores, commonly referred to the suction porosity.   The mean values for maximum water 

uptake at immersion for sprayed concrete and sprayed membranes M1 and M5 are shown in 

Table 16. 

Table 16. Water contents at immersion at atmospheric pressure for sprayed concrete and membrane materials 

Material 
Water content at saturation at 

immersion 1, 2 [kg/m3] 

Saturated density 2 

[kg/m3] 

Ratio water content at 

immersion / dry material 

weight [%] 

Sprayed concrete U 191 2254 9.2 

Sprayed concrete G 208 2239 10.2 

Sprayed concrete H 211 2210 10.6 

Sprayed concrete F 209 2225 10.4 

Membrane M1 368 1253 41.6 

Membrane M5 242 1127 27.3 
1 Saturation at immersion at atmospheric pressure means DCS = 100 % for the concrete and DS = 100% for the 

membrane materials 
2 Mean value for all tested specimens 

 

The unidirectional absorption rate (sorptivity) expresses the speed of capillary absorption in 

concrete. For membrane material the water absorption is related to the water uptake in the 

polymeric structure of the material and possible molecular water uptake. The concrete 

specimens were dried at 60oC for 7 days and membrane specimens had been stored at ambient 

temperature (20-23oC) at RH 50-60% for approximately 1 year.  The results of this test is 

normally presented as water uptake per area unit as a function of square root of time.  A 

compilation of the measured values for sorptivity for sprayed concrete and sprayed membrane 

M1 is shown in Figure 29. 
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Figure 29. Results from unidirectional water absorption tests of sprayed concrete and sprayed membrane M1 

The moisture retaining capacity expresses how much water a material will contain at 

equilibrium at a certain relative humidity. This was investigated by taking material specimens 

which were completely saturated at immersion and placing them in closed vessels (exsiccators) 

with a certain RH at constant temperature until mass equilibrium was reached. The result of this 

test is normally represented as a graph with moisture content (or degree of saturation) versus 

RH, commonly called a desorption isotherm. Desorption isotherms for sprayed concrete and 

sprayed membranes M1 and M5 are shown in Figure 30. 

 
Figure 30. Desorption isotherms for sprayed concrete (from site H) and sprayed membrane obtained at 25oC for 

different values of RH. Values are shown as degree of saturation at immersion (DCS for concrete, DS for 

membrane) versus RH 
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Both water and vapor permeability properties were investigated for sprayed concrete. For 

sprayed membrane the vapor permeabilities were investigated in this study. The water tightness 

of the membranes has been verified through external tests at the Swiss Federal Laboratories for 

Materials and Research EMPA and the Hagerbach Test Gallery VSH (EMPA 2002, VSH 2013, 

VSH 2015a, VSH 2015b). 

 

 

 

Figure 31. Conceptual drawings showing testing setup for hydraulic conductivity (conductive water permeability) 

and water vapor conductivity 

Hydraulic conductivity of sprayed concrete was tested with a test set-up shown in Figure 31, 

left, which aims to reproduce the parameters in Darcy’s law.  Altogether 35 specimens from 

three different sprayed concretes obtained from in-situ tunnel linings were tested. The results, 

shown in Table 17, indicate that the intact sprayed concrete material has a very low 

permeability. For the specimens showing no measurable flow, the lower limit of measurement 

of water flow for the test setup was used. 

Table 17. Compilation of test results for hydraulic conductivity kw of sprayed concrete specimens 

Site Specimen Measured kw [m/s] Duration of pressure test [hours] 

Ulvin (U) 

U1-3 3.310-11 94 

U1-5 3.610-12 94 

U1-10 3.510-12 94 

12 specimens 
No measurable water flow through 

specimens, kw < 510-14 m/s 
264-268 

Harangen (H) 

H3 9.610-12 94 

9 specimens 
No measurable water flow through 

specimens, kw < 510-14 m/s 
210-268 

Gevingås (G) 10 specimens 
No measurable water flow through 

specimens, kw < 510-14 m/s 
264-268 

 

The vapor permeabilities were measured using the wet-cup method, illustrated in Figure 31, 

right. The results are shown in Table 18. The notable observation from this test is that the 

sprayed concrete and the tested sprayed membranes M1 and M5 exhibit vapor permabilities 

which are almost similar, or within the same scatter range.  
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Table 18.  Measured vapor permeabilities for sprayed concrete and sprayed membrane 

Material, product 

Measured vapor permeability 

Remark 
Mean [kg/msPa] 

COV (%), number 

of specimens 

Sprayed concrete, 

Gevingås (G) 
0.7410-12 23 (6) 

Fibre reinforcement with structural 

polypropylene, 6 kg/m3  (0.7 % by volume)  

Sprayed concrete, 

Harangen  (H) 
2.2510-12 3 (5) 

Fibre reinforcement with structural 

polypropylene, 9 kg/m3 (1% by volume)  

Membrane M1 0.8710-12 10 (5) Sprayed  

Membrane M5 1.0110-12 6 (5) Sprayed 

 

The results from the moisture property and permeability testing can be summarized as follows: 

 Intact materials of both sprayed concrete and the sprayed membranes M1 and M5 are 

practically impermeable when exposed to water at 500 kPa pressure 

 Both materials sprayed concrete and membranes M1 and M5 can absorb significant 

amounts of water at immersion, but the membranes exhibit much higher water uptake at 

immersion, relative to its dry weight, compared to sprayed concrete 

 Sprayed concrete exhibits higher sorptivity (unidirectional water absorption) than 

membrane (only membrane M1 tested) 

 Sprayed concrete is a much more hygroscopic material than the sprayed membranes M1 

and M5 

 Sprayed concrete and membranes M1 and M5 exhibit water vapor permeabilities of the 

same magnitude 

 

5.6 Moisture content in sprayed concrete and sprayed membrane  

The moisture content of the sprayed concrete material in tunnel linings was investigated 

systematically for the two test sites Ulvin and Gevingås as well as the lining structure in the 

freezing laboratory. The found moisture contents in the tunnel linings were represented as 

moisture content profiles showing the DCS for the concrete obtained by splitting the core 

samples in pieces with approximately 40 mm length (Figure 32, top). The results show several 

consistent features. The lining at the Ulvin site, which was subject to precise management of 

the sprayed concrete application, shows a clear trend can be observed with a DCS close to 100% 

at the rock/concrete interface, and a gradient with decreasing DCS from the rock mass to the 

lining surface. This trend can also be observed for the lining at Gevingås, but with larger scatter, 

and a less distinct gradient with a drop in DCS. 

The in-situ condition of the membrane material in the tunnel linings was investigated parallel 

to the concrete material by extracting pieces of the membrane from the core samples. The 

moisture content of the membrane could be tested for several of the linings at two intervals, 

with ages up to 37 months within this project. The results are shown in Figure 33. There are 

two noteworthy observations: firstly the relatively low water content in-situ in the membrane 

material, and secondly a trend in which the moisture content over time seems to reach 12 – 14 

% . This corresponds to a degree of saturation of approximately 31%. The measured moisture 

contents of the membrane and concrete material in the tunnel linings are consistent with the 

laboratory results of moisture content at two materials at equilibrium at RH approximately 95-

97%, which indicates a DCS of the concrete in the range of 85-90%. 
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The feasibility of realistic testing of the large scale laboratory lining structure depended on 

achieving a moisture content situation in the lining which was representative for the in-situ 

tunnel linings.  The effect of the moisture conditioning which was undertaken by physically 

simulating water exposure by adding water to the lining through the rock mass is illustrated in 

Figure 34. The achieved moisture condition of the laboratory lining after 5 months of water 

exposure is very close to the measured moisture content of the Gevingås lining at 37 months 

age (Figure 32, right). 

 

 

 

 

  

Figure 32. Measured moisture content of the sprayed concrete material in from the two sites Ulvin at age 29 

months (bottom, left) and Gevingås at age 37 months (bottom, right) represented as DCS versus the distance from 

the rock concrete interface. Top images: Sectioning of core by mechanical splitting and assignment of data along 

the core.   The membrane is indicated as the green line.  Same symbols indicate the average moisture content over 

certain section of one core sample 
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Figure 33. Measured moisture content in membrane material (M1) extracted from tunnel linings 

  
Figure 34.  Measured moisture content of the sprayed concrete material in the lining structure in the 

freezing laboratory. Left: before moisture exposure. Right: after 5 months of adding water through 

drillholes in the rock mass (Section 4.4, Figures 23 and 24) 

 

5.7 Moisture transport through sprayed concrete linings 

The measured moisture contents exhibit a gradient from almost complete capillary saturation 

at the rock-concrete interface towards the lining surface, where significantly lower moisture 

contents have been consistently measured. It was assumed that this could be explained by 

moisture transport through the lining, in spite of the observed completely dry tunnel lining 

surfaces at the test locations. A hygrothermal simulation in the building physics software WUFI 

was executed in order to possibly explain this observation. 

The numerical simulation requires a simplification of the material model and the boundary 

conditions. For this purpose, the rock-concrete interface was assumed to be kept constantly wet 

and the conditions at the tunnel lining surface were implemented in the numerical model with 

a climatic exposure with temperature and relative air humidity, illustrated in Figure 35, left. 

The material parameters required for the numerical model were all measured.  



49 

 

 

 
Figure 35. Numerical simulations of moisture transport through SCL in the software WUFI. Left: simplified 

material model with boundary conditions. Right: comparison of simulated (dotted green line) and measured 

moisture contents for the Ulvin test site at age 29 months. The location of the membrane is indicated with green 

line (1). The range of the real location of the lining surface for the field results is indicated with (2) and (3) 

The hygrothermal simulations produce moisture content profiles which show the main features 

of the measured moisture profiles (Figure 35, right). The numerical simulation does not account 

for the exposure of liquid water through cracks and imperfections. Hence, the higher measured 

values in the part of the lining closest to the rock, can be explained by a likely higher exposure 

to water through the cracks in the first layer (approximately 15 cm thickness) of sprayed 

concrete. The numerical model also quantifies the moisture transport through the lining with 

the given conditions.  

 

5.8 Freeze-thaw resistance of the sprayed concrete material in SCL 

Freeze-thaw resistance of the sprayed concrete was assessed using three direct freezing testing 

methods, as well as indirect assessments by air void analyses, illustrated in Figure 36. The two 

most commonly used direct freezing testing methods in Scandinavia (resistance to salt scaling) 

and North America (resistance to rapid freeze-thawing and resistance to salt scaling) were 

selected. In addition testing of freezing induced dilation at a certain degree of capillary 

saturation (following a not renewed standard test) was executed in order to document the effect 

of one freezing event with realistic, but worst case, water content in the sprayed concrete 

material. 

 

  
Figure 36. Conceptual drawings showing freezing exposure modes for the three executed direct freezing tests. 

Left: Resistance to salt scaling (CEN-TS 12390-9). Middle: Resistance to rapid freezing and thawing (ASTM 

C666 procedure A). Right: Measurement of freezing induced dilation (ASTM C671-86)  
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Air void parameters can give indication of freeze-thaw resistance of concrete. Sufficient air 

void volume with a favorable spacing between the air voids is used as a freeze-thaw resistance 

quality parameter. The PF method suggests a certain ratio of the air void volume to the suction 

porosity as an indicator of freeze thaw resistance.  The application method of sprayed concrete 

produces a different air void structure than for cast concrete, and apparently with air void 

volume within a certain range. This is visualized in Figure 37.  Several studies find that the 

adding of air entrainment agent does not influence the air void volume for sprayed concrete as 

it does for cast concrete. The measured air void parameters for sprayed concrete as shown in 

Table 19. 

 

 

 

Figure 37. Left and center: images of air voids in hardened sprayed concrete (type H) obtained by an optical 

contrast enhancing procedure. No air entrainment agent has been added to this concrete. The two photos are to 

scale. Right: Image of spherical air voids produced by the adding of air entrainment agent in cast mortar (right 

photo: Fonseca & Scherer 2014) 

 

Table 19. Results from air void analyses of sprayed concrete material 

 

Method 

 

Parameter Mean COV [%] 
Minimum - 

maximum 

Number of 

specimens 

Optical image 

analysis/ 

ASTM C457 

 

Air void volume [%] 5.7 21.4 2.9 – 6.1 5 

Powers’ spacing factor [mm] 0.27 35.1 0.22 – 0.46 5 

Paste/air ratio 7.2 41.4 6.6 – 14.5 5 

Specific air void surface 

[mm2/mm3] 
20.2 19.8 13.6 – 24.3 5 

PF Method Air void volume, pair  [%] 4.5 9.8 4.0 – 6.0 27 
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The main findings from the freeze-thaw resistance testing of sprayed concrete according to 

standard methods can be summarized as: 

 The standard test methods for freeze-thaw resistance salt scaling and rapid 

freezing/thawing represent very severe exposure conditions compared to realistic and worst 

case exposure conditions in a tunnel lining 

 Sprayed concrete fails according to these tests 

 The freezing dilation tests do not show any deleterious strains in the concrete material 

following conditioning with 9 months immersion in water  

 The measured porosity characteristics, air void content, spacing factor and Protective pore 

Factor (PF) indicate a certain freeze-thaw resistance. 

 

5.8.1 New functional freeze-thaw performance test for tunnel linings 

A new procedure was developed in order to execute testing of freeze-thaw resistance under 

realistic exposure conditions which the tunnel lining represents.  The new test is a functional 

performance test which aims to simulate a realistic freeze-thaw exposure mode with 

conservative exposure parameters.  

The test is laid out as a two-step procedure: 

 Freeze-thaw exposure with pre-determined number of cycles of core specimens which 

have been pre-conditioned to a certain moisture content 

 After the cyclic freeze-thaw exposure, the specimen is tested for damage 

The set-up for the freeze-thaw exposure part of the procedure is shown in Figure 38. Further 

details of this method is given in Paper 4, Section 5. 

The new test shows promising results. Cyclic freeze-thaw thaw exposure could be precisely 

controlled and was successfully reproduced. Testing of freezing damage was done by 

measuring resonant frequency on disc-shaped specimens which were cut from the core sample 

which was exposed to cyclic freezing/thawing in the first part of the procedure. 

The experience with this method is still limited since only 8 core specimens have been 

completely tested with this method, of which all passed the test. Further testing of different 

materials, particularly materials which are likely to fail the test, is required to precisely define 

acceptance criteria and refine the testing parameters. 
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Figure 38. Functional performance freeze-thaw test for tunnel lining conditions. Left: Drawing with vertical 

section through the apparatus and indication of freezing exposure from below. Right: Testing in progress with two 

testing assemblies placed in freezing cabinet for controlled thermal exposure 

 

The investigation of freeze-thaw resistance of sprayed concrete in tunnel linings shows that 

testing according to the most commonly used standards will give the result “not frost resistant”. 

Testing with the freezing-dilation procedure (ASTM C671) and the new developed test in this 

study, applying conservative conditions regarding moisture content, cooling rates and thermal 

gradients, the main finding of this investigation is that the sprayed concrete is not prone to 

freeze-thaw damage in a tunnel lining. The results of the freeze-thaw resistance investigation 

of the sprayed concrete is summarized in Table 20.  

Table 20. Main results from the investigation of freeze-thaw resistance of sprayed concrete 

Test 
Result Conclusion 

Type of test Applicable standard 

Resistance to rapid 

freezing and thawing 
ASTM C666 procedure A 

Severe damage at 97 of 300 

required freeze-thaw cycles 
Failed 

Resistance to salt frost 

scaling 
CEN-TS 12390-9 

Severe scaling with 3% NaCl as 

test liquid. 

Insignificant scaling with 

distilled water as test liquid 

Failed 

Freezing induced dilation ASTM C671-86 

Very low measured freezing 

induced dilation with specimens 

conditioned to DCS > 97% 

Passed 

Pore Protection Factor SINTEF (1988) 0.17 – 0.19 Partially passed 

Air void spacing 

Powers’ spacing factor 

ASTM C457 (enhanced 

image procedure) 
0.22 – 0.49 mm Partially passed 

Air void volume 
ASTM C457 

SINTEF 1988 

3 – 6 % 

4 – 6 % 
Partially passed 

Tunnel lining 

performance freezing test 

Developed during this 

work 

No measureable damage after 

50 freeze-thaw cycles 
Passed 

 

5.9 Mechanical properties of the tested membranes  

The detailed testing program was laid out according to the loading model. The initial 

performance test for membranes was a standard elasticity test, in order to establish basic 

elasticity properties and roughly assess the suitability of the purpose of waterproofing leaking 
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cracks in a sprayed concrete lining. The applied test procedure for this purpose is the standard 

elasticity test for rubber materials DIN53504. For sprayed EVA membrane specimens this test 

is however vulnerable to large scatter due to variations in specimen thickness, curing 

conditions, temperature and moisture conditioning. The results from the series shown in Figure 

39 refer to membrane specimens which were produced by spraying within a few hours at the 

same location and been subject to an identical handling, storage and conditioning prior to 

testing. The test results show that membrane products with low polymeric contents exhibit low 

elasticity. 

 

 

 
Figure 39. Measured elongation performance for five different sprayable membrane products according to DIN 

53504 versus polymeric content measured by thermo-gravimetric analysis. The two colors indicate the two 

different suppliers of membrane products 

 

The results from the testing of the main properties are shown in the compilation in Table 21. 

The acceptance criteria, shown in Table 22, are in accordance with the loading model (explained 

in the thesis Section 5.3, Table 14 and in Paper 5, Sections 4.6, 6.4, 6.5 and 6.6) 

The results for the tensile testing on membranes show values lower than 0.5 MPa for the 

membranes M2, M3 and M4. Together with the results from the elasticity testing, showing low 

values for elasticity for these three membranes (Figure 39), and the poor in-situ waterproofing 

performance of membrane M4 (shown in Section 5.10)  it was decided to discontinue the testing 

of the membranes M2, M3 and M4. The membranes M1 and M5 were continued for the 

complete test program. 
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Table 21. Compilation of main test results for sprayed membranes 

Performed test 
Specimens, testing 

conditions 
Tested membrane products, main results 

P
u

ll
 t

es
t,

 t
en

si
le

 s
tr

en
g

th
 [

M
P

a]
 

 

Testing of core 

specimens. Several 

types of pre-treatment: 

 Dry 

 Immersion 

 Frozen/thawed 

Laboratory results:   

  

                Dry              Moist           Frozen/thawn 

M1         1.1-1.6         0.3-1.15         0.3-0.85 

M2                             0.25-0.7         0.1-0.55 

M3        0.2-0.4          0.3-0.45         0.2 – 0.4 

M4                             0.25-0.4         0.15-0.5 

 

 

In-situ test method for 

lining structure  

 In-situ tunnel 

 Large scale lining 

structure 

 Slabs of lining 

structure 

 Different freezing 

exposure 

Lining structure test results: 

M1, tunnel test sites:                           1.1- 1.6 

M1, after 35 cycles to -3oC 1                1.1-1.2 

M1, additional 20 cycles to  -7 oC 2     0.4-0.7 

 

Lining structure slabs 

 

               Dry             Moist             Frozen/thawn 

M1         1.25-1.3      0.6-1.1 

M5         0.58-0.85     0.55-0.7          0.4-0.6 

S
h

ea
r 

te
st

in
g

 

 

Direct shear testing on 

core specimens in large 

scale shear box 

 Pre-treatment of 

specimens by 

immersion 

           Shear deformation      Shear         Peak shear 

              at initial rupture     stiffness          stress 

                       [mm]              [MPa/m]         [MPa] 

 

M1                  1                     350                 0.75 

M5                  1                     297                 0.45 

C
ra

ck
 

b
ri

d
g

in
g

 

 

 

Crack bridging  

(w/t –ratio 
3
 at different 

temperatures) 

Testing  

temperature [oC]    23            0           -3             -8 

 

M1                         1.2          0.8        0.6           0.7 

M5                         1.6          1.4        0.4           0.7 

1 Minimum temperature -3oC and maximum temperature 7oC at the membrane location in the lining structure during freeze-

thaw cycles each lasting 48 hours 
2 After the initial 35 freeze-thaw cycles to -3oC, additional freezing to -7oC was executed 
3 w/t-ratio = ratio of crack width at rupture w to membrane thickness t 

 

1. Table 22. Proposed acceptance criteria for mechanical parameters for bonded membranes 1 

Parameter Test procedure Acceptance criterion Remark 

Elasticity DIN 53504 150% 
Testing at 20oC , initial 

qualification of product 

Tensile bond strength In-situ pull test 0.5 MPa 

No significant 

deterioration due to or 

age or freezing exposure 

Shear elasticity Direct shear  

1 mm shear deformation 

without signs of initial 

failure 

Normal load 0.5 MPa 

Crack bridging 
Dynamic loading, 

controllable crack width 

w/t = 1 at 20oC 

w/t = 0.5 at -3oC 2 

Minimum membrane 

thickness in the range of 

3 to 4 mm 
1 General remark: all test specimens to be tested with realistic moisture content. Moisture content to be tested and reported with 

measured result 
2 or testing at lowest exposure temperature which is expected at the location of the membrane in the lining 
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5.10 Results and experiences from constructed test sections 

The construction of the test sections with SCL followed the recommendations from the 

suppliers of the membrane products. The target result for the watertightness of the lining was a 

completely dry lining surface.  The resulting condition of the lining surface in terms of 

watertightness for the test sites is summarized in Table 23. The locations for water pressure 

testing and lining sampling with core drilling were dry. The typical initial seepage condition for 

the test sites and typically remaining wet spots before any local post injection works is shown 

in Figure 40. 

The applied construction methodology consistently left some minor damp spots in the test sites. 

This was also the experience during the construction of the Gevingås rail tunnel 2010-2011. 

For this project nearly all damp spots were removed by local injections, leaving the major 

portion of the tunnel completely dry. For the test sections Ulvin and Karmsund no injections 

were carried out, which caused some remaining damp spots.  

The experience with the construction method suggested by the suppliers at the time of 

construction is that under favorable conditions with a minor extent of drip spots through the 

primary lining, a completely dry result is possible with a minor effort of point injections through 

the final lining. For areas with denser drips, the effort of wet spot handling in form of temporary 

drainage works and the amount of remaining seepage points which require injection may be 

higher. Experiences from the recent construction of the Holmestrand rail tunnel (2014-15) with 

a large number of dense drip spots through the primary lining show that a completely dry result 

is feasible with a significant effort of wet spot treatment (drainage and injection). The final 

result of this case is shown in Section 2.4, Figure 13 right. For ground conditions which exhibit 

only minor seepage, in the form of a few drips, a completely dry result is feasible with minor 

effort in the form of temporary drainage works and local injections through the final lining. The 

Gevingås rail tunnel represents such a case, and is shown in Section 2.4, Figure 13 left. 

 

Table 23. Achieved watertightness for the test sites for SCL with bonded membrane 

Site,            

membrane 

tested 

Condition at 

testing area before 

application 

Condition at 

testing location at 

site 

Total result for 

test site 

Tunnel 

length 

covered 

Injections 

for removal 

of remaining 

wet spots 

Ulvin, M1 
50-60 dense drip 

spots 
Completely dry 

7 minor damp 

spots 

30 linear 

meter tunnel 
no 

Ulvin, M4 
50-60 dense drip 

spots 

Large number of 

seepage points 

7 drip spots, 43 

damp/moist spots 

30 linear 

meter tunnel 
no 

Karmsund, 

M1 

32 scattered drip 

spots 
Completely dry 9 damp spots 

24 linear 

meter cavern 
no 

Gevingås, M1, 

tunnel lining 

investigation 

Scattered drip 

spots 
Completely dry 

1-2 damp spots 

per 100 m 

>500 linear 

meter tunnel 
yes 

Gevingås, M1, 

water pressure 

monitoring 

Dense strong drip 

spots 
Completely dry 3 damp spots 

30 linear 

meter tunnel 
yes 

Forsmark, M1 
Scattered drip 

spots 

Completely dry in 

crown, damp 

spots in wall 

4 damp spots 
20 linear 

meter tunnel 
yes 
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Figure 40. Constructability issues for SCL with bonded membrane experienced at test sites. Upper photos: seepage 

condition through the rock support lining before applying the membrane, left: Ulvin; right: Forsmark. Lower 

photos: typical experienced leaks through inner lining prior to any post injection works, left: Ulvin M1 damp spot 

in crack, right: Forsmark, leak around rock bolt 

Favorable results, with minor efforts of post-injection, are achieved when the sprayed concrete 

substrate is smooth facilitating the application of a continuous membrane minimal risk of 

leaving spots with insufficient membrane coverage.   

The current state of working methodology for the tested sprayed membranes show that the 

application technology is sensitive to several conditions in a tunnel. This can be overcome by 

strict and extensive quality control procedures.  A further development of membrane products 

less sensitive to moisture in the substrate and improved working methodology which is less 

sensitive to variable workmanship is required. 

 

5.11 Health and safety: monitoring of dust during membrane application 

During the spray application of the membranes M1 and M4 at the Ulvin test site, dust 

measurements were carried out at three different working positions for the application crew. 

The reason for conducting such measurements was to assess the working hazards related to the 

dry spraying of the membrane products, particularly the risk of excessive dust concentrations.  

The spray application of the membranes for this test site was done by manual handheld 

application, which represents a more severe working hazard exposure than e.g. spraying with a 

robot manipulator. 

The working situation for the spray application works is shown in Figure 41. The ventilation 

situation was unfavorable with the location of the ventilation duct approximately 30 m behind 
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the location of the pump. This produced a very turbulent air flow situation around the test site. 

An air flow speed at the invert level of approximately 0.3 m/s was recorded. 

 

 
Figure 41. Set-up and organization of membrane spray-application and measurements of dust at three different 

working positions 

 

 
Figure 42. Measured types of dust 

Respirable and thoracic dust (explanation in Figure 42) was measured for the pump man, the 

nozzle man and the platform operator. The results are shown in Table 24. The values for 

respirable dust are high with the mean values slightly below the norm of 5 mg/m3. However 

some of the maximum recorded values are above the norm. For thoracic dust there is no 

administrative norm. The recorded thoracic dust concentrations are however high.  
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Table 24. Results from dust measurements during the membrane spray-application at the Ulvin test site 

Working 

situation 

Number of 

measurements 

Thoracic dust (mg/m3) Respirable dust (mg/m3) 

Average Mean Min. Max. Average Mean Min. Max. 

Nozzle 

man 
4 4.26 9.00 4.23 15.78 2.05 1.79 0.55 4.09 

Platform 

operator 
4 9.71 8.44 0.95 21.03 4.15 3.48 0.58 9.06 

Pump 

man 
4 9.50 9.00 4.23 15.78 3.97 3.54 1.10 7.70 

 

Although the ventilation situation experienced at this test site was unfavorable and can be 

improved for larger applications, the measured dust concentrations suggest that this spraying 

method, product handling and equipment setup gives a too high exposure to dust.    
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6 SYNTHESIS OF FINDINGS AND DISCUSSION 

6.1 Verification of main conceptual model 

The continuously bonded property of the SCL structure from the rock surface through all the 

constituent layers, means that there is a mechanical and hygric continuity through the entire 

lining structure. Consequently, the exposure to the ground water at the concrete-rock interface 

is a critical boundary condition for the lining system.  The lining will be exposed to water along 

conductive sections of rock joints.  Capillary absorption through the concrete material and 

conductive flow in cracks in the concrete where such cracks intersect the conductive rock joints 

will be the sources of water exposure to the primary sprayed concrete lining. The moisture 

condition and moisture transport processes are summarized in Figure 43.  

The SCL structure with a bonded EVA based membrane in principle represents a concrete 

structure with a certain type of barrier to transport water. In this case the membrane constitutes 

a barrier to conductive water flow, whereas it poses no barrier to vapor transport.  The moisture 

transport property of the lining structure is found to have a critically important effect on the 

moisture condition of the different parts of the lining. The main effect of the moisture transport 

property is that major parts of the lining will remain unsaturated and unable to transmit a 

hydraulic pore pressure. A general hydraulic pore pressure acting from the concrete material on 

the membrane surface can therefore be ruled out.  

Figure 43. Dominant water transport mechanisms in the tunnel lining 

Explanation to the water transport mechanisms in Figure 43: 

A:  Saturated conductive flow on rock joints 

B:  Capillary and possibly saturated conductive flow in concrete, conductive flow on cracks in    

concrete 

C:  Capillary flow and vapor transport in concrete, conductive flow on cracks in concrete 

D: Vapor transport in concrete, conductive flow on cracks in concrete 

E:  Vapor transport in concrete and membrane 
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Groundwater pressure, although low, will lead to an increased saturation of the cracks and 

imperfections in the sprayed concrete in the primary lining, and therefore lead to a slightly 

higher degree of saturation of the concrete material, than in cases which have no groundwater 

pressure.  The field investigation results and the measured moisture absorption and moisture 

transport properties of the sprayed concrete and membrane materials suggest that even under 

relatively high degrees of capillary saturation of the sprayed concrete (in the order of 95%), the 

membrane will exhibit sufficiently low in-situ moisture content to maintain high tensile bond 

strengths, sufficient elasticity and shear deformability.  

The external mechanical loads on the lining, including effects on the immediate rock mass, 

caused by the undrained situation in the walls and the crown have been found to be negligible 

under the investigated conditions with hydrostatic pressures up to approximately 800 kPa and 

hard crystalline rock conditions. 

The mechanical loads acting on the membrane directly are found to be shear deformations 

between the concrete layers on either side of the membrane which may cause elongation of the 

membrane over cracks, as well as shear strains in the membrane.  The expected shear 

deformation can possibly lead to shear strains in the range of 0.5 - 1 mm/m and crack openings 

in the range of 0.2 to 0.8 mm. 

No clear model for the tensile loading of a certain magnitude of the membrane could be 

established based on this study. It is therefore impossible to define an accurate criterion for 

required tensile strength based on a clearly estimated load. In order to consider the SCL 

structure having a mechanical integrity the minimum required tensile bonding strength for the 

other parts of the lining is proposed. The tensile bond requirement between sprayed concrete 

and the rock surface used in Norway and Sweden is 0.5 MPa. ITA/AITES 2013 proposes 0.5 

MPa a minimum required tensile bond strength for the membrane. In this study no results 

indicate that this should be reconsidered.  

The thermal exposure at the lining surface in the tunnel will be unique for each tunnel case. The 

minimum temperatures at the membrane location in the lining with a given outdoor climate will 

depend on the distance to the portal and the ventilation characteristics of the tunnel. The 

possible area of use of the SCL system under a cold climate, needs to be considered based on 

the longitudinal profile with the lowest possible temperatures.  

The maximum groundwater pressure exposure to the linings under the tested rock mass 

conditions with hydrostatic pressures in the range of 680 to 780 kPa is likely to be in the range 

of 200-300 kPa at the rock/lining interface. A likely cause of the reduced groundwater pressure 

near the lining interface is the effect of the EDZ with a significantly increased hydraulic 

conductivity.  For rock masses not exhibiting an EDZ with a significantly higher hydraulic 

conductivity, the numerical models suggest an increase in water pressure in the rock mass at 

decreasing distance to the lining.  For the linings which could be tested for moisture content 

and in-situ tensile strength, only the lining at the Gevingås test site can be assumed to have been 

exposed to a certain water pressure, most likely in the order of 200 kPa. 

 

6.2 Conditions for the moisture exposure of the membrane 

The performance of EVA based membranes have been found to be sensitive to moisture 

exposure. The found moisture contents in the linings and the moisture transport mechanisms 
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represent the basis for the favorable system behavior of the lining. The moisture properties of 

both concrete and membrane materials are therefore critical for this finding. Any significant 

changes to the vapor conductivity of the materials and possible access to liquid water through 

the concrete material may change the entire performance of the lining. The high vapor 

permeability of the membrane allows for moisture transport through the membrane, and the low 

hydraulic conductivity of the intact concrete material prevents a general exposure to liquid 

water on the concrete/membrane interfaces.  The effect of the vapor permeability of the 

membrane is illustrated in Figure 44.   

 
 

 
Figure 44. Interpreted main effect of a vapor permeable bonded membrane avoiding a long term saturation of the 

membrane material itself and the concrete material on the rock side of the membrane. Top: bonded membrane with 

low vapor permeability acting as barrier to vapor transport. Bottom: vapor permeable membrane which results in 

a long term unsaturated condition of the concrete material on the rock side of the membrane. 

A membrane with low vapor conductivity will tend to lead to a long term saturation of the 

concrete on the rock side of the membrane. A membrane with a vapor conductivity of the same 

magnitude as the sprayed concrete will avoid a long term saturation of the concrete behind the 

membrane. A sprayed concrete material or any other constructed material exhibiting high 

hydraulic conductivity which interfaces the membrane, would expose the membrane to liquid 
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water. This would possibly cause a water absorption which is higher than the favorable range 

and may potentially lead to a softening of the membrane and a reduced tensile strength. For this 

reason the moisture properties of the materials used in the substrate need to be fully understood 

in order to provide favorable moisture exposure.  

 

6.3 Considerations regarding durability 

The moisture condition of the lining materials is found to be a decisive issue for the lining 

properties. The moisture condition in the lining structure may change by introducing different 

constituent materials, which can lead to a different response to the water exposure or a 

substantial change of the water exposure to the lining. The consequences of any substantial 

changes need to be evaluated. 

The found moisture condition of the entire lining system with the tested materials and 

conditions (Figure 34, Section 6.1) indicates that the membrane will be located in a favorable 

situation and be “protected” from degrading mechanisms such as delamination due to pore 

pressure in the concrete, softening of the membrane and reduction of tensile bond strength due 

to saturation of the membrane.  

The problem which freezing exposure can possibly create for such linings is that of freezing 

damage to the lining structure caused by the formation of ice from the water contained within 

the lining. Formation of ice at the lining surface poses no potential problem with this lining 

system with a dry lining surface. The study has been aimed at detecting if the observed water 

contents in the concrete and membrane materials can possibly lead to freezing damage. The 

membrane material exhibits elongation and crack bridging capacity which is temperature 

sensitive. For this reason the thermal exposure should avoid being below - 3oC.  

Results from the freeze-thaw testing of the concrete material and the membrane-concrete 

interfaces indicate good freeze-thaw resistance. This is probably due to the unsaturated 

condition of the two materials which allows formation of ice to take place without creating 

damage.  

These considerations relate to the condition of the two materials in a continuous composite 

structure and do not take into account all possible effects of water exposure through the cracks. 

Cracks in the concrete will intersect the membrane in lines with thickness corresponding to the 

crack width and expose the membrane directly to water at these locations, to the extent that the 

concrete cracks are fed with groundwater from the conductive rock joints. The distance between 

the cracks which could be visually detected was found to be in the range of 0.2 – 1.5 m, with 

0.7 to 1 m as the most represented distance. During the core drilling for sampling no cracks on 

inside of the membrane could be found. None of the in-situ tensile tests, which were all drilled 

at a perfectly intact and dry lining surface, showed any low results for tensile strength. 

An important issue to consider, is how a high water pressure exposure to the lining could 

possibly lead to any degrading mechanisms. This is discussed in Section 6.7. 

The series of crack bridging tests conducted with high water content in the membrane, showed 

high elasticity at crack opening, even at -3oC. This indicates that the high water content in the 

membrane at the crack locations will function as a softener and increased crack bridging 

capacity also at low temperature. 
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In this study no analysis of the effect of geochemical exposure was included. Under conditions 

with chemically aggressive groundwater possible chemical degradation needs to be 

investigated.  The EVA based membranes have been reported to have a high resistance to 

inorganic chemical exposure, but poor resistance to exposure to hydrocarbons. 

A precise assessment of service lifetime is impossible to make based on the findings in this 

study.  

 

6.4 Effects of sprayed concrete material quality in the lining 

The long term durability of the SCL system very likely depends on creating favorable moisture 

exposure conditions which are illustrated in Figure 43. Irregularities and imperfections in the 

lining will to some extent compromise this and are impossible to avoid, but can be reduced to 

a certain extent. Such irregularities are: 

 Cracks in the concrete 

 Irregularities in the form of large holes or voids or concrete with higher porosity due to the 

sprayed application process (covering of rebound, poor nozzle angles, occurrence of 

spraying “shades” during high excavation surface roughness/irregularities) 

 Use of materials in the regulating layers which, in spite of producing a good finish, can 

result in higher cracking and porosity and hence, a higher occurrence of water at the 

membrane/concrete interface 

Such irregularities can be addressed by measures such as: 

 higher fiber dosage in the sprayed concrete to achieve better distribution of cracks and 

smaller individual cracks 

 low water/binder ratios in the sprayed concrete 

 improved concrete spray-application to produce a more regular surface and reduce 

irregularities caused by poor application 

 

6.5 Constructability issues for the membrane 

With the state-of-art of the sprayed membrane technology at the time of writing, there are 

several constructability issues which need to be addressed in order to facilitate the construction 

of the SCL system. Several of these issues relate to conditions of the tunnel with its excavated 

surface, water ingress and sprayed concrete primary lining. These issues are discussed in section 

6.6. This thesis shows that the membrane material in constructed in-situ condition in the lining 

shows favorable system properties. In this study it was not possible to investigate and develop 

the spray application details for the membrane materials. Today’s membrane application 

technology makes it feasible, but under several circumstances difficult to construct the complete 

SCL system successfully. The application methodology needs improvements in the following 

main fields:  

 Improved spraying methodology to achieve consistent membrane thickness and material 

quality  

 Improved spraying methodology to achieve better working conditions from a health and 

safety perspective 
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 Improved control procedures to verify the applied coverage and thickness of the membrane 

 Membrane materials which are less sensitive to direct water exposure in fresh (wet) 

condition during and immediately after the spray application 

 

6.6 Implications for tunnel lining design and specification 

The testing of the lining structure in this study was unable to address all the imperfections and 

irregularities. Favorable system properties have been substantiated under ideal conditions.  

Providing favorable conditions for the lining system to function according the established 

properties is a consequence of these findings. Such conditions relate to the factors which 

maintain a low direct water exposure of the membrane and minimize the loads on the 

membrane. Construction of the SCL system with bonded membrane will benefit from 

specifications of the excavation and support of the tunnel which are aimed at producing 

favorable conditions. This is illustrated in Figure 45. The parts of a specification for the 

construction of a tunnel which can be aimed at improving the feasibility of the SCL with bonded 

membrane are the following: 

 Pre-grouting of the rock mass to reduce the hydraulic conductivity and hence, reduce the 

number and magnitude of water ingress points 

 A stricter requirement for the pre-grouting in the upper part of the surrounding rock mass 

(indicated as k1 in Figure 45) giving a higher tightness than in the rock mass below the 

invert (indicated as k2 )  

 Contour blasting with strict requirements for the contour quality 

 Rock bolt holes to be sealed (no seepage) before installation and complete grouting 

 Rock bolts to be completely covered/embedded in the sprayed concrete in the primary 

lining  

 Sprayed concrete mix designs and application details aimed at producing a surface with 

low roughness and minimal occurrence of inferior areas such as void areas with high 

porosity 

 Specification of sprayed concrete layer thicknesses of the primary lining in order to 

produce favorable conditions for the membrane as illustrated in Figure 43 

The afore mentioned points all represent existing technology which can be realized by 

developing the specifications, acceptance criteria, quality control procedures and allocation of 

the contractual responsibility for the result of the application. 

 

 



65 

 

 
Figure 45. Conceptual drawing showing parts of the tunnel construction process which can be optimized to 

improve the conditions for the SCL system  

6.7 Effects of water pressure in the rock mass close to the lining,  

The material model for the lining stated in this thesis with cracks in the primary lining, 

postulates that pressurized water can occur on these cracks. An exposure to high groundwater 

pressure can possibly lead to a saturation of more cracks and fissures, in addition to exposure 

to water pressure on these cracks. The effects of such exposure were unable to be investigated 

in this study, and is therefore presented as a conceptual model in this section, Figures 46 and 

47. For cases with higher water pressure than this study includes, this model should be 

substantiated. A longterm exposure to higher water pressures can possibly have the following 

effects: 

 Higher degree of saturation of the concrete material near the rock/concrete interface 

 Higher degree of saturation of the concrete material at the immediate vicinity of the cracks 

 Exposure at the crack-membrane interfaces to water with pressure 

The latter point is illustrated in Fig. 47.  
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Figure 46. Conceptual drawing of section of lining with water exposure paths 

 

A possible water pressure induced debonding can be hypothesized based on the model for water 

pressure exposure through saturated cracks. Such a mechanism could possibly initiate as a 

debonding failure at the interfaces and progressively develop. The conceptual model for this 

failure mechanism, illustrated in Fig. 47, contains the following main issues: 

 Water pressure (1) in the crack acting on the concrete surfaces and the membrane 

 The swelling (2) of the membrane material under direct unconfined exposure to liquid water 

 Failure mechanisms (3), either cohesive (shear) failure in the membrane material or adhesive 

(debonding) failure at the interfaces between membrane and concrete 

The verification of this conceptual model will require measurements of the swelling properties 

of the membrane, including swelling pressure in confinement and unrestricted swelling. 

Under the tested conditions, with exposure to low groundwater pressure, no effects of 

debonding could be observed. An effect of a slightly higher degree of saturation of the concrete 

layers close to the rock mass, than the moisture transport model based on capillary and vapor 

transport predicts, was observed for both the Gevingås and the Ulvin test sites (Sections 5.6 and 

5.7 in the thesis, Figures 33 and 35; Paper 3, Section 6.7) 
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Figure 47. Conceptual drawings illustrating the problem of a pressurized wet crack. Left: geometry and 

dimensions of problem. Right: Detail with some features of the problem. 1: Water pressure acting on membrane 

and concrete. 2: Swelling of membrane when exposed directly to liquid water. 3: Possible failure mechanisms: 

delamination at the concrete interface and cohesive failure in the membrane material 
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7 CONCLUSIONS 

The single shell tunnel lining system based on fiber reinforced sprayed concrete and EVA-

based sprayed membranes has been investigated in the field and laboratory. The ground 

conditions and lining design context covered by this study were hard rock ground conditions 

with a rock support lining in the walls and crown of the tunnel, with a drained invert.  

The investigated lining system, without any constructed drainage measures has been found to 

exhibit the following main system properties: 

 The lining is a continuously bonded structure from the rock surface to the lining surface in 

which the interfaces between layers of the constituent materials are continuous hygric and 

mechanical contacts 

 The water exposure at the rock/concrete interface and the exposure to the tunnel climate at 

the lining surface constitute critically important boundaries for loading, moisture transport 

and thermal exposure to the lining system 

 With the investigated type of sprayed concrete and membranes, the lining system is 

waterproof  and vapor permeable 

 The function of a sprayed membrane in a bonded SCL structure has been found to be a barrier 

to liquid water at cracks in the concrete while providing significant vapor permeability in 

the continuous contact to sprayed concrete 

 The mechanisms of capillary and vapor transport through the lining structure explain the 

measured moisture condition in the investigated lining structures 

 The found moisture properties and in-situ moisture condition of the sprayed concrete and 

sprayed membrane are decisive for the in-situ mechanical performance of the membrane  

The investigations of the possible loading of the membrane under the scope of this study show 

that the membrane needs to exhibit the following: 

 Crack bridging capacity with crack width opening up to approximately 1 mm 

 Shear deformability up to approximately 1 mm without sign of initial rupture of the 

membrane   

 Tensile bonding strength of 0.5 MPa at the membrane/concrete interfaces in order to 

maintain a monolithic mechanical structural performance from the rock to the lining surface 

 Once cured,  exhibit designed properties within a temperature range -3 to 15oC at the 

membrane location 

 Favorable moisture properties in bonded contact with sprayed concrete 

The testing of the membranes show the following: 

 Polymeric content of the membrane product above approximately 70% seems to be 

required for sufficient elasticity performance 

 The water vapor conductivity of the membranes is within the range of water vapor 

conductivity of sprayed concrete 

 The sprayed membrane material is significantly less hygroscopic than sprayed concrete 

 The tested membranes with polymeric content over 71% show high and sufficient crack 

bridging capacities at 20oC 

 The elongation performance, in the form of crack bridging capacity, has been found to be 

temperature sensitive, with significantly lower crack bridging capacity at temperature from 

0oC and lower.  
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 With sufficient membrane thickness (>3 mm) bridging of cracks up to 1 mm opening has

been found possible down to approximately -3oC with realistic moisture contents

 In-situ testing of the lining in tunnels indicates tensile bond strengths of the

membrane/concrete structure in the range of 1.1 to 1.5 MPa

 Testing of the tensile bond strength on a large scale lining structure in an accelerated

freeze/thaw exposure setting with minimum temperature -3oC at the membrane location

suggest a slight reduction of strength caused by this freeze/thaw exposure after 35 cycles.

In a tunnel lining, with slow cooling rates and the found moisture content at the interfaces

of the concrete, the membrane will very likely be freeze/thaw resistant with a minimum

temperature of -3oC at the membrane location

 Testing of shear deformability in a short term test procedure of specimens of lining

structure at 20oC indicates linear shear elasticity up to approximately 1 mm shear

deformation for the tested membranes at realistic moisture contents

The sprayed concrete material covered by this study is wet-mix fiber reinforced sprayed 

concrete according to the current Norwegian practice for permanent rock support linings. This 

sprayed concrete methodology gives the following main data for hardened intact concrete 

material with age in the range of 300-400 days in-situ in the lining: 

 Suction porosities in the range of 19 to 21 %

 Air void volumes (air porosity, macro porosity) in the range of 4 to 6 %

 Extremely low hydraulic conductivity, < 510-14 m/s

 Young’s modulus in the order of 26-27 GPa

 Uniaxial compressive strength in the range of 68-75 MPa

Testing of freeze/thaw resistance and assessments of moisture content and thermal exposure of 

the sprayed concrete in tunnel linings suggest that freeze/thaw damage of the sprayed concrete 

material in an SCL structure is very unlikely to occur even under severe cold climate. 

The investigation of the effects on ground water pressure caused by an undrained SCL structure 

with waterproof bonded membrane indicate the following: 

 In saturated rock masses in hard rock with hydrostatic pressures in the order of 600-800

kPa and low hydraulic conductivities (in the order of 10-9 to 10-8 m/s) the measured ground

water pressures in the surrounding rock mass of the lining have been consistently recorded

to be lower than the hydrostatic

 The recordings show a trend of decrease of ground water pressure at decreasing distance

towards the lining surface

 Assessments which only take into account the average hydraulic conductivity of the rock

mass or the hydraulic transmissivity of the rock joins are unable to explain such a decrease

in ground water pressure near the lining surface

 The likely explanation for the observed trend with decreasing ground water pressure near

the lining is the effect of the EDZ (substantiated by another recent study), which can exhibit

several orders-of-magnitude increase in hydraulic conductivities in the rock mass in the

immediate vicinity of the excavated contour

 An EDZ with a significantly higher hydraulic conductivity is likely to be a critical condition

for the feasibility of an SCL with undrained walls and crown in rock masses with low

hydraulic conductivities under hydrostatic pressure
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Although no detailed investigations of the EDZ could be conducted in this study, the effect of 

the EDZ is important and should be included as a system property for the SCL when 

constructing this lining system in rock masses below the groundwater level. 

The findings in this study indicate that the SCL with bonded membrane exhibits favorable 

system properties due to the interaction between the concrete and membrane materials and 

between the lining and the rock mass. When the parts of the lining are constructed within the 

found range of material properties and under the conditions of this study, this lining system is  

likely to meet modern requirements. 

Although technical feasibility and cost-effectiveness has been demonstrated on a number of 

tunnel projects, the current state of this technology still exhibits several shortcomings and 

challenges which require further improvements. The main shortcomings are: 

 Sensitivity to imperfections in the lining materials, particularly caused by irregularities in 

the sprayed concrete substrate, which in turn requires strict quality control 

 Application methodology of the membrane, lack of robustness for typical tunnel 

construction conditions 

 Membrane product which, in freshly applied condition, is too sensitive to water exposure  

The main issues to further develop the SCL method with bonded waterproof membrane as a 

technically feasible, cost-effective and durable tunnel lining system can be summarized in the 

following main points: 

 Improvement of constructability details for the sprayed concrete substrate and membrane 

application processes in order to reduce sensitivity to variation workmanship 

 Development of specifications and requirements which cover the processes of the 

excavation and support of the tunnel in order to provide favorable conditions for the 

construction, long term condition and durability of the lining. The main issues are pre-

grouting of the rock mass, contour quality during excavation, mix-design and application 

of the sprayed concrete in the rock support lining 

Despite the current shortcomings of this lining system, it has already proven to be a valuable 

and cost-effective method to waterproof a sprayed concrete lining in several situations. 
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ABSTRACT: The design of Norwegian rail and road tunnel linings is currently being reconsidered in order to meet 
modern functional requirements for service life time, maximum allowed down time and total cost effectiveness. 
This paper reviews the current design practice and gives an overview over some suggested and possible future 
technical solutions for such tunnel linings. Specific issues which are different for rail and road tunnel linings are 
also reviewed. The use of modern analysis tools for decisions on technical solutions and cost optimizing are 
described.  Until recently rail and road tunnels have been designed with a tunnel lining system consisting of a 
permanent rock reinforcement lining according the sprayed concrete and rock bolt method, and an inner 
insulation and waterproofing shield system. The rock reinforcement lining has been designed according to the Q-
system which recognizes fiber reinforced sprayed concrete and rock bolts as permanent and long term durable 
elements of the tunnel lining. The traditionally employed inner shield system has had two main functions; namely 
the waterproofing and drainage and the thermal insulation to avoid formation of ice. Additionally for road tunnels 
the esthetic design of the traffic area is important for safety reasons. Recent experiences with operational costs, 
maintenance and need for refurbishment of relatively new tunnels have revealed that current design practice of 
rail and road tunnels does not meet modern functional requirements for the desired service lifetime and required 
maintenance level. The modern analysis tools RAMS (reliability, availability, maintainability and safety) and LCCA 
(life cycle cost analyses) are suggested to establish the detailed decision basis for technical solutions for tunnel 
linings.  Based on such analyses cost-effective technical solutions for tunnel linings according to modern 
functional requirements can be achieved. Possible future technical solutions for tunnel linings for high speed rail 
or highways with dense traffic are largely based on European experiences and consist of cast-in-place or 
segmental concrete linings. 

1 Introduction 
Keeping the construction costs low has traditionally been considered the main issue in the total cost-
effectiveness of a new rail or road tunnel project in Norway. The costs related to maintenance and 
refurbishment has only to a limited extent been considered in the planning, decision and design 
process. In most cases one has accepted significant and frequent time slots with closure due to 
required maintenance. The vast portion of Norwegian tunnels has therefore been constructed with a 
tunnel lining system which has had a low investment cost, but also a limited service lifetime in a 
number of cases.  

Modern road and rail infrastructure requires tunnels to be placed in increasingly more difficult ground 
conditions and sensitive environment. Requirements for maximum down time and service lifetime are 
changing in a more demanding direction.  
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2 Background – current technical solutions 
Norwegian rail and road tunnels are currently being designed with a functionally divided tunnel lining 
system. The rock reinforcement lining is designed with sprayed concrete and rock bolts to provide  
permanent stability of the rock mass. The design of this lining is carried out according to the Q-system 
(Barton et al. 1974). This procedure is also referred to as the Norwegian Method of Tunneling NMT 
(Barton et al. 1994).  An important feature is that the rock reinforcement lining is not waterproof. 
Hence, the tunnel structures are designed as globally drained structures. Water seepage control is 
handled with the pre-grouting method (Garshol 2003). The pre-grouting method essentially utilizes a 
systematic pressure grouting of cementitious and mineral grouts ahead of the advancing tunnel face. 
Todays practice enables hard rock tunnel pre-grouting to achieve water ingress rates down to 1-2 
litres per 100 linear m tunnel per minute (Hognestad et al. 2005). With rock overburdens in the range 
of 10-100 m this implies hydraulic conductivities after pre-grouting of the rock mass in the range of 10-8 
to 10-9 m/s.  The remaining seepage has been allowed to enter into the tunnel.  This implies a global 
drainage of the immediate rock mass around the tunnel. The globally drained tunnel structure has 
been a fundamental principle of Norwegian rail and road tunnel construction. Since 1982 a large 
number of subsea road tunnels in rock have been successfully designed and constructed according to 
this principle (Nilsen and Henning 2009). This technical solution for tunnel linings implies the need for 
an inner lining structure which collects and drains the water down to the invert. In areas exposed to 
freezing thermal insulation to prevent formation of ice is an important issue.  For road tunnels the inner 
lining has also been designed to obtain a proper esthetic design  of the traffic area.  Examples of the 
traditionally employed tunnel lining systems are shown in figures 1 and 2.  

 
Figure 1. Layout of traditional Norwegian tunnel lining system with two options. A: shield system with 
thermally insulating pre-cast concrete elements. B: shield system with PE sheets (after NPRA 2012). 

 
Figure 2. Recently constructed tunnel lining systems with drainage and thermal insulation shield 

structures as shown in fig 1. Left: Concrete segment shield structure for a highway tunnel. Middle: PE-
foam shield structure in a high speed rail tunnel. Right: 3D image of the concrete segment and PE foam 

lining system highway tunnels  (left and middle photos: Ådne Homleid/Byggeindustrien). 
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3 Functional requirements for modern rail and road tunnels in Norway  

3.1 Current practice 

The design principle of the globally drained tunnel structure (Nilsen and Henning 2009, NPRA 2012) 
implies that a certain amount of water is allowed to seep through the rock mass into the tunnel. The 
maximum allowed amounts of water seepage into the tunnel is subject to analyses of the 
hydrogeological balance and is specified in most cases as a given quantity of water per time unit per 
linear meter tunnel. This represents the functional requirement for the pre-grouting works, which take 
place at the tunnel face concurrently with the excavation and the rock reinforcement works.   

The Norwegian norms for both rail (NNRA, 2012) and road (NPRA 2006 and 2010, NNRA 2012) 
address the rock support on one hand and the waterproofing and thermal insulation on the other hand.  
This essentially represents the functional division of the tunnel lining into the two following parts: 

� A structural part, reinforcing the exposed rock surface and the immediate rock mass 

� An inner operational part, providing an environment which suits the function of the tunnel 

For the rock reinforcement part of the tunnel lining, very little can be found in the Norwegian 
documents which can be considered to be functional requirements. The only clearly stated functional 
requirement for the rock reinforcement part of the tunnel lining is that all elements of the lining shall be 
considered permanent and have a durability which is at least equal to the service life of the tunnel. 
However, clear requirements are given for the operational part with waterproofing and thermal 
insulation shielding for both rail and road tunnel linings in the above cited norms. For rail and road 
tunnels these requirements have a number of similarities, but also some important differences. 

3.1.1 Road tunnels 

For road tunnel linings the functional details are typically given as performance requirements like: 

� Water drained down to invert without freezing 

� Thermal insulation in the freezing zone designed according to the frost amount F for one 
winter for the given location, in which F is the accumulated number of hours multiplied with the 
number of oC below 0 oC 

� Service life 50 years 

3.1.2 Rail tunnels 

For rail tunnel linings the main specific differences are: 

� All tunnel lining surfaces to be waterproofed 

� In most cases a stricter requirement on maximum allowed down time, mainly due to the lack of 
possibilities for partly closure and lack of detour possibilities 

� No required esthetic interior design  

� Larger aerodynamic loads on the tunnel lining  

� Chemical deterioration due to chloride negligible 

The probability of collision events within the service lifetime of a rail tunnel is also very much lower 
than for a road tunnel. 

3.2 Trends for modern functional requirements  

Modern functional requirements are being elaborated for both rail and road tunnels in order to meet 
modern demands. Such functional requirements are categorized in the following main items:  

� Service Lifetime 

� Maximum allowed downtime during operation 

� Maintainability 

� Geometrical evenness of tunnel contour 
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3.2.1 Road tunnels 

For road tunnels one has chosen an approach to differ between higher and lower traffic densities. For 
tunnels with high traffic density one would require a very high service lifetime for the lining system. For 
tunnels with lower traffic densities one would accept lining systems with lower service lifetime, but also 
a significantly lower investment cost. The downtime imposed by planned maintenance and 
refurbishment directly influences the downtime for the tunnel. The definition of acceptable downtime is 
influenced by the possible detour options around a certain tunnel and the possible time which the 
tunnel can be closed for maintenance or operated with partial capacity or limited traffic density. For 
tunnel linings in modern road tunnels, one can summarize the following important issues: 

� For high traffic density , AADT > 4000, service life time 100 years (AADT = annual average 
daily traffic movements) 

� For medium and low traffic densities, AADT < 4000, service life time 50 years 

� Esthetic design of traffic area to suit modern demands 

� Thermal insulation with respect to design freezing loads  

� Traffic area designed for likely accident and collision scenarios within the service lifetime 

� Chemical durability against chlorides in lower walls 

� Only fire resistant materials in tunnel lining for high traffic density tunnels 

� Defined maximum allowed down time, “white hours” for maintenance and repair  

3.2.2 Rail tunnels  

For rail tunnels one has so far not defined a strictly required service lifetime.  The main approach is to 
require a service lifetime of 100 years for the entire lining system in all new rail tunnels.  However, one 
would allow some adjustments in special cases. Today’s practice to a large extent involves project 
specific approaches for important technical solutions. Therefore one important goal is to elaborate a 
set of guidelines at a superior level for all new rail tunnels. 

Modern rail lines designed for high speed imply much more rigid alignment curvatures than in the past. 
The extent of very long tunnels will be higher than for the existing rail network.  

For tunnel linings in modern rail tunnels one can summarize the following important issues: 

� Service lifetime 100 years, but adjustments possible 

� Any amounts of freezing F will imply a frost resistant lining system 

� Esthetic design not of critical importance 

� Definition of maximum downtime. Detour generally not possible 

4 Modern analysis tools for decisions of technical solutions for tunnel 
linings 

Both rail and road administrations have started to use modern analysis tools for decisions on tunnel 
lining design. Such analysis tools comprise RAMS (Reliability, Availability, Maintenance and Safety) 
and  LCCA (Life Cycle Cost Analyses). The aim is to use these tools in a systematic manner for the 
final decisions on technical solutions. The following three main issues are considered critical for the 
choice of technical solutions for tunnel linings for both rail and road tunnels. These are: 

� Safety  

� Minimal downtime 

� Total cost effectiveness 

Safety in this context relates to serious events such as collision, derailment, collapse and fire.  

The minimum downtime for a traffic tunnel depends on how reliable it is for unplanned failure events 
and planned maintenance which results in closure.  Furthermore, the possibility to carry out 
maintenance within restricted time slots will influence the down time. The maximum required downtime 
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for a certain tunnel is given based on the traffic density and the importance of the road or rail 
connection in question, as well as the possibility for temporary detour. For a given technical solution 
for tunnel linings one therefore needs to analyze if the technical solution will influence the downtime.  
For this purpose one uses the RAMS analysis tool.  As a basis for a RAMS analysis one needs to 
know or define the required maximum downtime for the tunnel. The detailed analysis addresses the 
functional requirements for the structure in question as input and gives an expected maximum 
downtime as a result. This resulting downtime from the analysis should then match the required 
maximum downtime (figure 3).  If the resulting downtime is unsatisfactory, one needs to consider 
special efforts in order to meet the initially defined requirement.   

A RAMS analysis will not give a complete picture regarding the most cost-effective technical solution. 
For this reason LCCA should be carried out in conjunction with RAMS analyses.  LCCA is a process of 
evaluating the economic performance of a structure over its entire life. LCCA balances initial monetary 
investment with the long-term expense of owning and operating the structure (Stanford University, 
2005). When these two analyses are carried out with good input data, one obtains better and more 
objective decisions as to which technical solution for tunnel linings is the most suitable in each case.   

The contents of the RAMS and LCC analysis tools are graphically shown in figure 3. 

 

 
Figure 3. Schematic representation of RAMS analyses and LCC analyses  

5 Trends for future technical solutions for rail and road tunnel linings 
Both rail and road administrations in Norway are adopting the central European approach by 
designing tunnel linings with either cast-in-place or segmental concrete structures. The main reason 
for this is the expected high service lifetime and low need for maintenance for such tunnel lining 
systems compared to the performance of the tunnel lining systems which have traditionally been in 
use. A lowest possible down time is very important for tunnels for major rail and highway portions. 
Hence, tunnel linings which require a minimum of maintenance are suggested for such projects.  For  
road connections with less importance, one has chosen to accept the latest developed versions of the 
existing drainage and insulation shield lining systems. For rail tunnels one has so far suggested one 
main approach, with possibility for project specific adjustments. 

5.1 Rock reinforcement and water control design 

For both road and rail tunnels, the proven and established rock reinforcement method and water 
control philosophy with the pre-grouting method is suggested for the future geomechanical and 
hydrogeological design (NPRA 2012).  For geomechanical stability of the tunnel lining this implies that 
sprayed concrete and rock bolting will still be the main rock mass reinforcement lining method (Barton 
et a. 1974, Barton et al. 1994, Norwegian Concrete Association 2011). Hence, the possible use of 
cast-in-place concrete tunnel linings with sheet membrane waterproofing has an esthetic and 
waterproofing function only and is not considered to have a structural or geomechanical function 
(NPRA 2012).  The groundwater control philosophy with pre-grouting with strictly evaluated allowed 
water ingress amounts will still be the main approach. The main concept is to allow controlled and 
maximum defined amounts of water ingress.  This water control philosophy implies the tunnel 
structure being a globally drained structure, in which no loads imposed by water pressure act on any 
parts of the tunnel lining.  
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Figure 4. Suggested design with cast-in-place tunnel lining for modern two-lane highway tunnels in hard 

rock in Norway. Left: full cross section. Right: detail of lining structure (NPRA, 2012) 

5.2 Trends for design of permanent linings in road tunnels 

Two and three lane highway tunnels in hard rock in Norway will also in the future very likely be 
excavated by the drill-and-blast method. For major highway connections one recommends the cast-in-
place tunnel lining system as shown in figure 4 for tunnels with annual average daily traffic movements 
(AADT) more than 4000. The lining system is adopted in a globally drained context, using a geotextile 
fleece for drainage, a sheet membrane for waterproofing and leaving the invert unwaterproofed.   

For road connections with less traffic density one will accept the shield systems as shown in figure 1. 
With the recent technical improvement of these tunnel lining systems one can realistically require a 
service lifetime of 50 years. 

5.3 Trends for design of permanent linings in TBM excavated rail tunnels 

The suggested future design of tunnel linings in rail tunnels largely follow the considerations made for 
road tunnels. However for rail tunnels over a certain length, TBM excavation is likely to be a realistic 
cost-effective alternative to drill-and-blast excavation. The planned extension and modernization of the 
rail network in Norway, including the High Speed Rail network (HSR) will involve construction of long 
rail tunnels. Several design options for tunnel linings are currently being considered for new long rail 
tunnels in Norway. The design and construction, as well as service life time and maintenance 
considerations for these lining types is well proven in the Alp countries (Strappler et al. 2012).  

Figure 5 shows two main design options for TBM excavated tunnels in hard rock which can be 
adopted in Norway. In both cases a shielded TBM would be employed and a segmental concrete 
lining is installed. Case A (left) shows a gasket sealed segmental concrete lining, which implies a 
completely waterproof and undrained tunnel lining structure. This lining type needs to be designed for 
the full hydrostatic groundwater pressure.   

Case B (right) shows a segmental concrete lining and an inner cast-in-place concrete lining with sheet 
waterproofing membrane and drainage. This system implies global drainage of the tunnel lining 
structure, without any hydrostatic pressure. The outer segmental concrete lining is designed for 
geomechanical loads only, exclusive of water pressure. The case B as shown in figure 5 can also be 
constructed with a lining with fibre reinforced sprayed concrete rather than the segmental lining, hence 
employing an open gripper TBM. An inner lining with the cast-in-place concrete and sheet 
waterproofing system can then be constructed subsequently. This would be a technically feasible and 
cost-effective option in prevailing hard rock conditions, when the short term stability of the excavated 
tunnel surface is favourable.  
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Figure 5. Two design options for tunnel linings in TBM excavated rail tunnels in rock. A: Single-shell 

undrained gasket sealed segmental concrete lining. B: Double-shell drained lining with outer segment 
concrete lining and inner cast-in-place concrete lining. (After Strappler et al. 2012) 

Such an approach was realized during the construction of the Steg-Raron portions of the Lötschberg 
base tunnel (Classen et al. 2003) as well as the Gotthard Base Tunnel, both in Switzerland.  

5.4 Innovative design of permanent linings in traffic tunnels with the sprayed concrete and 
bonded membrane lining system 

An innovative tunnel lining system with sprayed concrete and bonded waterproof membrane is 
currently subject to detailed research for possible use in modern rail and road tunnels in Norway. This 
system has already been successfully used on several rail and road tunnel projects in central Europe 
(Holter et al. 2010) and most recently in Norway for a significant section of the recently constructed 
single-track 4 km long Gevingås rail tunnel near Trondheim (Nermoen et al. 2011). The design 
process for the tunnel lining system included a RAMS and LCC analysis (DNV, 2010), in which the 
total cost-effectiveness of this tunnel lining method was verified.  

 
Figure 6. Innovative option for traffic  tunnels in rock with sprayed concrete and bonded waterproofing 

membrane. Design and finished lining from the recently constructed Gevingås rail tunnel in Norway 
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Example of a tunnel lining layout for a rail tunnel using the sprayed concrete and bonded membrane 
method, with system detail and example of finished tunnel lining in a modern rail tunnel, is shown in 
figure 6. This tunnel lining method has proven to have a high maintainability without requiring long 
periods of down time. 

6 Conclusions 
The currently employed tunnel lining systems for rail and road tunnels in Norway are found to have too 
short service lifetime and too high down time.  Both rail and road administrations are elaborating 
functional requirements to suit the real and specific needs for modern rail and road tunnels. Alternative 
modern tunnel lining systems with cast-in-place concrete for drill-and-blast excavated tunnels and 
segmental concrete linings for TBM excavated tunnels are being planned. For drill-and-blast 
excavated tunnels the existing practice for the rock reinforcement lining and pre-grouting method for 
water control will be continued. The modern design decision tools RAMS and LCC analyses will be 
implemented in a systematic manner in order to obtain the best technical solutions for tunnel linings in 
the future.  

7 References 
Barton, N., Lien, R.,  Lunde, J. 1974. Engineering classification of rock masses for the design of tunnel support. 

Rock Mechanics, 6(4): Springer Verlag, Vienna, pp 189-236 

Barton, N., Grimstad, E. 1994. The Q-system following twenty years of application in NMT support selection. 43rd 
Geomechanic Colloquy, Salzburg. Felsbau, 6/94: pp 428-436 

Classen, J., Holter, K.G., Kurth,T. 2003. The AlpTransit Lötschberg Project , Switzerland. High-performance wet-
mix sprayed concrete during TBM excavation of two high speed railway tunnels. In: Proc Rapid Excavation 
and Tunnelling Conference. Society of Mining Engineers, Littleton CO, USA. pp 1175 - 1190 

DNV Det Norske Veritas.  2010. RAMS and LCC analyses for the waterproofing and frost insulation for the 
Gevingås rail tunnel. DNV report no 2009-1968 for NNRA (Norwegian) 

Garshol, K. 2002. Handbook: Pre-excavation grouting in hard rock underground construction. MEYCO 
Underground Construction, Zürich 

Holter, K. G., Bridge, R., Tappy, O. 2010. Design and construction of permanent waterproof tunnel linings based 
on sprayed concrete. In: Proc 11th Int’l Conference Underground Constructions Prague 2010. City and 
Transportation Tunnels – Zlámal, Butovič, Hilar (eds). Czech Tunnelling Society, Prague. pp 121-126 

Hognestad, H.O., Frogner, E. 2005. State-of-the-art microcement pre-injection for the Jong-Asker rail tunnel, 
Norway. In: Proc  31st ITA-AITES World Tunnel Congress, Istanbul. Underground Space Use:Analysis of the 
Past and Lessons for the Future – Erdem, Solak (eds). A.A Balkema, London. pp 925-930 

Nermoen, B., Grøv, E., Holter, K.G., Vassenden, S. 2011. Permanent waterproof tunnel lining based on sprayed 
concrete and spray-applied double-bonded membrane. First Norwegian experiences with testing under 
freezing conditions, design and construction. In Proc 6th Int’l Conf. on wet-mix sprayed concrete for rock 
support. Tapir. Oslo, pp 317-338 

Nilsen, B., Henning, J.E. 2009. Thirty years of experience with subsea road tunnels. In Proc Int’l Conference Strait 
Crossings 2009. Tapir, Trondheim. pp 35-44 

Norwegian Concrete Association. 2011.  Publication No 7 Sprayed Concrete for Rock Support, Norwegian 
Concrete Association, Oslo 

NPRA Norwegian Public Roads Administration. 2012. Report No. 127. Major Research and Development Project: 
Modern Road Tunnels 2008-201, NPRA, Oslo (Norwegian) 

NPRA Norwegian Public Road Administration. 2010. Handbook 021, Norms: Road Tunnels (Norwegian) 

NPRA Norwegian Public Road Administration. 2006. Handbook 163, Norms: Water drainage and frosts insulation 
in tunnels (Norwegian) 

NNRA Norwegian National Rail Administration, 2012. Design guide; Jernbaneverket; Underbygning/Prosjektering 
og bygging/tunneler, fra teknisk regelverk, 6.1.2012, 

Stanford University, Land and Buildings Dept, 2005. Guidelines for Life Cycle Cost Analysis 

Strappler, G., Vigl, A., Scheutz, R. (2012): Two layer lining for ÖBB Railway tunnel projects with TBM. 
Geomechanics and Tunnelling 5, no, pp 72-79 



Paper 2 
 

 

Title: 

Loads on sprayed waterproof tunnel linings in jointed hard rock: A study based on Norwegian 
cases 

 

Author: 

Karl Gunnar Holter 

 

Published in: 

Rock Mechanics and Rock Engineering, 2014, Volume 47(3), pp 1003-1020 

  



 
Is not included due to copyright 





Paper 3 
 

 

Title: 

Moisture transport through sprayed concrete tunnel linings 

 

Authors: 

Karl Gunnar Holter 

Stig Geving 

 

Published in: 

Rock Mechanics and Rock Engineering 

Published online 11. March 2015, DOI 10.1007/s00603-015-0730-1 

  



 
Is not included due to copyright 





Paper 4 
 

 

Title: 

Freeze-thaw resistance of sprayed concrete in tunnel linings 

 

Authors: 

Karl Gunnar Holter 

Sverre Smeplass 

Stefan Jacobsen 

 

Published in: 

Materials and Structures 

Published online 24. August 2015, DOI 10.1617/s11527-015-0705-4 

 

 

  



 
Is not included due to copyright 





ORIGINAL PAPER

Performance of EVA-Based Membranes for SCL in Hard Rock

Karl Gunnar Holter1

Received: 17 July 2015 / Accepted: 4 September 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The bonded property of multi-layered sprayed

concrete tunnel linings (SCL) waterproofed with sprayed

membranes means that the constituent materials will be

exposed to the groundwater without any draining or

mechanically separating measures. Moisture properties of

the sprayed concrete and membrane materials are therefore

important in order to establish the system properties of such

linings. Ethyl-vinyl-acetate based sprayed membranes

exhibit high water absorption potential under direct exposure

to water, but are found to be significantly less hygroscopic

and exhibit lower sorptivity (water absorption rate) than

sprayed concrete. This material behavior explains the rela-

tively dry in situ condition of the membrane that was

observed. Measured in situ moisture content levels of the

membrane material in tunnel linings have been found to

vary within the range of 30–40 % of the maximum water

absorption potential, and show a decreasing trend over the

first 4 years after construction has been completed. A model

for the mechanical loading, moisture condition and thermal

exposure of the membrane and the resulting realistic

parameters to be tested is presented. Laboratory testing

methods for the membrane materials are evaluated consid-

ering possible loads, moisture and freezing exposure.

Material testing of membrane materials was conducted with

preconditioning to realistic moisture contents and under

different temperature conditions including relevant freezing

temperatures for tunnel linings. The main effects of the

in situ moisture condition of the tested membrane materials

are favorable tensile strengths in the range of 1.1–1.5 MPa

and low risk of freeze–thaw damage. The crack bridging

capacity of the tested membranes is found to be sensitive to

temperature. With membrane thicknesses in the range of

3–4 mm, crack bridging capacity up to 4–6 mm opening of

the crack width at 23 �C and approximately 1 mm opening

at -3 �C was measured for the tested membranes. No sig-

nificant reduction of the tensile bond strength could be

demonstrated after 35 freeze–thaw cycles with -3 �C
minimum temperature at the membrane location in the lin-

ing. Further work is required to verify the performance of

the SCL system under exposure to high hydrostatic pressures

and the effects of long term mechanical exposure.

Keywords SCL � Sprayed concrete � Loading conditions �
Sprayed waterproof membrane � EVA based membrane �
Testing � Durability

Abbreviations, definitions and terms

SCL Sprayed concrete lining.

Permanent tunnel lining system

based on fiber-reinforced

sprayed concrete as the

structural material with

different possible

waterproofing measures which

are integrated into the sprayed

concrete structure. Such linings

may also include rock bolts for

rock reinforcement

EVA-based sprayed

waterproofing

membrane

Ethyl-vinyl-acetate copolymer

material used in the category of

sprayed waterproofing

membranes referred to in this

paper
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DCS Degree of capillary saturation

(%). Degree of saturation of

concrete with respect to total

suction porosity, equal to the

ratio of water content of a

given concrete specimen to its

water content at saturation at

immersion at atmospheric

pressure at mass equilibrium

RH Relative air humidity (%)

COV Coefficient of variance, ratio of

standard deviation to mean

value

1 Introduction

In hard rock environment in the Scandinavian countries

permanent rock support linings are widely constructed with

fiber-reinforced concrete and rock bolts (NGI 2013; NCA

2011; STA 2011). The final waterproofing and thermal

insulation has normally been resolved by constructing a

separate suspended shield structure (NPRA 2012; STA

2011). Modern requirements for service lifetime, service-

ability and maintainability have raised concerns with the

use of these shield lining systems. Cast-in-place concrete

lining waterproofed with sheet membranes or pre-cast

concrete segment linings for rail and road tunnels have

therefore been proposed as the future technical solution in

rail and road tunnels subjected to high traffic density

(NPRA 2012; Holter et al. 2013).

SCL with sprayed ethyl-vinyl-acetate (EVA)-based

membranes are being considered as a possible technical

solution under certain conditions as an alternative to the

well established lining systems. The main benefit would be

the reduced total lining thickness since the rock support

lining based on sprayed concrete can be utilized as part of

the final lining, and large concrete thicknesses can be

avoided. Although such linings with spray applied mem-

brane have been constructed for approximately a decade

and have seen increased use in some countries, the main

properties and function have yet to be fully understood.

SCL waterproofed with a sprayed membrane represents

a continuously bonded multi-layered structure from the

rock mass to the tunnel lining surface. The bonded property

of the lining structure implies that the constituent materials

of the lining will be exposed to the groundwater without

any constructed draining or mechanically dividing mea-

sures. The construction process of spray-application pro-

duces continuous and bonded interfaces, which also can be

assumed to be perfect hygric contacts between the different

layers. The moisture properties of the membrane material

and the concrete on either side of the membrane, as well as

the exposure to any groundwater in the immediate rock

mass will influence the moisture condition of the materials

in the tunnel lining.

A research project in Norway has been carried out in

order to assess the suitability of this lining system for

modern rail and road tunnels. An important part of this

research has been to conduct site and laboratory investi-

gations in order to establish the function and properties of

such linings. This work contains several main modules

which have required detailed studies. The investigation of

the in situ moisture condition and possible moisture

transport mechanisms through sprayed concrete tunnel

linings are published in Holter and Geving (2015) which

forms the basis for moisture exposure during laboratory

testing. The freeze–thaw resistance of the sprayed concrete

in tunnel linings under realistic moisture contents and

thermal exposure has also been investigated and will be

published in a separate paper.

The scope of the present investigation is to study the

properties of the membrane material, particularly the

loading conditions for the membrane, evaluate testing

methods and conduct testing of important parameters under

varying climatic conditions. A conceptual model for the

tunnel lining is presented in order to define the main items,

its properties and the important processes for the water-

proof SCL system. The in situ exposure conditions for the

membrane will be substantiated from field investigations.

The context which is considered in our study is a hard rock

environment in which the primary rock support structure is

considered stable and has no imposed ground induced loads

or deformations on the bonded membrane and inner lining.

This study refers to EVA-based membranes with prod-

ucts from two different suppliers. The study contains the

following main elements:

• Definition of material model based on the layout of the

tunnel lining.

• Model for different loading scenarios of the membrane.

• Field investigations: moisture content, thermal expo-

sure and in situ tensile bond strength.

• Evaluation of laboratory test methods for membranes in

a SCL context.

• Laboratory investigations of hygroscopic properties of

the concrete and membrane materials.

• Laboratory investigations of mechanical properties of

the membrane material.

• Analyses of results.

The first findings of this study were presented at the World

Tunnel Congress 2014 (Holter et al. 2014). Findings from

additional field and laboratory investigations have been inclu-

ded. The recommendations of the ITAtechDesignGuidance for
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Sprayed Membranes (ITA/AITES 2013) compiled by Dim-

mock (2014) will form the basis for the evaluation of test

methods formembranes. Adjustments to these testmethodswill

be discussed and made based on the loading model and the

findings from the thermal and moisture analyses.

Possible degradation processes and long term durability

under relevant mechanical loading and climatic exposure,

as well as recommendations regarding testing details and

acceptance criteria will be discussed based on the results.

2 Conceptual Model for Tunnel

Current SCL designs and the application methodology for

concrete and membrane materials form the basis for the

conceptual model. The bonded and thus undrained inter-

faces of the multi-layered structure result in moisture

transport processes governed by the hygroscopic properties

of the constituent materials. For hard rock tunnels the

tunnel lining structure consists of a primary lining based on

fiber-reinforced sprayed concrete and rock bolts. In poor

ground conditions in a hard rock environment reinforced

sprayed concrete ribs are frequently used for permanent

ground support (Grimstad et al. 2008; Mao et al. 2011). In

order to produce a suitable substrate for the application of

the membrane, a regulating layer of sprayed concrete is

normally required. For these investigations the regulating

layer has been applied using wet-mix fiber-reinforced

sprayed concrete. Dry-mix sprayed concrete or mortar for

use in the substrate for the membrane has been excluded

from this investigation. The conceptual model for the

waterproof SCL is shown in Table 1 and Figs. 1 and 2.

Fiber-reinforced sprayed concrete is the structural

material in an SCL structure. The sprayed concrete mix

designs investigated in this study all represent state-of-

the-art developments in mix designs and robotic appli-

cation technology. Four different sites with different mix

designs were included in this study. However, the basic

mix designs differ only slightly from one another. The

mix design of the sprayed concrete used for detailed

material investigations in our study is shown in Table 2.

The range of the contents of the different components is

also given.

All together five membrane products nominated M1 to

M5 have been included. For the field investigations of the

lining structure only M1 has been analyzed so far.

3 Mechanical Loading, Moisture and Freezing

3.1 Mechanical Loading

3.1.1 Loads from the Rock Mass

A study of the possible loading of rock support linings

based on sprayed concrete and rock bolts from the

groundwater and rock mass has been undertaken (Holter

2014). The current practice with the use of rock mass

classification according to the Q-system (NGI 2013) nor-

mally ensures rock stability with a high factor of safety.

From this study it is concluded that in hard rock environ-

ment the stresses and loads which occur in tunnel linings

are negligible in most cases. Even in severe weakness

zones significant loading of the tunnel lining structure does

not normally take place, other than local loads (Mao et al.

2011; Grimstad et al. 2008; compilation by Holter 2014).

Still, special design of the rock support is undertaken for

severe weakness zones.

Table 1 Main items in the conceptual model for waterproof SCL

Main item in conceptual model Situation, condition Processes

Tunnel lining structure with sprayed concrete

and membrane in walls and crown

Bonded undrained contacts from rock

surface through all materials

No thermally insulating materials in

lining

Concrete of different ages

Moisture transport through lining structure

Differential shrinkage, of concrete on either side of

membrane

Thermal and shrinkage induced movement of cracks in

concrete

Exposure to water at cracks

Exposure to movement at cracks caused by gravitation,

shear displacement, stress release, swelling

Rock mass below GW table Saturated jointed rock material

Exposure to GW at the rock-concrete

interface

Local saturation of concrete material at rock-concrete

interface

Water flow on joints into tunnel through invert

Tunnel space Climate in tunnel

Seasonal variations in temperature

and relative humidity

Exposure of lining surface to tunnel climate

Heat flux from rock mass to tunnel space

Cyclic freezing and thawing of lining

Change of properties of membrane and concrete
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3.1.2 Ground Water Induced Loads

The waterproof SCL lining system represents an undrained

structure. Hence, possible water pressures acting on the

tunnel lining need to be considered. A study including

monitoring of groundwater pressures around sprayed

concrete tunnel linings with drained inverts has been con-

ducted (Holter 2014). These results indicate water pres-

sures lower than the hydrostatic pressure in the immediate

vicinity of the tunnel lining.

Any occurrence of unfavorable ground water pressures

in the immediate rock mass needs to be considered in the

rock support design as well as evaluating the need for

drainage measures where this is feasible. Ground water

under a certain pressure can possibly saturate cracks and

imperfections in the sprayed concrete in the primary lining.

Under such circumstances a wet-crack situation with

ground water pressure exposing the membrane locally can

be hypothesized. The investigated sites in this study had a

water pressure near the lining of maximum 2 bars. No

deterioration of the lining structure was detected at any of

the test sites. However, the wet crack problem at higher

hydrostatic pressures cannot be assessed in detail from this

study.

3.1.3 Loads from the Weight of the Tunnel Lining

The gravity induced stresses in the tunnel lining caused by

the weight of the tunnel linings represent a constant static

load. By considering a thickness of the inner layer sprayed

concrete of 100 mm, and assuming that the concrete lining is

‘‘hanging’’ on the substrate a gravity induced tensile stress of

2 kPa in the center of the tunnel crown can be calculated.

3.1.4 Dynamic Loads from the Traffic Area of the Tunnel

Rail and road tunnels are exposed to fluctuations in air

pressure caused by traffic. Highway and high speed rail

Fig. 1 Main elements in the conceptual model for a tunnel with

permanent SCL based on fiber-reinforced sprayed concrete, sprayed

waterproofing membrane and rock bolts constructed in hard rock.

Detail is shown in Fig. 2

Fig. 2 Detail of waterproof

SCL. Conceptual model with

section of the lining structure

with the constituent materials,

moisture transport processes

and exposure to freezing
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tunnels in Norway have design requirements for expected

maximum dynamic loads and number of loading events

throughout the service lifetime. Current design require-

ments for rail and road tunnels (NPRA 2006; NNRA 2012;

STA 2014) are shown in Table 3.

For a tensile loading consideration, the values for air

pressure changes shown in Table 3 are considered changes

in tensile stress. For a high speed double track rail tunnel a

single design event for traffic induced air pressure change

in the tunnel imposes tensile stresses with a factor five

times higher than the calculated static gravity induced load

from the tunnel lining. However, the dynamic air pressure

induced loads are approximately a factor 100 times lower

than measured in situ tensile bond strengths of the mem-

brane-concrete interfaces. It is therefore considered very

unlikely that this dynamic loading represents a dynamic

fatigue scenario for a bonded SCL structure.

3.1.5 Deformations of the Membrane Over Cracks

in the Concrete and Shear Deformations Along

the Concrete-Membrane Interfaces

Deformations can occur in the sprayed concrete lining

caused by the differential shrinkage of the concrete with

different age on either side of the membrane, as well as

thermally induced contraction of the concrete material due

to fluctuations in the temperature. Such deformations are

illustrated in Fig. 3. Each layer of concrete will exhibit a

set of shrinkage cracks which will normally not persist

across layers with different age. The membrane represents

a deformable and ductile material, which is designed to

bridge the cracks in the concrete. The two concrete layers,

one on either side of the membrane may be applied with a

time gap of several weeks or up to several months. From a

load consideration perspective, the full shrinkage potential

from the covering layer of concrete is assumed. Shrinkage

properties of sprayed concrete has been subject to a recent

Swedish study (BeFo 2014; Bryne et al. 2014a). Free

(unrestrained) shrinkage of fiber-reinforced sprayed con-

crete after approximately 120 days was found to be in the

range of 0.045–0.055 %, or 0.45–0.55 mm per m on lab-

oratory sprayed slab specimens subjected to norm climate

conditions (storage at RH 50 % and 20 �C, following

7 days of initial curing under water). In a restrained context

such as bonding to rock as well as the unilateral exposure

to moisture on the rock side and drying on the air side,

precise assessments of shrinkage are difficult to make.

Effects of surface drying may cause high shrinkage locally

at the concrete surface. The shrinkage will result in the

cracking of the concrete material. The use of fiber

Table 2 Sprayed concrete mix design for the Harangen road tunnel, and range for other sprayed concrete mixes for tunnel sites investigated in

this study

Component Quantity Range for investigated concrete mixes from the other test sites

Cement CEM II A-V 42.5

17–18 % fly ash content

502 kg/m3 488–513 kg/m3

Micro silica fume 25 kg/m3 21–26 kg/m3

Water added with base mix 240 kg/m3 202–245 kg/m3

Water added with accelerator at spraying nozzle 17 kg/m3 17–20 kg/m3

Water/binder-ratioa 0.45 0.44–0.47

Aggregate 0–8 mm 1497 kg/m3 1497–1588 kg/m3, fractions used 0–4, 0–8, 0–10 mm

Superplasticizer 7 kg/m3 7–10 kg/m3, different suppliers

Fiber reinforcement, structural polypropylene (PP) 9 kg/m3

1 % by volume

5–9 kg/m3 (PP) 0.5–1 % by volume

40 kg/m3 (steel) 0.6 % by volume

Binder paste content 0.43 m3/m3 0.41–0.44

a Considering equivalent binder content: weight of cement ? two times weight of micro silica

Table 3 Dynamic loads in modern tunnels given as sudden change in air pressure per design traffic event

Tunnel type Design speed

(km/h)

Air pressure change per event

(kPa)

Number of events in service

lifetime

Time interval between each

event, range

Highway, double

carriageway

140a 1.5 5 9 107 20–60 s

Rail, double track 250 10 1 9 107 2–5 min

Rail, single track 250 8 1 9 107 2–5 min

a 20 km/h higher than legal speed limit
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reinforcement and the restraint caused by the bond to the

membrane will have some crack width reduction effect.

Measurements of crack widths in the concrete lining has

been conducted (Sect. 4.5 in this paper) in order to sub-

stantiate typical crack widths.

3.2 Exposure to Moisture

The continuously bonded property of the waterproof SCL

system implies that there is an exposure to the groundwater

at the interface between the rock mass and the sprayed

concrete. Both the constituent materials concrete and

membrane exhibit capillary and hygroscopic properties.

Thus, the in situ moisture content of the lining materials

and its effect on the mechanical properties need to be

accounted for. Moisture properties of the lining materials

are shown in Sect. 6.1 in this paper. The measured in situ

moisture content in the investigated tunnel linings is shown

in Sects. 4.2 and 4.3.

3.3 Consideration of the Monolithic Character

of the Lining

The mechanical performance of a continuously bonded

SCL depends on the performance of the weakest element in

the lining structure. A tunnel lining based on two layers of

sprayed concrete separated by a bonded membrane should

ideally be considered as one structure for the entire lining

thickness. For this reason, the tensile bonding strength of

the membrane-concrete interfaces should not be signifi-

cantly lower than the tensile bonding strength between the

rock surface and the sprayed concrete. Tensile bonding

strengths for sprayed concrete interfaces to the rock sub-

strate vary highly depending on rock type and the type of

surface, as well as the application and material details of

the sprayed concrete. Measured values for tensile bonding

strength for the interface between sprayed concrete and

rock vary between 0.2 and 1.8 MPa (NCA 2011; BeFo

2014; Bryne et al. 2014b). The gravity induced tensile

stresses would be approximately a factor of 100 times

lower than the lowest recorded tensile bond strength of

concrete against rock. For this reason it is reasonable to

propose an acceptance criterion for tensile bonding

strength for the membrane which is in the magnitude of

relevant tensile bonding strength between rock and sprayed

concrete. Norwegian and Swedish standards propose

0.5 MPa as a minimum required tensile bond strength

between rock and sprayed concrete. The ITAtech Design

Guidance (ITA/AITES 2013) for sprayed membranes

proposes an acceptance criterion of 0.5 MPa for tensile

bonding strength.

3.4 Exposure to Freezing

The basic SCL design in our study has no insulating layers

to avoid freezing exposure. The aim of this study is to

determine the possible damage or reduction in performance

caused by realistic freezing exposure. Given a membrane

thickness of 3–4 mm, the thermal conductivity of the

concrete material in secondary lining will be decisive for

the thermal exposure. Each tunnel will represent an indi-

vidual case with respect to freezing exposure based on the

rock mass temperature, the winter climate, the ventilation

of the tunnel and the location in the tunnel considered.

4 Field Investigations

4.1 Overview, Goal

The main goal of the field investigations was to substan-

tiate as much as possible the loading conditions for the

membrane (moisture, thermal and crack situation), as well

as carrying out in situ measurements of the tensile bonding

strength of the interfaces between the membrane and the

concrete. We have included the investigations carried out

on the large scale laboratory lining structure as part of the

field investigations in this paper since this investigation

Fig. 3 Shear deformation and elongation at cracks of the membrane

in the lining structure. Top photo showing persistent shrinkage crack

in the secondary lining being bridged by the membrane. Bottom

model for cracks and shear deformation
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context has proven to cover comparable conditions to

in situ tunnel. The field investigations were carried out in

the period 2012–2014. Table 4 shows an overview of the

conducted field investigations with locations and main

purposes. The 4 locations and type of test sites are

described in further detail in Holter and Geving (2015).

4.2 Moisture Content of the Tunnel Lining

Structure

A detailed study of the moisture content and moisture

transport mechanisms in waterproof SCL sections has been

reported by Holter and Geving (2015). The findings of this

study serve as an important basis for the analysis of the

performance of the membrane described in this paper. The

field investigations of the moisture content were carried out

in three different tunnel sites at yearly intervals with ages

up to 4 years. Several consistent observations were made

during these investigations. The main features are:

• High degree of capillary saturation (DCS) of the

concrete material, close to 100 %, at the rock-concrete

interface.

• A gradient with degreasing DCS towards the lining

surface.

• Depending on the lining thickness, the DCS of sprayed

concrete on either side of the membrane is found to

vary between 80 and 95 %. For primary (rock support)

lining thickness of approximately 150 mm the DCS of

the concrete at the membrane was found to be around

95 %.

The found moisture condition of the investigated linings

can be explained by moisture transport processes from

common building physics principles. Further details are

given in Holter and Geving (2015).

4.3 Moisture Content in the Membrane Material

In addition to the investigations of the concrete material in

the tunnel linings, also the membrane material was ana-

lyzed. Immediately after splitting of the cores, samples of

the membrane material were removed from the concrete

and tested for moisture content. Membrane samples from

four different tunnel lining locations have been taken from

5 up to 38 months after construction. The measured values

for moisture content, given as weight of water in % of dry

weight of the membrane material are shown in Fig. 4. Dry

weight of the membrane refers to weight after drying of

3–4 mm thick specimens at 105 �C for a minimum of

2 days.

A trend with decreasing moisture content in the mem-

brane material with increasing time after construction can

be observed, in spite of high degrees of capillary saturation

of the concrete on either side of the membrane. These data

refer to four different hard rock tunnel projects indicated

with the different colors. The tunnel linings in all four

cases were constructed with drained inverts and waterproof

undrained SCL in the walls and crown. The Karmsund case

is a subsea road tunnel located at approximately 70 m

below the groundwater table. Hence a complete saturation

under hydrostatic pressure of the rock mass, and higher

saturation of the imperfections of the concrete is likely to

have taken place.

4.4 Thermal Exposure to Tunnel Linings

The rock and concrete materials exhibit thermal conduc-

tivities which govern the temperature profile form the rock

mass to the lining surface under a given thermal exposure

in the tunnel space. In this study, monitoring of tempera-

tures under freezing exposure at full scale conditions,

Table 4 Overview of conducted field investigations for sprayed waterproofing membranes

Investigation Location, test site Main purpose of investigation

Moisture exposure and in situ moisture content,

development over time

Gevingås

Harangen

Ulvin

Karmsund

Basis for moisture conditioning during laboratory testing. Basis for

assessment of degradation mechanisms

Mapping of cracks in sprayed concrete linings Gevingås Obtain realistic crack data for sprayed concrete

In situ tensile bonding strength Ulvin

Gevingås

Laboratory lining

structure

Tensile bonding strength under real exposure

Freezing exposure parameters Ulvin

Laboratory lining

structure

Thermal profile through lining during severe freezing exposure
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measurements of thermal conductivities of rock and con-

crete materials and thermal calculations were carried out.

Thermal conductivities for sprayed concrete and intact rock

were measured in a separate study (NTNU 2013). Some of

the findings are shown in Table 5.

Thermal monitoring with freezing exposure was carried

out in the full scale lining section at the Ulvin test site and

the lining structure in the freezing laboratory. The main

goal of this monitoring was to measure temperature profiles

under realistic conditions. The temperature at the location

of the membrane can then be assessed. The two monitoring

cases are explained in Fig. 5.

The two test sites for thermal monitoring have the fol-

lowing main characteristics:

Case 1: Test site Ulvin, an access tunnel under

construction with a test field of 90 linear m with SCL,

with lining thickness 300 mm and membrane location at

150 mm from lining surface. The ventilation at the

monitoring location was arranged with a gate in the

tunnel so that air with a constant temperature of

approximately 2 �C from the tunnel face (located more

than 2 km in rock mass with constant temperature) could

be alternated with cold air from outside. In this way an

Fig. 4 Measured development

of in situ moisture content in

sprayed membrane material in

tunnel linings

Table 5 Measured thermal conductivities

Material Density (kg/m3) Thermal conductivity (W/m K) COV

Rock, dark gneiss (Ulvin site) 2616 2.95 0.3–0.5 %

Rock, granodiorite (Trondhjemite, freezing laboratory) 2657 2.77 0.2 %

Sprayed concrete, Ulvin site, steel fibera, dryb 2138 1.64 0.5–1 %

Sprayed concrete, Ulvin site, steel fiber, saturatedc 2214 1.85 0.2–0.5 %

Sprayed concrete, Gevingås site, PP-fiberd, dry 2211 1.65 0.5–1 %

Sprayed concrete, Gevingås site, PP-fiber, saturated 2281 1.85 2–3 %

a Steel fiber, dosage 35 kg/m3, 0.5 % by volume
b DCS 70 %
c DCS 100 %
d Structural polypropylene fiber, dosage 7 kg/m3, 0.8 % by volume

K. G. Holter

123



exposure to cold air at approximately 50 m distance

from the portal could be applied experimentally in full

scale. The field test at the Ulvin site could only be

carried out in a short period of time for one severe

freezing cycle over 36 h and hence, provided no

information of long term freezing exposure.

Case 2: Laboratory test facility with large scale lining

structure constructed on a rock mass of homogenous

granodiorite blocks with lining thickness 240 mm with

membrane location at 110 mm. Controlled freezing

exposure was applied to the lining surface, simulating

different freezing scenarios. Exposure modes included

cyclic loads for accelerated freeze–thaw testing of the

lining materials, and as isothermic exposure in order to

simulate the effect of long term cooling of the lining.

Findings from an investigation conducted in the Glödber-

get rail tunnel in north Sweden indicate that low air temper-

atures can penetrate far into the tunnel (STA 2012). The first

200–300 m from the portal can be exposed to air tempera-

tures in the range of -15 to -20 �C in severe cases. The

design of the tunnel lining for thermal insulation in portions

with such severe exposure need to be evaluated in each single

case based on local climate conditions and ventilation of the

tunnel under operation during winter season.

The field test at the Ulvin site was arranged to produce a

cooling of the tunnel lining by running the ventilation at

approximately 1 m/s air flow with cold air from outside.

Temperatures in the tunnel air at the test location in the

range of -7 to -9 �C were achieved. After 36 h the test

had to be terminated due to the tunnel construction cycle. A

profile of the tunnel lining with the measured temperatures

after 36 h is shown in Fig. 6. The calculated temperatures

at steady state conditions with -7 and -9 �C in the tunnel

space are indicated. The measurements indicate a back-

ground temperature of the rock mass at the location of the

tunnel of approximately 7 �C.
A large scale simulation of isothermic freezing exposure

with -6 �C in the tunnel space was carried out on the lining

structure in the freezing laboratory (case 2, Fig. 5). This

exposure was held constantly for 30 days with continuous

thermal monitoring. The results are shown in Fig. 7. The

measured temperature profiles after 36 h and 17 days toge-

ther with a calculated temperature profile at steady state are

indicated. The measured values refer to three different sets

of sensors in the lining—rock mass structure, and hence

exhibit a slight scatter due to precision of location.

Based on the conducted freezing exposure tests, and

calculation of temperatures at steady state conditions, the

minimum temperature exposure at the membrane at given

lining thicknesses can be assessed, Table 6.

4.5 Mapping of Cracks in the Sprayed Concrete

A mapping of cracks was carried out in the Gevingås rail

tunnel on the 2nd August 2013, after an extended period of

warm weather with maximum outdoor temperatures in the

range of 25–30 �C. The temperature of the tunnel lining at

10 mm depth measured during the mapping of the cracks

was 12 �C. Approximately 210 cracks were mapped and

marked using a concrete crack width gauge (Fig. 8) in a

systematic manner in order to re-record the same cracks

later. Hence, the crack mapping was repeated at the exact

same location in February 2014 when the temperature was

6 �C at 10 mm depth.

The measured crack widths are shown in Fig. 9. Crack

widths ranging from 0.05 to 0.2 mm account for 78 % of

Fig. 5 Longitudinal vertical

sections with configuration of

the Ulvin test site for in situ

measurements (case 1) and the

laboratory lining structure (case

2) for controlled thermal

exposure
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the recorded cracks for the measurements done in August

2013. The crack measurements in February 2014 show an

increase in crack width, and a larger scatter of the

recordings. The most represented crack width for the

measurements conducted in February is approximately

0.3–0.35 mm. Thus, an average increase in crack width of

Fig. 6 Large scale laboratory

simulation: measured and

calculated temperature profiles

through rock mass and lining

structure

Fig. 7 In situ tunnel, Ulvin test

site: measured and calculated

temperature profiles through

rock mass and lining structure

K. G. Holter

123



approximately 0.2 mm with a temperature decrease of 6 �C
is observed. A typical crack pattern was obtained by

observing the sprayed concrete lining surface in an area

which exhibited leaks and showed mineral stains from

leaks through wet cracks. This is shown in Fig. 10. Visible

crack distances vary from approximately 0.2 m up to

approximately 1.5 m. The most represented crack distance

is in the range of 0.7–1 m.

4.6 Summary of Field Investigations, Verification

of Loading Model

The loads which expose the membrane considered in this

study are summarized in Table 7.

5 Evaluation of Laboratory Test Methods

The main purpose of the laboratory test methods is to

conduct material testing of the membrane under realistic

loading and climatic exposure. There are several stan-

dardized test procedures for building materials which may

be used for membrane materials. The most updated com-

pilation of suggested tests is given in ITAtech Design

Guidance for Spray Applied Waterproofing Membranes

(ITA/AITES 2013). However this guidance has no loading

models, neither any guidelines for mechanical, thermal nor

moisture exposure testing of the membrane material. In this

section the loading model (Sect. 3) and findings from the

field investigations (Sect. 4) will be used to substantiate

details in the laboratory test methods and relevant accep-

tance criteria.

Table 6 Temperatures at the location of the membrane in an SCL

structure based on measurements and thermal calculations at steady

state

Air temperature

in tunnel space

(�C)

Thickness of covering layer of

sprayed concrete over

membrane (mm)

Temperature at

membrane

(�C)

-6 110 -3.5

-7 150 -4.5

-9 150 -6

Fig. 8 Example of recordings of cracks in a sprayed concrete surface

using a concrete crack measurement gauge

Fig. 9 Measured crack widths in the sprayed concrete lining surface

at the same location in August 2013 and February 2014

Fig. 10 Surface observations of cracks in sprayed concrete
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5.1 Moisture Properties of Lining Materials

Due to the hygric continuity of the lining structure and the

direct exposure to groundwater, the moisture properties of

the lining materials need to be included in order to sub-

stantiate the realistic moisture condition for testing. Recent

reported testing of membranes for waterproof SCL (Su

et al. 2013; Su and Bloodworth 2014; Nakashima et al.

2015) have not included the moisture condition and

moisture properties of the constituent materials in the lin-

ing. Testing of moisture properties of membrane and

concrete materials have yet to be included in guidance for

design and testing of spray applied membranes. Standard

test methods for sorptivity and moisture content at equi-

librium commonly used for concrete are adopted in this

study. Thus, comparison to findings from other studies of

concrete is possible.

5.2 Elasticity and Crack Bridging Properties

of the Membrane

Preventing water flow through the lining by the bridging of

cracks is the main waterproofing function of the membrane.

Testing of the membrane’s elasticity can be done by a pure

elastic test or by a functional test of the resistance to rup-

ture over a discontinuity in the substrate. Rupture of the

membrane over a crack with increasing width is found to

be the main failure mechanism in the loading model

(Sect. 3). Hence, the crack bridging test as proposed in the

ITAtech guidance (ITA/AITES 2013) guidance directly

addresses a relevant failure mode. A pure elasticity test

does not account for the bonding of the membrane to the

substrate. It is difficult to quantify a requirement in terms

of pure elasticity which translates to the required crack

bridging capacity. However, the elasticity test is simple and

can give an indication of the elasticity of the membrane

material in order to reject unsuitable materials without

conducting costly testing.

5.2.1 Elasticity Testing According to DIN 53504

This is a simple test conducted on specimens with standard

dimensions which are stretched to failure while measuring

tensile deformation and tensile force. Standard dog bone

shaped specimens, shown in Fig. 11, have normally been

used for this purpose. The sensitivity of EVA-based

membranes to moisture content means that details regard-

ing storage and conditioning as well test procedure for such

membranes needs to include details regarding humidity and

temperature. Sprayed specimens are preferred to molded

specimens in order to test realistic membrane material.

However, sprayed specimens are more difficult to produce

with even thicknesses for the purpose of reproducing

consistent standard dimensions for laboratory testing.

5.2.2 Crack Bridging Performance

The proposed test method for crack bridging performance

according to ITA/AITES (ITA/AITES 2013) is a static

crack bridging test and is designed for the testing of coating

materials on exterior surfaces of masonry and concrete

(DIN EN 1062-7:2004). With this test method one can

basically test only one crack width, although it would be

possible to include a few increments in the crack width

Table 7 Compilation of loads on the membrane considered in this study

Load type Relevant value/size Implication for laboratory testing

Rock mechanical loads None. Only local loads None

Groundwater pressure induced loads Very unlikely for the investigated cases. Not

considered

None for cases with low or no hydrostatic

pressure

Dynamic loads from traffic area 10 kPa amplitude of air pressure

(pressure ? suction loads)

None

Tensile loads Gravity induced load from inner lining: 2 kPa Not realistic requirement

Maximum crack width in concrete and

thermal opening/closing

Typical crack width range: 0.1–0.3 mm,

maximum 0.8 mm

Thermally induced opening and closure : 0.6 mm

Testing of elasticity under relevant temperatures

and moisture contents required

Crack bridging performance at 1 mm crack width

proposed

Shear deformation along interfaces 0.5–0.6 mm/m 1 mm shear deformation within linear shear

elasticity behavior

Moisture exposure 15–18 % moisture content range in the membrane

material

Pre-conditioning of membrane to relevant

moisture content

Thermal exposure Possible temperature range ?15 to -6 �C at

membrane location in tunnel lining

Testing at realistic temperatures
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before the maximum crack width, given by the geometry of

the test jig, is reached. The main features of this test

method are shown in Fig. 12.

An adjusted crack bridging test has been considered in

order to apply a more controllable opening of the crack and

hence enable a precise determination of the crack width at

rupture. This adjusted test method has many similarities to

the dynamic tensile test described in DIN EN 1062 Annex

C4. The adopted procedure is shown in Figs. 13 and 14.

5.3 Tensile Bond Strength

Testing of tensile bond strength, also referred to as pull-off

strength or adhesion, of sprayed membranes has been

conducted by pulling the membrane off the substrate

(Ozturk and Tannant 2010). This procedure uses a disc

shaped plate mounted on an elevator bolt which is glued to

an over-cored section of the membrane and subsequently

pulled in a controlled manner. This method can prove

useful for a temporary test of the membrane’s tensile bond

strength before the inner lining concrete is applied. Testing

of tensile bonding strength of the membrane in the lining

structure as proposed by ITA/AITES (2013) is a standard

pull-off test for adhesion including the entire lining struc-

ture, according to EN ISO 4624 section 9 (2003). The

principle of the test is shown in Fig. 15. However, the wet

core drilling, the risk of applying unfavorable bending and

tensile loads during the core extraction, inconsistent

moisture conditioning and details in the test setup might

influence the results significantly.

A procedure to measure tensile bond strength without

extracting core samples was adopted. The main purpose of

this procedure was to test the tensile bond strength under as

Fig. 11 Specimen for elasticity test according to DIN 53504. Top

dimensions of the S2-type dog bone shaped specimen used for this

purpose, with figures in mm. Bottom photo of specimen with

markings of the length L0 area for precise elongation measurement

with video-extensometer

Fig. 12 Conceptual illustrations showing the static crack bridging

test procedure according to DIN EN 1062-7 Annex C1, proposed by

ITA/AITES 2013

Fig. 13 Conceptual illustrations showing the loading mode during

the adopted version of the dynamic crack bridging test
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realistic conditions as possible. The procedure was laid out

as an in situ test in which the test specimen consisted of an

over-cored part of the lining structure. The layout of the

pull-off details were arranged in order to achieve a perfect

axial alignment to the core specimen. The adopted test is

shown in Fig. 16. The testing device used in this investi-

gation could only record maximum tensile strength.

5.4 Shear Performance of the Membrane-Concrete

Interfaces

Direct shear testing is not proposed by ITA/AITES (2013).

Direct shear testing is included in this study in order to

establish the membrane’s ability to perform under shear

deformation which can occur between the substrate and

inner lining concrete layers. Previous direct shear testing of

such membrane concrete interfaces has been reported by

BASF (TU Graz 2008), Su et al. (2013) and Su and

Bloodworth (2014). These investigations refer to EVA

based sprayed membranes in which the specimens were

tested in dry state without any pre-conditioning to relevant

moisture content. A study of the composite action of EVA-

based membranes for SCL was carried out by Nakashima

Fig. 14 Crack bridging testing with adopted procedure in progress in

climate chamber. (Courtesy by Wacker Chemie AG)

Fig. 15 Testing of tensile bonding strength according to EN-ISO

4624

Fig. 16 Adopted procedure for in situ measurements of tensile

bonding strength. Top conceptual diagram showing the layout of the

test. Middle Preparation with over-coring with grinding of the test

specimen. Bottom in situ specimen after testing
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et al. (2015). However, this study also considers a lining

structure and the membrane material in dry condition.

For our study a large scale shear box with constant

normal load was available. Controlling the normal load

in order to apply constant normal deformation or con-

stant normal stiffness was not possible in our study. The

test procedure and moisture conditioning of the speci-

mens is explained in Sect. 6.6 together with the obtained

results.

6 Conducted Laboratory Investigations

The laboratory investigation program was based on the

conceptual model, the results from the field investigations

and the evaluation of testing methods. The main goal of the

laboratory investigations was to verify the conceptual

model, establish detailed performance properties of the

lining, as well as providing a basis for the acceptance of a

membrane product under certain conditions.

6.1 Moisture Properties of Sprayed Concrete

and Membrane Materials

6.1.1 Specimens

The specimens for the sprayed concrete testing of the

moisture properties were all obtained from the tunnel

lining from the same site and the same location, the

Harangen test site (details in Table 1). Hence, the speci-

mens represent the same concrete in terms of age, curing

history, mix design and spray application. The membrane

specimens were all produced from sprayed sheets, and

tested after complete curing for approximately 18 months.

The investigation of moisture properties in our study

covers water content after immersion at atmospheric

pressure, sorptivity (water absorption rate) and moisture

bearing capacity in the hygroscopic range. These are

illustrated in Fig. 17.

6.1.2 Water Content at Immersion at Atmospheric

Pressure

Membrane specimens obtained by core drilling specimens

from sprayed panels as well as sprayed membrane spec-

imens from spray sheet panels were tested. Results are

shown in Fig. 18 and Table 8. For the membranes M1

and M5 the maximum water uptake potential is found to

be approximately 42 and 30 % of the dry weight of the

material. The water content at immersion for concrete at

atmospheric pressure is assumed to be equal to the

complete saturation of the suction porosity of the

concrete.

6.1.3 Water Absorption Rate (Sorptivity)

Sorptivity expresses the water absorption rate under uni-

lateral and unidirectional water exposure, and was inves-

tigated by Holter and Geving (2015). A compilation of the

results for concrete and membrane M1 is shown in Fig. 19.

The measured water absorption rate of the two materials

exhibit a significant contrast within the moisture content

range which is found in tunnel linings.

6.1.4 Moisture Content at Equilibrium in the Hygroscopic

Range

The investigation of the moisture content at equilibrium for

concrete was presented by Holter and Geving (2015).

Testing of the membranes M1 and M5 with moisture content

at equilibrium obtained by isothermic desorption has been

added in this study. The desorption isotherms show moisture

content represented as degree of saturation at immersion for

the materials versus relative humidity. A compilation of the

results is shown in Fig. 20. The difference in behavior when

Fig. 17 Sketches of the three water absorption modes which have

been tested in the laboratory. Left water content at complete

immersion. Middle sorptivity (water absorption rate) at unidirectional

water exposure. Right moisture bearing capacity at equilibrium in the

hygroscopic range
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taking the material from immersion to RH 100 % is note-

worthy. Concrete loses approximately 10 % of its moisture

content, whereas the membranes lose approximately 50 %

of their moisture content. The desorption isotherms (Fig. 20)

show that sprayed concrete is a much more hygroscopic

material than the membrane material.

6.2 Thermal Expansion of Sprayed Concrete

Linear thermal expansion was measured on cut prism

samples of sprayed concrete with dimensions 70 9 70 by

280 mm in different temperature intervals from 3 to 34 �C.
The measured values for the temperature interval 3–19 �C
are found to be the most relevant and are shown in Table 9.

The mix design of the sprayed concrete is shown in

Table 2, Sect. 2.

6.3 Elasticity of the Membrane Material, DIN 53504

6.3.1 Specimens, Conditioning and Testing Temperature

Specimens from both sprayed and molded sheets of

membrane were prepared. Five membrane products were

tested in three different test series, in three different labo-

ratories. Altogether five membrane products were tested.

Conditions during testing covered humidity conditioning at

RH 50 and 95 % and at specific temperatures 23, 0, -3,-8

Fig. 19 Water absorption rate (sorptivity) of sprayed concrete and

sprayed membrane (M1) represented as water absorption versus

square root of time (compiled from Holter and Geving 2015)

Fig. 20 Desorption isotherms obtained at 25 �C for sprayed concrete

and sprayed membrane, showing the moisture content represented as

degrees of saturation at equilibrium versus different values for RH

Table 9 Measured linear thermal expansion coefficient for steel

fiber-reinforced sprayed concrete

Parameter Mean (m/

m K)

COV

(%)

Temperature

interval (�C)
Number of

specimens

Thermal

expansion

coefficient

1.27 9 10-5 1.6 3–19 3

Fig. 18 Moisture content of membranes measured after complete

immersion at atmospheric pressure for sprayed specimens of mem-

branes M1 and M5

Table 8 Moisture contents at immersion for two series of specimens

for membranes M1 and M5

Membrane

product

Moisture content at immersion (weight % of dry

weight)

Specimens obtained from

lining structure slabs (Fig. 19)

Specimens from

sprayed membrane

sheets

M1 41.5 42.4

M5 27.4 30.3
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and -12 �C. A test of the polymeric content elasticity

which could be related to the elasticity performance of the

membranes was also carried out.

Our findings using this test method show that it is dif-

ficult to obtain consistent results when comparing different

test series. The main limitations were:

• Difficulty in preparation (spray application) of speci-

mens with even thicknesses required for reproducible

laboratory tests.

• The thickness and evenness of the membrane speci-

mens influences the result significantly.

• Different storage conditions after application and the

precise conditioning details influence the absolute

measurement values.

• Different interpretation of the test standard regarding

testing details.

6.3.2 Findings

For the first elongation test, the polymeric content of the

membrane products was tested using a thermo-gravimetric

analysis with Argon as test gas in the test vessel. The mem-

branematerialwas heated to 800 �C.Hence, it was possible to
record the weight loss due to pure evaporation of the com-

ponents, considered to be the pure organic polymeric content.

The results are shown in Fig. 21. The two colors indicate the

two different suppliers of the membrane products.

The results of the initial test are illustrated in Table 10.

Cyclic freezing and thawing in air has the effect of a slight

increase on the elongation performance. When thawing

under water between each freezing cycle membrane M1

shows approximately 50 % reduction in elongation per-

formance, whereas the other membranes are unaffected by

the freeze–thaw exposure.

The main findings from the conducted elongation testing

can be summarized as follows:

• Within the same test series, a consistent trend of

significantly decreasing elasticity with decreasing tem-

perature has been observed.

• A relatively large scatter is caused by varying thick-

nesses of the membrane within the same specimen as

well as specimens with different thicknesses.

• Conditioning at RH95 % gives higher measured

elasticities compared to specimens conditioned at

RH50 %.

• Elasticity mainly increases with increasing polymeric

content (shown in Table 11).

6.4 Crack Bridging

6.4.1 Specimens

Specimens for crack bridging testing were produced by

applying the membrane material on pre-fabricated test

pieces of porous artificial sandstone (Fig. 22). Both spray-

applied and molded membrane specimens were prepared.

Three series of specimens, shown in Table 12, were

Fig. 21 Elongation performance of sprayed membrane samples

versus polymeric content in the base (powder) membrane products

M1–M5 measured by thermo-gravimetric analysis (TGA) with argon

as test gas. The elongation was measured in one single test series

(laboratory 1) with specimens which had undergone identical

treatment from application to testing

Table 10 Initial test series of elongation carried out in Laboratory 1

Membrane (all

sprayed)

Measured elongation at failure, mean (%)

No freezing, storage at

23 �C RH 95 %

6 cyclesa, freezing to -20 �C in air,

thawing at 23 �C RH 95 %

6 cyclesa, freezing to -20 �C in air, thawing at

23 �C immersed in water

M1 194 212 94

M2 20 22 18

M3 131 135 131

M4 4.3 4.9 6.2

M5 438 457 408

a Freezing 24 h, thawing 24 h
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prepared in order to cover a range of temperatures and

moisture contents.

6.4.2 Procedure

The test method stated in DIN EN 1062 annex C4 dynamic

tensile test, with the modifications developed by Wacker

Chemie AG, described in Sect. 5.2.2 in this paper was

followed. The crack width was increased in increments of

0.2 mm every 5 min. Immediately before a crack width

increase was applied to the specimen, the membrane sur-

face was visually inspected and deemed intact or ruptured.

Any sign of initial rupture was interpreted as membrane

failure (Fig. 23).

6.4.3 Results

The results of test series 1 and 2 are shown in Fig. 24. For

the specimens with spray applied membrane (series 1)

values are shown as mean with 25 and 75 % percentiles.

For the molded specimens (series 2) only average values

are shown, since there were too few satisfactory readings to

obtain statistical data. The specimens had slightly differing

membrane thicknesses. Therefore the value for rupture was

given as the ratio between crack width at rupture and the

membrane thickness which varied from 1.9 to 5.5 mm. The

variation of the membrane thicknesses was largest for the

specimens with spray applied membrane. The results

(Fig. 24) show that the crack bridging capacity decreases

with decreasing temperature with the given conditioning of

the specimens. Both membrane products M1 and M5 were

found to bridge cracks with an aperture in the range of

0.4–0.8 times the thickness of the membrane at -8 �C. At

Fig. 22 Specimens for crack bridging test with membrane applied on

the surface of test pieces. The dimensions of the test pieces are

100 mm 9 200 mm

Table 12 Matrix for conducted testing of crack-bridging

Test series number Membrane, sprayed/molded Conditioned at RH (%) Temperature at testing, number of specimens tested

23 �C 0 �C -3 �C -8 �C

1 M1 sprayed 95 3 2 3 3

M5 sprayed 95 3 3 3 3

2 M1 molded 50 3 3

M5 molded 50 3 2

3 M1 molded 95a 3 3

M5 molded 95a 3 3

a Cured in RH 95 % for 28 days immediately after molding prior to testing

Table 11 Measured values for elongation for membrane according to DIN 53504 for two test series

Test location Membrane sprayed/molded Pre-conditioning Measured elongation (strain) at failure, mean (%)

23 �C 0 �C -3 �C -8 �C -12 �C

Laboratory 2 M1 sprayed RH 95 % 45 38 10 5

M5 sprayed 685 89 20 8

Laboratory 3 M1 sprayed RH 50 % 20 9 6 0.6

M5 sprayed RH 50 % 242 56 14 1.4

M1 molded RH 50 % 71 31

M1 molded RH 95 % 242 76 55

M5 molded RH 50 % 21 9

M5 molded RH 95 % 446 40 13
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23 �C the two membranes M1 and M5 were to bridge

cracks with an aperture in the range of 1.3–1.6 times the

thickness of the membrane. Series 3, tested only at 0 and

-3 �C with molded specimens cured and pre-conditioned

at RH 95 % for 28 days after application, did not exhibit

any rupture at 11 mm which is the maximum crack width

which the machine could produce. This indicates that the

immediate curing after application at RH95 % leaves suf-

ficient water in the membrane to act as a ‘‘softener’’ with

resulting high elasticity.

6.5 Direct Shear Tests, Shear Bond Strength

6.5.1 Specimens

The specimens were produced from square panels using

poured concrete with typical sprayed concrete mix design

and spray applied membrane. In this way regular interfaces

were achieved. The panels were stored under water for

5 months before specimens with 74 mm diameter were

core drilled. The core specimens underwent another

30 days of storage under water. Throughout the storage

under water a 40 mm wide strip strong tape was applied

around the core completely covering the membrane and

protecting it from direct water exposure. In this way the

membrane only received exposure to water through the

concrete pores.

6.5.2 Procedure

After water storage the specimens were prepared for shear

testing by mounting them in a steel frame assembly. The

process of preparing a series of three specimens in the test

assembly and conducting the shear tests could be under-

taken in 1 day. The assembly of the specimens is shown

in Fig. 25 and the steps in the procedure are shown in

Fig. 26.

Fig. 23 Crack bridging testing in progress. Top specimen in testing

apparatus for precise measurement of crack aperture at rupture.

Bottom definition of rupture with visible initial damage of the

membrane

Fig. 24 Results from crack-bridging testing for membranes M1 and

M5 conducted at different temperatures and pre-conditioned at RH 50

and 95 %

Fig. 25 Conceptual diagram showing a section of the assembly with

core specimen mounted in the steel frame used for direct shear testing
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Details regarding the testing procedure are shown in

Table 13.

6.5.3 Results

The results are presented as shear-stress versus shear dis-

placement diagrams, providing the following information:

• Peak shear stress for the specimen.

• Shear displacement at peak stress.

• Maximum shear displacement within linear elastic

behavior.

• Shear stiffness during linear elastic behavior.

The results for membrane M1 are shown in Figs. 27 and

28 and for membrane M5 in Figs. 29 and 30. A compila-

tion of the recorded data is shown in Table 14.

Both membranes exhibit almost the same behavior

within the initial deformation, showing linear shear

elasticity up to approximately 1 mm shear deformation.

Membrane M1 exhibits a slightly higher shear stress at

this point, corresponding to the higher shear stiffness K1

compared to M5. M1 exhibits a clear bonding (adhesive)

failure (Fig. 28) with peak shear stresses in the range of

0.55–0.85 MPa, after approximately 3–4 mm shear

deformation. After the initial zone of shear elasticity, the

two membranes have very different behavior. Membrane

M1 exhibits increasing strain softening behavior and

membrane M5 exhibits a bi-linear behavior with

increased displacement. In the latter phase a lower shear

stiffness can be observed. After approximately 7–8 mm

horizontal displacement membrane M5 exhibits almost

bFig. 26 Direct shear testing of SCL structure. a Typical core

specimen with 74 mm diameter. b Specimens placed in steel holder

ready for fixing with high strength resin. c Specimen in complete

assembly ready for testing. d Placement of test assembly into shear

box

Table 13 Conditions for shear testing

Parameter Condition

Shear loading Constant displacement, 0.5 mm/min

Normal loading Constant normal load, 0.45 MPa

Measured parameters

during test

Shear displacement, normal

displacement, shear load

Age of specimen at

testing

180 days
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perfect plasticity and reaches a peak shear stress of

approximately 0.45–0.5 MPa. No clear failure could be

observed during the shear testing with the M5

specimens. The tests for M5 were terminated after

19 mm of shear deformation. When removing the spec-

imens from the test assembly, failure in the membrane

could be observed since the upper and lower part of the

specimen could easily be separated (Fig. 30).

Fig. 27 Results from shear testing for membrane M1 represented as

shear stress versus shear displacement. Top diagram showing results

for all five specimens. Bottom results for one specimen with recorded

parameters, shown in Table 16

Fig. 28 Specimen of membrane M1 after shear testing exhibiting a

debonding (adhesive) failure between membrane and the substrate

concrete

Fig. 29 Results from shear testing for membrane M5 represented as

shear stress versus shear displacement. Top diagram showing results

for all five specimens. Bottom results for one specimen with recorded

parameters, shown in Table 15

Fig. 30 Specimen of membrane M5 after shear testing exhibiting

shear (cohesive) failure in the membrane material
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6.6 Tensile Strength of Membrane-Concrete

Interface

6.6.1 Specimens

Testing of tensile strength of the membrane-concrete

interface was carried out in 4 different series (explained in

Table 15), including laboratory tensile testing of 74 mm

diameter core specimens drilled from panels, pull testing

on panels with lining structure and in situ pull testing from

full scale tunnel linings. The moisture content of the con-

crete and membrane materials of the specimens was mea-

sured whenever possible. The testing of the linings at the

Gevingås and Ulvin tunnel sites was conducted parallel to

the moisture condition sampling and testing. For the large

scale laboratory lining structure (Fig. 7, Sect. 4.4) the

moisture content of the sprayed concrete and membrane

which was achieved after 6 months of moisture condi-

tioning was found to be very close to the moisture content

measured in tunnels (Holter and Geving 2015). Hence, the

laboratory lining structure could be used for controlled

freeze–thaw testing with realistic moisture content.

6.6.2 Procedure

Both testing procedures described in Sect. 5.3 in this paper

were followed. Test series 1 was conducted with the

original method stated in EN-ISO 4624 on core specimens

which were moisture conditioned by immersion for a

minimum of 14 days and subsequently tested in a labora-

tory tensile pull machine. Test series 2 was conducted with

the in situ tensile test method on slabs cut from slabs of

lining structure. Prior to testing, the slabs received different

pre-treatment types with moisture exposure at immersion

and cyclic freezing and thawing. Series 3 and 4 comprise

the tensile testing which was done on full scale lining

structures, either in situ in tunnels or on the large scale

Table 14 Compilation of results from direct shear testing of membranes M1 and M5

Membrane

(number of

specimens)

Shear

displacement x:

mean, mm

(COV, %)

Shear

displacement

xPEAK: mean, mm

(COV, %)

Shear stiffness

K1: mean, MPa/

m (COV, %)

Shear stiffness

K2: mean, MPa/

m (COV, %)

Peak shear

stress: mean,

kPa (COV, %)

Membrane

thickness

range, mm

Measured moisture

content in

membrane, %

(COV)

M1 (5) 1.0 (33) 2.5 (25) 350 (20) n.a. 745 (16) 3.5–4 15.7 (10)

M5 (4) 1.1 (18) 9.0 (7) 297 (20) 19 (9) 450 (5) 4–6 14.5 (12)

Table 15 Matrix for the different test series for tensile strength

Test

series

Type of lining structure for

specimens

Testing method Membrane

products

tested

Conditioning and exposure of

lining structure or specimen

Age at testing

1 Sprayed panels 600 mm 9 600 mm Drilled core specimens,

tested in pull test

machine

M1

M2

M3

M4

Dry

Saturated by immersion for

14 days

Frozen/thawed

12–14 months

2 Sprayed panels 600 mm 9 600mm Laboratory

In situ pull tests

conducted on panels

M1

M5

Dry

Saturated by immersion for

60 days

Frozen/thawed 6 times, -20/

?20 �C
Testing in frozen and thawed

condition after freeze–thaw

exposure

18–19 months

3 Full scale lining in tunnel (Gevingås

and Ulvin test sites)

In situ pull tests in

tunnel lining

M1 In situ moisture exposure in rock

mass

Ulvin: 29 months

Gevingås:

37 months

4 Laboratory lining structure on rock

mass with water exposure and

freezing

In situ pull tests in

lining structure

M1 Moist without freezing exposure

Moist frozen-thawed to -3 at

membrane, tested after 20 and

35 cycles

In frozen condition after 35 cycles

19–25 months
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laboratory lining structure. The adopted in situ tensile test

method described in Sect. 5.3 was used for this purpose.

6.6.3 Results

The results for the first test series, which included the

membranes M1, M2, M3 and M4 are shown in Fig. 31.

With this testing method membrane M1 exhibits a range of

strength reduction between 1.1–1.5 MPa tensile bonding

strength (comparing dry specimens to saturated) and fro-

zen/thawed specimens showed even more reduced tensile

strengths. The scatter in measured tensile strength using

this test method is relatively high. The membranes M2, M3

and M4 exhibit relatively low tensile strengths close to or

below the recommended requirement of 0.5 MPa tensile

strength.

The membrane M5 was introduced as a substitute for

M1 and M2. M3 was discontinued for further testing. The

results for series 2 which only includes membranes M1 and

M5 are shown in Fig. 32. This testing context shows that

saturation through 60 days immersion of the entire slab

gives a significant reduction of the tensile strength for M1

and a slight reduction of tensile strength for M5 compared

to dry specimens. Eight freeze–thaw cycles to -20 �C
result in a reduction of tensile strength from approximately

0.7–0.5 MPa for M5. For M1 no readings were possible

after the freeze–thaw cycles due to jamming of the drilling

equipment at the membrane. For both membranes the

tensile strength measured in frozen condition was signifi-

cantly higher than for the measured strengths in dry or

saturated condition.

Series 3 and 4 (Table 15) represent in situ readings

conducted with horizontal drilling on tunnel walls in dif-

ferent lining sections ranging from complete tunnel to large

scale lining structure in a laboratory (Fig. 7). Exposure to

moisture took place through the substrate sprayed concrete.

Results from the tunnel test sites exhibit high tensile

strengths in the range 1.1–1.6 MPa, with 1.3 MPa as the

mean value (Fig. 33, left part). Two readings could be

made at a wet crack (defect) in the inner lining, at which

0.8 MPa tensile bond strength was measured. Since real-

istic moisture contents were achieved in the lining structure

at the SINTEF freezing laboratory, the effect of cyclic

freezing and thawing on tensile bond strength could be

measured (Fig. 33, right part). An initial tensile bond

strength of 1.4 MPa at realistic moisture content was

measured. After 20 and 35 freeze–thaw cycles with -3 �C
minimum temperature at the membrane during each cycle,

a slight reduction to respectively 1.15 and 1.1 MPa tensile

strength could be measured. A tensile strength in the range

of 1.1 to 1.3 MPa was measured in frozen condition at

-3 �C at the membrane. An additional freeze–thaw

exposure with 20 cycles with a minimum temperature of

-7 �C at the membrane was conducted after the first 35

cycles to -3 �C. Tensile strengths ranging from 0.4 to

0.7 MPa were measured after this exposure. Difficulty in

Fig. 31 Results from tensile bond tests for test series 1 (Table 15),

drill core specimens with diameter 74 mm. Membrane numbers M1–

M4 are explained in Sect. 6.3.2
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Fig. 32 Results from tensile bond tests for test series 2 (Table 15),

in situ pull test method
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conducting the pull tests was experienced during the last

series at -7 �C due to damage in the outer part of the

concrete lining.

6.7 Microscope Analyses of the Interfaces Between

Concrete and Membrane

Scanning electron microscope (SEM) analysis of the

interfaces of the membrane-concrete structure was con-

ducted on specimens obtained from slabs which had been

constructed with realistic application methods of both

materials. The main purpose of this analysis was to study

any visual characteristics or significant differences between

the two interfaces, illustrated in Fig. 34 which could be of

importance for the interpretation of the tensile bond and

shear strength test results.

The interface on which the membrane has been applied

on the substrate concrete (interface 1), shown in Fig. 35

exhibits a sharp contrast between membrane material and

concrete material. Membrane material can be seen filling

the irregularities of the sprayed concrete surface. The two

materials exhibit distinct phases with no visible transition

zone.

The interface on which the secondary lining concrete

has been applied onto the membrane (interface 2) shown in

Fig. 36 exhibits a different morphology than interface 1. A

transition zone of approximately 15–25 lm thickness with

visible effects of the impact of the sprayed concrete on the

membrane can be clearly seen. This transition zone consists

of a mineral phase with visible needle shaped crystals

which separates the membrane material from the sprayed

concrete material. With spectral analysis the mineral sub-

stance at the interface was found to be mainly composed of

calcium carbonate CaCO3.

7 Discussion of Results

7.1 General

The testing of deformability and mechanical strength in

this study contain accelerated or short term tests with main

aim of simulating a loading scenario which takes place in

the tunnel lining. The loading scenarios caused by ther-

mally induced deformations considered in the loading

Fig. 33 Results from tensile bond tests for membrane M1, test series

3 and 4 (Table 15), in situ pull test method

Fig. 34 Principle sketch and photo of the two interfaces between

membrane and sprayed concrete. The interfaces 1 and 2 are shown

respectively in Figs. 35 and 36 (courtesy by Wacker Chemie AG)

K. G. Holter

123



model take place over several months. Possible effects of

small and very slow deformations such as healing of the

material, creep or reduction of strength have not been taken

into account for short term tests.

7.2 Effect of Moisture Conditions of Specimens

Establishing realistic moisture condition of specimens for

laboratory testing of this category of membranes is

important and difficult. A test result should always be

reported and evaluated with respect to its moisture condi-

tion. The results from in situ tensile bond strengths (with

realistic moisture exposure) compared to specimens which

are moisture conditioned by immersion, show that

immersion very likely represents a too severe exposure to

water, and gives lower strength values than realistic values.

A consequence of this is that a complete testing program

for membranes should include the construction of a full

scale lining section in order to verify properties under

realistic conditions in addition to findings from laboratory

tests.

Fig. 35 Images obtained by SEM-

microscopy of interface 1, with

membrane spray applied onto a primary

lining (rock support) sprayed concrete

substrate. Top 7509 enlargement.

Bottom 50009 enlargement (courtesy by

Wacker Chemie AG)
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7.3 Thermal Exposure

The measured and calculated temperature profiles in the

lining structure in this study cover freezing exposure with

temperatures in the tunnel air in the range of -6 to -9 �C.
Such temperatures in the tunnel air will occur under severe

winter climate with outside air temperatures below -10 �C
over sustained periods of time (STA 2012). The rock mass

temperature at shallow locations in Scandinavia is nor-

mally 6–8 �C. This was measured in two Swedish studies

(STA 2012) as well as the measured rock temperatures at

the Ulvin site (Fig. 6, Sect. 4.4), as well as in the Gevingås

rail tunnel (Holter and Geving 2015). The precise air

temperature conditions at a given location in a tunnel needs

to be assessed in each single case based on the local

meteorological conditions and the ventilation characteris-

tics of the tunnel.

7.4 Effect of Geometry of Specimens

The interfaces between membrane and sprayed concrete

in tunnel linings exhibit surfaces with a certain degree of

roughness. The measured mechanical properties shear and

tensile strength will be influenced on the geometry of the

interfaces which in turn will cause increased scatter. Our

laboratory testing of specimens with planar surfaces

Fig. 36 Images obtained by SEM-

scanning of interface 2, with sprayed

concrete applied onto the sprayed

membrane surface. Top 7509

enlargement. Bottom 50009

enlargement (courtesy by Wacker

Chemie AG)
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represents ideal and unfavorable geometrical conditions,

and takes no account for effects of surface roughness. For

the specimens prepared from slabs with lining structure,

the concrete surfaces were prepared by floating in order to

produce the same geometry for all specimens. Our test

results obtained from specimens with planar surfaces

cannot be directly translated to the in situ properties. The

peak stresses obtained in the laboratory for tensile and

shear testing are likely to be lower than what would be

the case under realistic interface conditions regarding

moisture and geometry. On the other hand, specimens

with the realistic roughness of the sprayed concrete sur-

faces would have introduced scatter making the inter-

pretation of the results difficult, as well as limiting the

reproducibility of the tests. For the tensile strength, our

in situ measurements are the most representative. Such

in situ measurements should be included in a test program

in order to obtain values from realistic surfaces in addi-

tion to simplified or idealized surfaces during laboratory

testing.

7.5 In situ Mechanical Loading of Lining

and Membrane

The construction sequence of a waterproof SCL structure

normally implies that the membrane and inner lining be

applied after tunnel breakthrough, or several months after

excavation and construction of the primary lining. There-

fore the primary lining needs to be designed to be stable

and designed for any rock mechanical loads before the

membrane is applied. In our study we have therefore only

included loads which can be imposed to the membrane by

the possible effects of the membrane itself or the inner

lining sprayed concrete.

7.6 Elongation and Crack Bridging

Elongation performance of a sprayed membrane according

to DIN53504 (2009) can only give an indicative figure for

the required elasticity for a tunnel lining purpose. This

elongation performance exhibits significantly higher sen-

sitivity to lower temperatures compared to the crack

bridging. Conclusions based only on elongation results for

temperatures 0 and -3 �C would likely deem the mem-

brane unsuitable for such thermal exposure. The crack

bridging results show significant performance at freezing

temperatures, although a decreasing performance at tem-

peratures 0 �C and below is observed.

We have applied strain loads on the membrane within a

range to be expected by the effects of shrinkage and ther-

mal expansion. Thermal fluctuations from approximately

-3 to 15 �C can be expected at the membrane location

within the lining structure. Thermally induced crack

opening with an average crack distance of 1 m and a

thermal change of 18 �C can be calculated to be in the

order of 0.2 mm based on the thermal expansion coeffi-

cient. Our in situ crack measurements suggest a 0.2 mm

crack opening for a drop in temperature of 6 �C. With a

total thermal change over the year of approximately 18 �C
in the lining structure at the membrane, 0.6 mm crack

opening can be assumed. The possible shear deformations

along the membrane interfaces caused by differential

shrinkage or thermal expansion are in the same order of

0.5–0.6 mm. Our suggestion to use 1 mm as a crack

bridging requirement and 1 mm as a critical shear defor-

mation magnitude is therefore likely to be on the conser-

vative side. Our crack bridging testing takes no account for

any hydrostatic exposure at the cracks. We have only

included the effects of high moisture content achieved by

conditioning at RH 95 %.

7.7 Shear Performance

Shear testing of the membrane can contain several sources

of error such as the loading rate, the normal loading mode

and a possible oblique membrane plane relative to the shear

direction. The applied loading rate during the test in the

laboratory was 0.5 mm per minute whereas an in situ shear

straining of the membrane most likely would take several

months. Effects of creep and self healing therefore most

likely would occur. Such effects are not accounted for in

our short term test. The specimens for our tests had floated

sprayed concrete substrate surfaces and were moisture

conditioned by immersion. This likely represents an over-

exposure to moisture compared to in situ conditions.

Hence, our laboratory findings for peak shear stress and

shear stiffness are likely to be lower than values in realistic

moisture exposure conditions.

7.8 Tensile Bond Strength

The site testing show consistent high values for tensile

bond strength (Sect. 6.6.3, Fig. 33). At testing these lining

sections had a history of several thermal expansion cycles

as well as the exposure to the differential shrinkage

between the two concrete layers. The test results from the

Ulvin site also include one complete freeze–thaw cycle to

approximately -3 �C at the membrane location. The

measured high values for tensile strength indicate no in situ

degradation of the lining after 4 years.

The laboratory testing on core specimens possibly con-

tains three main sources of error: the geometry of the

interfaces, the moisture condition of the specimen and the

alignment of the pull direction parallel to the core axis. In

addition the effect of a short term test with a duration of a

few minutes might fail to account for all long term effects.
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Float finished concrete surfaces will normally result in a

locally higher water/binder content and consequently

higher porosity and possibly higher permeability. A

slightly higher water exposure at the interface between

membrane and concrete with a specimen with float finished

surfaces compared to non-floated surfaces is therefore

possible. The alignment of the pull equipment based on

visual assessment will sometimes be difficult. Specimens

without a perfect alignment in the testing machine might

receive partial bending loads, and hence exhibit lower peak

stress during the test. The in situ pull test method described

in Sect. 5.3, Fig. 15, eliminates the three afore mentioned

sources of error. However, with the available equipment a

controlled loading speed could not be precisely applied.

The effect of wet core drilling for either of the methods is

unavoidable. Water exposure will soften the membrane at

the core surface. When drilling in a downwards vertical

direction on a slab of lining structure, the drilling water

will fill the core groove and expose the membrane to water

immediately before testing. When drilling horizontally in a

lining structure the exposure to water will be less.

7.9 Performance Under Freeze–Thaw Exposure

Our investigations pertaining to freeze–thaw durability

comprise tensile bonding strength, elongation and crack

bridging. The findings from the tensile testing after freez-

ing exposure to -3 �C indicate that no significant damage

occurs at this temperature. The likely explanation for this is

the unsaturated condition of the concrete and membrane

materials. This allows the volumetric expansion during the

freezing of water to buffer into air filled voids without

creating damage. For temperatures lower than -3 �C at the

membrane location, thermally insulating measures need to

be considered.

7.10 Durability and Service Lifetime

Prediction of service lifetime under freezing exposure is an

important question. Our testing of tensile bond strength

contains accelerated freeze–thaw tests in order to simulate

a slightly more severe exposure with a high number of

cycles which can be related to a period of service time. The

number of freeze–thaw cycles that occur per year will vary

from year to year in addition to the characteristics of the

location. For tensile bond we have conducted 35 cycles to

-3 �C at the membrane with 48 h per cycle which resulted

in only minor reduction of tensile bond strength. Effects of

healing between each freeze–thaw cycle are not accounted

for in such an accelerated test layout. This indicates that

real exposure would be less severe than our testing, and

that our findings with high tensile strength after freezing

exposure is likely to be realistic, or even conservative.

Only when exposing the lining structure to 20 freezing

cycles to -7 �C at the membrane location following the 35

cycles at -3 �C, a significant reduction in tensile bond

strength could be observed. A precise service lifetime

prediction is not possible based on our results. However,

when this lining system is used in tunnels with moderate

freezing exposure, with a lowest temperature of -3 �C at

the location of the membrane, a service life time of

100 years or more is likely.

7.11 Recommended and Planned Further Work

The time dependent effects of in situ moisture exposure

will be investigated further with continued sampling and

testing of moisture content as well as in situ tensile bonding

strength at the test sites.

Our study includes cases with low hydrostatic pressures.

The effects of higher hydrostatic pressures (more than

approximately 2 bars at the interface between rock and

concrete) cannot be substantiated based on our results.

Further material testing and large scale model investiga-

tions verified by field testing in order to substantiate the

detailed behavior at the water filled cracks which expose

the membrane are required. Such testing should account for

all relevant material properties.

The detailed shear load characteristics need to be

investigated in further depth. The main issues are: effects

of long term, slow loading, creep and the normal loading

mode, as well as the normal stiffness (with respect to the

membrane surface) of the secondary lining structure.

8 Conclusions

A study of the properties of sprayed membranes for SCL in

hard rock has been carried out with the following main

scope:

• Assessment of loading, moisture and freezing exposure

conditions based on field and large scale laboratory

investigations.

• Evaluation of laboratory investigation methods.

• Conducting of laboratory investigations.

• Assessment of membrane properties including perfor-

mance under freeze–thaw exposure.

The main findings from this study are the following:

• The main mechanical loading mechanisms on the

membrane have been found to be represented by

movement over cracks in the sprayed concrete and

shear straining caused by differential shrinkage and

thermal expansion.
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• The moisture exposure to the membrane through the

interfaces with the sprayed concrete leads to an in situ

moisture content corresponding to 30–40 % of the

membrane’s maximum water uptake potential. This has

been found to be governed by the moisture properties of

the membrane and concrete materials and the bonded

contacts between these two materials.

• Membrane products with low polymeric content (below

70 %) exhibit low elasticity and are most likely

unsuitable for tunnel waterproofing purposes in a

bonded SCL context.

• Testing methods need to include details regarding

moisture preconditioning and moisture exposure in

order to test realistic materials and substantiate state-

ments on in situ performance.

• A test program should include field testing in order to

assess the relevance of the findings from laboratory

testing.

• Testing of tensile bond strength on core or slab

specimens in the laboratory which are conditioned by

immersion, tend to give slightly lower measured values

compared to site or large scale model testing.

• Testing of crack bridging shows decreasing perfor-

mance at decreasing temperature. With 3 mm mem-

brane thickness bridging of 1 mm crack opening at

-3 �C at the location of the membrane in the lining has

been found possible.

• Testing of shear properties indicate linear shear elas-

ticity up to approximately 1 mm shear deformation.

• Testing of tensile strength show high in situ tensile

bond strengths in the range of 1.1–1.5 MPa after

4 years.

• Exposure to cyclic freezing-thawing shows no signif-

icant reduction of the tensile bond strength at -3 �C at

the membrane location.

• Further work is required to substantiate the perfor-

mance of an SCL lining structure exposed to high

hydrostatic pressures as well as effects of long term

mechanical exposure.
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ABSTRACT 

Sprayed concrete tunnel linings (SCL) waterproofed with bonded membranes in principle represent 
undrained lining structures. When used with a tunnel design with a drained horizontal invert, the 
undrained walls and crown of the lining may result in a certain water pressure behind the lining and 
a redistribution of the ground water flow into the tunnel. The tunnel will therefore constitute a 
partially drained structure in which the ground water pressure in the immediate rock mass 
surrounding the tunnel will be influenced by the ground water flow towards the invert. This paper 
presents an investigation of the ground water pressures in the rock mass behind such linings in 
hard rock environment from four test sites in Scandinavia. The main reason for obtaining this 
information is to assess any destabilizing effects in the rock mass caused by an undrained lining 
with the bonded membrane design.   

Measurements of the ground water pressures in the rock masses surrounding SCL structures with 
a drained invert indicate a water pressure reduction of approximately 200-300 kPa from the 
background hydrostatic pressure along a distance of 3-6 m to 1 m distance from the lining surface. 
The test sites exhibited background hydrostatic pressures in the range of 680-780 kPa and 
hydraulic conductivities of the rock mass in the range of 10-9 to 10-8 m/s. 

The results from a discontinuous numerical model and a continuum numerical model of the water 
flow in the rock mass indicate an increasing water pressure in the rock mass at decreasing distance 
to the lining surface, when no consideration for any local features near the lining was taken into 
account. 

A likely explanation for the measured water pressures in the immediate rock mass is the effect of 
the excavation damaged zone (EDZ).  Under the tested conditions this will be a favorable effect for 
the condition of the lining structure and the stability of the immediate rock mass. Further 
investigations of the hydraulic properties of the excavation damaged zone are required to 
substantiate this behavior under a wider range of conditions. 

 

Keywords: Sprayed concrete lining, tunnel waterproofing, sprayed waterproofing membrane, 
ground water pressure, effects of tunnel lining, excavation damage zone, monitoring 
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ABBREVIATIONS AND DEFINITIONS 

SCL Sprayed Concrete Lining. Permanent tunnel lining system based on fiber reinforced 
sprayed concrete as the structural material with alternative possible waterproofing 
measures which are integrated into the sprayed concrete structure. Such linings 
may also include rock bolts for rock reinforcement 

EDZ Excavation Damaged Zone. Zone of a certain thickness in the rock mass near the 
excavated contour of an underground opening which in which hydromechanical and 
geochemical modifications induce significant changes in flow and transport 
properties. These changes may, for example, include one or more orders-of-
magnitude increase in flow permeability (Bernier et al. 2005) 

 

1 INTRODUCTION  

SCL waterproofed with a sprayed membrane in principle represents an undrained lining structure. 
Such linings have been used in several design options including completely tanked linings and 
partially drained linings in which a significant portion of the tunnel perimeter has no waterproofing.  

Several decades of experience is obtained in the Scandinavian countries with sprayed concrete 
linings applied on the rock surface in a tunnel without any special measures to account for any 
ground water pressure. The general experience is that the sprayed concrete lining is drained and 
that ground water does not cause any significant loads on the sprayed concrete. Even during 
construction of more than 40 subsea tunnels in Norway in hard rock conditions with up to 250 m 
static head. No detrimental effects of ground water pressure in the immediate rock mass have been 
observed, other than in severe weakness zones (Nilsen 2014).  

Until recently, the normal practice in the hard rock environment in Scandinavian countries has been 
to construct tunnels with a permanent rock support lining based on rock bolts and sprayed concrete 
and a separate drainage and thermal insulation lining. The rock support lining is considered a 
drained structure with this type of design (Fig. 1 left). In this paper, waterproof SCL with a spray-
applied membrane in the walls and crown is considered. The category of sprayed membrane 
investigated in this study are based on ethyl-vinyl-acetate (EVA) co-polymers.  The waterproof SCL 
with a drained invert will allow ground water to enter the tunnel through the invert (Fig. 1, right). 

 

  
Fig. 1  Drawing showing the hypothesized effect on ground water flow of the waterproof and 
undrained SCL structure. Left: SCL without any waterproofing. Right: SCL with undrained 
waterproofing in walls and crown and a drained invert. (Holter 2014). 
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The partially drained lining option (Fig. 1 right) is the main issue studied in this paper. The 
motivation for this lining design is to waterproof a sprayed concrete lining with relatively small 
thickness (totally 150-250 mm) and still expect permanent waterproofing function without long term 
negative effects. This lining design has so far been used in ground with low hydrostatic pressures 
up to a maximum of approximately 200 kPa (Nermoen et al. 2011, Holter & Foord 2015). At higher 
pressures, measures like drainage stripes or drainage channels have been used for water pressure 
relief at the rock/concrete interface in the lining. 

The aim of this paper is to analyze the effects on the water pressure in the surrounding rock mass 
when constructing the SCL as a waterproof and undrained structure in the walls and crown of the 
tunnel and drained invert.  The important issue to consider is the effect of the undrained 
waterproofing of the SCL.  Such a permanent lining design is only feasible if possible detrimental 
effects of the ground water pressure to the tunnel lining can be neglected.  Furthermore, any 
possible ground water pressure in the immediate rock mass which eventually could require an 
increased lining thickness or heavier rock support are important to evaluate. In cases with rock 
masses with higher hydraulic conductivities, the surrounding rock mass of the lining will also consist 
of a pre-grouted zone. The detailed effects of this were unable to be experimentally investigated in 
this study.  The study presented in this paper is based on four tunnel sites and numerical 
simulations of one of the cases, and is illustrated in Fig. 2.  

 
Fig. 2 Diagram with the structure of the analysis in this paper. 
 

2 WATER FLOW IN THE ROCK MASS AROUND A TUNNEL  

2.1 Conceptual model for partially drained lining structure 

The bonded property at the interfaces of the constituent materials including the membrane means 
that there will be no draining function of the lining. The function of the membrane in the SCL 
structure is to act as barrier for flow of water on cracks in the concrete lining. The lining structure is 
illustrated in Fig. 3. In a hard rock environment total sprayed concrete thicknesses for modern rail 
and road tunnels in the range of 150-250 mm are realistic. 

The flow of water on paths in the immediate rock mass towards the invert was hypothesized by 
Holter (2014), and is illustrated in Fig. 1. This model implies the occurrence of a certain water 
pressure in the immediate rock mass of such a lining. The water pressure in the immediate rock 
mass will be higher in the case with an undrained SCL structure in the walls compared to a case 
with a drained lining, since there is a shorter distance to the drained tunnel surface.  
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Fig. 3 Top: Photo of a 50 mm diameter drill core through SCL with bonded membrane. Bottom: 
Conceptual model of the SCL structure with constituent materials, water exposure and water flow 
processes (Holter 2015). 

 

2.2 Models for groundwater flow in crystalline rock masses 

In rock masses with hard crystalline rock types the ground water flow is governed by the flow of 
water on the discontinuities in the rock (NBG 2000, Palmström & Stille 2010, Gustafson 2012).  The 
intact rock material is considered impermeable. At the scale of a tunnel or drill hole sections for 
pumping tests with lengths in the order of 0.5 to 3 m the water will flow on joints and be governed 
by the hydraulic transmissivities of the joints. On a larger scale a consideration of the average 
hydraulic conductivity of the rock mass should be used. However, this depends on the density of 
the joints (Fig. 4). 

Fig. 4  Drawings showing rock masses with different conductive properties. A: Continuum: rock 
mass with porous rock and conductive flow through rock material. B: Discontinuous medium: rock 
mass with impermeable rock material and few conductive joints. C: Discontinuous medium: 
moderately jointed rock mass with impermeable rock material and conductive joints. D: Continuum: 
densely jointed rock mass with impermeable rock material and conductive joints (based on STA 
2014). 
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A simplified approach is to consider a rock joint consisting of two parallel planar surfaces with a 
certain aperture. In reality the surfaces of joints are neither planar nor completely parallel.  The joint 
surfaces can be in contact with each other in several ways. There can be fillings in the fracture 
which leave only a portion of joint open for fluid flow, such as in limited patches or channels. A 
conceptual model for this was presented by Butron (2012) and is illustrated in Fig. 5.  

 
 

 
Fig. 5 Conceptual model for a conductive system of rock joints in crystalline rock (Butron 2012). 

Studies of the mechanical aperture of joints, their variation and how this influences the hydraulic 
transmissivity and how this relates to the hydraulic joint aperture have been carried out by 
Zimmerman and Bodvarsson (1996). For the purpose of flow calculations in this study, the 
frequently used parameters joint hydraulic transmissivity and the hydraulic joint aperture are 
important.  

In this study water pressure testing was conducted in boreholes section with 500 mm length and 
hole diameter 67 mm. The equation proposed by Moye (1967), Eq 1, was used to calculate the 
section transmissivities and the equation proposed by Gustafson (2012), Eq. 2 for the joint 
transmissivities. The parameters from the water pressure testing are illustrated in Fig. 6 (Gustafson 
2012). T is the transmissivity, Q is the water flow during pumping at steady state, �h is the pumping 
head, L is the length of the pressurized section of the hole, R is an assessed persistence of the 
joint, normally in the range of 3 to 5 m, and rw is the diameter of the hole. Gustafson’s equation has 
been found to be valid for cases where the joint transmissivity is very much higher than the hydraulic 
conductivity k of intact rock.  

 

� � � �
���	 
� � 
� � �

�����    Eq. 1 

 

� � � �
����	      Eq. 2 
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Fig. 6  Hydraulic test in a conductive rock joint (Gustafson 2012). 

Using the cubic law (Eq. 3), originally proposed by Louis (1967), the hydraulic aperture b can be 
estimated from the joint hydraulic transmissivities with the cubic law in the following form (Fransson 
2001): 

 

� � ��������
����

�      Eq. 3   

Where T is the joint hydraulic transmissivity, μw is the dynamic viscosity of water, ρw is the density 
of water and g is the acceleration of gravity.  

 

3 EXECUTED INVESTIGATONS  

3.1 Overview and goal   

An investigation program was undertaken to study the effects on the groundwater pressure in the 
surrounding rock mass of an undrained SCL structure with bonded waterproofing membrane. The 
tunnels which were investigated have completely drained inverts. The investigations consist of the 
following: 

� Construction of full scale SCL sections with bonded waterproofing membrane at 3 different 
tunnel sites 

� Water pressure testing for estimation of hydraulic transmissivities of the rock mass at two of 
the sites 

� Monitoring of water pressures in sectioned bore holes up to 9 m length at two of the sites 
� Monitoring of water pressures in single section bore holes up to 3 m length at one site 
� Monitoring of water pressures at the rock-concrete interface in the lining structure at one site 

The locations of the four test sites are shown in Fig. 7. A comparison of the four test sites with the 
geometrical layout of the tunnel linings and the hydrogeological context is shown in Fig. 8.   
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Fig. 7 Locations of the four test sites for water pressure monitoring 

  
  

  
Fig. 8 Conceptual diagrams showing the hydrogeological context for the four test sites with layout 
of in-situ water pressure measurements 

3.2 Engineering geological and rock mechanical conditions at the test sites 

The four test sites are all located in hard crystalline rock environment. For three of the sites in-situ 
rock stress data were available from measurements in the vicinity of the test locations. The in-situ 
rock stress values indicate a horizontal major principal stress in the order of 5 MPa larger than the 
horizontal stress component induced by gravity only. This is typical for many areas in Scandinavian 
hard rock environment.  The rock mass conditions for the four sites are summarized in Table 1. 
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Table 1. Main Engineering geological and rock mechanical conditions at the test sites 

Parameter Karmsund Forsmark Ulvin Gevingås 
Rock overburden at test 
location [m] 130 110 55 40 - 50 

Distance below ground  
water table [m] 

75 
(subsea tunnel) 

122 
(subsea tunnel) 0 30 - 40 

Major principal rock 
stress, value, dip angle 
[MPa],  [o] 

8.1 (8) 7.6 (0) 7.1 (4) Not measured 

Rock type Massive 
granitic gneiss 

Medium to fine 
grained granite 
to granodiorite 

Banded 
amphibolitic 
gneiss 

Dark mica 
schist 

Uniaxial compressive 
strength of intact rock 
[MPa] 

137 - 238 139 - 280 148 – 285 Not measured 

Young’s modulus of 
intact rock [GPa] 64 – 73 66 – 105 43 - 49 Not measured 

Number of joint sets / 
joint spacings [m] 

2 + random  
0.7 – 1 

2 + random 
0.1 – 0.5 

3 
0.2 - 0 .5 

2 - 3 
0.2 – 0.8 

Number of joints per m 
drillcore 1 – 3 6 - 9 1 - 7 Not measured 

Rock mass quality Q, 
range and typical value 
(in brackets) 

6 – 66 (23) 10 – 40 (30) 5 – 12 (8) 3 -17 (5) 

Estimated average 
hydraulic conductivity 
of rock mass [m/s] 

10-8 to 10-9 10-8 to 10-9 10-7 to 10-8 10-7 

Calculated hydraulic 
transmissivities of rock 
joints [m2/s] 

10-8 to 10-10    

 

3.3 Monitoring method for water pressure 

The water pressure monitoring was arranged to directly measure the water pressure at a location 
in a hole using a hydraulic connection with a hose from the drill hole to the pressure sensor.  Two 
measuring configurations were used:  

� Pressure measurement in one section in a hole using a mechanical packer placed 1 m from 
the collar of the hole. The total hole lengths were in the range of 2 – 3.5 m  

� Pressure measurement in four sections with various lengths in each hole with total length 9 m   

All pressure sensors were placed in a cabinet and connected to a logging unit. Thin nylon hoses 
designed for high pressures connected each of the measurement sections to the cabinet with 
pressure sensors. The pressure sensors recorded absolute pressures.  The presented values in 
this paper are adjusted for the height difference between measurement location and the sensor, as 
well as the measured air pressure at cabinet location. The measuring station for the Karmsund test 
site is shown in Fig. 9.  Similar stations were used for the Ulvin and Forsmark test sites. 
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Fig. 9. Arrangement for in-situ monitoring of water pressure with instrument cabinet with pressure 
sensors and logging unit. High pressure hoses are connected to the drill hole sections for 
measurements, and to the far left a vessel with pressurized water to keep the packers which section 
the holes constantly inflated. This measuring principle was used for the Karmsund, Ulvin and 
Forsmark test sites.  

 

3.4 Investigations at the Karmsund site 

3.4.1 Construction of test site 

The Karmsund test site was constructed in a cavern branching off from the highway tunnel in the 
vicinity of an underground roundabout. The construction of the waterproof lining and the installation 
of monitoring equipment took place approximately one year after the excavation and construction 
of rock support of the cavern. The site is located under an island with the invert level at 57 m below 
sea level. A lake on the island influences the ground water table, which exhibits seasonal 
fluctuations.  A cross section of the test site with the location of the adjacent tunnels is shown in 
Fig. 10.  During excavation of the cavern and tunnels in the immediate vicinity very little seepage 
was encountered in the probe drilling holes. When grouting the probe drilling holes very little grout 
takes were experienced when applying a grouting pressure of 80 bars. Some remaining seepage 
was removed by local post-injections. The measurements of hydraulic transmissivities (Sect. 3.4.4 
and 3.6) show no indications of a clear boundary between a grouted and non grouted zone. 
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Fig. 10 Vertical section of the Karmsund test site with the location of the test area and 
hydrogeological context (after Holter 2014). 

 
Fig.11 Interior of the Karmsund test site with the waterproofing membrane recently applied, and 
LiDar scanning of the surface in progress.  

The test site was constructed with waterproof SCL in the walls and crown of the cavern. The interior 
of the cavern with the surface waterproofing membrane before application of the inner lining 
sprayed concrete is shown in Fig. 11. In this case the construction of the waterproof lining took 
place before the testing holes were drilled. Hence all water pressure testing and monitoring was 
started and executed after the final construction of the waterproof SCL. 

 

3.4.2 Estimation of water ingress and hydraulic conductivity 

Images obtained by LiDar scanning of the lining surface before and after application of the 
waterproofing membrane is shown in Fig.12. Water ingress to the cavern before the application of 
the membrane occurred as scattered drips and damp spots. Based on the scanned surfaces and 
observations in the cavern by counting drips and damp spots, the water ingress to the cavern was 
estimated.   After the application of the final inner lining, some damp spots occurred in the lining 
surface shown in Fig. 12 bottom. Altogether 39 water ingress points could be observed before the 
application of the membrane. The lower image in Fig.12 shows the occurrence of the remaining 
damp spots 6 months after construction without any injection works conducted. The construction 
procedure for such linings normally involves removal of minor seepage points through the final 
lining by local injection. This was not done in our case.  The location of the water pressure testing 
and monitoring holes is shown in Fig. 12 bottom. The first 250 mm of the holes were equipped with 
a resin grouted steel casing. No damp points occurred around the measuring locations for the water 
pressure.  
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Fig. 12. 3D views obtained by LiDar scanning of the SCL section at the Karmsund subsea tunnel 
test site. Top: Seepage points in the form of drip spots though the substrate before the application 
of the waterproofing membrane. Bottom:  remaining damp points at approximately 5 months after 
the application of the final inner lining. No post injection was carried out to remove the remaining 
seepages.  

An estimation of the hydraulic conductivity of the rock mass was done based on the estimated 
water ingress, the static head and the size of the cavern. The model proposed by El Tani (2003), 
shown in Fig. 13 and Eq. 4 for a circular shaped underground opening and assuming a 
homogenous hydraulic conductivity was used for this purpose.  

 
Fig. 13 Conceptual diagram for model with an analytical solution for water ingress Q [m3/m�s] in a 
circular tunnel with radius r [m], located at depth h  [m] below the groundwater table in a uniform 
aquifer with a hydraulic conductivity k [m/s] (El Tani 2003).  
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Eq. 4 

 

The water ingress in the invert was unable to be observed. For the purpose of the estimation of the 
hydraulic conductivity, a quantity of water ingress in the invert in proportion with the perimeter size 
to the average water ingress in the walls and crown was assumed. An equivalent radius for a 
circular tunnel with the same perimeter length as the cavern was used in the calculation. The 
estimated water ingress to the cavern and calculated hydraulic conductivity is shown in Table 2. 

Table 2. Parameters for the estimation of hydraulic conductivity in the Karmsund test site 

Parameter Value Basis for value 
Estimated total water ingress in 
entire length of cavern 

0.8 – 1.6 liters per minute Counting of drips and moist 
spots 

Length of cavern section  24 m Measured 
Estimated water ingress per linear 
m cavern, range 

2.8 �10-7 to 1.1 �10-6 m3/s 
per linear meter 

Counting of drips and moist 
spots 

Static head 75 m Assessed groundwater level 
based on measurements, 
Sect 3.3.3 

Equivalent radius 6.8 m Equivalent perimeter of 
cavern 

Hydraulic conductivity 1.8 �10-9 to 7.5 �10-9 m/s Eq. 4 
 

3.4.3 Water pressure testing 

The water pressure testing was executed using a double packer system with 1 m sealing length on 
either side of the measuring section with 0.5 m length. Hence, sections of 0.5 m length could be 
tested up to approximately 8 m depth of the 9 m holes. The testing was done by pumping with a 
pressure in the range of 500-600 kPa higher than the hydrostatic pressure. Pumping was 
terminated when steady state flow into the section was achieved and the flow rate was recorded. 
The equipment was set up to measure flow rates with an accuracy of approximately 2 
milliliters/minute. 

Core material allowed for accurate assignment of joint locations along the measurement holes. 
Several measurement sections for the pressure testing had no joints at all, and most sections had 
one or two joints. The hydraulic transmissivites were therefore calculated both as transmissivities 
for the 0.5 m sections, Eq. 1 (Moye 1967) and transmissivities for single joints, Eq. 2 (Gustafson 
2012) assuming one conductive joint per measurement section. From the calculated joint 
transmissivities, the hydraulic joint apertures were estimated using the cubic law (Eq. 3).  

The calculated hydraulic joint transmissivities for all tested sections at the Karmsund site are shown 
in Fig. 14. The estimated hydraulic joint apertures are shown in Fig. 15. The hydraulic 
transmissivities for the 0.5 m sections are shown in the compilation with the measured in-situ water 
pressures in Fig. 16. 

The measurements indicate joint hydraulic transmissivities in the range of 1�10-9 to 1� 10-8 m/s. A 
portion of the tested rock joints exhibit hydraulic transmissivities in the order of 5�10-10 m/s. The 
corresponding estimated joint hydraulic apertures (Fig. 15) are in the range of 0.01 to 0.04 mm with 
0.01 to 0.025 mm as the most represented values. 
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Fig. 14 Calculated hydraulic transmissivities for rock joints from the water pressure testing at the 
Karmsund test site. Each column shows number of measurements for a value within a certain 
interval. 

 

 
Fig. 15  Calculated hydraulic apertures for rock joints from the water pressure testing at the 
Karmsund test site.  

 

3.4.4 Monitoring of ground water pressures 

Monitoring of the in-situ ground water pressure was done in 3 holes with length 9 m. For the water 
pressure monitoring, the holes were sectioned using inflatable packers (details are explained in 
Holter 2014). The monitoring could be conducted for a continuous period of 8 months before the 
monitoring equipment needed to be removed due to the final construction works. 

The results from the monitoring of ground water pressure are shown in Fig. 16. The measured 
pressures are shown in absolute pressures which are compensated for the measured air pressure 
at the measuring cabinet. Measured section transmissivities and rock jointing respresented as RQD 
obtained from drill cores are also shown. Further details such as joint transmissivity and location of 
joints are shown in the compilation in Fig. 20, Sect. 3.5.2.  The measured water pressures indicate 
a slight reduction of water pressure closer to the lining. Two sections indicate very low pressures, 
one even with pressure below the air pressure. This is likely to be a short term effect of an 
unsaturated situation and is further discussed in Sect. 4. The development of measured pressures 
over the 8 months monitoring period is shown for the holes 1 and 3 in Fig. 16 bottom parts. A trend 
with slight reduction can be observed in the spring months. The changes over time are not 
consistent in magnitude for all the monitoring sections. 
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Fig. 16. Measured water pressures in sectioned holes in the immediate rock mass at the Karmsund 
test site. Top: vertical section with hole locations and measured pressures after 5 months and 
section transmissivities and rock jointing represented as RQD. Middle and bottom: development of 
measured water pressures over time.  
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3.5 Numerical simulations of the Karmsund case 

Numerical simulations in two different codes; a continuum and a discontinuum code,  were carried 
out in order to estimate the ground water pressure in the rock mass in the immediate vicinity of the 
lining surface. The numerical simulations were designed to study the effect of ground water 
pressure, only taking into account the hydraulic properties of the rock mass, without including any 
local effects, such as EDZ and vapor diffusion near the lining. In each of the codes a model with 
and without the undrained waterproof lining was established. The purpose of these simulations was 
to study the effect of the undrained lining considering the average hydraulic conductivity of the rock 
and hydraulic transmissivity of the rock joints separately. The reason for executing the simulations 
without accounting for effects of EDZ is to determine which water pressures can be expected in the 
rock mass without an EDZ with increased hydraulic conductivity near the lining.  

For both codes simplified models were constructed to represent the rock mass. Simplified but well 
established models for ground water flow are applied, such as conductive water flow in a medium 
consisting of a network of conductive joints according to the cubic law for flow between two parallel 
surfaces, and conductive water flow in a continuous porous medium according to Darcy’s law. 

The models were established based on physical mapping of the rock mass, measured in-situ rock 
stresses in the vicinity and measured values for uniaxial compressive strength and Young’s 
modulus.  The models contains the cavern with the waterproof lining in the crown and walls with 
no waterproofing in the invert. The adjacent tunnel is modelled as a completely drained opening 
without any lining.  No special provisions have been included in the discontinuum model for the 
EDZ. The effects of the EDZ in the invert are solely produced by the model.  For the continuum 
model an EDZ in the invert of 2.5 m thickness with higher hydraulic continuity was included. 

 

3.5.1 Discontinuum model, UDEC BB 

For the discontinuum analysis the UDEC BB (Universal Distinct Element Code, Itasca 2013b) with 
the Bandis-Barton joint model, originally presented by Barton et al. 1985, was applied. UDEC BB 
is a two-dimensional version of the distinct element method which is specifically designed to 
simulate the predominant features of jointed rock masses, and models a coupling of the hydraulic 
pressures and mechanical stresses. 

The simulation of the behavior of the rock joints is based on the three key joint parameters: Joint 
Roughness Coefficient JRC, Joint Wall Compressive Strength JCS and the residual friction angle. 
The rock mass is simulated as an assemblage of blocks which interact through corner and edges. 
The intact rock is modelled as an isotropic medium with linear elastic behavior. The fluid flow is 
modelled according the cubic law, applying an initial hydraulic aperture. No special provisions have 
been included in the UDEC BB model for the EDZ. The effects of EDZ in the invert are solely 
produced by the model. 

 

3.5.2 Continuum model, FLAC3D 

FLAC3D is a finite difference model in which the mechanical behavior of a continuous three-
dimensional medium is studied numerically as the medium reaches equilibrium or steady plastic 
flow (Itasca 2013a). 

In addition to the mechanical modeling, FLAC3D also models the fluid flow through a permeable 
solid such as soils and rocks. In this paper, the flow modeling in parallel with the mechanical 
modeling of rock mass has been considered since the groundwater pressure development in rock 
mass is of primary interest. Coupled flow and mechanical behavior is modeled to assess the effect 
on groundwater pressure in the immediate rock mass due to partially drained SCL.  



16 
 

The geometry of the model has been developed based on Fig.10. The adjacent road tunnel has 
been placed at 15 m distance from the cavern, and is considered a drained tunnel for our purpose.  
Since it is time consuming and tedious work to model whole topography in the model, a smaller 
representative 3D model of size of 130 m width, 90 m height and 0.2 m length along tunnel length 
(Y-direction) has been created in FLAC3D. The model is divided into several polyhedral zones. 
Comparatively smaller zones are created in the vicinity of both cavern and road tunnels and larger 
zones are created in the outer part (Fig. 20).  

 

3.5.3 Construction of models, input parameters 

Both models are based on the physical conditions shown in Fig. 10.  For the simulation of the road 
tunnel in the vicinity, this tunnel is placed 15 m to the right of the cavern without any waterproof 
lining at all. The groundwater table was placed at 78 m above the invert level of the cavern. This 
corresponds to the recorded water pressure at 9 m depth in the horizontal drillhole, Fig. 16, Sect. 
3.4.4) which we have interpreted as the hydrostatic pressure. We have assumed an EDZ in the 
invert based on the assumption that this area is subject to rough blasting and that no measures are 
taking to produce an undamaged contour in the invert. In the walls and the crown no EDZ is 
accounted for in design the models.  The input parameters are summarized in Table 3. 

  Table 3. Rock mechanical properties used as input parameters for the two numerical models 

Material properties Unit Value Remarks 

Unit weight of rock mass MN/m3 0.0265 Measured 

Uniaxial compressive of strength intact 
rock  MPa 140 Measured 

Young’s  modulus of intact rock, E GPa 70 Measured 

Poisson's ratio, ν - 0.15 Measured 

Geological Strength Index, GSI 1 - 75 Estimated 

Hydraulic conductivity of rockmass 1 m/s 7.5�10-9 Estimated 

Hydraulic conductivity of EDZ below 
invert 1 m/s 1�10-5 Estimated 

Disturbance factor, D 1 - 0 Assessed 

Joint compressive strength JCS 2 MPa 140  Measured 

Joint roughness coefficient JRC 2 - 5 / 5 / 4 
Measured values 
for the three joints 
sets 

In-situ rock stress, initial condition MPa 

σz = 3.3 MPa 
(vertical) 
σx = 2.0 MPa 
(horizontal) 
σy = 6.0 MPa 
(horizontal) 

Based on 
measurements in 
the immediate 
vicinity 

1 FLAC3D only 
2 UDEC BB only 
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3.5.4 Output from the numerical models 

For the case with an undrained lining in the cavern, the simulated water pressures are shown in 
vertical section in Fig. 17 for the discontinuous model and in Fig. 18 for the continuous model. For 
the discontinuous model the water pressures are given as pressures occurring at each joint. For 
the continuum model the water pressures are given as domain pore pressures. A representation of 
the simulated water pressures in the rock mass in the immediate vicinity of the cavern is shown in 
Fig. 20. A simulation of a case with a completely drained lining was also carried out. The simulated 
water pressures in the immediate vicinity of the cavern with a drained lining, analogue to the case 
with the undrained lining, are shown in Fig 21. 

 

 
Fig. 17. Image with simulated water pressures with UDEC BB with a waterproof SCL in the wall 
and crown of the test cavern (to the left) and a complete drained lining in the adjacent road tunnel 
(to the right). Detailed profiles of water pressures are shown in Figs. 20 and 21.  

 

 
Fig. 18. Image of simulated water pressures in FLAC3D around the cavern with undrained 
waterproof SCL to the left and the adjacent drained tunnel to the right. Detailed profiles of water 
pressures are shown in Figs. 20 and 21. 
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A parametric study in FLAC3D was carried out by only varying the hydraulic conductivity of the rock 
mass. The model was run with hydraulic conductivities 10-7 and 10-6 m/s in addition to the estimated 
7.5�10-9 m/s. A larger amount of water will migrate through the rock mass at higher hydraulic 
conductivities, resulting in a lower water pressure.  This is shown in Fig. 19. However, the model 
still predicts a water pressure of approximately 350 kPa at the lining surface with a hydraulic 
conductivity of 10-6 m/s when only taking this parameter into account.  

 
Fig. 19 Simulated water pressures along a drillhole at the Karmsund test site with FLAC3D showing 
the effect of different rock mass hydraulic conductivities with undrained invert and waterproof lining 
in the walls and the crown.  

 

3.6  Comparison of simulated and measured water pressures at the Karmsund case with SCL 
in the walls and the crown 

A comparison of the measured water pressures, the theoretical hydrostatic pressure and the 
simulated water pressures is shown in Fig. 20 for the three monitoring holes. Estimated joint 
hydraulic transmissivities, RQD and observed location of joints along the holes. An imaginary hole 
4, oriented vertically in the middle of the crown is added in order to obtain simulated water pressure 
data at the most distant location from the drained invert.  
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Fig. 20. Results from the Karmsund test site. Compilation of joint transmissivities, rock jointing and 
simulated and measured water pressures for the holes 1 to 3 for the case with a waterproof bonded 
tunnel lining in the walls and the crown. Simulated water pressures along a vertical line in the center 
of the crown are indicated as an imaginary hole 4.   

 

Both numerical simulations predict a trend of water pressures towards the lining surface which is 
different from the measured.   For the horizontal hole 1 and hole 2 with 45o inclination both 
simulations predict a trend of decreasing water pressure, which is in partial agreement with the 
measured pressures. For hole 3 the simulations predict an increase in water pressure whereas 
the measurements show decrease. Along a vertical line in the center of the crown both numerical 
simulations predict water pressures which are close to a theoretical hydrostatic pressure with an 
increase in water pressure towards the lining surface.  The high values for water pressure 
predicted by the discontinuous model close to the lining for hole 3 and 4, can be interpreted by as 
joints which are poorly connected to other joints. 

The simulations in both numerical codes for the case without water proof tunnel lining predict a 
consistent reduction of water pressure towards the lining surface, as shown in Fig 21.  These 
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simulations were unable to be compared to any in-situ measurements with these boundary 
conditions.  

 

Fig. 21 Compilation of simulated water pressures along lines corresponding to holes 1 to 4 for the 
Karmsund case without a waterproof bonded tunnel lining. The legend is shown in Fig. 20.  

 

3.7 Field investigations at the Ulvin site 

3.7.1 Construction of test site 

The Ulvin test site was established in the southern construction access tunnel for the main Ulvin 
rail tunnel concurrently with the excavation and rock support works approximately 50 - 70 m behind 
the tunnel face.  At the test location the SCL was constructed successfully with a completely dry 
result. 

3.7.2 Water pressure testing and monitoring 

The methodology and layout of testing, as well as the monitoring installation was identical with that 
of the Karmsund site. Shortly after installation, the measured water pressures and observations in 
two ground water wells in the vicinity indicated that the groundwater level to be lowered to slightly 
above invert level of the tunnel. Hence, measurements of water pressures under the ground water 
level and the effects of the waterproof SCL structure could not be obtained as planned. The 
measured water pressures approximately 3 months after installation are shown in Fig. 22 together 
with estimated hydraulic transmissivities for borehole sections with 0.5 m length.  The measured 
water pressures are slightly above the measured air pressure. Some sections in the two inclined 
holes also exhibit water pressures slightly below the atmospheric pressure. This indicates an 
unsaturated situation in the immediate rock mass. The estimated hydraulic transmissivities are 
mostly in the range of 10-7 to 10-8 m/s. 
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Fig. 22. Measured in-situ water pressures (blue) in sectioned holes with length 9 m and hydraulic 
transmissivities estimated for hole section lengths of 50 cm. 

 

3.8  Investigations at the Forsmark site 

The Forsmark site is an underground nuclear waste repository in Sweden, located at the eastern 
coast. An overview of the site is shown in Fig. 23.  The main goal of the SCL test section at 
Forsmark was to investigate the suitability of this lining method for drip sealing for parts of the 
facility, particularly the storage chambers for low level nuclear waste.  Water pressure monitoring 
was undertaken in order to investigate effects of the undrained lining and subsequent investigations 
of the lining materials are planned in order to detect any detrimental effects of the groundwater 
exposure. 

 
 Fig. 23. The Forsmark underground nuclear waste repository and location of test site for SCL. 
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3.8.1 Construction of test section 

The test section was established in a service tunnel which was constructed 30 years ago. A part of 
the access tunnel was selected which had visible drip and moist spot seepages. The area had no 
pre-grouting during the construction of the tunnel. The location of the 20 m long test section (invert) 
was approximately 122 m below sea level. The SCL lining type covered the entire contour with 
crown and walls down to the invert. The invert was left in its given drained condition. The 
construction of the test section consisted of the following main steps: 

� Smoothening layer of 50-60 mm of fiber reinforced sprayed concrete on top of existing rock 
support lining 

� Temporary drainage of a few dripping points 
� Spray-application of the membrane 
� Injection of the temporarily drained seepage points 
� Application of final inner lining with 60 mm fiber reinforced sprayed concrete 

No additional rock bolting was a carried out when constructing the test section. A photo of the test 
section is shown in Fig. 24. 

 

 
Fig. 24 The test section with SCL at Forsmark after completion.  

 

3.8.2 Water pressure monitoring 

Monitoring of ground water pressure has been carried out in nearby boreholes since construction 
of this facility in mid 1980s. A gently dipping borehole in the left wall of the test section is chosen 
as a reference borehole. The pressure has been stable over time since construction works were 
completed. Short boreholes were drilled for monitoring behind the seals. The drilling of the 
boreholes were stopped when water were noticed from the holes, resulting in holes with lengths in 
the range of 1.6 to 3 m with one measurement section in each hole. The borehole seals 
(expandable packers) were placed at 1 m depth in each hole. Hence, the water pressure monitoring 
took place in sections from 1 m depth to the end of each hole. The measurement principle was 
identical to that of Karmsund and Ulvin apart from the multiple monitoring points in each hole.  The 
holes were placed deliberately in areas with visible seepage, and they were drilled until ground 
water could be observed seeping into the hole. A series of holes in the left wall and one series of 
holes in the crown were established. Fig. 25 shows 3D image of the test section with locations of 
the monitoring holes for water pressure.  
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Fig. 25  3D image indicating locations and numbering of drill holes for water pressure monitoring at 
the Forsmark test site. 

 

3.8.3 Results from monitoring of ground water pressure 

The background water pressure in the rock mass at the invert elevation half way to another tunnel 
was measured to 680 kPa. A cross section of the SCL test section with measured water pressures 
in 5 selected holes is shown in Fig. 26.  There are two main observations from these 
measurements: 

� When comparing holes in the same area, longer holes tend to give higher water pressure than 
what is the case for shorter holes. 

� There is significant variation in water pressure when comparing holes with similar lengths 

The latter point is particularly notable for several of the holes in the lower wall, where e.g. holes 
107 and 108 with lengths 1.3 and 1.4 m located only 1 – 1.5 m from the drained invert exhibit water 
pressures in the order of 380 kPa. This is an indication that some boreholes are better connected 
to conductive fractures further away from the tunnel. 

The monitoring of water pressure has been continuously maintained, hence, the development of 
the ground water pressure over time can be evaluated. The development of water pressure from 
the time of installation, before the construction of the SCL test section took place, and the following 
16 months is shown in Fig. 27.  The following observations are made from these measurements: 

� The measured water pressures reach a constant level with a few exceptions 
� Seasonal fluctuations in measured water pressure are unobserved  
� A few holes show a slight and constant increase in water pressure of approximately 40-50 kPa 

over a period of 14 months 
� The application of the undrained waterproofing membrane has no measurable impact on the 

water pressure in the rock mass 
� The application of the smoothening layer of fiber reinforced sprayed concrete results in a slight 

increase of water pressure for a few of the holes   
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Fig. 26 Measured water pressures in the immediate rock mass, showing results from 5 holes: The 
hole number designation is shown in Fig. 28. 

 

 
Fig. 27  Measured water pressures in the immediate rock mass of the SCL test section at Forsmark. 
The time for the application of the sprayed concrete and the membrane is indicated. The different 
hole lengths are indicated in brackets. 
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3.9  Investigations of water pressure in the Gevingås rail tunnel 

A 1.85 km portion of the 4 km long Gevingås tunnel was constructed with waterproof SCL covering 
crown and walls down to invert.  A section with three monitoring points was established during the 
construction of the tunnel in 2011. The location for the measurements was selected by the owner 
based on the observation of the water ingress. The location had higher water seepage than average 
in the tunnel. The groundwater table is assumed to be approximately 40 m above the crown of the 
tunnel, due the location of a swamp. The reason for the monitoring of the pressures at this location 
was to evaluate any development with increasing pressures over time. The monitoring was 
maintained for approximately 7 months. No pre-grouting had been carried out at this location. The 
results were made available for this study.   

3.9.1 Construction of test site 

The measurements were conducted with vibrating wire piezometers which were grouted in short 
boreholes with length approximately 200-250 mm from the lining surface. The holes were drilled 
through the waterproof lining into the sprayed concrete on the “rock side” of the membrane. The 
outer part of the hole was grouted and sealed with resin and mortar. The test location remained 
completely dry after the installation of the piezometers. The layout of the test site is shown in Fig. 
28. 

 

3.9.3 Water pressure testing and monitoring 

 
Fig. 28  Vertical section of the Gevingås test site. Locations for monitoring of water pressure with 
vibrating wire piezometers in the rock mass immediately behind the waterproof SCL. 

The measured pressures are shown in Table 4. The measured pressures showed very small 
fluctuations and were stable for the 9 month monitoring period. The hydraulic conductivity was 
estimated following the same principle as for the Karmsund site. The observed water ingress 
amount gives a hydraulic conductivity in the magnitude of 10-7 m/s. 

Table 4. Measured water pressures with piezometers installed in short drillholes behind the 
waterproof lining at the Gevingås test site. 

Monitoring location 
Measured water 
pressure after 9 months 
[kPa] 

1 60 
2 135 
3 50 
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4 DISCUSSION OF RESULTS 

4.1 Measured water pressures at the Karmsund and Forsmark test sites 

These two test sites exhibit similar rock mass conditions and hydraulic saturation of the rock mass 
given the location below sea level. In the Karmsund case a gradient with a slightly decreasing water 
pressure in the rock mass towards the undrained lining surface could be observed.  In the Forsmark 
case a trend with slightly longer holes adjacent to shorter holes gave higher recorded water 
pressures in the longest holes. A trend with lower pressures closer to the lining surface can 
therefore be observed from the measurements at Forsmark. In both cases the measured pressures 
at approximately 2 m distance from the lining are in the size order of 200-300 kPa lower than the 
hydrostatic pressure or background water pressure.  

The measured water pressure at Karmsund in hole 2 and 3 at the locations closest to the lining 
(Fig. 17, Sect 3.4.4) are exceptionally low. The simulations predict significantly higher water 
pressures at these locations. No obvious explanation can be given for this. The measuring locations 
were all dry in the immediate vicinity of the holes. A possible explanation can be an unsaturated 
situation in the rock mass near the lining surface with air entrapped in joints or the measuring 
section. In the case of a locally unsaturated part of the rock mass, this is unlikely to be a long term 
situation, since air and vapor will tend to migrate slowly by diffusion through the lining. Effects of 
fissures in the EDZ with apertures in the capillary range could possibly cause such effects. 

Neither of these two cases exhibits a typical grouted zone around the tunnel with significantly lower 
hydraulic conductivity in the surrounding rock mass in comparison the host rock mass. In the 
Karmsund case the probe drilling holes were grouted, and selective pre-grouting was carried when 
water was encountered in the probe drilling holes. Some local post injection was carried out at 
single water ingress points. The measurements of hydraulic transmissivities (Sect. 3.4.4. Fig. 16, 
Sect 3.6 Fig. 20) indicate no clear increase in hydraulic transmissivity at increasing depth, which 
would have indicated the boundary of grouted zone. This will however be the case for many tunnels 
constructed under the groundwater table. In such cases the water ingress to the tunnel will be 
mainly governed by the hydraulic conductivity of the grouted zone. 

The estimation of the hydraulic conductivity according the model proposed El Tani (2003), given in 
Sect. 3.4.2 is based on the assumption of a homogenous hydraulic conductivity of the rock mass. 
In a jointed rock mass inhomogeneity will occur, particularly around a tunnel with a grouted rock 
mass. No consideration has been given to the effects of seepage into the adjacent tunnel in these 
calculations.   Although no clear effects of the grouting works around the cavern could be observed 
in the form of an increase in recorded hydraulic transmissivity at increasing distance, a lower 
hydraulic conductivity around the cavern is likely due to the executed injection works. Based on our 
measurements this is impossible to quantify. The observed seepage situations prior to the 
construction of the SCL with membrane in the Forsmark and Karmsund test sites were comparable. 

 

4.2 Measured water pressures at the Ulvin site 

The measurements suggest that the ground water table is 1-2 m above the invert level of the tunnel, 
and there is an unsaturated condition in the rock mass at the location of the two upper measuring 
holes (Fig. 25, Sect. 3.7.2) 

 

4.3 Measured water pressures at the Gevingås site 

The measuring points were placed in the part of the rock mass which exhibited the largest single 
dripping zone in the entire SCL portion of the tunnel. No pre-grouting was carried out in this area 
of the tunnel. The higher seepage in this area indicates a better drainage effect in the rock joints.  
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The measured pressures indicate a water pressure at the lining surface in the size order of 300 
kPa lower than the theoretical hydrostatic pressure.  

 

4.4 Simulated ground water pressures 

The simulated ground water pressures only take into account of the average hydraulic 
transmissivities for the joint sets and an average hydraulic conductivity for the rock mass. Although 
a more sophisticated model with different hydraulic conductivities for different parts of the rock 
mass surrounding the tunnel, the aim of this part of the study was to investigate the effects on the 
ground water pressure around the partially drained lining with constant conductivity properties.  

For the horizontal hole 1 and hole 2 with 45o inclination both simulations predict a trend of 
decreasing water pressure, which is in partial agreement with the measured pressures. For hole 3 
the simulations predict an increase in water pressure whereas the measurements show decrease. 
Along a vertical line in the center of the crown both numerical simulations predict water pressures 
which are close to a theoretical hydrostatic pressure with an increase in water pressure towards 
the lining surface. The measured water pressure is found to be almost constant within distinct 
intervals of each borehole. This phenomenon is simulated by the discontinuum code. The 
differences in the numerical values can be related to local differences in joint geometry. It is also 
noteworthy that even for the vertical imaginary borehole, the discontinuum code  takes into account 
the natural connection  between joints allowing for water flow occurring along joints, resulting in a 
significantly lower pressure compared to the hydrostatic pressures. Apart from the 1-2 m closest to 
the cavern, the discontinuum code predicts water pressures which are in good agreement with the 
measured pressures. It can be seen that the water pressures simulated by the continuum code 
tend to increasingly deviate from the measured at increasing distance from the drained invert.   

The simulations in both numerical codes for the case without water proof tunnel lining predict a 
consistent reduction of water pressure towards the lining surface, as shown in Fig 21.  These 
simulations could not be compared to any in-situ measurements with these boundary conditions. 
The discontinuum code generally predicts lower pressure gradients at depths larger than 
approximately 2 m compared to the continuum code for this case.  

The trends predicted by the discontinuum model are more in agreement with the measured trends 
than the continuum model. 

 

4.5 Comparison of measured and simulated pressures. 

Both simulations consistently predict an increase of the ground water pressure around the cavern 
at closing distance with the interface between rock and the undrained SCL, whereas the measured 
values at the two sites Karmsund and Forsmark show the opposite trend.  This indicates that one 
or several features influence the water flow close to the lining which is not covered by the numerical 
models. Two possible causes, an EDZ with higher hydraulic conductivity or vapor transport through 
the lining are considered in our study. These discussed in the following sections 4.6 and 4.7. 

 

4.6 Possible effects of increased hydraulic conductivity in the EDZ 

The contour of caverns in rock is normally subject to careful blasting in order to produce as little 
overbreak as possible. However, occurrence of new fractures and fissures or opening of existing 
fractures is to some extent a likely consequence of the drill-and-blast excavation out to a certain 
distance from the excavated contour. The in-situ stress situation may cause both dilation and 
compression of discontinuities, depending of the location on the tunnel perimeter and the fracture 
geometry. The rock mass immediately below the invert area will normally be subject to larger effects 
of the blasting than the wall and crown contour due to the higher charging of the holes.  This is 
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illustrated in Fig. 29. The EDZ can be exposed to significant hydromechanical and geochemical 
modification with increased occurrence of discontinuities. These modifications may lead to 
significant changes in flow paths and may change the hydraulic transmissivities of fractures in this 
area with a large order of magnitude.  An increased hydraulic transmissivity of the EDZ will have 
favorable effect in the form of higher tangential and radial water flow and consequently lower water 
pressures. 

 
Fig. 29 Schematic illustration of the EDZ.  

In a recent study carried out in Sweden in the Äspö hard rock laboratory by the Swedish Nuclear 
Fuel and Waste Management Company (Ericsson et al. 2015) measurements of the hydraulic 
conductivity in the invert area of a carefully blasted contour of a tunnel was carried out. The 
measurements were carried out as double packer tests with 100 mm measuring sections. A special 
arrangement was made in order to measure the hydraulic transmissivity for the first 100 mm starting 
at the actual excavated contour. Hence, detailed joint transmissivity data could be obtained in short 
increments of the immediate rock mass.  The measurements from study at Äspö cover the part of 
the rock mass in the immediate vicinity of the excavation contour which was impossible to include 
in our measurements at the Karmsund and Forsmark test sites.  

 Some results from the study at Äspö are shown in Fig. 30. The measurements indicate an 
increase in hydraulic transmissivity from 10-9 m2/s at approximately 1.3 m depth to a magnitude 
approximately 102 higher at 500 mm depth and 104 higher at 200 mm depth from the excavated 
surface.    
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Fig. 30 Estimated hydraulic transmissivities TM for hole sections with 100 mm lengths from the rock 
surface to 1.3 m depth (Ericsson et al. 2015) 

 

4.7 Effects of water vapor diffusion 

Moisture transport through an SCL structure with bonded membrane was studied by Holter and 
Geving (2015) with boundary conditions corresponding to the Gevingås and Ulvin test sites. A main 
finding of this study is that a small amount of water migrates through the lining in the form of vapor 
under certain conditions. This amount of water can be estimated by using numerical simulation and 
realistic material parameters. The lining sections considered by Holter and Geving (2015) have 
thicknesses in the range of 200 mm (Gevingås) to 350 mm (Ulvin) whereas the Karmsund and 
Forsmark sites have total lining thicknesses in the order of 150 mm.  

In low permeable ground the vapor permeable behavior of the lining may have an influence on the 
groundwater flow in the immediate vicinity of the lining/ground interface. An idealized calculation 
has been made considering the rock mass a homogenous continuum with a fully tanked tunnel with 
9 m diameter located at a certain depth and using the flow model proposed by El Tani (2003), 
explained in Sect 3.4.2. This calculation predicts that at a certain hydraulic conductivity of the rock 
mass there is a balance between the capillary and vapor transport through the lining and the 
unrestricted water flow into the tunnel through the ground.  Such a balance is illustrated in Fig. 31. 
This estimate suggests that in rock masses with hydraulic conductivities in the order of 10-11 m/s 
the effect of vapor diffusion through the lining will become significant. In our considered cases with 
hydraulic conductivities in the order of 10-9 to 10-8 m/s at the lowest, the effect of vapor diffusion 
through the lining can only have a minor influence  
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Fig. 31  Water ingress to circular tunnel for a 9 m diameter tunnel given as liters per m2 per second 
at different ground water levels given as static heads h versus hydraulic conductivity of a rock mass, 
calculated according to El Tani (2003). The magnitude of possible moisture transport through a 
sprayed tunnel lining with 250 mm thickness as modelled in WUFI is indicated.  
 
 
4.8 Effect of geometry. Limitation of a 2D model 
 
The UDEC BB model is a two-dimensional representation of a three-dimensional reality. The 
discontinuous model emphasizes the behavior of the joints. The joints in UDEC BB are represented 
in vertical cross section as lines with the apparent dip in this cross section. This means that the 
simulation is done for joint sets which have a strike parallel to the cavern axis. Hence, the blocks 
in a two-dimensional representation will be oriented parallel to the cavern. This is illustrated in Fig. 
32. This creates several challenges in the modelling of groundwater flow. The physical fracture void 
properties are not possible to represent realistically in a 2D model. The persistence of each joint 
for the modelling of the water flow is unable to be realized in the model. The simplification which is 
done, for the modelling of the water flow in a two dimensional model is to give each joint a much 
longer persistence than in reality. 
 
The effect of the angle between two conductive joint sets is important to consider. This was studied 
by Panda et al. (1999). It was shown that an angle of 90o between two joint sets gives the highest 
average block hydraulic conductivity. In the Karmsund case the angle between the two subvertical 
joint sets is around 80o. This means that the modelling in two dimensions in for the Karmsund case 
will predict a too low hydraulic conductivity of the rock mass from a geometry perspective.    

  
Fig. 32 Representation of a three-dimensional of rock joint pattern in a two-dimensional model. In 
a two-dimensional model, the three-dimensional configuration of the two joints sets in the left image 
will be represented with lines with the apparent dip angles in the vertical cross section. Hence, in a 
two-dimensional model the joints with orientation shown in the left image will be simulated as shown 
in the right image. 
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4.9 Loads in the rock mass caused by joint water pressure 

Water pressures in the immediate rock mass of the lining can lead to destabilizing effects due to 
reduced effective stresses on joints. Even with a completely drained lining system, which can be 
expected to give a certain water pressure reduction in the immediate rock mass compared to the 
hydrostatic pressure, effects of reduced effective stresses have been found to be significant. This 
is of particular importance in weakness zones with soil character (Anagnostou 2006, Kolymbas 
2007). The rock masses considered in this study have Young’s moduli of intact rock in the range 
of 60-100 GPa and uniaxial compressive strengths in the range of 140 to 230 MPa. The in-situ rock 
stresses for our considered cases are typical for the Scandinavian crystalline bedrock region, with 
horizontal to sub horizontal major principal stresses in the magnitude of 5 MPa higher than a 
theoretical gravity induced horizontal stress component.  Tangential rock stresses in the immediate 
rock mass will therefore in many cases be high, and give high normal stresses on rock joints, which 
in turn will have a strongly stabilizing effect.  A reduction of the effective stresses on the rock joints 
at 1-2 m distance from the lining surface in the magnitude of 0.2 to 0.3 MPa for the Karmsund and 
Forsmark cases can be assumed based on the in-situ water pressure measurements. In proportion 
to the high tangential rock stresses which can be expected, this reduction of effective stresses is 
unlikely to have a significant effect on the friction properties of the rock joints. 

Experiences from decades of tunnel projects in hard rock under high ground water pressure, show 
that collapses caused by ground water pressure are very rare in such conditions   (Palmström & 
Stille 2010). During the construction of more than 40 subsea tunnels hard rock in Norway the last 
30 years, with hydrostatic pressures up to 2.5 MPa, there are no reports or records of such 
collapses having occurred in competent rock (Nilsen 2014). 

 

4.10 Observed pressure response during the construction of the lining 

The measured water pressures at Forsmark indicate that the application of membrane has no 
significant influence the ground water pressure. The application of the sprayed concrete shows a 
slight effect on the measured water pressures (Fig. 27, Sect 3.8.3). The visual effect of the 
application of the sprayed concrete substrate is a reduced number of wet spots.   

 

5 CONCLUSIONS 

The tunnel lining system with sprayed concrete and sprayed waterproofing membrane has been 
investigated with respect to possible effects on ground water pressure in the immediate rock mass. 
The lining system is an undrained structure, and has been applied on the walls and crown but with 
a completely drained invert. The cases which have been investigated in this study are all in hard 
crystalline bedrock with high Young’s moduli and high uniaxial compressive strengths of intact rock.  
The main findings of this study are: 

� Recording of water pressures under hydraulically saturated conditions in the immediate rock 
mass around the tunnel lining do show a gradient with a significant reduction of water pressure 
at closing distance down to approximately 1 m from the lining surface 

� Models which account for the joint transmissivity or average rock mass hydraulic conductivities 
only, not taking into account any damage effects causing increased hydraulic conductivity near 
the lining, conversely predict an increase in water pressure at decreasing distance from the 
lining surface 

� At 2-3 m distance from the lining surface the discontinuum code predicts water pressures 
which are in good agreement with the measured 

� Compared to the continuum code, the discontinuum code predicts hydro-mechanical behavior 
in closer agreement with the measurements 
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� The two cases which both had hydraulic conductivities of the rock mass in the magnitude of 
10-8 m/s and a hydrostatic pressure in the range of 680 to 780 kPa both showed a reduction 
of water pressure near the lining surface 

� The investigated case which had ground water level slightly above the invert level of the tunnel, 
showed constantly measured water pressures in the rock mass up to 9 m depth in the 
magnitude of the atmospheric pressure 

� The investigated case with a water bearing zone with increased rock jointing and a hydrostatic 
pressure in order of 400 kPa, showed a water pressure in the crown of the tunnel of 135 kPa 
measured at 150 mm distance behind the undrained lining 

� The effect of the undrained membrane on the measured ground water pressure was found to 
be  insignificant in the case where the effect of the primary sprayed concrete could be 
substantiated 

� The effect of the increased hydraulic conductivity of the excavation damaged zone in the first 
approximately 500 mm of the immediate rock mass is a likely explanation for the measured 
water pressures 

� An EDZ with significantly higher hydraulic conductivity is likely to pose a critical condition for 
the feasibility of the undrained SCL lining in rock masses with low hydraulic conductivity under 
high groundwater pressure 

� Further detailed investigations of the hydraulic conductivity in the immediate rock mass under 
a wider range of conditions is required to substantiate this effect on a general basis 

� The effect of a pre-grouted zone around the tunnel with presumed reduced hydraulic 
conductivity needs to be investigated by recordings in longer bore holes, and by modelling with 
more detailed data 
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