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Sammendrag

Hvis medisinske klinikere kan si noe om stivheten i hjertet til en pasient, kan de
vurdere hjertets helsetilstand. Et hjerteanfall er en typisk årsak til at stivheten i
hjertet endres. Med ny ultralydteknologi er det mulig å observere skjærbølger som
forplanter seg i hjerteveggen p̊a grunn av lukkingen av aortaklaffen. V̊art m̊al var å
lage en elementmetode-modell, hvor vi kunne simulere denne skjærbølgeforplantningen
langs hjerteveggen. Vi ønsket å undersøke muligheten for å estimere stivheten av
en hjertemodell, hvor et transvers-isotropt materiale er implementert, basert p̊a
skjærbølgehastigheter. V̊ar tilnærming var å først lage følgende enkle elementmetode-
modeller vi kunne validere med plan bølgeteori:

• Plane Wave Model - En enkel to-dimensjonal modell, med det transvers-
isotrope materialet implementert, som simulerer plan bølgepropagasjon. Re-
sultatet stemmer godt overens med teorien (mindre enn 2% avvik).

• Finite-sized Wave Model - En to-dimensjonal transvers-isotrop modell som
har en bølgekilde av endelig størrelse. Vi observerte at plan bølgeteori ga til-
fredstillende prediksjoner for hvordan bølger propagerer fra bølgekilden (min-
dre enn 6% avvik).

Deretter lagde vi modeller som kan simulere bølgepropagasjon ned langs hjerteveg-
gen:

• Curved Model - En tre-dimensjonal modell som kan representere en del av
hjerteveggen. Modellen er lagd for å undersøke effekten kurvatur har p̊a
skjærbølgehastigheten. Vi fant at endring i kurvaturen har liten p̊avirkning
p̊a bølgehastigheten, b̊ade n̊ar et isotropt materiale og det transvers-isotrope
materialet er implementert.

• Truncated Ellipsoid Model - En tre-dimensjonal modell som er en enkel rep-
resentasjon av venstre ventrikkel. Vi observerte at skjærbølgehastigheten
varierte (±5% fra en gjennomsnittsverdi) gjennom tykkelsen av hjerteveggen
p̊a grunn av anisotropi. Vi argumenterer for at dagens ultralydteknologi an-
tageligvis ikke klarer å fange opp denne variasjonen basert p̊a at m̊aleusikkerheten
er relativt høy. Videre foresl̊ar vi at det å anta isotropi kan være akseptabelt
selv om det transvers-isotrope materialet er implementert. Dette tillater oss
å estimere stivheten av modellen.

Andre viktige resultater:

• Vi presenterer nye analytiske uttrykk for materialforskyvnings-vektorene (po-
lariseringen) for plane bølger som propagerer i transvers-isotrope medier.

• En ny type av karakteristiske overflater som beskriver relasjonen mellom
skjærbølgehastighet, propagasjonsretning og stivhet er ogs̊a presentert.

Med denne oppgaven viser vi hvordan elementmetoden kan brukes til å undersøke
detaljer i bølgepropagasjonen ned langs hjerteveggen.





Abstract

With knowledge of the stiffness of the heart wall, medical personnel can diagnose
patients’ heart condition. The stiffness of the heart can be altered, e.g. due to a
heart attack. New ultrasound technology allows for in vivo observation of shear
waves that propagate in the heart wall due to aortic-valve closure. Our main
objective was to simulate this shear wave propagation along the heart wall with
the help of the finite element method (FEM). We wanted to investigate whether
we could obtain an estimate of the stiffness, based on measured shear wave speeds,
in a heart wall modeled with a transversely isotropic material. To achieve this
objective, we first made the following FEM models that we validated with plane
wave theory:

• Plane Wave Model - A simple two-dimensional model with the transversely
isotropic material implemented, which simulates plane wave propagation.
The results agreed excellently with theory (less than 2% discrepancy).

• Finite-sized Wave Model - A two-dimensional transversely isotropic model
that has a finite-sized source. We observed that plane wave theory gave
satisfactory predictions for waves that propagate from the source (less than
6% discrepancy).

Then models that can simulate wave propagation down the heart wall were made:

• Curved Model - A three-dimensional model, which can represent a part of
the heart wall. The model is made for investigation of the effect of curvature
on wave speed, and we found that change in curvature only slightly affects
the wave speed for both an isotropic and the transversely isotropic material.

• Truncated Ellipsoid Model - A three-dimensional model, which is a simple
representation of the left ventricle. It was observed that the shear wave speed
varied (±5% from an average value) through the thickness of the model be-
cause of the transversely isotropic material implemented. We argue that cur-
rent ultrasound technology is probably not able to capture this variation due
to relatively high measuring uncertainty. Furthermore, we suggest that an
assumption of isotropy can be acceptable even when the transversely isotropic
material is implemented. This allows us to make an estimate of the stiffness
of the model.

Other important results:

• We present novel analytical expressions for the material displacement vectors
for plane waves that propagate in transversely isotropic media.

• A new type of characteristic surfaces that describe the relation between shear
wave speed, propagation direction and stiffness is presented.

In conclusion, we show how we can investigate details of the wave propagation with
the aid of the finite element method.
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VIII NOTATION

The Latin and Greek symbols are defined where they are first introduced in the
text. Nevertheless, for the reader’s convenience, the most important symbols are
also listed below.

Latin symbols

{A} Material displacement vector; polarization vector
c Wave velocity; phase velocity
{ce} Energy velocity vector
[C] Material stiffness matrix; damping matrix
E Young’s Modulus; modulus of elasticity
G Shear modulus
{n} Wave propagation direction; normal to phase plane
{T} Cauchy stress vector
t Time
{u} Displacement vector

Greek symbols

{ε} Strain vector
[Γ] Acoustic tensor
λ One of the Lamè constants
ν Poisson’s ratio
µ One of the Lamè constants, equal to the shear modulus G
ψ Skew angle
ρ Mass density
ζ Quasi angle



1 Introduction

Researchers have determined material properties from soft tissue imaging for sev-
eral years. There are many techniques that can be mentioned: Palmeri et al. com-
pare experimental results from Acoustic Radiation Force Impulse (ARFI) imaging
with finite element analyses (FEA) [22]. They found that the shear wave speed
agreed between the experimental and numerical analyses. Tabaru et al. discuss
how ARF elastography can be used to determine shear and Young’s moduli in soft
tissues [25]. They also validate their result with FEA. Chen et al. use finite element
method (FEM) modeling to validate the use of Magnetic Resonance Elastography
(MRE) as a noninvasive diagnostic tool [7]. They compare the shear wave length
obtained numerically with those found analytically and experimentally. They also
look into the effects of material stiffness, density and excitation frequency on the
shear wave length. Nenadic et al. determine viscoelastic material properties with
a method called Shearwave Dispersion Ultrasound Vibrometry (SDUV), and they
suggest that their technique can be used to determine material properties of the
heart muscle [21]. Couade et al. use the technique called Supersonic Shear Imaging
(SSI) to determine the elasticity of the heart wall of sheep in vivo [10]. They show
how the stiffness of the heart varies at different times within a single heart cycle,
and how the stiffness depends on the orientation of the ultrasound probe due to
anisotropy in the heart wall. Even though soft tissue imaging is relevant for the
topic at hand, it is not the focus of this thesis. We focus on wave propagation in the
heart wall due to aortic-valve closure (AVC), not how it is observed experimentally.

At end-systole, the aortic valve closes and spontaneously excites small shock waves
in the heart wall [6, 17]. Kanai was one of the first to exploit this wave propagation
that comes from AVC [17]. He determined the elasticity and viscosity of the heart
wall with the help of ultrasonic measurements. Brekke et al., who are from the
research group at St. Olav’s Hospital, introduce a method they call Ultra-high
Frame Rate Tissue Doppler Imaging (URF-TDI). This method can image two
walls of the left ventricle at ∼1200 frames per second, and the high temporal
resolution makes new information of the wave propagation from AVC available [6].
In particular, Brekke et al. have been able to measure the wave speed of the shear
wave that propagates down septum due to AVC with the technique briefly described
in Figure 1.1. Septum is the part of the heart wall that separates the atria and
ventricles of the heart. As one can see later in this thesis, the shear wave speed is

1



2 CHAPTER 1. INTRODUCTION

governed by the material properties, and can therefore be used to determine one
of these properties, e.g. stiffness. Some heart diseases cause the heart muscle to
become stiffer, which leads to lower exercise capacity, etc. Hence, with knowledge
of the stiffness, medical doctors can diagnose patients’ heart condition.

Figure 1.1: This figure displays how Brekke et al. found the shear wave speed with
the help of ultrasonic measurements. A: Velocity distribution along the septal wall from
one cardiac cycle. B: Acceleration distribution along the septal wall, calculated from the
velocities in A. C: A close-up of the time interval around AVC marked in B. A straight
line has been aligned with the peak acceleration signal, and the slope of this line equaled
the shear wave speed along septum. This figure is reprinted from [6].

When the stiffness of the heart wall is determined from in vivo measurements, it
is normal to assume isotropy in literature, see for example [10] and [17]. However,
researchers generally agree that the heart wall is anisotropic due to muscle fiber
orientation [14]. In this thesis, we therefore wanted to investigate if it is possible
to estimate the stiffness of a model of the heart wall where a transversely isotropic
material is implemented. And we wanted to relate the problem to the findings
of Brekke et al. [6]. The main objective of the thesis was therefore to create an
FEM model that simulates the wave propagation through the heart wall due to
AVC. With an FEM model, one can investigate different aspects that affect the
wave propagation, e.g. anisotropy of the heart wall. Due to the anisotropy, an
understanding of wave propagation in anisotropic media is appropriate to acquire.
A large part of this thesis is therefore dedicated to theory and simple FEM models
that show how waves behave in anisotropic media.

The approach was to first create two simple two-dimensional transversely isotropic
models that can be validated by plane wave theory. Then the observations and
experience gained from these models was used to assert the results from more
complicated models that were created to represent septum and the left ventricle.
This was where one of the largest challenges lay: namely, to create a model that
represented the heart wall in an accurate manner, but that could also be verified
to some extent.

A pre-study project related to this thesis was performed during the fall semester
of 2012 [12]. In this work, the author studied wave propagation in isotropic media,
with focus on numerical accuracy and stability. It was observed that the wave
speeds from theory agreed with those found from finite element analysis (FEA).

In this thesis, we show that from the models we could compare directly with theory,
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we obtained results that agreed well with the theory. For example, we saw that
plane wave theory is a satisfactory tool for describing how waves propagate from
finite-sized sources (a discrepancy of less than 6% was observed). With isotropic
material implemented, the three-dimensional models gave results that also agreed
well with plane wave theory. This gave confidence in these models and in the wave
speed measurement procedure. On the other hand, with a transversely isotropic
material implemented, plane wave theory was not sufficient to fully validate the
results from the three-dimensional models. Nevertheless, we argue that the wave
speeds obtained are reasonable. We observed that the shear wave speed varied
through the thickness of the Truncated Ellipsoid Model due to layers with different
material orientations. However, it is argued that the variation is probably too small
to be captured by today’s ultrasound technology, because Brekke et al. obtained
a standard deviation of 25% from their ultrasonic experiments. And since the
wave speed variation is only approximately ±5% of the average value, it would
be difficult to discern the variation with their measurement technique. Also, we
suggest that this relatively low variation justifies an assumption of isotropy, which
allows us to calculate an estimate of the stiffness, i.e. Young’s modulus.

Theory used in the thesis is presented in Chapter 2. Here the reader can, for exam-
ple, find theory on plane wave propagation in elastic media. In the same chapter,
we present the methods used in this thesis, e.g. the details of the FEM model-
ing. In Chapter 3, two two-dimensional FEM models and two three-dimensional
FEM models are presented and analyzed. We discuss general aspects of the results,
limitations of the FEM models and the challenges for future work in Chapter 4.
Finally, in Chapter 5 there are some concluding remarks.





2 Theory and methods

In this chapter, we present theory that we use to understand and analyze wave
propagation in the heart wall. The first section is dedicated to explain some of
the physical aspects of the heart. In the following sections we look into wave
propagation in both isotropic and anisotropic media.

In the last two sections of this chapter, we discuss some of the methods used in
this thesis. More specifically, we discuss some of the aspects of the softwares Maple
and the FEM.

2.1 Physiological aspects of the heart

In this section we briefly discuss physiological features of the heart that are relevant
for the work in this thesis.

2.1.1 The cause of stiffer heart wall

The theory in this subsection can be found in basic pathology books, see for example
[3].

When a person suffers from heart attack, there is a sudden interruption of blood
supply to a part of the heart. This leads to dead cells in that part of the heart
wall. To maintain the level of blood flow to the body, the remaining functional
parts of the heart must work harder. In other words, there is an increase in me-
chanical stress to the myocardium, the muscular tissue of the heart. The result
is called myocardial hypertrophy, which means that the thickness of the heart wall
is increased, see Figure 2.1. Many cardiac and metabolic diseases are caused by
myocardial hypertrophy.

The increase in heart wall thickness does not only come from growth of new mus-
cle fibers, but also from excessive formation of connective tissue, more commonly
known as scar tissue, in the extracellular matrix. This phenomenon is called fibro-
sis, and results in a stiffer heart wall. The term fibrosis is used both for the case

5
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Figure 2.1: Illustrations of heart cross sections; a normal heart
(left) and a hypertrophic heart (right). The figure is adapted from:
http://www.beliefnet.com/healthandhealing/getcontent.aspx?cid=615222.

of localized formation of scar tissue and for the case when the fibrosis is diffusively
distributed in the heart wall.

From an engineering point of view, we say that the material properties of the heart
wall have changed due to the fibrosis. If we can determine the material properties,
we can evaluate the condition of the heart.

2.1.2 Morphology and structure of left ventricle

There is an ongoing debate on the anisotropic microstructure of the heart [14].
Holzapfel et al. treat the left ventricle to be continuum composed of laminar
sheets [14], which is the approach we implemented for two of the FEM models in
this thesis. About 70 per cent of the sheet volume consists of parallel myocytes,
more commonly known as muscle fibers [14]. The remaining volume consists of
interstitial components. The fiber orientation varies smoothly through the wall
thickness, which is shown in Figure 2.2. The inner layer of the heart wall is called
endocardium, while the outer layer is called epicardium. The middle layer is the
myocardium, which is often used synonymously with ‘heart wall’, because it is the
dominant layer. We can note from this figure that a truncated ellipsoid is used
to represent the left ventricle. This is a simple model that is commonly used in
literature [14, 26]. An FEM model of the truncated ellipsoid was created and
analyzed in this thesis, see Section 3.5.

With respect to the circumferential direction, the predominant muscle fiber direc-
tion varies linearly from +50◦ to +70◦ in the sub-epicardial region to −50◦ to −70◦

in the sub-endocardial region [14]. This means that the direction is nearly 0◦ at
the mid-wall region.
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Figure 2.2: Illustration of: a) a truncated ellipsoid that represents the left ventricle; b)
cutout from the equator that shows the structure through the thickness from the epicardium
to the endocardium; c) five cross-sections of the block at regular intervals from 10 to 90 per
cent of the wall thickness. Observe the transmural variation of fiber orientation through
the thickness. The figure is an adapted version of Figure 1 in [14].

We discuss the structure of the heart wall further when we introduce anisotropic
media in succeeding sections.

2.2 Unbounded elastic waves

In this section, the wave equation for waves in linearly elastic material are derived.
These waves are more commonly known as elastic waves.

An example of a 1D displacement and stress wave is given in Figure 2.3. The rela-
tion between displacement and stress waves will be discussed later in this section,
but for now, focus will be on the former type of waves.

The wave in Figure 2.3 has a certain velocity c and displacement u(x, t). The
differential equation for the wave is

c2
∂2u

∂x2
=
∂2u

∂t2
, (2.1)

which is the well-known one-dimensional wave equation. In [16], Equation (2.1) is



8 CHAPTER 2. THEORY AND METHODS

Figure 2.3: Schematic illustration of a 1D wave in terms of displacement u and corre-
sponding stress T propagating in the negative x-direction with wave speed c.

derived from looking at longitudinal waves in cylindrical bars. In this case u is the
axial displacement and c is given by

c =

√
E

ρ
,

where E is the Young’s modulus and ρ is the mass density. This section, however,
focuses on bulk wave propagation in two- or three-dimensional infinite (or semi-
infinite) media. There are several approaches that give the wave equations we
seek. Here, we start by presenting the constitutive relation for generally anisotropic
media [23]:

Tij(x) = Cijkl(x)εkl(x), (2.2)

where Tij is Cauchy stress, the coefficients in Cijkl are the elastic moduli, which are
functions of the position, and εkl is the strain. The Einstein summation convention
is implied. Equation (2.2) is called the generalized Hooke’s law and should be
satisfied at every point in a continuum. The strain can be given by the following
linear approximation:

εkl =
1

2

(∂uk
∂xl

+
∂ul
∂xk

)
. (2.3)

Equation (2.3) inserted into Equation (2.2) gives

Tij =
1

2
Cijkl

(∂uk
∂xl

+
∂ul
∂xk

)
.

The elastic tensor Cijkl has 34 = 81 components, but symmetries of the stress and
strain tensors, i.e. Tij = Tji and εkl = εlk, allow us to write
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Cijkl = Cjikl = Cijlk,

which leaves 36 independent elastic coefficients. These symmetries are usually
referred to as the minor symmetries. A material is said to be hyperelastic if there
exists a strain-energy function U0 = U0(ε) such that

Tij =
∂U0

∂εij
.

The above equation in combination with Equation (2.2) gives

∂Tij
∂εkl

= Cijkl =
∂2U0

∂εij∂εkl
=

∂2U0

∂εkl∂εij
= Cklij ,

where we have used that the order of differentiation is interchangeable. The sym-
metry Cijkl = Cklij is called the major symmetry, and reduces the number of
independent elastic coefficients from 36 to 21. To continue the derivation of the
wave equation, we exploit the symmetry of Cijkl and write

Tij =
1

2
Cijkl

(∂uk
∂xl

+
∂ul
∂xk

)
= Cijkl

∂uk
∂xl

. (2.4)

This relation can be verified by simply writing out each term in the summations.
The equations of motion for a continuum without body forces can be written in
the form [23]

∂Tij
∂xj

= ρ
∂2ui
∂t2

. (2.5)

The divergence of the stress tensor, ∂Tij/∂xj , can be found from Equation (2.4):

∂Tij
∂xj

=
∂

∂xj

(
Cijkl

∂uk
∂xl

)
=
∂Cijkl
∂xj

∂uk
∂xl

+ Cijkl
∂2uk
∂xj∂xl

.

Substitution of the expression above into Equation (2.5) gives the governing equa-
tion for wave propagation in inhomogeneous elastic media:

∂Cijkl
∂xj

∂uk
∂xl

+ Cijkl
∂2uk
∂xj∂xl

= ρ
∂2ui
∂t2

. (2.6)

This equation can be simplified by the assumption of homogeneous material. Note
that the material can still be anisotropic. Cijkl is then independent of the position
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within the body, which leads us to the governing equation for waves in homogeneous
elastic media:

Cijkl
∂2uk
∂xj∂xl

= ρ
∂2ui
∂t2

. (2.7)

The myocardium is inhomogeneous [14], but in the following paragraphs we as-
sume homogeneity, because this obviously simplifies the problem. An important
difference between Equation (2.6) and (2.7), is that the former gives dispersive so-
lutions, while the latter does not [23]. A nondispersive solution is a solution which
is not dependent on wave length or frequency. Note, however, that the discretiza-
tion used, i.e. FEM and central difference, gives rise to what we call numerical
dispersion [12, 19, 20].

Due to the symmetry of Tij and εkl, and the corresponding symmetries of Cijkl, it
is possible to express the generalized Hooke’s law in matrix form, i.e.

{T} = [C]{ε},

where

{T} =



T11

T22

T33

T23

T31

T12


, {ε} =



ε11

ε22

ε33

2ε23

2ε31

2ε12


,

[C] =


C1111 C1122 C1133 C1123 C1131 C1112

C2222 C2233 C2223 C2231 C2212

C3333 C2333 C3133 C1233

C2323 C2331 C1223

sym. C3131 C1231

C1212

 . (2.8)

Note that it is the minor symmetries that allow us to write the coefficients of Cijkl
in a 6-by-6 matrix [C] and it is the major symmetry that makes [C] symmetric. In
the next subsection, we see how the form of [C] is determined by the assumption
of isotropy, and how that leads to the wave equations in isotropic media.

2.2.1 Elastic waves in isotropic media

In this subsection, we derive the wave equations for isotropic media, but first we
have to define Cijkl in this type of media. An isotropic material has no preferred
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direction, which means that the elastic constants must be the same for an arbitrary
rotation of the Cartesian coordinate system, i.e.

C∗ijkl = Cijkl,

where C∗ijkl and Cijkl are the elastic tensors in coordinate systems with basis (e∗i )

and (ei), respectively. Introducing the most general isotropic 4th order tensor with
minor and major symmetry [2]:

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.9)

where λ and µ are the Lamè elastic constants and δij is the Kronecker delta. The
relation between the Lamè constants and the engineering constants can be shown
to be

µ = G =
E

2(1 + ν)
and λ =

νE

(1 + ν)(1− 2ν)
,

where G is the shear modulus, ν is the Poisson’s ratio and E is the Young’s modulus
[15].

By inspection of the general stiffness matrix given in Equation (2.8), it can be seen
that Equation (2.9) is a compact way of writing

[C] =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 .

As expected for isotropic elasticity, [C] leads to uncoupled shear and longitudinal
terms. Insertion of Equation (2.9) into (2.7) gives

[
λδijδkl + µ(δikδjl + δilδjk)

] ∂2uk
∂xj∂xl

= ρ
∂2ui
∂t2

,

⇒ λ
∂2uk
∂xi∂xk

+ µ
∂2ui
∂x2

j

+ µ
∂2uk
∂xk∂xi

= ρ
∂2ui
∂t2

,

⇒ (λ+ µ)
∂2uk
∂xk∂xi

+ µ
∂2ui
∂x2

j

= ρ
∂2ui
∂t2

,

which is commonly known as the Navier equations of motion (in the absence of
body forces). Written in vector notation, the Navier equations become
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(λ+ µ)∇∇ · {u}+ µ∇2{u} = ρ
∂2{u}
∂t2

, (2.10)

where ∇ is the Del operator. To obtain the sought-after wave equations, we have to
simplify the Navier equations, and we do that by the introduction of Helmholtz’s
decomposition theorem. The theorem implies that a vector field can be considered
to be generated by a pair of potentials: a scalar potential Φ and a vector potential
{H} [23], e.g.

{u} = ∇Φ +∇× {H}, where ∇ · {H} = 0. (2.11)

In other words, {u} is decomposed into a curl-free component and a divergence-free
component. Insertion of the decomposition into Equation (2.10), we obtain

(λ+ µ)∇∇ · (∇Φ +∇×{H}) + µ∇2(∇Φ +∇×{H}) = ρ

(
∇∂

2Φ

∂t2
+∇× ∂2{H}

∂t2

)
.

Further, by introduction of the vector identity

∇2{u} = ∇∇ · {u} − ∇×∇× {u},

we find

[
(λ+ 2µ)∇∇ · (∇Φ)− ρ∇∂

2Φ

∂t2

]
− µ∇×∇×∇Φ

+ (λ+ µ)∇∇ · ∇ × {H}+

[
µ∇2∇× {H} − ∇× ∂2{H}

∂t2

]
= 0.

The above expression can be simplified by the following identities:

∇ · ∇Φ = ∇2Φ︸ ︷︷ ︸
Divergence of gradient of Φ

equals Laplacian of Φ

, ∇×∇Φ = 0︸ ︷︷ ︸
Curl of gradient of Φ

equals zero

and ∇ · ∇ × {H} = 0︸ ︷︷ ︸
Divergence of curl of {H}

equals zero

,

which leads to

∇
[
(λ+ 2µ)∇2Φ− ρ∂

2Φ

∂t2

]
+∇×

[
µ∇2{H} − ∂2{H}

∂t2

]
= 0. (2.12)

For Equation (2.12) to be generally satisfied, both terms must vanish. Thus, we
end up with two uncoupled wave equations:
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∇2Φ =
1

c2l

∂2Φ

∂t2
, (2.13)

∇2{H} =
1

c2t

∂2{H}
∂t2

, (2.14)

where

c2l =
λ+ 2µ

ρ
and c2t =

µ

ρ
.

The subscripts of the wave speeds, cl and ct, will become apparent later. For
the case of a purely dilatational disturbance, which means ∇ × {H} = 0, the
displacement field can be expressed as (see Equation (2.11))

{ul} = ∇Φ.

It is then easy to show that the wave equation (2.13) becomes

∇2{ul} =
1

c2l

∂2{ul}
∂t2

, where c2l =
λ+ 2µ

ρ
=

(1− ν)E

ρ(1− 2ν)(1 + ν)
, (2.15)

which means that the dilatational disturbance propagates with the velocity cl.
Similarly, a displacement field with only a rotational part can be expressed as

{ut} = ∇× {H}, where ∇ · {H} = 0.

Wave equation (2.14) then becomes

∇2{ut} =
1

c2t

∂2{ut}
∂t2

, where c2t =
µ

ρ
=

E

2ρ(1 + ν)
, (2.16)

which says that rotational waves propagate with velocity ct. It is apparent from
Equation (2.15) and (2.16) that the dilatational and rotational waves are indepen-
dent and propagate without interaction in unbounded media. The ratio between
the two wave speeds can be expressed as

ct
cl

=

√
E

2ρ(1+ν)√
(1−ν)E

ρ(1−2ν)(1+ν)

=

√
1− 2ν

2(1− ν)
,
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which expresses that ct/cl is only dependent on the Poisson’s ratio ν. In Figure 2.4
ct/cl is plotted for typical values of Poisson’s ratio used in literature for biological
tissues. We see from this figure that as ν → 0.5, then ct/cl → 0, because cl →∞.
Hence, the limiting case of ν = 0.5 should probably be avoided in FEM models.

Figure 2.4: Plot of the ratio ct/cl. We see that the ratio approaches zero for increase of
ν. Note that ct < cl for 0 < ν < 0.5.

Figure 2.5 illustrates how dilatational and rotational waves develop from a point
source. Figure 2.5a displays how the material displacement is parallel to the wave
propagation direction for the case of a dilatational wave, and is thereby also called
longitudinal wave. The rotational wave in Figure 2.5b has material displacement
orthogonal to the wave propagation direction, and is therefore also called transverse
wave. The figures also indicate that the waves can be considered plane when
sufficiently distanced from the point source.

(a) A point source that generates spherical
longitudinal waves. The material displace-
ment is parallel to the wave propagation di-
rection.

(b) A point source that generates spherical
transverse waves. The material displace-
ment is orthogonal to the wave propagation
direction.

Figure 2.5: Plane wave that develops in far field of the point source. The figure is
inspired by Figure 7.7.5 in [16].

Until now, only waves in terms of displacement have been discussed. It is inter-
esting to find the relation between stresses and displacements. By insertion of
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Equation (2.9) into the second expression of Equation (2.4), the relation is ob-
tained:

Tij = λ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.17)

which is a form of Hooke’s law for isotropic elastic materials. As an example, let us
find the stresses when a plane longitudinal wave propagates in direction x1. Then
the displacement vector has the form

{u} = [u1(x1, t), 0, 0]T ,

and the stresses can be found from Equation (2.17):

T11 = (λ+ 2µ)u1,1, T22 = T33 = λu1,1,

T12 = T13 = T23 = 0.

Note that a longitudinal wave does not generate shear stresses. Note also that as
long as µ differs from zero, longitudinal waves do not give rise to isotropic pressure.
They are therefore not pressure waves as we know from fluid dynamics. An example
of a plane transverse wave could be a wave that propagates in the x1-direction with
a displacement in the x2 direction, which gives the following displacement vector:

{u} = [0, u2(x1, t), 0]T ,

and the corresponding stresses are:

T11 = T22 = T33 = 0,

T12 = µu2,1, T13 = T23 = 0.

In this case, only one shear stress component is unequal to zero. Transverse waves
are therefore also called shear waves. Essentially, the stresses are proportional to
the derivative of the displacements, which has already been visualized in Figure 2.3.

2.2.2 Elastic waves in anisotropic media

An elastic and isotropic material has a strain energy function and stiffness tensor
Cijkl, which are independent of orientation. If a material is not isotropic, then
it is anisotropic. We have already seen that a general anisotropic material has
21 independent coefficients, but by the assumption of certain symmetries in the
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Figure 2.6: Illustration of wavefronts of a plane wave that travels in 3D-space. The
wave has a wavelength λ, constant amplitude A and propagates in the direction of the
wave vector {k}.

material, the number is reduced significantly. Before we introduce symmetries of
anisotropic materials, let us derive a general expression that allows for computation
of the wave speeds and material displacements in anisotropic materials.

Assume a solution of the plane time-harmonic wave form

ui = Aicos(kjxj − ωt), (2.18)

where Ai is the amplitude, xj is the position vector, kj is the wave vector, ω is
the frequency and t is the time. The wave vector {k} gives the direction of wave
propagation, and differs only from the wave number k in that it has a direction
as well as a magnitude. Thus, ||{k}|| = k = 2π/λ, where λ is the wave length.
The wave fronts of a plane wave are surfaces of constant phase. These surfaces are
infinite parallel planes with normal along the wave vector, see Figure 2.6.

By insertion of Equation (2.18) into (2.7), we obtain the well-known Christoffel’s
equation:

(Cijklkjkl − ρω2δik)Ak = 0. (2.19)

In the end we would like an expression for the wave speeds. We will therefore edit
Christoffel’s equation such that it contains wave speeds rather than frequencies.
We express the wave vector {k} by the wave number k and its direction cosine
{n}:

kj = knj , kl = knl. (2.20)

The relation between wave number and wave speed is given by [23]
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k =
ω

c
⇒ c =

ω

k
. (2.21)

By insertion of Equation (2.20) into (2.19) we therefore obtain

(Cijklnjnl − ρc2δik)Ak = 0. (2.22)

The expression above can be simplified further by the introduction of the acoustical
tensor [23]

Γik ≡ Cijklnjnl,

which allow us to write Equation (2.22) as

(Γik − ρc2δik)Ak = 0. (2.23)

Equation (2.23) is an alternative form of Christoffel’s equation, and it expresses
an eigenvalue problem where ρc2 are the eigenvalues and Ak are the eigenvectors.
Since Cijkl is symmetric, the acoustical tensor is symmetric as well, and it has
therefore generally three distinct eigenvalues with corresponding orthogonal eigen-
vectors. The eigenvectors {A} express the material displacement of a plane wave
that propagates in direction {n} and c is the corresponding wave speed, see Fig-
ure 2.7. Similarly as for dynamics, where we have vibration modes, we can term
the pairs of wave speeds and material displacements as wave modes. The mode
with material displacement {A} closest to {n} is termed quasi-longitudinal, and
will usually have the largest wave speed. The two other modes are called quasi-
transverse. It is important to understand that even though the material displaces in
direction {A}, the plane wave propagates in direction {n}. Material displacement
is physically interpreted and discussed further in Section (2.4).

Recall that in an isotropic medium we have two wave modes, i.e. longitudinal
and transverse wave mode, that propagate independently of each other. The two
wave modes have different material displacement vectors and wave speeds. Com-
parably, in an anisotropic medium, generally three wave modes can propagate in
direction {n}, each with its characteristic material displacement vector {A} and
wave speed c. Note that, contrary to the isotropic case, the wave speeds depend
on the propagation direction {n}.

It is convenient to introduce a reduced notation for the indices: 11, 22, 33, 23, 13
and 12 are replaced by the single indices 1, 2, 3, 4, 5, and 6, respectively. This
means that we can write the generalized Hooke’s law as
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Figure 2.7: Generally, three plane waves can propagate in the same direction {n} in
an anisotropic medium, each with its characteristic velocity obtained from the eigenvalue
problem. The corresponding eigenvectors {A} express the material displacement (polar-
ization) of the wave and are mutually orthogonal. The subscripts ‘ql’ and ‘qt’ abbreviate
quasi-longitudinal and quasi-transverse, respectively.



T1

T2

T3

T4

T5

T6


=


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66





ε1
ε2
ε3
2ε4
2ε5
2ε6


. (2.24)

Γik has only six independent components, because it is symmetric. With the re-
duced notation, the components of Γik can be written as

Γ11 = C11n
2
1 + C66n

2
2 + C55n

2
3 + 2C16n1n2 + 2C56n2n3 + 2C15n1n3,

Γ22 = C66n
2
1 + C22n

2
2 + C44n

2
3 + 2C26n1n2 + 2C24n2n3 + 2C46n1n3,

Γ33 = C55n
2
1 + C44n

2
2 + C33n

2
3 + 2C45n1n2 + 2C34n2n3 + 2C35n1n3,

Γ12 = C16n
2
1 + C26n

2
2 + C45n

2
3

+ (C12 + C66)n1n2 + (C25 + C46)n2n3 + (C14 + C56)n1n3,

Γ13 = C15n
2
1 + C46n

2
2 + C35n

2
3

+ (C14 + C56)n1n2 + (C36 + C45)n2n3 + (C13 + C55)n1n3,

Γ23 = C56n
2
1 + C24n

2
2 + C34n

2
3

+ (C25 + C46)n1n2 + (C23 + C44)n2n3 + (C36 + C45)n1n3.

(2.25)

In Section 2.4, Equation (2.25) is used when we solve Christoffel’s equation (2.23)
for transversely isotropic materials. Before we can do that, we need to define
transverse isotropy. This is done in the next section, where we explain symmetries
in anisotropic materials.
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2.3 Symmetries in anisotropic materials

The symmetries in anisotropic materials can be explained by planes of material
symmetry. Consider the plane P with normal {e}1 in Figure 2.8. A reflection with
respect P can be described by the transformation

{e}∗1 = −{e}1, {e}∗2 = {e}2, {e}∗3 = {e}3,

which more compactly can be written

{e}∗i = aij{e}j , [a] =

−1 0 0
0 1 0
0 0 1

 .
The plane P is said to be plane of material symmetry if the components of Cijkl,
expressed in the basis ({e}1, {e}2, {e}3), remains unchanged when transformed by
[a]. The transformation rule for a 4th order tensor is [15]

C∗ijkl = aimajnakralsCmnrs.

Thus, if [a] is defined by a plane of symmetry, the transformation becomes

Cijkl = aimajnakralsCmnrs. (2.26)

Figure 2.8: P is a symmetry plane if the components of Cijkl are invariant to the
transformation from the un-starred to the starred set of base vectors. The figure is inspired
by Figure 5-1 in [15].



20 CHAPTER 2. THEORY AND METHODS

2.3.1 Orthotropic symmetry

A material is said to be orthotropic if there are three mutually orthogonal planes
of symmetry, as illustrated in Figure 2.9. With the help of the restriction given by
Equation (2.26), it can be shown that the elasticity tensor Cijkl becomes

[C] =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 ,

for the case of orthotropic elasticity [15]. Now the number of independent elastic
coefficients is reduced to 9. It should be noted that if one works with a coordi-
nate system where the coordinate planes are not parallel to the planes of material
symmetry, there will be more than 9 elastic coefficients in [C]. However, there will
still be 9 independent elastic coefficients. Wood is an example of an orthotropic
material, because it has different properties in three orthogonal directions, e.g. in
axial, radial and circumferential direction.

According to [14], the myocardium has been modeled both as orthotropic and
transversely isotropic in literature. In this thesis, we work with a transversely
isotropic material, because elastic coefficients for the myocardium for that case
could be found in literature.

Figure 2.9: An orthotropic material has three mutually orthogonal planes of symmetry.
In this figure the coordinate planes are aligned with the symmetry planes, but this is not
necessarily the case.
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2.3.2 Transversely isotropic symmetry

A material is transversely isotropic if through every particle there exists a symmetry
axis for the material properties. A symmetry axis implies that every plane through
such an axis is a plane of symmetry, see Figure 2.10. Thus, a plane transverse to
the symmetry axis is a plane of isotropy. Hence, the name transverse isotropy is
commonly used for this type of anisotropy. It can be noted that transverse isotropy
implies orthotropy, but not the other way around.

Typically, fibrous materials are transversely isotropic. An example is skeletal mus-
cles, where the direction of the fibers would be the symmetry axis. The myocardium
is also fibrous, and is therefore often modeled as transversely isotropic [14]. It can
be shown that this type of material has five independent coefficients in the stiffness
matrix [16]:

[C] =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

 .

Similarly as for the orthotropic case, the number of nonzero elements in this matrix
depends on the orientation of the coordinate system. If one of the coordinate axes
is aligned with the symmetry axis, the shape of the matrix is as shown above.

Figure 2.10: A transversely isotropic material has a symmetry axis. Infinitely many
symmetry planes go through that axis. A plane with its normal parallel to the symmetry
axis is isotropic.
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2.4 Solving Christoffel’s equation

With knowledge of the stiffness matrix [C], we can find expressions for the wave
speeds from Christoffel’s equation (2.23), which is restated here:

(Γik − ρc2δik)Ak = 0.

Before we solve the eigenvalue problem for a transversely isotropic medium, we
briefly consider the limiting case of isotropy. Thus, we insert the stiffness matrix
[C] from Equation (2.9). The wave propagation direction is defined in Figure 2.11.

Figure 2.11: The propagation direction {n} is specified by the polar angles θ and φ. The
form of {n} is in general: {sinθcosφ, sinθsinφ, cosθ}T .

With the help of the expressions in Equation (2.25), we can form the acoustic
tensor Γik:

[Γ] =

(λ+ 2µ)n2
1 + µn2

2 + µn2
3 (λ+ µ)n1n2 (λ+ µ)n1n3

(λ+ µ)n1n2 µn2
1 + (λ+ 2µ)n2

2 + µn2
3 (λ+ µ)n2n3

(λ+ µ)n1n3 (λ+ µ)n2n3 µn2
1 + µn2

2 + (λ+ 2µ)n2
3

 ,
n1 = sinθcosφ, n2 = sinθsinφ, n3 = cosθ.

Note the symmetry of [Γ]. A nontrivial solution to the eigenvalue problem requires
that

∣∣∣∣∣∣
(λ+ 2µ)n2

1 + µn2
2 + µn2

3 − ρc
2 (λ+ µ)n1n2 (λ+ µ)n1n3

(λ+ µ)n1n2 µn2
1 + (λ+ 2µ)n2

2 + µn2
3 − ρc

2 (λ+ µ)n2n3

(λ+ µ)n1n3 (λ+ µ)n2n3 µn2
1 + µn2

2 + (λ+ 2µ)n2
3 − ρc

2

∣∣∣∣∣∣ = 0.

We obtain three eigenvalues from this problem:
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ρc21 = (λ+ 2µ) and ρc22 = ρc23 = µ.

We see that there are only two distinct eigenvalues, and that we obtained exactly
the same wave speeds as in Equation (2.15) and (2.16). In other words, c1 = cl
and c2 = c3 = ct. Note that the eigenvalues are independent of the propagation
direction. Also, be aware of that we have assumed plane waves to obtain the result
above. This limitation is not present in Section 2.2.1, where we derived the same
wave speeds. There we assumed that the displacement field can be decomposed
into a scalar potential and a vector potential.

Let us now consider a transversely isotropic material with symmetry axis along
the x3 direction. We then know that the wave speeds do not vary in the x1-x2

plane, because it is a plane of isotropy. It is therefore more interesting to find
expressions for the wave speeds in the x1-x3 plane. The propagation direction
{n} has two nonzero components in this plane; {n} = {sin(θ), 0, cos(θ)}T . With
the same procedure as for the isotropic case, we obtain the following eigenvalue
problem on matrix form:

∣∣∣∣∣∣
C11n

2
1 + C44n

2
3 − ρc2 0 (C13 + C44)n1n3

0 1
2
(C11 − C12)n

2
1 + C44n

2
3 − ρc2 0

(C13 + C44)n1n3 0 C44n
2
1 + C33n

2
3 − ρc2

∣∣∣∣∣∣ = 0.

n1 = sinθ, n3 = cosθ.

Before we find the solutions to the eigenvalue problem, let us define the following
variable:

B ≡
(
C11 − C44

)2
+(

−2C2
11 − 2C11C33 + 6C11C44 + 2C33C44 + 4C2

13 + 8C13C44

)
cos2θ

+
(
C2

11 + 2C11C33 + C2
33 − 4C11C44 − 4C33C44 − 4C2

13 − 8C13C44

)
cos4θ.

This allows us to write the solutions to the eigenvalue problem in a compact form.
There are three solutions, i.e. eigenvalues, to the problem:

ρc21 =
1

2

(
C11sin

2θ + C33cos
2θ + C44 +

√
B
)
, (2.27)

ρc22 =
1

2

(
C11sin

2θ + C33cos
2θ + C44 −

√
B
)
, (2.28)

ρc23 = C44cos
2θ +

1

2

(
C11 − C12

)
sin2θ. (2.29)

Note that C12, which is the stiffness coefficient that couples T11 with ε22 and T22

with ε11, is absent in the expressions for c1 and c2. On the other hand, c3 is
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independent of the stiffness coefficient C13, which couples T11 and T22 with ε33,
and T33 with ε11 and ε22. It is also independent of C33, that couples T33 with ε33.
We can also find the corresponding normalized eigenvectors:

{A}1 =



2(C13+C44)sinθcosθ((
−C11sin2θ+C33cos2θ+C44−2C44cos2θ+

√
B
)2

+
(

2(C13+C44)sinθcosθ
)2)1/2

0

1(
1+
(

2(C13+C44)sinθcosθ

−C11sin
2θ+C33cos

2θ+C44−2C44cos
2θ+
√
B

)2)1/2


,

{A}2 =



2(C13+C44)sinθcosθ((
−C11sin2θ+C33cos2θ+C44−2C44cos2θ−

√
B
)2

+
(

2(C13+C44)sinθcosθ
)2)1/2

0

1(
1+
(

2(C13+C44)sinθcosθ

−C11sin
2θ+C33cos

2θ+C44−2C44cos
2θ−
√
B

)2)1/2


,

{A}3 =


0

1

0


.

Comment: the derivation of the eigenvalues is inspired by the derivation found in
[23]. In this reference, expressions for the eigenvalues for an orthotropic medium
are derived. On the other hand, the author has not found general expressions for
the eigenvectors, that are similar to those above, in literature. Therefore, to the
best of our knowledge, these expressions are novel.

We can see that {A}3 describes a material displacement (polarization) which is
purely out of the x1-x3 plane for all values of θ. The dot product

{A}3 · {n} = 0,

shows that the polarization is orthogonal to the propagation direction. Thus, the
third eigensolution can be defined as a pure transverse wave. In fact, one of the
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shear wave modes is always pure for any transversely isotropic material [23]. On
the other hand, {A}1 and {A}2 have displacement components in the plane. By
comparison of the wave speeds c1 and c2, we see that the former wave speed is
highest and therefore corresponds to the quasi-longitudinal wave. Before we analyze
the eigensolutions further, let us assume that C11 > C44, C11 > C66, C33 > C44 and
C33 > C66. These are reasonable assumptions, because the longitudinal stiffness is
larger than the shear stiffness for most soft tissues. The assumptions allow us to
evaluate our expressions for certain θs, which we do in the following subsections.

2.4.1 Propagation along fibers

If we have a wave that propagates along the x3-axis, i.e. θ = 0, the expressions for
the eigenvalues simplify to

ρc21 =
1

2

(
C33 + C44 +

√
(C33 − C44)2

)
= C33, (2.30)

ρc22 =
1

2

(
C33 + C44 −

√
(C33 − C44)2

)
= C44, (2.31)

ρc23 = C44. (2.32)

Note that we have used the assumption C33 > C44 in the expressions above. Before
we analyze the wave speeds, let us find the corresponding eigenvectors. A minor
issue is that {A}2 is not defined for θ = 0, because we get 0/0 in the first component
and 1/0 in the third component of the vector. However, if we take the limit of {A}2
as θ approaches zero, the first component becomes unity and the third component
becomes zero. For {A}1, we insert θ = 0 directly into the vector. The result is:

{A}1 =

0
0
1

 , {A}2 =

1
0
0

 , {A}3 =

0
1
0

 .

From Equation 2.30 we see that c1 is determined only by C33, the longitudinal
stiffness in the x3-direction. Also, the polarization is parallel to {n}, i.e.

{A}1 × {n} = 0

Thus, for the case θ = 0, the first eigensolution represent a pure longitudinal wave.
On the other hand, c2 and c3 are determined only by C44, which is the shear
stiffness that couples T23 with ε23 and T13 with ε13. Similarly as for {A}3, the
second eigenvector is now also orthogonal to {n}, because

{A}2 · {n} = 0.
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Figure 2.12: Wave propagation along fibers ({n} = {0, 0, 1}T ). This figure illustrates
only the shear wave with polarization in the plane. The shear wave with polarization out
of the plane looks exactly the same. The figure is inspired by Figure 4-40 in [2].

The second eigensolution is therefore, in this case, also a pure shear wave. Wave
propagation along the x3 axis can be visualized as in Figure 2.12.

2.4.2 Propagation transverse to fibers

Now, let the wave propagate in x1 direction, which means θ = 90◦. The same
procedure as in the previous case gives the following eigenvalues:

ρc21 =
1

2

(
C11 + C44 +

√
(C11 − C44)2

)
= C11, (2.33)

ρc22 =
1

2

(
C11 + C44 −

√
(C11 − C44)2

)
= C44, (2.34)

ρc23 =
1

2
(C11 − C12). (2.35)

Again, note that we used the assumption C11 > C44. For the case of θ = 90◦, the
eigenvector {A}2 is defined, but {A}1 is not defined. The eigenvector {A}1 can
be found by taking the limit of {A}1 as θ approaches π/2. The final result is:

{A}1 =

1
0
0

 , {A}2 =

0
0
1

 , {A}3 =

0
1
0

 .

As one might expect, the longitudinal wave speed, c1 = cl, is determined only by
C11 and the corresponding polarization {A1} is parallel to {n}. Compared to the
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(a) Longitudinal wave with ‘horizontal’ polarization
and shear wave with ‘vertical’ polarization

(b) Shear wave with ‘horizon-
tal’ polarization

Figure 2.13: Wave propagating transverse to fibers ({n} = {1, 0, 0}T ). We define the
‘vertical’ direction as the fiber direction. The figure is inspired by Figure 4-40 in [2].

previous case, we now have two distinct shear wave speeds rather than one, see
Equation (2.34) and (2.35). This is due that the polarizations {A}2 and {A}3
represent two different mechanisms in the material, see Figure 2.13. In this figure
we define vertically and horizontally polarized shear waves as SV and SH waves,
respectively. From this figure it becomes apparent why c3(= cSH) is determined
by the shear stiffness which relates T12 and ε12, namely C66 = 1

2 (C11 − C12).

Comment: a way to avoid limits in the calculation of the eigenvectors is to insert
the value for θ before we find the eigensolutions from the eigenvalue problem.

In this section and in Section 2.2.1 we have seen how we can find the relation
between wave speeds and material constants, i.e. density and elastic coefficients.
From ultrasonic measurements it is possible to obtain the wave speeds in vivo.
Thus, with knowledge of the wave speeds, the elastic properties of the soft tissue
can be determined. However, there are some challenges if this is to be performed.
For example, the longitudinal wave speed is too large to be captured with ultra-
sonic measurements (normally cl ∼ 1500 m/s). We therefore need to rely on the
observation of shear waves. Another challenge is that we need to obtain several
wave speeds to fully determine [C]. Even for the relatively simple case of transverse
isotropy, where there are 5 unknowns in [C], we need at least 5 different shear wave
speeds. As an example: Brekke et al. has been able to measure one shear wave
speed that arises in the myocardium due to AVC [6].

We now have wave speeds expressed by θ and the material constants. The next
section explains how we can use these expressions to analyze wave propagation in
the material.
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2.5 Characteristic surfaces

Characteristic surfaces are often used to help describe and predict propagation of
elastic waves in anisotropic materials. Three of them are discussed in this section:
velocity, slowness and wave surfaces. The velocity and slowness surfaces are rela-
tively easily developed and understood. The wave surface requires more derivation
and explanation.

A numerical example is provided throughout this section to help the reader with
understanding the concepts. The mass density is set to 1060 kg/m3, and the mate-
rial is transversely isotropic with values for the elastic constants given in Table 2.1.
The characteristic surfaces in this thesis are plotted by the Maple script in Ap-
pendix A.

Table 2.1: Elastic stiffness coefficients used in the numerical example in this section.
Note that C33 is significantly larger than the other coefficients.

C11 C33 C44 C12 C13

[GPa] 2.46 10.00 8.97 · 10−3 2.4431 2.44

2.5.1 Velocity surfaces

We have seen how it is possible to develop an expression for the wave speed of the
plane wave as a function of the direction cosine {n}. As a reminder: the direction
cosine gives the direction the wave propagates, and is expressed by angles with
respect to the coordinate axes, see Figure 2.11. Plots of the wave speed for the
quasi-longitudinal wave mode versus angles in the x1-x3 and x1-x2 plane are given
in Figure 2.14. For simplicity, we call the quasi-longitudinal wave for longitudinal
wave from now on.

As we saw in Section 2.4, the longitudinal wave speed in the x1, x2 and x3-directions
are given by

cl =

√
C11

ρ
, cl =

√
C11

ρ
and cl =

√
C33

ρ
,

respectively. It is thus obvious that cl is largest in the x3-direction since C33 > C11.
We can also see from Figure 2.14 that the velocity surface is perfectly circular in
the isotropic x1-x2 plane. It is clear that velocity surfaces give a good qualitatively
description on how wave speeds differ in various directions of a material.
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(a) Velocity surface in the x1-x3 plane. The
velocity in x3 direction is largest, because the
material is stiffest in that direction.

(b) Velocity surface in the x1-x2 plane. Since
this plane is isotropic, the velocity surface be-
comes circular.

Figure 2.14: Velocity surfaces of the longitudinal wave in a transversely isotropic mate-
rial.

2.5.2 Slowness surfaces

Slowness surfaces are the inverse of velocity surfaces. We can find the slowness
surface of our example by plotting 1/cl(θ) versus θ, similar as for the velocity
surface. The plot is given in Figure 2.15. Characteristic surfaces in the isotropic
plane, x1-x2 plane, are not included in the remainder of this thesis, because they
are always circular.

Figure 2.15 displays how the so-called energy velocity {ce} is normal to the slowness
surface and has a skew angle ψ with respect to the direction {n}. In this text we use
slowness surfaces to introduce energy velocity, but the surfaces can also be used
to find reflection angles at interfaces [23]. To understand the concept of energy
velocity, a derivation of it is given in the next subsection.

2.5.3 Energy velocity

Before we derive the energy velocity, the Poynting vector Pi is defined [24]:

Pi = −Tij
∂uj
∂t

[W/m2]. (2.36)

The Poynting vector represents, in magnitude and direction, the instantaneous
power per unit area transported by the wave. Or in other words, the rate of energy
transfer per unit area. The energy velocity is, by definition, equal to the Poynting
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Figure 2.15: Slowness surface obtained from the longitudinal wave speed cl. This char-
acteristic surface corresponds with the velocity surface in Figure 2.14. The energy velocity
is normal to the surface, and has an angle ψ with respect to the wave propagation direction
{n}.

vector divided by the energy per unit volume. The objective is therefore to find an
expression for the energy of a plane wave. The derivation of the energy velocity in
this subsection is based on the derivation found in [24], but it is modified such that
it fits in with the rest of the thesis. With the solution of the form in Equation (2.18),
i.e.

ui = Aicos(kjxj − ωt),

the following identities can be developed:

∂ui
∂t

= ωAisin(kjxj − ωt),
∂ui
∂xj

= −kjAisin(kjxj − ωt). (2.37)

The kinetic energy density can be found from the well-known expression

ek =
1

2
ρ

(
∂ui
∂t

)2

=
1

2
ρω2A2

i sin
2(kjxj − ωt). (2.38)

The potential energy density of a solid is equal to the elastic energy density, which
is [24]
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ep =
1

2
Cijkl

∂ui
∂xj

∂uk
∂xl

=
1

2
CijklkjklAiAksin

2(kjxj − ωt).

From Christoffel’s equation (2.19), we have that

Cijklkjkl = ρω2δik,

which allows us to write the potential energy density as

ep =
1

2
ρω2δikAiAksin

2(kjxj − ωt) =
1

2
ρω2A2

i sin
2(kjxj − ωt). (2.39)

By comparing Equation (2.38) and (2.39), we see that the kinetic and potential
energy densities of a plane wave are equal, which is a classic result [24]. The total
energy density is then

e = ek + ep = ρω2A2
i sin

2(kjxj − ωt).

We now have an expression for the energy density, and the next step is to write
the Poynting vector Pi on a similar form:

Pi = −Tij
∂uj
∂t

= −Cijkl
∂uk
∂xl

∂uj
∂t

,

where Equation (2.4) has been used. With the partial derivatives of {u} given in
Equation (2.37), we obtain

Pi = CijklAkAjωsin
2(kjxj − ωt)kl.

The energy velocity can now be found by dividing the Poynting vector with the
energy density, giving

cei =
Pi
e

=
CijklAkAjωsin

2(kjxj − ωt)kl
ρω2A2

i sin
2(kjxj − ωt)

=
CijklAkAjkl

ρωA2
i

.

Alternatively, with Equation (2.20) and (2.21), the energy velocity can be expressed
as

cei =
CijklAkAjnl

ρcA2
i

, (2.40)

where c is one of the wave speeds obtained from Christoffel’s equation (2.23). The
energy velocity cei gives the direction of energy transport, which is the direction of
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Figure 2.16: Projection of the energy velocity {c}e onto the propagation direction {n}
gives the wave speed c. Note that c can be cql or cqt.

the acoustic ray [24]. When {ce} is parallel to the direction of propagation {n},
some authors in literature choose to define that case as a pure wave mode. Others
define a pure wave as a wave with material displacements {A} perfectly parallel or
perpendicular to {n} [24]. In this thesis, we have adopted the latter definition.

To better show the relation between {ce} and c, we form the following scalar
product:

{ce} · {n} = ceini =
CijklAkAjnlni

ρcA2
i

.

With the relation from Christoffel’s equation (2.22), Cijklnjnk = ρc2δik, we see
that

{ce} · {n} = c, (2.41)

which is illustrated in Figure 2.16. It is possible to show that the energy velocity
is, at all points, normal to the slowness surface [24]. Also, for lossless media, the
energy velocity equals the group velocity [23, 24]. With knowledge of the energy
velocity, we can now create the characteristic wave surfaces.

2.5.4 Wave surfaces

The wave surfaces can be created by plotting the locus of points traced by the end
of the energy velocity {ce}. The surface can either be constructed geometrically
with the help of Equation (2.41) (see [24] for more details), or it can be constructed
directly from Equation (2.40). We have chosen the latter approach in our Maple
script, see Appendix A. With our example values, we obtain the wave surface shown
in Figure 2.17a. Note that the wave surface in this figure is based on the energy
velocity related to the longitudinal wave mode, because we have inserted {A}l and
cl into Equation (2.40). In the same manner, we could have found the energy
velocity related to the shear wave modes by insertion of {A}SV and cSV or {A}SH
and cSH into the same equation.



2.5. CHARACTERISTIC SURFACES 33

(a) Plot of the norm of the energy velocity
vector gives wave surface

(b) The velocity surface from Figure 2.14
plotted on top of the wave surface

Figure 2.17: This figure displays how the wave surface encloses the velocity surface,
which means that the norm of the energy velocity vector will always be larger than the
phase velocity. This is because {ce} · {n} = c, as seen in Equation (2.41).

It can be observed from Figure 2.17b that the norm of the energy velocity ||{c}e||
is equal to the longitudinal wave velocity cl along the x1 and x3 directions. This
is due to that the energy velocity vector is parallel to {n} in these directions, see
Equation (2.41) and Figure 2.15. A physical interpretation of the wave surface
is the following. A point source in the origin will emit a wave propagating in
all directions. And the points reached by this wave, at unit time, represent the
wave surface. In other words, the distance between a point on the surface and the
origin, is the distance traveled by the energy in one second. This can be verified
by creating a two-dimensional FEM model, as seen in Figure 2.18. We will not go
into the details of this model, because it is used only for illustrative purposes. In
Figure 2.18b the stress distribution, rather than the energy distribution, is plotted.
This is acceptable, because stress and elastic energy is related through

ep =
1

2
Tijεkl.

The wave surface of an isotropic material will obviously be perfectly circular.

We have seen how the energy velocity {ce} is useful for describing the behavior of
plane waves in anisotropic media. In the next section, we will see how the energy
velocity can be used to predict the propagation of finite-sized waves in anisotropic
media.
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(a) 2D circular FEM model. An internal pressure p is
applied at time zero.

(b) Result from finite element
analysis at unit time. The blue
area is undisturbed, while the
gray is disturbed.

Figure 2.18: A FEM model created to replicate the wave surface of Figure 2.17a. There
is a clear similarity between the numerically and analytically obtained wave surfaces.

2.6 Wave propagation from finite-sized sources

A wave propagating from a finite-sized source is not a proper plane wave. Nev-
ertheless, the concepts from plane wave theory can be applied to predict some of
the behavior of finite-sized wave propagation in anisotropic media. Rose [23] goes
beyond plane wave analysis by solving the finite-size wave problem with the help of
Green’s function and numerical integration. This is beyond the scope of this thesis,
and is therefore not discussed here. According to Rose, the theory we have at hand
today represents only the beginning of fully understanding waves in anisotropic
media.

An example of a finite-sized source is a transducer used for ultrasonic measure-
ments. One of the major issues with ultrasonic wave propagation in anisotropic
media, is the phenomenon called beam skewing, see Figure 2.19. Other phe-
nomenons are beam focusing, diverging and splitting, see [23] for more information.
If an imaging technique is developed for isotropic materials, corrections for the
anisotropy must be made. If no corrections are made, there might occur serious
errors in the results [23].
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Figure 2.19: The acoustic beam from a transducer might skew when applied to an
anisotropic material. The ray direction is the direction of the energy velocity vector,
and it has a skew angle ψ with respect to the wave front normal. The plane wave normal
{n} from previous sections is similar to the wave front normal. Note that the energy ve-
locity and skew angle in finite-sized wave problems are not necessarily the same as those
obtained from plane wave theory.

2.7 The use of Maple

The expressions for the eigenvalues and eigenvectors that we derived in Section 2.4
were obtained with the help of the software Maple 16.00 by Maplesoft, which is
a commercial computer algebra system. Also, the characteristic surfaces that are
included in this thesis were plotted in Maple. The Maple-scripts are made by the
author and can be found in Appendix A.

In the book by Royer and Dieulesaint [24], many examples of characteristic surfaces
are provided. We verified the correctness of the analytical expressions and the
implementation into Maple by checking that we obtained the same characteristic
surfaces as Royer and Dieulesaint.

2.8 Finite Element Method and Abaqus

In this thesis, the commercial FEA program Abaqus 6.11-1 by Dassault Systèmes
Simulia Corp. was used to solve problems numerically. It is assumed that the
reader is familiar with FEM. Nevertheless, some of the theory behind the method
is presented here.

FEM is a numerical method that approximates partial differential equations (PDE)
through spatial discretization. For problems with time-independent loading these
PDEs are approximated with a set of algebraic equations, often on the form
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[K]{u} = {R},

where [K] is the global stiffness matrix, {u} is the displacement and {R} is the
external load. For linear problems both [K] and {R} are independent of {u}.
Transient/dynamic problems are approximated with a set of ordinary differential
equations (ODE) on the form

[M]{ü}+ [C]{u̇}+ [K]{u} = {R}, (2.42)

where the mass matrix [M] and damping matrix [C] have been introduced. We
now have the inertia, damping and elastic forces that are proportional accelera-
tion, velocity and displacement, respectively. Equation (2.42) represents spatially
discretized equations of motion, which require equilibrium between the mentioned
forces and the external forces {R}. We would like solve for {u} in the ODE, and
this requires numerical integration. With knowledge of {u}, the stress and strain
can be calculated, as seen in Section 2.2.

2.8.1 Dynamic analysis and numerical integration

A wave propagation problem is obviously a dynamic problem. There are several
methods for performing dynamic analyses, e.g. implicit and explicit direct integra-
tion. For the latter method the equations of motion (2.42) can be written on the
form [9]

[M]{ü}n + [C]{u̇}n−1/2 + [K]{u}n = {R}n.

The subscript n signals that the variables are evaluated at time step tn. Note that
the velocity {u̇}n−1/2 is lagging by half a time step. This is because Abaqus uses
the Half-Step Central Differences operator for explicit dynamic problems [9]:

{ü}n =
1

∆t

(
{u̇}n+1/2 − {u̇}n−1/2

)
=
{u}n+1 − 2{u}n + {u}n−1

∆t2
,

{u}n+1 = {u}n+1 + ∆tn+1{u̇}n+1/2 = {u}n + ∆t{u̇}n−1/2 + ∆t2{ü}n.

The operator is explicit in the sense that {u}n+1 is found from known values of
{u}n, {u̇}n−1/2 and {ü}n. Note that we have assumed a fixed time step ∆t, which
simplify the expressions, but is not necessarily the case. With the central difference
operator, the expression for the displacement at time step tn+1 is

{u}n+1 = [Keff ]−1{Reff}n+1,
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where

[Keff ] =
1

∆t2
[M],

{Reff}n+1 = {Rext}n − [K]{u}n + [M]
{u}n + ∆t{u̇}n−1/2

∆t2
− [C]{u̇}n−1/2.

With a diagonal (‘lumped’) mass matrix, it is apparent that {u}n+1 is found with-
out equation solving, and is therefore cheaply computed. It is here the strength
of the explicit time integration algorithms becomes clear. Explicit integration is
recommended for dynamic analyses if the wave propagation problem is created by
blast or impact loading, because these problems require small time steps to cap-
ture relatively rapid changes in the load and response [9, 11]. In this thesis, we
only considered impulse loading, and an explicit solver is therefore appropriate. A
downside with the central difference operator, is that it has the stability limit

∆t ≤ 2

ωmax
,

or with damping present

∆t ≤ 2

ωmax
(
√

1 + ξ2
max − ξmax),

where ωmax is the highest natural frequency in the system and ξmax is the fraction
of critical damping in the mode with the highest frequency. An important notice is
that there is no amplitude error introduced by central difference discretization as
long as the chosen time step is below the stability limit [9]. However, no amplitude
error does not mean that the computed amplitudes will be exact.

According to the Abaqus Documentation [11], the stable time increment can be
estimated by the following ratio

∆t ≈ ∆xmin
cl

, (2.43)

where ∆xmin is the smallest element dimension in the mesh and cl is the longitu-
dinal wave speed found by Equation (2.15). This relation is similar to the so-called
Courant-Friedrichs-Lewy (CFL) condition, which can be derived by performing a
stability analysis on Equation (2.1) [1]. The CFL condition can be interpreted as
follows: the ’numerical velocity’ must be greater or equal to the physical velocity,
i.e.

∆xmin
∆t

≥ cl.
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Care must be taken when we apply Equation (2.43), because this estimate is not
conservative for all element types [9]. One should also be aware of that decreasing
∆t might lead to lower accuracy [9, 19]. A thorough study of accuracy and the
CFL-condition was performed in the pre-study project [12]. In this project, it was
also argued that Abaqus’ automatic time-stepping algorithm produces satisfactory
result. This algorithm is useful when we deal with anisotropic materials and more
complex geometry, where a stability limit is not easily found. Automatic time-
stepping was therefore chosen throughout this thesis.

2.8.2 Loading

We applied some sort of impulse load to all the models in this thesis, because we
know that AVC causes a shock wave that propagates down septum. The amplitude
and duration of the load can be found in Figure 2.20. Mathematically speaking,
the load function F (t) is given by

F (t) =

{
1, if 1 · 10−4s < t < 2 · 10−4s,

0, otherwise.

We found no data on the duration of the ‘load’ caused by AVC in literature, and an
assumption was therefore made. The amplitude of the load was irrelevant for our
case, because we worked only with linear theory. The impulse load was expected
to give rise to a stress wave of corresponding period that propagated through the
models. To avoid potential difficulties with an infinite slope, as in the impulse load,
the Smooth Step function in Abaqus was used. This made the edges of the load
function in Figure 2.20 very slightly curved.

Figure 2.20: Graphical representation of the load function F (t). Abaqus’ Smooth Step
function removes sharp corners and infinite slopes.
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2.8.3 Choice of elements

Higher order elements are in general more accurate in static analyses, but for dy-
namic analyses they tend to produce more noise, because they have higher natural
frequencies [9]. It is therefore best to avoid higher-order elements for our case. All
models in this thesis have elements with a reduced number of integration points.
This reduces computation time, but might increase dispersion effects [20]. Regard-
less, Abaqus does not allow elements with full integration in Abaqus/Explicit.

In the pre-study project [12], the size of the elements was calculated from the rule
of thumb

Lel =
tload · c
N

(2.44)

where Lel is the length of an element, tload is the duration of the impulse load, c can
be either cl or ct and N is a number chosen by the user. Abaqus Documentation
suggests to set N = 10 for impact problems, which means that the loading takes
place over the span of 10 elements [11]. In the pre-study project [12], we compared
analytically and numerically obtained wave speeds, and errors of less than 5 percent
were obtained with N = 10 and c = cl in Equation (2.44). We continued to use
this rule of thumb for the models in this thesis.

2.8.4 Butterworth filter

From some of the analyses, we experienced large oscillations in the response. This
made it difficult to find the shear wave speed. We therefore ran the response
through a filter, which is built into Abaqus. The filter is called Butterworth filter
and require that the user must specify a cutoff frequency. The filter basically
accepts low-frequency data and rejects data above the cutoff frequency, see the
Abaqus Documentation for more details [11]. An example of use of the Butterworth
filter is shown in Figure 2.21.

Filtering the response does not necessarily give more physically correct results, but
it makes it easier to work with the response. Brekke et al. used a Butterworth filter
to remove clutter from their velocity curves [6].
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Figure 2.21: The use of the Butterworth filter on the stress response at one node in a
model that is introduced later. The cutoff frequency is here 20,000 Hz.



3 Results

In this chapter, we first analyze a transversely isotropic material with the help
of characteristic surfaces. In the following sections, we introduce various FEM
models, and perform studies on them. The models are listed in order below with a
short description:

1. Plane Wave Model - A simple two-dimensional model that simulates plane
wave propagation.

2. Finite-sized Wave Model - A two-dimensional model that has a finite-sized
source. The model displays the effect of energy transport direction well.

3. Curved Model - A three-dimensional model, which is made for investigation
of the effect of curvature on wave speed. The model can represent the septum.

4. Truncated Ellipsoid Model - A three-dimensional model, which is a simple
representation of the left ventricle.

To the best of our knowledge, models 1 to 3 are original. The Truncated Ellipsoid
Model is based on models found literature [14, 26]. All the models are made from
Python scripts developed by the author. Python is a general-purpose programming
language. Abaqus can read the scripts and generate the model in the Abaqus
graphical user interface. The advantage with scripts is that it is easy to perform
various studies, e.g. parameter study and mesh study. The Python scripts can
be found in Appendix B, and are written such that the user can easily change, for
example, the geometry of the model. Also, the wave speed measurement procedures
described later, are developed by the author.

All the field plots included, which are color plots that show for example the stress
distribution, are extracted from Abaqus.

3.1 Analysis of a transversely isotropic material

It is interesting to investigate the properties of the material we implemented into
our models. With the results from this section, we were able to better understand

41
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the results from the FEA that are presented later in the chapter. The material was
analyzed by use of the tools developed in the Chapter 2.

3.1.1 Material constants

Throughout this thesis we worked with a transversely isotropic material that has
the following stiffness coefficients:

Table 3.1: The elastic stiffness coefficients obtained from a formalin fixed myocardium
by Hoffmeister et al. [13].

C11 C33 C44 C12 C13

[GPa] 2.46 2.53 8.97 · 10−3 2.4431 2.44

Hoffmeister et al. [13] did the stiffness measurements on a formalin fixed my-
ocardium, which implies that they did the measurements ex vivo. We have not
found, in literature, stiffness coefficients for a transversely isotropic material that
were obtained from in vivo measurements of the myocardium. Hoffmeister et al.
explain that soft tissues generally become stiffer when formalin fixed. They discuss,
however, how the longitudinal wave speed is unaffected by the process. The effect
on the shear wave speed is unknown, but they suggest that there is a significant
change to it. Nevertheless, it was not important to produce realistic result from the
models in this thesis. We were more interested in the concepts of wave propagation
in anisotropic materials. With the Maple and Python scripts in the appendices,
the user can easily modify the stiffness coefficients to his or hers own needs.

There are many reports on the density of soft tissues in literature. Soft tissues
consist mainly of water, and have therefore density close to water. In this thesis
we continued to use the mass density that was used in the pre-study project [12],
i.e. ρ = 1060 kg/m3.

3.1.2 Material displacement analysis

In Section 2.4, we derived expressions for the eigenvectors in the x1-x3 plane. As
we know, these three eigenvectors express the material displacement direction for
plane waves that propagate in direction {n}. One of the eigenvectors showed that
the shear horizontal wave mode is a pure transverse wave mode for all θs, and that
its polarization is out of the plane. On the other hand, the two other eigenvectors
express that the quasi-longitudinal and quasi-shear wave modes are generally not
pure wave modes. It is therefore interesting to find out how ‘quasi’ these two
wave modes are. In other words, we would like to find the angle between the
wave propagation direction {n} and the material displacement vector {A}i, see
Figure 3.1. The author has chosen to call this angle for the quasi angle ζ. Do not
confuse ζ with the skew angle ψ, which is shown in for example Figure 2.15.
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Figure 3.1: Illustration of a plane wave
that propagates in direction {n}. The
quasi-angle ζ expresses the angle between
the wavefront normal {n} and the ma-
terial displacement vector {A}l. Since
{A}SV is always orthogonal to {A}l,
the same angle can be found between the
wave front tangent and {A}SV .

Figure 3.2: The quasi-angle ζ is plotted
for versus θ.

In Figure 3.2, we have found the quasi angle ζ as a function of θ. The plot was
made in Maple, where we used the analytical expression for {A}SV to find the
angle ζ. As one might expect, the quasi angle varies for different θs. We can also
see from this plot that the wave modes are pure longitudinal and shear for θ = 0
and θ = 90◦, which has already been shown in Section 2.4. Note that ζ is small
for all θs, even at its maximum. This indicates that the anisotropy is weak in the
material (for the limiting case of isotropy, the quasi angle would be zero for all θs).
We therefore neglect the quasi angle in the remainder of the thesis, and consider
the wave modes as pure for all θs.

3.1.3 Characteristic surfaces

With knowledge of the stiffness coefficients and density, we can create the char-
acteristic surfaces of the material. Figure 3.3 displays the velocity surfaces of the
material. From inspection of this figure we see that cl and cSH generate almost
circular velocity surfaces. This means that these wave speeds are close to indepen-
dent of the propagation direction. Nevertheless, cl is slightly larger along the x3

axis compared to along the x1 axis, because C33 is slightly larger than C11. This is
shown in Figure 3.4, a more quantitative presentation of the wave speeds. On the
other hand, cSV varies significantly with the propagation direction. It equals cSH
along the x3 axis. This agrees with what was shown in Section 2.4.
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(a) The longitudinal velocity surface has a ra-
dius approximately 15 times larger than the
shear velocity surfaces.

(b) Same plot as in a), but now with only the
shear wave speeds.

Figure 3.3: The velocity surfaces of the material. Only the shear vertical (SV) shear
wave speed shows a significant dependence on propagation direction.

Figure 3.4: An illustration on how the wave speeds quantitatively vary with θ. The
arrows indicate the material displacement direction. Values are given in m/s.
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Since the velocity surface for cl and cSH are close to circular, and thereby not so
interesting, we focus the remainder of this subsection on the shear vertical wave
mode. According to Figure 3.3b it seems that cSV has a maximum at approximately
θ = 45◦. To investigate this further, we look back at Equation (2.28), i.e.

c2 = cSV =

[
1

2ρ

(
C11sin

2θ + C33cos
2θ + C44 −

√
B
)]1/2

,

where

B =
(
C11 − C44

)2
+(

−2C2
11 − 2C11C33 + 6C11C44 + 2C33C44 + 4C2

13 + 8C13C44

)
cos2θ

+
(
C2

11 + 2C11C33 + C2
33 − 4C11C44 − 4C33C44 − 4C2

13 − 8C13C44

)
cos4θ.

As mentioned before, cSV is independent of C12. We differentiate the expression
for cSV with respect to θ and set it equal to zero, and then solve for θ, which gives

θmin = 0 or θmin = 90◦ or θmax = cos−1

(√
C11 + C13

2C13 + C33 + C11

)
. (3.1)

We have given these θs the subscripts ‘min’ and ‘max’, because they refer to the
values of θ that give the extremal values for cSV . One should note that θmin is
independent of the stiffness coefficients, while θmax is not dependent of C44. If we
insert the expressions for θmin and θmax into the expression for cSV we obtain

cSV,min =

√
C44

ρ
and cSV,max =

√
C11C33 − C2

13

ρ(C33 + C11 + 2C13)
. (3.2)

The expression for cSV,min has already been seen in Section 2.4. It it interesting
to note that C44 solely governs cSV,min, while it is absent in the expression for
cSV,max. With the stiffness coefficients introduced earlier, we find the extremal
values to be

cSV,min = 91.99 [m/s], cSV,max = 160.71 [m/s] at θ = 45.2◦.

We see that the maximum shear wave speed is not necessarily at θ = 45.0◦. A
graphical presentation of the relation between the stiffness coefficients and the
wave speed cSV is given in Figure 3.5.
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(a) cSV versus θ and C11 (b) cSV versus θ and C33

(c) cSV versus θ and C44 (d) cSV versus θ and C13

Figure 3.5: Surface plots of the shear vertical wave speed cSV versus θ and one stiffness
coefficients. The other stiffness coefficients are kept constant. We clearly see that changes
in stiffness leads to changes in wave speeds. Similar plots can obviously be made for the
two other wave speeds as well.
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From Figure 3.5a and 3.5b we see that an increase of the longitudinal stiffness
coefficients C11 and C33 generally leads to a higher wave speed, as one might expect
from inspection of Equation (3.2). It is also clear that θmax is shifted away from
θ = 45◦ when C11 and C33 is increased. Note that the minimum value cSV,min is
independent of these two stiffness coefficients, as already shown in Equation (3.2).

In Figure 3.5c we observe that an increase of C44 also generally leads to a higher
wave speed, but neither θmax nor cSV,max is affected. This last fact agrees with
Equation (3.1) and (3.2). The plot in Figure 3.5d displays how an increase in the
stiffness coefficient C13 generally leads to lower wave speed. This can be expected,
because according to Equation (3.2) cSV,max decreases when C13 is increased. In
Equation (3.1), it can be seen that also θmax is dependent on C13, even though
this is not easily spotted from the angle in Figure 3.5d.

Comment: to the best of our knowledge, the type of surfaces in Figure 3.5 is
novel. The surfaces proved to be a good tool for a qualitative study of the stiffness
dependence.

The velocity, slowness, and wave surfaces are plotted in Figure 3.6. From this figure
we see that also the energy velocity varies significantly with θ. As mentioned in
Section 2.5 the energy velocity is always equal to or larger than the phase velocity.
This means that the wave surface surrounds the velocity surface.

(a) Slowness surface obtained from 1/cSV . (b) Wave surface and velocity surface ob-
tained from ceSV and cSV , respectively.

Figure 3.6: The wave speed and energy velocity are equal along the x1 and x3 axis and
at approximately θ = 45◦. This is due that the wave propagation direction {n} and the
normal to the slowness surface are parallel at these positions, see Equation (2.41).
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3.2 Plane Wave Model

All the wave theory presented in Chapter 2, except for wave propagation in isotropic
media, is based on the assumption of a plane wave solution, i.e. Equation (2.18).
We refer to this as plane wave theory. It was therefore appropriate to model
plane wave propagation with the help of the FEM and Abaqus. The goal was
to obtain wave speeds from the FEM that matched the ones obtained from the
analytical formulas. If they match, we can say that the model simulates plane
wave propagation well, and that the FEM is able to handle wave propagation in
anisotropic media.

We would like to model an infinite domain. One option is to use so-called infinite
elements, which are supposed to provide a ‘quiet’ boundary. However, infinite el-
ements were not used, because they did not seem to work well with anisotropic
materials (the author experienced that the energy was not damped out properly).
Also, the implementation of infinite elements is laborious. Another way to model
plane waves is to create the model shown in Figure 3.7. A similar model gave
accurate and satisfactory results in the pre-study project [12]. With the bound-
ary conditions shown in the figure, this two-dimensional model simulates a one-
dimensional problem. The time-dependency of the load is given in Section 2.8.2.
The model generates a plane shear wave that propagates upwards.

We focused on the shear vertical wave mode, since this proved to be the most in-
teresting mode in the previous section. The FEM model should be able to generate
a plane wave that propagates in different wave propagation directions {n}. One
way to achieve this is to rotate the material orientation in Abaqus. Another way,
is to simply rotate the whole model and keep the material orientation fixed, as in
Figure 3.8. The latter option was chosen for the Plane Wave Model.

The element type used was CPE4R, four noded plane strain quadrilateral elements
with reduced integration. A homogeneous mesh is preferred, because additional
dispersion effects are then avoided [20]. The element size was calculated from
Equation (2.44) with N = 10, which gave

Lel =
tloadct

10
=

1 · 10−4s · 100m/s

10
= 0.001m. (3.3)

This gave in total 40 000 elements. Note that we assumed the shear wave speed
to be 100 m/s based on the velocity surfaces in Figure 3.3. We used ct = 100 m/s
to calculate the element size for the other models in thesis as well. Keep in mind
that the theory presented in Chapter 2 applies for infinite media. However, a thin
structure can, for all practical purposes, still be considered a semi-infinite media if
the wavelength is small compared to the thickness of the object [23]. The thickness
of the Plane Wave Model is one meter and the wavelength of the shear wave is
approximately
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Figure 3.7: An illustration of the Plane Wave Model. The traction load F (t) is applied to
the bottom boundary of the quadratic plate. This means that the stress Txy(x, 0, t) = F (t).
At the top boundary the plate is fixed, meaning ux(x, 0.2, t) = uy(x, 0.2, t) = u′x(x, 0.2, t) =
u′y(x, 0.2, t) = 0. At the left and right boundaries, the boundary conditions uy(0, y, t) =
uy(0.2, y, t) = 0 are applied, which are called rolling support boundary conditions.

Figure 3.8: An illustration of the same model as in Figure 3.7, only rotated. The
plane wave will now propagate in the direction of {n} given by the angle θ. The material
orientation is fixed.
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Figure 3.9: Field plot of the Von Mises stress at three different time instances, extracted
from Abaqus. The plots are from the plane wave model when θ = 90◦. One can clearly
see that the wave propagates from left to right.

λt ≈ tload · ct = 1 · 10−4s · 100m/s = 0.01m. (3.4)

Hence, we can regard the model as infinite in the thickness direction as well. In
Equation (3.4), we have implied that the period of the wave is tload, even though
it is mathematically incorrect to say that an impulse response has a period.

In Figure 3.9, field plots of the stress are provided and a wave propagation can
easily be observed. Note that the Von Mises stress is plotted rather than the shear
stress. This is acceptable, because we are not interested in the values of the stress.
The Von Mises stress is given by [16]

T 2
m =

1

2

[
(T11 − T22)2 + (T22 − T33)2 + (T11 − T33)2 + 6(T 2

23 + T 2
13 + T 2

12)
]
.

The Von Mises stress is independent of the orientation of the coordinate system,
and is therefore handy when we rotate the model. Obviously, the shear stress
components are the main contributors to the Von Mises stress for the Plane Wave
Model, and that is why we can use the Von Mises stress to find the shear wave
speed. Next, we discuss how to find the wave speeds from the model, and then a
wave speed study is presented.

3.2.1 Wave speed study

To obtain the wave speed from the finite element model, we observed the stress at
the node at the center of the plate. A minor issue is that the stress is evaluated at
the elements’ integration point. And since the integration point is at the center of
the elements, the stress cannot be found directly at the center node, see Figure 3.10.
However, Abaqus allows us to easily find the average of the four nearest integration
points. Information to users that want to use this averaging: set the ‘Average
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Figure 3.10: A sketch of the mesh. The node at the center of the plate is magnified, and
the surrounding integration points are shown. To find the stress at the center node, we
average the stress of the four nearest integration points.

threshold’ to 100% (default is 75%) and uncheck the box ‘Use region boundaries’
to obtain smooth XY-plots.

The plot of stress versus time at the center node for two cases of orientation θ is
shown in Figure 3.11.

Figure 3.11: Plot of Von Mises stress versus time obtained at the center node of the
plate when the orientation is θ = 0◦ and θ = 45◦. The time t1 and t2 can be found with
the help of ‘Probe values’ in Abaqus. The average of t1 and t2 gives the time tc, which
is used to calculate the wave speed. After the ‘main’ wave has passed the node, there are
smaller disturbances that appear. These come from the wake of the wave. Since the wave
speed at θ = 45◦ is higher, the wave arrives earlier at the center node than when θ = 0◦.
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We found the wave speed with knowledge of the length of the model and the
time it takes for the wave to arrive at the center node. Note that the times tc in
Figure 3.11 were the times used in the calculation of the wave speeds. These times
correspond to when the center of the waves pass the center node. We used the
center of the wave to calculate the wave speeds, because we then avoided potential
effects from smearing and attenuation of the wave. We can note from Figure 3.11
that the shape of the wave depends on the orientation θ. It is therefore better to
use t1 and t2 to find when the center of the wave passes the center node, rather
than, for example, the time of maximum stress. The wake of the wave is an effect
that arises due to inertia and elasticity in the material; when the load is removed
the material continues to oscillate. High-frequency oscillations in the response are
expected when we work with impact loading, see for example Figure 11.12-4 in [9].

A study was performed where we extracted the shear wave speed from Abaqus at
certain angles θ. The result is shown in Figure 3.12. We can see that the Plane
Wave Model is able to accurately model the theoretical shear wave speed. The
relative error in Figure 3.12b is calculated by the following formula:

Error =
ctheory − cFEA

ctheory
· 100%,

and we see that the error is less than 2% for all the selected values of θ. These
errors are smaller than what we found in the pre-study project, where we reported
the wave speeds from a similar model, which had an isotropic material implemented
[12]. This can be explained by that we here use ct rather than cl in Equation (2.44)
to calculate the element size. Based on the relatively low error, we can say that
we are satisfied with the mesh density and the performance of the automatic time
stepping algorithm. We study the mesh density in more detail in the next sub-
section. In the pre-study project it was also shown how the numerically obtained
phase velocity is expected to be slightly less than the theoretical velocity due to
numerical dispersion. We can see that this is also the case here.

3.2.2 Mesh study

With a mesh study we can analyze the accuracy of the obtained shear wave speeds.
In this study, we varied N in Equation (2.44), i.e. the element size, and extracted
the corresponding shear wave speed. The result is shown in Figure 3.13. As one
might expect the figure shows that more elements lead to a more accurate result
with respect to theory. This gives confidence in the FEM model and the wave
speed measurement procedure.

In the next section, we go one step further and study a two-dimensional model
with finite-sized waves.
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(a) Wave speed cSV versus the angle θ. (b) Relative error corresponding to a).

Figure 3.12: Result from the wave speed study. The numerically obtained wave speeds
are plotted together with the analytical solution, Equation (2.28). The Plane Wave Model
seems to accurately model the shear wave speed.

Figure 3.13: The result from the mesh study performed on the Plane Wave Model with
θ = 0◦. An increase in N means a finer mesh density. We can clearly see a tendency of
convergence towards approximately the theoretical value for increase in N .
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3.3 Finite-sized Wave Model

With this finite element model we wanted to find out how well the plane wave the-
ory developed in Chapter 2 can predict the behavior for finite-sized waves. Rose
compares phase velocities, energy (group) velocities and skew angles obtained from
plane wave theory with experimental data for a cast iron steel [23]. The experimen-
tal data was obtained with the help of a transducer, i.e. a finite source, and there
was a good agreement with theory. We therefore expected the result obtained from
FEA to also agree with plane wave theory. The present model resembles the Plane
Wave Model, where the main difference is that we modeled some of the infinite
domain, which surrounds the source, see Figure 3.14. In this way, a plane wave
front (phase plane) of finite size propagates through the domain. Note that the
rolling supports boundary conditions are absent in this model. Everything else,
e.g. mesh density and load, is exactly the same as for the Plane Wave Model.

Figure 3.14: Illustration of the Finite-sized Wave Model. Similarly to the Plane Wave
Model, it can be rotated by an angle θ, which gives the wave propagation direction {n}.
Also here the material orientation is fixed.

Before we look at the results from the Finite-sized Wave Model, let us briefly
summarize some of the points presented in Chapter 2. There are three directions
we have to keep in mind:

• {n} - Wave propagation direction. Normal to the wave front.

• {A}i - Material displacement direction (polarization). It is orthogonal to {n}
for a pure shear wave.

• {c}e - Energy velocity. It gives the direction of energy transport.

In Figure 3.15 the strain energy density is plotted at a certain time instance for
different θs. The strain energy density is plotted rather than the stress, because
this gave more clear plots. However, the wave front could easily be seen also if the
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(a) θ = 0◦ (b) θ = 15◦

(c) θ = 30◦ (d) θ = 45◦

(e) θ = 60◦ (f) θ = 75◦

Figure 3.15: Field plot of the strain energy density at t = 5.8 · 10−4s, obtained from
Abaqus. Red color shows areas with the highest strain energy density. In the blue areas,
the strain energy density is approximately zero. By comparison of the figures, it is clear
that both the energy and phase velocity depend on θ.

stress was plotted. We can see from Figure 3.15 that the energy velocity direction
and the wave propagation direction are different for certain θs. The angle between
them is the skew angle ψ.
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In the next subsection we find the phase velocity, energy velocity and skew angle
and compare them with the analytical results.

3.3.1 Wave speed and skew angle study

Due to the nature of the Finite-sized Wave Model, we cannot use the same proce-
dure as we did for the Plane Wave Model to find the wave speed. Also, we wanted
to find the norm of the energy velocity ||{c}e|| and the skew angle ψ. Let us denote
the norm of the energy velocity as simply ce from now on.

(a) The skew angle ψ can be found by drawing a line between the center of
the source and the center of the wave. The position of the center of the wave
is assumed to be at approximately the point of maximum stress.

(b) The strain energy density at two time instances plotted on top of each
other. As seen in the figure, we draw two dashed lines parallel to the bottom
and top surface, and position them at the points of maximum stress. The
distance traveled by the wave in direction {n} gives the phase velocity.

Figure 3.16: Field plots of the strain energy density for θ = 7.5◦. With knowledge of the
skew angle ψ and the phase velocity cSV , we find the energy velocity from ce = cSV /cos(ψ).
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We found the sought-after values graphically, as indicated in Figure 3.16. The dis-
tances were measured in pixels in the graphics editor Inkscape 0.48, then converted
to meters afterwards.

In Figure 3.17a and 3.17b the phase velocity cSV obtained from the Finite-sized
Wave Model is studied. Similarly as for the Plane Wave Model, we found that
the wave speeds from FEA were slightly less than predicted by theory for all θs.
This agrees with the result presented by Rose [23, Table 14-4]; he found that the
experimental phase velocities were in general slightly lower than the theoretical
ones. For the Plane Wave Model we obtained an average error of 1.0%, and for
the current model we obtained an average error 1.8%. We can therefore say that
the procedure we used for finding the phase velocity is satisfactory. However, we
can see from Figure 3.17b that there is a good spread in the errors. This may
be explained by the difficulty in being very accurate and consistent when finding
the values graphically. Note that ‘error’ means disagreement between FEA results
and the exact solution of the mathematical model, which in this case is plane wave
theory. In other words, the error says nothing about how well the mathematical
model represents reality.

The study of the energy velocity norm ce is shown in Figure 3.17c and 3.17d. Again,
the velocity obtained from FEA is in general lower than predicted by theory, as
one might expect from numerical dispersion. As mentioned, we found ce from the
formula

ce =
cSV
cos(ψ)

.

Since we introduce another source of error through ψ, it is not surprising that the
average error of ce (3.0%) is larger than for cSV .

Finally, the study of the skew angle ψ is presented in Figure 3.18. We can see that
the theory slightly over-predicts the absolute value of ψ for most of the θs. The
source of this discrepancy has not been found. Nevertheless, the theory gives a
good estimate of the skew angle.
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(a) Wave speed cSV versus the angle θ. (b) Relative error corresponding to a).

(c) Energy velocity ce versus the angle θ. (d) Relative error corresponding to d).

Figure 3.17: Result from the Finite-sized Wave Model. The numerically obtained wave
speeds are plotted together with the analytical solutions from plane wave theory. The theory
seems to give good estimates of cSV and ce, although slightly too high.
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(a) Skew angle ψ versus the angle θ. (b) Absolute error corresponding to a).
Note that the error is calculated by
|ψtheory − ψFEA|.

Figure 3.18: Result from the Finite-sized Wave Model. The numerically obtained skew
angles are plotted together with the analytical solution. A positive skew angle means that
{c}e is rotated counter-clockwise with respect to {n}, see Figure 2.15. The plane wave
theory predicts the skew angle well.
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3.4 Curved Model

With the model presented in this section, we are one step closer to the Truncated
Ellipsoid Model, introduced in the next section. We named the present model the
Curved Model, because we wanted to investigate the effects of curvature on shear
wave speed. In this section, we first study the case of isotropic material, because we
then can compare the results directly with plane wave theory. Next, we implement
the transversely isotropic material, and study the effects of anisotropy. In the last
subsection, we investigate the effects of different orientations of the load.

The Curved Model has a shape based on elliptical curves in the x-y plane, as seen
in Figure 3.19. In the studies shown later in this section, we vary the dimension a
to study the effect of curvature. Boundary conditions that are not shown in this
figure are that the sides of the model are only allowed to translate in z direction.
More specifically, ux(x, y, 0, t) = uy(x, y, 0, t) = 0 and ux(x, y, d, t) = uy(x, y, d, t) =
0. These boundary conditions were implemented in the spirit of the Plane Wave
Model, where we also allowed material displacement in only one direction at the
boundaries. As we have seen, this gave a clear and plane wave front for the Plane
Wave Model, and we wanted the same for the current model.

Figure 3.19: An illustration of the Curved Model. The lengths a and b represent the
minor and major axes, respectively, of the elliptical outer surface. The inner surface is
parallel to the outer surface in the sense that is has the minor and major axes a − th
and b − th, respectively. The length c determines where the ellipse is truncated. The
thickness th and depth d are constant. A uniformly distributed shear load is applied to
the top surface, which is parallel to the x-z plane. In other words, Tyz(x, c, z, t) = F (t).
At the bottom surface the model is fixed, which means that ux(0, y, z, t) = uy(0, y, z, t) =
uz(0, y, z, t) = 0 and u′x(0, y, z, t) = u′y(0, y, z, t) = u′z(0, y, z, t) = 0.

It is useful to compare the results from the Curved Model with a model where
curvature effects are absent. This helps us determine what is caused by curvature,
and what is not. We therefore made the Straight Model shown in Figure 3.20.

In Section 2.1.2, we saw how the muscle fiber orientation varies through the heart
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Figure 3.20: This model was made to fully exclude potential effects from curvature. We
will refer to this model as the Straight Model. The only difference with the Curved Model is
that the elliptically shaped curves are now replaced by straight curves. Note that, similarly
as for the Curved Model, the boundary conditions ux(x, y, 0, t) = uy(x, y, 0, t) = 0 and
ux(x, y, d, t) = uy(x, y, d, t) = 0 are applied.

Table 3.2: Dimensions of the Curved Model. The dimensions correspond to those found
in the Truncated Ellipsoid Model.

a b c d th
[mm] 10 to 30 45 15 10 10

wall. The Curved Model is therefore partitioned such that we can vary the fiber
orientation through the thickness of the model, see Figure 3.21. We can see that
there are 10 partitions through the thickness. However, with the appended Python
script, the user can easily change the number of partitions. More layers make the
material orientation transition smoother, but requires the model to have a finer
mesh.

We used C3D8R elements, which are continuous three-dimensional eight-noded
reduced integration elements. Thus, the elements only have one integration point.
The arguments for reduced integration are the same as for the two-dimensional
case. Obviously, a homogeneous mesh is impossible to achieve, and we therefore
do not have only one element size. Nevertheless, a fine mesh density leads to
a nearly homogeneous mesh. An approximate element size was calculated from
Equation (2.44), and Abaqus meshed the geometry based on this size within certain
tolerances.

The mass density, load amplitude and duration are the same as before. To study
the effect of curvature on wave speed, we varied the minor axis a in Figure 3.19
and kept the other dimensions constant. The dimensions are listed in Table 3.2.

We first performed studies where an isotropic material was implemented, and then
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Figure 3.21: Illustration of: a) the 10 partitions of the model; b) the material orientation
that varies through the thickness of the model. As before, the x3 direction gives the fiber
direction. A distinct material orientation is assigned to each partition such that the fiber
orientation varies from +60◦ to −60◦ with respect to the circumferential direction. The
x1 direction is normal to the surfaces at all points. The Straight Model is partitioned in
a similar manner.

we assigned the transversely isotropic material to the model.

3.4.1 Isotropic material

When an isotropic material is assigned to the whole model, the material orientations
are obviously irrelevant. We wanted the isotropic material to give shear wave speeds
in the same order as for the transverse isotropic material. Based on this, we used
the following material properties:

• Young’s Modulus - E = 31.588 [MPa]

• Poisson’s ratio - ν = 0.49

• Mass density - ρ = 1060 [kg/m3]

With a Poisson’s ratio close 0.5, the material is nearly incompressible. This is
realistic, because biological tissues consist of mainly water, which is incompressible.
The Young’s modulus was chosen such that the shear wave speed for a plane wave
became

ct =

√
E

2ρ(1 + ν)
=

√
31.588 · 106

2 · 1060 · (1 + 0.49)
= 100.0 [m/s].
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Figure 3.22: The stress distribution at three time instances when the isotropic material
is implemented. The wave propagation can be seen clearly. Here a = 25 mm.

Field plots of the Mises stress at three time instances are given in Figure 3.22.
Again, the Mises stress is useful, because we do not have to consider local and
global coordinates. We only have to assume that the main contributors to the
stress measure are the shear stress components, which is likely given the nature of
the model. From the figure we can clearly see the stress wave propagating from the
top surface and downwards. The wave front seems to remain plane through the
domain of interest. With the result from the Plane Wave Model in mind, we can
therefore expect the obtained wave speeds to be close to those found from plane
wave theory. Thus, we can use the theory to validate our results.

Wave speed and mesh study

A similar procedure as for the Plane Wave Model was performed to find the wave
speed; we observed the stress over time at two nodes. The position of the nodes is
given in Figure 3.23. With two nodes we can measure the wave speed between the
top surface and Node 1 and between Node 1 and Node 2.

We defined the obtained wave speed between the top surface and Node 1 as c1,
and the obtained wave speed between Node 1 and Node 2 as c2. In the first study
we used N = 10 in Equation (2.44), which gave the result shown in Figure 3.24a.
We can see from this figure that the numerically obtained wave speeds are close to
the analytical solution. However, there is a noticeable difference between c1 and
c2. To investigate this further, we increased the mesh density by setting N = 20
and N = 30. The result from the studies with these mesh densities are shown in
Figure 3.24b and 3.24c. The difference between c1 and c2 is clearly less for the case
of increased mesh density. It is therefore likely that there is a difference only due
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Figure 3.23: The position of the nodes where we observed the stress over time when the
isotropic material was implemented. The nodes are placed according to the coordinates
shown in the figure.

to numerical inaccuracy. Note that the wave speeds seem close to independent of
a when N = 20 and N = 30.

We implemented the isotropic material into the Straight model as well, and in-
vestigated if we obtained a difference between c1 and c2 without curvature. With
N = 20 we obtained that c1 = 98.2 m/s and c2 = 99.5 m/s. We can thus conclude
that c1 and c2 do not differ due to curvature. Nevertheless, it is useful to know
that the wave speeds we find can depend on where we measure them.
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(a) N=10, which gives approximately 6 000
elements

(b) N=20, which gives approximately
45 000 elements

(c) N=30, which gives approximately
150 000 elements

Figure 3.24: The result from the wave speed study when an isotropic material is applied
to the Curved 3D model. The difference between c1 and c2 is less when a finer mesh
is implemented, and both wave speeds seem to converge to approximately 99 m/s for a
increase in mesh density. Similarly as for the Plane Wave Model and the Finite-sized
Wave Model, the measured wave speed is slightly lower than the theoretical one. The wave
speeds seem to be less affected by a change in curvature for a finer mesh.
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3.4.2 Transversely isotropic material

With the transversely isotropic material, the shear wave speed varies through the
thickness of the model. The traction load is directed such that mostly the shear
vertical wave mode is excited. In the Section 3.4.3, we excite the shear horizontal
wave mode. Field plots of the Mises stress is shown in Figure 3.25. Compared
to the isotropic case, the wave propagation is now much more complex. Since we
have several layers with different material orientations, we can say that the wave
propagation consists of several waves that propagate with different speeds. The
layers through the thickness create interfaces where refraction and reflection of the
waves might occur. Also, at interfaces mode conversion can occur, which means
that the energy of the waves can be converted into shear, longitudinal and interface
wave modes [23]. Another aspect that complicates the behavior is that we have
finite boundaries that create surfaces where surface waves can arise. These waves
are commonly known as Rayleigh waves, which have their own wave speeds that
also depend on propagation direction [23]. Nevertheless, we do not consider these
effects in the remainder of the thesis, and assume that the shear vertical wave mode
is dominant.

Obviously, the theory presented in Chapter 2 is not sufficient to accurately predict
the wave propagation in the Curved Model. However, plane wave theory can be
used to roughly estimate some of the behavior. We know that the material orien-
tation varies from −60◦ to 60◦ through the thickness of the material. A plot of the
theoretical shear wave speed cSV in this interval is provided in Figure 3.26. We can
see the tendency of this wave speed variation through the thickness in Figure 3.25.

Figure 3.25: The stress distribution at three time instances when the transversely
isotropic material is implemented. The effect of the layers with different material ori-
entations can be seen from that the wave speed varies through the thickness. Here a = 25
mm.
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Figure 3.26: Left: shear wave speed cSV variation in the x1-x3 plane and the x2-x3
plane obtained from plane wave theory. The plot corresponds to the velocity surface in
Figure 3.3. Right: one of the plots from Figure 3.25. We can see the resemblance between
the left plot and the wave front in the right plot.

We observe from the field plots in Figure 3.25 that the stresses are largest near the
inner and outer surface. This can be explained by the following simple reasoning:
higher stiffness causes higher wave speeds, and from structural mechanics, we know
that the stress is normally largest where the structure is stiffest.

In the next paragraphs, we demonstrate how an average value of the shear wave
speed can be estimated, and we perform again a study of the effect of curvature. It
is useful to have knowledge about the dependence of the wave speed on curvature,
because the Truncated Ellipsoid Model is also based one elliptical curves.
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Wave speed study

We found the shear wave speeds by observation of the stress versus time at the
nodes shown in Figure 3.27. We chose to observe 3 nodes in the thickness direction,
because we know the wave speed varies in this direction. From the isotropic case,
we saw that c1 and c2 could differ slightly. However, here we do not consider the
effect that the measured wave speed can differ along the length.

The wave speed was calculated as before; we estimated when the center of the
wave passed the observation nodes. And with knowledge of the distance traveled,
we found the wave speeds. However, with the current model, it is slightly more
difficult to determine the time when the center of the wave passes the nodes. A plot
of the stress versus time at the three nodes is displayed in Figure 3.28a. We can
see that there are relatively large oscillations in the stress. As have been discussed
earlier, oscillations in the response are expected. See for example [18], where they
study wave propagation in a circular ring. They obtained large oscillations in the
response both from FEA and experimental analyses. In Figure 3.28b, the stress
response has been run through the Butterworth filter with a cutoff frequency of
20,000 Hz. The cutoff frequency is based on the frequencies of the oscillations that
we can see in Figure 3.28a. With the filtered plots, it is easier to be consistent with
the wave speed estimation. Note, however, that the filtering does not necessarily
give more correct wave speeds.

We termed the wave speeds ca, cb, and cc and they correspond to the nodes Node 1a,
Node 1b and Node 1c, respectively. We also calculated the average wave speed,
which is termed cavg. The result from the wave speed study is shown in Figure 3.29.
We see that the wave speeds lie within the range 110 to 122 m/s. This agrees to
some extent with what is predicted by plane wave theory, because in Figure 3.26 we

Figure 3.27: The position of the nodes where we observed the stress over time when the
transversely isotropic material was implemented. The nodes are placed according to the
coordinates shown in the figure.
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(a) Mises stress at the three nodes.

(b) Filtering applied to the plots in (a).

Figure 3.28: Stress at the three nodes versus time. We can find the time when the wave
passes the nodes, and then we can calculate the wave speeds. Here a = 25 mm and N = 20.
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Figure 3.29: A plot of the measured wave speeds for different values of a when the
transversely isotropic material is implemented. There seem to be a slight dependence on
the value of a. However, the average wave speed cavg is nearly constant. Here we chose
N = 20 based on that we observed a good accuracy with this mesh density when the
isotropic material was implemented.

see that the wave speed varies from 92 to 160 m/s. It is probably due to interaction
between the waves of the different layers that there is less variation in the wave
speed for the FEM model. In other words, we observe a smearing of the wave front.
To investigate this further, we implemented the transversely isotropic material in
the Straight Model as well. A summary of the result is given in Table 3.3. Note
that since the observation nodes are placed between two layers, the theoretical wave
speeds at those nodes are the average of the wave speeds from the two neighboring
layers.

Table 3.3: A comparison of shear wave speeds from the Curved Model, the Straight Model
and plane wave theory for the case of transversely isotropic material.

Models ca cb cc cavg
Curved Model (a=25 mm) 115.0 111.3 118.6 114.9 [m/s]
Straight Model 118.7 113.2 118.7 116.8 [m/s]
Plane wave theory 153.7 96.8 153.7 134.7 [m/s]

There are several comments that can be made from Table 3.3:

• There is only a difference between ca and cc for the Curved Model. Thus, we
can conclude that the curvature causes a difference between ca and cc.

• The Curved Model and the Straight Model gave relatively similar wave speeds,
which means that the curvature affects the wave speeds only slightly. This is
what we can conclude also from Figure 3.29.

• For both the FEM models, we see that the wave speed variation is far less
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significant than predicted by plane wave theory. In other words, the difference
between ca, cb and cc, obtained from FEA, is not as pronounced as in theory.
From this observation we conclude that plane wave theory is not sufficient to
accurately predict wave propagation in anisotropic layered objects.

Since the wave speeds from the Curved Model agreed to some extent with plane
wave theory, we can say that the model and the wave speed measurement procedure
gave reasonable results. Due to the complexity of the model it is difficult to find a
physical explanation of why ca is measured lower than cc. We see from Figure 3.29
that the difference increases for an increase in a. We can also note that the wave
speeds are more dependent on a for the anisotropic case than for the isotropic case.
Nevertheless, the average wave speed cavg is nearly constant for variation in a. As
seen in Section 3.5, this is a relevant observation for the Truncated Ellipsoid Model.

In the next subsection, mostly for illustrative purposes, we excite the shear horizon-
tal wave mode rather than the shear vertical wave mode, and study the response.

3.4.3 Excitation of shear horizontal wave mode

So far, we have only excited the shear vertical wave mode. In other words, the ma-
terial displacement was mainly in the z-direction. In this subsection, the material
is still transversely isotropic, but the orientation of the load is directed such that
the shear horizontal wave mode is excited, i.e. the material displacement is mainly
in the x-direction. Recall that the material displacement directions of the different
wave modes are always mutually orthogonal. An illustration of the geometry and
load is given in Figure 3.30 together with some analyses of the results.

Recall that previously the side surfaces were only allowed to translate in z-direction,
i.e. ux(x, y, 0, t) = uy(x, y, 0, t) = 0 and ux(x, y, d, t) = uy(x, y, d, t) = 0. Since the
orientation of the load is now changed, it is reasonable to change these boundary
conditions accordingly. We therefore restrained the inner and outer surface to only
move in the x-direction, i.e.
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From Figure 3.30d and the wave speed measurement procedure we found the shear
wave speeds to be ca = cb = cc = 90.5 m/s. The theoretical average is 90.6 m/s.
Thus, similarly as for when the isotropic material was implemented, we found a
shear wave speed close to the theoretical value. This is expected, because there is
almost no wave speed variation through the thickness for the shear horizontal wave
mode, see Figure 3.30c.
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(a) The Curved Model, where the orienta-
tion of the traction load is rotated 90◦ with
respect to the case in Figure 3.19.

(b) Field plot of the Mises stress at t =
3.5 · 10−4. There is almost no wave speed
variation visible through the thickness. We
can expect this due to the plot in (c).

(c) Theoretical shear wave speed
variation in the interval θ = −60◦
to θ = 60◦. The wave speed varies
from 89.97 m/s to 91.99 m/s.

(d) The Mises stress at the three nodes. As we can
see, the stress responses are nearly the same, and give
therefore the same wave speeds.

Figure 3.30: The Curved Model with the transversely isotropic material and a load that
excites the shear horizontal wave mode is shown in (a). A plot of the theoretical shear
wave speed variation from plane wave theory is given in (c). The stress response is shown
in (b) and (d).
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The Curved Model could represent the septum in the heart. In the next section,
we introduce another model of the septum and the rest of the left ventricle. If we
obtain similar wave speeds with this next model, we can assume that the Curved
Model is a good representation of septum.
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3.5 Truncated Ellipsoid Model

The left ventricle is often modeled as a truncated ellipsoid in literature [14, 26].
We therefore created the Truncated Ellipsoid Model with the dimensions shown in
Figure 3.31. The model is partitioned in a similar manner as the Curved Model,
see Figure 3.21. This means that the material orientation varies from +60◦ in the
epicardium to −60◦ in the endocardium. Load duration and mass density are the
same as before, and we have used N=10 in Equation (2.44) to find an approximate
element size. With N=10, about 130 000 elements were generated. Based on the
mesh study of the Curved Model, N = 20 or N = 30 would probably give more
accurate results, but then the computation time becomes impractically long. The
element type is the same as for the Curved Model.

With this model, we wanted to simulate the wave propagation down the septum due
to AVC. There are obviously many simplifications in the Truncated Ellipsoid Model
with respect to reality. Let us therefore briefly discuss some of the simplifications
and assumptions. In reality, the load likely has components in all spatial directions.
However, since wave modes propagate independently of each other, it is acceptable
to have load that mainly excites the shear vertical wave mode down the septum.
This makes it easier to identify the shear wave. Another simplification is that we
have assumed that the thickness is constant. In [26], they show that the thickness
varies, and this might affect the wave propagation. Nevertheless, we do not consider
thickness variation, because it simplifies both the model and analysis. We have also
assumed that the dimensions and stiffness is constant during the wave propagation.
This is a fair assumption, because we extract the wave speed from a short period
of time relative to the contraction time of the heart (this assumption is discussed
in more detail in Section 4.2). Also, we saw in the previous section that it can be
acceptable to neglect the effect of curvature on the wave speed.

The dimensions of the model can be varied easily with the appended Python script.
However, the dimensions we have used to study this model are given in Table 3.4.

Table 3.4: Dimensions of the Truncated Ellipsoid Model. The dimensions are based on
those found in [26].

a b c th
[mm] 25 45 15 10

We wanted to find an average shear wave speed such that we could make an estimate
of the stiffness with the help of Equation (2.16), which is restated here:

c2t =
E

2ρ(1 + ν)
.

In other words, we assumed isotropy when the stiffness of the heart was estimated.
The density ρ and Poisson’s ratio ν were assumed known, and thus the Young’s
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Figure 3.31: The Truncated Ellipsoid Model. The figure on the right shows a cross-
section of the model and the dimensions used. The thickness is constant. A uniformly
distributed traction load is applied to a small part of the top surface, and the part beneath
the load is the septum. To avoid potential rigid body motions, the boundary condition
ui(0,−b, 0, t) = u′i(0,−b, 0, t) = 0 (i = 1, 2, 3) is applied.

modulus E can be determined. We found the average wave speed with a similar
approach as for the Curved Model; we observed the stress at the nodes displayed
in Figure 3.32.

As we can see in Figure 3.33, the wave propagation is now very complex. In
addition to the effects we discussed for the Curved Model, waves can now propagate
in several directions, not only down the septum. We see in this figure that there
are some small disturbances, represented by the dark blue color, that propagate
relatively rapidly. This is the wave front of longitudinal waves, which propagate
approximately 15 times faster than the shear waves. Another observation that can
be made: the first time instance displays clearly the shear wave speed variation
through the thickness, i.e. a shape that resembles Figure 3.26.

Due to the complexity of the problem, it was difficult to come up with a robust
procedure that could be used to find the shear wave speeds. We could not use
the Mises stress, because there were significant contributions to the measure from
longitudinal stress components. We therefore observed the shear stress component
Tyz (S23 in Abaqus) at the nodes. This is the largest shear stress component
and it is computed with respect to the global coordinate axes. Note that the
stress can now be both positive and negative, as opposed to the Mises stress. The
response proved to be very oscillatory; an example is the stress response shown in
Figure 3.34. It is obviously hard to discern when the center of the wave passes the
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Figure 3.32: The position of the nodes where we observed the stress over time. Three
nodes allows us to calculate an estimate of the average wave speed through the thickness.

Figure 3.33: A cross section of the model with field plots of the Mises stress at three
time instances. The gray area is where the stress is 2.8 Pa or higher, while the black area
is where the stress is 6.7 ·10−11 Pa or lower. In other words, the black area is undisturbed
area. The disturbance from the load propagates in all directions.
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Figure 3.34: The shear stress Tyz at Node 1b, before and after the Butterworth filter
was applied. We find the time t1 and t2 from when the stress is approximately zero. As
before, the average of t1 and t2 gives an estimate of when the center of the wave passes
the node, which allows for calculation of the wave speed.

Table 3.5: Shear wave speeds obtained from the Truncated Ellipsoid Model. The result
is compared with what was found from the Curved Model when a = 25 mm.

Models ca cb cc cavg
Truncated Ellipsoid Model 105.8 112.9 117.9 112.2 [m/s]
Curved Model (a=25 mm) 115.0 111.3 118.6 114.9 [m/s]

node, because the oscillations in the response are relatively large. However, the
figure also displays how the Butterworth filter brings forth a shape that resembles
an impulse response. The cutoff frequency was set to 10,000 Hz, based on that the
load duration is 1 · 10−4 seconds. With this cutoff frequency, we filtered out most
of the response with a frequency higher than the impulse load.

An estimate of the shear wave speeds cSV were found by the procedure described
in the previous paragraph and Figure 3.34. The wave speeds are termed similarly
as for the Curved Model. The result is shown in Table 3.5. We see from this table
that the wave speeds cb and cc match well with those found from the Curved Model,
and that ca is noticeable lower for the Truncated Ellipsoid Model. We have not
found a good explanation for why there is a relatively large discrepancy for only
one of the wave speeds. Further investigation is required, but is not performed
here.

Since the load is applied to a small area of the model, the problem is a finite-sized
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wave problem. We saw that the phase velocities were approximately the same for
the Plane Wave Model and the Finite-sized Wave Model. Thus, it is reasonable
that they should be nearly the same for the Curved Model and the Truncated
Ellipsoid Model. With the result in Table 3.5, we can therefore assume that we
obtained reasonable wave speeds. Since the wave speeds for the Curved Model
and the Truncated Ellipsoid Model are nearly the same, we can conclude that the
former model is a decent representation of the septum as well.

With an average wave speed, we can make an estimate for the Young’s Modulus if
we consider the material isotropic:

E = 2ρ(1 + ν)c2avg = 2 · 1060 · (1 + 0.49) · 112.22 = 39.765628 · 106 [Pa],

where we have used the same mass density and Poisson’s ratio as in Section 3.4. It
will be interesting to see whether we obtain a shear wave speed ct that match cavg
when we implement the obtained E into our material. We therefore implemented
an isotropic material with the material parameters from the equation above. With
the same procedure as for the anisotropic case, we obtained ct = 111.4 m/s. Again
we see that the wave speed obtained from FEA is slightly lower than the theoretical
value, which is in this case cavg = 112.2 m/s. This final result gives confidence in
the procedure that produced the wave speeds.



4 Discussion

The results have already been discussed to some extent in the previous chapter. In
this chapter, we discuss some of the assumptions and simplifications we have made
throughout the thesis. We also have some suggestion for future work and studies.

4.1 Material and nonlinearities

As already discussed in Section 3.1, the stiffness coefficients of the transversely
isotropic material are found from a formalin fixed myocardium. Hoffmeister et al.
suggest that there is a significant change in the shear wave speed due to formalin
fixation [13]. We obtained shear wave speeds around 100 m/s with the transverse
isotropic material, while Brekke et al. observed in vivo a wave speed down septum
at approximately 5 m/s [6]. This indicates that the shear stiffness of the material we
have used is too high. Nevertheless, as argued in Section 3.1, it was not important
to produce realistic results. We were more interested in the implications that can be
made from the results, e.g. that FEM can handle wave propagation in anisotropic
media.

In this thesis, we have assumed linear elasticity, which is an acceptable assumption
if the applied perturbations are relatively small. The stress and strain in the heart
wall due to contraction of the muscle is likely relatively high compared to what we
get from AVC. Thus, the small perturbation assumption is valid. In other words,
we have assumed that the stress-strain relationship can be approximated linear for
a small region in the nonlinear material curve, see Figure 4.1. Nevertheless, it might
be interesting to implement nonlinear materials in future FEM models. Holzapfel
et al. mentions several models available in literature of the nonlinear elasticity
of the myocardium. They are isotropic, transversely isotropic or orthotropic [14].
Modeling anisotropy through defining strain-energy functions, which allow nonlin-
ear material behavior, can be an alternative way to implement the material. This
possibility should be considered if someone were to continue with the work in this
thesis.

Another potential source of nonlinearity is geometrical nonlinearities. We know
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Figure 4.1: A schematic illustration of a typical stress-strain relationship for biological
tissue. The red line illustrates how we can assume linearity for a small portion of the
curve, and still be fairly accurate.

that biological tissues allow relatively large elastic deformations. It would therefore
be relevant to look into the effects of geometrical nonlinearity. For example, if the
deformations that come from the wave propagation are relatively large, then the
effect might be relevant to consider. Another example is the pretension we have
in the heart wall due to contraction, which can induce increased stiffness. Chen
et al. show that pretension affects the shear wave when MRE measurements are
performed in vivo [7].

An advantage with linear theory is that we do not have to consider the amplitude of
the load. Throughout this thesis, we used a unit load, which means 1 N/m for the
2D models and 1 N/m2 for the 3D models. If we increased the load, the response
would have the same shape with respect to time. The only difference would be
that the amplitude of the response increased with the same factor as the load, see
Figure 4.2.

We could also consider implementation of viscoelasticity. Some authors choose
to include viscoelasticity in their model of the myocardium, see for example [21].
Holzapfel et al. show how the myocardium has a viscoelastic response due to hys-
teresis effects [14]. However, Holzapfel et al. also argue that although the my-
ocardium appears to be viscoelastic, it is less important from the point of view of
mechanical modeling on the time scale of the cardiac cycle. They explain this with
that the time scale of the cardiac cycle is small compared to the relaxation time
of the viscoelastic response. The cardiac cycle is the sequence of mechanical and
electrical events that repeats with every heart beat, and it has the time scale of
about one second. If the shear wave speed is approximately 5 m/s and the length
of septum is approximately 5 cm, then the time scale of the wave propagation down
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Figure 4.2: This is the stress over time at Node 1b in the Truncated Ellipsoid Model.
Due to linear theory, the shapes of the curves are identical for the two load cases. Note
that there are two ordinate axes, and the leftmost axis is the rightmost axis scaled by the
factor 1000. Obviously, the load case of 1000 Pa refers to the leftmost axis, and vice
versa.

septum is about:

Time scale of wave propagation =
5 cm

5 m/s
= 0.01 s.

Thus, according to Holzapfel et al., we can neglect viscoelastic effects for the prob-
lem at hand. Also, it is not uncommon in literature to assume that dispersion
induced by viscoelasticity is negligible, see for example [4]. This allows us to use
the expressions for wave speeds in elastic media, e.g. Equation (2.15) and (2.16).
Since we are most interested in modeling the wave speeds accurately, and not the
amplitude, it seems fair to neglect viscoelasticity.

We have assumed that the stiffness is constant during the wave propagation. In [10],
they show that stiffness, i.e. Young’s modulus, varies significantly within a single
cardiac cycle. More specifically, they show that it varies between approximately 15
and 105 kPa. At end of systole, when there is aortic-valve closure, they find that
the stiffness is approximately 100 kPa. Based on the results from [10], and that
the time scale of wave propagation is 0.01 seconds, we observe, however, that the
stiffness hardly decreases more than 5 kPa in the time domain of interest. Thus,
the assumption of constant stiffness is justified.
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4.2 Determination of stiffness of heart wall

We saw in Section 3.5 that we can estimate a Young’s Modulus E from knowledge
of the wave propagation speed through the septum. In other words, if we know
the shear wave speed through ultrasonic measurements we can make an estimate
of the stiffness. However, to make this estimate, we have to assume isotropy and
knowledge of the mass density ρ and Poisson’s ratio ν. Let us first discuss the
assumption of isotropy.

4.2.1 Assumption of isotropy

If there is almost no variation of the phase velocity through the thickness of the
septum, then the assumption of isotropy is fair. Let us therefore discuss if it is
acceptable to assume isotropy with respect to the results we obtained from the
Truncated Ellipsoid Model. We saw that the shear wave speed varied when the
transversely isotropic material was implemented into the model. More specifically,
we found that cSV varied from 105.8 to 117.9 m/s, and the average value was 112.2
m/s. Thus, a measure of the variation can be calculated:

117.9− 112.2

112.2
· 100% ≈ 5% and

105.8− 112.2

112.2
· 100% ≈ −6%.

The assumption of isotropy can be acceptable based on the result above, but it
would depend on the required accuracy. In relation to this discussion, it is relevant
to question the wave speed obtained by the Brekke et al. [6]. Their study does
not discuss if some variation of the shear wave speed through the thickness was
observed. With their ultrasonic measurement technique they measured the shear
wave speed along septum in ten healthy subjects. The result was a propagation
velocity of 5.41 m/s with a standard deviation of 1.28 m/s (24%). It might be that
some of the uncertainty in their measurements, i.e. standard deviation, comes
from the variation of the wave speed through the thickness. Regardless, since
the standard deviation of 24% is much larger than the wave speed variation of
approximately ±5%, it is possible that today’s ultrasound technology is not able
to capture this variation. Thus, with the result from Brekke et al., it would be
natural to assume isotropy, and that gives the following Young’s modulus E:

E = 2ρ(1 + ν)c2t = 2 · 1060(1 + 0.49) · 5.41 ≈ 92.5 [kPa],

where we have assumed ρ = 1060 kg/m3 and ν = 0.49. This Young’s modulus E
agrees with what was found in [10]; they measured it to be 100 kPa. Kanai, on the
other hand, found the E to be in the range 25-30 kPa [17]. More research on this
topic is therefore in order.
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4.2.2 Assumption of known density and Poisson’s ratio

It is possible that when a heart suffers from fibrosis, there might be a change in
both ρ and ν, not just E. These two parameters also affect the shear wave speed
through

ct =

√
E

2ρ(1 + ν)
.

We cannot determine all three material parameters for an isotropic model purely
through ultrasonic measurements, because we have only one wave speed available.
Even if researchers are able to find the longitudinal wave speed in addition to the
shear wave speed, then there is still one undetermined material parameter left.
Nevertheless, it is not uncommon in literature to assume that biological tissues are
practically incompressible, i.e. ν ≈ 0.5, see for example [4]. This gives

E ≈ 3ρc2t .

Also, since biological tissues in general consist mainly of water, it should be safe to
assume that formation of scar tissue in myocardium leads to a negligible change in
the density. Thus, with these assumptions, E can be found directly from ultrasound
measurements. A more thorough study of this should be performed in future work.

4.3 Wave speed measurement procedures

With the wave speed measurement procedures presented in this thesis, we have
experienced intraobserver errors. For example, the choice of where we found t1 and
t2 in Figure 3.11 affected the wave speed noticeably. The relatively small length
scales of the models can explain the sensitivity towards the time used to calculate
the wave speeds.

For the Finite-size Wave Model we measured the wave speeds graphically. This
was an elaborate procedure and there were many potential sources of intraobserver
and interobserver errors. For example, the skew angles we found depended on what
time instance we used for the measurements. Also, in Figure 3.16 we saw that the
‘center’ of the wave was used to measure the skew angle. Firstly, there is obviously
a need for the user to interpret where the ‘center’ of the wave is. This can lead
to interobserver errors if someone was to repeat this study. Secondly. we can
question if this is the correct way to measure the skew angle. Figure 4.3 displays
the difficulties discussed in this paragraph. In this figure, we see that there can
be a few degrees discrepancy in the measurement of the skew angle, depending on
where we do the measurement. The general tendency was that the obtained skew
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Figure 4.3: Field plot of the strain energy density when a harmonic load is applied to
the Finite-sized Wave Model with orientation θ = 7.5◦. The harmonic load has the same
frequency as the impulse load. The two drawn-in arrows indicate where we interpret the
center of the wave (phase plane) to be. As we can see, this leads to two slightly different
measurements of the skew angle ψ. The pink arrow gives ψ = −41.2◦, while the white
arrow gives ψ = −38.1◦. The analytical value is ψ = −41.6◦.

angle was closer to the theoretical value when the measurement was performed in
a later time instance.

Nevertheless, for the models we could compare directly with theory, the errors were
less than 6%. Since this error is much lower than the standard deviation of 24%
obtained by Brekke et al. [6], we can be satisfied with the wave speed measurement
procedures for these models.

For the Curved Model (with the transversely isotropic material) and Truncated
Ellipsoid Model we saw that plane wave theory was not able to accurately describe
the wave propagation due to the complexity of the models. It was therefore difficult
to determine the validity of the results. However, as already discussed, the obtained
wave speeds seemed reasonable, because they agreed to some extent with the theory.
Also, with isotropic material implemented, the two models gave results that agreed
excellently with the theory. If time would have allowed it, a study of waves in
layered media and surface waves would have been performed, both theoretically
and numerically. With knowledge of these wave types, we might have been able to
better understand the wave propagation in the two mentioned models.

4.4 Truncated Ellipsoid Model as a model of left
ventricle

As already mentioned in Section 3.5, a truncated ellipsoid has been commonly used
in literature as a model of the left ventricle. It is obvious from Figure 2.2, which is
a realistic illustration of the heart, that the Truncated Ellipsoid Model is a rather
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crude simplification of the left ventricle. Here we will discuss two aspects of this
simplification.

4.4.1 Constant heart wall thickness

We have assumed that the left ventricle has constant thickness. Van den Broek
et al. found that that the thickness was 1.49 cm at the equator and 0.48 cm at
the apex during end-systole [26]. In other words, there is a significant variation of
the thickness. The question is: does this variation affect the results enough to be
considered? This question is left for future studies. In [8], they show that thickness
variation can lead to wave mode conversions and reflections.

4.4.2 Boundary conditions

We have not focused on the boundary conditions of the Truncated Ellipsoid Model.
All the surfaces are free, except for one point at the bottom of the apex where the
model is fixed. This boundary condition was applied only to avoid potential rigid
body motions. For the Plane Wave Model and the Curved Model, we experienced
that the choice boundary conditions could affect the wave propagation. It is there-
fore probable that a change in the boundary conditions for the Truncated Ellipsoid
Model can affect the obtained wave speed. The left ventricle is connected to, for
example, the right ventricle, the atria and the aorta. These connections would
restrain some of the motion from the wave propagation. In other words, these
boundary conditions can add stiffness to the system and thereby increase the wave
speed. Thus, it would be appropriate to consider this in future studies.





5 Concluding remarks

In general, our results of wave propagation in transversely isotropic media agree
well with plane wave theory. We base this conclusion on the results from the two-
dimensional models, because we were able to validate these results with the theory.
Plane wave theory proved to be an efficient tool for predicting even finite-sized wave
propagation. With isotropic material, the three-dimensional models gave wave
speeds that agreed excellently with plane wave theory as well. This experience
gave confidence in the results we obtained when the transversely isotropic material
was implemented, even though we were not able to properly validate these results
with plane wave theory. To understand fully the wave propagation of the three-
dimensional models with transversely isotropic materials, more advanced theory is
probably needed.

Based on the results from the Truncated Ellipsoid Model, we have reason to believe
that the muscle fiber orientation in the myocardium causes a small variation of
the shear wave speed through the thickness. More specifically, we found that the
wave speed varied 5 to 6 percent from an average value. Due to relatively high
measurement inaccuracy it is likely that current ultrasound technology is not able
to capture this variation. Based on this, we argue that it is reasonable to assume
isotropy in the heart wall. This assumption allows us to calculate the stiffness of
the heart wall if we assume that we know the mass density and Poisson’s ratio.
Thus, if researchers are able to obtain data on the mass density and Poisson’s ratio
in addition to the shear wave speed along septum, they can make an estimate of
the stiffness in terms of the Young’s modulus. The results in this thesis show that
we can investigate details of wave propagation in the heart wall with the help of
numerical simulations.
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A Maple scripts

On the following pages one can find two Maple scripts. The first script finds the
phase velocity, energy velocity and skew angle for a wave mode chosen by the user.
The script uses numerical values through all the lines. In other words, there are no
analytical expressions. In the second script we find analytical expressions for the
phase and energy velocities, and then plots of the characteristic surfaces are made.

Note that not all the plots made by Maple in this thesis can be found in the
appended scripts. However, it should be easy to modify the scripts such that they
give the desired plots.

For readers who are not familiar with Maple: remove the colon after a line if you
want to print the result.
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Numerical Values
This Maple script is written such that it calculates the phase velocity,

energy velocity and skew angle in a given wave propagation

direction n (given by ϑ).

Written by Erik Grimsmo.

Use 'restart' to delete all previously saved variables

restart;

Include necessary packages

with LinearAlgebra : with plots : with VectorCalculus :

The number of decimals to be displayed:

interface displayprecision = 2 :

Insert the theta (in degrees) that describes the propagation direction:

θ d20 : θd
θ$Pi

180
: nd convert sin θ , float , 0, convert cos θ , float :

Define the stiffness matrix for transverse isotropic material:

C d Matrix 6, 6, shape = symmetric :

C 1, 1  d 2.46E9 : 

C 2, 2  d 2.46E9 : 

C 3, 3  d 2.53E9 : 

C 4, 4  d 8.97E6 :

C 5, 5  d 8.97E6 :

C 6, 6  d

1

2
C 1, 1 KC 1, 2 :

C 1, 2  d2.4431E9 :

C 1, 3  d 2.44E9 :

C 2, 3  d2.44E9 :

evalm C :

Define the mass density:

ρd1060 :

Define the symmetrical acoustic tensor:

Gamma d Matrix 3, 3, shape = symmetric :

Gamma 1, 1  d C 1, 1 $n 1 2CC 6, 6 $n 2 2CC 5, 5 $n 3 2 :

Gamma 2, 2  d C 6, 6 $n 1 2CC 2, 2 $n 2 2CC 4, 4 $n 3 2 :

Gamma 3, 3  d C 5, 5 $n 1 2CC 4, 4 $n 2 2CC 3, 3 $n 3 2 :

Gamma 1, 2  d C 1, 2 CC 6, 6 $n 1 $n 2 :

Gamma 1, 3  d C 1, 3  C C 5, 5 $n 1 $n 3 :

Gamma 2, 3  d C 2, 3  C C 4, 4 $n 2 $n 3 :

evalm Gamma :

Now, we can find the eigenvalues and eigenvectors of Gamma:

λ, A  dEigenvectors convert Gamma, rational :

Display the eigenvectors one by one:

Normalize A .., 1 , Euclidean :

Normalize A .., 2 , Euclidean :

Normalize A .., 3 , Euclidean :

Display the eigenvalues one by one:

simplify λ 1 :

simplify λ 2 :

simplify λ 3 :

Finding the phase velocities (2 transverse, 1 longitudinal):

PhaseVelocities d sqrt~
λ

~ρ
:
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Find energy velocity. Choose for which mode you want to find the energy velocity (i=1,2,3):

i d 3 :

EnergyVelocity1 d C 1, 1 $A 1, i $A 1, i $n 1  CC 6, 1 $A 2, i $A 1, i $n 1 CC 5, 1 $A 3, i $A 1, i

$n 1

CC 1, 6 $A 1, i $A 2, i $n 1  CC 6, 6 $A 2, i $A 2, i $n 1 CC 5, 6 $A 3, i $A 2, i $n 1

CC 1, 5 $A 1, i $A 3, i $n 1  CC 6, 5 $A 2, i $A 3, i $n 1 CC 5, 5 $A 3, i $A 3, i $n 1

CC 1, 6 $A 1, i $A 1, i $n 2  CC 6, 6 $A 2, i $A 1, i $n 2 CC 5, 6 $A 3, i $A 1, i $n 2

CC 1, 2 $A 1, i $A 2, i $n 2  CC 6, 2 $A 2, i $A 2, i $n 2 CC 5, 2 $A 3, i $A 2, i $n 2

CC 1, 4 $A 1, i $A 3, i $n 2  CC 6, 4 $A 2, i $A 3, i $n 2 CC 5, 4 $A 3, i $A 3, i $n 2

CC 1, 5 $A 1, i $A 1, i $n 3  CC 6, 5 $A 2, i $A 1, i $n 3 CC 5, 5 $A 3, i $A 1, i $n 3  

CC 1, 4 $A 1, i $A 2, i $n 3  CC 6, 4 $A 2, i $A 2, i $n 3 CC 5, 4 $A 3, i $A 2, i $n 3

CC 1, 3 $A 1, i $A 3, i $n 3  CC 6, 3 $A 2, i $A 3, i $n 3 CC 5, 3 $A 3, i $A 3, i $n 3 :

EnergyVelocity2d C 6, 1 $A 1, i $A 1, i $n 1  CC 2, 1 $A 2, i $A 1, i $n 1 CC 4, 1 $A 3, i $A 1, i

$n 1

CC 6, 6 $A 1, i $A 2, i $n 1  CC 2, 6 $A 2, i $A 2, i $n 1 CC 4, 6 $A 3, i $A 2, i $n 1

CC 6, 5 $A 1, i $A 3, i $n 1  CC 2, 5 $A 2, i $A 3, i $n 1 CC 4, 5 $A 3, i $A 3, i $n 1

CC 6, 6 $A 1, i $A 1, i $n 2  CC 2, 6 $A 2, i $A 1, i $n 2 CC 4, 6 $A 3, i $A 1, i $n 2

CC 6, 2 $A 1, i $A 2, i $n 2  CC 2, 2 $A 2, i $A 2, i $n 2 CC 4, 2 $A 3, i $A 2, i $n 2

CC 6, 4 $A 1, i $A 3, i $n 2  CC 2, 4 $A 2, i $A 3, i $n 2 CC 4, 4 $A 3, i $A 3, i $n 2

CC 6, 5 $A 1, i $A 1, i $n 3  CC 2, 5 $A 2, i $A 1, i $n 3 CC 4, 5 $A 3, i $A 1, i $n 3  

CC 6, 4 $A 1, i $A 2, i $n 3  CC 2, 4 $A 2, i $A 2, i $n 3 CC 4, 4 $A 3, i $A 2, i $n 3

CC 6, 3 $A 1, i $A 3, i $n 3  CC 2, 3 $A 2, i $A 3, i $n 3 CC 4, 3 $A 3, i $A 3, i $n 3 :

EnergyVelocity3dC 5, 1 $A 1, i $A 1, i $n 1  CC 4, 1 $A 2, i $A 1, i $n 1 CC 3, 1 $A 3, i $A 1, i

$n 1

CC 5, 6 $A 1, i $A 2, i $n 1  CC 4, 6 $A 2, i $A 2, i $n 1 CC 3, 6 $A 3, i $A 2, i $n 1

CC 5, 5 $A 1, i $A 3, i $n 1  CC 4, 5 $A 2, i $A 3, i $n 1 CC 3, 5 $A 3, i $A 3, i $n 1

CC 5, 6 $A 1, i $A 1, i $n 2  CC 4, 6 $A 2, i $A 1, i $n 2 CC 3, 6 $A 3, i $A 1, i $n 2

CC 5, 2 $A 1, i $A 2, i $n 2  CC 4, 2 $A 2, i $A 2, i $n 2 CC 3, 2 $A 3, i $A 2, i $n 2

CC 5, 4 $A 1, i $A 3, i $n 2  CC 4, 4 $A 2, i $A 3, i $n 2 CC 3, 4 $A 3, i $A 3, i $n 2

CC 5, 5 $A 1, i $A 1, i $n 3  CC 4, 5 $A 2, i $A 1, i $n 3 CC 3, 5 $A 3, i $A 1, i $n 3  

CC 5, 4 $A 1, i $A 2, i $n 3  CC 4, 4 $A 2, i $A 2, i $n 3 CC 3, 4 $A 3, i $A 2, i $n 3

CC 5, 3 $A 1, i $A 3, i $n 3  CC 4, 3 $A 2, i $A 3, i $n 3 CC 3, 3 $A 3, i $A 3, i $n 3  :

EnergyVelocity d

1

ρ$PhaseVelocities i $Norm A .., i 2
$ EnergyVelocity1, EnergyVelocity2,

 EnergyVelocity3 :

Below we calculate the phase velocity, energy velocity and skew angle for the wave mode

given by i.

evalf PhaseVelocities i ;

124.6125030

Norm EnergyVelocity ;

184.5066087

SkewAngledKconvert convert arctan EnergyVelocity 1 , EnergyVelocity 3 , degrees

K

θ$180

Pi
degrees, float ;

SkewAngle :=K47.52 degrees
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Analytical Expressions and Charactersitc Plots
This Maple script find the analytical expressions for

the material displacements, phase velocities and

energy velocities. Thereby the stiffness coefficients

of C are inserted, and the characterstic surface are plotted.

Written by Erik Grimsmo.

Use 'restart' to delete all previously saved variables

restart;

with LinearAlgebra : with plots : with VectorCalculus :

Use the following package if you want to work with degrees rather than radians.
However, note that it does not work with polar plots.

#my_trig d module

 #option package;

 #export sin, cos;

   #sin d x / :-sin Pi*x/180 ;
   #cos d x / :-cos Pi*x/180 ;
 #end module:

 #with my_trig :

The number of decimals to be displayed: 
interface displayprecision = 2 :

Insert the direction cosine of the plane wave (3-direction is the direction of the fibers):

n d cos θ , 0, sin θ :

Define the stiffness matrix for transverse isotropic material:
C d Matrix 6, 6, shape = symmetric :
C 1, 1  d C

11

:

C 2, 2  d C
11

:

C 3, 3  d C
33

:

C 4, 4  d C
44

:

C 5, 5  d C
44

:

C 6, 6  d 

1

2 $ C
11

KC
12

:

C 1, 2  dC
12

:

C 1, 3  d C
13

:

C 2, 3  dC
13

:

evalm C :

Define the symmetrical acoustic tensor:
Gamma d Matrix 3, 3, shape = symmetric :

Gamma 1, 1  d C 1, 1 $n 1 2CC 6, 6 $n 2 2CC 5, 5 $n 3 2 :

Gamma 2, 2  d C 6, 6 $n 1 2CC 2, 2 $n 2 2CC 4, 4 $n 3 2 :

Gamma 3, 3  d C 5, 5 $n 1 2CC 4, 4 $n 2 2CC 3, 3 $n 3 2 :

Gamma 1, 2  d C 1, 2 CC 6, 6 $n 1 $n 2 :
Gamma 1, 3  d C 1, 3  C C 5, 5 $n 1 $n 3 :
Gamma 2, 3  d C 2, 3  C C 4, 4 $n 2 $n 3 :

evalm Gamma :

Now, we can find the eigenvalues and eigenvectors of Gamma:

λ, A  dEigenvectors convert Gamma, rational :

Display the eigenvectors one by one. The eigenvectors represent the material displacements 
(polarizations).
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Normalize A .., 1 , Euclidean :

Normalize A .., 2 , Euclidean :

Normalize A .., 3 , Euclidean :

Display the eigenvalues one by one:

simplify λ 1 :

simplify λ 2 :

simplify λ 3 :

Finding the phase velocities:

PhaseVelocitiesd sqrt~
λ

~ρ
:

Find energy velocity: 
EnergyVelocities dMatrix 3, 3 :

for i from 1 by 1 to 3 do  EnergyVelocities 1, i  d C 1, 1 $A 1, i $A 1, i $n 1  CC 6, 1 $A 2, i $A 1, i

$n 1 CC 5, 1 $A 3, i $A 1, i $n 1

CC 1, 6 $A 1, i $A 2, i $n 1  CC 6, 6 $A 2, i $A 2, i $n 1 CC 5, 6 $A 3, i $A 2, i $n 1

CC 1, 5 $A 1, i $A 3, i $n 1  CC 6, 5 $A 2, i $A 3, i $n 1 CC 5, 5 $A 3, i $A 3, i $n 1

CC 1, 6 $A 1, i $A 1, i $n 2  CC 6, 6 $A 2, i $A 1, i $n 2 CC 5, 6 $A 3, i $A 1, i $n 2

CC 1, 2 $A 1, i $A 2, i $n 2  CC 6, 2 $A 2, i $A 2, i $n 2 CC 5, 2 $A 3, i $A 2, i $n 2

CC 1, 4 $A 1, i $A 3, i $n 2  CC 6, 4 $A 2, i $A 3, i $n 2 CC 5, 4 $A 3, i $A 3, i $n 2
CC 1, 5 $A 1, i $A 1, i $n 3  CC 6, 5 $A 2, i $A 1, i $n 3 CC 5, 5 $A 3, i $A 1, i $n 3  

CC 1, 4 $A 1, i $A 2, i $n 3  CC 6, 4 $A 2, i $A 2, i $n 3 CC 5, 4 $A 3, i $A 2, i $n 3
CC 1, 3 $A 1, i $A 3, i $n 3  CC 6, 3 $A 2, i $A 3, i $n 3 CC 5, 3 $A 3, i $A 3, i $n 3  end do:

for i from 1 by 1 to 3 do EnergyVelocities 2, i d C 6, 1 $A 1, i $A 1, i $n 1  CC 2, 1 $A 2, i $A 1, i

$n 1 CC 4, 1 $A 3, i $A 1, i $n 1

CC 6, 6 $A 1, i $A 2, i $n 1  CC 2, 6 $A 2, i $A 2, i $n 1 CC 4, 6 $A 3, i $A 2, i $n 1

CC 6, 5 $A 1, i $A 3, i $n 1  CC 2, 5 $A 2, i $A 3, i $n 1 CC 4, 5 $A 3, i $A 3, i $n 1

CC 6, 6 $A 1, i $A 1, i $n 2  CC 2, 6 $A 2, i $A 1, i $n 2 CC 4, 6 $A 3, i $A 1, i $n 2

CC 6, 2 $A 1, i $A 2, i $n 2  CC 2, 2 $A 2, i $A 2, i $n 2 CC 4, 2 $A 3, i $A 2, i $n 2

CC 6, 4 $A 1, i $A 3, i $n 2  CC 2, 4 $A 2, i $A 3, i $n 2 CC 4, 4 $A 3, i $A 3, i $n 2
CC 6, 5 $A 1, i $A 1, i $n 3  CC 2, 5 $A 2, i $A 1, i $n 3 CC 4, 5 $A 3, i $A 1, i $n 3  

CC 6, 4 $A 1, i $A 2, i $n 3  CC 2, 4 $A 2, i $A 2, i $n 3 CC 4, 4 $A 3, i $A 2, i $n 3
CC 6, 3 $A 1, i $A 3, i $n 3  CC 2, 3 $A 2, i $A 3, i $n 3 CC 4, 3 $A 3, i $A 3, i $n 3  end do:
for i from 1 by 1 to 3 do EnergyVelocities 3, i dC 5, 1 $A 1, i $A 1, i $n 1  CC 4, 1 $A 2, i $A 1, i

$n 1 CC 3, 1 $A 3, i $A 1, i $n 1

CC 5, 6 $A 1, i $A 2, i $n 1  CC 4, 6 $A 2, i $A 2, i $n 1 CC 3, 6 $A 3, i $A 2, i $n 1

CC 5, 5 $A 1, i $A 3, i $n 1  CC 4, 5 $A 2, i $A 3, i $n 1 CC 3, 5 $A 3, i $A 3, i $n 1

CC 5, 6 $A 1, i $A 1, i $n 2  CC 4, 6 $A 2, i $A 1, i $n 2 CC 3, 6 $A 3, i $A 1, i $n 2

CC 5, 2 $A 1, i $A 2, i $n 2  CC 4, 2 $A 2, i $A 2, i $n 2 CC 3, 2 $A 3, i $A 2, i $n 2

CC 5, 4 $A 1, i $A 3, i $n 2  CC 4, 4 $A 2, i $A 3, i $n 2 CC 3, 4 $A 3, i $A 3, i $n 2

CC 5, 5 $A 1, i $A 1, i $n 3  CC 4, 5 $A 2, i $A 1, i $n 3 CC 3, 5 $A 3, i $A 1, i $n 3  

CC 5, 4 $A 1, i $A 2, i $n 3  CC 4, 4 $A 2, i $A 2, i $n 3 CC 3, 4 $A 3, i $A 2, i $n 3

CC 5, 3 $A 1, i $A 3, i $n 3  CC 4, 3 $A 2, i $A 3, i $n 3 CC 3, 3 $A 3, i $A 3, i $n 3    end do:

for i from 1 by 1 to 3 do EnergyVelocities .., i  d

1

ρ$PhaseVelocities i $Norm A .., i 2

$EnergyVelocities .., i  end do:

We now have analyitcal expressions for the phase velocities , material displacement and energy 
velocities.
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Now we insert values for C and ρ such that characteristic surfaces can be found.

C
11

 d 2.46E9 :

C
33

 d 2.53E9 :

C
44

 d 8.97E6 :

C
12

 d2.4431E9 :

C
13

 d 2.44E9 :

ρ d1060 :
eval PhaseVelocities :

Now the characteristic surfaces can be plotted. We first plot the velocity surfaces:

plota  dplot PhaseVelocities 1 , θ= 0 .. 2$ Pi, coords = polar, color = red :

plotb d plot PhaseVelocities 2 , θ = 0 ..  2 $Pi, coords = polar, color = blue :

plotc d plot PhaseVelocities 3 , θ= 0 ..  2 $Pi, coords = polar, color = green :

display plota, plotb, plotc , ;
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Plots of the slowness surfaces.

plota  dplot

1

PhaseVelocities 1  , θ= 0 .. 2$Pi, coords = polar, color = red :

plotb d plot

1

PhaseVelocities 2 , θ = 0 ..  2$Pi,  coords = polar, color = blue :

plotc d plot

1

PhaseVelocities 3
, θ= 0 .. 2$Pi, coords = polar, color = green :

display plota, plotb, plotc ;
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Plots of the energy surfaces

plota  dplot Norm EnergyVelocities .., 1 , θ= 0 .. 2$ Pi, coords = polar, color = red :

plotb d plot Norm EnergyVelocities .., 2 , θ = 0 ..  2 $Pi, coords = polar, color = blue :

plotc d plot Norm EnergyVelocities .., 3 , θ= 0 ..  2 $Pi, coords = polar, color = green :
display plota, plotb, plotc ;
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B Python scripts

In this chapter, one can find the Python scripts that generate the four models
discussed in this thesis. We have also appended the model, which was briefly
discussed in Figure 2.18. One procedure to run the script, is to open Abaqus CAE
(Abaqus’ graphical user interface), click on ‘File’ and then ‘Run script...’.

The scripts are written such that there are some variables in the beginning of the
script that the user can edit. These variables are typically the dimensions of the
geometry, mesh density, load amplitude etc. In this way, the user does not have to
read and understand all the code to be able to work with the scripts.

Comment: we have experienced that Abaqus’ has a tendency to crash when we
run the scripts due to the applied traction load. We have not found any report on
this bug on the World Wide Web. Nevertheless, a way to avoid this problem is to
comment out the lines in the code where the traction load is applied. Next: run
the script (now, no load is applied to the model), and then uncomment the lines
previously commented out. Finally, run the script again, and everything should
then be in order.
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Plane Wave Model

#This is a python script that creates an FEM model referred to as the Plane Wave Model

#in the master thesis. Under the section "Define variables", the user can specify for example 

#the geometry or mesh density.

#Written by Erik Grimsmo

#------------------------------------------------------Initialize---------------------------------------------------------------

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *

from load import *

from mesh import *

from optimization import *

from job import *

from sketch import *

from visualization import *

from connectorBehavior import *

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE)

#Change work directory (use your personal directory, and uncomment the line below)

#os.chdir(r'D:\abaqusworkdirectory')

#----------------------------------------------Define variables--------------------------------------------------------------

a = 0.2 #Height of plate

b = 0.2 #Length of plate

theta = 45 #Orientation of plate. 0 degrees = n aligned with fibre direction

rho = 1060.0 #Density

F = 1.0 #The amplitude of the applied traction load

t = 0.0015 #Period of time integration

c_t = 100.0 #Approx. transverse wave speed, used to find appropriate element size

loadTime = 1E-4 #Duration of blast load

N = 10 #Number of elements over which the load will take place

elSize = loadTime*c_t/n #Element size

#Do not alter the script after this section, 

#unless you are familiar with python scripting in Abaqus

#----------------------------------------------Create model---------------------------------------------------------------
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theta = 90-theta #The model was initially made with  theta

#equal to zero along x1-direction. This is fixed with this line.

mdb.Model(name='PWM')

mdb.models['PWM'].setValues(noPartsInputFile=ON)

#----------------------------------------------Create sketch---------------------------------------------------------------

mdb.models['PWM'].ConstrainedSketch(name='plateSketch', sheetSize=200.0)

mdb.models['PWM'].sketches['plateSketch'].rectangle(point1=(0.0, 0.0),

point2=(a, b))

mdb.models['PWM'].Part(dimensionality=TWO_D_PLANAR, name='plate',

type=DEFORMABLE_BODY)

mdb.models['PWM'].parts['plate'].BaseShell(sketch=

mdb.models['PWM'].sketches['plateSketch'])

#----------------------------------------------Define material------------------------------------------------------------

#Isotropic material

mdb.models['PWM'].Material(name='isotropic')

mdb.models['PWM'].materials['isotropic'].Density(table=((1060.0, ), ))

mdb.models['PWM'].materials['isotropic'].Elastic(table=((39765628.0, 0.49), ))

#Transverse isotropic material

mdb.models['PWM'].Material(name='anisotropic')

mdb.models['PWM'].materials['anisotropic'].Elastic(table=((2460000000.0,

2440000000.0, 2530000000.0, 2443100000.0, 2440000000.0, 2460000000.0, 0.0,

0.0, 0.0, 8970000.0, 0.0, 0.0, 0.0, 0.0, 8450000.0, 0.0, 0.0, 0.0, 0.0,

0.0, 8970000), ), type=ANISOTROPIC)

mdb.models['PWM'].materials['anisotropic'].Density(table=((rho, ), ))

mdb.models['PWM'].parts['plate'].MaterialOrientation(

additionalRotationField='', additionalRotationType=ROTATION_ANGLE, angle=

0, axis=AXIS_3, fieldName='', localCsys=None, orientationType=SYSTEM,

region=Region(

faces=mdb.models['PWM'].parts['plate'].faces.getByBoundingBox(

-1,-1,-1,a+1,b+1,1) ,), stackDirection=STACK_3)

#----------------------------------------------Create section---------------------------------------------------------------

#Choose here what material you want to work with

mdb.models['PWM'].HomogeneousSolidSection(material='anisotropic', name=

'Section-1', thickness=None)

mdb.models['PWM'].parts['plate'].SectionAssignment(offset=0.0,

offsetField='', offsetType=MIDDLE_SURFACE, region=Region(

faces=mdb.models['PWM'].parts['plate'].faces.getSequenceFromMask(

mask=('[#1 ]', ), )), sectionName='Section-1', thicknessAssignment=

FROM_SECTION)



Plane Wave Model

#----------------------------------------------Partition face--------------------------------------------------------------

#Here we partition the face that allow defining a set at the  center of the model

mdb.models['PWM'].ConstrainedSketch(gridSpacing=0.001, name='__profile__',

sheetSize=0.044, transform=

mdb.models['PWM'].parts['plate'].MakeSketchTransform(

sketchPlane=mdb.models['PWM'].parts['plate'].faces.findAt((

a/2, b/2, 0.0), (0.0, 0.0, 1.0)), sketchPlaneSide=SIDE1,

sketchOrientation=RIGHT, origin=(0.0, 0.0, 0.0)))

mdb.models['PWM'].parts['plate'].projectReferencesOntoSketch(filter=

COPLANAR_EDGES, sketch=mdb.models['PWM'].sketches['__profile__'])

mdb.models['PWM'].sketches['__profile__'].Line(point1=(0.0, b/2), point2=(

a, b/2))

mdb.models['PWM'].sketches['__profile__'].Line(point1=(a/2, 0.0), point2=(

a/2, b))

mdb.models['PWM'].parts['plate'].PartitionFaceBySketch(faces=

mdb.models['PWM'].parts['plate'].faces.findAt(((a/2,

b/2, 0.0), )), sketch=mdb.models['PWM'].sketches['__profile__'])

del mdb.models['PWM'].sketches['__profile__']

#----------------------------------------------Create assembly--------------------------------------------------------------

mdb.models['PWM'].rootAssembly.DatumCsysByDefault(CARTESIAN)

mdb.models['PWM'].rootAssembly.Instance(dependent=ON, name='plate-1',

part=mdb.models['PWM'].parts['plate'])

#------------------------------------------------Create step-------------------------------------------------------------------

mdb.models['PWM'].ExplicitDynamicsStep(name='dynamic',previous=

'Initial', timePeriod=t, quadBulkViscosity=0.0, linearBulkViscosity=0.06)

#------------------------------------------Apply BCs and load---------------------------------------------------------------

#Fixed end        

mdb.models['PWM'].DisplacementBC(amplitude=UNSET, createStepName='Initial',

distributionType=UNIFORM, fieldName='', localCsys=None, name='fixedEnd',

region=Region(

edges=mdb.models['PWM'].rootAssembly.instances['plate-1'].edges.findAt(

((a, b/4, 0.0), ), ((a,3*b/4,0.0),), )), u1=SET, u2=SET, ur3=SET)

#Determine the load shape in time

mdb.models['PWM'].SmoothStepAmplitude(data=((0.0, 0.0), (loadTime-1E-5, 0.0), (

loadTime, 1.0), (2*loadTime, 1.0), (2*loadTime+1E-5, 0.0)), name='impulse_smooth', timeSpan=STEP)

#Apply surface traction
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mdb.models['PWM'].SurfaceTraction(amplitude='impulse_smooth', createStepName=

'dynamic', directionVector=(

mdb.models['PWM'].rootAssembly.instances['plate-1'].InterestingPoint(

mdb.models['PWM'].rootAssembly.instances['plate-1'].edges.findAt(

(a, 0.0, 0.0), ), MIDDLE),

mdb.models['PWM'].rootAssembly.instances['plate-1'].vertices.findAt(

(a, b/2, 0.0), )), distributionType=UNIFORM, field='', localCsys=None,

magnitude=F, name='traction', region=Region(

side1Edges=mdb.models['PWM'].rootAssembly.instances['plate-1'].edges.findAt(

((0, b/4, 0.0), ), ((0, 3*b/4, 0.0), ), )), resultant=ON)

#----------------------------------------------Generate mesh-------------------------------------------------------------

mdb.models['PWM'].parts['plate'].seedPart(deviationFactor=0.1,

minSizeFactor=0.1, size=elSize)

mdb.models['PWM'].parts['plate'].setMeshControls(elemShape=QUAD,

regions=mdb.models['PWM'].parts['plate'].faces.findAt(((a/4,

b/4, 0.0),), ((3*a/4,b/4,0),), ((a/4,3*b/4,0),), ((3*a/4,3*b/4,0),) ), technique=STRUCTURED)

mdb.models['PWM'].parts['plate'].setElementType(elemTypes=(ElemType(

elemCode=CPE4R, elemLibrary=STANDARD, secondOrderAccuracy=OFF,

hourglassControl=DEFAULT, distortionControl=DEFAULT), ElemType(

elemCode=CPE4R, elemLibrary=STANDARD)), regions=(

mdb.models['PWM'].parts['plate'].faces.findAt(((a/4,

b/4, 0.0),), ((3*a/4,b/4,0),), ((a/4,3*b/4,0),), ((3*a/4,3*b/4,0),),),))

mdb.models['PWM'].parts['plate'].generateMesh()

#----------------------------Rotate plate and apply boundary condititions---------------------------------------

mdb.models['PWM'].rootAssembly.rotate(angle=theta, axisDirection=(0.0, 0.0,

1.0), axisPoint=(0.0, 0.0, 0.0), instanceList=('plate-1', ))

#Apply boundary conditions that can only be applied after rotation

theta = theta*pi/180

myDatum = mdb.models['PWM'].rootAssembly.DatumCsysByThreePoints(coordSysType=CARTESIAN

, name='Datum csys-2', origin=

mdb.models['PWM'].rootAssembly.instances['plate-1'].vertices.findAt(

(0.0, 0.0, 0.0), ), point1=

mdb.models['PWM'].rootAssembly.instances['plate-1'].vertices.findAt(

(a*cos(theta), a*sin(theta), 0.0), ), point2=

mdb.models['PWM'].rootAssembly.instances['plate-1'].vertices.findAt(

(-b*sin(theta), b*cos(theta), 0.0), ))

mdb.models['PWM'].DisplacementBC(amplitude=UNSET, createStepName='Initial',

distributionType=UNIFORM, fieldName='',

localCsys=mdb.models['PWM'].rootAssembly.datums[myDatum.id], name='fixedEnd',

region=Region(

edges=mdb.models['PWM'].rootAssembly.instances['plate-1'].edges.findAt(
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((a*cos(theta)-0.25*b*sin(theta), a*sin(theta)+0.25*b*cos(theta), 0.0), ),

((a*cos(theta)-0.75*b*sin(theta), a*sin(theta)+0.75*b*cos(theta), 0.0), ), )),

u1=SET, u2=SET, ur3=SET)

mdb.models['PWM'].DisplacementBC(amplitude=UNSET, createStepName='Initial',

distributionType=UNIFORM, fieldName='', localCsys=

mdb.models['PWM'].rootAssembly.datums[myDatum.id], name='rolling support', region=Region(

edges=mdb.models['PWM'].rootAssembly.instances['plate-1'].edges.findAt(

((0.25*a*cos(theta), 0.25*a*sin(theta), 0.0), ),

((0.75*a*cos(theta), 0.75*a*sin(theta), 0.0), ),

((0.25*a*cos(theta)-b*sin(theta), 0.25*a*sin(theta)+b*cos(theta), 0.0), ),

((0.75*a*cos(theta)-b*sin(theta), 0.75*a*sin(theta)+b*cos(theta), 0.0), ),

)), u1=SET, u2=UNSET, ur3=UNSET)

#--------------------------------------------------Request outputs---------------------------------------------------------

#Define set at center and at load of plate

mdb.models['PWM'].parts['plate'].Set(name='midNode', vertices=

mdb.models['PWM'].parts['plate'].vertices.findAt(((a/2, b/2,

0.0), )))

#History output at midnode

mdb.models['PWM'].historyOutputRequests['H-Output-1'].setValues(frequency=1,

rebar=EXCLUDE, region=

mdb.models['PWM'].rootAssembly.instances['plate-1'].sets['midNode']

, sectionPoints=DEFAULT, variables=('UT', 'S12', ))

#Field output

mdb.models['PWM'].fieldOutputRequests['F-Output-1'].setValues(numIntervals=

300, directions=OFF, variables=('S', ))

#----------------------------------------------Create job ---------------------------------------------------------------------

mdb.models['PWM'].rootAssembly.regenerate()

mdb.Job(activateLoadBalancing=False, atTime=None, contactPrint=OFF,

description='', echoPrint=OFF, explicitPrecision=SINGLE, historyPrint=OFF,

model='PWM', modelPrint=OFF, multiprocessingMode=DEFAULT, name=

'Plane_Wave_Model', nodalOutputPrecision=SINGLE, numCpus=1, numDomains=

1, parallelizationMethodExplicit=DOMAIN, queue=None, scratch='', type=

ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0)



Finite-sized Wave Model

#This is a python script that creates an FEM model referred to as the Finite-sized Wave Model

#in the master thesis. Under the section "Define variables", the user can specify for example 

#the geometry or mesh density.

#Written by Erik Grimsmo

#------------------------------------------------------Initialize---------------------------------------------------------------

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *

from load import *

from mesh import *

from optimization import *

from job import *

from sketch import *

from visualization import *

from connectorBehavior import *

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE)

#Change work directory (use your personal directory, and uncomment the line below)

#os.chdir(r'D:\abaqusworkdirectory')

#----------------------------------------------Define variables--------------------------------------------------------------

a = 0.1#Height of plate

b = 0.4 #Length of plate

c = 0.04 #Length of half  the domain where the load is applied

theta = 45 #Orientation of plate. 0 degrees = n aligned with fibre direction

rho = 1060.0 #Density

F = 1.0 #The amplitude of the applied traction load

t = 0.001 #Period of time integration

c_t = 100 #Approx.  shear wave speed, used to find appropriate element size

loadTime = 1E-4 #Duration of blast load

N = 10 #Number of elements over which the load will take place

elSize = loadTime*c_t/n #Element size

#Do not alter the script after this section, 

#unless you are familiar with python scripting in Abaqus

#----------------------------------------------Create model---------------------------------------------------------------

eps = 0.0001 #A variable that helps with modeling

theta = 90-theta #The model was initially made with  theta

#equal to zero along x1-direction. This is fixed with this line.

mdb.Model(name='FSWM')

mdb.models['FSWM'].setValues(noPartsInputFile=ON)
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#----------------------------------------------Create sketch---------------------------------------------------------------

mdb.models['FSWM'].ConstrainedSketch(name='plateSketch', sheetSize=200.0)

mdb.models['FSWM'].sketches['plateSketch'].rectangle(point1=(0.0, 0.0),

point2=(a, b))

mdb.models['FSWM'].Part(dimensionality=TWO_D_PLANAR, name='plate',

type=DEFORMABLE_BODY)

mdb.models['FSWM'].parts['plate'].BaseShell(sketch=

mdb.models['FSWM'].sketches['plateSketch'])

#----------------------------------------------Define material------------------------------------------------------------

#Isotropic material

mdb.models['FSWM'].Material(name='isotropic')

mdb.models['FSWM'].materials['isotropic'].Density(table=((1060.0, ), ))

mdb.models['FSWM'].materials['isotropic'].Elastic(table=((39765628.0, 0.49), ))

#Transverse isotropic material

mdb.models['FSWM'].Material(name='anisotropic')

mdb.models['FSWM'].materials['anisotropic'].Elastic(table=((2460000000.0,

2440000000.0, 2530000000.0, 2443100000.0, 2440000000.0, 2460000000.0, 0.0,

0.0, 0.0, 8970000.0, 0.0, 0.0, 0.0, 0.0, 8450000.0, 0.0, 0.0, 0.0, 0.0,

0.0, 8970000), ), type=ANISOTROPIC)

mdb.models['FSWM'].materials['anisotropic'].Density(table=((rho, ), ))

mdb.models['FSWM'].parts['plate'].MaterialOrientation(

additionalRotationField='', additionalRotationType=ROTATION_ANGLE, angle=

0, axis=AXIS_3, fieldName='', localCsys=None, orientationType=SYSTEM,

region=Region(

faces=mdb.models['FSWM'].parts['plate'].faces.getByBoundingBox(

-1,-1,-1,a+1,b+1,1) ,), stackDirection=STACK_3)

#----------------------------------------------Create section---------------------------------------------------------------

#Choose here what material you want to work with

mdb.models['FSWM'].HomogeneousSolidSection(material='anisotropic', name=

'Section-1', thickness=None)

mdb.models['FSWM'].parts['plate'].SectionAssignment(offset=0.0,

offsetField='', offsetType=MIDDLE_SURFACE, region=Region(

faces=mdb.models['FSWM'].parts['plate'].faces.getSequenceFromMask(

mask=('[#1 ]', ), )), sectionName='Section-1', thicknessAssignment=

FROM_SECTION)

#----------------------------------------------Partition face--------------------------------------------------------------

#We apply the partitions in the section, because want the partition where the load is to be 

#applied.

mdb.models['FSWM'].ConstrainedSketch(gridSpacing=0.001, name='__profile__',

sheetSize=0.044, transform=

mdb.models['FSWM'].parts['plate'].MakeSketchTransform(

sketchPlane=mdb.models['FSWM'].parts['plate'].faces.findAt((

a/2, b/2, 0.0), (0.0, 0.0, 1.0)), sketchPlaneSide=SIDE1,

sketchOrientation=RIGHT, origin=(0.0, 0.0, 0.0)))

mdb.models['FSWM'].parts['plate'].projectReferencesOntoSketch(filter=

COPLANAR_EDGES, sketch=mdb.models['FSWM'].sketches['__profile__'])
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mdb.models['FSWM'].sketches['__profile__'].Line(point1=(0.0, b/2), point2=(

a, b/2))

mdb.models['FSWM'].sketches['__profile__'].Line(point1=(0.0, b/2+c), point2=(

a, b/2+c))

mdb.models['FSWM'].sketches['__profile__'].Line(point1=(a, b/2-c), point2=(

0.0, b/2-c))

mdb.models['FSWM'].parts['plate'].PartitionFaceBySketch(faces=

mdb.models['FSWM'].parts['plate'].faces.findAt(((a/2,

b/2, 0.0), )), sketch=mdb.models['FSWM'].sketches['__profile__'])

del mdb.models['FSWM'].sketches['__profile__']

#----------------------------------------------Create assembly--------------------------------------------------------------

mdb.models['FSWM'].rootAssembly.DatumCsysByDefault(CARTESIAN)

mdb.models['FSWM'].rootAssembly.Instance(dependent=ON, name='plate-1',

part=mdb.models['FSWM'].parts['plate'])

#------------------------------------------------Create step-------------------------------------------------------------------

mdb.models['FSWM'].ExplicitDynamicsStep(name='dynamic',previous=

'Initial', timePeriod=t, quadBulkViscosity=0.0)

#-----------------------------------------Define load and BCs--------------------------------------------------------------

#Determine the load shape in time

mdb.models['FSWM'].SmoothStepAmplitude(data=((0.0, 0.0), (loadTime-1E-5, 0.0), (

loadTime, 1.0), (2*loadTime, 1.0), (2*loadTime+1E-5, 0.0)), name='impulse_smooth', timeSpan=STEP)

#Fixed end    

mdb.models['FSWM'].DisplacementBC(amplitude=UNSET, createStepName='Initial',

distributionType=UNIFORM, fieldName='', localCsys=None, name='fixedEnd',

region=Region(

edges=mdb.models['FSWM'].rootAssembly.instances['plate-1'].edges.findAt(

((a, b-eps, 0.0), ), ((a,eps,0.0),),((a, b/2-eps, 0.0), ), ((a,b/2+eps,0.0),),

)), u1=SET, u2=SET, ur3=SET)

#Apply surface traction

mdb.models['FSWM'].SurfaceTraction(amplitude='impulse_smooth', createStepName=

'dynamic', directionVector=(

mdb.models['FSWM'].rootAssembly.instances['plate-1'].InterestingPoint(

mdb.models['FSWM'].rootAssembly.instances['plate-1'].edges.findAt(

(a, 0.0, 0.0), ), MIDDLE),

mdb.models['FSWM'].rootAssembly.instances['plate-1'].vertices.findAt(

(a, b/2, 0.0), )), distributionType=UNIFORM, field='', localCsys=None,

magnitude=F, name='traction', region=Region(

side1Edges=mdb.models['FSWM'].rootAssembly.instances['plate-1'].edges.findAt(

((0, b/2+eps, 0.0), ), ((0, b/2-eps, 0.0), ), )), resultant=ON)

#----------------------------------------------Generate mesh-------------------------------------------------------------

mdb.models['FSWM'].parts['plate'].seedPart(deviationFactor=0.1,

minSizeFactor=0.1, size=elSize)

mdb.models['FSWM'].parts['plate'].setMeshControls(elemShape=QUAD,

regions=mdb.models['FSWM'].parts['plate'].faces.getByBoundingBox(

-1,-1,-1,a+1,b+1,2 ), technique=STRUCTURED)
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mdb.models['FSWM'].parts['plate'].setElementType(elemTypes=(ElemType(

elemCode=CPE4R, elemLibrary=STANDARD, secondOrderAccuracy=OFF,

hourglassControl=DEFAULT, distortionControl=DEFAULT), ElemType(

elemCode=CPE4R, elemLibrary=STANDARD)), regions=(

mdb.models['FSWM'].parts['plate'].faces.getByBoundingBox(

-1,-1,-1,a+1,b+1,2 ),))

mdb.models['FSWM'].parts['plate'].generateMesh()

#-----------------------------------------------Rotate plate---------------------------------------------------------------

mdb.models['FSWM'].rootAssembly.rotate(angle=theta, axisDirection=(0.0, 0.0,

1.0), axisPoint=(0.0, 0.0, 0.0), instanceList=('plate-1', ))

#--------------------------------------------------Request outputs---------------------------------------------------------

#Field output

mdb.models['FSWM'].fieldOutputRequests['F-Output-1'].setValues(numIntervals=

300, directions=OFF, variables=('S', 'ENER','SVAVG', 'U', 'V', 'A'))

#----------------------------------------------Create job ---------------------------------------------------------------------

mdb.models['FSWM'].rootAssembly.regenerate()

mdb.Job(activateLoadBalancing=False, atTime=None, contactPrint=OFF,

description='', echoPrint=OFF, explicitPrecision=SINGLE, historyPrint=OFF,

model='FSWM', modelPrint=OFF, multiprocessingMode=DEFAULT, name=

'Finite-sized_Wave_Model', nodalOutputPrecision=SINGLE, numCpus=1, numDomains=

1, parallelizationMethodExplicit=DOMAIN, queue=None, scratch='', type=

ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0)
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#This is a python script that creates an FEM model referred to as the Curved Model

#in the master thesis. Under the section "Define variables", the user can specify for example 

#the geometry or mesh density.

#Written by Erik Grimsmo

#------------------------------------------------------Initialize---------------------------------------------------------------

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *

from load import *

from mesh import *

from optimization import *

from job import *

from sketch import *

from visualization import *

from connectorBehavior import *

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE)

#Change work directory (use your personal directory, and uncomment the line below)

#os.chdir(r'D:\abaqusworkdirectory')

#----------------------------------------------Define variables--------------------------------------------------------------

a = 0.025 #Short axis of ellipse

b = 0.045 #Long axis of ellipse

c = 0.015 #Dimension used to define height of ellipse

th = 0.01 #Thickness (of heart wall)

d = 0.01 #Depth of extrusion

numberOfPartitions = 10 #Number of partitions of the myocardium 

#through it thickness (select even number)

rho = 1060.0 #Density

F = 1.0 #The amplitude of the applied traction load

t = 0.0005 #Period of time integration

c_t = 100 #Approx longitudinal wave speed

loadTime = 1E-4 #Duration of blast load

N = 20 #Number of elements over which the load will take place

elSize = loadTime*c_t/n #Element size

#Do not alter the script after this section, 

#unless you are familiar with python scripting in Abaqus

#----------------------------------------------Create model---------------------------------------------------------------

eps = 0.0001 #A variable that helps with modeling

r = sqrt(1-(c/b)**2)*a #A dimension that is used a lot
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mdb.Model(name='CM')

mdb.models['CM'].setValues(noPartsInputFile=ON)

#----------------------------------------------Create sketch---------------------------------------------------------------

mdb.models['CM'].ConstrainedSketch(name='__profile__', sheetSize=1.0)

mdb.models['CM'].sketches['__profile__'].ConstructionLine(point1=(0.0,

-0.5), point2=(0.0, 0.5))

mdb.models['CM'].sketches['__profile__'].EllipseByCenterPerimeter(

axisPoint1=(0.0, -b), axisPoint2=(a, 0.0), center=(0.0, 0.0))

mdb.models['CM'].sketches['__profile__'].EllipseByCenterPerimeter(

axisPoint1=(0.0, -b+th), axisPoint2=(a-th, 0.0), center=(0.0, 0.0))

mdb.models['CM'].sketches['__profile__'].Line(point1=(0.0,

-b+th), point2=(0.0, -b))

mdb.models['CM'].sketches['__profile__'].Line(point1=(

sqrt(1-(c/(b-th))**2)*(a-th), c), point2=(r, c))

mdb.models['CM'].sketches['__profile__'].geometry.findAt((-a, 0.0))

mdb.models['CM'].sketches['__profile__'].autoTrimCurve(curve1=

mdb.models['CM'].sketches['__profile__'].geometry.findAt((-a,

0.0), ), point1=(-a, 0.0))

mdb.models['CM'].sketches['__profile__'].geometry.findAt((-a+th, 0.0))

mdb.models['CM'].sketches['__profile__'].autoTrimCurve(curve1=

mdb.models['CM'].sketches['__profile__'].geometry.findAt((-a+th, 0.0), ),

point1=(-a+th, 0.0))

mdb.models['CM'].sketches['__profile__'].geometry.findAt((0, b))

mdb.models['CM'].sketches['__profile__'].autoTrimCurve(curve1=

mdb.models['CM'].sketches['__profile__'].geometry.findAt((0, b), ),

point1=(0, b))

mdb.models['CM'].sketches['__profile__'].geometry.findAt((0, b-th))

mdb.models['CM'].sketches['__profile__'].autoTrimCurve(curve1=

mdb.models['CM'].sketches['__profile__'].geometry.findAt((0, b-th), ),

point1=(0, b-th))

mdb.models['CM'].Part(dimensionality=THREE_D, name='Part-1', type=

DEFORMABLE_BODY)

mdb.models['CM'].parts['Part-1'].BaseSolidExtrude(depth=d, sketch=

mdb.models['CM'].sketches['__profile__'])

del mdb.models['CM'].sketches['__profile__']

#----------------------------------------------Define material------------------------------------------------------------

#Isotropic material

mdb.models['CM'].Material(name='isotropic')

mdb.models['CM'].materials['isotropic'].Density(table=((1060.0, ), ))

mdb.models['CM'].materials['isotropic'].Elastic(table=((31588000.0, 0.49), ))

#Transverse isotropic material

mdb.models['CM'].Material(name='anisotropic')

mdb.models['CM'].materials['anisotropic'].Elastic(table=((2460000000.0,

2443100000.0, 2460000000.0, 2440000000.0, 2440000000.0, 2530000000.0, 0.0,

0.0, 0.0, 8970000.0, 0.0, 0.0, 0.0, 0.0, 8970000.0, 0.0, 0.0, 0.0, 0.0,

0.0, 8450000.0), ), type=ANISOTROPIC)

mdb.models['CM'].materials['anisotropic'].Density(table=((rho, ), ))
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#----------------------------------------------Create section---------------------------------------------------------------

#Choose here what material you want to work with

mdb.models['CM'].HomogeneousSolidSection(material='anisotropic', name=

'Section-1', thickness=None)

mdb.models['CM'].parts['Part-1'].SectionAssignment(offset=0.0, offsetField=''

, offsetType=MIDDLE_SURFACE, region=Region(

cells=mdb.models['CM'].parts['Part-1'].cells.findAt(((a, 0,

0), ), )), sectionName='Section-1', thicknessAssignment=

FROM_SECTION)

#------------------------------------Partition thickness of the model--------------------------------------------------

mdb.models['CM'].ConstrainedSketch(gridSpacing=0.02, name='__profile__',

sheetSize=1.07, transform=

mdb.models['CM'].parts['Part-1'].MakeSketchTransform(

sketchPlane=mdb.models['CM'].parts['Part-1'].faces.findAt((a-th/2,

0.0, 0.0), ), sketchPlaneSide=SIDE1,

sketchUpEdge=mdb.models['CM'].parts['Part-1'].edges.findAt((0.0, -b+th/2,

0.0), ), sketchOrientation=RIGHT, origin=(0.0, 0.0, 0.0)))

mdb.models['CM'].parts['Part-1'].projectReferencesOntoSketch(filter=

COPLANAR_EDGES, sketch=mdb.models['CM'].sketches['__profile__'])

l1 = th/numberOfPartitions #Length of one partition

for i in range(numberOfPartitions-1):

mdb.models['CM'].sketches['__profile__'].EllipseByCenterPerimeter(

axisPoint1=(0.0, b-(i+1)*l1), axisPoint2=(a-(i+1)*l1, 0.0), center=(0.0, 0.0))

mdb.models['CM'].parts['Part-1'].PartitionFaceBySketch(faces=

mdb.models['CM'].parts['Part-1'].faces.findAt(((a-th/2, 0.0,

0.0), )), sketch=mdb.models['CM'].sketches['__profile__'],

sketchUpEdge=mdb.models['CM'].parts['Part-1'].edges.findAt((0.0, -b+th/2,

0.0), ))

for i in range(numberOfPartitions-1):

mdb.models['CM'].parts['Part-1'].PartitionCellBySweepEdge(cells=

mdb.models['CM'].parts['Part-1'].cells.findAt(((a, 0.0,

d/2), )), edges=(mdb.models['CM'].parts['Part-1'].edges.findAt((

a-th+(i+1)*l1, 0.0, 0), ), ), sweepPath=

mdb.models['CM'].parts['Part-1'].edges.findAt((r, c,

d/2), ))

#Finally, material orientation can be given to each cell

for i in range(numberOfPartitions):

mdb.models['CM'].parts['Part-1'].MaterialOrientation(

additionalRotationField='', additionalRotationType=ROTATION_ANGLE, angle=

60-i*120/(numberOfPartitions-1), axis=AXIS_1, flipNormalDirection=False,

flipPrimaryDirection=False,

normalAxisDefinition=SURFACE, normalAxisDirection=AXIS_1, normalAxisRegion=

Region(side1Faces=mdb.models['CM'].parts['Part-1'].faces.findAt(((

a, 0.0, d/2), ), )), orientationType=DISCRETE,

primaryAxisDefinition=EDGE, primaryAxisDirection=AXIS_3, primaryAxisRegion=

Region(edges=mdb.models['CM'].parts['Part-1'].edges.findAt(((0.0,

-b, d/2), ), )), region=Region(
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cells=mdb.models['CM'].parts['Part-1'].cells.findAt(((a-i*l1-eps, 0.0,

d/2), ), )), stackDirection=STACK_3)

#----------------------------------------------Other partitions--------------------------------------------------------------

#The following partitions are created such that we can define sets where the stress

#vs. time will be extracted

myDatum1 = mdb.models['CM'].parts['Part-1'].DatumPlaneByPrincipalPlane(offset=0.0,

principalPlane=XZPLANE)

myDatum2 = mdb.models['CM'].parts['Part-1'].DatumPlaneByPrincipalPlane(offset=-c,

principalPlane=XZPLANE)

myDatum3 = mdb.models['CM'].parts['Part-1'].DatumPlaneByPrincipalPlane(offset=d/2,

principalPlane=XYPLANE)

mdb.models['CM'].parts['Part-1'].PartitionCellByDatumPlane(cells=

mdb.models['CM'].parts['Part-1'].cells.getByBoundingBox(

-1,-b-1,-1,a+1,c+1,d+1), datumPlane=

mdb.models['CM'].parts['Part-1'].datums[myDatum1.id])

mdb.models['CM'].parts['Part-1'].PartitionCellByDatumPlane(cells=

mdb.models['CM'].parts['Part-1'].cells.getByBoundingBox(

-1,-b-1,-1,a+1,c+1,d+1), datumPlane=

mdb.models['CM'].parts['Part-1'].datums[myDatum2.id])

mdb.models['CM'].parts['Part-1'].PartitionCellByDatumPlane(cells=

mdb.models['CM'].parts['Part-1'].cells.getByBoundingBox(

-1,-b-1,-1,a+1,c+1,d+1), datumPlane=

mdb.models['CM'].parts['Part-1'].datums[myDatum3.id])

#Define the sets

mdb.models['CM'].parts['Part-1'].Set(name='node1b', vertices=

mdb.models['CM'].parts['Part-1'].vertices.findAt(((a-th/2, 0.0, d/2),

)))

mdb.models['CM'].parts['Part-1'].Set(name='node1c', vertices=

mdb.models['CM'].parts['Part-1'].vertices.findAt(((a-l1, 0.0, d/2),

)))

mdb.models['CM'].parts['Part-1'].Set(name='node1a', vertices=

mdb.models['CM'].parts['Part-1'].vertices.findAt(((

a-(numberOfPartitions-1)*l1, 0.0, d/2), )))

mdb.models['CM'].parts['Part-1'].Set(name='node2', vertices=

mdb.models['CM'].parts['Part-1'].vertices.findAt(((

sqrt(1-(c/(b-numberOfPartitions/2*l1))**2)*(a-numberOfPartitions/2*l1), -c,

d/2), )))

#----------------------------------------------Create assembly--------------------------------------------------------------

mdb.models['CM'].rootAssembly.DatumCsysByDefault(CARTESIAN)

mdb.models['CM'].rootAssembly.Instance(dependent=OFF, name='CM-1',

part=mdb.models['CM'].parts['Part-1'])

#------------------------------------------------Create step-------------------------------------------------------------------

mdb.models['CM'].ExplicitDynamicsStep(name='dynamic', previous=

'Initial', timePeriod=t, quadBulkViscosity=1.2)

#-----------------------------------------Define load and BCs--------------------------------------------------------------
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#Fixed end    

mdb.models['CM'].EncastreBC(createStepName='Initial', localCsys=None, name=

'encastre', region=Region(

faces=mdb.models['CM'].rootAssembly.instances['CM-1'].faces.getByBoundingBox(

-eps,-b-eps,-eps,eps,-b+th+eps,d+eps)))

#Fix sides

mdb.models['CM'].DisplacementBC(amplitude=UNSET, createStepName='Initial',

distributionType=UNIFORM, fieldName='', localCsys=None, name='fix U1 and U2 1',

region=Region(

faces=mdb.models['CM'].rootAssembly.instances['CM-1'].faces.getByBoundingBox(

-1,-b-1,-eps,a+1,c+1,eps)), u1=SET, u2=SET, u3=UNSET, ur1=UNSET,

ur2=UNSET, ur3=UNSET)

mdb.models['CM'].DisplacementBC(amplitude=UNSET, createStepName='Initial',

distributionType=UNIFORM, fieldName='', localCsys=None, name='fix U1 and U2 2',

region=Region(

faces=mdb.models['CM'].rootAssembly.instances['CM-1'].faces.getByBoundingBox(

-1,-b-1,d-eps,a+1,c+1,d+eps)), u1=SET, u2=SET, u3=UNSET, ur1=UNSET,

ur2=UNSET, ur3=UNSET)

#Determine the load shape in time

mdb.models['CM'].SmoothStepAmplitude(data=((0.0, 0.0), (1E-4-1E-5, 0.0), (

1E-4, 1.0), (1E-4+loadTime, 1.0), (1E-4+loadTime+1E-5, 0.0)), name='impulse_smooth', timeSpan=

STEP)

#Apply surface traction

mdb.models['CM'].SurfaceTraction(amplitude='impulse_smooth',

createStepName='dynamic', directionVector=(

mdb.models['CM'].rootAssembly.instances['CM-1'].vertices.findAt((

a, 0.0, 0.0), ),

mdb.models['CM'].rootAssembly.instances['CM-1'].vertices.findAt((

a, 0.0, d), )), distributionType=UNIFORM, field='', localCsys=None

, magnitude=F, name='shear', region=Region(

side1Faces=mdb.models['CM'].rootAssembly.instances['CM-1'].faces.getByBoundingBox(

0,c-eps,-1,a+1,c+eps,d+1 )))

#----------------------------------------------Generate mesh-------------------------------------------------------------

mdb.models['CM'].rootAssembly.seedPartInstance(deviationFactor=0.1,

minSizeFactor=0.1, regions=(

mdb.models['CM'].rootAssembly.instances['CM-1'], ), size=elSize)

mdb.models['CM'].rootAssembly.setElementType(elemTypes=(ElemType(

elemCode=C3D8R, elemLibrary=EXPLICIT, secondOrderAccuracy=OFF,

kinematicSplit=AVERAGE_STRAIN, hourglassControl=DEFAULT,

distortionControl=DEFAULT), ElemType(elemCode=C3D6, elemLibrary=EXPLICIT),

ElemType(elemCode=C3D4, elemLibrary=EXPLICIT)), regions=(

mdb.models['CM'].rootAssembly.instances['CM-1'].cells.getByBoundingBox(

-1,-b-1,-1,a+1,c+1,d+1), ))

mdb.models['CM'].rootAssembly.generateMesh(regions=(

mdb.models['CM'].rootAssembly.instances['CM-1'],))

#--------------------------------------------------Request outputs---------------------------------------------------------

mdb.models['CM'].fieldOutputRequests['F-Output-1'].setValues(directions=OFF,

numIntervals=400, variables=('S', 'SVAVG', 'U','ENER' ,))
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#----------------------------------------------Create job ---------------------------------------------------------------------

mdb.models['CM'].rootAssembly.regenerate()

mdb.Job(activateLoadBalancing=False, atTime=None, contactPrint=OFF,

description='', echoPrint=OFF, explicitPrecision=SINGLE, historyPrint=OFF,

model='CM', modelPrint=OFF, multiprocessingMode=DEFAULT, name=

'Curved_Model', nodalOutputPrecision=SINGLE, numCpus=1, numDomains=1,

parallelizationMethodExplicit=DOMAIN, queue=None, scratch='', type=ANALYSIS

, userSubroutine='', waitHours=0, waitMinutes=0)



Truncated Ellipsoid Model

#This is a python script that creates an FEM model referred to as the Truncated Ellipsoid Model

#in the master thesis. Under the section "Define variables", the user can specify for example 

#the geometry or mesh density.

#Written by Erik Grimsmo

#------------------------------------------------------Initialize---------------------------------------------------------------

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *

from load import *

from mesh import *

from optimization import *

from job import *

from sketch import *

from visualization import *

from connectorBehavior import *

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE)

#Change work directory (use your personal directory, and uncomment the line below)

#os.chdir(r'D:\abaqusworkdirectory')

#----------------------------------------------Define variables--------------------------------------------------------------

a = 0.025 #Short axis of ellipsoid

b = 0.045 #Long axis of ellipsoid

c = 0.015 #Dimension used to define height of ellipsoid

th = 0.01 #Thickness of heart wall

numberOfPartitions = 10 #Number of partitions of the myocardium 

#through it thickness (select even number)

rho = 1060.0 #Density

F = 1.0 #The amplitude of the applied traction load

t = 0.0005 #Period of time integration

c_t= 100 #Approx transverse wave speed

loadTime = 1E-4 #Duration of blast load

N = 10 #Number of elements over which the load will take place

elSize = loadTime*c_t/n #Element size

#Do not alter the script after this section, 

#unless you are familiar with python scripting in Abaqus

#----------------------------------------------Create model---------------------------------------------------------------

eps = 0.00001 #A variable that helps with modeling

mdb.Model(name='TEM')

mdb.models['TEM'].setValues(noPartsInputFile=ON)
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#----------------------------------------------Create sketch---------------------------------------------------------------

mdb.models['TEM'].ConstrainedSketch(name='__profile__', sheetSize=1.0)

mdb.models['TEM'].sketches['__profile__'].ConstructionLine(point1=(0.0,

-0.5), point2=(0.0, 0.5))

mdb.models['TEM'].sketches['__profile__'].EllipseByCenterPerimeter(

axisPoint1=(0.0, -b), axisPoint2=(a, 0.0), center=(0.0, 0.0))

mdb.models['TEM'].sketches['__profile__'].EllipseByCenterPerimeter(

axisPoint1=(0.0, -b+th), axisPoint2=(a-th, 0.0), center=(0.0, 0.0))

mdb.models['TEM'].sketches['__profile__'].Line(point1=(0,

-b), point2=(0, -b+th))

mdb.models['TEM'].sketches['__profile__'].Line(point1=(

sqrt(1-(c/(b-th))**2)*(a-th), c), point2=(sqrt(1-(c/b)**2)*a, c))

mdb.models['TEM'].sketches['__profile__'].geometry.findAt((-a, 0.0))

mdb.models['TEM'].sketches['__profile__'].autoTrimCurve(curve1=

mdb.models['TEM'].sketches['__profile__'].geometry.findAt((-a,

0.0), ), point1=(-a, 0.0))

mdb.models['TEM'].sketches['__profile__'].geometry.findAt((-a+th, 0.0))

mdb.models['TEM'].sketches['__profile__'].autoTrimCurve(curve1=

mdb.models['TEM'].sketches['__profile__'].geometry.findAt((-a+th, 0.0), ),

point1=(-a+th, 0.0))

mdb.models['TEM'].sketches['__profile__'].geometry.findAt((eps, b))

mdb.models['TEM'].sketches['__profile__'].autoTrimCurve(curve1=

mdb.models['TEM'].sketches['__profile__'].geometry.findAt((eps, b), ),

point1=(eps, b))

mdb.models['TEM'].sketches['__profile__'].geometry.findAt((eps, b-th))

mdb.models['TEM'].sketches['__profile__'].autoTrimCurve(curve1=

mdb.models['TEM'].sketches['__profile__'].geometry.findAt((eps, b-th), ),

point1=(eps, b-th))

mdb.models['TEM'].Part(dimensionality=THREE_D, name='ellipsoid', type=

DEFORMABLE_BODY)

mdb.models['TEM'].parts['ellipsoid'].BaseSolidRevolve(angle=360.0,

flipRevolveDirection=OFF, sketch=

mdb.models['TEM'].sketches['__profile__'])

del mdb.models['TEM'].sketches['__profile__']

#----------------------------------------------Define material------------------------------------------------------------

#Isotropic material

mdb.models['TEM'].Material(name='isotropic')

mdb.models['TEM'].materials['isotropic'].Density(table=((1060.0, ), ))

mdb.models['TEM'].materials['isotropic'].Elastic(table=((39765628.0, 0.49), ))

#Anisotropic material

mdb.models['TEM'].Material(name='anisotropic')

mdb.models['TEM'].materials['anisotropic'].Elastic(table=((2460000000.0,

2443100000.0, 2460000000.0, 2440000000.0, 2440000000.0, 2530000000.0, 0.0,

0.0, 0.0, 8970000.0, 0.0, 0.0, 0.0, 0.0, 8970000.0, 0.0, 0.0, 0.0, 0.0,

0.0, 8450000.0), ), type=ANISOTROPIC)

mdb.models['TEM'].materials['anisotropic'].Density(table=((rho, ), ))

#----------------------------------------------Create section---------------------------------------------------------------
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#Choose here what material you want to work with

mdb.models['TEM'].HomogeneousSolidSection(material='anisotropic', name=

'Section-1', thickness=None)

mdb.models['TEM'].parts['ellipsoid'].SectionAssignment(offset=0.0, offsetField=''

, offsetType=MIDDLE_SURFACE, region=Region(

cells=mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((a, 0,

0), ), )), sectionName='Section-1', thicknessAssignment=

FROM_SECTION)

#----------------Create the partitions that are to have different material orientations-------------------

#Partition faces

mdb.models['TEM'].parts['ellipsoid'].PartitionCellByPlaneThreePoints(cells=

mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((a, 0.0,

0.0), )), point1=mdb.models['TEM'].parts['ellipsoid'].vertices.findAt((

sqrt(1-(c/(b-th))**2)*(a-th), c, 0.0), ), point2=

mdb.models['TEM'].parts['ellipsoid'].vertices.findAt((sqrt(1-(c/b)**2)*a, c, 0.0), )

, point3=mdb.models['TEM'].parts['ellipsoid'].vertices.findAt((0.0, -b,

0.0), ))

mdb.models['TEM'].parts['ellipsoid'].PartitionCellByPlaneThreePoints(cells=

mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((0.0, 0.0,

a), ), ((0.0, 0.0, -a), )), point1=

mdb.models['TEM'].parts['ellipsoid'].InterestingPoint(

mdb.models['TEM'].parts['ellipsoid'].edges.findAt((0.0, c, sqrt(1-(c/(b-th))**2)*(a-th)),

), MIDDLE), point2=mdb.models['TEM'].parts['ellipsoid'].InterestingPoint(

mdb.models['TEM'].parts['ellipsoid'].edges.findAt((0.0, c, -sqrt(1-(c/(b-th))**2)*(a-th)

), ), MIDDLE), point3=

mdb.models['TEM'].parts['ellipsoid'].vertices.findAt((0.0, -b, 0.0), ))

mdb.models['TEM'].ConstrainedSketch(gridSpacing=0.03, name='__profile__',

sheetSize=1.56, transform=

mdb.models['TEM'].parts['ellipsoid'].MakeSketchTransform(

sketchPlane=mdb.models['TEM'].parts['ellipsoid'].faces.findAt((a-th/2,

0.0, 0.0), ), sketchPlaneSide=SIDE1,

sketchUpEdge=mdb.models['TEM'].parts['ellipsoid'].edges.findAt((sqrt(1-(c/b)**2)*a-th/2,

c, 0.0), ), sketchOrientation=TOP, origin=(0.0, 0.0, 0.0)))

mdb.models['TEM'].parts['ellipsoid'].projectReferencesOntoSketch(filter=

COPLANAR_EDGES, sketch=mdb.models['TEM'].sketches['__profile__'])

l1 = th/numberOfPartitions

for i in range(numberOfPartitions-1):

mdb.models['TEM'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(

0.0, -b+(i+1)*l1), axisPoint2=(a-(i+1)*l1, 0.0), center=(0.0, 0.0))

mdb.models['TEM'].parts['ellipsoid'].PartitionFaceBySketch(faces=

mdb.models['TEM'].parts['ellipsoid'].faces.findAt(((a-th/2, 0.0,

0.0), ), ), sketch=

mdb.models['TEM'].sketches['__profile__'], sketchOrientation=TOP,

sketchUpEdge=mdb.models['TEM'].parts['ellipsoid'].edges.findAt((sqrt(1-(c/b)**2)*a-th/2,

c, 0.0), ))

del mdb.models['TEM'].sketches['__profile__']

#Partition cells

for i in range(numberOfPartitions-1):
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mdb.models['TEM'].parts['ellipsoid'].PartitionCellBySweepEdge(cells=

mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((eps, 0.0,

-a+th), )), edges=(mdb.models['TEM'].parts['ellipsoid'].edges.findAt((

a-(i+1)*l1, 0.0, 0.0), ), ), sweepPath=

mdb.models['TEM'].parts['ellipsoid'].edges.findAt((eps, c,-sqrt(1-(c/b)**2)*a

), ))

mdb.models['TEM'].parts['ellipsoid'].PartitionCellBySweepEdge(cells=

mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((eps, 0.0,

a-th), )), edges=(mdb.models['TEM'].parts['ellipsoid'].edges.findAt((

a-(i+1)*l1, 0.0, 0.0), ), ), sweepPath=

mdb.models['TEM'].parts['ellipsoid'].edges.findAt((eps, c,sqrt(1-(c/b)**2)*a

), ))

mdb.models['TEM'].parts['ellipsoid'].PartitionCellBySweepEdge(cells=

mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((-eps, 0.0,

-a+th), )), edges=(mdb.models['TEM'].parts['ellipsoid'].edges.findAt((

0.0, 0.0, -a+(i+1)*l1), ), ), sweepPath=

mdb.models['TEM'].parts['ellipsoid'].edges.findAt((-eps, c,-sqrt(1-(c/b)**2)*a

), ))

mdb.models['TEM'].parts['ellipsoid'].PartitionCellBySweepEdge(cells=

mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((-eps, 0.0,

a-th), )), edges=(mdb.models['TEM'].parts['ellipsoid'].edges.findAt((

0.0, 0.0, a-(i+1)*l1), ), ), sweepPath=

mdb.models['TEM'].parts['ellipsoid'].edges.findAt((-eps, c,sqrt(1-(c/b)**2)*a

), ))

#--------------------------------------Assign material orientations----------------------------------------------------

for i in range(numberOfPartitions):

mdb.models['TEM'].parts['ellipsoid'].MaterialOrientation(

additionalRotationField='', additionalRotationType=ROTATION_ANGLE, angle=

-30-i*120/(numberOfPartitions-1), axis=AXIS_1, flipNormalDirection=False, flipPrimaryDirection=

False,

normalAxisDefinition=SURFACE, normalAxisDirection=AXIS_1, normalAxisRegion=

Region(side1Faces=mdb.models['TEM'].parts['ellipsoid'].faces.findAt(((

a, 0.0, -eps), ), )), orientationType=DISCRETE,

primaryAxisDefinition=EDGE, primaryAxisDirection=AXIS_2, primaryAxisRegion=

Region(edges=mdb.models['TEM'].parts['ellipsoid'].edges.findAt(((sqrt(1-(c/b)**2)*a,

c, -eps), ), )), region=Region(

cells=mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((a-i*l1-eps,

0.0, -eps), ), )), stackDirection=STACK_3)

mdb.models['TEM'].parts['ellipsoid'].MaterialOrientation(

additionalRotationField='', additionalRotationType=ROTATION_ANGLE, angle=

-30-i*120/(numberOfPartitions-1), axis=AXIS_1, flipNormalDirection=False, flipPrimaryDirection=

False,

normalAxisDefinition=SURFACE, normalAxisDirection=AXIS_1, normalAxisRegion=

Region(side1Faces=mdb.models['TEM'].parts['ellipsoid'].faces.findAt(((

a, 0.0, eps), ), )), orientationType=DISCRETE,

primaryAxisDefinition=EDGE, primaryAxisDirection=AXIS_2, primaryAxisRegion=

Region(edges=mdb.models['TEM'].parts['ellipsoid'].edges.findAt(((sqrt(1-(c/b)**2)*a,

c, eps), ), )), region=Region(

cells=mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((a-i*l1-eps,

0.0, eps), ), )), stackDirection=STACK_3)

mdb.models['TEM'].parts['ellipsoid'].MaterialOrientation(

additionalRotationField='', additionalRotationType=ROTATION_ANGLE, angle=

-30-i*120/(numberOfPartitions-1), axis=AXIS_1, flipNormalDirection=False, flipPrimaryDirection=

False,
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normalAxisDefinition=SURFACE, normalAxisDirection=AXIS_1, normalAxisRegion=

Region(side1Faces=mdb.models['TEM'].parts['ellipsoid'].faces.findAt(((

-a, 0.0, -eps), ), )), orientationType=DISCRETE,

primaryAxisDefinition=EDGE, primaryAxisDirection=AXIS_2, primaryAxisRegion=

Region(edges=mdb.models['TEM'].parts['ellipsoid'].edges.findAt(((-sqrt(1-(c/b)**2)*a,

c, -eps), ), )), region=Region(

cells=mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((-a+i*l1+eps,

0.0, -eps), ), )), stackDirection=STACK_3)

mdb.models['TEM'].parts['ellipsoid'].MaterialOrientation(

additionalRotationField='', additionalRotationType=ROTATION_ANGLE, angle=

-30-i*120/(numberOfPartitions-1), axis=AXIS_1, flipNormalDirection=False, flipPrimaryDirection=

False,

normalAxisDefinition=SURFACE, normalAxisDirection=AXIS_1, normalAxisRegion=

Region(side1Faces=mdb.models['TEM'].parts['ellipsoid'].faces.findAt(((

-a, 0.0, eps), ), )), orientationType=DISCRETE,

primaryAxisDefinition=EDGE, primaryAxisDirection=AXIS_2, primaryAxisRegion=

Region(edges=mdb.models['TEM'].parts['ellipsoid'].edges.findAt(((-sqrt(1-(c/b)**2)*a,

c, eps), ), )), region=Region(

cells=mdb.models['TEM'].parts['ellipsoid'].cells.findAt(((-a+i*l1+eps,

0.0, eps), ), )), stackDirection=STACK_3)

#----------------------------------------------Create assembly--------------------------------------------------------------

mdb.models['TEM'].rootAssembly.DatumCsysByDefault(CARTESIAN)

mdb.models['TEM'].rootAssembly.Instance(dependent=OFF, name='ellipsoid-1',

part=mdb.models['TEM'].parts['ellipsoid'])

#------------------------------------------------Create step-------------------------------------------------------------------

mdb.models['TEM'].ExplicitDynamicsStep(name='dynamic', previous=

'Initial', timePeriod=t, quadBulkViscosity=1.2)

#-----------------------------------------Define load and BCs--------------------------------------------------------------

#BC

mdb.models['TEM'].DisplacementBC(amplitude=UNSET, createStepName='Initial',

distributionType=UNIFORM, fieldName='', localCsys=None, name='fix', region=

Region(

vertices=mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].vertices.findAt(

((0.0, -b, 0.0), ), )), u1=SET, u2=SET, u3=SET, ur1=SET, ur2=SET, ur3=

SET)

#Create partitions necessary to be able to apply load and at the same time maintain a structured mesh

myDatum1 = mdb.models['TEM'].rootAssembly.DatumPlaneByPrincipalPlane(offset=0.0,

principalPlane=XZPLANE)

myDatum3 = mdb.models['TEM'].rootAssembly.DatumPlaneByPrincipalPlane(offset=-c,

principalPlane=XZPLANE)

mdb.models['TEM'].rootAssembly.PartitionCellByDatumPlane(cells=

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].cells.getByBoundingBox(

-2*b,-2*b,-2*b,2*b,2*b,2*b), datumPlane=mdb.models['TEM'].rootAssembly.datums[myDatum1.id])

mdb.models['TEM'].rootAssembly.PartitionCellByDatumPlane(cells=

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].cells.getByBoundingBox(

-2*b,-2*b,-2*b,2*b,2*b,2*b), datumPlane=mdb.models['TEM'].rootAssembly.datums[myDatum3.id])

#Create surface partition where the load is to be applied
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mdb.models['TEM'].ConstrainedSketch(gridSpacing=0.02, name='__profile__',

sheetSize=1.0, transform=mdb.models['TEM'].rootAssembly.MakeSketchTransform(

sketchPlane=mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].faces.findAt(

(sqrt(1-(c/b)**2)*a-th/2, c, -eps), ), sketchPlaneSide=SIDE1,

sketchUpEdge=mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].edges.findAt(

(sqrt(1-(c/b)**2)*a, c, -eps), ), sketchOrientation=RIGHT, origin=(0.0, c,

0.0)))

mdb.models['TEM'].rootAssembly.projectReferencesOntoSketch(filter=COPLANAR_EDGES

, sketch=mdb.models['TEM'].sketches['__profile__'])

mdb.models['TEM'].sketches['__profile__'].Line(point1=(0.0, 0.0), point2=(

-sqrt(1-(c/b)**2)*a*cos(pi/16), sqrt(1-(c/b)**2)*a*sin(pi/16)))

mdb.models['TEM'].sketches['__profile__'].Line(point1=(0.0, 0.0), point2=(

-sqrt(1-(c/b)**2)*a*cos(pi/16), -sqrt(1-(c/b)**2)*a*sin(pi/16)))

mdb.models['TEM'].rootAssembly.PartitionFaceBySketch(faces=

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].faces.getByBoundingBox(

-a,c-eps,-a,a,c+eps,a ), sketch=

mdb.models['TEM'].sketches['__profile__'], sketchUpEdge=

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].edges.findAt((

sqrt(1-(c/b)**2)*a, c, -eps), ))

del mdb.models['TEM'].sketches['__profile__']

#Determine the load shape in time

mdb.models['TEM'].SmoothStepAmplitude(data=((0.0, 0.0), (1E-4-1E-5, 0.0), (

1E-4, 1.0), (1E-4+loadTime, 1.0), (1E-4+loadTime+1E-5, 0.0)), name='impulse_smooth', timeSpan=STEP)

#Apply surface traction

mdb.models['TEM'].SurfaceTraction(amplitude='impulse_smooth', createStepName=

'dynamic', directionVector=(

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].vertices.findAt((

0.0, 0.0, -a), ),

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].vertices.findAt((

0.0, 0.0, a), )), distributionType=UNIFORM, field='',

localCsys=None, magnitude=F, name='shear', region=Region(

side1Faces=mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].faces.getByBoundingBox(

-a,c-eps,-a,-eps,c+eps,a )))

#----------------------------------------------Generate mesh-------------------------------------------------------------

mdb.models['TEM'].rootAssembly.seedPartInstance(deviationFactor=0.1,

minSizeFactor=0.1, regions=(

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'], ), size=elSize)

mdb.models['TEM'].rootAssembly.generateMesh(regions=(

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'], ))

#--------------------------------------------------Request outputs---------------------------------------------------------

#Field output

mdb.models['TEM'].fieldOutputRequests['F-Output-1'].setValues(directions=OFF,

numIntervals=400, variables=('S', 'SVAVG', 'ENER', ))

#Define sets

mdb.models['TEM'].rootAssembly.Set(name='node1c', vertices=

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].vertices.findAt(((

-a+l1, 0.0, 0.0), )))

mdb.models['TEM'].rootAssembly.Set(name='node1b', vertices=

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].vertices.findAt(((
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-a+th/2, 0.0, 0.0), )))

mdb.models['TEM'].rootAssembly.Set(name='node1a', vertices=

mdb.models['TEM'].rootAssembly.instances['ellipsoid-1'].vertices.findAt(((

-a+(numberOfPartitions-1)*l1, 0.0, 0.0), )))

#History output

mdb.models['TEM'].HistoryOutputRequest(createStepName='dynamic', frequency=10,

name='H-Output-1', rebar=EXCLUDE, region=

mdb.models['TEM'].rootAssembly.sets['node1b'], sectionPoints=

DEFAULT, variables=('U',))

#----------------------------------------------Create job ---------------------------------------------------------------------

mdb.models['TEM'].rootAssembly.regenerate()

mdb.Job(activateLoadBalancing=False, atTime=None, contactPrint=OFF,

description='', echoPrint=OFF, explicitPrecision=SINGLE, historyPrint=OFF,

model='TEM', modelPrint=OFF, multiprocessingMode=DEFAULT, name=

'Truncated_Ellipsoid_Model', nodalOutputPrecision=SINGLE, numCpus=1, numDomains=1,

parallelizationMethodExplicit=DOMAIN, queue=None, scratch='', type=ANALYSIS

, userSubroutine='', waitHours=0, waitMinutes=0)
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#This is a python script that creates the FEM model that illustrates the wave surface in the

#theory capter in the master thesis. Under the section "Define variables", the user can specify 

#for example the geometry or mesh density. Note that this model has a different material

#than the other models

#Written by Erik Grimsmo

#------------------------------------------------------Initialize---------------------------------------------------------------

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *

from load import *

from mesh import *

from optimization import *

from job import *

from sketch import *

from visualization import *

from connectorBehavior import *

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE)

#Change work directory (use your personal directory, and uncomment the line below)

#os.chdir(r'D:\abaqusworkdirectory')

#----------------------------------------------Define variables--------------------------------------------------------------

inner = 75 #inner radius

outer = 3300 #outer radius

rho = 1060.0 #Density

F = 100 #Amplitude of applied pressure

loadTime = 2.0 #Duration of load

t = 1.1 #Period of time integration

n = 30 #Number of elements in seed

#----------------------------------------------Create model---------------------------------------------------------------

eps = 0.00001 #A variable that helps with modeling

mdb.Model(name='WSM')

mdb.models['WSM'].setValues(noPartsInputFile=ON)

#----------------------------------------------Create sketch---------------------------------------------------------------

mdb.models['WSM'].ConstrainedSketch(name='__profile__', sheetSize=

1.0)

mdb.models['WSM'].sketches['__profile__'].CircleByCenterPerimeter(

center=(0.0, 0.0), point1=(inner, 0.0))

mdb.models['WSM'].sketches['__profile__'].CircleByCenterPerimeter(

center=(0.0, 0.0), point1=(outer, 0.0))
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mdb.models['WSM'].Part(dimensionality=TWO_D_PLANAR, name='circularPlate',

type=DEFORMABLE_BODY)

mdb.models['WSM'].parts['circularPlate'].BaseShell(sketch=

mdb.models['WSM'].sketches['__profile__'])

del mdb.models['WSM'].sketches['__profile__']

#----------------------------------------------Define material------------------------------------------------------------

mdb.models['WSM'].Material(name='anisotropic')

mdb.models['WSM'].materials['anisotropic'].Elastic(table=((2460000000.0,

2440000000.0, 10000000000.0, 2443100000.0, 2440000000.0, 2460000000.0, 0.0,

0.0, 0.0, 8970000.0, 0.0, 0.0, 0.0, 0.0, 8450000.0, 0.0, 0.0, 0.0, 0.0,

0.0, 8970000), ), type=ANISOTROPIC)

mdb.models['WSM'].materials['anisotropic'].Density(table=((rho, ), ))

mdb.models['WSM'].parts['circularPlate'].MaterialOrientation(

additionalRotationField='', additionalRotationType=ROTATION_ANGLE, angle=

0, axis=AXIS_3, fieldName='', localCsys=None, orientationType=SYSTEM,

region=Region(

faces=mdb.models['WSM'].parts['circularPlate'].faces.findAt(((outer-eps,

0.0, 0.0), ), )), stackDirection=STACK_3)

#----------------------------------------------Create section---------------------------------------------------------------

mdb.models['WSM'].HomogeneousSolidSection(material='anisotropic', name=

'Section-1', thickness=None)

mdb.models['WSM'].parts['circularPlate'].SectionAssignment(offset=0.0,

offsetField='', offsetType=MIDDLE_SURFACE, region=Region(

faces=mdb.models['WSM'].parts['circularPlate'].faces.getSequenceFromMask(

mask=('[#1 ]', ), )), sectionName='Section-1', thicknessAssignment=

FROM_SECTION)

#----------------------------------------------Partition face--------------------------------------------------------------

mdb.models['WSM'].ConstrainedSketch(gridSpacing=0.001, name=

'__profile__', sheetSize=0.056, transform=

mdb.models['WSM'].parts['circularPlate'].MakeSketchTransform(

sketchPlane=mdb.models['WSM'].parts['circularPlate'].faces.findAt(

(inner, inner, 0.0), (0, 0, 1.0)), sketchPlaneSide=SIDE1,

sketchOrientation=RIGHT, origin=(0.0, 0.0, 0.0)))

mdb.models['WSM'].parts['circularPlate'].projectReferencesOntoSketch(

filter=COPLANAR_EDGES, sketch=

mdb.models['WSM'].sketches['__profile__'])

mdb.models['WSM'].sketches['__profile__'].Line(point1=(inner, 0.0),

point2=(outer, 0.0))

mdb.models['WSM'].sketches['__profile__'].Line(point1=(-inner, 0.0),

point2=(-outer, 0.0))

mdb.models['WSM'].sketches['__profile__'].Line(point1=(0.0, inner),

point2=(0, outer))

mdb.models['WSM'].sketches['__profile__'].Line(point1=(0.0, -inner),

point2=(0, -outer))

l1 = inner + (outer-inner)/10 #Length used in next partitions

mdb.models['WSM'].sketches['__profile__'].ArcByCenterEnds(center=(

0.0, 0.0), direction=COUNTERCLOCKWISE, point1=(l1, 0), point2=(0,

l1))
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mdb.models['WSM'].sketches['__profile__'].ArcByCenterEnds(center=(

0.0, 0.0), direction=COUNTERCLOCKWISE, point1=(0, l1), point2=(-l1,

0))

mdb.models['WSM'].sketches['__profile__'].ArcByCenterEnds(center=(

0.0, 0.0), direction=COUNTERCLOCKWISE, point1=(-l1, 0), point2=(0,

-l1))

mdb.models['WSM'].sketches['__profile__'].ArcByCenterEnds(center=(

0.0, 0.0), direction=COUNTERCLOCKWISE, point1=(0.0, -l1), point2=(l1,

0))

mdb.models['WSM'].parts['circularPlate'].PartitionFaceBySketch(

faces=mdb.models['WSM'].parts['circularPlate'].faces.findAt(((

inner, inner, 0.0), )), sketch=

mdb.models['WSM'].sketches['__profile__'])

del mdb.models['WSM'].sketches['__profile__']

#----------------------------------------------Create assembly--------------------------------------------------------------

mdb.models['WSM'].rootAssembly.DatumCsysByDefault(CARTESIAN)

mdb.models['WSM'].rootAssembly.Instance(dependent=ON, name='circularPlate-1',

part=mdb.models['WSM'].parts['circularPlate'])

#------------------------------------------------Create step-------------------------------------------------------------------

mdb.models['WSM'].ExplicitDynamicsStep(name='dynamic', previous=

'Initial', timePeriod=t, quadBulkViscosity=0.0)

#------------------------------------------Apply BCs and load---------------------------------------------------------------

#Determine the load shape in time

mdb.models['WSM'].SmoothStepAmplitude(data=((0.0, 0.0), (1E-4-1E-5, 0.0), (

1E-4, 1.0), (1E-4+loadTime, 1.0), (1E-4+loadTime+1E-5, 0.0)), name='impulse_smooth',

timeSpan=STEP)

#Apply pressure    

mdb.models['WSM'].Pressure(amplitude='impulse_smooth', createStepName=

'dynamic', distributionType=UNIFORM, field='', magnitude=F, name=

'pressure', region=Region(

side1Edges=mdb.models['WSM'].rootAssembly.instances['circularPlate-1'].edges.findAt(

((inner/sqrt(2), inner/sqrt(2), 0.0), ), ((-inner/sqrt(2), inner/sqrt(2), 0.0), ),

((-inner/sqrt(2), -inner/sqrt(2), 0.0), ), ((inner/sqrt(2), -inner/sqrt(2), 0.0), ),)))

#Fixed outer boundary

mdb.models['WSM'].DisplacementBC(amplitude=UNSET, createStepName=

'Initial', distributionType=UNIFORM, fieldName='', localCsys=None, name=

'fixed1', region=Region(

edges=mdb.models['WSM'].rootAssembly.instances['circularPlate-1'].edges.findAt(

((-outer/sqrt(2), outer/sqrt(2), 0.0), ), )), u1=SET, u2=SET, ur3=SET)

mdb.models['WSM'].DisplacementBC(amplitude=UNSET, createStepName=

'Initial', distributionType=UNIFORM, fieldName='', localCsys=None, name=

'fixed2', region=Region(

edges=mdb.models['WSM'].rootAssembly.instances['circularPlate-1'].edges.findAt(

((outer/sqrt(2), outer/sqrt(2), 0.0), ), )), u1=SET, u2=SET, ur3=SET)

mdb.models['WSM'].DisplacementBC(amplitude=UNSET, createStepName=

'Initial', distributionType=UNIFORM, fieldName='', localCsys=None, name=

'fixed3', region=Region(
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edges=mdb.models['WSM'].rootAssembly.instances['circularPlate-1'].edges.findAt(

((outer/sqrt(2), -outer/sqrt(2), 0.0), ), )), u1=SET, u2=SET, ur3=SET)

mdb.models['WSM'].DisplacementBC(amplitude=UNSET, createStepName=

'Initial', distributionType=UNIFORM, fieldName='', localCsys=None, name=

'fixed4', region=Region(

edges=mdb.models['WSM'].rootAssembly.instances['circularPlate-1'].edges.findAt(

((-outer/sqrt(2), -outer/sqrt(2), 0.0), ), )), u1=SET, u2=SET, ur3=SET)

#----------------------------------------------Generate mesh-------------------------------------------------------------

mdb.models['WSM'].parts['circularPlate'].seedEdgeByNumber(

constraint=FINER, edges=

mdb.models['WSM'].parts['circularPlate'].edges.findAt(

((inner/sqrt(2), inner/sqrt(2), 0.0), ),((-inner/sqrt(2), inner/sqrt(2), 0.0), ),

((-inner/sqrt(2), -inner/sqrt(2), 0.0), ),((inner/sqrt(2), -inner/sqrt(2), 0.0), ),

((l1/sqrt(2), l1/sqrt(2), 0.0), ),((-l1/sqrt(2), l1/sqrt(2), 0.0), ),

((-l1/sqrt(2), -l1/sqrt(2), 0.0), ),((l1/sqrt(2), -l1/sqrt(2), 0.0), ),

((outer/sqrt(2), outer/sqrt(2), 0.0), ),((-outer/sqrt(2), outer/sqrt(2), 0.0), ),

((-outer/sqrt(2), -outer/sqrt(2), 0.0), ),((outer/sqrt(2), -outer/sqrt(2), 0.0), ), ), number=n)

mdb.models['WSM'].parts['circularPlate'].setMeshControls(elemShape=

QUAD, regions=

mdb.models['WSM'].parts['circularPlate'].faces.getByBoundingSphere(

center=(0,0,0), radius=2*outer), technique=STRUCTURED)

mdb.models['WSM'].parts['circularPlate'].setElementType(elemTypes=(

ElemType(elemCode=CPE4R, elemLibrary=EXPLICIT, secondOrderAccuracy=OFF,

hourglassControl=DEFAULT, distortionControl=DEFAULT), ElemType(

elemCode=CPE3, elemLibrary=EXPLICIT)), regions=(

mdb.models['WSM'].parts['circularPlate'].faces.getByBoundingSphere(

center=(0,0,0), radius=2*outer), ))

mdb.models['WSM'].parts['circularPlate'].generateMesh()

#--------------------------------------------------Request outputs---------------------------------------------------------

#Create interesting sets

mdb.models['WSM'].parts['circularPlate'].Set(name='horizontalPoint'

, vertices=

mdb.models['WSM'].parts['circularPlate'].vertices.findAt(((

l1, 0.0, 0.0), )))

mdb.models['WSM'].parts['circularPlate'].Set(name='verticalPoint',

vertices=

mdb.models['WSM'].parts['circularPlate'].vertices.findAt(((0.0,

l1, 0.0), )))

#Field output

mdb.models['WSM'].fieldOutputRequests['F-Output-1'].setValues(numIntervals=

400, variables=('S', 'SVAVG', 'SENER' ))

#History output

mdb.models['WSM'].historyOutputRequests['H-Output-1'].setValues(

frequency=10, rebar=EXCLUDE, region=

mdb.models['WSM'].rootAssembly.instances['circularPlate-1'].sets['horizontalPoint']

, sectionPoints=DEFAULT, variables=('S11', 'S12', 'MISES', 'UT'))

mdb.models['WSM'].HistoryOutputRequest(createStepName='dynamic',

frequency=10, name='H-Output-2', rebar=EXCLUDE, region=

mdb.models['WSM'].rootAssembly.instances['circularPlate-1'].sets['verticalPoint']



Wave Surface Model

, sectionPoints=DEFAULT, variables=('S11', 'S12', 'MISES', 'UT'))

#----------------------------------------------Create job ---------------------------------------------------------------------

mdb.models['WSM'].rootAssembly.regenerate()

mdb.Job(activateLoadBalancing=False, atTime=None, contactPrint=OFF,

description='', echoPrint=OFF, explicitPrecision=SINGLE, historyPrint=OFF,

model='WSM', modelPrint=OFF, multiprocessingMode=DEFAULT, name=

'Wave_Surface_Model', nodalOutputPrecision=SINGLE, numCpus=1, numDomains=

1, parallelizationMethodExplicit=DOMAIN, queue=None, scratch='', type=

ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0)
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