
Alena Ayzenberg

Transmission-Propagation 
Operator Theory and 
Tip-Wave Superposition 
Method for sub-salt shadow 
wavefield description

Thesis for the degree of Philosophiae Doctor

Trondheim, October 2015

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology 
Department of Petroleum Engineering 
and Applied Geophysics



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering Science and Technology Department 
of Petroleum Engineering and Applied Geophysics

© Alena Ayzenberg

ISBN 978-82-326-1188-1  (printed ver.) 
ISBN 978-82-326-1189-8 (electronic ver.) 
ISSN 1503-8181

Doctoral theses at NTNU, 2015:266

Printed by NTNU Grafisk senter



 

1 

“Everything is hard before it is easy” – von Goethe.  
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Summary  
 

TPOT&TWSM. Synthetic wave modeling in media with interfaces of complex geometrical 

shape is one of the main problems in the mathematical wave theory and its applications. Oil 

companies are concerned with increasing the resolution capability of seismic data for complex 

oil-and-gas deposits associated with salt domes, basalt traps, reefs, lenses, etc. Specialists and 

engineers traditionally apply numerical or approximate analytical methods to search for a 

compromise between the modeling speed and its correctness. In inhomogeneous block media 

with complex shaped intefraces, there is a problem of describing separate wave fragments (for 

example, primary waves), not only describing the total wavefield. This separate description of 

any wavefield fragments has triggered this study. We therefore propose applying the rigorous 

analytical Transmission-Propagation Operator Theory (TPOT) in terms of operators of 

propagation in blocks and transmission (reflection/refraction) at curved interfaces between the 

blocks. This theoretical approach allows the solution of different seismic problems in 

inhomogeneous media with ‘shadow’ zones of different complexity. The term shadow means 

zones where the rays penetrate according to the generalized Fermat’s principle, not the 

conventional Fermat’s principle. In addition to TPOT, we have modified the Tip-Wave 

Superposition Method (TWSM) on a Graphics Processing Unit (GPU) cluster in the mid-

frequency range accounting for shadow zones. Publications demonstrate that there is good 

comparison between the TWSM results and the laboratory observations, numerical solvers 

and other analytical solutions. The investigation of TPOT&TWSM is so far on the canonical 

models level. We further plan to consider real models as well, but this is not discussed in the 

present thesis.  

 

 TPOT is based on two main theoretical principles: 1) rigorous explicit description of 

the propagation operators in domains/layers; the propagation in shadow zones is handled by 

the generalization of the conventional Fermat’s and Huygens’ principles for an arbitrary 

boundary case; and 2) rigorous explicit representation of the transmission 

(reflection/refraction) operators at curved interfaces; the transmission at the curved interface 

is handled by the generalization of the conventional Snell’s law and the conventional plane 

wave transmission (reflection/refraction) coefficients. TPOT is a universal solution for wave 

problems in complex media because it solves the problem rigorously; this solution describes 

the total wavefield and its separate wave fragments.  
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 Feasible fundamental solution (FFS) in shadow. In all problems with curved 

interfaces, shadow zones will be obtained because the concave parts of the interfaces create 

shadows behind. In TPOT&TWSM, shadow is handled as follows. All the interface points are 

connected to each other by a straight segment. If the segment intersects the interface, we 

consider that these two points do not ‘see’ each other, otherwise they do ‘see’ each other. 

After this procedure, propagation is ‘allowed’ only between those points which ‘see’ each 

other. A shadow function is responsible for the removal of the propagation between those 

points which do not ‘see’ each other. This shadow function is added in the kernel of the 

conventional propagation Kirchhoff-type operator and, therefore, corrects for the Green’s 

function in the kernel according to the shadow zones present. Consequently this new kernel is 

feasible and handles shadow zones. We call it the ‘feasible fundamental solution’ (or the 

feasible Green’s function). Having this feasible kernel, the propagation operator also becomes 

feasible and is used as a propagation computational tool in shadow.  

 

 Generalized plane waves are an analog of the conventional transmission 

(reflection/refraction) plane waves for the curved interface case. This generalization is 

obtained by introducing a local coordinate system which is fixed at the reference interface 

point, and leads to a space-spectral form of the boundary conditions. The new kernel of the 

transmission operator is the transmission coefficient based on the generalized plane wave.  

 

 TWSM computes the TPOT analytical solution in the mid-frequency range on a GPU 

cluster and visualizes it on a seismogram. Earlier, TWSM was run on conventional parallel 

systems, but we now have improved the execution time by implementing this program on the 

GPU system. It approximates the operators of propagation in blocks and transmission at 

curved interfaces in the mid-frequency (seismic frequency) range. TPOT principle 1 leads to 

the application of TWSM to forward and inverse seismic problems by separate wavefield 

description; it is done by TWSM description of the wavefield in the form of tip-wave beams, 

connecting the elements of the seismic model. The TWSM description of the wavefield in 

domains/layers with geometrical shadow zones is done by accounting for shadow by 

correcting the propagation operator kernel. This is a generalization of such cases as edge and 

tip waves from sharp edges and vertices; and cascade diffraction, for example creeping waves 

and ‘whispering galleries’ bending along the concave parts of interfaces. TPOT principle 2 

leads to TWSM evaluation of the transmitted tip-wave beams accounting for head waves at 
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curved interfaces. The transmission operators at curved interfaces are approximated by the 

effective (integrated) transmission (reflection/refraction) coefficients accounting for both 

curvatures of the interface. If it is necessary to account for surface waves, TWSM can 

reproduce them on a seismogram. This is not an area that is studied in this thesis.  

 

 Comparisons. Publications prove that TWSM decrease the relative AVO inversion 

error from 20 to 4 percent. The comparison with laboratory data demonstrates an error from 1 

to 4 percent. The comparison with the finite difference method gave an 3 percent error 

approximately. The comparison with the theoretical approaches gave an error of 2 to 3 percent 

approximately.  

 

 Advantages of TPOT&TWSM. TPOT&TWSM conceptually differ from the 

numerical methods being exploited to solve forward and inverse seismic problems. The 

numerical methods represent the total solution of the equation systems, while TPOT provides 

not only the total wavefield but also its wave structure expressed by separate waves. Each 

separate wave can be represented on a seismogram without representation of the rest of the 

wavefield. Moreover, the solution is derived in analytical form before using TWSM 

programming software. TWSM just visualizes each wave fragment or group of them given by 

TPOT in the mid-frequency range. The method is strictly speaking valid for max 1,99
d

h
, 

where d  is the dominant wave length and maxh  is the maximum depth of the model. The 

relative error is independent of the amplitude of all the wave fragments. Therefore, all the 

waves on the seismogram are represented equally accurately. Moreover, TWSM gives the 

wave-transfer matrix description in each block/layer independently of the other blocks/layers 

and sources/receivers definitions.  

 

 Applications of TPOT&TWSM. TPOT&TWSM have been applied to primary 

extraction (multiple removal); subsalt shadow wavefield description; wavefield description 

for 3D inhomogeneous media with curved interfaces/reflectors. TWSM programming 

software can be used for different forward problems, such as the planning of acquisition 

systems, wave description of physical/laboratory modeling, the description of individual 

waves. It also can be used for inverse problems, such as imaging in the case of laterally 

inhomogeneous overburden and AVO inversion.  
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 Thesis results. The thesis contains the two main results: a theoretical description of the 

feasible fundamental solution choice (Chapter 2) and the comparison of TWSM with the edge 

wave theory for V-, U- and W-models (Chapters 3, 4, and 5).  
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Chapter 1  

Thesis introduction  
1.1 Modeling methods  
 

It is conventionally accepted to classify modeling methods into three main groups: physical 

(laboratory), numerical and analytical modeling approaches. It is also common to test these 

methods against each other. This Chapter briefly discusses the ideas in the approaches and the 

differences between them.  

 

1.1.1 Physical modeling methods  
 

Physical modeling is one of basic tools in geophysical research. This Subsection follows the 

ideas in the Introduction to Tantsereva et al. (2015). Wavefield propagation in complex media 

with edges and shadow zones leads to different diffraction effects. Correct physical modeling 

of these diffractions is used for testing different numerical and analytical modeling methods. 

In the SEAM project (Fehler & Keliher (2011)), several numerical modeling codes were 

compared to the reference method. Such an approach has limitations, especially if the 

propagation occurs in a complex medium with strong-contrast surfaces and surface 

irregularities, because all of the methods, including the reference method, are based on 

different assumptions. This approach of using a laboratory method as a reference method in 

diffraction studies was frequently used in the past. In contrast with in situ experiments, high-

quality data are collected under controlled conditions for a known configuration. Moreover, 

unlike synthetic reference methods, in laboratory experiments, the real waves propagate 

through models with no numerical approximations. Howes et al. (1953) used reduced scale 

models to study and demonstrate the geometry of the propagation, reflection, refraction, and 

diffraction of sound pulses radiated from a point source. Grannemann (1956) compared 

theoretical results with experimental results for the relative amplitude of the diffracted pulses 

from a wedge in a solid. Angona (1960) demonstrated the mechanism for double diffraction 

and the difference in amplitude decay and moveout between reflection and diffraction for a 

fault model. Hilterman (1970) recorded sections from models of typical geological structures 

such as synclines, anticlines and faults in order to observe diffraction which could not be 

predicted by the ray theory. Pant et al. (1992) used 2-D scale models and synthetic 
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seismograms to study diffraction artifacts and interpretation pitfalls on seismic profiles over a 

vertical fault model and a rectangular mound model. Jocker et al. (2006) presented and 

validated a first-order scattering theory for wave propagation in the presence of objects with 

dimensions comparable to the wavelength against ultrasonic measurements of the acoustic 

wavefields scattered by single spheres placed in a homogeneous background medium. An 

additional control for both laboratory and synthetic data is necessary as misfits between 

laboratory and synthetic data may be observed due to uncertainties in the laboratory data and 

the various assumptions of the modeling methods.  

 

1.1.2 Numerical modeling methods  
 

Groups of numerical methods. Seismic numerical modeling is a common approach for wave 

simulation. The objective is to predict the wavefield that a set of sensors would record, given 

a model and a source in this model. This technique has been used for seismic interpretation 

and inversion. Another important application of seismic modeling is the evaluation and design 

of seismic surveys. There are many approaches to seismic numerical modeling. Carcione et 

al. (2002) and Virieux et al. (2011) classify them into five main groups: 1) direct (finite-

difference/FD) methods; 2) integral-equation methods; 3) spectral method; 4) the pseudo-

spectral and finite volume methods and 5) the continuous or discontinuous Galerkin finite-

element methods. The choice between these different approaches depends on the applications.  

 

 Direct/finite difference(FD) methods. To solve the wave equation by FD methods, the 

model is discretized in a finite number of points. These techniques are also called grid 

methods and full-wave equation methods, since the solution represents the total wavefield. 

These methods do not have restrictions on the material variability and are very accurate with 

the condition that a sufficiently fine grid is used. These techniques can handle different 

geologies and are well suited in snapshots which are important for interpretation. However, a 

disadvantage of FD methods is that they require more computational expense than 

approximate analytical methods.  

 

 Integral-equation methods are based on the wavefield integral representations in terms 

of the point sources waves. These methods are based on Huygens’ principle, formulated by 

Huygens in 1690 in a heuristic way. Huygens’ work explains that the wavefield can, in some 
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cases, be considered as the superposition of the volume point sources wavefields and, in other 

cases, such as the superposition of the boundary point sources wavefields. Both forms of 

Huygens’ principle are still in use, and we have volume integral equations as well as 

boundary integral equations. These methods are more restrictive in their application than FD 

methods. However, for specific geometries, such as bounded objects in a homogeneous 

embedding, boreholes, or geometries containing many small-scale cracks or inclusions, the 

integral-equation methods are very efficient and give accurate solutions. Due to their more 

analytic character, they also have been useful in the derivation of imaging methods based on 

the Born approximation, as described in Cohen et al. (1986) and Bleistein et al. (2001). The 

volume integral method in form of Born approximation also can be used for wavefield 

modeling, see Moser (2012).  

 

 The spectral method is very efficient and accurate but is restricted to simple structures, 

for example layered structures. The spectral formulation reads as follows: the partial 

differential equations are first formulated in dual spaces, such as the space Fourier domain, 

where the partial derivatives are transformed into algebraic forms. The difficulty here is to 

express the boundary conditions when necessary, as well as the excitation conditions, in this 

new space. However, it can ease the expression of the source excitation, for example, the 

plane-wave decomposition-based approaches. Such approaches are widely used for the 

modeling of reflected wavefields in media where the velocity only varies vertically. 

Horizontally layered structures with no lateral velocity variations are examples where such 

modeling is largely applicable, see Ursin (1983) and Tsvankin (1995). This methodology is 

fundamental to processing techniques, such as the prediction and removal of seabed and 

internal multiples, deterministic wavelet estimation, and decomposition of the full wavefield 

into upgoing and downgoing waves, which is done in Ikelle & Amundsen (2005). The plane-

wave decomposition is a powerful and computationally efficient tool. It is the basis for 

approaches such as phase-shift extrapolation, the screen-propagator method, the reflectivity 

method, the generalized ray method (Kennett (1983)) and the Radon (τ−p) transform (Gazdag 

(1978), Stolt (1978), Wu (1994) and de Hoop & Bleistein (1997)).  

 

 The pseudo-spectral and finite volume methods are based on the strong formulation of 

the partial differential equations, which are easy to implement and give a good compromise 

between accuracy, efficiency and flexibility. The strong formulation states: the partial 

differential equations are verified specifically on discrete points on which the continuum is 
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interpolated, or their integral forms should be satisfied. An example of a pseudo-spectral 

method is described in Tessmer & Kosloff (1994). We could select a global spatial 

discretization (which often is presented as a modal approach), such as the pseudo-spectral 

methods where the partial derivatives are estimated by going back and forth in the dual 

domain (for example, Fourier, Legendre or Chebychev domains), which leads to specific 

regular/non-regular sampling, for details see Kosloff & Baysal (1982), Druskin & 

Knizhnerman (1988), Seriani & Priolo (1994) and Priolo, Carcione & Seriani (1994). We 

could also consider spatial discretization with local support, and more specifically, the FD 

method that is widely used in many fields (Levander (1988), Mackie et al. (1993), 

Robertsson, Blanch & Symes (1994), Newman & Alumbaugh (1999), Pitarka (1999), Taflove 

& Hagness (2000) and Moczo, Robertsson & Eisner (2007)). The idea in the finite volume 

methods (Virieux (2011)) consists of writing the partial differential equations in a first-order 

(pseudo) conservative form and taking the integral over the computational domain. In certain 

cases, this integral form of the partial differential equations can be obtained directly from the 

physical conservation laws. The local lower-order interpolation of the fields allows an 

intuitive construction, which leads to correctness of this formulation. We proceed with the 

geometrical interpretation, not with the variational approach. This technique appears to have 

the flexibility to describe the medium using complex meshing, while retaining the simple 

approach of the FD method.  

 

 The continuous or discontinuous Galerkin finite-element methods (Zienkiewicz & 

Morgan (1983)) are based on the weak formulation, which leads to more accurate 

representations of the geology and, therefore, to more accurate solutions, although with higher 

computational costs. The test functions are identical to the basis functions on which the 

expected solution is expanded. The weak formulation is stated as follows: the partial 

differential equations are verified globally over the elements that use a discrete norm for the 

solution. This method is general and includes the strong formulation, using a specific norm 

expressed through Dirac comb and using operators as distributions. The weak formulation 

(Virieux (2011)) is obtained by multiplying the partial differential equations by the test 

functions (unlike the finite volume methods), by integrating over the given domain and by 

carrying out the integration by the parts that reduce the derivation order of the fields (that 

weakens the derivability conditions by transferring them to the test functions). In the classical 

continuous Galerkin finite-element approach (Virieux (2011)), the fields from the differential 

equations are assumed to be continuous in the entire computation domain. They are 
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decomposed in the local piece-wise functional basis, which is also used for the test functions. 

Some of the limitations of the continuous Galerkin finite element approach can be addressed 

(Virieux (2011)) by the discontinuous Galerkin finite-element method, even if some of the 

field components need to be discontinuous across the interfaces, namely the test functions, 

together with the fields, are a priori not continuous at the boundaries of the element.  

 

1.1.3 Analytical modeling methods  
 

Rigorous analytical solutions are known only for simple models. Singly scattered wavefields 

were studied by Friedlander (1958) for wedge-like canonical models. Jones (1973) extended 

the approach for double scattering. A short review of the theoretical developments since 1973 

is given in Chu et al. (2007). In spite of extensive theoretical studies on the analytical 

solutions for canonical diffraction problems, the transition to the general problems was not a 

straightforward task, see Anokhov (1999). Klem-Musatov (1994) suggested a new theoretical 

approach to the problem. He wrote that the solution for sector models can be obtained using a 

Neumann iterative technique as a sequential substitution in the wave equation and boundary 

conditions. This technique is not restricted to canonical models and can be generalized to 

more realistic models, if needed. Brannan et al. (2004) studied multiply-scattered wavefields 

for a simplified model. The implementation of analytical solutions in the boundary integral 

equation method for more complicated diffracting models (general piecewise smooth 

interfaces) was studied by Chandler-Wilde et al. (2012).  

 

 Asymptotic high-frequency methods refer to the asymptotic ray theory (Cerveny 

(2005)), the geometrical theory of diffraction by Keller (1962), the physical theory of 

diffraction (Ufimtsev (1981)), and the uniform theory of diffraction (Capolino & Albani 

(2005)). Klem-Musatov et al. (2008) generalized the results obtained by Klem-Musatov 

(1994) to non-canonical piecewise smooth interfaces for singly scattered wavefields and 

formulated the edge and tip diffraction theory. This theory, based on the ordinary and 

generalized Fresnel integrals, works well in the presence of caustics. An improved 

implementation of the edge-wave and tip-wave technique was suggested in the Tip-Wave 

Superposition Method (TWSM) for modeling of singly scattered wavefields for general 

piecewise smooth interfaces (Klem-Musatov et al. (2008)). The extension of the Neumann 

iterative technique modified by Klem-Musatov (1994) was extended for multiply scattered 
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wavefields in layered and blocked media by A.M. Aizenberg (1993). Asymptotic high-

frequency methods are frequently used in seismic modeling and imaging. These methods are 

approximate, since they do not take the complete wavefield into account. However, they are 

very efficient. Especially for large three-dimensional models, the speedup in computer time is 

significant. These methods consider the wavefield as an ensemble of certain events, each 

arriving at a certain traveltime and having a certain amplitude. Asymptotic methods, due to 

their efficiency, have played a very important role in seismic imaging based on the Born 

approximation for heterogeneous reference velocity models. Another application of these 

methods is modeling and identification of specific events on seismic records.  

 

1.2 TPOT&TWSM method  
 

 A recently development was a rigorous Transmission-Propagaton Operator Theory 

(TPOT) and its mid-frequency visualization by the Tip-Wave Superposition Method 

(TWSM). TPOT&TWSM divides the modeling into two major steps (A.M. Aizenberg et al. 

(2011), A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis and A.A. 

Ayzenberg et al. (2015)/Chapter 5 of this thesis):  

1) TPOT analytical solution of the seismic forward problem: separation of the solution into 

wave fragments;  

2) TWSM solution visualization in the form of a seismogram: separation of the seismogram 

into each wave fragment seismogram.  

 

1.2.1 Transmission-Propagation Operator Theory (TPOT)  
 

 The Transmission-Propagation Operator Theory (TPOT) is an analytical mathematical 

tool for wavefield description in 3D inhomogeneous macro-layered and macro-block media. 

This TPOT (A.M. Aizenberg et al. (2011))  

 1) is a generalized hybrid method combining the potential theory of the single and 

double layer and the theory of space-time spectrum decomposition;  

 2) introduces a new statement of the seismic initial-boundary problem in terms of 

wave motion, using two unknown before operators: the convolutional transmission operator at 

curved interface and the feasible propagation operator in an inhomogeneous block;  
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 3) obtains a rigorous analytical solution of seismic problems in finite time window 

(seismogram) in the form of a sum of a multiple reflected-refracted wave series.  

 

 New problem statement. First of all, the conventional problem statement in terms of 

the particle motion is transformed into an unknown earlier equivalent statement in terms of 

the propagating waves. The new statement consists of two integral equation systems: the 

surface propagation equations are expressed through the feasible propagation operators 

combined with the generalized plane-wave decomposition operators; and the surface 

transmission equations are expressed through the convolutional transmission operators.  

 

 The transmission operators in the boundary conditions are written as a generalized 

space-spectral Weyl decomposition for wave modes at the vicinity of curved 

interface/reflector (Klem-Musatov et al. (2004) and Klem-Musatov et al. (2005)). The kernels 

of these operators have explicit form and contain the generalized reflection/refraction plane 

(with respect to the curved interface) wave coefficients and depend on local material 

parameters of the two contacting media at the contact reference point, see M.A. Ayzenberg et 

al. (2007) and M.A. Ayzenberg et al. (2009).  

 

 The propagation operators are expressed through a given matrix explicit kernel. This 

kernel is the ‘feasible fundamental solution’ (FFS) which describes cascade diffraction as a 

wavefield propagating into shadow zones behind concave interface parts; this feasible 

fundamental solution corrects for the free space Green’s function in shadow zones (A.M. 

Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis).  

 

 Feasible fundamental solution (FFS) in shadow.  

 

 

 

 

 

 

 

 

Figure. For the given source: the illuminated zone (orange) and the shadow zone (grey).  

shadow 

illuminated 
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Shadow  originally is an optic term that is caused by an obstacle. The light rays are diffracted 

by the obstacle and penetrate into the shadow zone (Figure). If the obstacle has a complex 

shape, diffraction forms cascade diffraction. In acoustic, elastic, porous, fractured, fluid-

saturated, microstructured and other media, the presence of shadow (sub-salt, sub-basalt zones 

etc.) can make the subsurface image and the subsurface wavefield modeling very 

complicated. TPOT proposes using the so-called ‘feasible fundamental solution’ (FFS) which 

is a mathematical description of the wavefield in one 3D medium with shadow zones. This 

FFS uses a shadow function which controls the presence/absence of shadow zones. All the 

interface points are connected to each other by a straight segment, if the segment intersects 

the interface, we say that these two points do not ‘see’ each other, otherwise they do ‘see’ 

each other. After this procedure, the propagation is ‘allowed’ by the shadow function only 

between those points which ‘see’ each other. The shadow function is added in the kernel of 

the conventional propagation Kirchhoff-type operator and, therefore, corrects for the Green’s 

function in the kernel according to the shadow zones that exist. This new kernel is thus 

feasible and handles shadow zones. We call it the ‘feasible fundamental solution’ (or the 

feasible Green’s function).  

 

 Solution. Using the new problem statement, we obtain a rigorous analytical solution as 

a sum of the reflected/refracted wave series visualized on a seismogram. Each wave of the 

given reflection/refraction order is described as the transmission-propagation composite 

operator multiplied by the previous order term. The action of the composite propagation-

transmission(reflection/refraction) operator is dependent on the wave code. The wave code is 

chosen by the wavefield trajectory, see for example in A.M. Aizenberg et al. (2011).  

 

 Features of TPOT. When working technically with integral operators, the two TPOT 

operators obey the following two key principles: 1) rigorous explicit representation of the 

propagation operators in domains/layers in an inhomogeneous medium; the kernel of these 

operators is feasible and generalizes the conventional Fermat’s and Hyugens’ principles for 

the arbitrary boundary case with shadow; and 2) rigorous explicit representation of the 

transmission (reflection/refraction) operators at curved interfaces; the transmission operators 

handle curved interfaces by the introduction of a Gaussian local coordinate system and have 

the plane-wave transmission (reflection/refraction) coefficients in the kernel.  
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 Advantages of TPOT. The wave statement of the problem has an advantage over the 

particle motion statement as it provides a description of both the total wavefield and its 

separate wave fragments. Therefore, the new TPOT theory has been applied to solve forward 

seismic problems in complex media with shadow and has been used as a primary 

extraction/multiple removal tool.  

 

1.2.2 Tip-Wave Superposition Method (TWSM)  
 

TWSM is a visualization of TPOT solutions in the mid-frequency range in form of 

seismograms, as described in A.M. Aizenberg & Klem-Musatov (2010), M.A. Ayzenberg et 

al. (2007) and M.A. Ayzenberg et al. (2009). TWSM uses approximation for the transmission 

and propagation operators in the mid-frequency range, also provides the imitation of separate 

wave events. Tests from M.A. Ayzenberg et al. (2007), Favretto-Cristini et al. (2014) and 

Tantsereva et al. (2014) demonstrate that this visualization method is able to handle 

irregularities such as caustics, diffraction events, head waves and creeping waves which 

cannot be properly handled by the geometrical ray theory (Cerveny (2005)) or the geometrical 

diffraction theory (Keller (1962), Capolino & Albani (2005) and Ufimtsev (1981)). The 

ability to work with the transmission and propagation operators in the mid-frequency range in 

each block independently, gives the possibility of using TWSM as a computational kernel in 

interface-oriented inversion and imaging, see for example M.A. Ayzenberg et al. (2007).  

 

 Features of TWSM. TWSM approximates the transmission and propagation operators 

based on the two key principles: 1) visualization of wavefield as interference of tip-wave 

beams, connecting small triangular elements of the seismic model interfaces; visualization of 

individual tip-wave beams in geometrical shadow zones accounting for cascade diffraction: 

diffraction by sharp edges, creeping waves along the concave parts of the interfaces, waves of 

the ‘whispering galleries’ along the convex parts of the interfaces etc. (the ‘feasible 

fundamental solution’ in the kernel is approximated by n terms, in this thesis we consider 

n=2); and 2) visualization of the transmission (reflection/refraction) of tip-wave beams 

accounting for head waves at curved interfaces; the transmission operators at curved 

interfaces are approximated by the effective (integrated) transmission (reflection/refraction) 

coefficients accounting for both curvatures of the interface.  
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1.2.3 Advantages of TPOT&TWSM  
 

TPOT&TWSM differ conceptually from numerical methods being exploited for the direct and 

inverse seismic problems. Existing numerical methods numerically solve the actual system of 

equations and represent the total wavefield. TPOT provides the rigorous explicit solution of 

the actual equation system in terms of the mathematical wave theory and provides not only 

the total wavefield but also its wave structure expressed by separate waves. Moreover, the 

solution is given in analytical form before using the TWSM programming software. TWSM 

just visualizes each propagating wave fragment or group of them given by TPOT in the mid-

frequency range. The relative error of the computation of any wave fragment does not depend 

on its amplitude. Since the relative error is universal for each wave fragment, the relative error 

does not change when the amplitude changes.  

 

1.3 Thesis content  
 

This thesis consists of the Introduction, four Chapters and Closing remarks.  

 

 The Introduction outlines the research problem and represents its place in the area of 

research.  

 

 Chapter 2 is a paper “Feasible fundamental solution of the multiphysics wave equation 

in inhomogeneous domains of complex shape” published in Wave Motion on 27 November 

2014. This paper discusses the shadow challenge in the seismic research and gives the 

analytical feasible fundamental solution which is the generalization of the free-space source 

wavefield on arbitrary boundary and medium case. The choice of the feasible fundamental 

solution is done by a shadow function which takes into account the boundary shape and the 

corresponding shadow zones. We describe how to construct this shadow function in acoustic 

and general homogeneous and inhomogeneous cases. The feasible fundamental solution is 

used as a kernel of the propagation operator in order to account for shadow when solving 

transmission-propagation problems.  

 

 Chapter 3 is a paper “Feasible source wavefield for acoustic V-model with shadow in 

the form of double diffraction approximation” submitted to Geophysical Journal International 
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on 26 January 2015, resubmitted on 11 August 2015. This paper performs an implementation 

of the feasible fundamental solution idea described in Chapter 2. The paper considers a V-

model and presents a synthetic source wavefield description in the V-model shadow, 

considering only the double diffraction. The result is compared to the edge wave theory 

solution.  

 

 Chapter 4 is also a paper “Feasible source wavefield for acoustic U- and W-model 

with shadow in the form of double diffraction approximation” submitted to Geophysical 

Journal International on 27 January 2015, resubmitted on 11 August 2015. This paper 

performs an implementation of the feasible fundamental solution idea described in Chapter 2. 

The paper considers a U- and W-model and gives a synthetic source wavefield description in 

the U- and W-model shadow, considering only the double diffraction. The result is compared 

to the edge wave theory solution.  

 

 Chapter 5 is a further paper “Primary source wavefield below overhang of 3D 2-block 

acoustic medium” submitted to Geophysical Journal International on 30 June 2015. This 

paper represents a transmission-propagation problem solution in V- and U-model shadow. 

This solution is the superposition of V- and U-shadow solutions described in Chapters 3 and 4 

and a double-transmitted wavefield.  
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2.1 Abstract  
 

Fundamental solutions of the linear equations governing mechanical and electromagnetic 

oscillations are kinematically represented by delay time along ray trajectories. The 

fundamental solutions can contain components which are not physically justified, if their ray 

trajectories are partly located outside the actual medium in accordance with Fermat’s 

principle. To exclude all non-physical components and consider only the physically feasible 

fundamental solution, ray trajectories and delay time must satisfy the generalized Fermat’s 

principle, as introduced by Hadamard in 1910. We introduce a rigorous dynamic description 

of this feasible fundamental solution satisfying the generalized Fermat’s principle and being 

physically justifiable. The description is based on an integral condition of absolute absorption 

at the boundary of an effective medium. This condition selects a subset of the physically 

feasible fundamental solutions. We prove that, in homogeneous domains, the feasible 

fundamental solution is the sum of the Green’s function for the unbounded medium and an 

operator Neumann series describing cascade diffraction at the boundary. In inhomogeneous 

domains we represent the feasible fundamental solution by an equation with a volume integral 

operator. The integral kernel contains the feasible fundamental solution for a homogeneous 

domain. We introduce feasible surface and volume integral operators that eliminate the 

unfeasible wavefields in the geometrical shadow zones.  
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2.2 Introduction  
 

Fundamental solutions of the linear equations governing mechanical and electromagnetic 

occillations are key elements of the mathematical theory of wave propagation. It is 

theoretically known that fundamental solutions are defined ambiguously and contain an 

arbitrary term which cannot be justified by experiment. The initial boundary value problems 

of the linear wave propagation theory require a unique solution. Such a solution is 

independent of choice of the concrete fundamental solution, used in a solving method. The 

simplest fundamental solution is usually considered the most convenient for practical reasons. 

The classical Green’s function of an unbounded medium satisfying the classical Fermat’s 

principle is often a preferred choice.  

 

 The problem becomes more complex when analyzing the full wavefield. Its 

interference structure needs to be represented as the sum of the source wavefield and the 

wavefields scattered at the boundaries and medium heterogeneities. The source wavefield is 

represented by a superposition of fundamental solutions. It is as ambiguous as the 

fundamental solutions are. A fundamental solution can propagate only inside the actual 

medium and does not exist out of it. In media of complex geometrical shapes, the fundamental 

solution may contain artefacts (physically unfeasible wavefields) that propagate along the ray 

trajectories, partly beyond the boundary of the considered domain. Fundamental solutions that 

describe observable point source wavefields are considered feasible in this paper. To exclude 

artefacts from the source wavefield it is necessary to analytically describe the feasible 

fundamental solution in the domains with arbitrary boundary shapes [1], [2], [3].  

 

 The problem of describing feasible fundamental solutions was first addressed by 

Hadamard using the theory of characteristics in 1910. Hadamard described the kinematic 

properties of these solutions using the generalized Fermat’s principle for arbitrary domains 

[3]. According to this definition, the front of the fundamental solution propagates only along 

nonclassical rays that belong entirely to the domain of consideration. Kinematic properties of 

the wave front in domains with arbitrary boundaries can be correctly described using the 

Huygens’ principle (see details in § 5 and § 6 of Chapter 2 in [3]). While the front is inside a 

considered domain it has a classical shape. Part of the front that interects a boundary and 

propagates outside a domain is physically non-feasible and is not further taken into account. 
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The physically feasible part of the front starts to creep into the concave parts of a boundary 

and propagates into the shadow zones for classical rays. In addition, nonclassical rays 

propagate inside this domain in the shadow zones for classical rays. Part of these nonclassical 

rays belongs to a curved boundary of a domain (see §5 Chapter 2 in [3]). We thus conclude 

that physically feasible fundamental solutions depend on the actual shape of the domain.  

 

 After Hadamard’s work there were numerous attempts to use rigorous or approximate 

formulations of the initial boundary value problems of mathematical wave theory in order to 

find physically feasible fundamental solutions. Friedlander gives the detailed rigorous 

Hadamard’s description of the propagation of front of the fundamental solution for concave 

boundaries [3]. Although the generalized Fermat’s principle, as introduced by Hadamard, 

states that it is necessary to exclude the nonphysical components of the fundamental solution, 

it does not provide a solution for how to obtain the feasible fundamental solution.  

 

 The problem of obtaining the feasible fundamental solution first appears in the work 

of Kirchhoff in 1881, where a heuristic principle of absolute absorption was proposed [4], [5]. 

Let us consider this principle with the example of a homogeneous acoustic domain. In a 

convex domain this principle is not applicable as radiation propagates from any point source 

to any boundary point along the ray. Therefore, in such a domain, a point source wavefield 

can be computed at any point of a boundary. In a concave-convex domain this principle 

should be applied because radiation propagates from a point source along rays only to points 

of the ‘illuminated’ parts of the boundary. Radiation does not propagate to points of the 

‘shadowed’ parts of the boundary because the ray is intercepted by a ‘shadowing’ convex part 

of the boundary. In such a situation Kirchhoff suggested to take into account ‘absolute 

absorption’ at ‘shadowed’ concave parts of the boundary by the vanishing a wavefield at 

points of the ‘shadowed’ parts of the boundary.  

 

 Kirchhoff attempted to justify this principle [4], [5]. He obtained an approximate 

description of the fundamental solution for a half-plane slit in a homogeneous medium. 

Several papers show that direct application of Kirchhoff’s principle leads to the fundamental 

solutions containing unadmissible singularities in the vicinity of the edge bounding the 

illuminated part of the boundary [4], [5].  
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 For practical reasons, the contemporary research focused on the problems of the 

scattering of plane, cilindrical and spherical waves in homogeneous media with simple 

boundaries. Some of the approaches used are: the method of variables’ separation; the method 

of spectral decomposition; the theory of multiple diffraction based on the locality principle 

[6], allowing addition of diffraction in source wavefield in shadow zones; the theory of edge 

and tip waves [7], [8]; and the hybrid (numerical-asymptotic) boundary integral method [9]. 

Rigorous methods are applicable to describe diffraction at wedge-shaped boundaries [3], [6], 

[7], [9]. A combination of the spectral decomposition method and locality property is applied 

to diffraction at polygons and polyhedrons [6], [9]. Various approximate methods of 

calculation of the fundamental solution are applicable to diffraction at concave boundaries 

(circular, parabolic or hyperbolic cylinders) of open domains [3], [5]. All the proposed 

approaches satisfy the generalized Fermat’s principle inside geometrical shadow zones.  

 

 The exact analytical solution of all rigorous diffraction problems takes into account the 

geometrical shadow zones for the direct wavefield. As an example, we consider a problem of 

an impulse diffraction at a wedge with perfect boundary conditions. The detailed description 

of the solution of the problem, Green’s function, is represented by formula (5.2.10) in [3] (see 

Fig. 5.2). Green’s function is represented by the sum of the direct wavefield (5.4.6) and the 

reflected wavefield which is out of the scope of this paper. The direct wavefield is composed 

of the direct wave with its shadow zone and the diffracted wave, smoothing a discontinuity in 

amplitude at the shadow boundary. Time arrival of the direct wavefield satisfies the 

generalized Fermat’s principle as front of the diffracted wave in the shadow zone retards with 

respect to the standard Fermat’s principle. The direct wavefield can be considered as the 

feasible fundamental solution in any shadowed domain.  

 

 Revival of interest in the theory of feasible fundamental solutions in media with 

complex boundaries is stimulated by the introduction of an analytical solution of the initial 

boundary value problem for layered medium with curved interfaces [1], [2], [8], [10], [11], 

[12], [13]. This solution uses surface and volume integral operators with kernels that are built 

on the feasible fundamental solutions. A mathematical formulation of the absorption 

condition at regular curved boundaries of acoustic domains was introduced in [14], [15]. 

These results were later generalized to elastic porous fluid-saturated layers in [16], [17]. The 

absorption condition contains a matrix absorption operator and takes into account shadow 

zones. The physically feasible fundamental solution is thus represented as the sum of the 
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Green’s function for an unbounded medium and an operator Neuman series describing 

cascade diffraction at the boundary. Numerical modeling of the first-term approximation of 

the cascade diffraction is presented in [18], [19], [20].  

 

 This paper generalizes these results to arbitrary effective domains, having complex 

microscopic structure and boundaries. Our experience has shown that we had to derive the 

feasible fundamental solution for each case separately. We therefore decided to obtain the 

uniform solution for the general case in order to use it later on for all different cases.  

 

 The paper consists of Introduction, eight Sections and Conclusions. Sections 2.3-2.7 

detail the derivation of the feasible fundamental solution for homogeneous domains. Section 

2.8 shows the derivation of the feasible fundamental solution for inhomogeneous domains. In 

Section 2.9 we introduce the feasible surface and volume integral operators for homogeneous 

domains. In Section 2.10 we introduce the feasible surface and volume integral operators for 

inhomogeneous domains. Conclusions summarize the main results of the paper. Appendix 

provides the short introduction into governing equations for the medium.  

 



 

33 

2.3 The statement of the problem for a homogeneous domain  
 

The problem for an inhomogeneous domain is solved into two steps. We first derive the 

solution for a homogeneous domain. After that, we use this solution for deriving the solution 

of the inhomogeneous domain. In this Section we consider the statement of the problem in the 

homogeneous domain. The boundary has complex geometrical shape.  

 

 We consider the ‘physical’ domain 33  and its ‘mathematical’ complement 
3 \3 \ . The boundary of  is a piecewise regular surface . The curved part  of the 

boundary has a finite area. Part \\  of the boundary is one or more planes. We denote the 

boundary of an unbounded part at infinity as . The radius-vector x  designates an arbitrary 

point in 33 . Radius-vector s  denotes either a boundary point on  or a point in  which 

is infinitesimally close to . In each point of the boundary the normal n s  is directed 

inwards a domain. Here, and subsequently, all continuously differentiable functions and twice 

continuously differentiable functions are referred to as the smooth functions and the regular 

functions correspondingly.  

 

 Introducing into consideration the fundamental vectors f x, y,l  ( 1, ,l m m N ), 

similar in structure to the vector u x,  defined in Appendix, we build the stationary 

fundamental matrix solution  

 

 1 2F x, y, f x, y, f x, y, f x, y,
T

m ,mff x,  (1) 

 

The stationary fundamental matrix (1) satisfies the problem for the feasible fundamental 

solution in homogeneous domain  in a complete form  
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E

V

x

s

s

s

D M F x, y, x y I ,

: G x, s, N F s, y, (s) 0 ,

: G x, s, N F s, y, (s) 0 ,

: G x, s, N F s, y, (s) 0,

: s, s , F s , y, 0 ,

RC dS

EC dS

VC dS

AC

E

V

 (2) 

 

where  is the delta-function and I  is the identity matrix.  

 

 We note that a solution F  of t-hyperbolic system in (2) is not unique because it 

contains an arbitrary function satisfying this system with the zero column on the right hand 

side. Because a set of such solutions does not satisfy any special boundary condition, we call 

any matrix solution as the fundamental matrix solution (see detailed definitions in [21]).  

 

 We note that the integral in radiation condition RC  in (2) is over the surface . 

Set of fundamental matrices contains divergent and convergent solutions. We chose divergent 

fundamental matrix F , namely which satisfies radiation condition RC  at the infinite part of 

 [22], [23].  

 

 In the vicinity of edges and vertices of boundaries, some fundamental solutions 

contain singular terms which are physically inadmissible (for details, see [4], [5], [24], [25], 

[26], [27], [28], [29], [30]). To eliminate these terms we may choose one of two options. One 

option is to propose an implicit description which bounds a set of admissible solutions by 

defying appropriate functional space. We choose another option in statement (2). This option 

is to define explicitly the edge EC  and vertex VC  conditions at irregular points of the 

boundary in terms of the surface integral operators. The radii of the cylinders EE  and the 

spheres VV  are infinitesimally small.  

 

 The kernel of the integral operator in (2) contains an arbitrary term, which describes 

‘nonphysical’ radiation in the ‘shadowed’ zones of domain . Therefore, the fundamental 
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solution (4) can contain an arbitrary term of nonfeasible nature. To exclude the nonfeasible 

term we introduce an additional mathematical condition at boundary  in (2). This condition 

realizes the principle of “absolute absorption”. We denote the required absorption condition at 

the boundary by symbol AC  and introduce some unknown integral operator s, s ,  

acting over surface . Determination of the explicit form of an integral operator s, s ,  is 

a main target for this paper.  

 

 We write the solution (1) of the system in (2) in domain  as the integral 

representation similar to equation (68) from [31] in form  

 

 
E V

sF(x, y, ) G(x, y, ) G(x, s, ) N F(s, y, ) (s)dS
E VE

, (3) 

 

where matrix sN  is described in [31], [32], [33]. The closed surface of integration is 

represented by E VE VE , where the cylindrical surfaces EE  have their axes 

along edges, and the spherical surfaces VV  have their centers at vertices [24], [28], [29], 

[34].  

 

 Substituting the conditions RC , EC , and VC  from (2) into (3), we obtain the 

fundamental solution  

 

 sF(x, y, ) G(x, y, ) G(x, s, ) N F(s, y, ) (s)dS  (4) 

 

 Introducing into consideration the fundamental vectors g x, y,l  ( 1, ,l m m N ), 

we build the stationary fundamental matrix solution  

 

 1 2G x, y, g x, y, g x, y, g x, y,mgmgg x . (5) 
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 Therefore we need to continue the material parameters from the domain to its 

complement to choose matrix G . Accounting for this parameter continuation, it is possible to 

consider system from (2) in the whole space 33  with the following material parameters  

 

 C 3M M , x 3 . (6) 

 

It is then possible to assume that G  is defined not only in points x , but also in points 
3x \3 \3  of the ‘mathematical half-space. It should be noticed that in many publications the 

divergent fundamental solution (5) is conventionally called the free space Green function. 

Therefore G  is a solution of the problem in 33 :  

 

 

C
x

s

D M G x, y, x y I ,

: G x, s, N G s, y, (s) 0 .RC dS
 (7) 

 

Matrix G  must satisfy radiation conditions to eliminate physically inadmissible waves 

incoming from the infinite part of domain . A comprehensive analysis represented in [22] 

and [23] allows us to choose an actual formulation of the radiation conditions in domains of 

complex shape, in accordance with the used mathematical apparatus. As soon as 

representation (3) uses the apparatus of surface integral operators we write the radiation 

condition. In (7), G  satisfies the radiation condition at infinite sphere  in space 
33 .  
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2.4 The boundary value problem for the fundamental solution  
 

In this Section we reduce the integral representation (4) to the boundary integral equation for 

the feasible fundamental matrix F  in homogeneous domain.  

 

 To simplify notations we denote the surface integral operator of Kirchhoff’s type in 

(4) as follows  

 

 G sK (x, s, ) G(x, s, ) N (s)dSsG(x, s, ) N (s)sG(x s ) . (8) 

 

With help of the operator (8) we rewrite the integral representation (4) in operator form  

 

 GF(x, y, ) G(x, y, ) K (x, s , ) F(s , y, ) , (9) 

 

where s  is a point of integration.  

 

 In representation (9) the boundary values of the feasible fundamental matrix are 

unknown. We let a point x  tend to a point s  at the boundary and obtain a limit equation for 

the boundary values of the feasible fundamental solution  

 

 GF(s, y, ) G(s, y, ) K (s, s , ) F(s , y, ) . (10) 

 

In (10) we denote the surface integral operator of Kirchhoff’s type at points of boundary as 

follows  

 

 G sK (s, s , ) G(s, s , ) N (s )dSs) N (s )sG(s s )G(s s ) N (s) N (G(s s ) . (11) 

 

For further simplification of formulae we omit argument  in some formulae.  

 

 From the theory of surface integral operators (see, for example, in [24], [34], [35], 

[36]) it is known that the operator (8) is an operator of orthogonal projection with properties  
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 G G GK K K  (12) 

 

and  

 

 GK 1 . (13) 

 

It is known (see in [24], [34], [35], [36]) that the matrix (5) belongs to the kernel of operator 

(8). Then the identity  

 

 GK (s, s ) G(s , y) 0  (14) 

 

is valid.  

 

Taking into account (14) the representation (10) can be rewritten in the form  

 

 GV s, y K s, s V s , y , (15) 

 

where V s , y F s , y G s , y  is a scattered component of the fundamental solution (10)

.  

 

 Since the operator (8) has eigenvalue 1 [24], [34], [35], [36], the equation (15) has 

infinite amount of solutions. Therefore equation (10) has an infinite number of solutions, 

some of which can be physically nonfeasible fundamental matrices in a domain . 

Repeatable substitution of equation (10) in itself does not change this equation because of 

properties (12) and (14). Therefore the method of simple iteration, which is necessary for 

obtaining an analytical solution, is not applicable to equation (10).  
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2.5 The integral absorption condition at the boundary  
 

In this Section we derive the integral absorption condition at the boundary of the 

homogeneous domain in analogy to integral absorption condition for acoustic and porous 

fluid-saturated domain [14], [15], [16], [17].  

 

 We rewrite the equation (10) with help of an auxiliary unknown matrix operator, H , 

with norm less than 1 [37]. Using operator H  we split the matrix operator (8) in form  

 

 G GK s, s H s, s K s, s H s, s . (16) 

 

Substituting representation (16) in equation (10), we obtain the equivalent equation  

 

 GF(s, y) G(s, y) H(s, s ) F(s , y) K (s, s ) H(s, s ) F(s , y) . (17) 

 

Moving the second term from the right hand side to the left hand side of equation (17) and 

using the existence of operator 1I H , we obtain  

 

 
1

G

1

F s, y I s, s H s, s K s , s H s , s F s , y

I s, s H s, s G s , y .
 (18) 

 

The equation (18) is similar to equation (7.2) from paper [37], in which the operator and the 

vector are given by formulas (7.24) and (7.25).  

 

 The set of solutions of equation (18) is also the set of solutions of equation (10) and 

consists of two subsets of boundary matrices: GF K HKer  which corresponds to the 

identity GK H F  and GF K HKer  which does not correspond to this identity. We 

suppose that one of those subsets consists of the feasible fundamental matrices. In order to 

choose the subset consisting of the feasible fundamental matrices we use the following 

heuristic arguments. We begin with the first subset GF K HKer . Substituting the 
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identity GK H F  in (18), we obtain 1F I H G . Let us suppose that H , where 

Ο  is the null operator. Then, from (18), we obtain F G , where G  is the feasible 

fundamental solution for an unbounded space. Therefore the condition GF K HKer  

extracts the feasible fundamental matrices for an unbounded space. We then suppose that the 

condition GF K HKer  extracts the feasible fundamental matrices in case of an arbitrary 

domain as well. In further Sections we justify this choice. Therefore we do not consider 

further the second subset GF K HKer , which describes nonfeasible radiation.  

 

 Using the above mentioned resoning, we extract the feasible fundamental matrix 

F s , y  with help of the integral ‘absorption’ condition at the boundary introduced in (2)  

 

 : s, s , F s , y, 0AC , (19) 

 

using a required operator  

 

 Gs, s K s, s H s, s . (20) 

 

 Taking into account (20) equation (17) leads to the boundary integral equation of the 

second kind  

 

 F s, y H s, s F s , y G s, y . (21) 

 

Since the norm of H  is less then 1, homogeneous equation F H F has only the primitive 

solution, and solutions of equations (21) can be written in explicit form  

 

 
1

0
F s, y I s, s H s, s G s , y H s, s G s , yn

n
. (22) 

 

Solution (22) can be also derived directly from equation (18), taking into account this 

condition (20).  
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 We then find a required form of operator H  in condition (20). Substituting the right 

hand side of (21) into (19) with operator (20), we obtain the next chain of equalities  

 

 G G G

G G G

O K H F K F H F K G H F H F

K G K H F H F K H H F ,
 (23) 

 

where the term GK G  is equal to the zero matrix according to (14). From (23) we conclude 

that  

 

 GK H H . (24) 

 

We then search for the operator H , such that (24) is correct. Equallity (24) is trivially valid if 

GH K . But such a choice is not appropriate, because the norm of H  must be less than 1. 

Therefore it is sufficient to choose this operator in a composite form [37]  

 

 GH s, s K s, s A s , s , (25) 

 

where A  is unknown operator with norm less than 1.  

 

 Using the composite operator (25), we rewrite the required absorption operator (20) in 

explicit form  

 

 G Gs, s K s, s K s, s A s , s . (26) 

 

Any solution of problem (2) with the operator (26) in the absorption condition AC  is a 

physically feasible fundamental solution.  

 

 We have used all the information to derive operator A  except the property GA K  

which we now use. Substitution of operator (25) in operator equality (16) results in the 

equality  
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 G G G GK s, s K s, s A s , s K s, s K s, s A s , s . (27) 

 

Taking property (12) of operator K  into account, operator equality (27) can be represented as:  

 

 G GK s, s A s, s K s, s A s, s . (28) 

 

An explicit form of operator A  is given in the next Section.  
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2.6 Absorption operator at the boundary  
 

First, we consider a case of homogeneous medium with one constant wave velocity v . 

Representation (28) can be realized by different methods. We choose the method of splitting 

the operator GK , that brings a physical meaning to the mathematical formulation of the 

required absorption condition at boundary (20). It is logical to use the well-known splitting of 

the surface integral in representation (9), that was earlier applied for finding the mathematical 

formulation of the ‘absolute absorption’ principle at boundary of homogeneous acoustic 

medium (see for example in [5]). Using physical reasoning, it was suggested to divide the 

surface of integration  in representation (9) into its virtual part 0 y0 y , ‘not illuminated’ 

from point y , and its virtual part 1 y1 y , ‘illuminated’ from point y . But a reasonable 

method of finding the boundary values at the ‘not illuminated’ parts of surface 0 y0 y  is still 

not suggested. Kirchhoff suggested neglecting them but it was mathematically noncorrect (see 

detailed discussion in [5]).  

 

 For constructing operator A  further we use the principle of dividing the surface of 

integration into two virtual parts. But instead of nonreasonable ‘vanishing’ the boundary 

values at the virtual part of boundary 0 y0 y  we use rigorous mathematical condition (20). To 

rigorously formulate this principle for splitting (28) in the case of homogeneous medium, we 

kinematically sort the physically feasible and nonfeasible rays (ray trajectories). This sorting 

is based on combining Hadamard’s generalization of the Fermat’s principle (see details in [3]) 

and geometric optics generalized for t -hyperbolic symmetric systems of the first order partial 

differential equations (for example, see in [39]). We consider a set of rays s, ss, s  which have 

a form of segments s, s s, ss, s  in homogeneous medium, filling free space 33 . These 

segments connect virtual limit points s  and s  of boundary . The segments are defined in 

homogeneous unbounded medium, where the “mathematical” supplement 3 \3 \  has the 

same material parameters as domain . When considering an arbitrary shape of boundary the 

set of segments is splitted into two subsets.  

 

 The first subset contains those segments which have all points inside domain , 

namely s, s s, ss, s s, ss, ss s . It is necessary to note that after infinitesimal shift of limit 
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points s  and s , the segment remains inside domain. Each internal segment will be 

characterised by the integer-valued function s, s 0h , which fixes the absence of 

intersection of the segment and domain boundaries. Such segments are physically feasible, 

because they define the “physical” ray s, ss, s .  

 

 The second subset containes those segments which have some points outside domain 

, namely s, s s, s Ss, s . We will characterise such segments by the integer-

valued function s, s 1h , which fixes the existence of intersection of the segment and 

domain boundary. Such segments are physically nonfeasible, because they define the 

“mathematical” ray s, ss, s .  

 

 Therefore, we have the integer-valued function  

 

 
0, s, s s,s ,

s,s
1, s, s s,s ,

h
s, s s, ,s,ss,ss s
s, s s,s ,s,ss,ss s

 (29) 

 

which extracts the virtual shadow zones at the boundary of the domain. Substituting the 

shadow function (29) into the integrand of the surface integral operator (11), we define the 

required absorption operator by the formula  

 

 sA s, s s, s G s, s N sh dSss, s G s, s N sss, s G s, s Ns, s G s, s Ns sh dSs s G s s Ns s G s s NG s s . (30) 

 

 Secondly, we consider a case of homogeneous medium with p  constant wave 

velocities iv  where 1, ,i pp,  (see details in [18], [38], [39], [40]). In this case the absorption 

operator A  is also given by formula (30) because the shadow function (29) is based on the 

straight rays s, s s, ss, s  which are the same for any wave velocity iv  in homogeneous 

medium (see for example in [5], [39]).  

 

 It is necessary to notice that the absorption operator (30) propagates only physically 

nonfeasible wavefields from an arbitrary point to all points of corresponding virtual shadow 
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zone at boundary. This denies the heuristic Kirchhoff integral (see for example in [5]). Since 

the integration surface in operator (30) does not contain the singular point of the kernel, it is 

not difficult to show that the norm of the operator (30) and, hence, composite operator GK A  

is less than 1 (see detailed proof in [36]).  
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2.7 Feasible fundamental solution for a homogeneous domain  
 

For convenience we rewrite the formula (9) in the form of the spatial representation of the 

feasible fundamental matrix  

 

 GF(x, y) G(x, y) K (x, s) F(s, y) , (31) 

 

where the boundary values (22) accounting for the operator equality (25) are in the final form 

of  

 

 
1

GF s, y I s, s K s, s A s , s G s , y . (32) 

 

As the norm of the operator GK A  is less than 1, it is possible to avoid calculation of the 

inverse operator in (32) by decomposing it into the Neuman series  

 

 
G

0

G
1

F s, y K s, s A s , s G s , y

G s, y K s, s A s , s G s , y .

n

n

n

n

 (33) 

 

Series (33) contains both the matrix operator that is composed from conventional surface 

integral operator GK  defined by formula (11) and absorption operator A  introduced by 

formula (30).  

 

 Because series (33) is convergent, it is possible to interprete each term of this series as 

follows: the zero term of this series is represented by the fundamental matrix G  for the 

unbounded homogeneous medium which can contain a nonfeasible component. If a 

nonfeasible component is absent then the series vanishes identically as A . If a 

nonfeasible component is present, then the first ( 1n ) term of the series contains both the 

contribution of single and double diffractions and a nonfeasible component of the 

fundamental matrix G  with a minus sign. Each n -th ( 1n ) term of the series contains the 

diffraction contribution of the 2 1n -th and 2n -th orders and nonfeasible component of 



 

47 

the diffraction contribution of the ( 1n )-th term with the minus sign. The above analysis 

shows that series (33) can be considered as the rigorous explicit description of the so-called 

cascade diffraction including creeping wavefields and wavefields of the whispering galleries.  

 

 Substituting formula (33) into representation (31), we obtain  

 

 G G
1

F x, y G(x, y) K (x, s) K s, s A s , s G s , y
n

n

. (34) 

 

 Formula (34) defines the unique feasible fundamental solution F  for each chosen 

initial term G . As we can choose G  by different ways, the feasible fundamental matrix F  is 

also defined nonuniquelly. It is necessary to notice that the introduction of the absorption 

condition A C  in the statement of the problem (26) extracts the specific fundamental 

solution in form (34) from the set of the fundamental solutions, but without a proof of its 

physical feasibility. Analytical justification of its physical feasibility in a case of a canonical 

model represented by a half-slit in a free space is given in [14]. Numerical justification of the 

physical feasibility of solution (34) is given in [18], [19], [20], [30].  
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2.8 The feasible fundamental solution for an inhomogeneous domain  
 

In this Section we consider the statement of the problem in the inhomogeneous domain. After 

that, we use the solution of the homogeneous domain for solving the problem in the 

inhomogeneous domain.  

 

 We consider now a smoothly inhomogeneous domain  with a boundary . The 

matrix of material parameters M  of domain  is represented by formula (A.16). We define 

the feasible fundamental solution for inhomogeneous domain as a solution of the problem  

 

 

V

x

s

s

s

s

D M x, F x, y, x y I ,

: F x, s, N F s, y, (s) 0 ,

: F x, s, N F s, y, (s) 0 ,

: F x, s, N F s, y, (s) 0,

: F x, s, N F s, y, (s) 0 .

E

RC dS

EC dS

VC dS

AC dS

E

V

 (35) 

 

 Any solution of the problem (35) is the feasible fundamental solution for 

inhomogeneous domain.  

 

 The radiation condition RC  and the edge EC  and vertex VC  conditions for the 

feasible fundamental solution F  in the inhomogeneous domain are written by analogy to (2).  

 

 The absorption condition AC  for the inhomogeneous domain in (35) is different 

from the absorption condition in the problem (26) for the homogeneous domain. The 

condition in (35) expresses an auxiliary requirement of the absorption of the wavefields of 

nonphysical sources, located outside the domain. If the integral over  is not identically equal 

to zero then the boundary values F  contain wavefields of nonphysical sources, located 

outside a domain. If this summand is identically equal to zero then the boundary values of F  

can be nonzero, but can not contain wavefields of nonphysical sources, located outside a 

domain.  
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 Taking into account (A.16), we rewrite system (A.15) as t-hyperbolic system in (2) for 

the homogeneous domain with modified right-hand side  

 

 xD M F x, y x y I M x F x, y , Msupp . (36) 

 

To obtain the integral representation for the fundamental solution of equation (36), we rewrite 

the divergence theorem in matrix-vector form from [31] in our designaton as  

 

 

E V

TT
z z

T
s

F (z, x) K D F(z, y) D F(z, x) K F(z, y) (z)

F (s, x) K N F(s, y) (s) ,

dV

dS
VEE

 (37) 

 

where kernels F  of integral operators in (37) are based on the feasible fundamental solution 

F x, y,  for the homogeneous domain, defined by formula (34). Calculating the volume 

integral of the left hand side of equality (37), we obtain  

 
TT

z z

TT

F (z, x) K D F(z, y) D F(z, x) K F(z, y) (z)

F (z, x) K (z y) I M(z) F(z, y) (z x) I M F(z, x) K F(z, y) (z) .

dV

dV
 (38) 

 

From properties of the generalized function  and the fundamental matrix we conclude that 

the right hand side of (38) can be transformed to  

 
TT

T T

T

T T

F (z, x) K (z y) I M(z) F(z, y) (z x) I M F(z, x) K F(z, y) (z)

F (y, x) K F (z, x) K M(z) F(z, y) (z)

K F(x, y) M F(z, x) K F(z, y) (z)

F (y, x) K K F(x, y) F (z, x) K M(z) F(z, y) (z)

dV

dV

dV

dV .

 (39) 
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Substituting (39) into left hand side of (37) we obtain the equality  

 

 

E V

T T

T
s

K F(x, y) F (y, x) K F (z, x) K M(z) F(z, y) (z)

F (s, x) K N F(s, y) (s) .

dV

dS
VEE

 (40) 

 

Using the reciprocity property of an arbitrary fundamental matrix solution and multiplying the 

equality (40) from the left side by matrix 1K , we obtain the equality  

 

 

E V
s

F(x, y) F(x, y) F(x, z) M(z) F(z, y) (z)

F(x, s) N F(s, y) (s) .

dV

dS
VEE

 (41) 

 

 The surface integral in (41) is identically equal to zero because of conditions in 

problem (35). We then transform (41) to form  

 

 F x, y F x, y F x, z M z F z, y (z)dV , (42) 

 

where the integral is taken in the domain  rather than in  because M 0  in \\ . 

The kernel of the integral operator and the first term in (42) are represented by the feasible 

fundamental matrix F x, y  for the homogeneous domain. We notice that the solution (42) is 

formal as it is a volume integral equation. Solving this equation with respect to F  is a difficult 

analytical problem, which is considered in [40], [41]. We do not consider solving equation 

(42) as it is outside of the scope of this paper.  
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2.9. Feasible surface and volume integral operators for a homogeneous 

domain  
 

By analogy to the surface integral operator (8) for homogeneous domain, we introduce into 

consideration the feasible surface integral operator for homogeneous domain  

 

 F sK x, s F x, s N (s)dSsF x, s N (s)s , (43) 

 

where F  is the feasible fundamental matrix for homogeneous domain. Operator (43) has a 

property F F FK K K . Substituting its integral representation (31) for y s  with boundary 

values in form (32) into the kernel of operator (43), we obtain the feasible surface integral 

operator in homogeneous domain  

 

 F G F GK x, s K x, s K s, s K x, sGGKKGK , (44) 

 

where the feasible surface integral operator at the boundary has form  

 

 
1

F G GK s, s I s, s K s, s A s , s K s , s . (45) 

 

Substituting the representation (31) for y s  with boundary values in form (33) into the 

kernel of the operator (43), we can decompose the feasible surface integral operator (44) into 

the Neumann-type operator series  

 

 F G G G G G G
1

K s, s K K A K K s, s K s, s A s , s K s , sn

n
. (46) 

 In addition to the surface integral operator (43) we introduce into consideration the 

feasible volume integral operator for homogeneous domain  

 

 FR x, y F x, y (y)dVF x, y (y) , (47) 
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where F  is the feasible fundamental solution. By substituting the feasible fundamental 

solution of homogeneous domain (34) in the kernel of the operator (47), we obtain the 

feasible volume operator for homogeneous domain in terms of Neumann series  

 

 F G G G
0 0

R x, y K x, s A s, s G s , y (y) K x, s A s, s R s , y
n n

n n

dV ( )( )(y)(y)(y)(y)
0n 00

,(48) 

 

where  

 

 GR x, y G x, y (y)dVG x, y (y)d . (49) 
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2.10 Feasible surface and volume integral operators for an inhomogeneous 

domain  
 

By analogy to the feasible surface integral operator for homogeneous domain (43) we 

introduce into consideration the feasible surface integral operator for inhomogeneous domain  

 

 F sK x, s F x, s N (s)dSsF x, s N (s)s , (50) 

 

where F  is the feasible fundamental solution for inhomogeneous domain. If point x  tends to 

surface , then operator (50) has a property F F FK K K . Substituting (42) in (50) we obtain  

 

 F FF FK x, s K x, s R x, z M z K z, s . (51) 

 

 In addition to the surface integral operator (50) we introduce into consideration the 

feasible volume integral operator for inhomogeneous domain  

 

 FR x, y F x, y (y)dVF x, y (y) , (52) 

 

where F  is the feasible fundamental solution for inhomogeneous domain. By substituting the 

feasible fundamental solution for inhomogeneous domain (42) in the kernel of the operator 

(52), we obtain the feasible volume integral operator for inhomogeneous domain  

 

 F FF FR x, y R x, y R x, z M z R z, y , (53) 

 

where FR  is given by formula (47). The representation (53) represents the operator FR  for 

inhomogeneous domain with help of operator FR  for homogeneous domain with a simpler 

kernel.  
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2.11 Conclusions  
 

In this paper we proposed an analytical description of the fundamental solution of the 

multiphysics wave equation which is dependent on the geometrical shape of the domain of 

effective medium. We introduced the integral condition of absolute absorption at the 

boundary which selects the feasible fundamental solution. The feasible fundamental solution 

in homogeneous domains is represented by the Neumann series with explicit operator and 

zero-order term. The operator contains the surface integral operator and an absorption 

operator. The zero-order term is chosen as a Green’s function for unbounded medium. The 

absorption operator is zero for convex domains. We introduce the feasible fundamental 

solution for inhomogeneous domains as an equation with a volume integral operator. The 

kernel of this operator is based on the feasible fundamental solution for homogeneous 

domains. Using the feasible fundamental solutions we obtained the feasible surface and 

volume integral operators with the appropriate kernels in homogeneous and inhomogeneous 

domains. In contrast to the conventional fundamental solution (Green’s function for the 

unbounded medium) designed for modeling of the total wavefield, the feasible fundamental 

solution allows us to evaluate separate wave fragments. The feasible fundamental solution 

opens a perspective of the theoretical description of wavefields in the form of the 

superposition of the separate waves, multiply reflected and transmitted at curved boundaries 

in real medium. The feasible fundamental solutions can be used for the development of the 

wavefield modeling methods in complex media with shadow zones. The feasible fundamental 

solution can improve modeling methods for complex media with different phases (elastic 

skeleton, fluid and/or gas in pores, anisotropy, etc).  
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2.13 Appendix. The multiphysics wave equation  
 

There are many theoretical methods of building a macroscopic effective model of 

microscopic, heterogeneous (multiphase) medium (see reviews in papers [21], [42], [43], [44], 

[45]). In spite of differences between various methods, it is shown that elastic oscillations of 

sceleton and acoustic oscillations of fluids, connected to electromagnetic fields of 

piezoelectric and electrocinetic nature, in effective model can be described by t -hyperbolic 

system of equations of first order (see for example in [21], [31], [32], [33], [38], [39], [45], 

[46]) or equivalent hyperbolic system of equations of second order (see for example in [21], 

[43], [44], [47]). The difference between effective models, obtained by different methods, is 

seen only in variations of the scalar components of the matrix of macroscopic material 

medium parameters. These variations are caused by differences in a set of microscopic 

physical phenomena, taken into account in different methods. Therefore we consider, without 

loss of generality, a t -hyperbolic system of arbitrary size [31], [32] (version of this paper 

improved in 2010 was also available for us), [33], [38], [39], [46].  

 

 We consider mechanical and electromagnetic oscillations in an arbitrary domain of 

effective medium with material parameters independent of time. Such oscillations can be 

described by the linear t -hyperbolic system of first order partial differential equations [38], 

[39], [48]  

 

 
3

3
0

1

C x u x, C x u x, C x u x, f x, , xt n n
n

t t t t 3 , (A.1) 

 

where u x, t  is a column composed of n  required scalar functions, f x, t  is the volumetric 

density of outer forces, and t  and n  are the time and coordinate xn  derivatives 

respectively. Matrices 0C x , C xn  and C x   of the material parameters have dimension 

n n . Matrices 0C x  and C xn  satisfy the properties  

 

 0 0C x C x 0 ,

C x C x ,

T

T
n n

 (A.2) 
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and matrix C x  is generally nonsymmetric. Superscript T  denotes transposition. Since 

system (A.1) generalizes the acoustic, elastic and electromagnetic wave equations, we call this 

system the multiphysics wave equation.  

 

 Column u x, t  contains kinematic and dynamic field strengths [48]. Kinematic field 

strengths, such as components of particle velocity vectors and electric field vectors, can be 

collected in the kinematic subcolumn u x,k t . Dynamic field strengthes, such as components 

of stress tensors and magnetic field vectors, can be collected in the dynamic subcolumn 

1 2 3u x, u u u
T

d d d dt . We notice that a one-index notation for the two-index tensors is 

wide spread (for example, see in [38], [42], [46], [48]). Because the symmetric 3 3 tensors 

have only 6 independent components in solids and viscous fluids and one component 

(pressure) in nonviscous fluids, in the general case, dynamic subcolumn contains independent 

strengthes in columns 1ud  and 2ud  and dependent dynamic field strengthes in column 3ud . 

Therefore we have an augmented system of equations. To reduce this system to the ordinary 

system with respect to a nondegenerate dynamic subcolumn 1 2u x, u u
T

d d dt , we 

exclude column 3ud  [48], [49], [50]. Finally, we write column 1 2u x, u u u
T

k d dt  in 

form that is invariant to any type of effective medium, because splitting in three subcolumns 

u x,k t , 1u x,d t  and 2u x,d t  does not depend on a type of effective medium.  

 

 It is known (for example, see comments in [33], [38]) that in the general case the 

differential operator in (A.1) is not selfadjoint. This property leads to the consideration of the 

fundamental solution for the differential operator, adjoint to operator in (A.1), and 

overcomplication in Green’s formula which is necessary in our study. For simplicity and 

convenience, we rewrite the differential operator in (A.1) in terms of the matrix differential 

operator formalism, as introduced in papers [31], [32], [33], [48]. We then can use the 

fundamental matrix solution and the corresponding Green’s formula, as introduced in these 

papers.  

 

 We then represent the original system governing mechanical and electromagnetic 

oscillations written in terms of the nabla formalism as system of two matrix equations [46]  
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1 1
11 x1 x2 11 12 13

2 2

1 1 122 23 21 22 23x1

2 2 223 33 31 32 33x2

u u
A u D D B u B B f ,

u u

u u fA A B B BD
u + u ,

u u fA A B B BD

d d
t k k k

d d

T
d d d

t k kT T
d d d

 (A.3) 

 

where 11A  is the generalized density-permittivity matrix, Ai j  are the generalized compliance-

permeability matrices, Bi j  are some matrices, fk  and fd i  are the volume densities of external 

forces, and xD i  are the matrix differential operators. The pair of matrix equations (A.3) can 

be combined into system similar to system (A.1)  

 

 xA x u x, D u x, B x u x, f x,t t t t t  (A.4) 

 

where 1 2f x, f f f
T

k d dt , the matrices written as  

 

 
11 11 12 13

22 23 21 22 23

23 33 31 32 33

A B B B
A x A A , B x B B B

A A B B BT

 (A.5) 

 

can be obtained by simple rewriting of corresponding matrices in [31], [32], [33]. Comparing 

matrices in (A.4) and (A.1), we obtain equalities 0A C  and B C , and a decomposition of 

the matrix operator in form  

 

 
x1 x2 1 23

x x1 1
1

x2 2

D D C C
D D C , C C

D C

n n
T T

n n n n
nT T

n

. (A.6) 

 

Notice that the internal block structure of the differential operator xD  and matrices Cn  in 

(A.6) is invariant to a type of effective medium. The operator xD  and matrices Cn , A x  

and B x  have the necessary properties of symmetry  
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x x x xD K D K , D D , C K C K , C C ,

A x K A x K , A x A x 0 ,

B x K B x K .

T T T T
n n n n

T T

T

 (A.7) 

 

Notice that matrix B x  is generally nonsymmetric. Diagonal matrix K  obeys the property 

1K K KT  and contains +1 and -1 in special order (see more details in [31], [32], [33]).  

 

 As the explicit form of the matrices A x  and B x , the operators x1D  and x2D  and 

matrices 1Cn  and 2Cn  is not relevant to this paper, we do not provide their detailed 

description. Some examples of the matrices A x  and B x , the operator xD  and the 

column u x, t  are given in the version of paper [32] improved in 2010 and in paper [33]. 

The differential operators for the acoustic, electromagnetic and elastodynamic wave 

propagation are similar to the operator xD  in (A.6).  

 

 We notice that the differential operators for the coupled elastodynamic and 

electromagnetic wave propagation in piezoelectric media [33] and in fluid-saturated porous 

media with electrolyte [32] are the block-diagonal matrices. These matrices are not similar to 

the differential operator xD  in (A.6) that is not the block-diagonal matrix. Below we show 

that in case of fluid-saturated porous media with electrolyte, this contradiction can be avoided 

after the necessary rearranging of matrix (D10) from [32]. This rearranging corresponds to the 

rearranging of the internal structure of column 1 2 3u u u u T  to column 

1 2u u u u
T

k d d .  

 

 We write three subcolumns 1u E H T , 2 1 2u v τ τ
Ts b b  and 3u w Tp  

from formulae (F13) in [32] as three rearranged subcolumns  

 

 1 1 2 2

E H
u v , u τ , u τ

w

s b b
k d d

p
. (A.8) 
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The components of subcolumns (A.8) and matrices (A.5) are explicitly given in the improved 

version of paper [32]. Diagonal matrix K  corresponding to subcolumns (A.8) reads  

 

 1 2K K , K , Kk d ddiag  (A.9) 

 

with diagonal matrices K I, I, Ik diag , 1K I, I, 1d diag , 2K Id diag , and the 

identity 3 3  matrix I 1,1,1diag . Matrix (A.9) is a result of the necessary rearranging of 

matrix (D19) from [32].  

 

 Omitting derivation, we show the off-diagonal matrix elements of the differential 

operators  

 

 
0 3 3

x1 1 1 x2 2 2
1 1

D 0
D D 0 C , D D C

T

n n n n
n n

. (A.10) 

 

We rewrite four matrix differential operators in (A.10) using their decomposition with matrix 

coefficients in form  

 

 

3 2 13 3

0 3 1 0 1 2 1
1 1

2 1 3

3 2 13 3

2 3 1 2 2
1 1

2 1 3

0 0 0
D 0 I , D 0 0 I ,

0 0 0

0
D 0 I , I ,

0

n n n n
n n

n n n n
n n

. (A.11) 

 

where 3 3 matrices 0 1 1 1 1I n i n n j i n n j , 1I n i n n j , and 

2 1 1 1 1I n i n n j i n n j , and 3 1 matrix In i n  are composed from the 

Kronecker deltas, , 1, 2, 3i j . When value of index 1n  is less than 1, then we assume its 

value 3. When value of index 1n  is more than 3, then we assume its value 1. Using 

formulae (A.10) and (A.11), we write matrices 1Cn  and 2Cn  by formulae  
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0

1 1 2 2

I 0
C I 0 , C I

I

T
n

n n n n

n

. (A.12) 

 

Accounting for explicit form of the symmetric matrices Cn  and relationship (A.6), we justify 

the equality of systems (A.4) and (A.1) in case of the coupled elastodynamic and 

electromagnetic wave propagation.  

 

 Notice that the internal block structure of the differential operators x1D  and x2D  in 

(A.10) and matrices 1Cn  and 2Cn  in (A.12) is not invariant, because it depends strongly on a 

chosen type of effective medium. It is seen from comparing the differential operators and 

matrices with those for piezoelectric medium [33]. In piezoelectric medium subcolumns (A.8) 

contract to u E v
Ts

k , 1 1u H τ
Tb

d , and 2 2u τb
d . Then the differential 

operators x1D  and x2D  in (A.10) contract to 0
x1

1

D
D

D

T

 and x2
2

D
D

, and matrices 

1Cn  and 2Cn  in (A.12) contract to 0
1

1

I
C

I

T
n

n
n

 and 2
2

C
In

n

.  

 

 Folowing concepts in [51], we represent the matrices of the material parameters in 

domain  in form  

 

 
A x A A x , A ,

B x B B x , B .

supp

supp

,

.
 (A.13) 

 

The elements of the matrices A x  and B x  are smooth functions. The matrices A  and 

B  are constant.  

 

 We use the direct and inverse Fourier transforms  
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 0

1u x, u x, exp ,
2

1u x, u x, exp .
2

t i t dt

t i t d
 (A.14) 

 

The Fourier transforms (A.14) further allow direct consideration of the stationary solution 

u x, .  

 

 Applying the direct Fourier transform to equation (A.4) we obtain the multiphysics 

wave equation  

 

 xD M x, u x, f (x, ) , (A.15) 

 

where  

 

 

M x, M + M x, ,

M A B, x ,

A x B x , x ,
M x,

0 , x \ .

i

i

,

,
\ .

 (A.16) 

 

Accounting for (A.7) we see that matrix M x,  obeys the property  

 

 M x, K M x, KT . (A.17) 

 

We notice that the properties (A.7) and (A.17) define the reciprocity of any solution of the 

multiphysics wave equation (A.15). Wapenaar and Douma discuss more properties of matrix 

M x,  in Section II from [33].  
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3.1 Summary  
 

Conventionally, seismic modeling uses different numerical methods in order to build a 

subsurface image. These methods give a total solution, which can be difficult to describe and 

separate into physical wave fragments. In our earlier papers, we proposed the rigorous 

Transmission-Propagation Operator Theory (TPOT) which is purely analytical and provides 

the solution in inhomogeneous 3D media both in total and separated form. The separate waves 

are computed on a Graphics Processing Unit (GPU) cluster and visualized on a seismogram 

by the Tip-Wave Superposition Method (TWSM) in the mid-frequency range. In this paper, 

we use the TPOT&TWSM technology and test it on a 2,5D acoustic overhang V-model, 

which simulates a salt overhang. The concept of ‘feasibility’, proposed in TPOT&TWSM, is 

applied to the model so that the obtained wavefields are ‘feasible’ with respect to shadow 

zones. The focus is on the receiver line below the V-overhang in order to demonstrate the 

ability of the method to handle the source wavefield description in geometrical shadow. The 

source wavefield is a combination of two separate wave fragments corresponding to the 

physical events: the source spherical wavefield and the wavefield diffracted by the overhang. 

We prove that this study corrects for the conventional overhang model solution with help of 

the double-diffraction correction. After this correction, the source wavefield becomes 

‘feasible’. Numerical examples illustrate the time arrivals and amplitudes of the source 

wavefield. The amplitudes computed by TPOT&TWSM are compared to the amplitudes 

analytically computed by the edge wave theory.  
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3.2 Introduction  
 

Seismics exploits various imaging approaches based on the use of the free space Green’s 

function for unbounded media as a point source wavefield to reconstruct the internal structure 

of the real subsurface from observed surface data. If the properties of the medium change 

significantly (for instance, if the medium has a salt body) then there is a problem to determine 

the source wavefield.  

 

 All the well-known analytical representations of the total wavefield for rigorous 

diffraction problems at a wedge account for the geometrical shadow zone of the source 

wavefield. Friedlander (1958) analyzes a classical problem of diffraction at a wedge (Figure 

5.2), at a half-plane (Figure 5.3) and at a circular cylinder (Figure 6.1). Hewett et al. (2011) 

studies 2D time-dependent diffraction on a half-line. Babich et al. (2007) discusses the total 

wavefield for a wide range of canonical diffraction problems. In all canonical problems, the 

total wavefield is actually represented as the free space Green’s function in the geometrical 

illuminated zone and the diffracted wavefield in both illuminated and shadow zones. The 

diffracted wavefield smoothes the amplitude discontinuity of the point source wavefield at the 

shadow boundary. The arrival time of the point source wavefield front satisfies the 

generalized Fermat’s principle, as the front of the diffracted wavefield in shadow zone is 

delayed with respect to the classical Fermat’s principle. This point source wavefield is 

considered as the physically ‘feasible point source wave field’. Figures 1.1, 7.3, 7.6, 7.14 and 

7.15 in Chandler-Wilde et al. (2012) prove that geometrical shadow zones of the point source 

wavefield are included in modern numerical solutions of diffraction problems at boundaries of 

complex shape and scattering at obstacles of complex shape. Borovikov & Kinber (1994) and 

Ferrand et al. (2014) demonstrate that a similar structure of the wavefield is obtained by the 

modeling of diffraction at irregular surface using the ray theory by Cerveny (2005) and the 

geometrical theory of diffraction by Keller (1962). Zaman (2000) and Chandler-Wilde et al. 

(2012) illustrate that the rigorous theory of acoustic scattering represents the total solution as 

the sum of the source and scattered wavefields. The latter theory assumes that the point source 

wavefield in any zone of the domain is the free space Green’s function. In concave domains 

with shadow zones, the point source wavefield has an amplitude discontinuity at the shadow 

boundaries. In these cases, Klem-Musatov (1994) suggested that an edge diffracted wavefield 

is added to the point source wavefield in order to compensate this discontinuity. The 
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mathematical description of the source wavefield for domains of arbitrary geometrical shape 

remains an important and challenging problem in the wave theory.  

 

 In this paper, we propose the new analytical Transmission-Propagation Operator 

Theory and the Tip-Wave Superposition Method (TPOT&TWSM) in the mid-frequency 

range to build the feasible source wavefield in the shadow zone caused by a salt overhang of 

V-shape. This feasible source wavefield, for a point source, below the salt overhang differs 

from the conventional free space Green’s function by a cascade diffraction term. This cascade 

diffraction term performs the wave propagation and diffraction in shadow, illuminated and 

transition zones. The cascade diffraction term contains single and double edge waves at the 

sharp edge of the model.  

 

 TPOT by A.M. Aizenberg et al. (2011) and A.M. Aizenberg et al. (2014) provides an 

analytical description of the wave structure for the feasible source wavefield in layered and 

block media. The feasible source wavefield is represented by a surface Kirchhoff-type integral 

with the feasible fundamental solution of the actual domain in the kernel. This description is 

based on the splitting of the source wavefield into the sum of the wave events corresponding 

to the observed wavefield. The first term is the conventional point source wavefield (the free 

space Green’s function), which propagates from the source to the receiver only in the 

geometrical illuminated zones, and the second term is a cascade diffraction term.  

 

 A.M. Aizenberg & A.A. Ayzenberg (2008a), A.M. Aizenberg & A.A. Ayzenberg 

(2008b), A.M. Aizenberg et al. (2010), A.A. Ayzenberg & A.M. Aizenberg (2009) and A.M. 

Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis introduce the feasible 

fundamental solution in the complex geometrical domains as the superposition of the 

conventional fundamental solution and a cascade diffraction term represented by an infinite 

series of diffraction terms of increasing order. The diffraction term of the n -th order is the 

result of the propagation-absorption operator acting on that of the 1n -th order. The 

cascade diffraction term compensates the unfeasible parts of the conventional fundamental 

solution and takes into account the shadowed parts of the boundary.  

 

 In papers Zyatkov et al. (2012) and Zyatkov et al. (2013), we represent an improved 

highly-optimized algorithm of TWSM in the mid-frequency range for computation of the first 
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cascade diffraction term based on the propagation and absorption matrices. In this paper, we 

use TWSM for computation of the feasible source wavefield. The main interest of this paper 

is to utilize the simplest approximation for the feasible source wavefield of acoustic domains 

using the first cascade diffraction term solely. A.A. Ayzenberg et al. (2010), A.A. Ayzenberg 

et al. (2012), A.A. Ayzenberg et al. (2013) and A.A. Ayzenberg et al. (2014) demonstrate that 

this approximation explains the main kinematic and dynamic features of the feasible source 

wavefield in shadow zones. All the higher-order terms are dropped because we focus only on 

the double diffraction approximation, which totally is described by the first term. The 

accuracy, stability and efficiency of the algorithm are illustrated by a numerical test for an 

acoustic half-space with a canonical V-shaped boundary. The numerical examples illustrate 

the accuracy of the time arrivals, amplitude and pulse shape of the wave events computed by 

TWSM from A.M. Aizenberg & Klem-Musatov (2010) and M.A. Ayzenberg et al. (2009) in 

comparison with the formulae of the edge and tip wave theory by A.M. Aizenberg (1982) and 

A.M. Aizenberg (1993). 

 

 This paper describes the feasible source wavefield in an acoustic homogeneous 

domain with shadow zones and provides its comparison with the theoretical results by A.M. 

Aizenberg (1982) and A.M. Aizenberg (1993). The paper consists of: an Introduction, eight 

Sections and Conclusions. The Introduction formulates the feasibility problem. Section 3.3 

gives the statement of the 2-block forward V-problem. Section 3.4 performs a derivation of 

the solution. Sections 3.5 and 3.6 explain how to choose the feasible source wavefield in the 

solution, in terms of mechanics and the TPOT wave theory. Section 3.7 presents 

approximations of the theoretical formulae and the TWSM algorithm. Section 3.8 gives the 

reduction of the source wavefield representation, obtained by TPOT, to the formulae of the 

edge wave theory. Section 3.9 describes the normalized diffraction amplitudes in terms of the 

Diffraction Attenuation Coefficients (DAC) of the edge wave theory. Section 3.10 contains 

the design for V-model and demonstrates the TWSM test seismograms and their comparison 

with the edge wave theory. Conclusions summarize the result of the paper: the source feasible 

wavefield has to be used for V-model solution in the shadow caused by the V-shaped 

boundary.  
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3.3 Forward V-problem for 2-block medium  
 

We consider a 2-block model with V-interface (cylindrical wedge), concave inside the half-

space (Figure 1a). The material parameters of the domains and the geometrical parameters of 

the interface are chosen to imitate a salt overhang surrounded by sediments. A strong velocity 

contrast imitates shadow below the overhang.  

 

 V-model consists of two homogeneous acoustic domains, 11  and 22 , separated by V-

interface composed from two plane faces, connected by an edge. A point source 1 is located at 

point ( 4.0 km, 0 km, 1.0 kmx y z ) and a point source 2 is located at point (

4.0 km, 0 km, 2.0 kmx y z ). Radius-vectors mx  (Figure 1b,c) designate an arbitrary 

point in mm , 1,2m . Parameters of domain 11  are: P-wave velocity ,1 2.0 km / secPv  and 

density 3
1 2.0 g / cm . Parameters of domain 22  are: P-wave velocity ,2 4.0 km / secPv  

and density 3
2 3.0 g / cm .  

 

 V-interface is considered as a two-sided surface with sides m msm ms  (Figure 1b,c), 

where 1,2m  is the domain number. Radius-vector ms  denotes either a boundary point on 

mm  or a point in mm  which is infinitesimally close to ms . We denote the infinite parts of the 

interface as mm . The faces of the interface are denoted as , 1,2j j, 1,2j j . The normal vectors are 

directed inwards domains mm  and denoted as ,m m m
j j jn s s m

j , where the lower index is the 

medium number, the upper index is the face number. The upper side 1
1
1
1  and lower side 1

2
1
2  of 

the upper face of V-interface are defined by formula 0.41 4z x . The upper side 2
2
2
2  and 

lower side 2
1
2
1  of the lower face of V-interface are defined by formula 0.41 4z x . 

 

 We introduce two receiver lines (arrays). Line 1: from 3,25 kmx  to 4,75 kmx  

with step 0,015 kmx at 0.0 km, 1.0 kmy z . Line 2: from 2,0 kmx  to 

3,5 kmx  with step 0,015 kmx  at 0.0 km, 2.0 kmy z . Each of the lines contain 

101 receivers. Line 1 intersects the shadow boundary of the spherical wave at 4.0 kmx . 
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The receivers for 4.0 kmx  are located in the shadow zone, and the receivers for 

4.0 kmx  are in the illuminated zone.  

 

 We represent temporal spectra of the wavefield as particle velocity-pressure vectors (

4 1-columns)  

 

 

1,

2,

3,

,

m

m
m

m

m

v
v
v
p

u x , (1) 

 

where 1,mv , 2,mv , 3,mv  are components of particle velocities, mp  is pressure in each domain. 

Function ,mu x  is defined as follows  

 

 1 1 1

2 2 2

, , for ,
, , for .

u u x x
u u x x

1 ,1

2 .2

1  (2) 

 

Vectors (2) are connected with the wavefields by the Fourier transform  

 

 
1, ,
2

i t
m mt e du x u x , (3) 

 

where  is angular frequency. The temporal spectrum vectors ,mu x  in (2) satisfy the 

wave motion equations from A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this 

thesis  

 

 , , ,
m m m m mxD u x M u x f x , (4) 

 

where the differential matrix operator and the matrix of material parameters are  
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1

2

23
,

1 2 3

0 0 0
0 0 0

0 0 00 0 0
0 0 0,

10 0 0 0 0 0

0

m

m

m

mm

m P m

x

x
i

x
v

x x x

xD M . (5) 

 

The point source is 1 1 1
1

, 0 0 0
T

i
f x x y , the source radiates a 

spherical P-wave. Function  is the spectrum of the wavelet 
22 cos 2t e , 

where / 2t T . The wave period 0.032 secT  corresponds to the dominant wavelength 

of 0.064 km and the dominant frequency of 38.25 Hz. In domain 22 , there is no source: 

2 , 0 0 0 0 Tf x .  

 

 In each domain (Figure 1c), vector (2) satisfies the radiation conditions 
m

RC  at the 

infinite boundary mm  of domain mm , 1,2m   

 

 : , , ( ) , ( ) 0 , 1,2
m

m m m m mm
RC dS mF x s N s u s s

m

 (6) 

 

in terms of the feasible surface integral operators similar to (43) from A.M. Aizenberg & A.A. 

Ayzenberg (2015)/Chapter 2 of this thesis. A detailed description of the feasible kernel 

, ,m mF x s  will be given by formulae (17)-(21) in Section 3.5. The normal matrix is  

 

 

1

2

3

1 2 3

0 0 0
0 0 0
0 0 0

0

m

m
m

m

m m m

n
n
n

n n n

s
s

N s
s

s s s

. (7) 
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We notice that everywhere in this paper we use the next integration rule  

 

 1 2 3, ( )dSF x s f s s f x , (8) 

 

which expresses that the integration variable s  ‘dissapears’ after the integration operation.  

 

 At the cylindrical vicinity (Figure 1c) 1 21 21 2  of edge  of V-boundary, vector (2) 

satisfies the edge conditions 
m

EC , 1,2m   

 

 : , , ( ) , ( ) 0 , 1,2
m

m m m m mm
EC dS mF x s N s u s s

m

 (9) 

 

in terms of the feasible surface integral operators similar to (43) from A.M. Aizenberg & A.A. 

Ayzenberg (2015)/Chapter 2 of this thesis.  

 

 At faces jj  of V-interface (Figure 1c), we consider two boundary conditions jBC , 

1,2j   

 

 1 1 2 2: , , , 1,2 ,j j j j jBC jC R s u s J C R s u s  (10) 

 

where  

 

 
0 0 1 0
0 0 0 1

C , (11) 

 

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

0

0

0

0 0 0 1

j j j
m m m

j j j
m m mj

m
j j j
m m m

i s i i s i i s i

i s i i s i i s i
R s

i s i i s i i s i
, (12) 
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,j
mu s  is the limit value of vector ,mu x  at face j

m
j
m , 

1 0
0 1

J , 1 2 3, ,i i i  is the 

global Cartesian basis independent of point j
ms  and 1 2, ,j j j

m m mi s i s n s  is the local basis 

dependent of point j
ms .  

 

 Equation (4), the radiation conditions 
m

RC  (6), the edge conditions 
m

EC  (9) and 

the boundary conditions jBC  (10) form the correct statement of the forward problem for V-

model  

 

 

1 1 2 2

, , , ,

: , , ( ) , ( ) 0 ,

1,2 , 1,2 .
: , , ( ) , ( ) 0 ,

: , , ,

m

m

m

m m m m

m m m m mm

m m m m mm

j j j j j

RC dS

m j
EC dS

BC

xD u x M u x f x

F x s N s u s s

F x s N s u s s

C R s u s J C R s u s

m

m

 (13) 
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3.4 Analytical solution separation: source wavefield term as a separate 

wavefield  
 

Problem (13) has an explicit solution according to Zaman (2000) and Chandler-Wilde et al. 

(2012)  

 

 0
1 1 1( , ) ( , ) ( , )scu x u x u x , (14) 

 

where 0
1( , )u x  is the source wavefield and 1( , )scu x  is the scattered wavefield. If we aim 

to compute the total wavefield 1( , )u x  we could apply any modeling method, including 

numerical methods. But if the objective is to describe separate terms of the wavefield, we 

have to apply the proposed TPOT&TWSM method. In this paper, we focus on the source 

wavefield 0
1( , )u x  description by TPOT&TWSM. The other term 1( , )scu x  will be 

considered in Chapter 5.  

 

 In the theory from Costabel & Dauge (1997), this term is written as follows. The source 

wavefield radiated by a point source can be represented as a particular solution of equation (4) 

in the form of the volume integral  

 

 
1

0
1 1 1 1 1( , ) , , ( , ) ( )dVu x F x y f y y

1

 (15) 

 

with any fundamental solution 1 1, ,F x y  of equation (4) as the integral kernel. (However, 

we cannot use the free space Green’s function 1 1, ,G x y  as the conventional kernel of 

integral (15) because this function can contain non-feasible parts in the shadow zones.) We 

consider the source wavefield (15) as the feasible source wavefield in a half-space of complex 

shape. In the next Section, we give a detailed description of the feasible source wavefield 

choice for the computation of this formula.  
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3.5 Feasible source wavefield in terms of mechanics  
 

The feasible fundamental solution 1 1, ,F x y  in formula (15) satisfies to the following 

problem from A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis  

 

 

1

1

1

1 1 1 1 1 1 1

1 1 1 1 1 11

1 1 1 1 1 11

1 1 1 1 1 1 1 11

, , , , ,

: , , , , ( ) 0 ,

: , , , , ( ) 0 ,

: , , , , , , , , 0,h

RC dS

EC dS

AC

x

G G G

D F x y M F x y x y I

G x s N s F s y s

G x s N s F s y s

K s s K s s K s s F s y

1

11

 (16) 

 

where I  is the identity matrix. In terms of rays, the feasible fundamental solution 1 1( , , )F x y  

can be explained as follows (Figure 1b): if points 1x  and 1y  can be connected by a straight 

ray which entirely belongs to domain 11  the fundamental soluition 1 1( , , )F x y  satisfies the 

conventional Fermat’s principle; but if points 1x  and 1y  cannot be connected by a straight 

ray which entirely belongs to domain 11 , moreover, they can only be connected by a curved 

ray which entirely belongs to 11  the fundamental soluition 1 1( , , )F x y  satisfies the 

generalized Fermat's principle. This principle was introduced by Hadamard in 1910 (see 

Friedlander (1958)) and known as the ‘stretched-thread’ principle (M.A. Ayzenberg et al. 

(2009)). It states that two points are connected by a non-straight feasible ray such that the 

travel time is minimal. This feasible ray travels straight from the source point to the tangency 

point at the boundary, then creeps along the boundary and finally travels straight from the 

other tangency point to the receiver point.  

 

 As the considered domain 11  (Figure 1b) is concave there are points which cannot be 

connected by a straight ray entirely belonging to the domain. Those points will be connected 

by a curved ray, this ray will be called ‘feasible’ and the fundamental solution for these points 

will be called ‘feasible’.  

 

 Therefore, we represent the kernel in (15) as the feasible fundamental solution (A.M. 

Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis) by  
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 1 1 1 1 1 1
1

, , , , , ,n

n
F x y G x y F x y , (17) 

 

where  

 

 1 1 1 1 1 1, , , , , ,n n
GF x y K x s F s y  (18) 

 

and  

 

 
0

1 1 1 1

1
1 1 1 1 1 1 1 1

, , , , ,

, , , , , , , , , 1, 2, .n n
h nG G

F s y G s y

F s y K s s K s s F s y .
 (19) 

 

 The propagation operator in (18) and (19)  

 

 
1

1

1 1 1 1 1 1( , , ) ... ( , , ) ... ( )dSG sK x s G x s N s
1

 (20) 

 

describes Huygens secondary waves between point 1s  on boundary 11  and receiver 1x . Point 

1x  also can be located on the boundary ( 1 1x s ). The absorption operator in (19)  

 

 
1

1

1 1 1 1 1 1 1 1( , , ) ... ( , ) ( , , ) ... ( )h h dSG sK s s s s G s s N s
1

 (21) 

 

describes only non-feasible Huygens secondary waves between points 1s  and 1s  on boundary 

11 . Function 1 1( , )h s s  determines the virtual illuminated zones of the boundary (Figure 1b), 

where points 1s  and 1s  optically ‘see’ each other (i.e., can be connected by a straight ray 

within this zone), and shadow zones where points 1s  and 1s  do not ‘see’ each other (i.e., 

cannot be connected by a straight ray within this zone). This shadow function equals to 0 in 

the illuminated zones and 1 in the shadow zones. If the boundary does not have shadow parts, 

the absorption operator (21) is zero due to 1 1( , ) 0h s s  for all points 1s  and 1s .  
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 Substituting the feasible fundamental solution (17) into the volume integral (15) we 

obtain  

 

 
1 1

0
1 1 1 1 1 1 1 1 1

1

( , ) , , ( , ) ( ) , , ( , ) ( )n

n
dV dVu x G x y f y y F x y f y y

1 1
1n

. (22) 

 

A.M. Aizenberg et al. (2010) and A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of 

this thesis demonstrate that wavefield 0
1( , )u x  in (22) can be rewritten as  

 

 0
1 1 1( , ) ( , ) ( , )cdGu x u x u x . (23) 

 

 The first term in (23) is  

 

 
1

1 1 1 1 1( , ) , , ( , ) ( )dVGu x G x y f y y
1

, (24) 

 

where 1 1( , , )G x y  is the Green’s function for the unbounded homogeneous medium formed 

by the half-space 3
1

3
1  and its ‘mathematical’ complement 3

1\3
1\ . This ‘mathematical’ 

complement has the geometrical shape of domain 22  but the properties of 11 . It therefore is 

called ‘mathematical’ or ‘nonphysical’. Function 1 1( , , )G x y  can contain non-feasible parts 

in the shadow zones. Term 1( , )Gu x , which has the Green's function for the unbounded 

homogeneous medium in the kernel, therefore also can contain non-feasible parts.  

 

 The second term in (23) is the so-called ‘cascade diffraction’ term  

 

 1 1
1

( , ) ( , )ncd

n
u x u x , (25) 

 

where  
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 1 1 1 1 1 1 1 1( , ) ( , , ) [ ( , , ) ( , , )] ( , )n n
h

G
G G Gu x K x s K s s K s s u s  (26) 

 

describes the n -th act of the ‘cascade diffraction’. The convergence of series (25) is proved in 

the paper by A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis.  

 

 In this paper, we consider only the two first terms in (23), which can be considered as a 

double-diffraction approximation  

 

 10
1 1 1( , ) ( , ) ( , )Gu x u x u x , (27) 

 

where the double-diffraction term is represented by the formula  

 

 1
1 1 1 1 1 1 1 1( , ) ( , , ) ( , , ) ( , , ) ( , )h

G
G G Gu x K x s K s s K s s u s . (28) 

 

Using the orthogonal projector property G G GK K K  of operator (20) we reduce formula 

(28) to the formula  

 

 1
1 1 1 1 1 1( , ) ( , , ) ( , , ) ( , )h

G
G Gu x K x s K s s u s . (29) 

 

We rewrite formula (29), which is the intergals over the boundary surface, in the form of the 

integrals over the boundary faces  

 

1 1 1 2 1
1 1 1 11 11 2

1 1 1 1 1 2 1 2 2 2
1 1 1 1 1

( , , ) ( , , ) ( , )
( , ) ( , , ) ( , , )

( , , ) ( , , ) ( , )

h h

h h

G
G G

G G
G

G G

K s s K s s u s
u x K x s K x s

K s s K s s u s
. (30) 
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3.6 Feasible source wavefield in terms of the TPOT wave theory  
 

In this Section, we give the feasible source wavefield in terms of the TPOT wave theory. The 

particle velocity-pressure vector 0u  in Cartesian coordinate system is transformed to vector 
0a  in the local coordinate system, one of the axes of which is oriented along the receiver line 

1. This new local system of coordinates is defined in domain 3
1 1\3
1 1\ , where domain 

3
1\3
1\  is the ‘mathematical’ complement to domain 11 . In addition, we define the Cartesian 

coordinates as follows  

 

 1 1 1 1 1 13 1 2
, , ,x x xx x x . (31) 

 

 Vectors in (27) are decomposed in terms of the wave vectors 
0

0

0

a

a
a , where a  

describes propagation outward the boundary and a  describes propagation toward the 

boundary, by the formulae  

 

 

0 0
1 1 1 1

1 1 1 1

1 1
1 1 1 1

1 1 1 13

( , ) ( , , ) ( , ) ,

( , ) ( , , ) ( , ) ,

( , ) ( , , ) ( , ) ,
( , ) ( , ) ,x const

G G

u x H x x a x

u x H x x a x

u x H x x a x
x x x

 (32) 

 

where the convolution operator  

 

 1
1 1 1 1

ˆ( , , ) , ,F FH x x x k H k k x  (33) 

 

with the spectral kernel  

 

 

1

2

3

1ˆ ˆ ˆ ˆ,
P

P

k
k
kk

k

H k h h h , (34) 
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where 1k , 2k  and 3k  are the wave vector components, pk k , 2 2 2
3 1 2pk k k k  and the 

double space Fourier transform operator is defined as  

 

 1 1 2 2
1 1 2 1 2

1, , ,
2

i k x k xF e dx dx k kk x k1 2 1
1

1 2 1
i k x k x dx dx k1

1
1 2 11 2

k xi k xi k x

2
e dx dx1 211 21

1 e dx dx1 1 2 2i k x k x1 1 21 2i k x1 1e dx dx1 1 2 2 . (35) 

 

 Inserting relations (32) in expression (27) we obtain  

 

 10
1 1 1, , ,Ga x a x a x . (36) 

 

We now apply the contraction matrix  

 

 
1

0 0 1 0
0 0 0 1xC . (37) 

 

Multiplying (24) to matrix (37) from the left and applying (32) we obtain  

 

 
1 1

1

1

1 1 1 1 1 1 1( , ) ( , , ) , , ( , ) ( )dVG
x xa x C H x x C G x y f y y

1

 (38) 

 

and  

 

 
1 1

1

1

1 1 1 1 1 1 1( , ) ( , , ) , , ( , ) ( )j j
j j j j dVG

s s
a s C H s s C G s y f y y

1

. (39) 

 

Applying (32) to (29) we obtain  

 

 
1 1 1 2 1
1 1 1 11 11 2

1 1 1 1 1 2 1 2 2 2
1 1 1 1 1

( , , ) ( , , ) ( , )
( , ) ( , , ) ( , , )

( , , ) ( , , ) ( , )

h h

h h

G
G G

G G
G

G G

P s s P s s a s
a x P x s P x s

P s s P s s a s
, (40) 

 

where the propagation operator is  
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1 1

11

1 1 1 1 1 1 1 1 1( , , ) ( , , ) ( , , ) ( , , )j j j j j
G x x GP x s C H x x C K x s R s H s s  (41) 

 

and the absorption operator (the propagation operator accounting for shadow) is  

 

 
1 1

1 1

1 1 1 1 1 1 1 1 1( , , ) ( , , ) ( , , ) ( , , )j j
j l j j j l l l l

h hG Gs s
P s s C H s s C K s s R s H s s . (42) 

 

In formulae (39), (41) and (42), we introduced a matrix convolution operator  

 

 1
1 1 1 1

ˆ( , , ) , , .j j j jF FH s s s k H k k s  (43) 

 

Since 1 1
j js 1

j  the coordinate 1 0,x  and the Fourier transform change the integration 

limits as follows  

 

 1 1 2 2
1 1 2 1 2

0

1, , ,
2

i k x k xjF e dx dx k kk s k1 2 1
1

1 2 1
i k x k x d d k1

1
1

k xi k xi k x

2 1 2e dx dx1 211 21
1 e dx dx1 1 2 2i k x k x1 1 21 2i k x1 1e dx dx1 1 2 2 . (44) 

 

The transformation matrix at a face (by transformation we mean rotation (12) and contraction 

(11)) is  

 

 
1

1 1 2 1 3 1
1

0

0 0 0 1
j

j j j
j n n n

s

s s s
C R s C . (45) 
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3.7 TWSM algorithm for TPOT solution  
 

In this Section, we explain the mid-frequency TWSM algorithm application to the TPOT 

source wavefield description. The main idea of TWSM, for V-model, is to transform the 

integral operators (41) and (42) into matrices and wavefields (38)-(40) into vectors.  

 

 An approach to computation of 3D seismic wavefields, based on the physically feasible 

analytical description of wave propagation in layered and macro-block media, is proposed by 

the Tip-Wave Superposition Method (TWSM) (Klem-Musatov et al. (2008) and A.M. 

Aizenberg et al. (2011)). The basic features of TWSM include computation (visualization) of 

different wave events separately and explicit treatment of interfaces.  

 

 We divide the faces of the interface into triangular elements. Typically, we choose the 

element size of the quarter-wavelength order. Each element becomes a set of secondary 

sources according to Huygens principle. Due to interference of the secondary sources, it 

generates a multi-wave beam propagating from the element towards each element of the same 

face, neighbouring face or a receiver. Since the element has three edges and three vertices (or 

six tips, each vertex is two coupled tips) the beam is formed by the geometrical wave, three 

edge-diffracted and six tip-diffracted waves. The tip-diffracted waves contribute most to the 

beams, which explains the name ‘the Tip-Wave Superposition’ of the method.  

 

 The algorithmic realization of wavefield propagation in layered medium is based on 

mapping of operators (41) and (42) to respective matrices and wavefields (38)-(40) to 

respective vectors (Zyatkov et al. (2012) and Zyatkov et al. (2013)). Each face is triangulated 

into N  small elements with the size less than a quarter of the dominant wavelength. The 

wavefield vectors of the faces have dimension N . All the propagation-absorption matrices 

have dimension N N . The propagation interface-receivers matrix has dimension M N , 

where M  is the number of receivers. The main chalenge of the algorithm realization is large 

arrays of data that must be stored and processed. We are considering the following example: 

suppose that all matrices are filled by complex single precision floating-point numbers ( 4 2

); in the case of 150 000N  the required memory for storing a N N  matrix is equal to 

4 2 150 000 150 000 4 2 168N N GB . It also should be noted that all matrices 

and vectors are non-sparse. When solving direct and inverse seismic problems using this 
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algorithm, it is therefore necessary to optimize both the execution time of the algorithm and 

required memory.  

 

 The evaluation of the matrices is independent of the source position and the survey 

geometry. The layer matrices are thus computed prior to the evaluation of the multiply 

reflected and transmitted wavefields. For a particular ray path, the multiply reflected and 

transmitted wavefield is generated by the sequential multiplication of the layer matrices. 

Whenever the velocities and densities within a domain need to be updated, only the matrices 

describing this particular domain have to be re-evaluated. Hence, for minor changes of the 

model, this saves most of the computational time.  

 

 The algorithm realization for the wavefield propagation in medium with arbitrary 

interfaces is reduced to the realization of a highly-optimized procedure of the large matrix 

multiplication (about 100 GB of RAM) by the column vector of the wavefield for each 

discrete frequency k  from a set 1 kkkk . The required memory for storing the N N  matrix 

is so large that it is almost impossible to store the entire matrix. This problem is solved by 

dividing all matrices of N N  size into horizontal strips. Each of them has 1M N  size. The 

memory is allocated only for one strip of the matrix (Figure 2). At each iteration loop for 

strips of the matrix, a new set of result vectors is calculated for each frequency k . Then, all 

the result vectors are combined in one vector.  

 

 To avoid storing the entire matrix, we refill corresponding strips at each loop of iteration 

by the partition. Using this approach, the algorithm can adapt to any computer with limited 

RAM by changing 1M -parameter, the width of the strips.  

 

 Also, it is important to note that the virtual shadow matrix must be evaluated before the 

evaluation of the absorption matrix. Figure 3 illustrates a 3D view of a Gaussian-shape 

boundary (Figure 3a) and four projections of 0/1 values of ,h s s  at four boundary points s  

(the points on Figure 3b). Values 0 designate not interacting parts of the boundary (the 

illuminated zones), and values 1 designate interacting parts of the boundary (the shadow 

zones).  
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 We use the NVIDIA CUDA technology for implementation of the TWSM software 

package. Figure 4 demonstrates a scheme of the realization of the matrix-vector 

transformation by TWSM for several GPUs. Each device is assigned for the corresponding 

matrix strip (or the set of strips). Each GPU does the matrix-vector multiplication in the 

corresponding strips of the matrix for each discrete frequency k  and writes the result into the 

corresponding parts of the vectors 1 K
s sF F KKK

sFs . Finally, the results of all GPUs are combined 

in a set of the transformed vectors 1 K
s sF F KKK

sFs .  

 

 Table 1 represents the results of the algorithm optimization and its adaptation for the 

parallel architectures. We obtained acceleration ~150 times using one GPU as compared with 

a sequential version on CPU for one TWSM matrix.  
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3.8 Reduction of the source wavefield representation to formulae of the 

edge wave theory  
 

The computation of the point-source wavefield propagating around the V-shaped boundary is 

done by formulae (27), (32), (36), (38) and (40) using the TWSM code described in the 

preceding section. Because the approximation of the wavefield demonstrated on the 

seismograms has no analogues in the contemporary wave theory we need a comparison with 

results of an independent method. Such a comparison cannot be done by numerical methods 

because these methods only can model the total wavefield, and we need to test the separate 

fragments of the total wavefield. The only available option is the evaluation of these 

fragments by an analytical method. For this, we apply the well-known method of rigorous 

integrating in formula (40); in this Section, we reduce this formula to formulae of the edge 

wave theory (A.M. Aizenberg (1982) and A.M. Aizenberg (1993)) in case of V-boundary.  

 

 Everywhere further in this paper, we omit the domain index since we consider only 

domain 11  ( 1m ). Also for simplicity, we further write the upper indeces in the lower 

positions. In addition, we omit reduction to the lower dimension, and we omit frequency. So 

everywhere further, we have the notations  

 

 
1

,

,
, .

j

j

 (46) 

 

We therefore rewrite the wave vector (36) in the block form  

 

 0
0

0

a
a x

x
. (47) 

 

In case of the point source, the volume integral representation of vector Ga x  in (38) 

reduces to the spherical wavefield at the points of the receiver lines 1 and 2. Hence, vector 

(38) is represented as  
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0

exp Pp i k l
G

G
a x

x x
, (48) 

 

where l x  (Figure 5) is the distance along the ray trajectory ‘source - receiver’, 

Cp
lG x

x
 is the spherical wave amplitude,  is the medium density, C  is the 

source intensity.  

 

 The propagation operator from (40), acting from the faces to the receiver lines, is 

written as follows  

 

 1 2
1 1 1 1 1 2( , , ) ( , , ) , ,G G G GP x s P x s P x s P x s . (49) 

 

 The shadow function s, sh  for V-boundary has the properties (Figure 1b) 

 

 1 1 2 2 1 2 2, , 0 , , , 1h h h h 1s s s s s s s s . (50) 

 

Since faces 11  and 22  are plane we obtain the absorption matrix (40) reduced to the form  

 

 
1 1 1 2
1 1 1 1 1 2

2 1 2 2
2 11 1 1 1

( , , ) ( , , ) ,
,( , , ) ( , , )

h h

h h

G G G

GG G

P s s P s s P s s
P s sP s s P s s

, (51) 

 

where Ο  is the zero matrix. As the action of submatrix 1 2,GP s s  describes back scattering, 

which gives negligibly weak contribution at the receivers, we can say that the condition 

1 2,GP s s Ο  is valid. Consequently, the absorption matrix has got the final form  

 

 
1 1 1 2
1 1 1 1

2 1 2 2 2 11 1 1 1

( , , ) ( , , )
,( , , ) ( , , )

h h

h h

G G

GG G

P s s P s s Ο Ο
P s s ΟP s s P s s

. (52) 
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 After completing all the multiplications in formula (40) and accounting for formulae 

(47), (48), (49) and (52) we obtain vector (40) expressed by the matrices and columns at the 

faces in the form  

 

 1
2 2 1 1( ) , , G

G Ga x P x s P s s a s . (53) 

 

Vector (53) has the form of double integration over two semi-infinite faces with edges. The 

internal integration is over face 11  and the external integration is over face 22  having the 

common edge with face 11 . Vector 1
Ga s  in (53) is the spherical wavefield at the points of 

face 11   

 

 1
1 1

0
exp Pp i k l

G

G
a s

s s
, (54) 

 

where 1l s  is the distance along the ray trajectory ‘source - point 1s ’, 1pG s  is the spherical 

wave amplitude.  

 

 Using the boundary values (54) we perform the exact integration 2 1 1, G
GP s s a s  in 

(53) using the approach described in Rubinowicz (1965) and Borovikov (1994), Section 5.9. 

In our case, this approach leads to the reduction of the Kirchhoff integral over the half-plane 

by the Stokes’ theorem to three Maggi-Rubinowicz integrals. The first integral is over the 

inner circular contour around the intersection point of the direct ray ‘source-receiver’ with the 

half-plane. It describes the spherical wavefield at the points of face 22 . The second integral is 

over the outer semi-circle with the infinite radius. It is equal to zero according to the radiation 

condition. The third integral is over the infinite straight edge. It describes the edge wave 

known also as the boundary diffracted wave. Applying the reciprocal modification of the far-

field approximation from A.M. Aizenberg (1993) we can represent the edge wave amplitude 

for the infinite straight edge as the product of the actual spherical wave amplitude (48) and the 

corresponding diffraction attenuation function.  

 

 The integration over 11  leads to a vector at points of face 22   
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1

1 1
2 1 1 2 2, G

G GP s s a s a s a s
1 21

s . (55) 

 

Vector 1
2Ga s  in (55) is the spherical wavefield at points of face 22   

 

 1 2 2
2

exp

0
Pp i k lG

G

s s
a s , (56) 

 

where 2l s  is the distance along the ray trajectory ‘source-point 2s ’ and 2pG s  is the 

spherical wave amplitude.  

 

 Vector 
1

1
2a s

1 2s  in (55) is the edge wavefield propagating from edge 11  to the points 

of face 22   

 

 1

1

1 2 1 2
2

exp

0
Pp i k ls s

a s 1 21 21 222
1 2s , (57) 

 

where 1 2l s  is the distance along the ray trajectory ‘source- 11 -point 2s ’. The edge wave 

amplitude formula 
1 2 1 2p W w pGs s
1 2p
1 22  is valid inside the Fresnel volume and out of a 

small vicinity of edge 11  (for more details, see A.M. Aizenberg (1993)). The special function 

1W w  is associated with the Fresnel integral according to Klem-Musatov et al. (2008) and 

depends of the dimensionless argument 1 1
2 Pkw l l . This function is associated with 

the generalized Fresnel integral and is written as the integral formula (see details in A.M. 

Aizenberg (1982))  

 

 
2

2
2 2

0

1 iwW w e d
w

. (58) 

 

 Substituting vector (55) in (53) and accounting for (56) and (57) we obtain  
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1

1 1 1
2 2 2 2( ) , ,G G Ga x P x s a s P x s a s

1 21
s . (59) 

 

It is necessary to notice that each term in the right-hand side of (59) can be non-smooth 

function which has a discontinuity in the vicinity of the shadow boundary at 4.0x . All the 

terms are therefore represented for 4.0x  (the shadow zone) and 4.0x  (the illiminated 

zone) separately.  

 

 To analytically evaluate the first term in formula (59) we use the similarity of this term 

and vector (55). Indeed, the first term represents the integration over the half-plane 22  with 

the spherical wave as the boundary value. As the result, we represent the first term in formula 

(59) in the form  

 

 
2

1 1 1
2 2,G G GP x s a s a x a x

2
x , (60) 

 

which is similar to (55). Vector 1
Ga x  in (60) is the spherical wavefield at the points on the 

receiver line 1 or 2  

 

 1

0
, 4.0 ,

exp
( )

0
, 4.0 ,

0

P
x

p i k l

x

G
G

x x
a x  (61) 

 

where l x  (Figure 5) is the distance along the ray trajectory ‘source-receiver’. Vector 

2

1a x
2

x  is the edge wavefield from edge 22  at the receiver line 1 or 2  

 

 
2

2

2

21

2

0
, 4.0 ,

exp

0
, 4.0 ,

exp

P

P

x
p i k l

x
p i k l

x x
a x

x x

22

2
x

22

 (62) 
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where 2l x  (Figure 5) is the distance along the ray trajectory ‘source- 22 -receiver’. The 

edge wave amplitude formula 
2 2p W w px x
2 2 pW w p
2 2 xW w p2  is valid inside the Fresnel volume and 

out of a small vicinity of edge 22  (for more details, see A.M. Aizenberg (1993)). The special 

function 2W w  depends of the dimensionless argument 2 2
2 Pkw l l .  

 

 To analytically evaluate the second term in formula (59) we reduce this term to two 

nonzero contour integrals using the approach described in Rubinowicz (1965) and Borovikov 

(1994), Section 5.9  

 

 
1 1 2 1

1 1 1
2 2,GP x s a s a x a x

1 1 2 121
s a x a x2 . (63) 

 

The first integral in formula (63) is over the inner circular contour around the intersection 

point of the diffracted ray ‘edge 11 -receiver’ with the half-plane. It is evident that this 

integral describes the edge wavefield propagating from edge 11  to the receivers located in the 

shadow zone at 4.0x . In the illuminated zone at 4.0x , this integral is equal to zero 

because the corresponding inner circular contour on the half-plane is absent.  

 

 The second integral in formula (63) is over the infinite straight edge 22  with the 

boundary value expressed by the edge wavefield propagating from edge 11 . In terms of the 

diffraction wave theory, the repeated surface integral in (53) describes the solution of the 

well-known problem of the spherical wave diffraction at two half-planes. It is known from 

Jones (1973) and Borovikov (1994), Subsection 5.9 that the solution of this problem contains 

the double edge wave sequentially diffracted by the first edge 11  and then by the second edge 

22 . Edge 11  creates a primary shadow boundary and edge 22  creates a secondary shadow 

boundary. The rigorous mathematical description of the double edge wave can be represented 

by the double contour integrals. In a small vicinity of the shadow boundaries, these integrals 

can be approximated by the generalized Fresnel integrals if the edges are distant. Because our 

case is right opposite, and the edges coincide, we use the modification of this approximation 

from Jones (1973), Borovikov (1994), Subsection 5.9 and A.M. Aizenberg (1993), which is 

valid for coinciding edges also.  
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 Using the above considerations we insert (63) in (59) and obtain the final formula  

 

 
2 1 2 1

1 1 1 1 1( ) Ga x a x a x a x a x
2 1 2 1

x a x a x . (64) 

 

 Vector 
1

1a x
1

x  is the edge wavefield propagating from edge 11  to the points of the 

receiver line 1 or 2  

 

 1

1

11

0
, 4.0 ,

exp

0
, 4.0 ,

0

P
x

p i k l

x

x x
a x 11

1
x  (65) 

 

where 1l x  (Figure 5) is the distance along the ray trajectory ‘source- 11 -receiver’. The edge 

wave amplitude formula 
1 1p W w pGx x
11

 is valid inside the Fresnel volume and out of 

a small vicinity of the edge 11  (for more details, see A.M. Aizenberg (1993)). The special 

function 1W w  depends of the dimensionless argument 1 1
2 Pkw l l .  

 

 Vector 
2 1

1a x
2 1

x  is the double edge wavefield  

 

 
2 1

2 1

2 1

121

12

0
, 4.0 ,

exp

0
, 4.0 ,

exp

P

P

x
p i k l

x
p i k l

x x
a x

x x

2 12 1

2 1
x

2 12 1

 (66) 

 

where 12l x  (Figure 5) is the distance along the ray trajectory ‘source-edge 11 -edge 22 -

receiver’. The double edge wave amplitude in (66) is represented by the formula (Borovikov 

(1994) and Borovikov & Kinber (1994))  
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2 1

1 1 2 2

1 1 2 2

, , , 4.0 ,

, , , 4.0 ,

p H w u H w u x
p

p H w u H w u x
G

G

x
x

x2 1
x  (67) 

 

where the special function ,j jH w u  ( 1, 2j ) is dependent on the two arguments 

2 P
j j

kw l l  and 12
2 P

j j
ku l l . The special function 1 1,H w u  compensates the 

discontinuity in amplitude of the edge wave propagating from edge 11 , at the shadow 

boundary caused by edge 22 . The special function 2 2,H w u  compensates the discontinuity 

in the gradient of the edge wave amplitude at the shadow boundary caused by edge 22 .  

 

 The special function ,H w u  is associated with the generalized Fresnel integral and 

is written by the formula (see details in A.M. Aizenberg (1982))  

 

 
2 2

2 2
2 2

1,
2

i u i

u

wH w u e e d
w

. (68) 

 

It is essential that at point 0w u  function (68) tends to an indefinite constant (see 

Borovikov (1994) and Borovikov & Kinber (1994))  

 

 
0
0

1 1lim , arctan
4 2w

u

uH w u
w

, (69) 

 

depending on the direction of approaching point 0w u . Because the limit value of 

arctan u
w

, when 0w  and 0u , depends on the direction of approaching point 

0w u , this point is irregular.  

 

 Formulae (47), (48) and (64) demonstrate that all the first components are zero, and 

that the nonzero components at the receiver line 1 or 2 give the relation  

 

 10a a aGx x x , (70) 
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where aG x  is the conventional source wavefield which propagates not accounting for the 

shadow zones. This nonzero component of the first-term approximation of the cascade 

diffraction wavefield in (70) can be represented in the form  

 

 
2 1 2 1

1 1 1 1 1( )a a a a aGx x x x x
2 1 2 1

a a xaa , (71) 

 

where the terms are described by formulae (61), (62), (65) and (66). In the shadow zone, the 

double-diffraction term (71) consists of the source spherical wave with negative amplitude 
1aG x , the single edge waves 

1

1a x
1

x  and 
2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x . In 

the illuminated zone, the double-diffraction term (71) consists of the single edge wave 

2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x .  
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3.9 Diffraction Attenuation Coefficients (DAC) of the edge wave theory  
 

Since all the amplitudes in formulae (70) and (71) contain the amplitude of the spherical wave 

as the common amplitude factor it is useful to normalize these amplitudes by this factor for 

further analysis. Hence, we introduce a Diffraction Attenuation Coefficient (DAC) as the 

norm  

 

 
0 ,

,
a t

DAC
p tG

x
x

x
. (72) 

 

We chose norm (72) as an energy norm and write it in the temporal form as  

 

 

20

2

,

,

a t dt
DAC

p t dtG

x
x

x
. (73) 

 

Using the Parseval’s Theorem from Korn & Korn (2000), we obtain the spectral form of 

formula (73)  

 

 

20

2

,

,

a d
DAC

p dG

x
x

x
. (74) 

 

Assuming that the impulse shapes 0 ,a tx  and ,p tG x  are almost equal we rewrite 

formulae (73) and (74) in the form  

 

 
0 0max , ,

max , ,
domt

domt

a t a
DAC

p t pG G

x x
x

x x
. (75) 
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We note that DAC x  in formula (75) is the ratio of the maximal values of the feasible 

source wavefield amplitude in the double diffraction approximation and the amplitude of the 

conventional Green’s function. We notice that the impulse shapes 0 ,a tx  and ,p tG x  are 

equal in case when the shadow boundaries coincide.  

 

 Substituting formulae (70) and (71) in (75) we obtain  

 

 2 1 2 1

1 1 1 1, , , , ,

,
dom dom dom dom dom

dom

a a a a a
DAC

p

G
G

G

x x x x x
x

x
2 1 2 1dom dom dom2 1 2 11

, , ,
2 1 2 111 d, , ,,, ,,,, aad d, ,,,,,

. (76) 

 

In the illuminated zone, when the double-diffraction term (71) consists of the single edge 

wave 
2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x , formula (76) simplifies to  

 

 2 2 1

1 1, , ,

,
dom dom dom

dom

a a a
DAC

p

G

G

x x x
x

x
2 2 1 dom2 2 1

, ,
2 2 1 d, ,, ad,

. (77) 

 

The limit value of (77) at the shadow boundary 0shbx x  is  

 

 2 2 1

1 1, , ,

,
shb dom shb dom shb dom

shb
shb dom

a a a
DAC

p

G

G

x x x
x

x
2 2 1 shb do2 2 1

, ,,
2 2 1 shb d, ,,,, ahb d,

. (78) 

 

Substituting formulae (48), (62) and (66) into formula (78) we obtain  

 

 2 1 1 2 21 , ,shbDAC W w H w u H w ux . (79) 

 

 To calculate formula (79) we need to consider formulae (58) and (69) under these two 

specific conditions valid in the numerical tests:  

1) coincidence of the two shadow boundaries from edges 11  and 22 ;  

2) closely located edges 11  and 22 .  
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 Formula (58) does not have irregular points. At the shadow boundary, argument 

2 2
2 Pkw l l  tends to zero and  

 

 
2

20

1lim
2w

W w . (80) 

 

 Formula (69) is weakly stable at the coinciding shadow boundaries due to both 

arguments 2 P
j j

kw l l  and 12
2 P

j j
ku l l  tend to zero. In this case, it is 

necessary to apply the Taylor’s expansion of these arguments in a small vicinity of point 

0w u  and use the L’Hopital rule for the evaluation of ratio j

j

u
w

. The ray distances used in 

the Taylor’s expansion are expressed as follows: 2 2
12S R R Sl r r r x xx , 

2 2 22
1 12S S R Rl r x r r xx , 2 2 22

2 12S S R Rl r r x r xx  and 

2 22 2
12 12S S R Rl r x r r xx , in which Sr  is the ‘source-edge 11 ’ distance, 

12r  is the distance between edges 11  and 22 , Rr  is the ‘receiver-edge 22 ’ distance, Sx  and 

Rx  are virtual deviations of the source and receiver from the coinciding shadow boundaries, 

respectively (Figure 5). 

 

 Let us consider the first special function 1 1,H w u . The coincidence of the edges 

leads to the application of the Taylor’s expansion of the second order for both arguments in a 

small vicinity of point 1 1 0w u . The arguments can be represented by the formulae  

 

 1 1 12
2 21 1,

2 2 2
S SP R P R

S R R

r xk x k xw u r
r r r

. (81) 
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Formulae (81) allow us considering ratio 
1

121

1

2 1 R S

S S R

ru r x
w r r x

. In this case, we have to 

consider the double limit 
12

1
0

10

lim
Sx

r

u
w

 of this ratio for an infinitesimal deviation 0Sx  of 

the source and an infinitesimal distance 12 0r  between the edges  (Figure 5) with arbitrary 

deviation of the receiver Rx  along the receiver line including the zero deviation. We obtain 

the uniform double limit value of the ratio 
12

1
0

10

lim 0
Sx

r

u
w

 independently of the limits order. 

Thus, we can define the zero value of function 1

1

arctan 0u
w

 for all the receivers at Line 1 

or 2. Accounting for (69) and (81) we obtain  

 

 
1
1

1 10
0

1lim ,
4w

u

H w u . (82) 

 

 Next, we consider the second special function 2 2,H w u . The coincidence of the 

edges leads to the application of the Taylor’s expansion of both arguments in a small vicinity 

of point 2 2 0w u . The arguments can be represented by the formulae  

 

 2 2 12
2 21 1,

2 2 2
S SP R R P

S R S

x xk r x kw u r
r r r

. (83) 

 

Formulae (83) allow us to consider ratio 
1

122

2

2 1 S R

R R S

ru r x
w r r x

. For this ratio, we have to 

consider the triple limit 
12 12

1
122

0 0
20 0

0 0

lim lim 2 1
S S

R R

S R
x x

R R Sr r
x x

ru r x
w r r x

 under an infinitesimal 

deviation 0Sx  of the source, an infinitesimal distance 12 0r  between the edges, and an 

infinitesimal deviation 0Rx  of the receiver along the receiver line. If we assume 
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1
122 1 constS R

R R S

r r x c
r r x

 we obtain a nonzero constant value of ratio 2
2

2

tanu c
w

. 

This assumption is correct if equality 1211 2R S

R S R

rx x
r r c r

 is valid. In the event of 

12 0r , 0Sx , 0Rx  with any nonzero constant c , we obtain identity R S

R S

x x
r r

for the two infinitesimal quantities R

R

x
r

 and S

S

x
r

. The last identity can be interpreted, in the 

kinematical terms, as follows: the deviated receiver and the deviated source must be at the 

opposite end points of the straight ray crossing the edge. Using the limit value of function 

2 arctan c  for the receiver at the shadow boundary we obtain from (69) the limit value  

 

 
2
2

2
2 20

0

1lim ,
4 2w

u

H w u . (84) 

 

In the particular case of 2
2

2

tan 1u c
w

, we can define the value of function 

2 arctan 1
4

 for the receiver at the shadow boundary. Hence, from (69) follows 

2
2

2 20
0

1lim ,
8w

u

H w u .  

 

 Limits (80), (82) and (84) result in  

 

 2 21 1 1 11
2 4 4 2 2 2shbDAC x , (85) 

 

where 
2
2

2
20

20

lim tan
w
u

uc
w

. If 2 4
 then we obtain  

 

 
1 1 5 0.625
2 8 8shbDAC x . (86) 
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 Instead of wavefield ,a tx  we can also use any of its constituent and calculate 

DAC x  for it. For example: for the single edge wavefield, we can consider the particular 

case of (77)  

 

 2

2

1
1

,

,
dom

dom

a
DAC

pG

x
x

x
2

,x
2

C x . (87) 

 

Substituting formulae (48) and (62) in (87) we obtain  

 

 
2

1
2 , domDAC W wx x

2
C  (88) 

 

in the shadow zone.  
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3.10 Verification of TWSM-seismograms by the edge wave theory  
 

 Figure 6 represents a test for source 1 and the receiver line 1. Figure 6a illustrates the 

scalar component 0 ,a tx  in formula (70) for the V-shaped boundary. Figure 6b 

demonstrates component ,a tG x  in formula (70), which is the source spherical wave. This 

wave does not depend on the shape of the boundary. Figure 6c illustrates component 
1 ,a tx , which is the difference between the feasible source wavefield and the conventional 

source wavefield ,a tG x . The double-diffraction term 1 ,a tx  in the shadow zone 

consists of the source spherical wave with negative amplitude 1 ,a tG x , the single edge 

waves 
1

1 ,a tx
1

,,  and 
2

1 ,a tx
2

,,  and the double edge wave 
2 1

1 ,a tx
2 1

,, . The single and double 

edge waves are visible behind the source spherical wave. Their traveltime is very close to the 

edge-wave eikonal. The double-diffraction term 1 ,a tx  in the illuminated zone consists of 

the single edge wave 
2

1 ,a tx
2

,,  and the double edge wave 
2 1

1 ,a tx
2 1

,, . The diffraction 

amplitudes are positive in the shadow zone ( 4.0 kmx ) and negative in the illuminated zone 

( 4.0 kmx ). A weak asymmetry of the diffraction amplitudes is noticeable at receivers 

3.25 kmx  and 4.75 kmx . This asymmetry is an amplitude asymmetry of the double-

edge wave in formulae (66) and (67). Moreover, the diffraction amplitude at the shadow 

boundary ( 4.0 kmx ) is not equal to a half of the spherical-wave amplitude. Figure 6d 

demonstrates the distribution of DAC x  for the scalar component 0 ,a tx  (solid line) 

evaluated by the TWSM algorithm. It is visible that the computed DAC x  at the shadow 

boundary is approximately equal to +0.615. Substituting this value in formula (85), we obtain 

2 3.6
4

 at the shadow boundary. We see that the computed 0.615DAC x  and the 

edge wave theory 0.625DAC x  from (86) are different with the relative error 2 percent 

approximately.  

 

 In addition, we demonstrate 
2

1DAC x
2

C x  for the single edge wavefield (dashed line) 

evaluated by the analytical formula (88). A stable difference at 25% of value between the 

computed DAC x  and the analytical edge-wave 
2

1DAC x
2

C x  demonstrates that the first 



 

105 

diffraction term of the cascade diffraction cannot be represented by the edge wave only, and 

that formula (71) must be used.  

 

 Figure 7 represents a test for source 1 and the receiver line 2. Figure 7a demonstrates 

the scalar component 0 ,a tx  of formula (70) for the V-shaped boundary. Figure 7b 

illustrates component ,a tG x  of formula (70), which is the source spherical wave. This 

wave does not depend on the shape of the boundary. Figure 7c represents component 
1 ,a tx , which is the difference between the feasible source wavefield and the conventional 

source wavefield ,a tG x . A weak asymmetry of the diffraction amplitudes is noticeable at 

receivers 3.25 kmx  and 4.75 kmx . The double-diffraction term 1 ,a tx  in the 

shadow zone consists of the source spherical wave with negative amplitude 1 ,a tG x , the 

single edge waves 
1

1 ,a tx
1

,,  and 
2

1 ,a tx
2

,,  and the double edge wave 
2 1

1 ,a tx
2 1

,, . The single 

and double edge waves are visible behind the source spherical wave. Their traveltime is very 

close to the edge-wave eikonal. The double-diffraction term 1 ,a tx  in the illuminated zone 

consists of the single edge wave 
2

1 ,a tx
2

,,  and the double edge wave 
2 1

1 ,a tx
2 1

,, . The 

diffraction amplitudes are positive in the shadow zone ( 4.0 kmx ) and negative in the 

illuminated zone ( 4.0 kmx ). A weak asymmetry of the diffraction amplitudes is noticeable 

at receivers 3.25 kmx  and 4.75 kmx . This asymmetry is an amplitude asymmetry of the 

doublen edge wave in formulae (66) and (67). Moreover, the diffraction amplitude at the 

shadow boundary ( 4.0 kmx ) is not equal to a half of the spherical-wave amplitude. Figure 

7d demonstrates the distribution of DAC x  for the scalar component 0 ,a tx  (solid line) 

evaluated by the TWSM algorithm. It is visible that the modeled DAC x  at the shadow 

boundary is approximately equal to +0.608. Substituting this value in formula (85), we obtain 

2 6.12
4

 at the shadow boundary. We see that the computed 0.608DAC x  and the 

edge wave theory 0.625DAC x  from (86) are different with the relative error 3 percent 

approximately.  
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 Figures 8 represents a test for source 2 and the receiver line 1. Figure 8a gives the 

realization of the scalar component 0 ,a tx  for the V-shaped boundary. Figure 8b 

illustrates component ,a tG x  of vector (70), which is the source spherical wave. This wave 

does not depend on the shape of the boundary. Figure 8c demonstrates component 1 ,a tx , 

which is the difference between the feasible source wavefield and the conventional source 

wavefield ,a tG x . The double-diffraction term 1 ,a tx  in the shadow zone consists of 

the source spherical wave with the negative amplitude 1 ,a tG x , the single edge waves 

1

1 ,a tx
1

,,  and 
2

1 ,a tx
2

,,  and the double edge wave 
2 1

1 ,a tx
2 1

,, . The single and double edge 

waves are visible behind the source spherical wave. Their travel time is very close to the 

edge-wave eikonal. The double-diffraction term 1 ,a tx  in the illuminated zone consists of 

the single edge wave 
2

1 ,a tx
2

,,  and the double edge wave 
2 1

1 ,a tx
2 1

,, . The diffraction 

amplitudes are positive in the shadow zone ( 4.0 kmx ) and negative in the illuminated zone 

( 4.0 kmx ). A weak asymmetry of the diffraction amplitudes is noticeable at receivers 

3.25 kmx and 4.75 kmx . This asymmetry is an amplitude asymmetry of the double edge 

wave in formulae (66) and (67). Moreover, the diffraction amplitude at the shadow boundary (

4.0 kmx ) is not equal to a half of the spherical-wave amplitude. Figure 8d represents the 

distribution of DAC x  for the scalar component 0 ,a tx  (solid line) evaluated by the 

TWSM algorithm. It is visible that the modeled DAC x  at the shadow boundary is 

approximately equal to +0.603. Substituting this value in formula (85), we obtain 

2 7.92
4

 at the shadow boundary. We see that the computed 0.603DAC x  and the 

edge wave theory 0.625DAC x  from (86) are different with the relative error 3 percent 

approximately.  

 

 The absolute error of the time arrivals, amplitudes and pulse shapes of the computed 

by TWSM wave events can be estimated by the maximal absolute values of the residual 

amplitudes along the move-out for the conventional spherical wave in the shadow zone at 

receivers 4.0 kmx . We estimate the relative error in the amplitudes less than 4 percent and 

the absolute error in the time arrivals is approximately 0.002 s.  
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3.11 Conclusions  
 

We derived a double-diffraction approximation of the feasible source wavefield below a salt 

overhang of V-shape, using the TPOT theory. We applied the TWSM algorithm for 

computation of the double-diffraction approximation in terms of the nonsparse propagation 

and absorption matrices. We developed and implemented this algorithm for evaluation of the 

virtual shadow function and tested the code for V-boundary. The examples of the computation 

illustrate the accuracy and efficiency of the computational technology. The correctness of the 

algorithm is justified by comparison of the travel times and amplitudes of the feasible source 

wavefield with the edge wave theory results. The comparison demonstrated that 

TPOT&TWSM is successfully applied to the evaluation of the feasible source wavefield in 

the geometrical shadow zone caused by V-shaped boundary of the acoustic half-space.  
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3.14 List of Tables  
 

Table 1. Comparison of computing times for different versions of the TWSM algorithm using 

different parallel architectures.  
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Table 1. Comparison of computing times for different versions of the TWSM algorithm using 

different parallel architectures.  

 

Sequential program (1 kernel Intel(R) Xeon(R) CPU E5630 

@2.53GHz), 1 TWSM matrix  

27 hours 

OpenMP+Intel MKL, optimization (8 kernels Intel(R) Xeon(R) CPU 

E5630 @2.53GHz), 1 TWSM matrix  

2 hours 

CUDA+CuBLAS (NVIDIA Tesla M2090) 1 GPU, 1 TWSM matrix  10 min 

CUDA+CuBLAS (NVIDIA Tesla M2090) 18 GPU, 1 TWSM matrix  40 sec  

Transmission through the W-shaped interface taking into account 

sextuple diffraction – 21 GPU, 32 TWSM matrices  

19,5 min 
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3.15 List of Figures  
 

Figure 1. V-shaped model. (a) Sketch and acquisition design. (b) Visibility of the points. (c) 

Medium and faces notations.  

 

Figure 2. Scheme of realization of matrix-vector multiplication for each discrete frequency.  

 

Figure 3. (a) 3D view of boundary. (b) Four matrix rows at boundary.  

 

Figure 4. Scheme of the realization of matrix-vector transformation of TWSM for several 

GPUs.  

 

Figure 5. Edge waves rays. Deviations Sx  and Rx  can be positive and negative.  

 

Figure 6. Source 1 and receiver line 1. (a) Wavefield 0 ,a tx . (b) Wavefield ,a tG x . (c) 

Wavefield 1 ,a tx . (d) Curve of DAC x .  

 

Figure 7. Source 1 and receiver line 2. (a) Wavefield 0 ,a tx . (b) Wavefield ,a tG x . (c) 

Wavefield 1 ,a tx . (d) Curve of DAC x .  

 

Figure 8. Source 2 and receiver line 1. (a) Wavefield 0 ,a tx . (b) Wavefield ,a tG x . (c) 

Wavefield 1 ,a tx . (d) Curve of DAC x .  
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Figure 1. V-shaped model.  

 

  
Figure 1a. Sketch and acquisition design. Figure 1b. Visibility of the points  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1c. Medium and faces notations  
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Figure 2. Scheme of realization of matrix-vector multiplication for each discrete frequency.  
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Figure 3a. 3D view of boundary in km.    Figure 3b. Four matrix rows at  

                                                                                              boundary.  
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Figure 4. Scheme of the realization of matrix-vector transformation of TWSM for several 

GPUs.  
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Figure 5. Edge waves rays. Deviations Sx  and Rx  can be positive and negative.  
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Figure 6. Source 1 and receiver line 1.  

 

 
 

 

Figure 6a. Wavefield 0 ,a tx .  Figure 6b Wavefield ,a tG x .  

  

Figure 6c. Wavefield 1 ,a tx .  Figure 6d Curve of DAC x .  
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Figure 7. Source 1 and receiver line 2.  

 

  

Figure 7a. Wavefield 0 ,a tx .  Figure 7b. Wavefield ,a tG x .  

  

Figure 7c. Wavefield 1 ,a tx .  Figure 7d. Curve of DAC x .  
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Figure 8. Source 2 and receiver line 1.  

 

  

Figure 8a. Wavefield 0 ,a tx .  Figure 8b. Wavefield ,a tG x .  

  

Figure 8c. Wavefield 1 ,a tx .  Figure 8d. Curve of DAC x .  
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4.1 Summary  
 

Earlier, we proposed a theoretical study of a source wavefield by the Transmission-

Propagation Operator Theory (TPOT), which provides an analytical description of the wave 

structure for the physically feasible source wavefield below a salt V-overhang. The problem 

of the mathematical description of the wavefield below the salt overhang was solved by 

splitting the source wavefield in the wave fragments corresponding to the observed wavefield: 

the source spherical wavefield and the wavefield diffracted by the overhang. That study aimed 

to correct the overhang V-model solution with help of the double-diffraction approximation of 

the feasible source wavefield. The numerical examples, provoded by the Tip-Wave 

Superposition Method (TWSM), illustrated the time arrivals and amplitudes of the wavefield. 

In this paper, we consider other models, a parabolic and hyperbolic U-models and a double 

wedge W-model, and use the same theoretical basis of TPOT, the computation method of 

TWSM and the error estimation approach.  
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4.2 Introduction  
 

In paper A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis, we derived the feasible source 

wavefield in the shadow zone of an acoustic canonical V-model. The theoretical results were 

taken from paper A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis. The 

numerical examples computed by the Tip-Wave Superposition Method (TWSM) (Klem-

Musatov et al. (2008), A.M. Aizenberg & Klem-Musatov (2010), M.A. Ayzenberg et al. 

(2007), A.M. Aizenberg et al. (2011) and A.M. Aizenberg et al. (2014)) were compared with 

the formulae of the edge and tip wave theory by A.M. Aizenberg (1982) and A.M. Aizenberg 

(1993). We also represented an improved highly-optimized algorithm of TWSM for 

computation of the first cascade diffraction term based on the propagation and absorption 

matrices (A.A. Ayzenberg et al. (2012), A.A. Ayzenberg et al. (2013), A.A. Ayzenberg et al. 

(2014), Zyatkov et al. (2012) and Zyatkov et al. (2013)). The accuracy, stability and 

efficiency of the algorithm were illustrated by numerical tests for V-model.  

 

 In this paper, we consider similar tests but for another three types of boundary, a 

parabolic and hyperbolic U-model and a double wedge W-model. The paper performs 

computation (visualization) of the feasible source wavefield by TPOT&TWSM. Because the 

approximation of the wavefield represented on the seismograms has no analogs in the present 

wave theory, we need a comparison with results of an independent method. Such a 

comparison cannot be done by numerical methods because we need to test separate fragments 

of the total wavefield. For the comparison, we apply the well-known approach of rigorous 

integration using the formulae of the mathematical edge wave theory by A.M. Aizenberg 

(1982) and A.M. Aizenberg (1993) in case of U- and W-boundary.  

 

 This paper consists of an Introduction, six Sections and Conclusions. The Introduction 

contains a short theoretical description from A.A. Ayzenberg et al. (2015)/Chapter 3 of this 

thesis. Section 4.3 contains the statements of U- and W-problem. Section 4.4 gives the 

explicit analyticval solution of the problems. Section 4.5 describes the feasible source 

wavefield in terms of the single and double edge wavefields of the wave theory, for U-model. 

Section 4.6 demonstrates verification of the TWSM source wavefield seismograms by the 

edge wave theory, for U-model. Section 4.7 describes the feasible source wavefield in terms 

of the single and double edge wavefields of the wave theory, for W-model. Section 4.8 
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demonstrates verification of the TWSM source wavefield seismograms by the edge wave 

theory, for W-model. Conclusions summarize the results of the paper.  
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4.3 Forward U- and W-problem for 2-block medium  
 

 

In this Section, we consider two models: U- and W-model.  

 

U-model  

 

The first of the considered models is a 2-block model with a cylindrical U-boundary of 

parabolic (Figure 1) and hyperbolic (Figure 2) shape, concave inside the half-space. The 

material parameters of the domains and the geometrical parameters of the interface are chosen 

to imitate a salt overhang surrounded by sediments. A strong velocity contrast simulates 

shadow below the overhang.  

 

 U-model consists of two homogeneous acoustic domains (Figure 3a), 11  and 22 , 

separated by a smooth U-interface composed from two curved faces connected by a formal 

‘edge’ ( 4.0 km, km, 0 kmx y z ). We generally do not have an edge and introduce it only 

formally in order to later describe an edge effect which will present in this problem. A point 

source is located at point ( 4.0 km, 0 km, 1.0 kmx y z ). Radius-vectors mx  designate an 

arbitrary point in mm , 1,2m . Parameters of domain 11  are: P-wave velocity 

,1 2.0 km / secPv  and density 3
1 2.0 g / cm . Parameters of domain 22  are: P-wave 

velocity ,2 4.0 km / secPv  and density 3
2 3.0 g / cm .  

 

 U-interface is considered as a two-sided surface with sides m msm ms  (Figure 3a), where 

1,2m  is the domain number. Radius-vector ms  denotes either a boundary point on mm  or a 

point in mm  which is infinitesimally close to ms . We denote the infinite parts of the interface 

as mm . The faces of the interface are denoted as , 1,2j j, 1,2j j . The normal vectors are directed 

inwards domains mm  and denoted as ,m m m
j j jn s s m

j , where the lower index denotes the 

medium number and the upper index denotes the face number. The upper side 1
1
1
1  and lower 

side 1
2
1
2  of the upper face of the parabolic U-interface are defined by formula 4z x , 

the upper side 2
2
2
2  and lower side 2

1
2
1  of the lower face of the parabolic U-interface are defined 
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by formula 4z x  (Figure 1). Faces 11  and 22  have a common line 4.0, ,0y . The 

radius of curvature of the boundary is 0.5 km at the tangential ray and is comparable with 

eight dominant wavelengths. The upper side 1
1
1
1  and lower side 1

2
1
2  of the upper face of the 

hyperbolic U-interface are defined by formula 2 20.4 5.25 1.25z x , the upper side 

2
2
2
2  and lower side 2

1
2
1  of the lower face of the hyperbolic U-interface are defined by formula 

2 20.4 5.25 1.25z x  (Figure 2). Faces 11  and 22  also have a common line 

4.0, ,0y . The radius of curvature of the boundary is 0.2 km at the tangential ray. This value 

is comparable with three dominant wavelengths.  

 

 We define a receiver line: from 3,25 kmx  to 4,75 kmx  with step 0,015 kmx  

at y 0.0 km, 1.0 kmz . This line contains 101 receivers and intersects the shadow 

boundary of the source spherical wavefield at 4.0 kmx . The receivers for 4.0 kmx  are 

located in the shadow zone and the receivers for 4.0 kmx are in the illuminated zone.  

 

 We represent temporal spectra of the wavefield as particle velocity-pressure vectors (

4 1-columns)  

 

 

1,

2,

3,

,

m

m
m

m

m

v
v
v
p

u x , (1) 

 

where 1,mv , 2,mv , 3,mv  are components of the particle velocities, mp  is pressure in each domain. 

Functions ,mu x  are defined as follows  

 

 1 1 1

2 2 2

, , for ,
, , for .

u u x x
u u x x

1 ,1

2 .2

1  (2) 

 

Vectors (2) are connected with the wavefields by the Fourier transform  
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1, ,
2

i t
m mt e du x u x , (3) 

 

where  is angular frequency. The temporal spectrum vectors ,mu x  in (2) satisfy the 

wave motion equations from A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this 

thesis and A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis  

 

 , , , , 1,2 ,
m m m m m mxD u x M u x f x  (4) 

 

where the differential matrix operator and the matrix of material parameters are  

 

 

1

2

23
,

1 2 3

0 0 0
0 0 0

0 0 00 0 0
0 0 0,

10 0 0 0 0 0

0

m

m

m

mm

m P m

x

x
i

x
v

x x x

xD M . (5) 

 

The point source is 1 1 1
1

, 0 0 0
T

i
f x x y , the source radiates a 

spherical P-wave. Function  is the spectrum of the wavelet 
22 cos 2t e , 

where / 2t T . The wave period 0.032 secT  corresponds to the dominant wavelength 

of 0.064 km and the dominant frequency of 38.25 Hz. In domain 22 , there is no source: 

2 , 0 0 0 0 Tf x .  

 

 In each domain (Figure 3a), vector (2) satisfies the radiation conditions 
m

RC  at the 

infinite boundary mm  of domain mm   

 

 : , , ( ) , ( ) 0 , 1,2
m

m m m m mm
RC dS mF x s N s u s s

m

 (6) 
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in terms of the feasible surface integral operators with the fesible fundamental solution 

, ,m mF x s  in the kernel, similar to (6) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this 

thesis. The normal matrix is  

 

 

1

2

3

1 2 3

0 0 0
0 0 0
0 0 0

0

m

m
m

m

m m m

n
n
n

n n n

s
s

N s
s

s s s

. (7) 

 

At U-interface (Figure 3a), we consider a boundary condition BC   

 

 1 1 2 2: , ,BC C R s u s J C R s u s , (8) 

 

where  

 

 
0 0 1 0
0 0 0 1

C , (9) 

 

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

0

0

0

0 0 0 1

m m m

m m m
m

m m m

i s i i s i i s i

i s i i s i i s i
R s

i s i i s i i s i
, (10) 

 

,mu s  is the limit value of vector ,mu x , 
1 0

0 1
J , 1 2 3, ,i i i  is the global 

Cartesian basis independent on point ms  and 1 2, ,m m mi s i s n s  is the local basis 

dependent on point ms .  
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 Equation (4), the radiation conditions 
m

RC  in (6) and the boundary condition BC  

in (8) form the correct statement of the forward problem for U-model  

 

 

1 1 2 2

, , , ,

: , , ( ) , ( ) 0 , 1,2,

: , , .

m

m

m m m m

m m m m mm
RC dS m

BC

xD u x M u x f x

F x s N s u s s

C R s u s J C R s u s
m

 (11) 

 

W-model  

 

 The second of the considered models is a 2-block model with a cylindrical W-

boundary (Figure 4), concave inside the half-space. The material parameters of the domains 

and the geometrical parameters of the interface are chosen to imitate a salt overhang 

surrounded by sediments. A strong velocity contrast imitates shadow below the overhang.  

 

 W-model consists of two homogeneous acoustic domains (Figure 5a), 11  and 22 , 

separated by W-interface composed from four plane faces connected by three edges. A point 

source is placed at point ( 4.0 km, 0 km, 1.0 kmx y z ). Radius-vectors mx  designate an 

arbitrary point in mm , 1,2m . Parameters of domain 11  are: P-wave velocity 

,1 2.0 km / secPv  and density 3
1 2.0 g / cm . Parameters of domain 22  are: P-wave 

velocity ,2 4.0 km / secPv  and density 3
2 3.0 g / cm .  

 

 W-interface is considered as a two-sided surface with sides m msm ms  (Figure 5a), 

where 1,2m  is the domain number. Radius-vector ms  denotes either a boundary point on 

mm  or a point in mm  which is infinitesimally close to ms . We denote the infinite parts of the 

interface as mm . The faces of the interface are denoted as , 1,2,3,4j j, 1,2j j . The normal vectors 

are directed inwards domains mm  and denoted as ,m m m
j j jn s s m

j , where the lower index 

denotes the medium number and the upper index denotes the face number. The upper 1
m
1
m  and 

second 2
m
2
m  faces are defined by formula 0.41 4z x  and form the upper concave V1-

shaped wedge with the edge at 4.0 kmx  and 0 kmz . The third 3
m
3
m  and lowest 4

m
4
m  faces 
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are defined by formula 0.41 4 1z x  and form the lower concave V2-shaped wedge 

with the edge at 4.0 kmx  and 1kmz .  

 

 101 receivers are spread along a horizontal straight line: from 3.25 kmx  to 

4.75 kmx  with step 0.015 kmx 0.015x  at 0 kmy  and 2.0 kmz . The receiver line 

intersects the shadow boundary of the source spherical wavefield at 4.0 kmx . The receivers 

for 4 kmx  are located in the shadow zone and the receivers for 4 kmx  are in the 

illuminated zone.  

 

 In domains mm , we consider the same equation (4) and the same radiation condition 

m
RC  from (6).  

 

 At the cylindrical surfaces 12 12
1 21 2

12 12
1 2 , 23 23

1 21 2
23 23

1 2  and 34 34
1 21 2

34 34
1 2  surrounding the 

three edges 1212 , 2323  and 3434  of W-boundary (Figure 5a), vector (2) satisfies the six edge 

conditions 12

m
EC , 23

m
EC  and 34

m
EC , 1,2m   

 

 
1

1 : , , ( ) , ( ) 0 , 1,2, 1,2,3
j j

m

j j
m m m m mm

EC dS m jF x s N s u s s
m

1j j

 (12) 

 

in terms of the feasible surface integral operators with the feasible fundamental solution in the 

kernel similar to (6) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis.  

 

 At the four faces jj  , 1,2,3,4j , of W-interface (Figure 5a), we consider four 

boundary conditions  

 

 1 1 2 2: , , , 1,2,3,4,j j j j jBC jC R s u s J C R s u s  (13) 

 

where matrices C  and j
mR s  are defined according with formulae (9) and (10).  
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 Equation (4), the two radiation conditions 
m

RC  from (6), the six edge conditions 

12

m
EC , 23

m
EC  and 34

m
EC , 1,2m , in formula (12), and the four boundary conditions 

jBC , 1,2,3,4j , in formula (13), form the correct statement of the forward problem for 

W-model  

 

 

1

1

1 1 2 2

, , , , 1,2 ,

: , , ( ) , ( ) 0 , 1,2 ,

: , , ( ) , ( ) 0 , 1,2 , 1,2,3 ,

: , , , 1,2 , 1,2,3,4 .

m

m

j j
m

m m m m

m m m m mm

j j
m m m m mm

j j j j j

m

RC dS m

EC dS m j

BC m j

xD u x M u x f x

F x s N s u s s

F x s N s u s s

C R s u s J C R s u s

m

m
1j j

 (14) 
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4.4 Analytical solution by TPOT: source wavefield  
 

The forward problems (11) and (14) has an explicit solution (Zaman (2000) and Chandler-

Wilde et al. (2012))  

 

 0
1 1 1( , ) ( , ) ( , )scu x u x u x , (15) 

 

where 0
1( , )u x  is the source wavefield and 1( , )scu x  is the scattered wavefield. If we aim 

to compute the total wavefield 1( , )u x  we could apply any modeling method, including 

numerical methods. But if we aim to describe the wavefield separate trerms we have to apply 

the proposed TPOT&TWSM method. In this paper, we focus on the source wavefield 
0

1( , )u x  description by TPOT&TWSM.  

 

 In the theory by Costabel & Dauge (1997), this term is written as follows. The incident 

wavefield radiated by a point source can be represented as a particular solution of equation (4) 

in the form of the volume integral  

 

 
1

0
1 1 1 1 1( , ) , , ( , ) ( )dVu x F x y f y y

1

 (16) 

 

with any fundamental solution 1 1, ,F x y  of equation (4) as the integral kernel. However, 

we cannot use the Green’s function 1 1, ,G x y  for the unbounded homogeneous acoustic 

medium as the conventional kernel of integral (16) because this function can contain non-

feasible parts in the shadow zones. We consider the incident wavefield (16) as the feasible 

source wavefield in the half-space of complex shape. As mentioned at the beginning of this 

Section, we cannot use any numerical method for the computation of 0
1( , )u x  in formula 

(15). However, we can use formula (16). We do not bring the detailed derivations from 

Sections 4 and 5 from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis.  

 

 Instead, we directly use the necessary formulae from A.A. Ayzenberg et al. 

(2015)/Chapter 3 of this thesis, where vector 0
1( , )u x  in terms of particle motion is 



 

136 

transformed to vector 0
1,a x  in terms of wave motion, and the following formulae are 

valid  

 

 10
1 1 1, , ,Ga x a x a x , (17) 

 

where  

 

 
1 1

1

1

1 1 1 1 1 1 1( , ) ( , , ) , , ( , ) ( )dVG
x xa x C H x x C G x y f y y

1

 (18) 

 

and  

 

 
1 1 1 2 1
1 1 1 11 11 2

1 1 1 1 1 2 1 2 2 2
1 1 1 1 1

( , , ) ( , , ) ( , )
( , ) ( , , ) ( , , )

( , , ) ( , , ) ( , )

h h

h h

G
G G

G G
G

G G

P s s P s s a s
a x P x s P x s

P s s P s s a s
, (19) 

 

 

1 1 2 3 4
1 1 1 1 1 1 1 1 1

1 1 1 2 1 3 1 4
1 1 1 1 1 1 1 1

2 1 2 2 2 3 2 4
1 1 1 1 1 1 1 1

3 1
1 1

( , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , )

h h h h

h h h h

h h

G G G G

G G G G

G G G G

G

a x P x s P x s P x s P x s

P s s P s s P s s P s s

P s s P s s P s s P s s

P s s P 3 2 3 3 3 4
1 1 1 1 1 1

4 1 4 2 4 3 4 4
1 1 1 1 1 1 1 1

1
1

2
1

3
1

4
1

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , )

( , )
.

( , )

( , )

h h

h h h h

G G G

G G G G

G

G

G

G

s s P s s P s s

P s s P s s P s s P s s

a s

a s

a s

a s  (20) 

 

For U-model, we apply formulae (17)-(19); and for W-model, we apply formulae (17), (18) 

and (20). These formulae will be used for TWSM computation of (16).  
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4.5 Reduction of the source wavefield representation to formulae of the 

edge wave theory. U-model  
 

For the U-model seismogram control, we will compare the feasible source wavefield with the 

results of the edge wave theory by A.M. Aizenberg (1982) and A.M. Aizenberg (1993).  

 

 We consider the receiver line as a line on a plane surface with the normal vector 

directed along axis z . We define the Cartesian coordinates as follows  

 

 1 1 1 1 1 13 1 2
, , ,x x xx x x . (21) 

 

Everywhere further in this paper, we omit the domain index since we consider only domain 

11  ( 1m ). Also for simplicity, we further write the upper indeces in the lower positions. In 

addition, we omit reduction to the lower dimension, and we omit frequency. So everywhere 

further, we have the notation  

 

 
1

,

,
, .

j

j

 (22) 

 

 Therefore, we rewrite the wave vector (17) in the form  

 

 10
10

00 0
+

aa a
G

Ga x a x a x
xx x

. (23) 

 

Vector (18) has the block form  

 

 
0

exp Pp i k l
G

G
a x

x x
, (24) 
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where l x  is the distance along the ray trajectory ‘source - receiver’, Cp
lG x

x
 is 

the spherical wave amplitude,  is medium density, C  is source intensity.  

 

 The propagation operator from formula (19) acting from the faces to the receiver line 

is  

 

 1 2
1 1 1 1 1 2( , , ) ( , , ) ( , ) ( , )G G G GP x s P x s P x s P x s  (25) 

 

 Since faces 11  and 22  are curved surfaces, the shadow function ,h s s  for U-shape 

boundary has the properties (Figure 3b) 

 

 

1 2 2 1

1 1
1 1

1 1

2 2
2 2

2 2

( , ) ( , ) 1 ,
1, ,

( , )
0, ,

1, ,
( , )

0, .

h h

h

h

s s s s
s s

s s
s s

s s
s s

s s

 (26) 

 

Using the shadow functions (26), we obtain the absorption matrix from (19) in the form  

 

 
1 1 1 2
1 1 1 1 1 1 1 2

2 1 2 2
2 1 2 21 1 1 1

( , , ) ( , , ) , ,
, ,( , , ) ( , , )

h h h

hh h

G G G G

G GG G

P s s P s s P s s P s s
P s s P s sP s s P s s

. (27) 

 

As the action of the submatrices 1 1,h GP s s  and 1 2,GP s s  describe back scattering, that 

gives negligibly weak contribution at the receivers, we can say that the conditions 

1 1,h GP s s Ο  and 1 2,GP s s Ο  are valid. Hence, the absorption matrix (27) has got the 

final form  

 

 1 1 1 2

2 1 2 22 1 2 2

, ,
, ,, ,

h

hh

G G

G GG G

Ο ΟP s s P s s
P s s P s sP s s P s s

. (28) 
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 The wave vector in (19) is rewritten in the form, which represents the source spherical 

wave at the four faces of the boundary  

 

 
1
1 1

1 1 2 2
2 21

( , )
, , .

( , )

G G

GG

a s a s
s s

a sa s
1 2 2 .1 2 222s111  (29) 

 

We notice that vectors 1
Ga s  and 2

Ga s  do not account for the shadow as if we would 

consider the free space model without the wedge. These vectors are  

 

 2 2
1 2

1 1

0 exp
,

exp 0
P

P

p i k l
p i k l

GG G

G

s s
a s a s

s s , (30) 

 

 After completing all the multiplications in formula (19) and accounting for formulae 

(25), (28) and (29), we obtain vector (19) expressed by the matrices and columns at the faces 

in the form  

 

 
2 1 2 2

1 1 1a x a x a x
2 1 2 2

x a x , (31) 

 

where  

 

 
2 1

1
2 2 1 1, , G

G Ga x P x s P s s a s
2 1

x  (32) 

 

and  

 

 
2 2

1
2 2 2 2, ,h

G
G Ga x P x s P s s a s

2 2
x . (33) 

 

Vectors (32) and (33) have the form of double integration over the two semi-infinite curved 

faces with ‘edges’. By ‘edge’ we mean line (4.0, 0, y). In formula (32), the internal integration 

is over face 11  and the external integration is over face 22 . In formula (33), both the internal 

and external integration are over face 22 . Edges 11  and 22  of faces 11  and 22  are 

infinitesimally close to each other. The common edge of faces 11  and 22  belongs to the plane 
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of the secondary shadow for the single (primary) edge wave generated at edge 11 . Then, the 

double (secondary) edge wave is generated at edge 22 .  

 

 Formula (32) is similar to formula (53) in A.A. Ayzenberg et al. (2015)/Chapter 3 of 

this thesis, but it is applied here for U-boundary, not V-boundary. Therefore, we can use it 

here. Omitting calculations, we represent formula (32) in the form  

 

 
2 1 2 1 2 1

1 1 1 1 1
Ga x a x a x a x a x

2 1 2 1 2 1Gx a x a x a x a xG , (34) 

 

where the terms are described by formulae (61), (62), (65) and (66) from A.A. Ayzenberg et 

al. (2015)/Chapter 3 of this thesis. In the shadow zone, the double-diffraction term (34) 

consists of the direct spherical wave with negative amplitude 1
Ga x , the single edge waves 

1

1a x
1

x  and 
2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x . In the illuminated zone, the double-

diffraction term (34) consists of the single edge wave 
2

1a x
2

x  and the double edge wave 

2 1

1a x
2 1

x .  

 

 Formula (33) represents the effect of the creeping wave which is an additional wave in 

case of the curved U-shaped boundary. The creeping wave is the difference between the 

wavefield at the U-shaped boundary (formula (31)) and the V-shaped boundary (formula (32)

). We note that we only take the first term in the creeping wave. We think that we probably 

have to account for higher terms in some of models. We leave this question for further 

investigations.  

 

 In formula (23), the nonzero component of the feasible source wavefield at the receivers 

is represented in the form  

 

 10a a aGx x x , (35) 

 

where aG x  is the conventional source wavefield which propagates not accounting for the 

shadow zones. It has the form of the nonzero component in (24)  
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 exp Pa p i k lG
Gx x x . (36) 

 

 The nonzero component of the first-term approximation of the cascade diffraction 

wavefield in (23) can be represented in the form  

 

 
2 1 2 2

1 1 1a a ax x x
2 1 2 2

a a xaa . (37) 

 

Equation (37) is the nonzero component of equation (31). The first term in (37) can be 

represented in the form  

 

 
2 1 2 1 2 1

1 1 1 1 1a a a a aGx x x x x
2 1 2 1 2 1

a a a a aG xax aa a aa a aa a , (38) 

 

where the terms are the same as in formula (71) by A.A. Ayzenberg et al. (2015)/Chapter 3 of 

this thesis. In the shadow zone, the double-diffraction term (38) consists of the source 

spherical wave with negative amplitude 1aG x , the single edge waves 
1

1a x
1

x  and 
2

1a x
2

x  

and the double edge wave 
2 1

1a x
2 1

x . In the illuminated zone, the double-diffraction term (38) 

consists of the single edge wave 
2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x . We notice that 

formula (38) is the nonzero component of formula (34).  

 

 The second term 
2 2

1a x
2 2

x  in formula (37) represents the first term of the creeping 

wave and is the nonzero component of (33). Here, we do not consider the other terms of the 

creeping wave.  
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4.6 Verification of TWSM-seismograms by the edge wave theory. U-model  
 

Parabolic boundary  

Figure 6a illustrates the scalar component 0 ,a tx  of formula (35) at the receiver line. 

Figure 6b represents component ( , )a tG x  of formula (36), which is the source spherical wave 

at the receiver line. This wave does not depend of the shape of the boundary. Figure 6c 

illustrates component 1 ( , )a tx  in formula (37). The strong asymmetry of the diffraction 

amplitudes with respect to 4 kmx  can be explained by the effect of the creeping wave and 

the edge wave propagating from edge 11 . We do not show term (38) because it is the same as 

for the V-shaped case in Figure 6c from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis. 

Figure 6d illustrates the creeping term 
2 2

1 ,a tx
2 2

,,  from formula (37). In the shadow zone, we 

see a strong creeping wavefield with retarded traveltimes and the amplitudes increasing in the 

direction of the deep shadow. Figure 6e demonstrates the distribution of the computed 
0

UDAC x  for 0 ,a tx  using formula (75) from A.A. Ayzenberg et al. (2015)/Chapter 3 

of this thesis and applying it for the U-shaped case at the receiver line. This 0
UDAC x  at 

the shadow boundary is equal to 0.56. The curve in Figure 6f represents the computed 

2 2

1DAC x
2 2

C x  for the creeping wave 
2 2

1 ,a tx
2 2

,, . This 
2 2

1DAC x
2 2

C x  at the shadow boundary is 

equal to 0.058. The computed 
2 2

10 0
V U =0.618DAC DAC DACx x x

2 2
C xC  is different 

from the edge wave theory 0
V 0.625DAC x  (formula (86) in A.A. Ayzenberg et al. 

(2015)/Chapter 3 of this thesis) with the relative error of 1 percent approximately.  

 

Hyperbolic boundary  

 

Figure 7a illustrates the scalar component 0 ,a tx  of formula (35) at the receiver line. 

Figure 7b demonstrates component ( , )a tG x  of formula (36), which is the source spherical 

wave at the receiver line. This wave does not depend of the shape of the boundary. Figure 7c 

illustrates component 1 ( , )a tx  of formula (37). We do not show term (38) because it is the 

same as for the V-shaped case in Figure 7d from A.A. Ayzenberg et al. (2015)/Chapter 3 of 
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this thesis. Figure 7d illustrates the creeping term 
2 2

1 ,a tx
2 2

,,  from formula (37). In the shadow 

zone, we see a strong creeping wavefield with retarded traveltimes and the amplitudes 

increasing in the direction of the deep shadow. We observe that the amplitudes of the creeping 

wavefield for the hyperbolic boundary are weaker than those for the parabolic boundary. This 

effect is explained by the amplitude dependence on the boundary curvature in the vicinity of 

the tangential ray. The closer radius of curvature is to 0, the weaker is the creeping wave and 

the closer to the wedge the model is. Figure 7e demonstrates the distribution of the computed 
0

UDAC x  for 0 ,a tx  using formula (75) from A.A. Ayzenberg et al. (2015)/Chapter 3 

of this thesis and applying it for the U-shaped case at the receiver line. This 0
UDAC x  at 

the shadow boundary is equal to 0.551. The curve in Figure 7f represents the computed 

2 2

1DAC x
2 2

C x  for the creeping wave 
2 2

1 ,a tx
2 2

,, . This 
2 2

1DAC x
2 2

C x  at the shadow boundary is 

equal to 0.069. The computed 
2 2

10 0
V U 0.62DAC DAC DACx x x

2 2
CCC  is different from 

the edge wave theory 0
V 0.625DAC x  (formula (86) in A.A. Ayzenberg et al. 

(2015)/Chapter 3 of this thesis) with the relative error of 1 percent approximately.  
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4.7 Reduction of the source wavefield representation to formulae of the 

edge wave theory. W-model  
 

For the W-seismogram control, we compare the feasible source wavefield with the results of 

the edge wave theory by A.M. Aizenberg (1982) and A.M. Aizenberg (1993).  

 

 We consider the receiver line as a line on a plane surface with the normal vector 

directed along axis z . We further in this paper apply the same simplifications as in (22).  

 

 We therefore rewrite the wave vector (17) in the block form  

 

 10
10

00 0
+

aa a
G

Ga x a x a x
xx x

. (39) 

 

Vector (18) has the block form  

 

 
0

exp Pp i k l
G

G
a x

x x
, (40) 

 

where l x  is the distance along the ray trajectory ‘source - receiver’, Cp
lG x

x
 is 

the spherical wave amplitude,  is medium density, C  is source intensity.  

 

 The propagation operator from formula (20), acting from the four faces to the receiver 

line, is  

 

 
1 2 3 4

1 1 1 1 1 1 1 1

1 2 3 4

( , , ) ( , , ) ( , , ) ( , , )

, , , , .
G G G G

G G G G

P x s P x s P x s P x s

P x s P x s P x s P x s
 (41) 

 

 Since the shadow function ,h s s  is equal to zero for points s  and s  belonging to 

the same face or faces 22  and 33 , the shadow function ,h s s  for W-shape boundary has the 

properties (Figure 5b)  
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1 1 2 2 3 3 4 2 3 3 2

1 2 1 3 1 4 2 1 2 4

3 1 3 4 4 1 4 2 4 3

, , , , , , 0 ,

, , , , ,

, , , , , 1.

h h h h h h

h h h h h

h h h h h

4s s s s s s s s s s s s

s s s s s s s s s s

s s s s s s s s s s

 (42) 

 

Since faces 11 , 22 , 33  and 44  are plane, we obtain the absorption matrix from (20) reduced 

to the form  

 

 

1 1 1 2 1 3 1 4
1 1 1 1 1 1 1 1

2 1 2 2 2 3 2 4
1 1 1 1 1 1 1 1

3 1 3 2 3 3 3 4
1 1 1 1 1 1 1 1

4 1
1 1

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) (

h h h h

h h h h

h h h h

h h

G G G G

G G G G

G G G G

G G

P s s P s s P s s P s s

P s s P s s P s s P s s

P s s P s s P s s P s s

P s s P s4 2 4 3 4 4
1 1 1 1 1 1

1 2 1 3 1 4

2 1 2 4

3 1 3 4

4 1 4 2 4 3

, , ) ( , , ) ( , , )

, , ,
, ,

,
, ,
, , ,

h hG G

G G G

G G

G G

G G G

s P s s P s s

Ο P s s P s s P s s
P s s Ο Ο P s s
P s s Ο Ο P s s
P s s P s s P s s Ο

 (43) 

 

where Ο  is the zero matrix. As the action of the submatrices 1 2,GP s s , 1 3,GP s s , 

1 4,GP s s , 2 4,GP s s  and 3 4,GP s s  describes back scattering, that gives negligibly weak 

contribution at the receivers, we can say that they are zero-matrices. Hence, the absorption 

matrix (43) has got the final form  

 

 

1 1 1 2 1 3 1 4
1 1 1 1 1 1 1 1

2 1 2 2 2 3 2 4
1 1 1 1 1 1 1 1

3 1 3 2 3 3 3 4
1 1 1 1 1 1 1 1

4 1
1 1

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) (

h h h h

h h h h

h h h h

h h

G G G G

G G G G

G G G G

G G

P s s P s s P s s P s s

P s s P s s P s s P s s

P s s P s s P s s P s s

P s s P s4 2 4 3 4 4
1 1 1 1 1 1

2 1

3 1

4 1 4 2 4 3

, , ) ( , , ) ( , , )

,
.

,
, , ,

h hG G

G

G

G G G

s P s s P s s

Ο Ο Ο Ο
P s s Ο Ο Ο
P s s Ο Ο Ο
P s s P s s P s s Ο

 (44) 

 



 

146 

 The wave vector in (20) is rewritten in the form which represents the source spherical 

wave at the four faces of the boundary  

 

 

1

2
1 1 2 2 3 3 4 4

3

4

, , , ,

G

G
G

G

G

a s
a s

a s s s s s
a s
a s

1 2 2 3 3 4 41 2 2 3 3 4s s s1 2 2 3 32 2 3 32 21 2 2 3 322 21 2 2 3 32 2 3 32 32 2 . (45) 

 

We notice that vectors 1
Ga s , 2

Ga s , 3
Ga s  and 4

Ga s  do not account for the shadow 

as if we would consider the free space model without the wedges. These vectors are  

 

 

2 2
1 2

1 1

4 4
3 4

3 3

0 exp
, ,

exp 0

0 exp
, .

exp 0

P

P

P

P

p i k l
p i k l

p i k l
p i k l

GG G

G

GG G

G

s s
a s a s

s s

s s
a s a s

s s

 (46) 

 

 After completing all the multiplications in formula (20) and accounting for formulae 

(41), (43) and (45), we obtain vector 1a x , expressed by the matrices and the columns at the 

faces, as the sum of the five vectors  

 

 
2 1 4 3 4 2 4 1 3 1

1 1 1 1 1 1+a x a x a x a x a x a x
2 1 4 3 4 2 4 1 3 1

+x a x a x a x a x+ . (47) 

 

Accounting for identity 3 3 1 4 4 1, , , ,G G G GP x s P s s P x s P s s Ο , we obtain  

 

 
4 1 3 1

1 1
3 3 1 4 4 1 1+ , , , , 0G

G G G Ga x a x P x s P s s P x s P s s a s
4 1 3 13 1

x + . (48) 

 

Inserting (48) in (47), we obtain vector 1a x , expressed by the matrices and the columns at 

the faces, as the sum of the three nonzero vectors  

 

 
2 1 4 3 4 2

1 1 1 1a x a x a x a x
2 1 4 3 4 2

x a x a x , (49) 
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where  

 

 
2 1

1
2 2 1 1, , G

G Ga x P x s P s s a s
2 1

x , (50) 

 

 
4 3

1
4 4 3 3, , G

G Ga x P x s P s s a s
4 3

x , (51) 

 

and  

 

 
4 2

1
4 4 2 2, , G

G Ga x P x s P s s a s
4 2

x . (52) 

 

 Each vector (50), (51) and (52) has the form of double integration over the two half-

infinite faces with the edges. In formula (50), the internal integration is over face 11  and the 

external integration is over face 22 . Edges 11  and 22  of faces 11  and 22  are infinitesimally 

close to each other. In formula (51), the internal integration is over face 33  and the external 

integration is over face 44 . Edges 33  and 44  of faces 33  and 44  are infinitesimally close to 

each other. In formula (52), the internal integration is over face 22  and the external 

integration is over face 44 . Edges 22  and 44  of faces 22  and 44  are distant from each other 

and have a finite distance. Also, there are two infinitesimally close to each other edges of 

faces 22  and 33  that form a convex wedge. Since the influence of this wedge on the 

wavefield at the receiver line is not significant, we will not take it into account. Hence, from 

the point of view of the diffraction theory, we can say that each repeated surface integral in 

(50), (51) and (52) describes the solution of the canonical problem of the spherical wave 

diffraction at two absolutely absorbing half-planes, see details in Section 5.10 in Borovikov & 

Kinber (1994) and in the paper by Klem-Musatov & A.M. Aizenberg (1989).  

 

 Vector (50) performs the double diffraction at the two faces 11  and 22 . Since these 

faces form a wedge, we can rewrite vector (50) in the form of equation (62) with source 1 and 

line 2 from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis  

 

 
2 1 2 1 2 1

1 1 1 1 1
Ga x a x a x a x a x

2 1 2 1 2 1Gx a x a x a x a xG , (53) 
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where the terms are described by formulae similar to (61), (62), (65) and (66) from A.A. 

Ayzenberg et al. (2015)/Chapter 3 of this thesis. Therefore, we can use formulae (67)-(69) 

and (80)-(84) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis in this case, 

accounting for the conditions at the shadow boundary: 1 0w  and 1 0u  with 1 1/ 0u w , 

and 2 0w  and 2 0u  with 2 2/ 0u w const . In the shadow zone, the double-diffraction 

term (53) consists of the source spherical wave with negative amplitude 1
Ga x , the single 

edge waves 
1

1a x
1

x  and 
2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x . In the illuminated zone, 

the double-diffraction term (53) consists of the single edge wave 
2

1a x
2

x  and the double edge 

wave 
2 1

1a x
2 1

x .  

 

 Vector (51) performs the double diffraction at the two faces 33  and 44 . Since these 

faces form a wedge, we can rewrite vector (51) in the form of equation (64) with source 2 and 

line 1 from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis  

 

 
4 3 4 3 4 3

1 1 1 1 1
Ga x a x a x a x a x

4 3 4 3 4 3Gx a x a x a x a xG , (54) 

 

where the terms in (54) are described by formulae similar to (61), (62), (65) and (66) from 

A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis. Therefore, we can use the analog to 

formulae (67)-(69) and (80)-(84) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis, 

accounting for the conditions at the shadow boundary: 1 0w  and 1 0u  with 1 1/ 0u w , 

and 2 0w  and 2 0u  with 2 2/ 0u w const . In the shadow zone, the double-diffraction 

term (54) consists of the source spherical wave with negative amplitude 1
Ga x , the single 

edge waves 
1

1a x
1

x  and 
2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x . In the illuminated zone, 

the double-diffraction term (54) consists of the single edge wave 
2

1a x
2

x  and the double edge 

wave 
2 1

1a x
2 1

x .  

 

 Vector (52) performs the double diffraction at the upper face 22  and the lower face 44

. We notice that the distance between these faces is constant and nonzero. In spite of this, 
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formula (64) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis in combination with 

formulae (61), (62), (65) and (66) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis 

is valid. We therefore rewrite formula (52) without detailed explanation in the form  

 

 
4 2 4 2 4 2

1 1 1 1 1
Ga x a x a x a x a x

4 2 4 2 4 2Gx a x a x a x a xG . (55) 

 

In the shadow zone, the double-diffraction term (55) consists of the source spherical wave 

with negative amplitude 1
Ga x , the single edge waves 

1

1a x
1

x  and 
2

1a x
2

x  and the double 

edge wave 
2 1

1a x
2 1

x . In the illuminated zone, the double-diffraction term (55) consists of the 

single edge wave 
2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x .  

 

 Formulae (39) and (40) lead to that the nonzero component of the feasible source 

wavefield at the receivers can be represented in the form  

 

 10a a aGx x x , (56) 

 

where aG x  is the conventional source wavefield which doesn not account for the shadow 

zones. It has the form of the nonzero component in (40) which is similar to formula (36).  

 

 The nonzero component of the first-term approximation of the cascade diffraction 

wavefield in (56) can be represented in the form  

 

 
2 1 4 3 4 2

1 1 1 1a a a ax x x x
2 1 4 3 4 2

a a a xaa aaa . (57) 

 

Equation (57) is the nonzero component of equation (49).  

 

 The first term in (57) describes the diffraction at the V1-shaped wedge and can be 

represented in the form  

 

 
2 1 2 1 2 1

1 1 1 1 1a a a a aGx x x x x
2 1 2 1 2 1

a a a a aG xax aa a aa a aa a , (58) 
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where the terms are the same as in formula (71) from A.A. Ayzenberg et al. (2015)/Chapter 3 

of this thesis. In the shadow zone, the double-diffraction term (58) consists of the source 

spherical wave with negative amplitude 1aG x , the single edge waves 
1

1a x
1

x  and 
2

1a x
2

x  

and the double edge wave 
2 1

1a x
2 1

x . In the illuminated zone, the double-diffraction term (58) 

consists of the single edge wave 
2

1a x
2

x  and the double edge wave 
2 1

1a x
2 1

x . We notice that 

formula (58) is the nonzero component of formula (53).  

 

 The second term in (57) describes diffraction at the V2-shaped wedge and can be 

represented in the form  

 

 
4 3 4 3 4 3

1 1 1 1 1a a a a aGx x x x x
4 3 4 3 4 3

a a a a aG xax aa a aa a aa a , (59) 

 

where the terms are the same as in formula (71) from A.A. Ayzenberg et al. (2015)/Chapter 3 

of this thesis. In the shadow zone, the double-diffraction term (59) consists of the source 

spherical wave with negative amplitude 1aG x , the single edge waves 
3

1a x
3

x  and 
4

1a x
4

x  

and the double edge wave 
4 3

1a x
4 3

x . In the illuminated zone, the double-diffraction term (59) 

consists of the single edge wave 
4

1a x
4

x  and the double edge wave 
4 3

1a x
4 3

x . We notice that 

formula (59) is the nonzero component of formula (54).  

 

 The third term 
4 2

1a x
4 2

x  in formula (57) represents the double diffraction at the pair of 

faces 22  and 44 . This term is represented as  

 

 
4 2 4 2 4 2

1 1 1 1 1a a a a aGx x x x x
4 2 4 2 4 2

a a a a aG xax aa a aa a aa a , (60) 

 

where the terms are the same as in formula (71) from A.A. Ayzenberg et al. (2015)/Chapter 3 

of this thesis but for the faces distant from each other. In the shadow zone, the double-

diffraction term (60) consists of the source spherical wave with negative amplitude 1aG x , 

the single edge waves 
2

1a x
2

x  and 
4

1a x
4

x  and the double edge wave 
4 2

1a x
4 2

x . In the 

illuminated zone, the double-diffraction term (60) consists of the single edge wave 
4

1a x
4

x  
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and the double edge wave 
4 2

1a x
4 2

x . We notice that formula (60) is the nonzero component of 

formula (55).  

 

 To evaluate the terms in (60) and the coefficients DAC x  introduced in A.A. 

Ayzenberg et al. (2015)/Chapter 3 of this thesis, we have to rewrite formulae (81)-(84) from 

A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis in case of the distant edges of faces 22  

and 44 . The ray distances, used in the Taylor’s expansion, are expressed as follows: 

2 2
12S R Rl r r r xx , 2 2

1 12S R Rl r r r xx , 22
2 12S R Rl r r r xx  

and 22
12 12S R Rl r r r xx , in which Sr  is the distance ‘source-edge 22 ’, 12r  is the 

distance between edges 22  and 44 , Rr  is the distance ‘receiver line-edge 44 ’, and Rx  is a 

virtual deviation of the receiver from the coinciding shadow boundaries. (Figure 5 from A.A. 

Ayzenberg et al. (2015)/Chapter 3 of this thesis for 0Sx  and replacing edges 11  and 22  

by 22  and 44 , correspondingly).  

 

 Formulae (81) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis is rewritten 

as  

 

 1 1
12 12 12

1 1 1 1,
2 2

P P
R R

R S R R R

k kw x u x
r r r r r r r r

. (61) 

 

Considering the vicinity of the shadow boundary with 0Rx , we obtain: 1 0w  and 

1 0u . In the event of 12 0r  formulae (61) allow us to consider ratio 

12 121

1

S R

S R

r r r ru
w r r

 for small values of Rx  and a finite distance between the edges. For 

W-shaped model, we have the equal values: 12S Rr r r . Hence, we obtain ratio 1

1

3u
w

 and 
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1
1

1

arc tan
3

u
w

. Formula (69) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis 

gives us limit 
1
1

1
1 10

0

1 1lim ,
4 2 12w

u

H w u .  

 

 Formulae (83) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis is rewritten 

as  

 

 2 2
12

1 1 , 0
2

P
R

R S R

kw x u
r r r r

. (62) 

 

We obtain ratio 2

2

0u
w

 and 2
2

2

arc tan 0u
w

. Formula (69) from A.A. Ayzenberg et al. 

(2015)/Chapter 3 of this thesis gives the following: 
2
2

2
2 20

0

1 1lim ,
4 2 4w

u

H w u .  

 

 The special functions 1 1,H w u  and 2 2,H w u  have different values for the distant 

edges 22  and 44  in comparison with the close edges 11  and 22  for V-shaped boundary. It 

changes the amplitude of the double edge wave 
2 1

1a x
2 1

x  and the corresponding coefficient 

4 2

1DAC x
4 2

C x  for the distant pair of edges. Substituting the actual values of 1 1,H w u  and 

2 2,H w u  in formula (79) from A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis, we 

obtain an analog of formulae (85) and (86) from A.A. Ayzenberg et al. (2015)/Chapter 3 of 

this thesis as  

 

 
4 2

1 1 1 1 11
2 12 4 3shbDAC x

4 2 sC x . (63) 
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4.8 Verification of TWSM-seismograms by the edge wave theory. W-model  
 

Figure 8a illustrates the scalar component 0 ,a tx  of formula (56) at the receiver line. The 

TWSM seismogram demonstrates two hyperbolic moveouts in the shadow zone at 

4.0 kmx  and one hyperbolic moveout in the illuminated zone at 4.0 kmx . The 

traveltimes of the diffracted wavefields correspond to the eikonals of the edge waves from V1-

edge and V2-edge. Figure 8b represents the nonzero component ,a tG x  of vector , tGa x . 

Figure 8c illustrates the nonzero component 1 ,a tx  of vector 1 , ta x . The wave 

structures on Figures 8a and 8c are complex, they represent interference of several waves in 

accordance to formula (57). We will give their detailed explanation in the three paragraphs 

right below. We demonstrate the distribution of the computed DAC  for 0 ,a tx  over the 

receiver line on Figure 8d. This DAC  at the shadow boundary is equal to 0.533.  

 

 On Figure 9a, we represent the scalar component 
2 1

1 ,a tx
2 1

,,  of formula (58) at the 

receiver line. This component is the double diffraction at the closely located edges of faces 11  

and 22 . Figure 9b illustrates the distribution of the computed DAC  for 
2 1

1 ,a tx
2 1

,,  over the 

receiver line. The computed DAC  at the shadow boundary is 0.38. Since V1 is a wedge, it 

will cause the wavefield described in our paper A.A. Ayzenberg et al. (2015)/Chapter 3 of 

this thesis, case of source 1, receiver line 2, concerning wedge models.  

 

 Figure 10a represents the scalar component 
4 3

1 ,a tx
4 3

,,  of formula (59) at the receiver 

line. It is the double diffraction at the closely located edges of faces 33  and 44 . Figure 10b 

gives the distribution of the computed DAC  over the receiver line. The computed DAC  for 

4 3

1 ,a tx
4 3

,,  at the shadow boundary is 0.39. Since V2 is a wedge, it will cause the wavefield 

described in our paper A.A. Ayzenberg et al. (2015)/Chapter 3 of this thesis, case of source 2, 

receiver line 1, concerning wedge models.  

 

 Figure 11a demonstrates the scalar component 
4 2

1 ,a tx
4 2

,,  of formula (60) at the 

receiver line. It represents the double diffraction at the distantly located edges of faces S2 and 

S4. On Figure 11b we give the distribution of the computed DAC  over the receiver line. This 
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DAC  at the shadow boundary is equal to 0.302. Using formula (63), we obtain the analytical 

DAC  at the shadow boundary equal to 0.333.  

 

 The absolute deviation of the computed DAC  value from the analytical DAC  value at 

the shadow boundary is approximately equal to 0.03 which gives the relative deviation of 9 

percent approximately. The computed DAC  curve (Figure 11b) corresponds to the discrete 

values at the receivers in the shadow boundary vicinity: 3.955 0.378DAC , 

3.970 0.352DAC , 3.985 0.326DAC , 4.000 0.302DAC , 4.015 0.278DAC . 

The closest value 3.985 0.326DAC  to the analytical value 0.333 corresponds to the 

receiver 3.985 kmх , which is distant from the shadow boundary 4.0 kmx  in 15 m. From 

the edge wave theory by A.M. Aizenberg (1993), Jones (1973), Borovikov (1994) and 

Borovikov & Kinber (1994), it is known that the maximal amplitude gradients, tangent to the 

wavefront, are located in a narrow vicinity of the shadow boundary. The gradient of DAC  

can lead to significant phase errors. From the discrete values of the computed DAC , we can 

obtain that the gradient of the computed DAC  along axis x equals to 1.66 km-1. The gradient 

of the computed DAC  determines the phase error of the method. If the gradient of the 

computed DAC  is less than 0.4 km-1 then we have only an amplitude error. If the computed 

DAC  is more than 0.4 km-1 then we have also a phase error. This 9 percent error is composed 

from an amplitude error of 2 to 4 percent and a phase error of 5 to 7 percent.  

 

 The tests proved that the absolute time error is not more than 0.001 sec. The 

comparison of the computed and the analytical DAC  values demonstrates the relative 

amplitude errors between 2 and 4 percent. The comparison of the computed and the analytical 

DAC  gradients prove that the relative phase errors are not more than 5 to 7 percent.  
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4.9 Conclusions  
 

 In this paper, we derive a double-diffraction approximation of the feasible source 

wavefield in an acoustic parabolic and hyperbolic U-model and W-model. We describe the 

wave structure of the feasible source wavefield in the shadow zone caused by the boundaries 

by TPOT&TWSM in terms of the nonsparse propagation and absorption matrices. The results 

of the computation illustrate the accuracy and efficiency of TWSM. Correctness of the 

algorithm is justified by comparison of the traveltimes and amplitudes of the feasible source 

wavefield fragments with the edge wave theory. The results indicate that the matrix 

technology of TPOT&TWSM is successfully applied to the evaluation of the feasible source 

wavefield in the geometrical shadow zones of the considered models.  
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4.12 List of Figures  
 

Figure 1. U-shaped parabolic model. Sketch and acquisition design.  

 

Figure 2. U-shaped hyperbolic model. Sketch and acquisition design.  

 

Figure 3. U-shaped parabolic and hyperbolic model. (a) Medium and interface notations. (b) 

Visibility of the points.  

 

Figure 4. W-shaped model. Sketch and acquisition design.  

 

Figure 5. W-shaped model. (a) Medium and interface notations. (b) Visibility of the points.  

 

Figure 6. U-shaped parabolic model. (a) Wavefield 0 ,a tx . (b) Wavefield ,a tG x . (c) 

Wavefield 
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,, . (d) Wavefield 
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1 ,a tx
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,, . (e) Curve of DAC x  for 0 ,a tx . (f) 

Curve of DAC x  for 
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Figure 7. U-shaped hyperbolic model. (a) Wavefield 0 ,a tx . (b) Wavefield ,a tG x . (c) 

Wavefield 
2 1

1 ,a tx
2 1

,, . (d) Wavefield 
2 2

1 ,a tx
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,, . (e) Curve of DAC x  for 0 ,a tx . (f) 

Curve of DAC x  for 
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Figure 8. W-shaped model. (a) Wavefield 0 ,a tx . (b) Wavefield ,a tG x . (c) Wavefield 

1 ,a tx . (d) Curve of DAC x  for 0 ,a tx .  

 

Figure 9. W-shaped model. (a) Wavefield 
2 1

1 ,a tx
2 1

,, . (b) Curve of DAC x .  

 

Figure 10. W-shaped model. (a) Wavefield 
4 3

1 ,a tx
4 3

,, . (b) Curve of DAC x .  

 

Figure 11. W-shaped model. (a) Wavefield 
4 2

1 ,a tx
4 2

,, . (b) Curve of DAC x .  
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Figure 1. U-shaped parabolic model. Sketch and acquisition design.  
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Figure 2. U-shaped hyperbolic model. Sketch and acquisition design.  
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Figure 3. U-shaped parabolic and hyperbolic model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3a. Medium and interface notations  

 

 

 

 

 

 

 

 

 

Figure 3b. Visibility of the points  
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Figure 4. Sketch and acquisition design.  
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Figure 5. W-shaped model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5a. Medium and interface notations  

 

 

 

 

 

 

 

Figure 5b. Visibility of the points  
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Figure 6. U-shaped parabolic model.  

 

  

Figure 6a. Wavefield 0 ,a tx .  Figure 6b. Wavefield ,a tG x .  

  

Figure 6c. Wavefield 1 ,a tx .  Figure 6d. Wavefield 
2 2

1 ,a tx
2 2

,, .  

  

Figure 6e. Curve of DAC x  for 0 ,a tx .  Figure 6f. Curve of DAC x  for 
2 2

1 ,a tx
2 2

,, .  
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Figure 7. U-shaped hyperbolic model.  

 

  

Figure 7a. Wavefield 0 ,a tx .  Figure 7b. Wavefield ,a tG x .  

  

Figure 7c. Wavefield 1 ,a tx .  Figure 7d. Wavefield 
2 2

1 ,a tx
2 2

,, .  

  

Figure 7e. Curve of DAC x  for 0 ,a tx .  Figure 7f. Curve of DAC x  for 
2 2

1 ,a tx
2 2

,, .  
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Figure 8. W-shaped model.  

 

  

Figure 8a. Wavefield 0 ,a tx .  Figure 8b. Wavefield ,a tG x .  

  

Figure 8c. Wavefield 1 ,a tx .  Figure 8d. Curve of DAC x  for 0 ,a tx

. 
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Figure 9. W-shaped model.  

 

  

Figure 9a. Wavefield 
2 1

1 ,a tx
2 1

,, .  Figure 9b. Curve of DAC x .  
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Figure 10. W-shaped model.  

 

  

Figure 10a. Wavefield 
4 3

1 ,a tx
4 3

,, .  Figure 10b. Curve of DAC x .  
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Figure 11. W-shaped model.  

 

  

Figure 11a. Wavefield 
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1 ,a tx
4 2

,, .  Figure 11b. Curve of DAC x .  
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5.1 Summary  
 

We consider 3D 2-block models with V- and U-shaped interfaces similar to a geological salt 

overhang. We consider a contrast velocities case in order to simulate shadow below the V- 

and U-shaped overhang similar to shadow below a salt body. A source is placed above the 

overhang and a receiver line is located below the overhang so that a half-part is in the 

illuminated zone while the other half-part is in the shadow zone. We perform a detailed 

wavefield description at the receiver line of both models in terms of primary (analog of near-

front) wavefield. The primary wavefield is obtained by the Transmission-Propagation 

Operator Theory (TPOT) and represents the superposition of the source wavefield and the 

double-transmitted wavefield. Both the source and double-transmitted wavefields contain so-

called ‘feasible fundamental solutions’ and ‘feasible propagation operators’ which have a 

shadow correction. The primary solution is visualized on a GPU cluster by the Tip Wave 

Superposition Method (TWSM) in the mid-frequency range. We use 2-term approximations 

for the feasible fundamental solution and the feasible propagation operator. The seismograms 

represent the primary solution and its terms separately and in combinations in order to 

demonstrate that the method can analyze separate events. For both models, the final 

seismogram performs a complex wavefield with a combination of several waves.  
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5.2 Introduction  
 

Shadow originally is an optic term. Shadow in optics is caused by an obstacle. The light rays 

are diffracted by the obstacle and penetrate into the shadow zone behind the obstacle. 

Diffraction can occur many times if the obstacle has complex shape. Such diffraction is called 

cascade diffraction. In acoustic, elastic, porous, fractured, fluid-saturated, microstructured and 

other media, the presence of shadow (sub-salt, sub-basalt zones etc.) can make a subsurface 

image and subsurface wavefield modeling and imaging very complicated. This study has been 

for many years devoted to improvement of wavefield description in complex 3D media with 

shadow zones.  

 

 The wavefield description in shadow and illuminated zones is done by the 

Transmission-Propagation Operator Theory (TPOT) (A.M. Aizenberg et al. (2011)) which 

analytically describes wavefield at any 3D point in 3D block medium consisting of several 

inhomogeneous domains with acoustic, elastic, porous etc. parameters. This theory proposes a 

solution for the block medium in the form of the superposition of the source wavefield and the 

double-transmitted wavefield. The source and double-transmitted wavefields contain so-called 

‘feasible fundamental solutions’ and ‘feasible propagation operators’ of the given medium as 

described in A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis.  

 

 After the medium solution has been obtained, its visualization is performed using the 

Tip-Wave Superposition Method (TWSM) (Klem-Musatov et al. (2008) and Zyatkov et al. 

(2015)) which computes the medium solution in the mid-frequency range on a GPU cluster. 

Due to memory expenses, we use the 2 term–approximation of the feasible fundamental 

solution and the feasible propagation operator.  

 

 The TPOT theoretical approach and TWSM method were tested by a comparison with 

laboratory data (Tantsereva et al. (2014)), theoretical approaches as given in M.A. Ayzenberg 

et al. (2007), A.A. Ayzenberg et al. (2015a)/Chapter 3 of this thesis, A.A. Ayzenberg et al. 

(2015b)/Chapter 4 of this thesis and A.A. Ayzenberg et al. (2013) and the FD modeling 

method (Rakshaeva et al. (2015)).  
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 The first test model (V-model) is a medium of 2 homogeneous domains. The wedge-

like domain simulates a salt overhang of V-shape. Another one simulates sediments around 

the salt body. The second test model (U-model) is a medium of 2 homogeneous domains. The 

smooth wedge-like domain simulates a salt overhang of U-shape. Another one simulates 

sediments around the salt body. For both tests, the domains have contrast velocities which 

simulate a shadow effect below V- and U-overhangs.  

 

 This paper consists of an Introduction, 3 Sections and Conclusions. The Introduction 

gives a brief description of the proposed approach and tests. Section 5.3 formulates the 

statement of the forward problem for V- or U-models. Section 5.4 derives the solution of the 

problem in the form of primary wavefield, which is the superposition of the source wavefield 

(A.A. Ayzenberg et al. (2015a)/Chapter 3 of this thesis and A.A. Ayzenberg et al. 

(2015b)/Chapter 4 of this thesis) and the double-transmitted wavefield, both with the feasible 

fundamental solutions and the feasible propagations operators as basis. Section 5.5 provides 

the seismograms as a visualization of the proposed solution and its components. Conclusions 

summarize the obtained results.  
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5.3 Forward V- and U-problem for 2-block medium  
 

We consider two 2-block models: with V- and U-interface. For both models, the material 

parameters of both medium domains and the geometrical parameters of the interface are 

chosen to imitate a salt overhang surrounded by sediments. A strong velocity contrast imitates 

shadow below the overhang. On Figure 1, we demonstrate V-model with two homogeneous 

acoustic domains, 11  and 22 , separated by a V-shaped interface. On Figure 2, we consider 

U-model with two homogeneous acoustic domains, 11  and 22 , separated by a U -shaped 

interface. Parameters of domain 11  are: P-wave velocity ,1 2.0 km / secPv  and density 

3
1 2.0 g / cm . Parameters of domain 22  are: P-wave velocity ,2 4.0 km / secPv  and 

density 3
2 3.0 g / cm .  

 

 We represent temporal spectra of the wavefield as particle velocity-pressure vectors (

4 1-columns)  

 

 

1,

2,

3,

,

m

m
m

m

m

v
v
v
p

u x , (1) 

 

where 1,mv , 2,mv , 3,mv  are components of the particle velocities, mp  is pressure in each domain. 

Function ,mu x  is defined as follows  

 

 1 1 1

2 2 2

, , for ,
, , for .

u u x x
u u x x

1 ,1

2 .2

1  (2) 

 

Vectors (2) are connected with the wavefields by the Fourier transform  

 

 
1, ,
2

i t
m mt e du x u x , (3) 
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where  is angular frequency. The temporal spectrum vectors ,mu x  in (2) satisfy the 

wave motion equations from A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this 

thesis and A.A. Ayzenberg et al. (2015a)/Chapter 3 of this thesis  

 

 
 , , ,

m m m m mxD u x M u x f x , (4) 
 

where the differential matrix operator and the matrix of material parameters are  

 

 

1

2

23
,

1 2 3

0 0 0
0 0 0

0 0 00 0 0
0 0 0,

10 0 0 0 0 0

0

m

m

m

mm

m P m

x

x
i

x
v

x x x

xD M . (5) 

 

In each domain, vector (2) satisfies the radiation conditions 
m

RC  and the edge conditions 

m
EC  (system (2) from A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis). 

The point source 1 1 1
1

, 0 0 0
T

i
f x x y  is located in domain 11  at 

point 1 4.0km, 0.0km,1.0kmy  and radiates a spherical P-wave. Function  is the 

spectrum of the wavelet 
22 cos 2t e , where / 2t T . The wave period 

0.032 secT  corresponds to the dominant frequency of 38.25 Hz. In domain 22 , there is no 

source: 2 , 0 0 0 0 Tf x .  

 

 In TPOT, all interfaces are considered as two-sided surfaces with two normals and 

consisting of two faces. We denote these faces as j
m
j
m  and the corresponding normals as 

,j j j
m m mn s s j

m , where the lower index denotes the domain number and the upper index 

denotes the face number. On Figure 1, the upper side 1
1
1
1  and lower side 1

2
1
2  of the upper face 
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of V-shaped interface are defined by formula 0.41 4z x . The upper side 2
2
2
2  and lower 

side 2
1
2
1  of the lower face of the V-shaped interface are defined by formula 0.41 4z x . 

At the interfaces, we consider boundary conditions (Figure 1c from A.A. Ayzenberg et al. 

(2015a)/Chapter 3 of this thesis)  

 

 
1 1 1 1
1 1 2 2

2 2 2 2
1 1 2 2

, , ,
:

, , ,
BC

C R s u s J C R s u s

C R s u s J C R s u s
 (6) 

 

where  

 

 
0 0 1 0
0 0 0 1

C , (7) 

 

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

0

0

0

0 0 0 1

j j j
m m m

j j j
m m mj

m
j j j
m m m

i s i i s i i s i

i s i i s i i s i
R s

i s i i s i i s i
, (8) 

 

,j
mu s  is the limit value of vector ,mu x  at face j

m
j
m , 

1 0
0 1

J , 1 2 3, ,i i i  is the 

global Cartesian basis independent of point j
ms  and 1 2, ,j j j

m m mi s i s n s  is the local basis 

dependent of point j
ms .  

 

 Equation (4), the radiation conditions 
m

RC  and the edge conditions 
m

EC  from 

A.A. Ayzenberg et al. (2015a)/Chapter 3 of this thesis and the boundary condition BC  (6) 

form the correct statement of the forward problem for V-model  
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1 1 2 2
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m

E
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 (9) 

 

System (9) has the feasible fundamental solution , ,m mF x s  as the kernel of the feasible 

surface integral operators (A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis 

and A.A. Ayzenberg et al. (2015a)/Chapter 3 of this thesis).  

 

 The statement of the forward problem for U-model is formulated similar to V-model. 

U-interface is smooth and does not have any edges. Hence, we consider the straight line 

4.0km, km,1.0kmy  of the interface as a formal ‘edge’ since this line leads to a shadow 

boundary similar to a usual edge case. We therefore formally divide U-interface into faces S j
m

, like V- interface, in order to obtain a similar statement of the forward problem. On Figure 2, 

the upper side 1
1
1
1  and lower side 1

2
1
2  of the upper face of U-shaped interface are defined by 

formula 4z x . The upper side 2
2
2
2  and lower side 2

1
2
1  of the lower face of the U-shaped 

interface are defined by formula 4z x . The radius of curvature of this boundary is 

0,5 km at the formal ‘edge’. After introducing this formal ‘edge’, the statement of the 

forward problem for U-model is the same as for V-model.  

 

 For both models, the receivers are spread along a straight line 1: from 3,25 kmx  to 

4,75 kmx  with the step 0,015 kmx  at 0.0 kmy  and 1,0 kmz . The auxiliary 

receiver line 2 is placed from 2,0 kmx  to 3,5 kmx  with the step 0,015 kmx  at 

0,0 kmy  and 0,0 kmz .  
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5.4 Analytical solution by TPOT and its visualization by TWSM  
 

The analytical solution of the forward problem is provided by the Transmission-Propagation 

Operator Theory (TPOT) from A.M. Aizenberg et al. (2011). This theory uses the propagation 

integral operator P  for domain with and without shadow (formulae (41)-(42) from A.A. 

Ayzenberg et al. (2015a)/Chapter 3 of this thesis) and the transmission (reflection / refraction) 

operator T  (Appendix A from M.A. Ayzenberg et al. (2007)). The propagation operator P  is 

based on the feasible Kirchhoff operator K  (formula (43) from A.M. Aizenberg & A.A. 

Ayzenberg (2015)/Chapter 2 of this thesis) and the plane-wave spectral operators H . In this 

Section in some of the formulae, we will omit indices and angular frequency  if they are not 

important for the analysis.  

 

 Applying formula (72) from Wapenaar (2007) to equation (4) and noticing that the 

scattered field is 0j j
m mu s u s , where the upper index denotes the face number ( 1, 2j ) 

and the lower index denotes the domain number ( 1, 2m ), we obtain the surface integral 

equation for vector s j
mu   

 

 01 1 2 2, ,j j j j
m m m m m m m mu s K s s u s K s s u s u s . (10) 

 

In (10), the operator  

 

 , , ( )
j
m

j j j j j j
m m m m m mdSK s s F s s N s sj j j j( )(m m m m, ( )j s, ( ), (( )((, ( ), (, ( dS

j
m

 (11) 

 

is Kirchhoff integral operator with the feasible fundamental kernel ,j j
m mF s s  as described in 

A.M. Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis, (0)
1
ju s  is the feasible 

source wavefield from A.A. Ayzenberg et al. (2015a)/Chapter 3 of this thesis and (0)
2
ju s 0  

since we have a source only in domain 11 . Using operator 1R H  by formulae (41) and (42) 

from A.A. Ayzenberg et al. (2015a)/Chapter 3 of this thesis, we obtain vector j
mu s  in the 

form  
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1

,j j j j j
m m m m mu s R s H s s a sj j

m ms a sj
mm , (12) 

 

where ,j j
m mH s s j

ms  is the convolution-type operator of the composition of the plane-wave 

analogs at only one fixed face j
m
j
m  (formulae (33) and (43) from A.A. Ayzenberg et al. 

(2015a)/Chapter 3 of this thesis). Substituting formula (12) in (10) and multiplying by j
mR s  

from the left, we obtain  
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Multiplying (13) by C  from the left, we have  
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Matrix ,j j
m mC H s s j

ms  is quadratic and has its inverse matrix, therefore we can multiply (14) by 

1
,j j

m mC H s s
1j

m
j , after which we obtain the equation  

 

 01 1 2 2, ,j j j j
m m m m m m m ma s P s s a s P s s a s a s01 1 2 2j j01 1 2 2

m m m m m m,s a s a s, 01 1 2 2
m mm,,j1 1 2 21 , (15) 

 

where  

 

 
1 1, , , , , 1, 2j j j j j j j j j j

m m m m m m m m m m jP s s CH s s CR s K s s R s H s s
1

, 1, 2j j j j j j j j j1
m m m m m m, ,, , j

1 1j j j j j j1 1j jj jj j
m m mm m,,, , ,j j j j j j11, ,,, ,j jj j,,,,,, . (16) 

 



 

181 

The feasible source wavefield 0 1
1a s  in domain 11  on face 1

1
1
1  and the feasible source 

wavefield 0 2
1a s  in domain 11  on face 2

1
2
1  are  

 

 
0 01 2

1 10 01 2
1 10 01 2

1 1

, s
a a

a a

s s
a s a

s s
, (17) 

 

where 0 j
ma s  are the wave components of vector j

ma s  propagating from face j
m
j
m  in 

domain mm  and from domain mm  to face j
m
j
m , respectively. Since the source is located in 

domain 11 , the feasible source wavefield 0 1
2a s  in domain 22  at face 1

2
1
2  and the feasible 

source wavefield 0 2
2a s  in domain 22  at face 2

1
2
1  are zero  

 

 0 01 2
2 2a s a s 0 . (18) 

 

Combining all the components of 8 1-vector a  in one vector, we have  

 

 
1

1

2
2

, ,
j

m mj
m m j

m m

a

a

a s sa s
a a a s

a s a s s
. (19) 

 

Therefore equation (15) will get the form  

 

 0a P a a , (20) 

 

where P  is the 8 8-matrix composite integral operator  
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1 1

2 2

1 1 1 2

2 1 2 2

,
,

,

, ,
, ,

, ,

P , P ,
, .

P , P ,

m m m m

m m

m m m m

j j j j
m m m mj j

m m j j j j
m m m m

P s s O
P

O P s s

P s s P s s
P s s

P s s P s s

s s s s
P s s

s s s s

1111 ,
2

1 1 2
m m m,1 11 1 ,,,,

ms ,
1 2 21 2 2
m m m, 21 21 2 ,,1 21 2 ,

j jj j jj Pm m m,P ,PPPPPP ,,P ,P
j
m

PPP

P
s .

j jj j jj Pm m m, jPP ,P ,PP ,PPPPP

 (21) 

 

 Substituting the space-spectral decomposition of the solution ,j
mu s  (12) in the 

boundary conditions (6), we obtain the boundary conditions rewritten in the form  

 

 
1 1 1 1 1 1
1 1 1 2 2 2

2 2 2 2 2 2
1 1 1 2 2 2

, , , a

, , . b

C H s s a s J C H s s a s

C H s s a s J C H s s a s

1 1 1 1 1
1 1 2 2 2 , a1
1 1 2 2 2
1 1 1 11 1 1 11 1 1 11 1 1 1
1 1 2 21 1 2 2

2 2 2 2 2
1 1 2 2 2 . b2 2 2 2 2
1 1 2 2 2
2 2 2 22 2 2
1 1 2 21 1 2

 (22) 

 

Condition (a) in (22) is a system of 2 equations with respect to the four unknown functions: 
1
1a s , 1

1a s , 1
2a s  and 1

2a s . We rewrite this condition with respect to the two 

unknown functions 1 1
1 1anda as s  as follows  

 

 1 1 1 1 1 1 1
1 1 1 1 1 2 2, ,a s T s s a s T s s a s1 1 1 1 1

1 1 1 2 21 1 1T s s a s1 1 1 11 1
1 21 21 1 11 1

1 11
1 111 11 . (23) 

 

Condition (b) in (22) is a system of 2 equation and four unknown functions: 2
1a s , 2

1a s , 

2
2a s  and 2

2a s . We rewrite this condition with respect to the two unknown functions 

2
1a s  and 2

1a s  in the form  

 

 2 2 2 2 2 2 2
1 1 1 1 1 2 2, ,a s T s s a s T s s a s2 2 2 2 2

1 1 1 2 21 1 1T s s a s2 2 2 22
1 221 1 11 1

2 22
1 111 11 . (24) 

 

By analogy, we can obtain two more equations  
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 1 1 1 1 1 2 2
2 2 2 2 2 2 2, ,a s T s s a s T s s a s1 1 1 2 2

2 2 2 2 22 2 2T s s a s1 1 1 22
2 222 2 22 2

1 11
2 222 22  (25) 

 

and  

 

 2 2 2 2 2 2 2
2 2 1 1 2 2 2, ,a s T s s a s T s s a s2 2 2 2 2

1 1 2 2 21 1 2T s s a s2 2 2 22 2
2 22 21 1 21 1

2 22
1 111 11 . (26) 

 

Combining equations (23)-(26), we obtain the convolution-type transmission equation  

 

 a T a . (27) 

 

In (27), we use the transmission operator in 8 8 -form  

 

 

1 1 1 2

2 1 2 2

1 1

2 2

, ,
,

, ,

,
, ,

,

0 1
, , ,

1 0

m m

m m

m m

j j j j
m m m mT

T s s T s s
T

T s s T s s

T s s O
T s s

O T s s

T s s s s

21 11 1 21 1 21 11 11 11 11 ,
1 2 21 21 21 21 21

m
11
m

ms ,
22
m
2

,j j j
m m m,

0 1
1 01 0

s s s,,j jj j ,,T ,T

 (28) 

 

where  

 

 1 ˆ, , k k, k,j j j j
m m m mm mT F T Fs s s s1 ˆj j jj1 ˆk k k1

m m mm m, , ,k kk k1 sk,,, k k,, ,, skk, k k,, k kk kk k1 k,, k k,, k, k , (29) 

 

,j j
m mT s s j

ms  is the double convolution-type operator over a smooth face, ˆ k,mmT  is the 

plane-wave transmission (reflection/refraction) coefficients, k, j
mF s j
ms  is the space-spectral 

double Fourier operator over a plane or curved face, and 1 , kj
mF s  is the inverse Fourier 

operator.  

 

 Substituting the transmission equation (27) in the propagation equation (15), we obtain  
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 0 .a P T a a  (30) 

 

System (30) is a wave terminology equivalent of the problem statement (9). Iterating once 

equation (30), we obtain  

 

 2 0 1 1 0, ,a P T a a a a P T a  (31) 

 

where 1a  is the feasible single transmitted (reflected / refracted) wavefield. Iterating twice 

equation (30), we obtain  

 

 3 0 1 2 2 1, ,a P T a a a a a P T a  (32) 

 

where 2a  is the feasible double transmitted (reflected / refracted) wavefield. After N 

iterations, equation (30) will have the form  

 

 1 1

0
, 1, ,

n N
N n n n

n
n Na P T a a a P T a  (33) 

 

where na  is the feasible n-times transmitted (reflected / refracted) wavefield. The sum 

0
lim

n N
n

N n
a a  is the solution of (30), see A.M. Aizenberg et al. (2011) and A.M. 

Aizenberg et al. (2014).  

 

 After substituting operators (21) and (28) into (31), we obtain  

 

 

1 0
11 1 1 1 1 1 2 1 1

1
2 2 2 1 2 22

0
1 1 1 1 1

0
2 2 2 1 1

, , ,
, , , 0

, ,
.

, ,

a s P s s Ο T s s T s s a sa
Ο P s s T s s T s sa s

P s s T s s a s

P s s T s s a s

11
0

11111111

2 22 22 22 2

1111 21 1 11 1 21 1 21 11 11 1121 11 11 11

1 2 21 2 01 21

11

2 001 21 21 21

11

1 1 1 11 1111111
00

1111 11 111 11 111 111 .
2 2 1 12 22 2 12 2 12 22

000
2 122

0

 (34) 
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 After substituting operators (21) and (28) into (32), we obtain  

 

 

2 1
1 12 1 1 1 1 1 2

2 1
2 2 2 1 2 22 2

1 1
1 1 1 1 1 1 1 1 2 2

1 1
2 2 2 1 1 2 2 2 2 2

, , ,
, , ,

, , , ,
.

, , + , ,

a s a sP s s Ο T s s T s s
a

Ο P s s T s s T s sa s a s

P s s T s s a s P s s T s s a s

P s s T s s a s P s s T s s a s

1
1111

2 22 22 22 2

1 1 2

1 2 221 2 21 21 2 21 21 21
111

21 21 21 22

1 11 11 11 11 11 1
1 1

22
1 1

221 1 11 11 11 11 1 1 1 21 1 1 21 1 11 11 111 11 11 11 11 1

2 22 2

1 11 1 1 1 1 1 1 2 21 1 1 1 11 1 221 1 1 1 11 11 1 1 1 2221 1 11 11 11 11 .
1 1 2 2 2 2 21 1 2 2 2 221 1 2 2 22 21 1 2 2

1 11 1
2

1 11
2++1 1 2 2 222 2

1++1

 (35) 

 

The first component 2
1a s  of (35) is the wavefield coming to the receivers, while the 

second component 2
2a s  is the wavefield propagating away from the receivers which is not 

of our interest. We can represent the first component as  

 

 2 1 1
1 1 1 1 1 1 1 1 1 2 2, , , ,a s P s s T s s a s P s s T s s a s1 11 11 11 1 1 1 1 1 2 21 1 1 1 1 221 1 1 1 11 11 1 1 11 11

1 1
2P s s T s s a s1 1

1 1 1 21 1 1 21 1 11
1

1 111 11 . (36) 

 

The term 1
1 1 1 1 1, ,P s s T s s a ss T s s1 11 11 11 1 1s1

1s a s1
11  is zero since we do not consider the reflection 

1 1,T s s Os s1 1 O1s O1 , therefore  

 

 2 1
1 1 1 1 2 2, ,a s P s s T s s a ss T s s1 11 11 11 2 2s22

1s a s1
22 . (37) 

 

 In the paper, we are evaluating the primary wavefield  

 

 0 2primary
1 1 1a x a x a x , (38) 

 

which is the superposition of the double-transmitted wavefield 2
1a s  (36) and the source 

wavefield at the receiver line 1 0
1a s  (formulae (70)-(71) in A.A. Ayzenberg et al. 

(2015a)/Chapter 3 of this thesis). The wavefield 2
1a s  is performed in five stages: the 

propagation in domain 11  from the source to interface 11 ; the transmission from interface 11  

of domain 11  to interface 22  of domain 22 ; the propagation in domain 22  within its 
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interface 22  from each to each point; the transmission from interface 22  of domain 22  back 

to interface 11  of domain 11 ; and then the propagation in domain 11  from its interface 11  to 

the receiver line 1.  

 

 At stage 1, we compute the 2-terms-approximation of the source wavefield at interface 

11  (A.M. Aizenberg & A.A. Ayzenberg et al. (2015)/Chapter 2 of this thesis)  

 

 0 0 0
1 1 1 1 1 1 1, ,hG G G Ga s a s P s s P s s a ss P s sh GG 1111 111 h 1G111

0
1s a s0

G11 , (39) 

 

where 1 1,GP s s1s  is the propagation integral operator in domain 11  (formula (11) from A.M. 

Aizenberg & A.A. Ayzenberg (2015)/Chapter 2 of this thesis), 1 1,h GP s ss s1 11s  is the absorption 

operator in domain 11  by formula (30) from A.M. Aizenberg & A.A. Ayzenberg 

(2015)/Chapter 2 of this thesis and 0
1Ga s1s  is the free-space source wavefield as in A.A. 

Ayzenberg et al. (2015a)/Chapter 3 of this thesis.  

 

 At stage 2, we obtain the transmitted wavefield from interface 11  to interface 22   

 

 1 0
2 2 1 1,a s T s s a s0

1 1s a s0
11 , (40) 

 

where 2 1,T s s1s  is the transmission operator through the upper interface (M.A. Ayzenberg et 

al. (2007)).  

 

 At stage 3, we perform the propagation of the wavefield at points 2x  of medium 22  and 

within points 2s  of interface 22   

 

 
1 1

2 2 2 2

1 1
2 2 2 2

, ,

, ,
G

G

a x P x s a s

a s P s s a s

1
2 2 ,2 2s a s1
2222

1
2 2 ,2 2s a s1
2222

 (41) 
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where 2 2,GP x s2s  and 2 2,GP s s2s  are the propagation operator at points of domain 22  and 

within points of interface 22 .  

 

 At stage 4, we perform the transmission wavefield from interface 22  to interface 11  in 

the form  

 

 2 1
1 1 2 2,a s T s s a s1

2 2s a s1
22 , (42) 

 

where 1 2,T s s2s  is the transmission operator from interface 22  to interface 11  as described in 

M.A. Ayzenberg et al. (2007).  

 

 At stage 5, we obtain the double-transmitted wavefield at the receiver line 1  

 

 2 2
1 1 1 1 1 1 1 1 1 1, , , , ,hG G G Ga x P x s P x s P s s P s s a s11111111 11 ,1111 s1

2a 2
11  (43) 

 

where 1 1,GP x s  is the propagation operator from interface 11  to the receiver line 1 in 

domain 11  (formula (41) from A.A. Ayzenberg et al. (2015a)/Chapter 3 of this thesis) and 

1 1,h GP s s1s  is the absorption operator in domain 11  by formula (42) from A.A. Ayzenberg et 

al. (2015a)/Chapter 3 of this thesis. We rewrite formula (43) in a short form without 

arguments, for simplicity  

 

 2 0 0
h hG G G G G G G G Ga P P P P T P T a P P a . (44) 

 

This formula has corrections accounting for shadow 0
hG G GP P a  in the point-source wavefield 

and hG G GP P P  in the propagation operator to the receiver line 1. We therefore can analyse 

how strong the impact of the correction in the formula dividing the formula into four parts: 

the noncorrected part (mark a); the correction in the source wavefield (mark b); the correction 

in the propagation to the receiver line 1 (mark c); and the correction to the source wavefield 

and the receiver line 1 (mark d) as follows  
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2 0

0

0

0 .

a

b

h

c

h

d

h h

G G G

G G G G G

G G G G G

G G G G G G G

a P T P T a

P T P T P P a

P P P T P T a

P P P T P T P P a

 (45) 

 

 The evaluation (visualization) of the primary wavefield (38) can be, therefore, done by 

taking the superposition of 2a  by formula (45) and 0a  (formulae (70)-(71) in A.A. 

Ayzenberg et al. (2015a)/Chapter 3 of this thesis). In this paper, we perform the modeling of 
2a  by formula (45) using (17)-(43) by the Tip-Wave Superposition Method (TWSM) from 

A.M. Aizenberg et al. (2011); after that we add 0a  (formulae (29)-(30) in A.A. Ayzenberg et 

al. (2015a)/Chapter 3 of this thesis) to the result. The primary wavefield (38) has been 

computed on a GPU cluster in order to obtain a seismogram (Zyatkov et al. (2015)).  
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5.5 Wavefield below overhang  
 
V-overhang  

 

Figure 3 represents the single-transmitted wavefield at the receiver line 2 which is the 

superposition of the transmitted wave from domain 11  to domain 22  by formulae (40)-(41) 

and the edge wave diffracted by the edge by formula (41). The edge wave has a linear 

traveltime and a weak amplitude in comparison to the single-transmitted wave. Figures 4a 

performs a-term of the double-transmitted wavefield in domain 11  computed at the receiver 

line 1 by formula (45). Figure 4b illustrates the sum of b,c,d-terms of the double-transmitted 

wavefield in domain 11  computed at the receiver line 1 by formula (45). This seismogram is 

zero, therefore the shadow correction is zero for V-model. Figure 4c represents the double-

transmitted wavefield (the sum of a,b,c,d-terms) in domain 11  computed at the receiver line 1 

by formula (45). The shadow boundary of the double-transmitted wavefield crosses the 

receiver line 1 at 4.466 kmx  approximately. At 4.466 kmx , we can see the diffracted 

wave only. At 4.466 kmx , we can see the double-transmitted wave in superposition with 

the diffracted wavefield. The primary wavefield at the receiver line 1 (38) is demonstrated on 

Figure 5.  

 

U-overhang  

 

 Figure 6 represents the single-transmitted wavefield at the receiver line 2 which is the 

superposition of the transmitted wave from domain 11  to domain 22  by formula (40)-(41) 

and the edge wave diffracted by the edge by formula (41). The diffraction occurs due to the 

amplitude discontinuity at the tangency line (4.0 km,0.0 km, y km)  of the parabola. It has a 

weak amplitude in comparison to the single-transmitted wavefield. Figures 7a performs a-

term of the double-transmitted wavefield in domain 11  computed at the receiver line 1 by 

formula (45). Figure 7b illustrates the sum of b,c,d-terms of the double-transmitted wavefield 

in domain 11  computed at the receiver line 1 by formula (45). This seismogram is almost 

zero for U-model but a bit larger than for V-model. We suppose that for more complex 
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interfaces, this effect will be more visible. In this paper, we do not consider more complex 

interfaces and we leave this for future investigations. Figure 7c represents the double-

transmitted wavefield (the sum of a,b,c,d-terms) in domain 11  computed at the receiver line 1 

by formula (45). The shadow zone for the receiver line 1 is defined by 4.8 kmx . Figure 8 

demonstrates the source wavefield. The primary wavefield at the receive line 1 (38) is 

calculated by analogy to the V-model test and demonstrated on Figure 9. The primary 

wavefield is the superposition of the direct, double-transmitted and diffracted wavefields 

which compose two separate events. The retarded wavefield with later time arrivals is the 

source wavefield with its diffraction component. The advanced wave with earlier time arrivals 

represents the double-transmitted wavefield with its diffraction component.  
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5.6 Conclusions  

 
We performed a detailed wavefield description in the shadow and lit zone of V- and U-

overhang block models. Shadow is caused by velocity contrast: V- and U-overhangs have 

strong velocity similar to salt body, while surrounding domain has weak velocity close to 

sediments. The solution is obtained by TPOT theory and represents the primary wavefield 

which is the superposition of the source wavefield and the double-transmitted wavefield. The 

source and double-transmitted wavefield are based on ‘feasible fundamental solution’ and 

‘feasible propagation operator’ of the domain of the given medium. The primary solution is 

visualized by TWSM visualization approach with 2-term approximation for both feasible 

fundamental solution and for the feasible propagation operator. The seismograms represent 

the primary solution and its terms separately and in combinations in order to demonstrate the 

impact of the shadow correction. For V- and U-overhang, the primary wavefield seismogram 

demonstrates that the wavefield has a complex shape with several waves. The separate wave 

description, demonstrated on the seismograms, is one of the advantages of the TPOT theory 

and the TWSM visualization.  
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5.9 List of Figures  
 

Figure 1. Sketch of V-model.  

 

Figure 2. Sketch of U-model.  

 

Figure 3. V-model, line 2: single-transmission 1a .  

 

Figure 4 (a) V-model, line 1: a-term of double-transmission 2a . (b) V-model, line 1: sum of 

b,c,d-terms of double-transmission 2a . (c) V-model, line 1: double-transmission 2a .  

 

Figure 5. V-model, line 1: primary wavefield 0 2a a .  

 

Figure 6. U-model, line 2: single-transmission 1a .  

 

Figure 7 (a) U-model, line 1: a-term of double-transmission 2a . (b) U-model, line 1: sum of 

b,c,d-terms of double-transmission 2a . (c) U-model, line 1: double-transmission 2a .  

 

Figure 8. U-model, line 1: source wavefield 0a .  

 

Figure 9. U-model, line 1: primary wavefield 0 2a a .  
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Figure 1. Sketch of V-model.  
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Figure 2. Sketch of U-model. 

 

1111

222



 

198 

 
 

Figure 3. V-model, line 2: single-transmission 1a . 
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Figure 4a. V-model, line 1:                               Figure 4b. V-model, line 1:  

              a-term of double-transmission 2a . sum of b,c,d-terms of double-transmission 2a .  
 

 
 
Figure 4c. V-model, line 1:  

                 double-transmission 2a .  
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Figure 5. V-model, line 1: primary wavefield 0 2a a . 
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Figure 6. U-model, line 2: single-transmission 1a . 
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Figure 7a. U-model, line 1:                                Figure 7b. U-model, line 1:  

         a-term of double-transmission 2a .      sum of b,c,d-terms of double-transmission 2a .  
 

 
 

Figure 7c. U-model, line 1: double-transmission 2a .  

 



 

203 

 
 

Figure 8. U-model, line 1: source wavefield 0a . 
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Figure 9. U-model, line 1: primary wavefield 0 2a a . 
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Closing remarks  
 

Models. We consider 3D 2-block models with V- U- and W-shaped interfaces simulating a 

geological salt overhang. We choose a contrast velocities case in order to simulate shadow 

below the overhang similar to shadow below a geological salt body. A source is placed above 

the overhang and a receiver line is located below the overhang so that the right half-part of the 

receivers is in the illuminated zone while the left half-part is in the shadow zone.  

 

 TPOT and FFS. We perform a detailed wavefield description at the receiver line in terms 

of primary (near-front) wavefield. The primary wavefield is obtained by TPOT and represents 

the superposition of the source wavefield and the double-transmitted wavefield. Both the 

source and double-transmitted wavefields contain so-called ‘feasible fundamental solutions’ 

(FFS) and ‘feasible propagation operators’ which account for shadow in the model. The 

feasible fundamental solutions and propagation operators have the form of infinite series with 

the composite operator of norm less than 1, which provides the necessary convergence of the 

series. The first term of the series represents the free space fundamental solution and the free 

space propagation operator (based on the Kirchhoff operator) correspondingly, all the higher 

order terms are cascade diffraction terms, which account for shadow.  

 

 TWSM. The primary wavefield is visualized by TWSM on a GPU cluster. This 

programming code uses two types of approximation: 1) an interface triangulation which leads 

to an approximation of the propagation integral operator by a tip-wave beam matrix, where 

each narrow beam corresponds to the wave propagation from a small triangle at the interface; 

2) a truncation of the series for the ‘feasible propagation operator’ and the ‘feasible 

fundamental solution’ after the second term. The seismograms represent the primary 

wavefield and its terms separately and in combinations in order to demonstrate the impact of 

the shadow correction. For the models, the primary wavefield seismograms perform a 

complex wavefield with a combination of several waves.  

 

 Advantages of TPOT&TWSM. TPOT and its TWSM software package differ 

conceptually from the numerical methods being exploited for direct and inverse seismic 

problems. They solve the equation system in terms of the total wavefield while TPOT 

provides the solution with possibility of wave fragments separation. TPOT gives the rigorous 
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explicit solution of the medium particles oscillation system in terms of the mathematical wave 

theory. This solution represents the total wavefield and its wave structure. Since the solution 

is analytical, there is no need to use a discretization of the equation system. The solution 

visualization by TWSM gives a seismogram of any separate wave fragment or group of them 

in the mid-frequency range. This means that the approach is applied to primaries computation 

(multiples removal).  

 

 Comparisons. The TWSM algorithm of TPOT was compared to laboratory methods, 

other theoretical approaches and the finite difference method. The relative error of the 

computation of any wave fragment does not depend on its amplitude. Since the relative error 

is universal for each wave fragment, the relative error does not change when the amplitude 

changes. The comparison with laboratory data demonstrates an error of 1-4 percent 

approximately. The comparison with the edge wave theory gives a 3-4 percent error. The 

comparison with the finite difference method demonstrates the error of 3 percent 

approximately.  
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