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SUMMARY: 

In 2005, Hughes et al. introduced the isogeometric analysis. One purpose was to eliminate the conversion between 

geometry model and analysis model in finite element analyses. NURBS (Non-Uniform Rational B-Splines) were 

adopted as shape functions and the isoparametric concept was utilized, resulting in the above mentioned analysis 

method. 

 

In this thesis, the differences between traditional finite element analysis and isogeometric analysis have been examined 

through nonlinear analyses of a gap K-joint subjected to prescribed displacements. The K-joint has been modelled both 

with solid and thin shell elements in Abaqus/Standard and with solid elements in IFEM. It has been focused on 

obtaining a mesh of similar refinement for both of the methods to easier be able to compare the results. 

 

The results show, as expected, that the thin shell element representation is unsuitable for a three dimensional stress state 

as around the intersection of the braces and the chord. The analyses with solid elements show a dependence on the 

continuity of the shape functions. The continuity in an isogeometric analysis is Cp-1 over element borders for basis 

functions of degree p. In traditional finite element analysis the continuity for solid elements is only C0. This results in 

differences in the differentiated variables like stresses and strain. Also the calculation of derived values, such as the von 

Mises stress and principal stresses, has shown to generate differences in the results because this is done differently in 

Abaqus/Standard and IFEM. The computational time for the isogeometric analyses is higher than for the traditional 

finite element analyses, and increasing with increasing degree of basis functions because the continuity affects the 

average bandwidth of the global matrices, and must also be included in the discussions. 

 

The conclusion is that more analysis results are needed to be able to make a substantiated conclusion as to which 

analysis method that is preferable for analyzing a gap K-joint. 

Regarding which method that is more accurate or conservative, the findings are not consistent. 
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electronic description. Today most CAD systems use spline basis function and often Non-Uniform 
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numerical simulation computational costly. Furthermore, a huge amount of man-hours have to be 
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between models suitable for design (CAD) and analysis (FEM) is considered being a severe bottleneck 
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that is, the solution space for dependent variables is represented in terms of the same functions which 
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Abstract

In 2005, Hughes et al.[1] introduced the isogeometric analysis. One purpose was to elimi-
nate the conversion between geometry model and analysis model in finite element analy-
ses. NURBS (Non-Uniform Rational B-Splines) were adopted as shape functions and the
isoparametric concept was utilized, resulting in the above mentioned analysis method.

In this thesis, the differences between traditional finite element analysis and isogeomet-
ric analysis have been examined through nonlinear analyses of a gap K-joint subjected
to prescribed displacements. The K-joint has been modelled both with solid and thin
shell elements in Abaqus/Standard and with solid elements in IFEM. It has been focused
on obtaining a mesh of similar refinement for both of the methods to easier be able to
compare the results.

The results show, as expected, that the thin shell element representation is unsuitable
for a three dimensional stress state as around the intersection of the braces and the
chord. The analyses with solid elements show a dependence on the continuity of the
shape functions. The continuity in an isogeometric analysis is Cp−1 over element borders
for basis functions of degree p. In traditional finite element analysis the continuity for
solid elements is only C0. This results in differences in the differentiated variables like
stresses and strain. Also the calculation of derived values, such as the von Mises stress
and principal stresses, has shown to generate differences in the results because this is done
differently in Abaqus/Standard and IFEM. The computational time for the isogeometric
analyses is higher than for the traditional finite element analyses, and increasing with
increasing degree of basis functions because the continuity affects the average bandwidth
of the global matrices, and must also be included in the discussions.

The conclusion is that more analysis results are needed to be able to make a sub-
stantiated conclusion as to which analysis method that is preferable for analyzing a gap
K-joint. Regarding which method that is more accurate or conservative, the findings are
not consistent.
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Sammendrag

Isogeometrisk analyse ble for første gang introdusert i 2005 av Hughes et al.[1]. Én
av grunnene var å eliminere prosessen med å konvertere den geometriske modellen til
analysemodell ved diskretiserte elementanalyser. I arbeidet som fulgte, ble NURBS
(ikke-uniforme, rasjonelle B-spline-funksjoner) tatt i bruk som formfunksjoner, og det
isoparame-triske konseptet ble utnyttet. Dette førte til analysemetoden som nå er kjent
som isogeometrisk analyse.

I denne oppgaven har jeg sett på forskjellen mellom tradisjonell elementanalyse og iso-
geometrisk analyse gjennom ikke-lineær analyse av et K-rørknutepunkt. Rørknutepunktet
er modellert med både volumelementer og tynnskallelementer i Abaqus/Standard samt
volumelementer i IFEM. Jeg har fokusert på å oppnå en mest mulig lik forfining av det
diskrete elementmeshet for best mulig å kunne sammenligne resultatene.

Resultatene viser som forventet at tynne skallelementer ikke egner seg til å modellere
den tredimensjonale spenningstilstanden i skjæringspunktet mellom rørene. Resultatene
fra modellene med volumelementer i Abaqus/Standard og IFEM viser at forskjellig kon-
tinuitet i løsningen har mye å si. Isogeometrisk analyse har Cp−1-kontinuitet mellom
elementer i analyser med basisfunksjoner av grad p , mens volumelementer i standard
elementanalyse kun er C0-kontinuerlige. Dette resulterer i store forskjeller i de deriverte
variablene som spenningene og tøyningene mellom de to metodene. Også beregningene av
utlede verdier som von Mises-spenninger og hovedspenninger, har skapt forskjeller mel-
lom de to analysemetodene fordi dette gjøres forskjellig i Abaqus/Standard og IFEM.
Beregningstiden for den isogeometriske analysen er generelt høyere enn for tradisjonell
elementmetode fordi høyere kontinuitet øker den gjennomsnittlige båndbredden til de
globale matrisene, og må også tas med i vurderingen av de to metodene.

Diskusjonene med at det er behov for flere analyseresultater for å ha nok materiale
til å ta en beslutning om hvilken metode som er å foretrekke ved analysering av et K-
rørknutepunkt. Funnene er ikke konsekvente når det kommer til hvilken metode som er
mest nøyaktig eller konservativ.



vii

Preface

This master thesis has been written as the final evaluation of the master’s degree in
Civil and Environmental Engineering at Norwegian University of Science and Technol-
ogy (NTNU), spring 2013. The area of specialization has been within computational
mechanics at Department of Structural Engineering (KT).

The thesis has been conducted partly as a literature study of nonlinear finite element
analyses and a continuation of the literature study carried out in the specialization project
completed fall 2012 on isogeometric analysis, and partly as discussion and interpretation
of analysis results. The analyses have been run with Abaqus/Standard 6.11-1 and IFEM,
and it has been aspired to analyse as similar models as possible for both the analysis
methods.

My experience with IFEM is that a substantial amount of development work still re-
mains to be done before it is suitable for isogeometric analyses of industrial problems
involving more complex geometry. The initially proposed geometries for this thesis could
not be modelled, and the modelling of the gap K-joint was too complex making it im-
possible for me to learn within the limited time frame that was spent working on this
thesis, and the definition of the model and the analyses must be run by scientists already
familiar with the software.

Acknowledgements should be made to my principal advisor Kjell Magne Mathisen,
professor at KT, for excellent guidance and motivation, and with thorough help with the
analyses run in IFEM. Kjetil Andre Johannessen, PhD Candidate at Department of Math-
ematical Sciences, and Knut Morten Okstad, Research Scientist at SINTEF, Department
of Applied Mathematics, should also be acknowledged for providing the files necessary to
run the IFEM analyses.

In the end, a big thank you goes to my uncle Inge Fjulsrud for providing his excellent
knowledge of the English language to proofread my thesis.



Contents
Abstract v

Sammendrag vi

Acknowledgement vii

Notation xii

1 Introduction 1

2 Traditional Finite Element Analysis 3

2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Interpolation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Requirements to the Shape Functions . . . . . . . . . . . . . . . . . 8
2.2.2 Example of Interpolation Functions . . . . . . . . . . . . . . . . . . 9

3 Isogeometric Analysis 10

3.1 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 Knot Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Control Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Construction of B-splines . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Control Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 NURBS Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Construction of NURBS . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Patches and Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



ix

4 Governing Equations for Finite Deformation Solids and Shells 27

4.1 Reference System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Strain Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Stress Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.1 Elastic Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.2 Plastic Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.1 Strong Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.2 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Variational Description for Finite Deformation . . . . . . . . . . . . . . . . 35

4.8 Finite Element Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.8.1 Finite Element Formulations for the Total Lagrangian Formulation 36
4.8.2 Finite Element Formulation in the Current Configuration . . . . . . 38

5 Solution of Finite Element Analyses 41

5.1 Newton-Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Return Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1 Increment from Elastic Stress State . . . . . . . . . . . . . . . . . . 44
5.3.2 Increment from Plastic Stress State . . . . . . . . . . . . . . . . . . 45

5.4 Imposing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.2 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.3 Penalty Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Arc-Length Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5.1 Normal Plane Arc-Length Method . . . . . . . . . . . . . . . . . . 51
5.5.2 Spherical Arc-Length Method . . . . . . . . . . . . . . . . . . . . . 51
5.5.3 Cylindrical Arc-Length Method . . . . . . . . . . . . . . . . . . . . 52

5.6 Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



x

5.6.1 Displacement Based Convergence Criterion . . . . . . . . . . . . . . 53
5.6.2 Residual Force Based Convergence Criterion . . . . . . . . . . . . . 53
5.6.3 Energy Based Convergence Criterion . . . . . . . . . . . . . . . . . 53

5.7 Analysis with both Material and Geometric Nonlinearity . . . . . . . . . . 54

5.8 Abaqus/Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8.1 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8.2 Imposing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8.3 Increment Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.8.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.9 IFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Gap K-Joint 57

6.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.1 Abaqus/CAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 IFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 Load and Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 61

6.7 Warnings in Abaqus/Standard . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7.1 Poor Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7.2 Warped Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.7.3 Distorted Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.7.4 Boundary Conditions on Inactive Degrees of Freedom . . . . . . . . 63

6.8 Areas of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Results and Discussion 66

7.1 Analysis Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.1 Extrapolated Exact Solution . . . . . . . . . . . . . . . . . . . . . . 68
7.2.2 Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



xi

7.2.3 Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Natural Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Nodal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Differences Relating to the Basis Functions . . . . . . . . . . . . . . . . . . 77
7.5.1 Errors in Values of Derived Stresses and Strains . . . . . . . . . . . 84

8 Conclusion 85

9 Further Work 87

Bibliography 88

Appendix A Meshes 91

Appendix B Local Results 96

Appendix C Nodal Results 97

Appendix D Incremental-Iterative Solution Algorithm for Normal Plane
Arc-Length Methods 99

Appendix E Deformation patterns 101

Appendix F Mode Shapes 106



xii

Notation

In this master thesis the notation given below will be used for matrices of varying size.

Name Notation Matrix form

Column matrix {A}


a1
a2
...
am


Row matrix bAc ba1 a2 · · · anc

Symmetric or asymmetric
matrix [A]


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
... ... . . . ...

am,1 am,2 · · · am,n



Diagonal matrix dAc


a1,1 0 · · · 0
0 a2,2 · · · 0
... ... . . . ...
0 0 · · · an,n

 =

⌈
a1,1 a2,2 · · · an,n

⌋



Chapter 1

Introduction

The conversion between the geometry model and the analysis model in finite element
analyses (FEA) has been studied for many years. The traditional way of performing an
analysis is to define a geometric model in a computer aided design (CAD) tool, and there-
after analysing the model in a computer aided engineering (CAE) analysis program. The
difficulties in this conversion often lies within maintaining the exact geometric properties
given in the geometric model. This is a result of the CAD and CAE tools using differ-
ent shape functions to define the geometry and the discretized model respectively. As of
now, the most common basis functions in CAD tools are NURBS (Non-Uniform Rational
B-Splines), whereas analysis tools generally use lower order Lagrange polynomials. As a
result, 80 % of the overall analysis time1 is usually spent on first creating the geometric
model and thereafter meshing the analysis model to get a good approximation of the
geometry [2].

In 2005, Hughes et al. [1] presented the concept of IsoGeometric Analysis (IGA). The
main object of this representation is to use the same model to define the geometry and
to perform analyses. To achieve this, the analysis must utilize the same basis functions
as the CAD tools used to define the geometry. The geometry technology that is the most
common, and which will be described in this thesis is NURBS, and consequently also
B-splines. The basic theory for lower order Lagrange polynomials and NURBS will be
discussed, with focus on solid and shell representation for the traditional analysis and solid
representation for the IGA. The area of focus will be the representation of shells by solid
and shell elements respectively, and the difference between a solid model in traditional
FEA and IGA. A gap K-joint has been modelled and analyzed to exemplify occurring
differences.

The software used to perform the analyses is the well-known and well-established FEA
program Abaqus/Standard 6.11-1, and the newer and non-established isogeometrically
based analysis program IFEM. Abaqus/Standard is a product of Dassault Systèmes Simu-
lia Corp., Providence, RI, USA. It is based on the traditional Finite Element Method
(FEM), employing shape functions constructed from amongst other lower order Lagrange
polynomials and serendipity functions2 in addition to traditional meshing and refinement

1The anatomy of the process of creating the appropriate geometry for analysis models is studied by
Ted Blacker, Manager of Simulation Sciences, Sandia National Laboratories, [2].

2Other options are i.e. Hermite polynomials and mixed formulations.

1
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techniques. IFEM is a framework using NURBS to perform linear and nonlinear IGAs
of solid problems. IFEM is developed as part of the KMB (Knowledge-building projects
with user involvement) research project ICADA (Integrated Computer Aided Design and
Analysis) which is a collaboration project between Department of Applied Mathematics at
SINTEF, Department of Mathematical Sciences and Department of Structural Engineer-
ing (KT) at Norwegian University of Science and Technology (NTNU), Ceetron AS, unit
for Research & Innovation at Det Norske Veritas (DNV) and Statoil, with the purpose
of developing a suitable alternative to the traditional finite element programs by utilizing
spline finite elements. The main objective of the ICADA project is to build competence in
Norway for taking advantages of Integrated Computer Aided Design and Analysis based
on a coherent representation for geometry and analysis [3]. Throughout the thesis, IFEM
is not as thoroughly discussed as Abaqus/Standard. This is a result of the current lim-
ited documentation of IFEM, which has made details of its manner of operation partly
unavailable for me. It has also increased my dependence of professionals with knowledge
about IFEM to be able to run the analyses in IFEM. To visualize the results from IFEM,
GLview Inova 9.0 has been used. GLview Inova is a modern, fully featured post-processor
and 3D visualization tool [4], which makes post-processing from IFEM easier.



Chapter 2

Traditional Finite Element Analysis

A FEA consists of discretizing the structure so that element matrices can be assembled
in a local manner. The deformation of each element is calculated before being globalized,
and thereby representing the solution field of the structure.

2.1 Discretization

2.1.1 Mesh
In a FEA, the structure is divided into finite elements. The collection of elements is
called a mesh, and one or several meshes span the entire structure. In each node, which
is located in each elements, there are a given number of degrees of freedom. These are
the values that are calculated in a FEA. The interpolation function used to describe the
geometry and the solution are local to only one element at a time.

To make the solution space more accurate the mesh can be refined. In a FEA this
can be done in three ways [5]. h-refinement consists of adding elements of the same type
to the mesh. This can be done either uniformly through the entire structure, or non-
uniformly in the areas where the accuracy is unsatisfactory. If the degree of the highest
complete polynomial is increased, the refinement method is called p-refinement. With p-
refinement, the number of elements is not changed, but the number of degrees of freedom
can be increased with or without adding new nodes. The last refinement method is called
r-refinement. This refinement method consists of rearranging nodes so that the element
geometry changes. Examples of the different methods are shown in Figure 2.1.

2.1.2 Degrees of Freedom
The discrete displacement vector is defined as

locally: {d} = {daj}, (2.1)
globally: {D} = {DA

j }, (2.2)

where j is the number of degrees of freedom in each node, a and A are the numbering
of the nodes in one element and the entire structure respectively, and a = 1, 2, · · · , ne

3



4 2.1. DISCRETIZATION

(a) h-refinement (b) p-refinement (c) r-refinement

Figure 2.1: Refinement methods in FEA

and A = 1, 2, · · · , nG for each j = 1, 2, · · · , ndof . The degrees of freedom are located in
the nodes and are interpolated according to the shape functions derived in Section 2.2 to
express the total solution of the structure.

Solid

The definition of the degrees of freedom for a structure modelled with solid elements is

uj =
∑
a

Nad
a
j . (2.3)

The physical coordinates are also interpolated between the nodes according to the shape
functions derived in Section 2.2. This is called the isoparametric concept, and applies to
both the initial and current coordinates, XJ and xj.

XJ =
∑
a

NaX
a
J (2.4)

xj =
∑
a

Nax
a
j (2.5)

The element described in this thesis will be a 20-node quadratic brick element, with
degrees of freedom being translations, u, v and w, in the three orthogonal directions, ξ, η
and ζ. It is up to the analyst to decide the order of the degrees of freedom. The options
can be

{d} = bu1 · · · une v1 · · · vne w1 · · · wnecT , (2.6)
{d̄} = bu1 v1 w1 u2 v2 w2 · · · une vne wnecT , (2.7)

depending on the purpose of the calculations. There are 8 corner nodes and 12 midside
nodes, as shown in Figure 2.2. The faces do not need to be plane and the corners may
have arbitrary location relative to each other. The element resists deformation due to
strain energy from both translational and transverse deformation, but have no rotational
degrees of freedom, and the edges of the element are thus free to rotate. The element
does not exhibit shear locking, which may be caused if excessive shear strain evolve when
pure bending is modelled [5].
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Figure 2.2: 20-node solid element with three degrees of freedom in each node

Shell

The shell element formulation chosen in this thesis is the Kirchhoff thin shell representa-
tion. A thin shell representation can be used if the ratio between the thickness and other
properties of the shell is below a given limit. The limit differs from the thickness/smallest
radii ratio being below 1/20 [5] to the ratio between the thickness and a characteristic
length of the element surface to be below 1/15 [6], and indicates that each case must be
assessed individually. Another option would have been the Mindlin thick shell theory,
which takes into account the transverse shear deformations. Thin shell theory is based
on the idea that transverse shear deformation is prohibited. This implies that the angle
between the mid surface and any section of the shell remains constant during deformation.
The element described in this thesis has translation in ξ-, η- and ζ-direction and rotation
about the ξ- and η-axis respectively as degrees of freedom, and is an 8-node serendipity
element, shown in Figure 2.3.

{d} = bu1 · · · une v1 · · · vne w1 · · · wne ψ1
ξ · · · ψneξ ψ1

η · · · ψneη cT , (2.8)
{d̄} = bu1 · · · ψ1

η u2 · · · ψ2
η · · · une · · · ψneη cT . (2.9)

In contrast to the solid representation, the expression for deformation in an arbitrary
point in the shell in general also includes rotational degrees of freedom [5]. Figure 2.3
shows the definition of the parametric axes of a shell element, and point P with midsurface
coordinates corresponding to a node, but with arbitrary location in the thickness. As a
result, dependence of the rotational degrees of freedom for the deformations of point P
arises, and the total deformations may be expressed as

uj̄ =
∑
a

Na

(
uaj̄ + ζ

ta
2 [µaj̄ ]

{
ψaξ
ψaη

})
, (2.10)

for j̄ = 1, 2, 3. ta is the thickness of the shell at node a, and [µaj̄ ] is a direction cosine
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Figure 2.3: 8-node general shell with five degrees of freedom in each node

matrix derived from the two first covariant base vectors described in Section 4.2:

[µaj̄ ] =
[
−
{gaη}j̄
|{gaη}|

{gaξ}j̄
|{gaξ}|

]
=

 −lηa lξa
−mηa mξa

−nηa nξa

 , (2.11)

{gai }j̄ being the j̄’th component of the covariant base vectors in node a respectively. The
stiffness of the shell is a combination of bending and membrane stiffness. The bending
stiffness is in general much smaller than the membrane stiffness and (especially with
straight edges) drastically decreasing with increasing element length. Shell elements with
curved edges may exhibit membrane locking. Membrane locking causes deformations
initially only resisted by bending stiffness also to be resisted by membrane stiffness [5].

The initial and current coordinates of the point P are calculated in the same manner
as the displacements:

XJ =
∑
a

Na

(
Xa
J + ζ

ta
2 {Λ

a}J
)
, (2.12)

xj =
∑
a

Na

(
xaj + ζ

ta
2 {λ

a}j
)
. (2.13)

{Λa}J and {λa}j are the J ’th and j’th components of the direction cosine matrices of the
third covariant base vector in initial and current configuration in node a 1

{Λa}J =
{Ga

Z}j
| {Ga

Z} |
, {λa}j =

{
gaζ
}
j

|
{
gaζ
}
|
. (2.14)

2.2 Interpolation Functions
As seen in the previous section, the interpolation functions are used to interpolate both
the displacement and the geometry between the nodal points.

1Z represents here the capital ζ
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The interpolation functions in one direction are usually constructed by Lagrange poly-
nomials by the formula

Na =
∏

0<k≤ne
k 6=a

xk − x
xk − xa

, (2.15)

where k = 1, 2, · · · , ne. Hence we see that an ne-noded element with only translational
degrees of freedom requires a shape function of degree ne − 1. If also the derivatives of
the displacement are degrees of freedom, the degree of the interpolation functions can
be decreased with the order of the derivatives. For a shell element, also including the
rotational degrees of freedom the Hermite interpolation functions are used [7].

The shape functions are often expressed by parametric coordinates in the sense that
x = x(ξ), y = y(η) and z = z(ζ).Each physical element is then mapped from the physical
to the parameter space as in Figure 2.4. The relation between the derivatives of the

(a) Shell (b) Solid

Figure 2.4: Physical and parent element in FEA

physical and the parametric coordinates is function of the Jacobian matrix, [J ]:


∂
∂ξ
∂
∂η
∂
∂ζ

 = [J ]


∂
∂x
∂
∂y
∂
∂z

 =

x,ξ y,ξ z,ξ
x,η y,η z,η
x,ζ y,ζ z,ζ




∂
∂x
∂
∂y
∂
∂z

 . (2.16)

The expression x,ξ denotes the derivative of x w.r.t. ξ and so on. For the solid represen-
tation the Jacobian matrix yields

[J ] =


∑
aNa,ξxa

∑
aNa,ξya

∑
aNa,ξza∑

aNa,ηxa
∑
aNa,ηya

∑
aNa,ηza∑

aNa,ζxa
∑
aNa,ζya

∑
aNa,ζza

 , (2.17)

and for shell:

[J ] =


∑
aNa,ξ(xa + ζtalζa/2) ∑

aNa,ξ(ya + ζtamζa)
∑
aNa,ξ(za + ζtanζa)∑

aNa,η(xa + ζtalζa/2) ∑
aNa,η(ya + ζtamζa)

∑
aNa,η(za + ζtanζa)∑

aNatalζa/2
∑
aNatamζa/2

∑
aNatanζa/2

 . (2.18)
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This gives the expression for the derivative of the displacements

u,x
u,y
u,z
v,x
v,y
v,z
w,x
w,y
w,z



=

Γ 0 0
0 Γ 0
0 0 Γ





u,ξ
u,η
u,ζ
v,ξ
v,η
v,ζ
w,ξ
w,η
w,ζ



, (2.19)

where
[Γ] = [J ]−1. (2.20)

The discretization can also be done by generalized coordinates, and for triangles; area
coordinates, but this will not be discussed in this thesis. Description of these methods
can be found in [5].

2.2.1 Requirements to the Shape Functions
The interpolation functions chosen have to fulfill two requirements [5]:
− completeness
− compatibility
The completeness requirement states that every shape function must be able to describe

a constant value of the field variable itself and its derivatives. This implies that when
choosing the interpolation function, each polynomial degree has to be complete so that
the shape functions display partition of unity:

ne∑
a=1

Na = 1. (2.21)

Introducing ξp, ηq and ζr, it is necessary to include all elements with p+ q+ r = 1 before
including elements with p+ q+ r = 2, and all elements with p+ q+ r = 2 before elements
with p+ q + r = 3 and so on. This requirement ensures the ability to express rigid body
motion.

Compatibility controls continuity of the elements. The total amount of energy utilised
by the virtual work are taken as the sum of the energy within each element. This is done
by integration over the element boundaries:

(δW )el =
∫
el
{δε}T{σ} dv. (2.22)

The continuity requirement states that there has to be Cµ−1 continuity between elements.
Here µ represents the highest degree of the differential operator in the strain-displacement
relation. For solid elements it will been shown that the strains are functions of the first
derivative of the displacements, as in Section 4.8. This implies that the actual value of
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the displacements has to be continuous, thus C0 continuity is required. As the structure
is defined with thin shell elements, the rotational degrees of freedom may be expressed
as derivatives of the translational degrees of freedom, and the differential operator thus
includes derivatives of 2nd degree. The continuity requirement of thin shells is therefore
C1 which means that both the translational and rotational degrees of freedom must be
continous over element borders.

2.2.2 Example of Interpolation Functions
An example of interpolation functions can be shown by taking the element in Figure 2.5
into account. The element has four nodes, assumed with only translational degrees of free-

Figure 2.5: 1D finite element with four nodes

dom, which indicates that four third order Lagrange polynomials have to be constructed.
Stating the spacing of the nodes to be uniform and the use of parametric coordinates
gives the shape functions:

N1 = 1
16
(
−1 + ξ + 9ξ2 − 9ξ3

)
, (2.23)

N2 = 9
16
(
1− 3ξ − ξ2 + 3ξ3

)
, (2.24)

N3 = 9
16
(
1 + 3ξ − ξ2 − 3ξ3

)
, (2.25)

N4 = 1
16
(
−1− ξ + 9ξ2 + 9ξ3

)
. (2.26)

Figure 2.6: Example of interpolation functions



Chapter 3

Isogeometric Analysis

3.1 B-Splines
The shape functions of an IGA can amongst others be NURBS, and to get an understand-
ing of what a NURBS is, we have to look at B-splines, considering that NURBS are a
generalization of B-splines. Therefore, all theory in this section also applies to Section 3.2.
B-splines are non-rational piecewise functions, divided by knot vectors and constructed
by basis functions.

3.1.1 Knot Vectors
The B-spline is divided into polynomials by parametric knot vectors, which in three
parametric orthogonal directions are defined as

Ξ = bξ1, ξ2, .., ξi, .., ξN−1, ξNc, (3.1a)
H = bη1, η2, .., ηj, .., ηM−1, ηMc, (3.1b)
Z = bζ1, ζ2, .., ζk, .., ζL−1, ζLc. (3.1c)

This thesis will only derive the concept in one direction, but all of the below derivations
are also valid for the two other directions.

The number of elements in the knot vector is always

N = n+ p+ 1, (3.2)

where n is the number of basis functions used to construct the B-spline, and p is the
degree of the basis functions considered. Either of these values can be determined first to
get the best result of the analysis.

If the multiplicity of the first and last knot is p+ 1, the knot vector is said to be open
and the number of multiplicity determines the degree of the basis functions. We will only
look at open knot vectors in this thesis. At the end of an open knot vector the spline
is interpolated, which means that it is only the first and last basis functions that are
non-zero at the first and last knot respectively. The result of this is that the spline always

10



3.1. B-SPLINES 11

is tangential to the control polygon, see Section 3.1.3, at the beginning and at the end of
an open knot vector, which ensures that the spline is correct at the beginning and at the
end.

The mapping of the knot vectors onto the physical geometry is what creates the element
boundaries in the physical space.

3.1.2 Basis Functions
The basis functions are functions of the parametric coordinates, ξ, η and ζ, and are
constructed by the the same method in all the directions.

Na,0(ξ) =

1 if ξa ≤ ξ < ξa+1,

0 otherwise,
(3.3)

where a is the knot span number, a = 1, 2, ..., N − 1.
For p = 1, 2, 3, ... they are defined as

Na,p(ξ) = ξ − ξa
ξa+p − ξa

Na,p−1(ξ) + ξa+p+1 − ξ
ξa+p+1 − ξa+1

Na+1,p−1(ξ). (3.4)

This is called the Cox-deBoor recursion formula [2].
The first derivative of a basis function is

N ′a,p(ξ) = p

ξa+p − ξa
Na,p−1(ξ)− p

ξa+p+1 − ξa+1
Na+1,p−1(ξ). (3.5)

Only the first two derivative basis functions are non-zero in the first knot. This is utilized
when deriving the criteria for continuity.

Important Features of the Basis Functions

There are several significant features of the basis functions that are important to notice.
One is that the basis functions constitute a partition of unity within each degree,

n∑
a=1

Na,p(ξ) = 1. (3.6)

This is necessary to be able to express rigid body displacement.
Another feature is that the basis functions are point-wise non-negative,

Na,p(ξ) > 0 ∀ξ, (3.7)

which is utilized when deriving the mass matrix.
A third feature is that each basis function of degree p is Cp−1 continuous across element

boundaries. This is very important in element modelling. The ability to reduce continuity
is also a useful feature when it is necessary to deal with singular points on a B-spline. A
basis function is Cp−s continuous at knots that have multiplicity s.
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It is also worth noticing that the basis functions have support on p + 1 knot spans,
regardless of the extent of the knot span in the parametric or physical space. A disad-
vantage related to this property is that the system of equations obtain a large bandwidth
which increases the computation time. An advantage is that the functions get better
continuity given that the basis functions are C∞ continuous inside knot spans and Cp−s

continuous at knots.
Basis functions are not interpolative and the value in each knot depends on several

basis functions. To reduce the number of knots that a basis function is influencing, knots
can be multiplied. This gives, however, the possible disadvantage of reduced continuity.

Requirements to the Basis Functions

As seen for the interpolation functions in Section 2.2, the basis functions also have to
satisfy certain criteria to ensure convergence. The criteria are:
− C1 within knot spans and across knots
− C0 between patches (see 3.3.2)
− completeness

The continuity requirement for each element is not restrictive. This is implied by the fea-
ture of C∞ continuity inside knot spans and Cp−s continuity over the element boundaries,
which can fulfil C1 for all splines with p ≥ 2. The completeness requirement is explained
in Section 2.2.1, and applies to the basis functions as stated in Equation (3.4).

Example of Basis Functions Constructed from an Open Knot Vector

To give a better understanding of how the basis functions are constructed, the open knot
vector Ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7] = [0, 0, 0, 2, 4, 4, 4] will be considered.

The multiplicity of the first and last knot is three, hence the highest degree of the basis
functions is two. By applying Equation (3.2), the number of basis functions that need to
be used is six, five and four for p = 0, 1, 2 respectively.

Starting with a = 1, p = 0 we see from Equation (3.3) that N1,0 is defined as zero
because the two first objects in the knot vector are both zero, and ξ can therefore never
be in between these two values. The same applies to N2,0, N5,0 and N6,0, because the first
three and last three objects in the knot vector are multiplicities of one knot.

Putting a = 3, p = 0 gives ξa = 0 and ξa+1 = 2 and results in the basis function shown
in Equation (3.8).

N3,0(ξ) =

1 if 0 ≤ ξ < 2,
0 otherwise.

(3.8)

a = 4 and p = 0 gives ξa = 2 and ξa+1 = 4 and

N4,0(ξ) =

1 if 2 ≤ ξ < 4,
0 otherwise.

(3.9)
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Equation (3.10) shows derivation of N1,1:

N1,1(ξ) = ξ − 0
0− 0N1,0(ξ) + 0− ξ

0− ξa+1
N2,0(ξ) = 0 (3.10)

N1,0 is as shown above equal to zero and the expression 0
0 is by definition equal to zero

which gives N1,1 the value zero.
N2,1, N3,1, N4,1 and N5,1 are derived in Equations (3.11) through (3.14) and show the

linearity of the basis functions of degree one.

N2,1(ξ) = ξ − 0
0− 0N2,0(ξ) + 2− ξ

2− 0N3,0(ξ)

= 0 +
(

1− ξ

2

)
N3,0(ξ) =

1− 1
2ξ if 0 ≤ ξ < 2,

0 otherwise,
(3.11)

N3,1(ξ) = ξ − 0
2− 0N3,0(ξ) + 4− ξ

4− 2N4,0(ξ)

= ξ

2N3,0(ξ) +
(

2− ξ

2

)
N4,0(ξ) =


1
2ξ if 0 ≤ ξ < 2,
2− 1

2ξ if 2 ≤ ξ < 4,
0 otherwise,

(3.12)

N4,1(ξ) = ξ − 2
4− 2N4,0(ξ) + 4− ξ

4− 4N5,0(ξ)

=
(
ξ

2 − 1
)
N4,0(ξ) =

−1 + 1
2ξ if 2 ≤ ξ < 4,

0 otherwise,
(3.13)

N5,1(ξ) = ξ − 4
4− 4N5,0(ξ) + 4− ξ

4− 4N6,0(ξ) = 0. (3.14)

The basis functions of degree two are derived in Equations (3.15) through (3.18).

N1,2(ξ) = ξ − 0
0− 0N1,1(ξ) + 2− ξ

2− 0N2,1(ξ)

= 0 + (1− ξ

2)N2,1(ξ) =

1− ξ + 1
4ξ

2 if 0 ≤ ξ < 2,
0 otherwise,

(3.15)

N2,2(ξ) = ξ − 0
2− 0N2,1(ξ) + 4− ξ

4− 0N3,1(ξ)

= ξ

2N2,1(ξ) + (1− ξ

4)N3,1(ξ) =


ξ − 3

8ξ
2 if 0 ≤ ξ < 2,

2− ξ + 1
8ξ

2 if 2 ≤ ξ < 4,
0 otherwise,

(3.16)
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N3,2(ξ) = ξ − 0
4− 0N3,1(ξ) + 4− ξ

4− 2N4,1(ξ)

= ξ

4N3,1(ξ) + (2− ξ

2)N4,1(ξ) =


1
8ξ

2 if 0 ≤ ξ < 2,
−2 + 2ξ − 3

8ξ
2 if 2 ≤ ξ < 4,

0 otherwise,
(3.17)

N4,2(ξ) = ξ − 2
4− 2N4,1(ξ) + 4− ξ

4− 4N5,1(ξ)

=
(
ξ

2 − 1
)
N4,1(ξ) =

1− ξ + 1
4ξ

2 if 2 ≤ ξ < 4,
0 otherwise.

(3.18)

The result is shown in Figure 3.1.

Figure 3.1: Example of basis functions

3.1.3 Control Points
To be able to use the basis functions in construction of B-splines there is need for control
points. The control points are expressed as

bP ac ∈ R3 (3.19)

for a = 1, 2, ..., ncp. The control points are represented in the physical space and transform
the B-splines from the parametric space into the physical space.

As seen in Equation (3.21), the number of control points must be equal to the number
of basis functions used to construct the B-spline, i.e., ncp = n with n as in Equation
(3.2). By linearly interpolating between the control points we get the control polygon.
An example with

[P ] =


P 1
P 2
P 3
P 4

 =


1 1 0
2 1 0
2 2 0
1 1 0

 , (3.20)
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is shown in Figure 3.2a. Here all z-coordinates are held constant, so the control points
can be represented in the 2D space. By keeping two coordinates constant for all control
points, they can be represented in the 1D space.

3.1.4 Construction of B-splines
B-spline curves, bC(ξ)c, are generated by taking linear combinations of the basis functions
and the influence of the control points

bC(ξ)c =
n∑
a=1

Na,p(ξ)bP ac = bNc[P ]. (3.21)

The three components of bC(ξ)c are the physical coordinates as function of the parametric
coordinates. The components will be denoted bCc1, bCc2 and bCc3.

An example with the basis functions from Figure 3.1 and control points from Figure
3.2a is shown in Figure 3.2b.

(a) Control points and polygon (b) B-spline

Figure 3.2: Example of control points and B-spline

Derivative of B-spline Curves

The derivative of a B-spline curve is

bC ′(ξ)c =
n∑
a=1

N ′a,p(ξ)bP ac. (3.22)

The points of interest regarding the derivatives are the end points of the knot vectors
where two B-splines join. Considering a B-spline with the knot vector and basis functions
as in the example in Section 3.1.2, we get the derivative of the end points of the B-spline.
In this example, the highest p = 2.
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First,
bC(0)c =

n∑
a=1

Na,p(0)bP ac, (3.23)

and as seen in Figure 3.1, only N1,2(0) 6= 0 giving

bC(0)c = N1,2(0)bP 1c = bP 1c. (3.24)

The first derivative of the B-spline in the starting point is

bC ′(0)c =
n∑
a=1

N ′a,p(0)bP ac (3.25)

=
n∑
a=1

(
p

ξa+p − ξa
Na,p−1(0)− p

ξa+p+1 − ξa+1
Na+1,p−1(0)

)
bP ac. (3.26)

From the example we see that the only basis function of degree p−1 = 1 that is not equal
to zero for ξ = 0 is N2,1. This gives

bC ′(0)c = p

ξa+p − ξa
Na=2,p−1=1(0)bP ac −

p

ξa+p+1 − ξa+1
Na+1=2,p−1=1(0)bP ac (3.27)

= p

ξ2+p − ξ2
N2,1(0)bP 2c −

p

ξ1+p+1 − ξ1+1
N2,1(0)bP 1c (3.28)

= p

ξ2+p − 0 (1 · bP 2c − 1 · bP 1c) (3.29)

= p

ξ2+p
(bP 2c − bP 1c) . (3.30)

The expression is general with the assumption of open knot vectors with a first knot with
the value zero and p ≥ 1.

The first derivative of the B-spline in the end point is

bC ′(4)c =
n∑
a=1

N ′a,p(4)bP ac (3.31)

=
n∑
a=1

(
p

ξa+p − ξa
Na,p−1(4)− p

ξa+p+1 − ξa+1
Na+1,p−1(4)

)
bP ac. (3.32)

From the example we see that the only basis function of degree p−1 = 1 that is not equal
to zero for ξ = 4 is N4,1. It is seen that the index 4 = n and it will henceforth be replaced
with n. This gives

bC ′(4)c = p

ξa+p − ξa
Na=4,p−1=1(4)bP ac −

p

ξa+p+1 − ξa+1
Na+1=4,p−1=1(4)bP ac (3.33)

= p

ξn+p − ξn
N4,1(4)bP nc −

p

ξn−1+p+1 − ξn−1+1
N4,1(4)bP n−1c. (3.34)

We ascertained in Equation (3.2) that n + p + 1 = N , and with the assumptions given
above ξN = ξN−f for f = 1, 2, . . . , p. It gives

bC ′(ξN)c = p

ξN − ξn
(bP nc − bP n−1c) . (3.35)
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B-splines in multiple dimensions

Construction of B-spline surfaces and solids is shown below.

bS(ξ, η)c =
n∑
a=1

m∑
b=1

Na,p(ξ)Mb,q(η)bP a,bc, (3.36)

bS(ξ, η, ζ)c =
n∑
a=1

m∑
b=1

l∑
c=1

Na,p(ξ)Mb,q(η)Lc,r(ζ)bP a,b,cc, (3.37)

where Na,p, Mb,q and Lc,r is defined as in Section 3.1.2.
The first derivatives of the two dimensional B-spline surface on the four edges ξ = 0,

ξ = ξN , η = 0 and η = ηM are

⌊
∂S(0, η)
∂ξ

⌋
= p

ξp+2

m∑
b=1

Mb,q(η) (bP 2,bc − bP 1,bc) , (3.38)⌊
∂S(ξ, 0)
∂η

⌋
= q

ηq+2

n∑
a=1

Na,p(ξ) (bP a,2c − bP a,1c) , (3.39)⌊
∂S(0, η)
∂η

⌋
=

m∑
b=1

∂Mb,q(η)
∂η

bP 1,bc, (3.40)⌊
∂S(ξ, 0)
∂ξ

⌋
=

n∑
a=1

∂Na,p(ξ)
∂ξ

bP a,1c, (3.41)⌊
∂S(ξN , η)

∂ξ

⌋
= p

ξN − ξn

m∑
b=1

Mb,q(η) (bP n,bc − bP n−1,bc) , (3.42)⌊
∂S(ξ, ηM)

∂η

⌋
= q

ηM − ηm

n∑
a=1

Na,p(ξ) (bP a,mc − bP a,m−1c) , (3.43)⌊
∂S(ξN , η)

∂η

⌋
=

m∑
b=1

∂Mb,q(η)
∂η

bP n,bc, (3.44)⌊
∂S(ξ, ηM)

∂ξ

⌋
=

n∑
a=1

∂Na,p(ξ)
∂ξ

bP a,mc. (3.45)

3.2 NURBS

NURBS is the acronym for Non-Uniform Rational B-Spline. The first feature means that
the knot vectors for NURBS are not necessarily uniform. This implies that the size of the
knot spans may change. The other statement is that a NURBS is rational. The rationality
occurs when the B-spline in Rd+1 is projectively transformed into Rd to become a NURBS.

The theory in this chapter is taken from [8].
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3.2.1 Control Points
The control points used for NURBS have, in addition to the coordinates used for B-splines,
an extra component which is the weighting of each control point. This is called ha.

bP ac = bxa ya za hac (3.46)

The control points used for B-splines are now altered to become homogeneous coordinates
[8]. These control points are weighted coordinates, in the sense that

bP h
ac ∈ R3+1, bP h

ac = bxaha yaha zaha hac. (3.47)

The control points for the NURBS are thus defined as

bP acg = bP
h
acg
ha

, bP ac ∈ R3, (3.48)

where g = 1, 2, 3 and denotes the component number of the control point. We can then
define the weighting function:

H(ξ) =
n∑
a=1

Na,p(ξ)ha. (3.49)

To get representation in 1D or 2D, either two or one of the coordinates are held constant
for all control points.

3.2.2 NURBS Basis Functions
The NURBS basis functions are defined as

Ra,p(ξ) = Na,p(ξ)ha
H(ξ) = Na,p(ξ)ha∑n

a=1Na,p(ξ)ha
, (3.50)

where Na,p(ξ) is as defined in Section 3.1.2. For multiple dimensions they are defined as

Rp,q
a,b(ξ, η) = Na,p(ξ)Mb,q(η)ha,b

H(ξ, η) = Na,p(ξ)Mb,q(η)ha,b∑n
a=1

∑m
b=1Na,p(ξ)Mb,q(η)ha,b

, (3.51)

Rp,q,r
a,b,c(ξ, η, ζ) = Na,p(ξ)Mb,q(η)Lc,r(ζ)ha,b,c

H(ξ, η, ζ) = Na,p(ξ)Mb,q(η)Lc,r(ζ)ha,b,c∑n
a=1

∑m
b=1

∑l
c=1Na,p(ξ)Mb,q(η)Lc,r(ζ)ha,b,c

.

(3.52)

This fraction is rational because the denominator is a function.
The one-dimensional expression shows easily how the B-splines are a special form of

NURBS. We see that when all the weighting factors are equal, ha = h can be placed
outside the summation sign, and given that ∑n

a=1Na,p = 1, Equation (3.50) reduces to
Ra,p(ξ) = Na,p(ξ), which is the same as for B-splines.
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3.2.3 Construction of NURBS
The construction of NURBS is similar to the construction of B-splines, however, the
NURBS basis functions are used instead of the non-rational basis functions.

bC(ξ)c =
n∑
a=1

Ra,p(ξ)bP ac = bRc[P ] (3.53)

bS(ξ, η)c =
n∑
a=1

m∑
b=1

Rp,q
a,b(ξ, η)bP a,bc = bRc[P ] (3.54)

bS(ξ, η, ζ)c =
n∑
a=1

m∑
b=1

l∑
c=1

Rp,q,r
a,b,c(ξ, η, ζ)bP a,b,cc = bRc[P ] (3.55)

An example of a NURBS curve with

P h =


1 1 0.8
2 1 1
2 2 1.2
1 2 1

 ⇒ P =


1.25 1.25

2 1
1.67 1.67

1 2

 (3.56)

and basis functions as in Figure 3.1 is shown in Figure 3.3. This figure also includes the
B-spline from which the NURBS is projectively transformed.

3.3 Patches and Elements
The definition of an element in an IGA varies, but for the purpose of this thesis it has
been chosen to define an element as a knot span. Shown in Figure 3.6 is an example of an
element in a patch with knot vectors as in the example in Section 3.1.2 in two directions.

As seen from Figure 3.1, the bandwidth of the splines comprises both the elements,
but only one patch. The possibility of using Gauss quadrature rule for integration on
element level is present [8] because the splines are C∞ polynomials at the knot intervals.
This will be further discussed in Section 5.

Figure 3.6 also shows that given the definition of the knot vectors as orthogonal in
the parameter space, the parametric patch is always rectangular. This means that only
rectangular elements can be used.

Alternatively to interpolation functions that are used in traditional FEA, splines are
local to patches rather than elements which means that the bandwidth for a spline com-
prise the width of several elements. A structure can be divided into either one, two or
several patches depending on the details of the analysis. For instance, a difficult geometry,
such as a hole or a corner, could require multiple patches.

For arbitrary topologies, the option of making each patch consisting of only one element
is highly relevant. With such a definition, unstructured meshes can be constructed, and
the isogeometric concept can hence be just as adaptable as unstructured meshes created
in traditional FEA. Isogeometric patches such as these are called Bézier elements, and are
made from B-spline patches. An example with p = 2 is shown in Figure 3.4. However,
such an approach will include severe increase of time spent on modelling.
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(a) NURBS and B-spline in 3D (b) NURBS and B-spline in the xy-plane

Figure 3.3: Example of B-spline with corresponding NURBS

A brief introduction to multiple patches and continuity between them will be given in
Section 3.3.2.

Figure 3.4: Patch consisting of one element, p = 2
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3.3.1 Refinement
The different methods for refining a patch in IGA include knot insertion and order ele-
vation or a combination of these [2]. As for the refinement in FEA, the refinement of a
patch will give better accuracy of the solution. The following methods change neither the
geometry nor the parametrization of the splines.

Knot insertion

Knot insertion as a refinement method can include insertion of new knots, or multiplicity
of already existing knots. When adding new knots without increasing the degree of the
spline, the number of basis functions used must also be increased, as shown in Equation
(3.2). Additionally it is shown that the number of basis functions used to construct the
spline must be equal to the number of control points, so that additional control points
must be created. This is done by the formula

P̄ = T pP , (3.57)

where

T 0
αi =

1 ξ̄α ∈ [ξi, ξi+1),
0 otherwise,

(3.58)

and
T b+1
αi = ξ̄α+b − ξi

ξi+b − ξi
T bαi + ξi+b+1 − ξ̄α+b

ξi+b+1 − ξi+1
T bαi (3.59)

for b = 0, 1, . . . , p− 1 in direction of ξ and b = 0, 1, . . . , q − 1 in direction of η and so on.
In this way the continuity of the spline is maintained, even though the continuity of the
basis functions may have been reduced if the insertion has been done by knot multiplicity.

The knot insertion in a patch can be compared to the h-refinement method described
in Section 2.1.1, since the method partitions the spline into new elements. However,
in h-refinement, the continuity between the new elements is C0 whereas the continuity
between the new elements when applying knot insertion is Cp−s, where s is the resulting
multiplicity of the knot after insertion. When a new knot is inserted, s clearly is one.

Order elevation

When the order of the spline is increased without adding new knots, the refinement method
is called order elevation. The process starts with increasing the multiplicity of all existing
knots until they are equal to the polynomial degree, making the spline C0 continuous
across knots. This is equivalent to dividing the spline into multiple splines extending only
one knot span. Then the polynomial degree of each of these splines is increased to the
desired order, and the multiplication of the knots is decreased to reintroduce the original
continuity. Equation (3.2) implies that when increasing the number of knots and the
polynomial degree, the number of basis functions used to construct the spline must also
be increased.
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p-refinement described in Section 3.3.1 and order elevation have noticeable similarities,
but as the order elevation starts with a C0 continuity, the p-refinement can be carried out
with any basis of shape functions.

k-refinement

k-refinement is a combination of knot insertion and order elevation, however, it must be
done in a specific order. If knot insertion is performed, thereby inserting a new knot,
the continuity at this knot is Cp−1. By then performing order elevation including both
increase of the polynomial degree and multiplication of knots, the continuity at the new
knot is still Cp−1. If the order of these doings is reversed, first the polynomial order is
increased to p̃, then a new knot is inserted, the continuity of the new knot is C p̃−1. Thus
both the number of knots and the polynomial degree are increased. Because of this, the
number of basis functions used to construct the spline must also be increased, cf. Equation
(3.2). It is this latter sequence that is referred to as k-refinement.

3.3.2 Continuity
Continuity of B-spline patches with equal edge refinement

As seen in Section 3.1.2 the basis functions are piecewise polynomials joined at the knots.
This makes the B-spline C∞ continuous between the knots and Cp−s continuous at a knot
with multiplication s. Between the patches, however, the B-splines are not continuous
unless certain requirements are fulfilled. In this section the continuity conditions between
two B-spline surfaces will be derived [8].

To demonstrate the continuity conditions for B-spline surfaces, two patches with a
common edge are considered. It is from now on assumed that this edge is ξ = ξN for the
first patch and ξ = 0 for the second patch. This implies that the B-splines in direction of
η at the edge of both patches are equal.

To fulfil the C0 requirement stated in Section 3.1.2, the control points on the edge have
to coincide.

P 1
n,b = P 2

1,b (3.60)

Further continuity is not required, but may enhance numerical accuracy [9]. Properties
resulting from higher continuity will not be discussed very closely, but Hughes, Cottrell
and Bazilevs [10] have shown that higher continuity require more computational time1

than lower order analyses. The key factor is the ability the direct solvers have to optimize
solution of analyses where the basis functions have support on several elements. The
bandwidth of a system represents the number of knots on which a given basis function
overlaps with other basis functions, and determines the non-zero entries in the global
matrices. The maximum bandwidth of an IGA is p−1 and the bandwidth does not increase
as the continuity of the basis is increased as long as the degree is kept constant. However,
for direct solvers, the minimum bandwidth of the matrices increases and approaches p−1

1and also more memory, but this will not be further discussed
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as the continuity increases, leading to fewer opportunities of condensation of degrees of
freedom.
C1 continuity is obtained by the following steps:

S1(ξN , η) = S2(0, η), (3.61)
M1

b,q(η) = M2
b,q(η), b = 1, 2, . . . ,m. (3.62)

C1 continuity implies that the tangent vector for both patches must be equal. From
Equations (3.40) and (3.44) and the coinciding control points, we get

∂S1(ξN , η)
∂η

=
m∑
b=1

∂M1
b,q(η)
∂η

P 1
n,b

∂S2(0, η)
∂η

=
m∑
b=1

∂M2
b,q(η)
∂η

P 2
1,b


∂S1(ξN , η)

∂η
= ∂S2(0, η)

∂η
, (3.63)

and the continuity with respect to η is thus fulfilled at all times.
Equations (3.38) and (3.42) give

∂S1(ξN , η)
∂ξ

= p

ξN − ξn

m∑
b=1

M1
b,q(η)

(
P 1
n,b − P 1

n−1,b

)
, (3.64)

∂S2(0, η)
∂ξ

= p

ξp+2

m∑
b=1

M2
b,q(η)

(
P 2

2,b − P 2
1,b

)
. (3.65)

The degree of the B-splines and the value of each knot are constant, so the condition

∂S1(ξN , η)
∂ξ

= ∂S2(0, η)
∂ξ

, (3.66)

is fulfilled if
p

ξp+2

(
P 2

2,b − P 1
n,b

)
= p

ξN − ξn

(
P 1
n,b − P 1

n−1,b

)
. (3.67)

Here, the property of P 2
1,b = P 1

n,b is used.

Continuity of NURBS Patches

As shown in Section 3.2.2 are the NURBS generalizations of B-splines, thus all of the
continuity requirements stated above also apply for NURBS.

For a NURBS surface the continuity condition is applied to the homogeneous coordi-
nates so that

p

ξp+2

(
P h,2

2,b − P
h,1
n,b

)
= p

ξN − ξn

(
P h,1
n,b − P

h,1
n−1,b

)
. (3.68)



24 3.3. PATCHES AND ELEMENTS

Continuity of B-spline Patches with Different Edge Refinement

The isogeomtric concept also allows for continuity between two patches with different
refinement at the adjoining edges. However, the control points for each edge must still
coincide. The method described below also assumes that the refinement is done by knot
insertions from two initially equal patches [2].

With these measures, the refinement shown in Figure 3.5b is possible, in contrast to
the refinement when using only one patch, shown in Figure 3.5a.

(a) Refinement with one patch (b) Refinement with multiple patches

Figure 3.5: Refinement with one and multiple patches

Before describing this technique, the related vectors are arranged in order after whether
or not they correspond to the adjoining edge. Subscript e represents features lying on the
edge and o features not lying on the edge, superscript 1 and 2 represent patches 1 and 2
respectively.

{P 1} =
{
P 1
o

P 1
e

}
, {P 2} =

{
P 2
o

P 2
e

}
, [T̃ ] =

T̃ o 0
0 T̃ e

 , (3.69)

{d1} =
{
d1
o

d1
e

}
, {d2} =

{
d2
o

d2
e

}
, [K1] =

[
K1

oo K1
oe

K1
eo K1

ee

]
, [K2] =

[
K2

oo K2
oe

K2
eo K2

ee

]
. (3.70)

were [T̃ ] is the multi-dimensional generalization of the extension operator [2] defined in
Equation (3.57).
C0-continuity is maintained by introducing

{P 1
e} = {Pe2}, (3.71)

and hence
{P̄ 2

e} = [T̃ e]{P 1
e}, (3.72)

from Equation 3.57. This constraint is also applied to the degrees of freedom so that
instead of calculating the field variables from the solution of patch 2, the variables are

{d̄2
e} = [T̃ e]{d1

e}. (3.73)

Inserting this into the equilibrium equation for each patch gives

[K]{D} = {R}, (3.74)
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for the total system, with

[K] =


k1
oo k1

oe 0

k1
eo k1

ee + T̃ T

e k
2
eeT̃ e T̃

T

e k
2
eo

0 k2
oeT̃ e k2

oo

 , (3.75)

{D} =


d1
o

d1
e

d2
o

 , {R} =


r1
o

r1
e + T̃ T

e r
2
e

r2
o

 . (3.76)

The terms linking the degrees of freedom not lying on the shared edge at patch 2 with
the degrees of freedom and the reaction forces lying on the shared edge at patch 1 are
premultiplied by T̃ T

e to obtain the equal number of equations resulting in the somewhat
more complex middle term of [K].

3.4 Discretization
Solving a problem with IGA is in many respects similar to the process of solving a problem
with FEA. The structure must be discretized and the value of the degrees of freedom must
be calculated. This can be done as in the FEA, fulfilling the equilibrium equations.

Only solid representation of a structure analyzed with IGA will be described in this
thesis, and the discrete displacement vector is thus defined as

{d} = bua,b,c va,b,c wa,b,ccT , (3.77)

where a = 1, 2, · · · , ncp, b = 1, 2, · · · ,mcp and c = 1, 2, · · · , lcp is the numbering of control
points. The degrees of freedom are located in the control points and the formula

uj =
∑
a

∑
b

∑
c

Rp,q,r
a,b,cd

a,b,c
j (3.78)

gives the distribution of the displacements of the structure in terms of ξ, η and ζ. These
are the same NURBS basis functions used to describe the geometry in Section 3.2.

The Jacobian matrix for IGA is important to discuss. Since the matrix must be created
for each element, it is important to recognize which element the bandwidth of the NURBS
basis functions comprise when transforming the expression from physical to parametric
space, and then only include the NURBS basis functions relevant to the computation
of each element. These basis functions and their corresponding control points, can be
gathered in altered matrices, R̃ and P̃ . The Jacobian matrix for transformation from
physical to parametric space is then applied to these basis functions only.

A Jacobian matrix for transformation from parameter space to the parent element used
in Gauss integration also has to be constructed . The parent element compared to the
parameter space is illustrated in Figure 3.6. The figure shows that the elements in param-
eter space always are rectangular which implies that the Jacobian used in transformation
from parameter space to the parent element always is constant.
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Figure 3.6: Transformation from physical space through parameter space to parent element



Chapter 4

Governing Equations for Finite
Deformation Solids and Shells

The basic formulations of continuum mechanics have been used as foundation for this
chapter. Details can be found in [7].

4.1 Reference System
The description of motion for a particle in a solid structure can be described by the
Lagrangian description. The Lagrangian description refers the physical quantities to a
chosen reference configuration. All particles in a solid structure have a position denoted by
a vector of coordinates. The position of a particle in the initial configuration is denoted
{X} = bX Y ZcT . The coordinates are rectangular Cartesian coordinates. As the
solid structure deforms, the deformed configuration is obtained. For the particle described
above, the position vector in the deformed configuration is a function of the initial position
and the elapsed time:

{x} = {x(X, t)} = {X}+ {u(X, t)}, (4.1)

where {u(X, t)} = bu(X, t) v(X, t) w(X, t)cT is the translational displacements in
direction of the respective coordinates. For simplicity, (X, t) is usually not written.

4.2 Kinematics
The base of the global Cartesian coordinate system [11] consists of

{i1} =


1
0
0

 and {i2} =


0
1
0

 , {i3} =


0
0
1

 . (4.2)

The corresponding Cartesian coordinates, {x}, are expressed as

{x} = xi{ii}. (4.3)

27
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In the succeeding derivations, upper case letters refer to the undeformed configuration
and lower case letters to the deformed configuration. The derivations apply to both
configurations, but are only shown for the deformed configuration.

For a solid structure, the orthogonal Cartesian coordinate system is used both for the
global and the local bases. For a shell, referred to by the mid-surface of the structure, a
local basis using curvilinear coordinates is adequate to use [8]. The representation uses
the covariant and the contravariant bases, {gi} and {gi}, and the contravariant and the
covariant coordinates, θi and θi to express the position vector:

{x} = θi{gi} = θi{gi}. (4.4)

The covariant base vectors are defined as

{gi} =
{
∂x

∂θi

}
. (4.5)

The relation between the covariant and contravariant base vectors is defined by the Kro-
necker delta:

{gi} · {gj} = δji =

0 i 6= j,

1 i = j,
(4.6)

which implies {gi} ⊥ {gi}. For a surface, the third covariant base vector is always perpen-
dicular to {g1} and {g2} because it is the normal to the surface defined by the curvilinear
coordinates θ1 and θ2. {g3} is expressed by the formula for a vector perpendicular to two
others:

{g3} =
{
g1 × g2
|g1 × g1|

}
. (4.7)

Due to this definition
{g3} = {g3}. (4.8)

The change in the base vectors due to the deformation of the structure can be expressed
by the deformation gradient, [F ]. The deformation gradient expresses the change in
distance between two particles from the initial to the deformed configuration:

[Fij] = [F ] =


∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

 =


1 + ∂u

∂X
∂u
∂Y

∂u
∂Z

∂v
∂X

1 + ∂v
∂Y

∂v
∂Z

∂w
∂X

∂w
∂Y

1 + ∂w
∂Z

 (4.9)

and the relation between the base vectors in the initial and current configuration is

{gi} = [F ] · {Gi}, (4.10)
{gi} = [F ]−T · {Gi}. (4.11)

The definitions can be used to derive expressions for the infinitesimal volume and
surface elements for a shell. This will not be done in this thesis, details may be found in
[12].
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4.3 Strain Measures
Describing the strains in a solid structure can be done in several ways. No matter what
measure that is chosen, the strain measure must fulfil two conditions [13]:
− predict zero strains for arbitrarily rigid-body motions
− reduce to the infinitesimal strains if the nonlinear terms are neglected

In addition, it should go towards +∞ for "infinite stretching" and −∞ for "full compres-
sion".

The simplest strain measure, and most common for geometrically linear problems, is
the engineering strain:

[εE,ij] = [εE] =



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
0 ∂

∂z
∂
∂y

∂
∂z

0 ∂
∂x




u
v
w

 = [∂]{u} = [∂ijuj]. (4.12)

The engineering strain uses the initial configuration as reference configuration. Also the
logarithmic strain uses the initial configuration as reference configuration. The logarithmic
strain is the only strain measure that fulfils both the requirements and recommendations
given above. The relation between the engineering and logarithmic strain is

[εL,ij] = [εL] = [log(1 + εE,ij)]. (4.13)

The strain measure commonly used for finite strains is the Green strain. The Green
strain takes into account the finite deformations and gives a nonlinear relation between
the deformations and the strains, but it does not go towards −∞ for "full compression".
However, it has been shown to have small error if the strains are not too large [13]. The
Green strain may be expressed as

[εG,ij] = [εG] =

εGXX εGXY εGXZ
εGYX εGY Y εGY Z
εGZX εGZY εGZZ

 = 1
2
(
[F ]T [F ]− dIc

)
, (4.14)

with [F ] as in Equation (4.9). The uppercase indices indicate that the initial configuration
is the reference configuration. The Green strain matrix is symmetric hence the terms can
be expressed as:



εGXX
εGY Y
εGZZ
εGXY
εGY Z
εGZX


=



∂u
∂X

+ 1
2

[(
∂u
∂X

)2
+
(
∂v
∂X

)2
+
(
∂w
∂X

)2
]

∂v
∂Y

+ 1
2

[(
∂u
∂Y

)2
+
(
∂v
∂Y

)2
+
(
∂w
∂Y

)2
]

∂w
∂Z

+ 1
2

[(
∂u
∂Z

)2
+
(
∂v
∂Z

)2
+
(
∂w
∂Z

)2
]

1
2

(
∂u
∂Y

+ ∂v
∂X

)
+ 1

2

[(
∂u
∂X

) (
∂u
∂Y

)
+
(
∂v
∂X

) (
∂v
∂Y

)
+
(
∂w
∂X

) (
∂w
∂Y

)]
1
2

(
∂v
∂Z

+ ∂w
∂Y

)
+ 1

2

[(
∂u
∂Y

) (
∂u
∂Z

)
+
(
∂v
∂Y

) (
∂v
∂Z

)
+
(
∂w
∂Y

) (
∂w
∂Z

)]
1
2

(
∂w
∂X

+ ∂u
∂Z

)
+ 1

2

[(
∂u
∂Z

) (
∂u
∂X

)
+
(
∂v
∂Z

) (
∂v
∂X

)
+
(
∂w
∂Z

) (
∂w
∂X

)]



. (4.15)
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Another way of defining the Green strain is by the change of length of a material fibre
from the undeformed to the deformed configuration:

ds2 − ds2
0 = 2{dX}T [εG]{dX}. (4.16)

A strain measure that uses the current configuration as reference configuration is the
Almansi strain measure. This measure is on a similar form as the Green strain, but uses
as stated the current configuration as the reference configuration [14]:

[εA,ij] = [εA] = 1
2(I − FF T ). (4.17)

4.4 Stress Measures
There are multiple options when considering what stress measure to choose for a solid
structural problem [13]. An important requirement is that the stress and strain measure
must have the same reference state. The surface traction vector is defined as

{φ} =
{
dp

da

}
, (4.18)

where {p} is the forces acting on the surface and da is an infinitesimal surface element in
the current configuration.

The Cauchy stress tensor, [σ], also known as the true stress, uses the current con-
figuration as reference configuration. The definition of the Cauchy stress is obtained by
solving

{φ} = [σ]{n}, (4.19)
where {n} is the outward normal to the infinitesimal surface element da. This stress
measure is often used in combination with the logarithmic strain and it is energy conjugate
to the Almansi strain.

The 2nd Piola Kirchhoff (PK2) stress tensor is work conjugate to the Green strain
and relates the current force increment to the initial infinitesimal surface element, dA.
The transformation from the Cauchy stress to the PK2 stress tensor is defined through
Nanson’s formula:

[S] = J [F ]−1[σ][F ]−T , (4.20)
where J is the determinant of the deformation gradient given in Equation (4.9) and maps
a volume element from the initial to the current configuration:

dv = J dV. (4.21)

A stress tensor given by the product of the Cauchy stress and J , is the Kirchhoff stress
tensor :

[τ ] = J [σ]. (4.22)
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The stresses, now referred to as σ, can be divided into two parts; a deviatoric and a
hydrostatic part. The deviatoric part represents the stresses causing the structure to alter
its shape, whereas the hydrostatic stress component only changes the structures volume.
The definitions of the two components are given in Equations (4.23) and (4.24).

σh = 1
3σkk, (4.23)

σ′ij = σij − σhδij, δij =
{

1 i = j,
0 i 6= j.

(4.24)

The principal values of the stresses are calculated from the formula [15]

σ3 − I1σ
2 + I2σ − I3 = 0, (4.25)

where the three solutions, σ1, σ2 and σ3, of the third degree equation are the maximum,
medium and minimum principal stresses,

σ1 > σ2 > σ3, (4.26)

and I1, I2 and I3 are the stress invariants:

I1 = σkk, (4.27)

I2 = 1
2 (σiiσjj − σijσji) , (4.28)

I3 = 1
6 (σiiσjjσkk + 2σijσikσki − 3σijσijσkk) . (4.29)

4.5 Constitutive Relations
It has been assumed isotropy and homogeneity for the constitutive relations.

4.5.1 Elastic Material
For an elastic material the strain increment is completely elastic:

∆εij = ∆εeij + ∆εpij = ∆εeij, (4.30)

which means that all deformations are reversible. This implies that the incremental stress-
strain relation can be written as

∆σij = cijkl∆εij, (4.31)

and the total stress-strain relation as

σij = cijklεij. (4.32)
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Here, [σ], [c] and [ε] are defined as:

{σ} =



σxx
σyy
σzz
σxy
σyz
σzx


, [c] =



cxxxx cxxyy cxxzz cxxxy cxxyz cxxzx
cyyxx cyyyy cyyzz cyyxy cyyyz cyyzx
czzxx czzyy czzzz czzxy czzyz czzzx
cxyxx cxyyy cxyzz cxyxy cxyyz cxyzx
cyzxx cyzyy cyzzz cyzxy cyzyz cyzzx
czxxx czxyy czxzz czxxy czxyz czxzx


, {ε} =



εxx
εyy
εzz
εxy
εyz
εzx


.

(4.33)
For the linear elastic material, [c] is a function of the Young’s modulus, E, and the

Poisson ratio, ν, of the material:

[c] = [E] =



(1− ν)cY P νcY P νcY P 0 0 0
νcY P (1− ν)cY P νcY P 0 0 0
νcY P νcY P (1− ν)cY P 0 0 0

0 0 0 GY P 0 0
0 0 0 0 GY P 0
0 0 0 0 0 GY P


, (4.34)

where cY P and GY P are:

cY P = E

(1 + ν)(1− 2ν) , GY P = E

2(1 + ν) . (4.35)

4.5.2 Plastic Material
For a plastic material the stress increment has one elastic part and one plastic part. The
plastic part occurs when the total stress state increases beyond the yield limit of the
material. The stress increment can then be expressed in terms of the total and plastic
strain increment as

∆σij = cijkl(∆εij −∆εpij). (4.36)

For an elastic-plastic material there are three essentials to be considered when per-
forming a strength analysis, namely the yield criterion, the flow rule and the hardening
rule [16]. An elastic-plastic material can either be elastic-perfectly-plastic, which means
that the material does not harden when plastic loading occurs, or it can be associated
with either isotropic or kinematic hardening, or a combination of these. The hardening
rule determines the development of the yield surface when plastic flow occurs, and the
three cases are shown in Figure 4.1.

The yield function expressing the shape of the yield surface is called Y and is written
as

Y = Y ({σ}, {α},Wp) = 0, (4.37)

where {α} andWp denotes the kinematic and isotropic hardening parameters respectively.
{α} is a vector describing the translation of the yield surface as shown in Figure 4.1b and
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(a) No hardening (b) Kinematic hardening (c) Isotropic hardening

Figure 4.1: Hardening rules for elastic-plastic materials in two dimensions

Wp is the work done by the plastic flow to extend the yield surface as shown in Figure
4.1c.

In this thesis, the material model is assumed to follow the Johnson-Cook strength
constitutive law [17] which defines the yield stress as

σy = σ0

[
1 + AJC

σ0
pnJC

] [
1 +BJC log

(
ṗ

ṗ0

)]
[1− TmH ] . (4.38)

The middle and last brackets take into account the equivalent plastic strain rate and
temperature dependence of the material respectively. The equivalent plastic strain rate is
assumed to be constant and the temperature considered in this thesis is room-temperature
which implies that both these brackets can be neglected. The yield stress can then be
defined as

σy = σ0 + AJCp
nJC , (4.39)

where σ0 is the zero-plastic-strain yield strength, AJC is a strain hardening constant, p
is the equivalent plastic strain and nJC is a strain hardening exponent. The Johnson-
Cook model represents isotropic hardening which means that the yield function can be
expressed as

Y = σeq − σy(R), (4.40)
where R is defined by the last term in Equation (4.39), and the Johnson-Cook model
with constant strain rate and room temperature is thus shown to be a power law. The
equivalent stress is the magnitude of the stress state and can be defined by the yield
criterion of choice. The von Mises yield criterion has been chosen for this thesis and can
be expressed as

σeq =
√

3
2σ
′
ijσ
′
ij, (4.41)

where σ′ij is the stress deviator as given in Equation (4.24). p is defined as the integral of
the equivalent plastic strain rate [16],

p =
∫ t

0
ṗdt, (4.42)
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and the equivalent plastic strain rate may be defined as

ṗ =
√

2
3 ε̇

p
ij ε̇

p
ij. (4.43)

By the definitions of the von Mises stress and the equivalent plastic strain rate it is shown
that these variables posses definite positivity.

For an elastic-plastic material, the state of stresses may either be on the yield surface
or inside its boundary. It is physically impossible to create a stress state that lies outside
the yield surface because the stresses will redistribute. This implies that when an elastic-
plastic material is plastically loaded, the change in the yield function must remain zero,

dY = 0. (4.44)
For a material employing the von Mises yield criterion, the expression for a plastic strain
increment is

dεpij = ∂Y

∂σij
dλ, (4.45)

where λ is the plastic multiplier. This property is derived from an associated flow rule,
which means that the yield function is the flow rule. These properties are utilized to be
able to find an expression for cijkl, and thus to determine the magnitude of the stress
increment. This will be further discussed in Section 5.3.

4.6 Equilibrium Equations
The equilibrium equation can be obtained in several manners and have varying form.
Here both the strong and weak form of the equilibrium equation will be discussed.

4.6.1 Strong Form
The strong form of the equilibrium equation is derived from the equilibrium of traction
and body forces. The sum of the moments they produce must be equal to zero for a solid
structure at rest: ∫

Ã
{Φ}dÃ+

∫
Ṽ
{Ω}dṼ = {0}, (4.46)

where {Φ} and {Ω} is the traction and body forces respectively. dÃ and dṼ represent the
infinitesimal surface and volume element of the structure at the reference configuration
of choice 1. The divergence theorem [18] can be used to show that∫

Ṽ
div{σ}+ {Ω}dṼ = {0}, (4.47)

which has to hold for any arbitrary volume element dṼ . Thus:
div{σ}+ {Ω} = 0. (4.48)

This form of the equilibrium equation can in general not be solved exactly, hence dis-
cretized methods as described in this theses may be adequate to use.

1The reference configuration for the forces and geometry elements must coincide.
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4.6.2 Weak Form
The weak form of the equilibrium equation means that the equilibrium is not satisfied
point-wise in the structure, but in an integral form only. This is often the case with
discretized structures. In this thesis the principle of virtual displacements 2 will be applied
to derive an equilibrium equation. The principle of virtual work indicates that the sum
of the internal and external virtual work has to cancel each other out:

δWint + δWext = 0. (4.49)

The internal virtual work is the work done by the stresses in the structure when an
infinite virtual displacement is applied. The external virtual work is the work done by the
applied forces and the body forces due to the applied infinite virtual displacement. The
equations applies to every reference configuration chosen (this will be further discussed
in the following sections). Here, both the use of the initial and current configuration as
the reference configuration is shown. This is done by implementing the Cauchy stress and
the true strains and the 2nd Piola Kirchhoff stress and the Green strain respectively:

∫
v
{δε}T [σ] dv =

∫
v
{δu}T{ω} dv +

∫
a
{δu}T{φ} da, (4.50)∫

V
{δεG}T [S] dV =

∫
V
{δu}T{Ω} dV +

∫
A
{δu}T{Φ} dA. (4.51)

4.7 Variational Description for Finite Deformation
Theory in this section has been compiled from [11].

Total Lagrangian

Measures using the Total Lagrangian (TL) formulation as basis uses the initial configu-
ration as reference configuration. The strain measure normally associated with the TL
formulation is the Green strain, and the stress measure the PK2 stress tensor. With this
formulation, the increments in both strains and stresses are simply the difference between
the current and next configuration:

{dεn+1
G } = {εn+1

G } − {εnG}, (4.52)
[dSn+1] = [Sn+1]− [Sn], (4.53)

where
[dSn+1] = {dεn+1

G }[CT ] (4.54)

as in Section 5.3.
2The symbol δ will be used to indicate virtual quantities.
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Updated Lagrangian Formulation

The Updated Lagrangian formulation (UL) uses the current configuration as reference
configuration. The total strains and stresses are hence the true strains and the Cauchy
stresses, assumed that the deformations from one configuration to the next are small.
However, the strain increments must be expressed as the Green strain and PK2 stress
with the current configuration as reference configuration because the UL formulation does
not take into account geometric stiffness effects. The incremental stress-strain relation
then becomes

[dSn+1
n ] = {dεn+1

G,n }[CT ], (4.55)
where the lower index n indicates that S and εG is referred to the current configuration.
The total stress is the Cauchy stress 3 from the previous configuration added to the stress
increment:

[Sn+1
n ] = [σn] + [dSn+1

n ]. (4.56)
Malvern [11] states that this stress measure is approximately equal to the Cauchy stress
measure with the configuration n + 1 as reference, and transformation from the PK2 to
the Cauchy stress tensor is therefore not necessary:

[Sn+1
n ] ≈ [σn+1]. (4.57)

4.8 Finite Element Equations
Theory in this section is compiled from [7].

4.8.1 Finite Element Formulations for the Total Lagrangian For-
mulation

The strain and stress measures for a TL formulation can be expressed as:

{S} = bSXX SY Y SZZ SXY SY Z SZXcT , (4.58)
{εG} = bεGXX εGY Y εGZZ 2εGXY 2εGY Z 2εGZXcT . (4.59)

The doubling of the shear components is done to enable this formulation.
The following steps are done to derive an expression for the element stiffness matrices;

the material stiffness [KAB
M ] and the geometric stiffness [KAB

G ]. The indices AB denotes
the stiffness in node A due to the influence from node B.

The material stiffness of an element is derived from the expression for internal virtual
work in Equation (4.51) and may also be called the elastic stiffness. The integrand can
in combination with Equations (4.58) and (4.59) be expressed as

δεG,IJSIJ = {δεG}T{S}. (4.60)
3It has been chosen not to include lower indices for the Cauchy stress tensor because the Cauchy stress

measure implies that it is the current configuration that is referred to, and this is shown by the upper
index.
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By combining Equations (4.9) and (4.15), the variation of the Green strain can be ex-
pressed as

{δεG} =



FiXδui,X
FiY δui,Y
FiZδui,Z

FiXδui,Y + FiY δui,X
FiY δui,Z + FiZδui,Y
FiZδui,X + FiXδui,Z


. (4.61)

Solid elements

For an element with three degrees of freedom in each node, the variation of the Green
strain in matrix form can in combination with the definition of the displacements as in
Equation (2.3) for the traditional FEA be expressed as

{δεG} =



FxXNA,X FyXNA,X FzXNA,X

FxYNA,Y FyYNA,Y FzYNA,Y

FxZNA,Z FyZNA,Z FzZNA,Z

FxXNA,Y + FxYNA,X FyXNA,Y + FyYNA,X FzXNA,Y + FzYNA,X

FxYNA,Z + FxZNA,Y FyYNA,Z + FyZNA,Y FzYNA,Z + FzZNA,Y

FxZNA,X + FxXNA,Z FyZNA,X + FyXNA,Z FzZNA,X + FzXNA,Z



δDA

x

δDA
y

δDA
z



= [B̂A]{δDA}. (4.62)

The difference for the isogeometric concepts only includes substitution of the interpolation
functions with the basis functions, Rp,q,r

a,b,c . For all definitions, it is important to have control
over which space the functions are defined in. The NURBS basis functions are defined
in the parameter space, hence the Jacobian matrix must also be included. By expressing
the stresses in terms of strains and the tangential material matrix, see Equation (5.33),
the material stiffness matrix may be obtained by the formula

[
KAB

M

]
=
∫
V

[B̂A]T [CT ][B̂B] dV. (4.63)

The formula for the geometric stiffness matrix is given as
[
KAB

G

]
= KAB

G dIc where dIc = d1ABc and KAB
G =

∫
V
NA,ISIJNB,J dV. (4.64)

The resulting stiffness matrix is called the tangent stiffness matrix:[
KAB

T

]
=
[
KAB

M

]
+
[
KAB

G

]
, (4.65)

and is the derivative of the internal forces w.r.t. the displacements:

[
KAB

T

]
=
[
∂Rint

A

∂DB

]
. (4.66)
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In addition, if the external forces are non-conservative, the tangent stiffness also includes
a term derived from the derivative of the external forces with respect to the displacements:

[
KAB

T

]
=
[
−∂R

res
A

∂DB

]
=
[
∂Rint

A

∂DB

]
−
[
∂Rext

A

∂DB

]
=
[
KAB

M

]
+
[
KAB

G

]
+
[
KAB

l

]
, (4.67)

where the external forces are expressed as4

{Rext
A } =

∫
V

[NA]T{Ω} dV +
∫
A

[NA]T{Φ} dA. (4.68)

The internal forces are expressed as{
Rint
A

}
=
∫
V

[B̂A]T{S} dV. (4.69)

An advantage of this formulation is that the derivation of the tangent stiffness matrix
is straight forward. However, [B̂A] is full and therefore much more comprehensive than
for a linear formulation. It is desirable to obtain a strain-displacement matrix that is as
simple as possible to reduce computational time, since this computation must be done for
each node in each element.

Shell elements

The definition of the deformation of shell elements, differs some from the solid definition,
as shown in Equation (2.10). Equation (4.61) will in addition to the translational degrees
of freedom include the rotational degrees of freedom and will make the expression for the
variation of the Green strain far more complex. The details of the derivation may be
found in [5], but also culminates in

{δεG} = [B̂A]{δDA}, (4.70)

however, now with more complex elements of [B̂A].

4.8.2 Finite Element Formulation in the Current Configuration
To derive the element stiffness matrices with the current configuration as reference, all
the terms referred to the initial configuration must be transformed to refer to the current
configuration. This includes the stresses, strains and integrals.

The transformation from initial to current configuration is done by the chain rule:

∂( · )
∂XI

= ∂( · )
∂xi

∂xi
∂XI

= ∂( · )
∂xi

FiI , (4.71)

and the relation between a volume element in the current and initial configuration is as
given in Equation (4.21).

4The integration surface also includes the shell edges. This applies to all surface integrals unless other
is stated.
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The push forward of the variation of the strains is used to derive the expression for the
strains in current configuration:

δEIJ = 1
2 (δui,j + δuj,i)FiIFjJ = δεijFiIFjJ . (4.72)

By this equation it is shown that the strain in deformed configuration, εij, is in the same
form as the engineering strain with respect to the updated coordinates. This means that
{δε} = bδεxx δεyy δεzz 2δεxy 2δεyz 2δεzxcT can be expressed as

{δε} = [BA]{δDA}. (4.73)

Solid elements

For solid elements [BA] is identical to the small deformations strain-displacement matrix:

[BA] =



NA,x 0 0
0 NA,y 0
0 0 NA,z

NA,y NA,x 0
0 NA,z NA,y

NA,z 0 NA,x


. (4.74)

Also for the current configuration, the interpolation functions are substituted with the
NURBS basis functions to represent an isogeometric formulation.

The material stiffness is derived from the incremental form of the equilibrium equation
given in Section 4.6.2, where the stress increment is as in Equation (4.54) and the volume
transformation as in Equation (4.21). This gives:∫

V
δEIJCIJKL∆EKL dV =

∫
V
δεijFiIFjJCIJKLFkKFlL∆εkl dV =

∫
v
δεijcijkl∆εkl dv,

(4.75)
where

cijkl = 1
J
FiIFjJFkKFlLCIJKL. (4.76)

By substituting the expression for the strains and writing the equation on matrix form,
the expression for the material stiffness is obtained:[

KAB
M

]
=
∫
v
[BA]T [cT ][BB] dv. (4.77)

The geometric stiffness is obtained by transforming Equation (4.64):[
KAB

G

]
= KAB

G dIc, (4.78)

where

KAB
G =

∫
V
NA,ISIJNB,J dV =

∫
V
NA,iFiIJ

1
FiIFjJ

σijNB,jFjJ dV =
∫
v
NA,iσijNB,j dv.

(4.79)
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The internal forces are expressed as{
Rint
A

}
=
∫
v
[BA]T{σ} dv. (4.80)

The total tangential stiffness matrix does also in the current configuration include the
stiffness component due to follower forces:

[
KAB

T

]
=
[
−∂R

res
A

∂DB

]
=
[
∂Rint

A

∂DB

]
−
[
∂Rext

A

∂DB

]
=
[
KAB

M

]
+
[
KAB

G

]
+
[
KAB

l

]
, (4.81)

where the external forces are expressed as

{Rext
A } =

∫
v
[NA]T{ω} dv +

∫
a
[NA]T{φ} da. (4.82)

As mentioned in the previous section, a simple form of the strain-displacement ma-
trix is desirable. For a formulation in the current configuration, the strain-displacement
matrix, [BA], has a simple form, in fact it is identical to the small deformations strain-
displacement matrix which means that half of its entries are zero, and hence can be
neglected in a product including this matrix. This is utilized when computing the tan-
gential stiffness matrix and the internal forces and reduces the computational time, and
thus the cost of the analysis. A disadvantage with this approach is that the tangential
material matrix must be transformed to the current configuration for each node, each
increment and each iteration.

Shell elements

The definition of the deformation of shell elements given in Equation (2.10) gives the
expression for [BA] [5]

[BA] =

Γ 0 0
0 Γ 0
0 0 Γ





NA,ξ 0 0 −ζtANA,ξl2A/2 ζtANA,ξl1A/2
NA,η 0 0 −ζtANA,ηl2A/2 ζtANA,ηl1A/2

0 0 0 −tANAl2A/2 tANAl1A/2
0 NA,ξ 0 −ζtANA,ξm2A/2 ζtANA,ξm1A/2
... ... ... ... ...
0 0 0 −tANAn2A/2 tANAn1A/2


, (4.83)

with [Γ] as in Equation (2.20).



Chapter 5

Solution of Finite Element Analyses

The solution of a FEA is obtained by solving the equilibrium equations from Section 4.6
with respect to the unknown displacements. Both the internal forces and the tangent
stiffness matrix are expressed as in Section 4.8. The global matrices are assembled in a
standard manner according to a connectivity table.

For a linear analysis, the solution can be found directly, solving the system stiffness
relationship:

[K]{D} = {R} → {D} = [K]−1{R}, (5.1)

{R} being the external forces and [K] the stiffness matrix. A nonlinear analysis must
solve the nonlinear equations

{Rres} = {R} = {Rext} − {Rint}. (5.2)

The iterative expression may be obtained through a Taylor series expansion, see Section
5.1, of the equilibrium equations:{

Ri
n

}
=
[
Ki

Tn

] {
∆Di

n

}
. (5.3)

As mentioned in Section 4.8 it is important to recognize which space the matrices are
assembled in. The transformation between the spaces is different from the traditional
FEA to the IGA. To be able to numerically integrate the integrals containing [B̂A] in
an IGA both the transformation from the physical to the parameter space, and also
the transformation from the parameter space to the parent element must be taken into
account. This will include two Jacobian matrices. These integrals can be solved using
the Gauss quadrature rule [5] for solid elements and the Simpson’s rule in the thickness
direction for shell elements. The number of quadrature points utilizing Gauss’ quadrature
is usually p+1 within each knot in each direction. However, ongoing research is currently
trying to discover the most efficient numerical rules. Hughes, Reali and Sangalli [19] give
one example; the "half-point" rule. For a traditional FEA only the transformation from
the physical space to the parameter space is present because the parameter space defines
the parent element.

41
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5.1 Newton-Raphson
To derive the formula for a Newton-Raphson incremental-iterative solution procedure, the
Taylor series expansion of a function f = 0 about a point xi+1 must be shown:

fi+1 = f(xi+1) = fi +
(
df

dx

)
i

∆x+
(

1
2
d2f

dx2

)
i

(∆x)2 + h.o.t = 0. (5.4)

The equation is on residual form and is linearized so that

fi = −
(
df

dx

)
i

∆xi+1 = −
(
df

dx

)
i

(xi+1 − xi), (5.5)

xi+1 = xi + fi(
df
dx

)
i

. (5.6)

With this simplification the nonlinear equation as functions of x is transformed to a
linear equation as functions of the correction of x, ∆x. The residual is the difference
between fi+1, which is assumed to be in equilibrium with x, and the current iteration,
fi. The solution of each increment will combined result in the equilibrium path. For an
unconditionally increasing equilibrium path, the Newton-Raphson method is stable, but it
is not capable of tracing the equilibrium path beyond critical points, unless an increment
control, like the arc-length methods described in Section 5.5, is adopted. In general the
residuals will never be exactly equal to zero and a convergence criterion is necessary to
determine when to end the iteration process. Different convergence criteria are presented
in Section 5.6.

There are several versions of the Newton-Raphson method available. For a full Newton-
Raphson analysis, the term (df/dx)i is updated at every increment, and the method is
consequently suitable for highly nonlinear problems which include large changes in incline
of the equilibrium path. This is computationally expensive, but the method has quadratic
convergence rate. A modified Newton-Raphson method updates the mentioned term only
a given number of times. The initial stiffness method never updates the term after it
is assembled initially, whereas the most commonly used modified method updates the
term once per increment. By never updating the term the computational expenses are
reduced, but the method may often lead to slow convergence rates, hence it is only suitable
for mildly nonlinear problems. By updating the term once, a faster convergence rate is
obtained.

5.2 Numerical Integration
The integrals in the equilibrium equations may be solved by a numerical integration
rule. Two rules will be described in this thesis; Gauss’ quadrature rule and Simpson’s
rule. Gauss’ quadrature rule is the most common numerical integration rule, whereas
Simpson’s rule is often used if the values of the variables are required on the borders of
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the element integrated. Gauss’ quadrature rule [5] solves the integrals by the formula

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
Φ(ξ, η, ζ) dξdηdζ ≈

∑
i

∑
j

∑
k

WiWjWkΦ(ξi, ηj, ζk). (5.7)

Here I represents the solution of the integral, Wi, Wj and Wk are weight factors and
ξi, ηj and ζk are the sampling point locations. The sampling points are located using
different fractions of the element size, and are never located at the outermost surfaces of
an element. As a consequence, the highest values of for instance plastic strain, may not
be detected as this often is located furthest away from the neutral axis of an element.
Whether the expression is integrated with full or reduced integration is determined by
the analyst. Simpson’s rule [20] divides the integral into n equally sized subdivisions, n
being an even number, and is used in the through thickness direction in the integration
of shells in this thesis. The approximation of the integral is

I =
∫ 1

−1
Φ(ζ) dζ ≈ h

3 [Φ0 + 4Φ1 + 2Φ2 + 4Φ3 + 2Φ4 + · · ·+ 2Φn−2 + 4Φn−1 + Φn] , (5.8)

where
h = ζk − ζk−1. (5.9)

5.3 Return Mapping
For elastic-plastic materials, a fundamental problem occurs when strains and stresses are
to be updated; how much of the strain increment is elastic and how much is plastic? To be
able to determine the ratio between the two, a return mapping algorithm can be applied.

Starting from the last known converged solution, the increment in the displacements
is obtained by the equation

[KT,n−1]{∆Dn} = {Rres
n } , (5.10)

where the residual force vector is

{Rres
n } =

{
Rext
n

}
−
{
Rint
n−1

}
=
{
Rext
n

}
−

Nels∑
e=1

{
rintn−1

}
e
, (5.11)

and the expressions for [KT,n−1] and
{
rintn−1

}
depend on the reference configuration chosen

and can be found in Section 4.8. e refers to the element number and Nels is the total
number of elements. The strain increment is computed at each integration point in each
finite element and is obtained from

{∆εn} = [B̃a,n−1]{∆dan}, (5.12)

where [B̃a,n−1] also depends on the reference configuration chosen and can be found in
Section 4.8.

There are four possible stress state changes for an incremental step as shown in Figure
5.1 [21].
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(a) Purely elastic (b) Elastic unloading

(c) Partially plastic (d) Purely plastic

Figure 5.1: Stress increment options

5.3.1 Increment from Elastic Stress State
For the last known converged solution, henceforth called A, there are two possibilities as
to which stress state the material is in, either elastic or plastic. If A is in the elastic range,
hence Y < 0, a first trial increment is assumed to be entirely elastic, bringing the stress
state to B. The trial stress is then obtained from

{σ}trial = {σ}A + {∆σ}AB = {σ}A + [E]{∆ε}AB. (5.13)

[E] is the elastic material matrix from Equation (4.34). For the trial stress, the yield
criterion must me controlled. If Y < 0, the strain increment is purely elastic and {σ}B =
{σ}trial, as shown in Figure 5.1a. This also applies if the increment is in the direction of
unloading. If Y > 0, the strain increment is partially plastic and the fraction, β, of the
strain increment that is elastic has to be determined, as shown in Figure 5.1c. The stress
increment is now reduced so that the stress state lies on a point C on the yield surface.
β is found by solving the yield criterion:

YC = Y ({σ}C) = 0, (5.14)

where
{σ}C = {σ}A + β{∆σ}AB = {σ}A + β[E]{∆ε}AB. (5.15)
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The first approximation of β is chosen to be

β ≈ YA
YA − Ytrial

= β1. (5.16)

To provide more accurate solutions a secant iteration as shown in Figure 5.2 may be used,
which results in the iterative β-values:

βi+1 = βi −
YCi

∆YCi/∆β
,

∆YCi
∆β = YC(i−1) − YCi

βi−1 − βi
. (5.17)

With the constitutive relations given in Section 4.5.2, the equation system to solve is

Figure 5.2: Secant iteration

then:

{σ}Ci = {σ}A + βi[E]{∆ε}AB, (5.18)
pCi = pA + (1− βi){∆ε}AB, (5.19)
YCi = σeq({σ}Ci)− (σ0 + AJCp

nJC
Ci ). (5.20)

pA is the equivalent plastic strain stored in the element in stress state A. The iterations
are terminated with an appropriate convergence criterion.

5.3.2 Increment from Plastic Stress State
This state is depicted in Figure 5.1d. To determine the size of the plastic strain increment,

{∆εp}AB =
{
∂Y

∂σ

}
∆λp, (5.21)

the size of the plastic multiplier, ∆λp, must be determined. This is done using the property
given in Equation (4.44) combined with the definition of the yield function from Section
4.5.2 which gives:

dY =
{
∂Y

∂σ

}T
{dσ}+ ∂Y

∂Wp

dWp = 0. (5.22)
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Further calculation gives expression for bP λc which relates the plastic multiplier to the
total strain increment:

∆λp = bP λc{∆ε}AB, (5.23)

bP λc =

{
∂Y
dσ

}T
[E]{

∂Y
dσ

}T
[E]

{
∂Y
dσ

}
− ∂Y

dWp
{σ}T

{
∂Y
dσ

} . (5.24)

As initial step, bP λc is evaluated at A. If then ∆λp < 0, the increment equals elastic
unloading and the stress at B is

{σ}B = {σ}A + [E]{∆ε}AB. (5.25)

On the other hand, if ∆λp > 0, the increment is entirely plastic and the development
of the yield surface must be taken into account. The plastic strain increment is then
expressed as

{∆εp}AB =
[
(1− γ)

{
∂Y

∂σ

}
A

bP λcA + γ

{
∂Y

∂σ

}
B

bP λcB
]
{∆ε}AB (5.26)

The value of γ is chosen by the analyst. For γ = 0 the method results in forward Euler,
for γ = 1 the result is backward Euler. To improve the result, the above equation is
implemented in predictor-corrector form:

{∆εp}AB1 =
{
∂Y

∂σ

}
A

bP λcA{∆ε}AB, (5.27)

{∆σ}AB1 = [E] ({∆ε}AB − {∆εp}AB1) , (5.28)
{σ}B1 = {σ}A + {∆σ}AB1. (5.29)

These values are used to determine a new value of bP λc = bP λcBi which then is used to
calculate new values of the stress:

{∆εp}ABi =
{
∂Y

∂σ

}
Bi

bP λcBi{∆ε}AB, (5.30)

{∆σ}ABi = [E] ({∆ε}AB − {∆εp}ABi) , (5.31)
{σ}Bi = {σ}A + {∆σ}ABi, (5.32)

[cTBi] = [E]
(
dIc −

{
∂Y

∂σ

}
Bi

bP λcBi
)
. (5.33)

The form of the material tangent matrix is equal to the linear material matrix:

[cT ] =



cTxxxx cTxxyy cTxxzz 0 0 0
cTyyxx cTyyyy cTyyzz 0 0 0
cTzzxx cTzzyy cTzzzz 0 0 0

0 0 0 cTxyxy 0 0
0 0 0 0 cTyzyz 0
0 0 0 0 0 cTzxzx


. (5.34)
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5.4 Imposing Constraints
There are several possibilities when imposing constraints, each with its pros and cons.
The three most commonly used methods of imposing constraints are by transformation,
by Lagrange multipliers and by penalty functions [22].

5.4.1 Transformation
When using transformation to impose constraints, the nodes chosen as slave nodes are
eliminated by rearranging the order of the degrees of freedom and making the slave nodes
dependent on the master nodes. When a node is shared by more than two elements, the
node chosen as slave node may only be slave of one other node. A node may be master
node for several slave nodes, and a node may be master to a slave node which acts as a
master node in relation to a third node. The relations described above can be explained
by help of Figure 5.3. Node A1 may be master for both A2 and A3, or it may be master

Figure 5.3: Examples of constraint relations

for A2 that is master for A3. It is important to notice that both A1 and A2 can not be
master for A3. A master node is a node where the degrees of freedom are not constrained.

Generally the constraint equation yields

{C} = [G]{D} − {Q} = {0} ⇔ [G]{D} = {Q}. (5.35)

[G] is a matrix containing the constraint gradient coefficients of the constraint equations.
The size of [G] is nc × ndof where nc is the number of constraint equations and ndof
is the number of degrees of freedom included in the constraint equations. {Q} is a
vector containing constants. When the degrees of freedom are arranged according to the
slave/master-distribution ({Ds} and {Dm}), and the new vector of degrees of freedom is
inserted into the global equation,

[K]{D} = {R}, (5.36)

the new equation yields
[K∗mm]{Dm} = {R∗m} , (5.37)
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where m denotes the features related to the master nodes and

[K∗mm] =
[

I
−G−1

s Gm

]T
[K]

[
I

−G−1
s Gm

]
and (5.38)

{R∗m} =
[

I
−G−1

s Gm

]T (
{R} − [K]

{
0

G−1
s Q

})
. (5.39)

The constraints imposed by transformation in this thesis will only be linear, hence,
only linear constraints will be described.

In FE programs, the constraints are imposed on element level, thus, the equations
described above will be local to each element. The equilibrium equation will as an example
yield

[k∗mm]{dm} = {r∗m} . (5.40)

5.4.2 Lagrange Multipliers
The general constraint equation given in Equation (5.35) also applies for the method of
Lagrange multipliers. However, the constraints are imposed by augmenting the potential
energy with the energy from the constraints:

Π∗p = Πp + {λ}T{C}. (5.41)

Because the Lagrange multiplier method imposes the constraints exactly, the potential
energy remains constant due to {C} = {0}. The initial potential energy is expressed as

Πp = 1
2{D}

T [K]{D} − {D}T{R}, (5.42)

and by making the potential energy stationary, the relations below are derived:

[K]{D}+ [G]T{λ} = {R}, (5.43)
[G]{D} = {Q}. (5.44)

The matrix form of the equations yield[
K GT

G 0

]{
D
λ

}
=
{
R
Q

}
. (5.45)

The method of imposing constraints described above only applies to linear constraints. If
the constraints are nonlinear, the constraint equations must be stated on incremental form,
and the product of the matrices containing the multipliers and the constraint gradients
is added to the internal force vector.

An advantage of imposing linear constraints with Lagrange multipliers in contrast to
transformations is that the stiffness matrix is not altered. This saves computational time.
Another advantage is that the linear constraints are imposed exactly, which eliminates a
possible source of error, and that the Lagrange multipliers can be interpreted physically,
e.g. as the forces necessary to obtain the constraints. Also for a static nonlinear analysis
the displacement constraints will be satisfied exactly.
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5.4.3 Penalty Functions
As for the Lagrage multiplier method, the penalty functions augment the potential energy:

Π∗p = Πp + 1
2{C}

T dαc{C}, (5.46)

where dαc is the diagonal matrix containing the penalty numbers. The penalty numbers
determines the magnitude of the penalty if the constraint is violated. Making the potential
energy stationary gives the expressions

[K∗] = [K +GTαG], (5.47)
{R∗} = {R+GTαQ}, (5.48)

and the equation
[K∗]{D} = {R∗} (5.49)

needs to be solved. An advantage of the penalty method is that is does not introduce
additional unknowns, as the Lagrange multipliers do. However, by defining the penalty
numbers with too high value, ill-conditioning may occur, and it is the analyst responsibility
to determine the values. On the other hand, if the penalty numbers are too low, the
constraint will not be satisfied sufficiently.

5.5 Arc-Length Methods
An arc-length method is a method used to trace the equilibrium path by controlling the
load and displacement increments. The need for incremental control may occur if the
equilibrium path includes critical points such as limit, bifurcation, turning and/or failure
points as shown in Figure 5.4a. Critical points are characterized either by singular tangent
stiffness matrix, vertical tangent or a sudden stop of the equilibrium path. In such cases,
a solution algorithm without incremental control will not be able to follow the equilibrium
path, and problems like snap-through may occur as shown in Figure 5.4b.

Arc-length methods require an additional unknown, ∆λ, and an additional constraint
equation to determine the expression for the arc-length l. The basis of the constraint
equation are the vectors {Z} = {λ, {D}} and {Z̄}. {Z} represents the converged solution
whereas {Z̄} is the tangent to an increment solution which varies with the type of arc-
length method used. The constraint equation and expression for the arc length are:

{C(∆Z)} =
{
C(∆λ,∆{D}T )

}
= 0, (5.50)

l2 = {∆D}T{∆D}+ ψ2∆λ2. (5.51)

ψ may vary from 0 to ∞, where ψ = 0 results in displacement control and ψ =∞ results
in load control. This constant is included to determine the ratio of load/displacement in
the increment control and to transform the term ψ2∆λ2 to the same denomination as the
degrees of freedom. The different steps in an analysis using incremental control are shown
in Figure 5.5. In the predictor step the load and/or displacement increment is prescribed
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(a) Critical points of an equilibrium path (b) Example of solution obtained with
solution algorithm without incremental control

Figure 5.4: Equilibrium path

Figure 5.5: Steps in analysis with incremental control

such that
{
Z0
n

}
=
(
λ0
n, {D0

n}
)T

. The increment is added to the last known converged so-
lution on the equilibrium path, {Zn−1} = (λn−1, {Dn−1})T . The correction phase consists
of Newton-Raphson iterations, see Section 5.1, to solve the force-displacement equations
given in Section 4.8 on incremental form and with an augmented tangent stiffness matrix:[

K̂Tn

] {
∆Zi

n

}
=
{

∆Ri
n

}
and

{
C(Zi

n)
}

= 0, (5.52)[
K̂Tn

]
=
[
K̂T (Zi−1

n )
]

=
[{
∂Rint(Zi−1

n )
∂λ

}{
∂Rint(Zi−1

n )
∂D

}]
, (5.53){

∆Ri
n

}
=
{
Rext(Zi−1

n )
}
−
{
Rint(Zi−1

n )
}
. (5.54)

There are several possible formulations for arc-length methods. A selection of them is
described below and shown in Figure 5.6.
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Figure 5.6: Arc-length methods

Theory is taken from [23].

5.5.1 Normal Plane Arc-Length Method
In the normal plane (NP) arc-length method the arc-length is the distance from the last
converged solution, {Zn−1}, to the normal plane of the tangent solution from {Zn−1}.
The constraint is expressed as

{
Z̄n−1

}T {
Zi
n −Zn−1

}
− l = 0, (5.55)

where {Z̄n−1} is the tangent to the equilibrium path at point n− 1. The vectors include
values of ∆λ and {∆D} which make it possible to control these quantities.

The NP arc-length method may also be updated (UNP) which means that the normal
plane at all times is normal to the tangent to the equilibrium path at the i’th iteration at
point n. The constraint will for the UNP method be defined as

{
Z̄
i

n

}T {
Zi
n −Zn−1

}
− l = 0. (5.56)

5.5.2 Spherical Arc-Length Method
In a spherical arc-length method, the iteration path is a sphere. The constraint equation
is expressed as {

Zi
n −Zn−1

}T {
Zi
n −Zn−1

}
− l2 = 0. (5.57)

The constraint leads to a quadratic expression for ∆λ. The ∆λ giving a positive angle of
rotation is the one chosen [24]. This requirement is stated to avoid doubling back of the
solution.
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5.5.3 Cylindrical Arc-Length Method
For a cylindrical arc-length method the iteration path follows a cylinder parallel to the λ-
axis. The outline of the cylinder coincides with the tangent solution from the last known
converged solution. The constrain equation is:{

Di
n −Dn−1

}T {
Di

n −Dn−1
}
− l2 = 0. (5.58)

The constraint equation can be explained by an example consisting of two degrees of
freedom as shown in Figure 5.7. The equation for a circle is shown in Figure 5.7a and is
independent of the load parameter.

(a) Equation for circle (b) Example of analysis with two degrees of
freedom

Figure 5.7: Explanation of constraint equation for cylindrical arc-length method

The cylindrical arc-length method is a displacement control method (ψ = 0) which
means that the analyst does not have any control of the size of the load increment.
Methods such as this are not able to trace the equilibrium path beyond turning points
and the analyst must therefore assume that the equilibrium path has traceable geometry.
This can be seen from Figure 5.6: if the tangent had started before the turning point, the
vertical outline of the cylinder would not have crossed the equilibrium path.

5.6 Convergence Criteria
A convergence criterion is used to determine how close to the equilibrium path an iterated
solution lies. When the solution fulfils the specified convergence criteria, the iterations
are stopped and the solution is said to be converged. It is important that the convergence
criteria are neither too loose nor too tight. If the criteria are too loose the results may
be inaccurate, but if the criteria are too tight the analysis may be uneconomical due
to too many iterations. Convergence criteria can be based on different parameters, but
the most commonly used are displacements, residual forces and energy. In general, it is
recommended that a convergence criterion consisting of a combination of these parameters
are used.
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The total value of a vector, ‖{Ai+1}‖, consisting of ndof entries at increment n and
iteration i is given as

‖{Ai+1
n }‖ = 1

ndof

√√√√ndof∑
k=1

Ai+1
k (5.59)

Theory in this section is taken from [11] and [23].

5.6.1 Displacement Based Convergence Criterion
For a convergence criterion based on displacements, the displacement increment is com-
pared to the total displacements. It is only the translational degrees of freedom that
are taken into account when applying a displacement based convergence criterion. The
criterion may be expresses as

‖{Di+1
n }‖ − ‖{Di

n}‖ ≤ εD‖{Di+1
n }‖ (5.60)

where εD is a constant chosen by the analyst and normally ranges from 10−2 to 10−6. A
displacement based convergence criterion may mislead to a slow convergence rate and is
in general not advisable, at least not alone.

5.6.2 Residual Force Based Convergence Criterion
The formulation of a residual force based convergence criterion is similar to the displace-
ment based criterion. The increment in the residual forces is compared to the size of the
residual forces at increment i + 1.. As for the displacement criterion, the residual force
criterion may be expressed as

‖{Ri+1
n }‖ − ‖{Ri

n}‖ ≤ εF‖{Ri+1
n }‖. (5.61)

It is only the force components that are taken into account when calculating ‖{Rn}‖. εF
is usually in the range 10−1 to 10−3. Contrary to the displacement based convergence
criterion, the residual force based criterion usually produces a far more reliable result
because it directly controls the equilibrium of the forces.

5.6.3 Energy Based Convergence Criterion
A combination of the displacement and residual force based convergence criteria is the en-
ergy based criterion. This combines both the displacement and residual increments so that
the convergence criterion is expressed as the work done over the iterative displacements:

{∆Ri+1
n }T{∆Di+1

n } ≤ εE{∆R0
n}T{∆D0

n}. (5.62)

With this formulation both the translations and the rotational degrees of freedom are
taken into account and combined with the force and moment components respectively.
εE is usually in the range 10−2 to 10−4.
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5.7 Analysis with both Material and Geometric Non-
linearity

For an analysis with elastic-plastic material and large deformations, nonlinearity is in-
duced both by the material and the geometry. This implies that return mapping, solved
by Newton-Raphsons method, must be used to determine the plastic part of the strain
increments, and Newton-Raphsons method must also be applied to solve the nonlinear
force-displacement equations given in Section 4.8. With prescribed displacements, the
Newton-Raphson method can be combined with the cylindrical arc-length method to
control the displacement increments.

5.8 Abaqus/Standard

5.8.1 Solution Algorithm
The default nonlinear solution algorithm in Abaqus/Standard [25] is the full Newton-
Raphson method described in Section 5.1. For a continuum problem including stress-
strain relations, the equations are composed of terms as functions of displacement and
rotation. The equations are on the form

[KT ]{∆D} = {Rres} , (5.63)
where {Rres} defines the residual forces necessary to obtain equilibrium:

{Rres} =
{
Rext

}
−
{
Rint

}
, (5.64)

and [KT ] is the tangential stiffness of the system:

[KT ] =
[
∂Rint

∂D

]
. (5.65)

The motivation for choosing full Newton-Raphson in contrary to the modified Newton-
Raphson methods is based on convergence rate. Nevertheless, in some cases, the tangential
stiffness matrix may be difficult or impossible to determine exactly. To calculate the ma-
trix numerically is an expensive process, which is undesirable. The full Newton-Raphson
method is expensive per iteration also if the tangential stiffness matrix can be assembled
analytically, because it must be assembled and inverted for every iteration. To avoid these
problems, modified or approximated Newton-Raphson methods may be used. Modified
methods are described in Section 5.1. Approximate Newton-Raphson methods use an
approximate tangential stiffness matrix in cases where exact assembly is either impossible
or unprofitable.

5.8.2 Imposing constraints
Linear constraints in Abaqus/Standard are imposed by the transformation method. Non-
linear constraints are imposed by Lagrange multipliers. Both methods are described in
Section 5.4.
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5.8.3 Increment Control
In most static analyses, there are no time scale, and the size of the "time" steps is deter-
mined by the necessity of accuracy in modelling the nonlinear effects. The automatic step
control implemented in Abaqus/Standard [6] is based on the maximum force residuals for
each iteration. The magnitude of the residuals are compared to determine if convergence
is likely to appear within a certain number of iterations. The first increment size should
be suggested by the analyst. If no suggestion is made, the total increment is attempted
to be applied in one step. For nonlinear problems this is normally not possible, and
Abaqus/Standard reduces the increment until a solution is obtained. Finding the size of
the first increment requires CPU-time, which can be neglected if the analyst provide a
reasonable suggestion for the initial increment.

Throughout the solution process, the iterations are stopped if the solution has not
converged within 16 iterations. Abaqus/Standard then restarts the iteration process with
an increment size 25% smaller than the previous. If this procedure is performed more
than 5 times, the analysis is stopped. On the other hand, if two increments in a row
converges within 5 iterations, the following increment size is increased by 50%.

5.8.4 Convergence
For convergence in Abaqus/Standard [6], all the entries in the residual force vector,
{Ri+1

n }, are controlled to be sufficiently small. The tolerance limit for the residual force
vector is by default set to be Rα

n = 0.5% of an average force in the structure, averaged
over time:

{Ri+1
n }αmax ≤ Rα

n q̃
α, q̃α

def= 1
Nt

Nt∑
n=1

q̄α(t|n). (5.66)

where n is the current increment number, i is the iteration number, α represents the
degree of freedom considered, Nt is the total number of increments so far in the step
including the current increment, q̄α(t|n) is the value of q̄α at increment number n with q̄α
as the instantaneous magnitude of the flux for field α at time t, averaged over the entire
model:

q̄α(t) def= 1∑E
e=1

∑Ne
ne=1N

α
ne +Nα

ef

 E∑
e=1

Ne∑
ne=1

Nα
ne∑

j=1
|q|αj,ne +

Nα
ef∑

j=1
|q|α,efj

 . (5.67)

E is the number of elements in the model, Ne is the number of nodes in element e, Nα
ne is

the number of degrees of freedom of type α at node ne of element e, |q|αj,ne is the magnitude
of the total flux component that element e applies at its j’th degree of freedom of type
α at its ne’th node at time t, Nα

ef is the number of external fluxes for field α and |q|α,efj

is the magnitude of the j’th external flux for field α. If this criterion is fulfilled, the
last iterated displacement correction and the estimated displacement correction with one
more iteration are controlled against the total displacement increment:

cαmax ≤ Cα
n∆uαmax and cαest ≤ Cα

n∆uαmax, (5.68)
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with
cαest = (rαmax)

i

min
(
(rαmax)

i−1 , (rαmax)
i−2
)cαmax. (5.69)

If the correction is larger than 1% of the increment, one more iteration is performed. In
addition, the analyst may define maximum values of the load proportionality factor and
maximum values for one or all degrees of freedom to terminate the iterations. The default
values in Abaqus/Standard should in general not be altered, however, they may be reset
with the *CONTROLS option.

5.9 IFEM
The default solution algorithms used by IFEM are the full Newton-Raphson algorithm
and the Return Mapping algorithm described in the former section. The default numer-
ical integration scheme is Gauss’ quadrature rule and the variational description is the
Updated Lagrangian formulation. The convergence criterion is energy norm based.



Chapter 6

Gap K-Joint

To compare the results obtained by FEA and IGA, a gap K-joint has been analyzed. The
model was introduced in the technical report Static Strength of Tubular Joints, Phase 2.
Analyses and tests of Gap and Overlap K-Joints [26] produced by Veritec, Det Norske
Veritas Industri Norge AS. Initially an attempt was made to analyse the model from the
Veritec report, but limitations as to modelling boundary conditions in IFEM resulted in
the model described in the following sections.

6.1 Geometry
The gap K-joint is modelled with dimensions shown in Figure 6.1. The pipe is asymmetric

Figure 6.1: Geometry of gap K-joint

about the intersection of the centrelines of the two braces. This point will from now on
be referred to as the intersection point. The intersection point is located 28 mm below
the centreline of the chord. Both braces have outer diameter dout = 365.8 mm and
thickness t = 9.3 mm. The length of the right brace is 1800 mm and the length of the
left brace is 1550 mm. Both lengths have been measured from the intersection point,

57
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along the centreline, up to the brace ends. The incline of the braces relative to the chord
is θ = 45◦. The outer diameter of the chord is Dout = 508.85 mm and the thickness is
t = 10.25 mm. The length of the chord from the intersection point is 1500 mm to the
right and 1800 mm to the left. The out-of-plane geometry of the K-joint is symmetric,
hence only one half of the model needs to be modelled, assumed that boundary conditions
representing symmetry conditions along the out-of-plane axis are applied.

For the analyses with shell elements, the shell geometry has been taken as the mid-
surface geometry of the solid model in Figure 6.1. The diameter of the braces is then
d = 356.5 mm and the diameter of the chord D = 498.6 mm. It is worth noticing that the
K-joint is just at the limit of being able to use thin shell theory as T/D is approximately
1/24 and t/d approximately 1/19.

The analysis model is depicted in Figure 6.21. The directions of the axes given in this
figure will act as the definition of the axes in subsequent discussion.

Figure 6.2: Geometry of analysis model

6.2 Assembly
The model consists of three parts; the two braces and the chord. In practice, the parts are
connected with welds, which in itself is a research field. This has been neglected in this
thesis, but the mesh may be more refined in the areas close to the intersection between
the chord and the braces to get a better idea of the local deformations and stresses.

6.2.1 Abaqus/CAE
The constraint between the braces and the chord to simulate the connection is applied
as a tie constraint. For nodes constrained by tie, all the active degrees of freedom at
the slave component are constrained to be equal to the degrees of freedom at the master
component. When coupling solids, the most efficient way of coupling the components for
this type of structure is with a surface-to-surface representation. For the gap K-joint, the
cut-out of the chord in the thickness direction will act as the master surfaces, and the

1The lines dividing the chord is only used for meshing purposes, and do not influence the geometry.
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area of the surfaces of the braces that is in contact with the chord will act as the slave
surfaces. A partition has been made to easily define the area of the braces that is in
contact with the chord. Abaqus/CAE automatically constrains only the nodes which are
in connection with the master surface initially, and the nodes within a specified position
tolerance, but by creating the exact surface, a more accurate result may be obtained. The
position tolerance is defined as 0.1 mm since it is only the nodes within the partition that
are to be included in the constraint. This results in one complete row of elements from
the bottom of the braces to be constrained to the chord.

For the model with shell elements, the bottom edge of the braces are defined as the
slave surfaces, and the cut-out of the chord as the master.

In Abaqus/CAE, the meshes on the two surfaces tied together do not need to be of
equal refinement. The degrees of freedom in each node at the slave surface are determined
to be equal to the degrees of freedom at the node that is located closest at the master
surface [6].

6.2.2 IFEM
To model the gap K-joint for analysis in IFEM, the geometry has been modelled as a
conforming multipatch NURBS model. The topology of the model, i.e. the neighbouring
information, is handled using in-house software. The intersection lines between the braces
and the chord are the first to be defined. Then surfaces are defined using the intersection
lines and the lines defining the pipe ends. The volume of the model is created by filling
in the space between the defined surfaces. For the gap K-joint, there has been created 9
patches as shown in Figure 6.3. The patches are connected with the a standard master
slave technique. Patch 9 acts as slave for both patch 1 and 2. Patch 1 is master also
for patch 3 and 7 and patch 3 is master for patch 5. The same hierarchy applies to the
right side; patch 2 is master for patches 4 and 8, and patch 4 is master for patch 6. To

(a) Front of gap K-joint (b) Back of gap K-joint

Figure 6.3: Patches creating the gap K-joint
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be able to constrain degrees of freedom of two adjoining surfaces in IFEM, the control
points must be coinciding, hence the analyses conducted in this thesis always have the
same mesh refinement on intersecting surfaces.

6.3 Material
The material assigned to both the chord and the braces is a multilinear elastic-plastic
material with isotropic hardening defined by empiric testing of material properties [26].
The Young’s modulus is 210 000 MPa, the yield strength is 360 MPa and the Poisson’s
ratio is 0.3. The numerical values of the stress-strain relation can be found in Table 6.1.
The density of the material is 7.85 · 10−6 kg/mm3.

True strain True equivalent plastic
strain Stress (MPa)

- 0 360
0.0271 0.0253 375
0.0444 0.0423 445
0.0725 0.0701 500
0.1066 0.1040 550
0.1720 0.1691 600
1.0000 0.9967 700

Table 6.1: Numerical values of the multilinear elastic-plastic material

6.4 Mesh
Three refinements of the FE mesh in Abaqus/CAE have been focused upon. One is a
very coarse mesh, the second a standard mesh and the third a fine mesh. The second
mesh is called standard because this number of unknowns is closest to the number of
unknowns used for the models in IFEM. When creating the standard mesh, both the
number of unknowns and the shape of the mesh was attempted to replicate the mesh
used in IFEM. Since the IFEM mesh relies on the initial discretization of the geometry2,
the meshes are not identical. For the chord the construction of the IFEM mesh began
with two elements in the circumferential direction, and one element lengthwise in each
patch. The mesh was then refined with knot insertion in all directions. The thickness
direction was represented with one element. The braces were initially constructed by 12

2The geometry has been defined by Kjetil Andre Johannessen and has not been available for compar-
ison.
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elements in the circumferential direction and one lengthwise, and refined as the chord.
The meshes from Abaqus/CAE are shown in Appendix A.

The meshes are generated with focus on the areas close to the intersection between
the braces and the chord. These areas are subject to large stress/strain-gradients. It is
therefore more important to use a finer mesh in these areas, than in the areas further
away where the gradients are smaller.

6.5 Elements
The pipe joint has been modelled with both solid and shell elements, however not in
combination. The analyses in IFEM has only been conducted with solid elements.

The solid element used in the FEA of the gap K-joint with Abaqus/Standard is the
20-node quadratic brick element with reduced integration and hybrid linear pressure
C3D20RH [6]. Each node possesses three translational degrees of freedom in direction of
the global x-, y- and z-axis.

To improve the element performance, a hydrostatic pressure field is interpolated in-
dependently, resulting in a mixed element. However, the additional pressure degrees of
freedom are condensed out on the element level so that the solid element has only dis-
placement degrees of freedom [27]. This ensures proper deformations in case of material
behaviour close to incompressibility. The deviatoric part of the stress field is integrated
with full integration, whereas the hydrostatic part is integrated using reduced integration.

The shell element used in the FEA with Abaqus/Standard is the S8R5, an 8-node
doubly curved thin shell, with reduced integration, using five degrees of freedom per
node. The degrees of freedom are the translations in three perpendicular directions, and
the rotations about the two in-plane axes. Simpson’s integration rule has been used in the
thickness direction to be able to compare the results directly to the values in the nodes
of the solid elements. The Kirchhoff thin shell formulation, implying zero shear strain,
is imposed numerically by the penalty method, see Section 5.4.3, as a transverse shear
stiffness [6].

6.6 Load and Boundary Conditions
The load applied to the gap K-joint is a prescribed displacement of 16 mm at the upper
end of the left brace. The displacement is applied as a static, general step, with prescribed
load increments, on the local axial direction, resulting in tension in the left brace. Both
in Abaqus/Standard and IFEM the load applied with a linear ramp over the time steps.

The left end of the chord is constrained against displacement in axial direction of
the chord, whereas the right end of the chord is free to move. The upper end of the
right brace is constrained against displacement in local axial direction. The symmetry
plane is constrained not to move in the out-of-plane direction, neither to rotate about the
two in-plane axes. The last constraint will only affect the shell representation, since the
rotational degrees of freedom are not active in the model with solid elements.

For the natural frequency analyses, the upper end of the left brace is also constrained
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against displacement in local axial direction.

Figure 6.4: Load and boundary conditions of the gap K-joint

6.7 Warnings in Abaqus/Standard
All the warnings discussed in this chapter are referring to the standard mesh. However,
the warnings have been the same for all refinements, disregarding the number and location
of poor and distorted elements.

6.7.1 Poor Elements
To be able to have a certain amount of control of the structure of the FE mesh, the model
must be partitioned. The partition of the model in Abaqus/CAE is performed on order to
as easy as possible be able to create a mesh that is similar to the mesh of the isogeometric
model. The result is partitions indicated by the internal lines in Figure 6.2.

A problem area that arises for the solid model is the area of the chord which surrounds
the intersection with the braces, especially the small part between the braces. As shown
in Figure 6.5a, the partition of the chord, created by sweeping the edge of the mid section
between the braces along the circular edge of the chord, will result in an area, marked
by a circle, where the thickness eventually goes towards zero. This generates warnings

(a) Partition of area between the braces (b) Poor elements

Figure 6.5: Area of poor elements

in Abaqus/Standard due to the fact that the elements used are brick elements, and thus
requires six faces to be defined. For the standard mesh, the warning applies to a total of
10 elements, shown in Figure 6.5b.
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6.7.2 Warped Elements
The default setting in Abaqus/Standard is set to control the curvature of the shell elements
used in the model. The angle which is limited is the angle between the average element
normal and a nodal normal, which is limited to 10◦. The elements being warped in the
shell model with standard mesh are shown in Figure 6.6.

Figure 6.6: Warped elements

6.7.3 Distorted Elements
In addition to the poor elements, which are present already from the meshing face, some
elements are characterized as distorted throughout the analysis. The error emerges as
the analyses commence because the angles between the physical representation and the
parametric representation reaches a specified limit. Consequences may be negative volume
of an element at a node, which obviously is incorrect. If distorted elements are detected,
Abaqus/Standard automatically reduces the next time step with a default cutback of
25%, to increase the possibility of convergence. The angles are upward limited at 135◦,
and downward at 45◦. The distorted elements for the solid model are shown in Figure
6.7a, and for the shell model in Figure 6.7b, both for the standard mesh. The elements

(a) Solid (b) Shell

Figure 6.7: Distorted elements

may also be distorted due to a large ratio between the longest and the shortest edge. The
aspect ratio is limited to 10 [28]. The aspect ratio leads to warnings for the very coarse
meshes because of the size of the outer elements of the braces and the chord.

6.7.4 Boundary Conditions on Inactive Degrees of Freedom
A set of nodes, identified in Figure 6.8a, has been alarmed due to boundary conditions
applied to inactive degrees of freedom. The figure depicts the standard mesh, but the
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nodes are the same for all mesh refinements. The degrees of freedom identified are located

(a) Location of nodes (b) Close-up of location of nodes at the
braces relative to the chord

Figure 6.8: Nodes with boundary conditions applied to inactive degrees of freedom

both at a slave surface defined by the constraint between the braces and the chord, and
at the face of the braces that has symmetry boundary conditions applied. The result is
that the boundary conditions will not be applied to these nodes. However, this is not a
problem, because the nodes being master nodes to the alarmed nodes are located at a face
of the chord which has symmetry boundary conditions applied to it, and will therefore
ensure the right constraint of the braces.

The same warning appears in the shell model analyses on the degrees of freedom on
the intersection of the braces and the chord which are located at the symmetry plane.
The above description and conclusion also apply for shells.

6.8 Areas of Interest
To compare the results from Abaqus/Standard and IFEM, both local and global results
will be considered. For the local results, maximum values of a selection of variables will
be examined. The areas in focus will be the corners defined by the partitions/patches
between the braces as shown in Figure 6.9. These nodes are easy to pick with different

(a) Location of areas of
interest

(b) Close-up of upper nodes
of interest

(c) Close-up of lower nodes of
interest

Figure 6.9: Areas of interest

mesh refinements both in Abaqus/CAE and IFEM, and the areas are interesting because
they are located in the areas most affected by the intersection of the braces and the chord.
The nodes will be referred to as the result nodes, and the numbering of the nodes is shown
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in Figures 6.9b and 6.9c. A drawback of these nodes are that they are located on patch
boundaries resulting in equal continuity in for the FEA and the IGA. The results and
differences discussed later is thus an effect of the different continuity globally in the model,
and would have been even clearer if nodes also displaying this continuity had been chosen.

The location of the nodes in the shell model is on the midsurface of the K-joint, and
the same numbering as for the solid model is not automatically possible. However, the
variables are chosen to be calculated at three Simpson points, which means that the
section points for the nodes correspond to the nodes for the solid model. The numbering
of the section points starts with number 1 at the bottom of the shell, which for the K-joint
is the inside of the chord, and results in number 3 on the top of the shell, i.e. the outer
surface of the chord. Thus the numbering of the section points result in the same location
as for the nodes shown in Figures 6.9b and 6.9c.



Chapter 7

Results and Discussion

7.1 Analysis Data

The analyses run in Abaqus/Standard are:
1. Natural frequency analysis with very coarse, standard and fine mesh, solid elements.
2. Natural frequency analysis with very coarse and standard mesh, shell elements.
3. Five nonlinear analyses with prescribed displacements and different mesh refine-

ments, solid elements.
4. Nonlinear analyses with prescribed displacements and very coarse and standard

mesh, shell elements.
The analyses run in IFEM are1

5. Natural frequency analyses with q = 2, q = 3 and q = 4.
6. Nonlinear analyses with prescribed displacements and q = 2, q = 3 and q = 4.

When an Abaqus/Standard analysis is referred to without further specifications, it is the
standard mesh, nonlinear analysis with solid elements that applies. As for IFEM, the
standard analysis is the nonlinear analysis with q = 2.

Very
coarse
ABQ

Standard
ABQ Fine ABQ

Very
coarse

ABQ shell

Standard
ABQ shell

Standard
IFEM

Elements 60 4056 15420 62 4335 10692
Nodes 684 38118 141429 309 17875 36387
Number

of
unknowns

1932 105402 393447 1854 107250 106356

Table 7.1: Mesh data

1To avoid confusion between the degree of the basis functions and equivalent plastic strain, will from
now on the general degree of the basis functions be denoted q.

66
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The coarsest mesh of both the solid and shell analysis with Abaqus/Standard has far
too large elements and results from these analyses will only be included to show the effects
of such a coarse refinement. For general analysis purposes a structure with such coarse
mesh should not be used, and if so the results should be interpreted with extreme caution.

Analysis
ABQ
very
coarse

ABQ ABQ fine

ABQ
very
coarse
shell

ABQ
standard
shell

IFEM
q = 2

IFEM
q = 3

IFEM
q = 4

Tot.
CPU

time (sec)
2.3 390.40 3559.5 1.7 2047.7 4922.04 18190.35 68401.28

Tot. no.
of incr. 10 12 20 10 143 10 10 10

Tot. no.
of ite. 24 48 93 30 586 30 29 30

Max. no.
of ite.

per incr.
3 5 7 4 7 4 3 4

Min. no.
of ite.

per incr.
2 2 2 2 2 2 2 2

Max.
time step

size
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Min.
time step

size
0.1 0.025 0.025 0.1 0.00154 0.1 0.1 0.1

No. of
cutbacks 0 1 3 0 39 0 0 0

Incr. for
cut-

back(s)
- 7 3,5,11 - Evenly

spaced - - -

Table 7.2: Analysis data

The nonlinear analyses in IFEM have initial time step of 0.1, maximum time step
of 0.1 and minimum time step of 0.025. To aim at the most similar analyses these
properties were also adopted for Abaqus/Standard. However, for the standard analysis
with shell elements, the required time steps were less than 0.025, and the limit was
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reduced to 10−5. The time steps relate to the prescribed displacement in the same way
the load proportionality factor relates to prescribed load, which means that time = 1
equals prescribed displacement = 16 mm, and the displacement increments are calculated
as the product of the time increment and the total value of the prescribed displacements.
The computational details of the analyses are shown in Table 7.2.

One property of Table 7.2 is that the computational time for the IGAs is much higher
than for the traditional FEAs, and the difference increases with increasing degree of the
basis functions. The reason for this was explained in Section 3.3.2 and is related to the
continuity between the patches and the elements as stated in Section 3.1.2. For both
methods of analysis the number of interelement borders is much larger than the borders
between FE meshes/patches and the dominating continuity for the traditional FE model
is therefore C0 and for the isogeometric model Cq−1, which results in higher solution cost
for the isogemetric analyses. Because of the extent of the extra time required by the IGA
(the relation between the time for the standard mesh in Abaqus/Standard and for q = 2
in IFEM is approximately 12.5), this may be said to be a significant drawback for the
isogeometric concept.

7.2 Convergence

7.2.1 Extrapolated Exact Solution
To find the extrapolated exact solution, the Richardson’s extrapolation formula has been
used [5]. The formula generates an extrapolated exact solution, based on values of the
field variables obtained with different mesh refinements. With h as element size, Φ as
field variable and a and b as the coarse and refined mesh respectively, the Richardson’s
extrapolation formula yields:

Φexact = Φahb − Φbha
hb − ha

. (7.1)

7.2.2 Solid
External Energy

To examine the convergence of the results obtained with Abaqus/Standard, the value of
the external energy has been extrapolated to be able to compare an approximate exact
solution to the results from the performed analyses. The characteristic element lengths are
calculated as half of the longest line possible to fit inside an element [6] and are extracted
from the .msg-file created for each job in Abaqus/Standard. However, the characteristic
element lengths are not available in IFEM, and the results are therefore plotted against
the total number of unknowns in the model. The extrapolated value is calculated using
the external energy and characteristic element length from the standard and fine mesh.

The error in the external energy relative to the Richardson’s extrapolated exact value,
shown in Figure 7.1, is monotonically decreasing with increasing number of unknowns,
which is a desirable result. However, the error is large for the two coarsest solid meshes
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Figure 7.1: Error of external energy relative to the Richardson extrapolated exact value

and indicates that results from these analyses should be interpreted with caution. Too
high external energy represents a structure which is too stiff, and the overall results are
therefore not conservative. The maximum values of the displacements may nevertheless
be too high, because the external energy takes into account the deformation of the entire
structure. This can be exemplified with the maximum value of v, in Figure 7.6, which is
highest for the very coarse solid model f. As stated in Section 7.1 the coarsest FE mesh is
only included as demonstration of effects of very large elements, and the significant error
in external energy substantiate that the results should not be used.

When the structure is refined beyond 28212 unknowns, the convergence rate decreases
drastically. This is a normal behaviour and gives a good approximation on the number
of unknowns that is required to get an approximately good result, without resulting in a
too high computational time. Consequently the standard FE mesh with solid elements
can represent an approximate exact solution in comparison to variables from the other
analyses with standard mesh.

An uncertain factor influencing the convergence is how the exact value is calculated.
In Figure 7.1, the exact value is calculated using the results from the analyses with
standard and fine mesh. The development of the external energy is not linear, and by
using the chosen refinements in Equation (7.1), the incline of the extension of the graph
becomes closest to the last increment. Tests show that if the external energy had been
calculated with other values, the error would have been even larger, because they are all
produced with an extrapolated exact value lower than the currently used refinements. It
was concluded that the chosen method gave the most likely result because of a tendency
of decreasing rate of change in the external energy. The definition of the characteristic
element length should also be discussed. Because the models contain local refinements,
the characteristic element lengths do not give a very good picture of the refinement of
the model. However, the lengths were only used as a measure of refinement and Equation
(7.1) is therefore concluded to give a relatively good result.

Overall, it would have been desirable to approach an error further below 1%, but with
the exact result also as an approximation, the error estimates may be said to be sufficient.
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Other Variables

Figure 7.2: Development of field variables with mesh refinements for the solid analysis in
Abaqus/Standard

To obtain a general overview of the convergence of other parameters, the maximum
displacement in x−, y− and z−direction have been extrapolated with Richardson’s for-
mula. So have the von Mises stress and the equivalent plastic strain. The convergence of
the parameters can be seen in Figure 7.2.

The extrapolation has been made despite some of the limitations for the formula. The
most important in this context is the restriction for which the values extrapolated must be
located in the same point for each refinements. The location of maximum displacements,
stresses and strains changes for each refinement in the gap K-joint. It is shown [5] that
analyses not fulfilling the limitations can give good results anyway, and this may be the
case for the displacements.

The figure shows that there is good convergence of the displacements, but the von
Mises stress and equivalent plastic strain do not converge, and an error analysis has not
been performed for those variables. The maximum values of the von Mises stress and the
equivalent plastic strain are located in the area surrounding the intersection between the
braces and the chord and can indicate that the result has an extreme dependence on the
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FE mesh refinement. Additionally, both the von Mises stress and equivalent plastic strain
are calculated from the first derivatives of the field variables, which means that continuity
is not present in a solid analysis in Abaqus/Standard, and may also affect the results.

The error of the displacement converges to approximately 1% which is the same as for
the external energy. The kink in the error plot of w is probably also explained by the
location of the maximum value of w which is located in the intersection area, and the
dependence on the FE mesh refinement.

7.2.3 Shell
External Energy

A convergence study of the variables from the shell analyses has also been attempted.
However, the external energy did not show any signs of convergence, as can be seen in
Figure 7.3.

Figure 7.3: External energy of the analyses with shell elements

The most likely reason for this is the inability of the shell elements to represent the
three dimensional stress state in the intersection area of the K-joint, as described in
Section 7.1. Because of the diverging values of external energy the other field variables
were not examined for convergence for the shell model.

7.3 Natural Frequencies
A good estimate of the similarities between different models can be the natural frequencies.
If the natural frequencies of models with various discretizations are approximately equal,
the models may be assumed to behave relatively similar. The error between the natural
frequencies for the models in Abaqus/Standard with very coarsened, standard and fine
mesh, the Abaqus/Standard shell model with very coarse and standard mesh and the
models in IFEM with q = 2, q = 3 and q = 4 are shown in Figure 7.4. The error is
relative to the natural frequency of the analysis in IFEM with q = 2.

The natural frequency for the very coarse mesh with solid elements is far too high
for modes 2 and 6, and far too low for mode 10. It is earlier stated that the coarsest
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Figure 7.4: Error of the natural frequencies relative to the values from model in IFEM with
q = 2.

meshes are only included for brief comparison, and the errors in the natural frequencies
are all contributing to the conclusion that such coarse meshes can not be used. Also the
very coarse mesh with shell elements exhibit severe errors in the natural frequencies. It
becomes clear by looking at the plots of deformation, stresses and strains in Figures 7.5
through 7.7 and Figures 7.11 through 7.14, that very large elements will experience trouble
obtaining a good result, as the magnitude of the stresses and strains in certain areas
changes rapidly. With only a limited number of integration points per element, the values
become significantly inaccurate. Also the standard mesh, shell model in Abaqus/Standard
exhibits errors generally larger than the other models.

All the other solid models exhibit generally softer behaviour than the standard mesh
model in IFEM with q = 2. As a rule of thumb, the softer the model is the more
accurate representation it will provide, which may indicate that a standard, traditional
FE method or higher order isogeometric models are preferable over an isogeometric model
with quadratic basis.

Overall the differences between the natural frequencies are small, which indicate that
the models behave relatively similar. This may also be substantiated by looking at the
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contour plots of the displacements. In order to make a comparison of the results easier,
the scale of the contour plots has been modified to correspond to the contour plot for the
analysis with q = 2 in GLview Inova. In some cases this results in values for the other
analyses that are outside the contour range. Larger values are shown in grey and smaller
values are shown in black2. Some of the values may be located at internal nodes and
hence not visible at the plots. Figure 7.5 depicts both the relatively similar behaviour
represented by the deformation patterns, while the magnitude of the displacement shows
that there are differences in stiffness of the models. The out of bound values in IFEM
with q = 3 and q = 4 are shown with the maximum/minimum colors of the contour plot.

(a) ABQ (b) ABQ shell

(c) IFEM q = 2 (d) IFEM q = 3

(e) IFEM q = 4

Figure 7.5: Displacement in global x-direction, u

2Keep in mind that as the absolute value of a negative result increases, the value will decrease.
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(a) ABQ (b) ABQ shell

(c) IFEM q = 2 (d) IFEM q = 3

(e) IFEM q = 4

Figure 7.6: Displacement in global y-direction, v

(a) ABQ (b) ABQ shell
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(c) IFEM q = 2 (d) IFEM q = 3

(e) IFEM q = 4

Figure 7.7: Displacement in global z-direction, w

7.4 Nodal Results
Figure 7.8 shows the value of a selection of central local results. The results are located in
result nodes 1 through 8. The variables chosen are displacements globally in direction of
y and z: v and w, the von Mises stress as defined in Equation (4.41): σM , the equivalent
plastic strain as defined in Equation (4.43): p, the deviatoric stress from Equation (4.23):
σh , and the maximum, medium and minimum principal stress values calculated as in
Equation (4.25): σ1, σ2 and σ3. The values of u are not included because all the nodes
are located on the symmetry plane, hence the displacement in x−direction is prohibited.
The tabulated values are given in Appendix C.

The figure shows that the local results can be split into two groups; the results for the
upper group of nodes and the lower group of nodes, as shown in Figure 6.9. The stress
state in the upper group has reached plasticity, shown by the non-zero values of p, while
the material in the lower group of nodes still is in the elastic range.

The results for the coarsest mesh in Abaqus/Standard differ a great deal from the other
results for displacement, as expected. For the other variables, large differences appear in
the plastic area.

It is clear that the accuracy of the results depends on the stress state of the material,
shown by the scattering of the stress and strain results for the plastic area in contrast
to the gathered stress and strain results for the elastic area. One reason for this may be
that the difference in equivalent plastic strain propagates to the other parameters. The
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Figure 7.8: Local results in node 1 through 8 according to Figure 6.9 for the analyses in
Abaqus/Standard with very coarse, standard and fine solid mesh, the Abaqus/Standard shell
analyses with very coarse and standard mesh and the analyses in IFEM with q = 2, q = 3 and
q = 4. All displacements in mm, all stresses in MPa. Displacement components in global

directions. NB: equivalent strain in nodes 1 and 2 for the very coarse solid mesh is manually
averaged.
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calculation of the von Mises stress in a plastic area is dependent on the equivalent plastic
strain shown by Equation (4.41), and in combination with different calculation methods
for derived variables in Abaqus/Standard and IFEM, see Section 7.5, a difference in the
equivalent plastic strain will affect the stress values. Abaqus/Standard and IFEM apply
the same solution algorithm for calculating the elastic/plastic strain ratio in an increment,
and the calculation of the stresses and strains in the integration points should therefore
not be a source of difference (disregarded the shape functions).

7.5 Differences Relating to the Basis Functions
As an introduction to the discussion, a summary of the differences and similarities of
traditional FEA and IGA may be adequate to provide. The basis for Tables 7.3 and 7.4
was created as a part of the conclusion of the project being a precursor to this thesis.

Isogeometric analysis Finite element analysis
Exact geometry Interpolative geometry
Not interpolating Interpolating

Convex hull property Oscillating
Degrees of freedom in the control points Degrees of freedom in the nodes

CAD model = analysis model Conversion from CAD model to analysis
model is required

Refinement of surfaces in one direction
extends over the whole patch Refinement only affects the refined area

Support on limited number of knots, but
multiple elements

Support on limited number of nodes and
only on one element

Refinement does not change the geometry Refinement changes the geometry
Cq−s continuity at knots No certainty for continuity

Non-negativity Positive and negative

Table 7.3: Differences between IGA and traditionFEA

Many of the properties are basis for the differences seen in the global and local results.
The most prominent difference between the traditional FEA and the IGA is the shape

functions used. The traditional FEA uses lower order Lagrange polynomials for solid
elements whereas the IGA applies NURBS as basis functions. The major difference af-
fecting the results between the two is the continuity. The continuity requirements for the
methods are given in Sections 2.2.1 and 3.1.2 respectively and results for a solid analysis
in C0 continuity over element borders for traditional FEA and Cq−1 for IGA with basis
functions of degree q. This generates differences in the calculation of the stress and strain
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Code architecture for analysis (not discussed)
Isoparametric implementations

Gauss’/Simpons’s integration rule
Partition of unity

Affine transformation possible

Table 7.4: Similarities between IGA and traditional FEA

variables for the FEA and the IGA.
Another difference is the ability the NURBS basis functions may have to exactly repre-

sent conic sections, which is profitable in the way of giving the possibility to run analyses
on models equal to the physical geometry. The interpolation functions used in traditional
FEA can only approximate such geometry, and if two equal analyses performed on two
different geometries were to be compared it is clear that the results would be more cor-
rect with exact geometry. An especially large effect can be apparent for problems where
buckling may occur, because of the sensibility of geometric irregularities. The gap K-joint
is made up of a total of three pipes, all with circular geometry, and all being on the
limit of being thin shells, which is especially vulnerable to buckling. However, a force-
displacement plot from the upper end of the left brace in the standard solid analysis in
Abaqus/Standard, shown in Figure 7.9, shows that the K-joint does not exhibit buckling
behavoiur, and the geometric differences will therefore not be further discussed.

Figure 7.9: Plot of force vs. displacement of the upper end of the left brace.

A third difference, not relating to the theory of traditional FEA and IGA, but to
the manners of the software used to perform the analyses is the difference in handling
derived values such as von Mises stress and principal stresses. In Abaqus/Standard the
stress components calculated in the integration points are extrapolated to the nodes.
The extrapolation is done according to the shape functions, i.e. lower order Lagrange
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polynomials for the solid analysis, as shown in Section 2.2. The von Mises stress, which
is derived by the formula given in Equation (4.41), is calculated with the extrapolated
results, directly in the nodes. To create a smooth plot, all values are averaged over
element and mesh borders. In IFEM the derived variables are treated differently; they
are calculated in the integration points in the same way as the component variables and
then extrapolated to the nodes according to the NURBS basis functions. A smooth plot
of the IG results is created by performing an L2-projection. The post-processed results
are plotted in visualization points chosen by the analyst. The more visualization points,
the smoother the result plot will be. The results are averaged over the patch borders.

This will in total include three sources of difference for derived variables; the basis func-
tions used to calculate the field variables, the continuity requirement of the field variables
and the treatment method of the derived variables. When several sources of difference
are summed, the total result may either include an accumulation of the differences, or the
differences in each procedure may cancel each other out.

To show the effect of the differences addressed, the values of displacement, normal
stresses and von Mises stress have been plotted for the area between the chord and the
braces being result nodes 1 through 4 from Figure 6.9b, located on the chord. The differ-
ences between the values are shown in Figure 7.10. The differences have been normalized
with respect to the results from IFEM with q = 2 to be able to both compare the re-
sults between Abaqus/Standard and IFEM and between the analyses in IFEM with basis
functions of varying degree.

Figures 7.10a and 7.10b show that it is a much larger difference between the values of
the stress components than for the values of the displacement. This is as expected since
the only difference between the calculation of the displacement lies in the shape functions.
For the stress components another source of difference is included, namely the continuity.
In IFEM, the continuity across the element borders is C1, C2 and C3 for the analyses with
q = 2, q = 3 and q = 4 respectively. This results in stress components being continuous
because they are functions of the first derivative of the field variables, and also continuous
rates of stress for q = 3 and q = 4. For the traditional solid FEA, the continuity is only
C0, and the stress components are therefore not continuous.

Figure 7.10a shows that the difference between the displacement values differs between
being positive and negative for all the components, implying that there is no basis of
stating that one method is more conservative than the other. Also the difference in the
von Mises stress values in Figure 7.10c varies between being positive and negative, hence
is the stress calculation not definite conservative for neither of the methods.

The difference in handling the derived variables in Abaqus/Standard and IFEM will,
in addition to the different shape functions and continuity, affect the von Mises stress
results. Figure 7.10c shows that instead of accumulating the differences, as mentioned
as one possibility earlier, the differences have almost cancelled each other out, resulting
in differences much smaller than for the stress components. However, the differences are
still greater than for the displacement components.

The above differences are visualized in Figures 7.5 through 7.7 and Figures 7.11 through
7.14.
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(a) Displacement in global direction of x, y and z.

(b) In plane normal stresses in local direction of x and y.

(c) Von Mises stress.

Figure 7.10: Differences in local results between traditional solid FEA and IGA.
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(a) ABQ (b) ABQ shell

(c) IFEM q = 2 (d) IFEM q = 3

(e) IFEM q = 4

Figure 7.11: Stress in local x-direction, σxx

(a) ABQ (b) ABQ shell
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(c) IFEM q = 2 (d) IFEM q = 3

(e) IFEM q = 4

Figure 7.12: Stress in local y-direction, σyy

(a) ABQ (b) IFEM q = 2

(c) IFEM q = 3
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(d) IFEM q = 4

Figure 7.13: Stress in local z-direction, σzz

(a) ABQ (b) ABQ shell

(c) IFEM q = 2 (d) IFEM q = 3

(e) IFEM q = 4

Figure 7.14: Von Mises stress, σM
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Section 7.2 shows that the standard solid FE mesh in Abaqus/Standard can be assumed
as an approximate exact solution in comparison with the results from IFEM, see Figure
7.1, and a desirable result for the other analyses would resemble this analysis. Figure
7.10 shows that the results from the IGAs vary in being closer to the standard FE mesh
Abaqus/Standard results, indicating no certainty for this K-joint analyses as to the effect
of the degree of the basis functions in the IGAs. Furthermore, before making conclusions
regarding the degree of the basis functions, the computational time versus the accuracy
profit should be taken into account. This is discussed in Section 7.1.

7.5.1 Errors in Values of Derived Stresses and Strains
The definition of the principal stresses given in Equation (4.25) gives limitation as to the
magnitude of the principal stresses relative to each other, whereas the von Mises stress is
defined to always be positive, cf. Equations (4.41). However, the values of the variables
in Table C.1 show that the values of the principal stresses in result node 7 in IFEM for
q = 2, node 8 for q = 3 and node 2 for q = 4 are non-descending. Furthermore, the values
of the equivalent strain are negative in result nodes 7 and 8 in IFEM for q = 3 and nodes
4 through 8 for q = 4. In the calculations from Abaqus/Standard, all the values fulfill the
mentioned definitions. The method of calculating the derived values in Abaqus/Standard
ensures that these errors do not occur, because the mentioned equations are used on the
extrapolated values of the components. This assurance is not maintained in IFEM as the
derived values are calculated in the integration points and thereafter extrapolated.



Chapter 8

Conclusion

Throughout the discussion of the analyses results, two things related to the difference in
shape functions have been shown to have an impact on the results. The major difference
is the continuity of the results. The interpolation functions used in traditional solid
FEA assures only C0 continuity between the elements. Hence, the computed stresses and
strains will in general be discontinuous between elements, especially in areas where the
rate of change of displacement is large. These are the areas often most important to
model correctly because they often exhibit the largest values of stresses and strains, as
clearly shown in Figure 7.14. In this challenge, the IGA basis functions exhibit a distinct
advantage in the higher interelement continuity, providing a better correspondence of the
derivative of the variables between the elements. The higher degree of basis functions
the higher continuity, and it is a known fact that if an error is present in the primary
variable, it propagates and increases as the variable is differentiated. A disadvantage of
the increased degree of the basis function is the increased computational time, and the
advantage and disadvantage must be weighed against each other.

Another difference is the calculation of the derived variables such as von Mises stress
and principal stresses. Because IFEM calculates the von Mises stress in the integration
points negative values are possible to obtain in the nodes. This is an evident error and
should be avoided, possibly by calculating the von Mises stress as in Abaqus/CAE: directly
in the nodes with the extrapolated stress components.

An important feature relating to the geometry of the chord is the nature of the FE
mesh refinement in the area surrounding the intersection between the braces and the
chord. This is substantiated by the nonconverging discontinuous variables shown for the
solid model in Abaqus/Standard.

As to which method of analysis that provides the most accurate and robust result,
too few analyses have been performed as a part of this thesis to give a distinct answer.
None of the models could be said to be more conservative than the other, and all models
exhibited error of external energy slightly greater than preferred.

When it comes to using shell elements as representation of the gap K-joint, few decisive
conclusions can be made because they have not been in focus in this thesis. However, the
inability of the thin shell elements to represents three dimensional stresses, makes them
unsuited to model intersections where the stresses in reality are three dimensional. The
well-known solution is to apply submodelling where the intersection area is modelled with
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solid elements and the outer part of the pipes are modelled with shell elements. This will
include the three dimensional stress state in the intersection area, and at the same time
provide the advantage of the simplified thin shell theory in the outer parts, which will
reduce the computational time.



Chapter 9

Further Work

To create a complete basis for comparison of traditional FEA and IGA more analyses
must be performed. Extensions of the analyses could include:
− Optimization of the FE mesh refinements to be exactly equal for the FEA and the

IGA.
− IGAs with more refined FE meshes.
− Impact of higher number of elements in the through thickness direction.
− Study of the impact of different patches in the intersection area between the braces

and the chord. Fewer patches would eliminate some of the boundaries with only C0

continuity.
− Study of higher continuity between the patches in the interface.
− Comparison between structures modelled with shell elements in the outer parts of

the pipes and submodelled with solid elements in the intersection area to examine
the profit of reduced computational time with areas modelled with shell elements.

87



Bibliography

[1] T. Hughes, J. Cottrell, and Y. Bazilevs, “Isogeometric Analysis: CAD, Finite El-
ements, NURBS, Exact Geometry and Mesh Refinement,” Computer Methods in
Applied Mechanics and Engineering, vol. 194, no. 39–41, pp. 4135 – 4195, 2005.

[2] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis Toward Inte-
gration of CAD and FEA. Chichester: Wiley, 2009.

[3] “KMB-proposal: ICADA, Integrated Computer Aided Design and Analysis,” March
2007.

[4] Ceetron, “Glview inova.” Online. http://ceetron.com/products/glview-inova.
[5] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications

of Finite Element Analysis. Singapore ; New York: Wiley (Asia), 4th ed., 2003. 1st
edition 1974.

[6] Dassault Systèmes Simulia Corp., Providence, RI, USA, Abaqus Analysis User’s Man-
ual, 2011.

[7] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and
Structural Mechanics. 30 Corporate Drive, Burlington, MA 01803, USA: Elsevier
Butterworth-Heinemann, 6.th ed., 2005.

[8] J. F. Kiendl, Isogeometric Analysis and Shape Optimal Design of Shell Structures.
PhD thesis, Technische Universität München, 2010.

[9] H. Yamashita and H. Sugiyama, “Numerical Convergence of Finite Element Solutions
of Nonrational B-Spline Element and Absolute Nodal Coordinate Formulation,” Non-
linear Dynamics, vol. 67, no. 1, pp. 177–189, 2012.

[10] N. Collier, D. Pardo, L. Dalcin, M. Paszynski, and V. Calo, “The Cost of Conti-
nuity: A Study of the Performance of Isogeometric Finite Elements Using Direct
Solvers,” Computer Methods in Applied Mechanics and Engineering, vol. 213–216,
no. 0, pp. 353 – 361, 2012.

[11] L. E. Malvern, Introduction to the Mechanics of a Continous Medium. Prentice-Hall,
1969.

[12] G. Wempner, Mechanics of Solids with Applications to Thin Bodies. Alphen aan den
Rijn, The Netherlands: Sjithoff & Noordhoff, 1981.

[13] K. M. Mathisen, “Lecture 12: Formulation of Geometrically Nonlinear FE.” It’s
Learning, October 2012. Lecture Notes in TKT4197 at NTNU.

[14] R. L. Taylor, FEAP - A Finite Element Analysis Program. Department of Civil and
Environmental Engineering, University of California at Berkeley, Berkeley, California
94720-1710, USA, March 2011.

[15] R. D. Cook and W. C. Young, Advanced Mechanics of Materials. Upper Sadler River,

88



BIBLIOGRAPHY 89

New Jersey 07458, USA: Prentice Hall, 2nd ed., 1999.
[16] O. S. Hopperstad and T. Børvik, “Lecture Notes TKT4135 Mechanics of Materials.”

Department of Structural Engineering at NTNU, January 2012.
[17] G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals Sub-

jected to Large Strains, High Strain Rate, and Temperatures,” in International Sym-
posium on Ballistics, (The Hague, The Netherlands), pp. 1–7, 1983.

[18] a Institutt for matematiske fag NTNU, Calculus 2. Pearson Education Limited, 2009.
[19] T. J. Hughes, A. Reali, and G. Sangalli, “Efficient Quadrature for NURBS-based

Isogeometric Analysis,” Computer Methods in Applied Mechanics and Engineering,
vol. 199, pp. 301–313, December 2008.

[20] C. J. Zarowski, An Introduction to Numerical Analysis for Electrical and Computer
Engineers. Hoboken, NJ, USA: Wiley, May 2004.

[21] K. M. Mathisen, “Lecture 5: Incremental Reltions for Time-Independent Elasto-
Plastic Materials.” It’s Learning, August 2012. Lecture Notes in TKT4197 at NTNU.

[22] K. M. Mathisen, “Lecture 10: Imposing Constraints.” It’s Learning, October 2012.
Lecture Notes in TKT4197 at NTNU.

[23] K. M. Mathisen, “Lecture 3: Adaptive Solution Algorithms.” It’s Learning, August
2012. Lecture Notes in TKT4197 at NTNU.

[24] “Additional Notes - Constrained Methods.” It’s Learning, September 2012.
[25] Dassault Systèmes Simulia Corp., Providence, RI, USA, Abaqus Theory Manual,

2011.
[26] O. H. Bjørnøy, “Static Strengt of Tubular Joints, Phase 2 Analyses - and Tests of

Gap- and Overlap K-Joints,” tech. rep., Det Norske Veritas Industri Norge AS, 1993.
[27] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and

Structural Mechanics. 30 Corporate Drive, Burlington, MA 01803, USA: Elsevier
Butterworth-Heinemann, 6.th ed., 2005.

[28] Dassault Systèmes Simulia Corp., Providence, RI, USA, Abaqus/CAE User’s Manual,
2011.



Appendices

90



Appendix A

Meshes

Figure A.1: Very coarse Abaqus/CAE solid
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Figure A.2: Standard Abaqus/CAE solid
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Figure A.3: Fine Abaqus/CAE solid
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Figure A.4: Very coarse Abaqus/CAE shell
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Figure A.5: Standard Abaqus/CAE shell



Appendix B

Local Results

Analysis ABQ v.
coa. ABQ ABQ

fine

ABQ
shell v.
coa.

ABQ
shell

IFEM
q = 2

IFEM
q = 3

IFEM
q = 4

Max.
x-displ. 7.826 11.04 11.14 11.44 12.12 11.10 11.45 11.57

Max.
y-displ. 25.74 22.75 22.90 24.84 24.61 22.66 23.24 23.29

Max.
z-displ. 8.55 10.33 10.28 8.777 10.35 11.11 10.50 10.42

Max.
von
Mises
stress

1181 974 1294 900.5 755.5 590.6 625.5 582.5

Max.
eq.

plastic
strain

0.08275 0.09431 0.1535 0.03572 0.1373 0.1319 0.1295 0.2541

Max.
pres-
sure

338.6 648.8 755.7 359.1 346.7 1173 657.1 958.1

Max.
princ.
stress

749.1 798.3 891.9 832.0 728.2 13634 949.4 1124

Min.
princ.
stress

-1085 -1132 -1238 -749.2 -762.3 -1815 -1833 -1956

Table B.1: Global results
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Nodal Results
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Node v w σM p σh σ1 σ2 σ3

1ABQ v.c. 9.9152 7.1883 922.63 0.027626 147.39 412.95 -228.85 -626.27
1ABQ 11.308 9.3788 491.35 0.023344 102.4 172.83 -86.647 -393.38

1ABQ f 11.272 9.2447 632.28 0.046115 190.58 165.85 -174.51 -563.08
1ABQ sh. v.c. - - 900.46 0.035723 1.4393 509.43 0 -513.74

1ABQ sh. - - 541.98 0.038007 123.1 123.26 -21.354 -471.19
1Iq2 11.69 9.6109 423.96 0.053519 119.85 370.69 99.321 -110.46
1Iq3 11.26 9.6109 371.05 0.009921 109.68 255.18 202.13 -128.27
1Iq4 11.24 9.6109 395.25 0.035107 114.2 283.22 176.55 -117.16

2ABQ v.c 12.743 6.8714 872.66 0.030691 -121.48 569.03 208.72 -413.31
2ABQ 11.117 9.4506 444.25 0.013564 -202.49 489.73 113.87 3.8563

2ABQ f. 11.107 9.3596 484 0.020842 -195.93 497.4 143.27 -52.88
2ABQ sh. v.c - - 673.81 0.028519 81.388 254.14 0 -498.31

2ABQ sh. - - 504.57 0.044263 211.69 64.08 -187.77 -511.38
2Iq2 10.824 9.6751 377.12 0.017613 -456.91 -285.07 -361.18 -724.48
2Iq3 11.129 9.6751 355.11 0.0071443 248.72 474.91 158.9 112.34
2Iq4 11.153 9.6751 335.54 0.0086284 106.67 344.33 -39.488 15.168

3ABQ v.c 8.3617 6.0893 920.83 0.014483 182.43 277.69 -60.771 -764.21
3ABQ 11.864 9.7358 540.11 0.030416 271.43 49.886 -305.82 -558.36

3ABQ f. 11.759 9.5669 533.58 0.032793 343.67 9.6021 -488.71 -551.89
3ABQ sh. v.c. - - 674.17 0.044996 428.5 0 -532.42 -753.08

3ABQ sh. - - 770.23 0.038511 378.43 0 -270.19 -865.1
3Iq2 12.328 9.8683 472.52 0.13187 -527.73 -205.1 -645.93 -732.17
3Iq3 11.682 9.8683 484.04 0.12792 -309.31 3.3683 -398.83 -532.47
3Iq4 11.636 9.8683 512.07 0.2541 -461.63 -158.74 -483.71 -742.44

4ABQ v.c. 14.209 5.8994 838.16 0.0079399 -236.34 723.65 210.84 -225.46
4ABQ 10.77 9.6153 461.21 0.00403 -83.421 378.29 8.8449 -136.87

4ABQ f. 10.865 9.4727 458.44 0.017469 -131.05 415.94 74.399 -97.177
4ABQ sh. v.c. - - 633.16 0.032858 -410.65 687.13 544.83 0

4ABQ sh. - - 548.28 0.021786 -322.6 627.66 340.13 0
4Iq2 10.454 9.6761 368.78 0.011104 -173.59 48.467 -190.88 -378.35
4Iq3 11.017 9.6761 339.34 0.0081299 -9.6309 209.65 -84.783 -153.76
4Iq4 11.047 9.6761 346.55 0.0097696 220.77 431.5 206.13 24.681

5ABQ v.c 17.122 1.0666 407.53 0 -47.407 272.54 63.747 -194.07
5ABQ 19.929 0.94 130.08 0 -23.272 107.3 -0.15249 -37.329

5ABQ f. 20.053 0.92301 129.4 0 -24.296 108.02 0.44676 -35.578
5ABQ sh. v.c. - - 153.48 0 -23.453 120.97 0 -50.608

5ABQ sh. - - 121.46 0 -18.914 96.556 0 -39.813
5Iq2 19.871 0.89361 103.47 2.6231e-07 10.493 73.074 1.434 -43.028
5Iq3 20.275 0.89361 132.44 2.9779e-07 25.948 115.1 -3.7414 -33.512
5Iq4 20.315 0.89361 124.69 -1.2147e-06 20.558 92.693 8.2252 -39.245

6ABQ v.c. 16.776 1.0286 216.35 0 -38.111 172.23 16.575 -74.468
6ABQ 19.783 0.93104 129.92 0 -25.674 110.23 -0.35525 -32.852

6ABQ f. 19.907 0.91417 129.07 0 -26.848 110.99 0.33988 -30.791
6ABQ sh. v.c. - - 153.99 0 -42.452 141.81 15.109 -29.562

6ABQ sh. - - 120.58 0 -24.815 103.44 0 -28.989
6Iq2 19.73 0.88483 102.39 2.2258e-07 14.32 77.972 1.9723 -36.984
6Iq3 20.131 0.88483 134.01 1.3568e-07 29.122 118.87 -2.343 -29.16
6Iq4 20.172 0.88483 122.37 -5.8943e-07 22.134 94.142 7.0781 -34.817

7ABQ v.c. 17.307 0.88875 200.38 3.2399e-05 35.078 82.375 -39.406 -148.21
7ABQ 19.983 0.88835 102.88 0 67.041 1.5361 -100.32 -102.34

7ABQ f. 20.107 0.87112 102.62 0 67.58 0.81223 -100.37 -103.18
7ABQ sh. v.c. - - 157.84 0 67.1 3.8583 -40.872 -164.29

7ABQ sh. - - 101.11 0 60.505 0 -66.378 -115.14
7Iq2 19.922 0.84489 121.31 1.8424e-06 -74.728 7.5821 -123.76 -108
7Iq3 20.326 0.84489 104.28 -4.4031e-06 -66.424 4.4275 -101.27 -102.43
7Iq4 20.367 0.84489 98.455 -1.1926e-05 -65.237 -6.2822 -87.417 -102.01

8ABQ v.c. 16.623 0.96443 267.26 0 25.201 108.7 9.1665 -193.47
8ABQ 19.727 0.87251 99.945 0 64.528 1.8434 -92.637 -102.79

8ABQ f. 19.85 0.85547 99.731 0 65.309 0.89257 -93.082 -103.74
8ABQ sh. v.c. - - 132.4 0 64.627 0 -52.398 -141.48

8ABQ sh. - - 98.717 0 61.984 0 -74.419 -111.53
8Iq2 19.677 0.82822 131.91 1.3323e-06 -81.057 7.1385 -124.12 -126.19
8Iq3 20.077 0.82822 102.97 -3.1796e-06 -64.594 5.8667 -103.84 -95.812
8Iq4 20.118 0.82822 96.854 -8.7856e-06 -63.81 -8.3384 -86.271 -96.822

Table C.1: Local results in node 1 through 8 according to Figure 6.9 for the analyses in
Abaqus/Standard with very coarse, standard and fine mesh and the analyses in IFEM with
q = 2, q = 3 and q = 4. All displacements in mm, all stresses in MPa. Nomination: ABQ =

Abaqus/Standard, v.c. = very coarse mesh, f. = fine mesh, sh. = shell, I = IFEM, q = degree
of basis functions



Appendix D

Incremental-Iterative Solution
Algorithm for Normal Plane
Arc-Length Methods

INITIALIZATION
− NP: Normal Plan method, UNP: Updated Normal Plane method, MNR: Modified

Newton-Raphson
− Prescribe arc-length l, minimum and maximum load proportionality factor (LPF)
λmin and λmax, convergence tolerance εtol, number of load steps nnstep, and maximum
number of iterations per step niter

− Initialize load step counter n := 0, displacements {D0} := {0}, {∆D0} := {0} and
LPF λ0 := 0

− Assemble external load gradient
{
f̄
ext
}
(needs to be recalculated at every iteration if

the external loading is non-proportional or if prescribed displacements are present)
PREDICTOR STEP
while λmin ≤ λn ≤ λmax and n ≤ nnstep do

◦ Set n := n+ 1
◦ Assemble stiffness and residual forces:

[
K0

T,n

]
:= [KT (Dn−1)]{

R0
n

}
:= λn−1

{
f̄
ext
}
− {f int(Dn−1)}

◦ Solve for incremental changes of residual and linearized displacements:
{

∆D̃0
n

}
=
[
K0

T,n

]−1 {
R0
n

}
{

∆D̄0
n

}
=
[
K0

T,n

]−1 {
f̄
ext
}

◦ Computer LPF and displacement:
∆λ0

n := sign
(
{∆Dn−1}T

{
∆D̄0

n

})
ln√

1+{∆D̄0
n}T{∆D̄0

n}{
∆D0

n

}
:=
{

∆D̃0
n

}
+ ∆λ0

n

{
∆D̄0

n

}
◦ Update LPF, displacement and residual forces:
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λ0
n := λn−1 + ∆λ0

n{
D0

n

}
:= {Dn−1}+

{
∆D0

n

}{
R0
n

}
:= λ0

n

{
f̄
ext
}

+
{
f int

(
D0

n

)}
◦ Initialize iteration counter i := 0

CORRECTOR STEP
while ‖

{
Ri
n

}
‖ > εtol‖λin

{
f̄
ext
}
‖ and i ≤ niter do

• Set i := i+ 1
• Assemble stiffness:
if MNR then[

Ki
T,n

]
:= [KT (Dn−1)]

else[
Ki

T,n

]
:=
[
KT (Di−1

n )
]

end if
• Solve for iterative changes of the residual and linearized displacements:

{
δD̃

i

n

}
=
[
Ki

T,n

]−1 {
Ri−1
n

}
{
δD̄

i

n

}
=
[
Ki

T,n

]−1 {
f̄
ext
}

• Compute iteratice LPF:
if UNP then

δλin := −
{∆Di−1

n }T
{
δD̃

i
n

}
{∆Di−1

n }T{δD̄i
n}+∆λi−1

n

else

δλin := −
{∆D0

n}T
{
δD̃

i
n

}
{∆D0

n}T{δD̄i
n}+∆λ0

n

end if
• Update iterative displacements:

{
δDi

n

}
:=
{
δD̃

i

n

}
+ δλin

{
δD̄

i

n

}
• Update incremental and total LPF and displacement, and residual forces:

∆λin := ∆λi−1
n + δλin

λin := λi−1
n + δλin{

∆Di
n

}
:=
{

∆Di−1
n

}
+
{
δDi

n

}{
Di

n

}
:=
{
Di−1

n

}
+
{
δDi

n

}
{
Ri
n

}
:= λin

{
f̄
ext
}

+
{
f̄
int
(
Di

n

)}
end while

◦ Set:


λn := λin
{∆Dn} := {∆Di

n}
{Dn} := {Di

n}
end while



Appendix E

Deformation patterns

(a) Very coarse Abaqus/CAE solid, front (b) Very coarse Abaqus/CAE solid, back
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(c) Standard Abaqus/CAE solid, front (d) Standard Abaqus/CAE solid, back

(e) Fine Abaqus/CAE solid, front (f) Fine Abaqus/CAE solid, back
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(g) Very coarse Abaqus/CAE shell, front (h) Very coarse Abaqus/CAE shell, back

(i) Standard Abaqus/CAE shell, front (j) Standard Abaqus/CAE shell, back
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(k) IFEM q = 2, front (l) IFEM q = 2, back

(m) IFEM q = 3, front (n) IFEM q = 3, back
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(o) IFEM q = 4, front (p) IFEM q = 4, back

Figure E.1: Deformation patterns from the solid analyses in Abaqus/Standard with very
coarse, standard and fine mesh, the Abaqus/Standard analyses with shell elements and very

coarse and standard mesh and the analyses from IFEM with q = 2, q = 3 and q = 4



Appendix F

Mode Shapes

In this appendix the mode shapes for the standard model in Abaqus/Standard are shown.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure F.1: Mode shapes 1 through 4
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(a) Mode 5 (b) Mode 6

(c) Mode 7 (d) Mode 8

(e) Mode 9 (f) Mode 10

Figure F.2: Mode shapes 5 through 10


