
Modeling and Analysis of Noise

Hege Auglænd

Master of Science in Engineering and ICT

Supervisor: Tor Guttorm Syvertsen, KT

Department of Structural Engineering

Submission date: June 2013

Norwegian University of Science and Technology

MASTER THESIS 2013
for

stud.techn. Hege Auglænd

 Modeling and Analysis of Noise

Modellering og beregning av støy

Background

Norwegian mines are required to present a noise map over their areas. Quite often these maps are
made by external contractors, however, it is desirable to be able to create noise maps using
in-house software. The software used today is MicroStation, and an extension for noise
computations would save time and money. The objective of this thesis is to develop a plug-in for
MicroStation in cooperation with Norconsult Informasjonssystemer, SINTEF and NTNU.

Approach
● The extension to MicroStation will be programmed in C# using Microsoft Visual Studio.
● A computational model from SINTEF will be used as the foundation for the computations.
● A course in MicroStation programming will be taken in addition to an introduction to noise

modeling and computation.
● Visnes Kalk AS, a limestone mine, will be used as a reference, as both a model and a noise

map of the area are available.

Result
The thesis will result in an extension to MicroStation and a digital report, which will be graded.
The extension will have the following features:

● Import a terrain model - already supported in MicroStation
● Create one or more noise sources
● Create one or more buildings
● Create noise abatements
● Compute the noise distribution
● Display a noise map
● Display exact values for buildings and specific points.

It is desired that the system is interactive for easy adding of noise abatement, rerunning the
computation and presenting an updated noise map.

The report is to be handed in to the Department of Structural Engineering by June 10, 2013.
The thesis may be adjusted during the project due to the progress of work and the interests of the
student.
The report is to be organized in accordance with the current instructions
(http://www.ntnu.no/kt/studier/masteroppgaven).

Contacts at Norconsult Infomasjonssystemer:
Ole Magne Kvindesland (Ole.Magne.Kvindesland@norconsult.com) and
Frode Tørresdal (Frode.Torresdal@norconsult.com)

Contacts at SINTEF Akustikk:
Herold Olsen (Herold.Olsen@sintef.no) and
Rolf Tore Randeberg (Rolf.T.Randeberg@sintef.no)

Contact at NTNU, Department og Geology and Mineral Resources Engineering:
Erik Ludvigsen (Erik.Ludvigsen@ntnu.no)

Professor: Tor G. Syvertsen (torgsyv@gmail.com)

Trondheim, January 19, 2013

Tor G. Syvertsen (sign.)
Professor

Norwegian Abstract: Sammendrag

Støy er et miljøproblem som kan ha negativ effekt på helse og velferd. Norsk lov har fastslått
anbefalte støygrenser for bebodde og andre støysensitive områder. Støybelastede områder skal ha
kartlagt støysoner for å kunne visualisere og finne behov for støyskjerming.

Den norske gruveindustri genererer en betydelig mengde støy og må kartlegge effekten av denne
støyen på omkringliggende områder. I dag blir dette ofte gjort ved å leie inn eksterne konsulenter
som lager støykart over områdene. Dette er både dyrt og kan ta veldig lang tid og noen selskaper
ønsker derfor å kunne gjøre kartleggingen selv. Det finnes programmer som kan gjøre dette i dag,
men disse er både dyre og omfattende. Noen av disse vil trenge et komplett bytte av systemer,
noe som er veldig dyrt og tidskrevende. Siden MicroStation er et mye brukt program i dag, er det
ønskelig med et programvaretillegg som håndterer støyanalyse og modellering til dette programmet.

Programvaretillegget laget i dette prosjektet kan brukes både i gruveindustrien og i andre prosjekter,
som vei- og industriprosjekter. Den viser støy kartlagt i henholdt til fargekoder gitt i norsk lov. I
tillegg vises støykart med kotelinjer med 3 dB mellom hver linje og detaljerte verdier for spesifiserte
punkter og fasadepunkter på hus.

i

ii

Abstract

Noise is an environmental issue which may have a negative impact on health and wellbeing. Norwe-
gian legislation states recommended noise limits for inhabited and other noise sensitive areas. Areas
susceptible to noise problems should have mapped noise zones, to visualize and clarify any noise
abatement needs.

The mining industry in Norway generates a substantial amount of noise. As a result, they are
required to map the noise level of the surrounding area. Today many companies hire external
consultants to create noise maps for their areas. This is very expensive and may take a substantial
amount of time and some companies would prefer to be able to do the mapping themselves. There
are software solutions available for this purpose, however these are expensive and comprehensive
solutions. Some of these solutions would require a change of software system. As MicroStation is used
by many today, a plug-in that handles noise analysis and modeling in MicroStation has been requested.

The plug-in created in this project may be used in the mining industry and in other projects, such
as road or industry projects. It shows noise mapped as color coded contour lines in accordance with
Norwegian legislation. In addition, it shows noise maps with contour lines for every 3 dB and exact
values for selected points and house facades.

iii

iv

Preface

This report, a user manual and the plug-in developed for MicroStation is the end result of the
course TKT4915 Computational Mechanics, Master Thesis. This is a part of my Masters Degree in
Engineering and ICT, Structural Engineering at the Norwegian University of Science and Technology,
NTNU, in Trondheim.

I would like to thank Norconsult Informasjonssystemer for the opportunity to work with this project,
in addition to helping me and providing what I needed when it came to courses, software and
hardware. Special thanks to my two contacts: Ole Magne Kvindesland who found the project for me
and Frode Tørresdal who has been helping me every step of the way.

In addition, I would like to thank Erik Ludvigsen and Herold Olsen for teaching me about noise, noise
modelling and measurement. SINTEF ICT, Acoustics and Norwegian Public Roads Administration
(Statens Vegvesen) has been kind to let me use their base computational model - SoundKernel. Rolf
Tore Randeberg at SINTEF ICT, Acoustics have been giving me good code examples and helping
me when I had any questions. Torunn Moltumyr at Norwegian Public Roads Administration helped
me with road and vehicle details.

Tor G. Syvertsen has been a great asset to my thesis, and I would like to thank him for his guidance
and enthusiasm.

Hege Auglænd
Trondheim, June 6, 2013

v

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Scope . 2
1.3 Outline of the report . 2

2 Technologies 3
2.1 Programming Tools . 3
2.2 MicroStation . 4
2.3 SoundKernel . 6

3 Background Information 7
3.1 Sound . 7
3.2 Mitigating noise . 10
3.3 Legislation and Regulations . 11
3.4 Visnes Kalk AS . 13
3.5 Noise Measurement . 14

4 Software Development 15
4.1 Implementation . 15
4.2 User Manual . 18
4.3 Testing and Results . 32

5 Discussion and Conclusion 47
5.1 Discussion . 47
5.2 Conclusion . 48
5.3 Further Work . 49

Bibliography 51

Appendices 53

vii

A Noise maps from DNV 53

B Noise Measurements from Visnes Kalk AS 59

C Code from Test Program 61

viii

Terms and Definitions

Abbreviations
dB Decibel, logarithmic unit
lg logarithm base 10
X3D an XML-based file format for representing 3D computer graphics

Acronyms
AADT Annual Average Daily Traffic
CAD Computer Aided Design
DLL Dynamic Link-Library
DNV Det Norske Veritas
GUI Graphical User Interface
IDE Integrated Development Environment
NPRA Norwegian Public Roads Administration (Statens Vegvesen)
SOSI Samordnet Opplegg for Stedfestet Informasjon
XML Extensible Markup Language

Latin Letters
L5AF the A-weighted level measured with fast response, only including the top 5 %

incidents.
LAF max the average of the 5-10 highest occurring noise levels LAF defined in section

3.1, for the night hours of 23-07.
Lden A-weighted Equivalent Level for day-evening-night, with 5/10 dB added for

evening and night.
Leq Equivalent Continuous Sound Level
Levening A-weighted Equivalent Level for the evening hours of 19-23.
lg logarithm base 10
Lnight A-weighted Equivalent Level for the night hours of 23-07.
Lp Sound Pressure Level
LW Sound Power Level

ix

x

1
Introduction

1.1 Background
What is noise? A simple definition of noise is that noise is unwanted sound. Noise a has negative effect
on humans. A report from WHO[1] states that in Europe one in three individuals is annoyed by noise
from traffic during the daytime and one in five during night-time. The same report finds evidence to
support that serious health problems such as discomfort, stress, sleep disturbance, cardiovascular
disease, hearing impairment and tinnitus may be caused or worsened by noise. According to a
Norwegian report[2], approximately one in twenty individuals in Norway have large problems with
traffic noise and may be facing health risks as a result. As a precaution, regulations and legislations
have been created to prevent damaging levels of noise.

Several industries need to comply to these laws and regulations. There are limits for traffic noise
related to roads, railways and airports, and limits for various types of industries, ports and terminals.
Moreover, there are limits for wind turbines and particular noise sources such as firing ranges. To
be able to document compliance of noise regulations, a noise mapping has to be performed. This
may be done by using existing software, such as SoundPLAN[3] and NovaPoint Noise[4]. However,
these systems tend to be large and expensive and require a large amount of time and training.

If the necessary software is not owned by the company wanting to do the noise mapping, an external
consultant has to be hired, which may be both expensive and time consuming. It is therefore desired
to be able to do the noise mapping within an already used software, in this case MicroStation. Visnes
Kalk AS is a mine in Norway which had a noise mapping performed in 2012[5]. These results will be
used to verify the plug-in results in section 4.3.

1

1.2. SCOPE 1. INTRODUCTION

1.2 Scope
The plug-in should be able to add roads as noise sources and compute a noise map based on a terrain
model. The output should be a map showing yellow and red noise limits, as explained in section 3.3:
Legislation and Regulations.

Additional features:

• Detailed and accurate grid based on terrain mesh

• Noise sources:

– Drilling rig as a volume source. The area will be selected from MicroStation, a rig is
chosen, time and frequency is given as input

– A Hammer, which is similar to the drilling rig. It has as impulse or continuous noise
– Industry noise
– Loading and unloading of cargo ships
– Point noise sources in general

• Noise Mitigation elements such as screen, wall and/or mound.

• Graded noise map, showing the noise in the area as color gradings

• Exact values: The ability to select specific points, areas or volumes to get exact calculated
noise values on for instance critical buildings.

The actual implementation may be limited by time, technologies, calculation time or SoundKernel -
the computation model.

1.3 Outline of the report
This report is composed of four main parts:

• Overview of the relevant software components, including MicroStation and programming tools

• Simple sound theory, information about current legislation and Visnes Kalk AS

• Implementation: what has been done, what functionality has been added and results obtained.

• Discussions and conclusions

In addition, references and appendices may be found at the end of the report.

2

2
Technologies

2.1 Programming Tools
The main editing tool used to create the plug-in is Microsoft Visual Studio[6] which is an IDE -
Integrated Development Environment. This means that it includes a code editor, debugger and
designer, all that is needed to create a software application. It includes a debugger to help fix errors
in the code and a forms designer to create GUI applications. In addition there are many other tools
available that have not been used in this thesis.

Team Foundation Service from Microsoft was used to safely save the code and to provide source
control. The server used belonged to Norconsult Informasjonssystemer and enabled the contacts
there to view and comment on the code.

The main language used is C#[7][8] which is developed by Microsoft and is a general-purpose object-
oriented programming language fairly similar to Java. In addition, XML[9] was used to define
commands in MicroStation.

3

2.2. MICROSTATION 2. TECHNOLOGIES

2.2 MicroStation
MicroStation is a CAD-application developed by Bentley Systems used for 2D and 3D design and
drafting. It is one of the dominant CAD packages today, and competes with AutoCAD[10] for
market shares. As a tool based program, the buttons on the left menu starts most functions. In
addition there is a command line based interface, where it is possible to find the same functions and
a few more. The screen shot below shows a basic view of MicroStation with the terrain model for
Visnes Kalk AS loaded.

Figure 2.1: Terrain model displayed in MicroStation

4

2. TECHNOLOGIES 2.2. MICROSTATION

MicroStation has all of the basic functions included in most CAD programs, the most relevant to
this project are:

Table 2.1: Important functions in MicroStation

Function Description
Import of terrain models obtains a model of the surrounding area, without having to make it

from scratch. SOSI data, which is terrain models from The Norwegian
Mapping Authority (Kartverket), is compatible with MicroStation.
When a SOSI file is imported into MicroStation, it will look as in
figure 2.1 and all existing roads, buildings, etc. will be displayed.

Creation of lines, shapes manipulates the loaded terrain model. It might be necessary to
and solids change elevation lines or add new buildings, noise abatement screens

or mounds, etc.
Creation of meshes A mesh has to be created to be able to find grid points to be used in

the computation. In MicroStation a mesh looks like a smooth surface
created based on elevation or other lines defining the shape of the
model.

Level information are used to distinguish drawing objects. A level may be "House",
"Road", etc. and you may choose if objects with the specified level
is visible. For large models, such as SOSI, this is very useful. New
default levels may be created, for instance to indicate noise level.

Programmatic extensibility The possibility to extend MicroStation, using several well known
programming languages and frameworks such as Microsoft .NET,
C++, C#, Visual Basic, etc. In this thesis .NET and C# will be used.
Data may be easily exchanged to and from MicroStation, and entire
plug-ins may be created. This is the most important feature, and
essential to this thesis.

5

2.3. SOUNDKERNEL 2. TECHNOLOGIES

2.3 SoundKernel
The base computational work for the noise mapping will be SoundKernel. SoundKernel is a small
software module initially developed by SINTEF ICT, Acoustics as a part of a noise computation pack-
age for The Norwegian Public Roads Administration called NorStøy. Some changes have been made
to make SoundKernel more general and to add support for mining and industry-specific noise sources.

SoundKernel was developed using C# and the source code was provided. Several dynamic link-
libraries(DLLs) are combined to provide the required functionality. A DLL is a library that may
contain code, data and resources and can be used by more than one application at a time. An
application normally consist of several modules, these may be divided into separate DLL files to
promote code reuse and efficient memory and disc space usage. There are several DLL files provided
by SINTEF that have to be included to run SoundKernel. The most important one, and the only
one with source code provided is the SoundKernel DLL.

The code is too large and there are too many classes and objects to list them here, so only the most
important classes are mentioned:

Table 2.2: The most important classes in SoundKernel

Class Functionality
skContour defines noise limits and output computed contour lines.
skTopography contains the surrounding terrain model as a grid in addition to lists of buildings,

mounds, roads and noise zones.
skTopScreen contains mounds or noise mitigation screens. These elements are placed to mitigate

noise or to correct any errors in the terrain model.
skTopRoad define roads as noise sources with information about the traffic on the road.
skTopBuilding contains buildings defined by points.
skMetClass contains weather information, a default weather is always used.
skSource is a general class to contain the relevant parameters for a noise source.
skTask contains information about the computation that will be performed.

Information will be gathered from MicroStation and used as input to SoundKernel. When the
specified task in SoundKernel is run, the results are gathered and shown in MicroStation. Details
about how SoundKernel is used and the functionality obtained may be found in the Software
Development section in sub section 4.1.

6

3
Background Information

3.1 Sound

Sound is physical compression waves that are oscillating rapidly in either a gas, liquid or solid.
Humans perceive sound waves within the sonic range, between 20 Hz and 20 kHz. Sound is created
at a sound source and is transmitted in all directions from the source through a compressible
media. There are many ways of quantifying, measuring and processing sound and a few of the most
important ones will be briefly discussed in this section.

Sound is measured in decibel (dB) and its spectrum frequency is measured in Hz. A sound source is
quantified by sound power (Watt), the sound in the surroundings is quantified by sound pressure
(Pascal) and both are expressed in decibel[11]. A decibel is a logarithmic unit based on a physical
quantity and a reference level. The physical unit is usually either power, intensity or pressure. The
reference levels are different for these quantities, which means that a pressure based decibel is not
the same as a power based decibel.

Shown below are the equations for calculating sound pressure and sound power levels[12].

Sound Power Level:

LW = 10lg P
P0

dB,

where the reference value P0 = 1 ∗ 10−12 watt and P is the sound power of a source.

Sound Pressure Level:

Lp = 10lg p2

p2
0

dB,

where the reference value p0 = 2 ∗ 10−5 Pa and p is the sound pressure.

There are many variables that quantify a sound signal: frequency, pressure, intensity, speed, ampli-
tude, etc. A sound frequency spectrum shows the oscillation frequency of the sound signal. It is found
by using a Fourier transform and usually plotted as amplitude, power, intensity or phase vs. frequency.

7

3.1. SOUND 3. BACKGROUND INFORMATION

Figure 3.1: Typical sound pressure levels of com-
mon noise sources

A sound wave’s physical characteristics are
directly related to how the listener per-
ceives the sound. For a specific fre-
quency, a larger pressure amplitude will in-
crease the perceived loudness[13]. The sound
the human ear is able to hear depends
on the sound pressure level and the fre-
quency.

A high frequency of 20 000 Hz is a very
high pitched sound, while a low frequency
of 20 Hz is a deep base sound. A nor-
mal conversation is generally at 60 dB and
100-1000 Hz. Figure 3.1 shows the correla-
tion between frequency, sound pressure level
and audible sound[14]. A line in the im-
age has equal loudness for the different com-
binations of frequency and sound pressure
level.

A change in sound pressure level of 2 or
3 dB is noticeable. A 10 dB increase
makes the sound seem twice as strong and
equals the difference between having one
and ten machines running at the same
time.

When measurements of sound pressure levels are made, the measurements are grouped into octaves.
An octave is a frequency interval, commonly called a bandwidth[13], where f2 = 2f1[15].

Measured sounds are filtered so that the sensitivity varies with frequency, such as for a human ear.
There are three different types of filters, called weighting networks:

A - Low sound pressure levels

B - Medium sound pressure levels

C - High sound pressure levels

A-weighting is widely used as a measure of possible hearing damage, annoyance caused by noise
and compliance with legislation and regulations such as in Section 3.3. The equation for weighing is
given in ISO 3744[12]:

LW A = 10lg
∑

100,1(LW +C)dB,

where LW is the sound power at the specified frequency, C is the attenuation value for the frequency

and LW A is the A-weighted sound power level.

8

3. BACKGROUND INFORMATION 3.1. SOUND

The attenuation values for A-weighting are given in Table 3.1:

Table 3.1: A-weighting Attenuation Values

Mid-band frequency [Hz] 63 125 250 500 1000 2000 4000 8000

C [dB] -26,2 -16,1 -8,6 -3,2 0,0 1,2 1,0 -1,1

Equivalent continuous sound level Leq is given by the A-weighted level of steady noise that has
the same A-weighed energy as the actual time-varying noise in question. ISO 1996[16] gives the
equation:

LAeq,T = 10lg

[1
T

∫
T

p2
A(t)/p2

0dt

]
dB,

where pA(t) is the A-weighted instantaneous sound pressure at running time t.

Rating levels are created for the different periods of the day. These rating levels are used to describe a
noise environment by creating a whole-day composite rating level. This is described in ISO 1996[16].

LRden = 10lg

[
d

24 ∗ 10(LRd+Kd)/10 + e

24 ∗ 10(LRe+Ke)/10 + 24 − d − e

24 ∗ 10(LRn+Kn)/10
]

dB,

where:

d number of daytime hours
e number of evening hours
LRd rating level for daytime
LRe rating level for evening-time
LRn rating level for night time
Kd adjustment for weekend daytime, if applicable
Ke adjustment for evening-time
Kn adjustment for night time

Lden is often used as an improvement on LAeq and takes into account the increased annoyance of
noise on evenings and nights. There are many other measurements of noise and noise annoyance, only
the most relevant are mentioned in this report. Additional measurements not previously mentioned
but important for environmental noise and in section 3.3: Legislation and Regulations, are listed
below:

Levening A-weighted equivalent level for the evening hours of 19-23.
Lnight A-weighted equivalent level for the night hours of 23-07.
LAF max the average of the 5-10 highest occurring noise levels LAF for the night hours of 23-07.
LAF the A-weighted noise level with fast (125 ms) response.
L5AF the A-weighted level measured with fast response, only including the top 5% incidents,

giving a statistical maximum level.

9

3.2. MITIGATING NOISE 3. BACKGROUND INFORMATION

3.2 Mitigating noise
To reduce noise levels in areas, different types of noise mitigation are used. The main categories
are[11]:

• Traffic reduction

• Speed limit reduction

• Reduced noise emission from each vehicle

• Hide the noise sources from the general public

• Hide the general public from the noise sources

• Reduce peoples reactions to the noise

• Change the behavior of the general public

• Change the behavior of the travelers

The usual technologies involved in noise mitigation are traffic management, cars, tires and road covers.
In addition noise barriers and sound proofing are used with noise monitoring, new technologies and
various tools for calculation and analysis. There are several instruments that may be used to reduce
noise, including legislation, economy, globalization, political will and prioritizing. For Visnes mine,
mentioned in Section 3.3, legislation is a drive to make sure that the surrounding housing areas have
acceptable noise levels.

In the surroundings the most common noise mitigation measures are noise barriers which normally
give 5-10 dB reduction in noise level. A well placed row of buildings may give up to 20 dB noise
reduction for surrounding buildings.

For an industry area the most relevant ways to mitigate noise are:

• speed and vehicle reduction on industry roads

• more efficient use of machinery, to decrease total number of hours used every day

• noise mitigation walls, screens and mounds

• reduced activity outside normal workdays and work hours

• sound proofed production buildings

Visnes Kalk AS has used noise mitigation mounds in several areas, with good results.

10

3. BACKGROUND INFORMATION 3.3. LEGISLATION AND REGULATIONS

3.3 Legislation and Regulations
The Norwegian pollution regulations, Forurensningsforskriften[17], states noise limits around resi-
dential areas, hospitals, educational institutions, kindergartens and other care institutions. These
are as follows:

Table 3.2: Noise limits, from Forurensningsforskriften(2004)

Monday Evening Saturday Sunday and Night Night
- Friday Mon-Fri Publ.Holidays (23-07) (23-07)
55Lden 50Levening 50Lden 45Lden 45Lnight 60LAF max

where Lden and Levening are defined in section 3.1.

The guidelines for management of noise in land planning, T-144/2012[18], recommend the use of
two noise zones, one yellow and one red. In yellow zones residential areas may be put up if noise
regulations are satisfied and in red zones residential areas are not allowed. Criteria for the zones are
given on the next page. If at least one of the criteria are met the specific area will fall under that
zone. The zones should be computed 4 m above the terrain.

The impulse sound mentioned in table 3.3 is characterized by brief bursts of sound pressure lasting
less than 1 second. In ISO 1996[16] there are three definitions of impulse noise:

• High-energy impulsive sound source
Explosive sound due to firing heavy weapons, explosives, etc.

• Highly impulsive sound source
Highly impulsive, highly intrusive noise, such as firing light weapons, hammering, using
pneumatic tools, etc.

• Regular impulsive sound source
Impulsive sounds that are not highly impulsive or intrusive, such as car doors, church bells,
etc.

Only highly impulsive sounds count as impulsive noise lowering the limits of table 3.2 and 3.3 with 5
dB. The variables in table 3.3 are defined in section 3.1.

11

3.3. LEGISLATION AND REGULATIONS 3. BACKGROUND INFORMATION

Table 3.3: Criteria for noise zones, from T-144/2012[18]

Yellow Noise Zone
Outdoor noise level

Noise Source Monday- Sunday, Saturday & Night
Friday Public Holidays 23-07

Road Lden 55 dB L5AF 70 dB
Railway Lden 58 dB L5AF 75 dB
Airport Lden 52 dB L5AF 80 dB
Wind turbines Lden 45 dB -
Industry Without impulse
with Lden 55 dB Lnight 45 dB
continuous With impulse LAF max 60 dB
operation Lden 50 dB

Without impulse Without impulse
Other Lden 55 dB and Saturday: Lden 50 dB

Levening 50 dB Sunday: Lden 45 dB Lnight 45 dB
industries With impulse With impulse LAF max 60 dB

Lden 50 dB Saturday: Lden 45 dB
Levening 45 dB Sunday: Lden 40 dB

Ports Without impulse
and Lden 55 dB Lnight 45 dB
terminals With impulse LAF max 60 dB

Lden 50 dB
Motor Lden 45 dB No activity
sports L5AF 60 dB No activity
Firing Lden 30 dB No activity
ranges L5AF 60 dB No activity

Red Noise Zone
Road Lden 65 dB L5AF 85 dB
Railway Lden 68 dB L5AF 90 dB
Airport Lden 62 dB L5AF 90 dB
Wind turbines Lden 55 dB -
Industry Without impulse
with Lden 65 dB Lnight 55 dB
continuous With impulse LAF max 80 dB
operation Lden 60 dB

Without impulse Without impulse
Other Lden 65 dB and Saturday: Lden 60 dB

Levening 60 dB Sunday: Lden 55 dB Lnight 55 dB
industries With impulse With impulse LAF max 80 dB

Lden 60 dB Saturday: Lden 55 dB
Levening 55 dB Sunday: Lden 50 dB

Ports Without impulse
and Lden 65 dB Lnight 55 dB
terminals With impulse LAF max 80 dB

Lden 60 dB
Motor Lden 55 dB No activity
sports L5AF 70 dB No activity
Firing Lden 35 dB No activity
ranges L5AF 70 dB No activity

12

3. BACKGROUND INFORMATION 3.4. VISNES KALK AS

3.4 Visnes Kalk AS
Visnes Kalk AS is located in Visnes by Kornstadfjorden in Eide kommune. The main products are
limestone, marble and eclogite. The total deposit is about 40 million tons and the annual production
is about 600 000 tons, giving an annual turnover of approximately 60 million NOK[19]. An extension
of the current zoning plan is desired. As a result an impact assessment has been made in addition to
a noise evaluation[5] performed by Det Norske Veritas (DNV).

This mine and the noise evaluation will be a base for verifying the results obtained by the developed
plug-in for MicroStation. DNV found that transportation is the main noise source for most of the
mine. However, mining activity are critical in some areas and have to be taken into account. The
noise model developed by DNV is based on measurements performed on site of noise from processing,
transport, port and mining activity. Noise levels are presented as Lden, which is A-weighted noise
levels for day, evening and night, with 5/10 dB added for evening/night values. Two situations were
examined, both giving two noise maps, one with yellow and red noise limits as mentioned in Section
3.3 and one with gradient noise limits. The two situations considered were:

1. Only daytime work and 24 hour loading of ships

2. Only daytime work, transport to the port and 24 hour loading of the ships

Situation one describes the everyday noise better than situation two and will be used in the Testing
and Results section. All of the noise maps may be found in Appendix A.

The housing in the area close to the mine is critical to this noise evaluation. There are a few houses
inside the red limit and some inside the yellow limit. Noise mitigation action may be necessary to
ensure that these follow current legislation. As previously mentioned, an interactive plug-in would
be useful in this situation. Noise mitigation may be used to shield the buildings from the noise and
a new map may be computed to see the effect of the mitigation.

The mine usually operates from 7.30 to 15.30, Monday to Friday. When new ships arrive they have
to be loaded quickly which causes loading to be performed over the entire 24-hour period. However,
the loading is limited to the port area only. On the rare occasion that the storage areas near the
port are insufficiently large, transport of material is performed during night and evening time in
addition to daytime. This greatly increases the noise levels even if it rarely happens. Years may go
by between each such incident.

13

3.5. NOISE MEASUREMENT 3. BACKGROUND INFORMATION

3.5 Noise Measurement
When measuring noise, there are several important things to consider:

• The instrument used must be suited for the desired type of measurement

• Weather and wind should be noted, especially wind may have a large impact on the measure-
ments. Temperature, humidity and precipitation influence how fast the sound travel. Wind
may both increase and decrease the measured noise.

• The area surrounding the noise source are very important. The measurement should be
performed at an appropriate distance from the noise source, to be sure to capture it accurately.
The surrounding area should ideally be fairly flat and free from noise reflecting surfaces.

• Background noise should be estimated to see if it needs to be considered as large enough to
influence the measurement.

On a trip to Visnes Kalk AS, several noise measurements were made. Measurements were made for
some of the machines and equipment without any noise data. These may be used in SoundKernel.

Leq was measured and used to calculate Lw, the sound power level used to define the sound source.
The equation used is for a free source on or close to terrain level, without any close reflection
surfaces[20]:

Lw,okt = Lr,okt + 20log(R) + 8

where Lr,okt is the measured noise level, Leq and R is the distance from the source to the measurement
point.

The measurements and calculated noise levels are shown in full in Appendix B: Noise Measurements
from Visnes Kalk AS.

14

4
Software Development

4.1 Implementation
To be able to properly run the solution and to allow code reuse, two DLL files were created: NoiseC-
omputation and ISY.CAD.Noise. These are connected as shown in the figure below, and the classes
and function of NoiseComputation and ISY.CAD.Noise are explained in detail on the next pages.

Figure 4.1: Overview over interactions between MicroStation, ISY.CAD.Noise, NoiseComputation
and SoundKernel

15

4.1. IMPLEMENTATION 4. SOFTWARE DEVELOPMENT

NoiseComputation
This DLL has a strong connection to SoundKernel and its corresponding DLLs and operates as a
link between SoundKernel and ISY.CAD.Noise. NoiseComputation may be used in other projects to
connect other programs to SoundKernel. It is general and provides a simple interface for exchanging
values.

The classes in NoiseComputation are as listed below. The NoiseRoad, NoiseSource, NoiseMound and
NoiseBuilding classes all have constructors and used in ISY.CAD.Noise to give NoiseComputation
information about the elements created in MicroStation.

Table 4.1: Overview of NoiseComputation classes

Class Function
NoiseRoad contains the points, width, velocity, traffic type and distribution type of the

road. In addition to if it is a tunnel or bridge and user defined noise spectra
and/or traffic distribution, if there are any.

NoiseSource contains the points of the source in addition to the source type, activity type,
geometry, distribution type, amount, amount unit and user defined frequency
spectra and time distributions.

NoiseMound contains the points of the line that is the base of the mound, width at the
top and bottom, in addition to left and right height of the mound.

NoiseContour contains a list of contour line points and the level of the contour line in
addition to a constructor. NoiseContour objects are used to save the contour
line output from SoundKernel and send them to ISY.CAD.Noise to be drawn
in MicroStation.

NoiseBuilding contains inline and outline points of a building in addition to if facade points
should be computed for the building. Inline points are usually the top lines of
the building while outline points are the outline of the building at the height
where the roof starts.

ComputationMgr is the main class of the library. It contains methods for creating SoundKernel
roads, buildings, topography, mounds, etc. In addition it contains public lists
of NoiseRoads, NoiseBuildings, NoiseSources, NoiseMounds and NoiseCon-
tours that are accessible from ISY.CAD.Noise and may be altered or used
there.
The class is too large to explain in detail, but in short the class creates
the environment necessary for SoundKernel to run. It creates a topography
from the grid information, adds roads, buildings, calculation points, weather,
mounds, triangulates the topography model, etc., and runs the computation.
This may take some time, and when the computation is finished, contour lines
are written to the list of NoiseContours and a summary are written to file.

ISY.CAD.Noise
This DLL deals with MicroStation and deliver information to NoiseComputation so that it may run
the computation. It extracts data from MicroStation and manipulates it to suit the objects shared
from NoiseComputation. The most important classes shown in table 4.2.

16

4. SOFTWARE DEVELOPMENT 4.1. IMPLEMENTATION

Table 4.2: Overview of ISY.CAD.Noise classes

Class Function
AddBuildingMgr creates a form to guide the user when adding buildings in MicroStation. When

a building has been successfully selected in MicroStation it is added to a list
of NoiseBuildings in the RunCalc class.

CalcPointsMgr enables the user to select a line, line string, shape or solid and add the points
to SoundKernel. Exact noise values will be computed for the points. This
class extracts points from the chosen element, and adds them to an array of
points in RunCalc.

commands is an XML file mapping commands in MicroStation to functions in the Main
class in ISY.CAD.Noise. Commands are added here, and attached to a method
in Main.

GridMgr searches the model for grid lines (Primary and Secondary) and extracts
important values such as the smallest and largest x- and y-values in addition
to intersection points where the lines cross. These values are later sent to
NoiseComputation to be used to create the topography.

IndustryNoiseMgr enables industry noise sources to be created in MicroStation and saves point
coordinates, geometry, time distribution, noise type, amount and frequency
spectra to a NoiseSource object that is accessed in NoiseComputation.

Main contains the methods corresponding to the commands in commands.xml.
These methods generally start main methods in the different classes. For
instance, the method for the command addBuilding runs the method Ad-
dBuilding.StartCommand();

Mesh2GridMgr creates Primary and Secondary grid lines based on a mesh. This is done by
using some integrated MicroStation commands and a lot of code to join line
pieces together and find the right z-value for each point in the line. The lines
are then drawn in the MicroStation model.

MoundMgr finds the points of the selected base line of the mound and creates an instance
of NoiseMound. The instance contains the points and the heights/widths of
the mound and is added to the array of mounds in RunCalc.

RoadMgr creates a form to guide the user and to enable import of values such as width,
velocity, traffic type, AADT, traffic distribution and user defined values.
When a line is selected, the points are extracted and a NoiseRoad instance is
created and added to the array of roads in RunCalc.

RunCalc is the "main" class in ISY.CAD.Noise. It collects and interchanges data with
NoiseComputation and starts the process of running SoundKernel through
NoiseComputation. It contains lists of mounds, roads, sources, calculation
points and buildings which it sends to NoiseComputation. When a computa-
tion has been run, RunCalc draws contour lines in MicroStation.

17

4.2. USER MANUAL 4. SOFTWARE DEVELOPMENT

4.2 User Manual

Overview
The features of the developed plug-in for MicroStation are as stated in this section. A more
detailed ISY.CAD.Noise User Manual[23] is available. This section gives an overview, while the
ISY.CAD.Noise User Manual is directed towards more advanced users.

The command line interface in MicroStation, called Key-in, is probably known for many users of
MicroStation, however a brief introduction will be provided here. As of now, the new functions
created in the ISY.CAD.Noise plug-in may only be accessed using the Key-in.

Accessing
The command line interface may be accessed either by choosing Utilities -> Key-in in MicroStation,
or by pressing the Enter-key on the keyboard.

Window explanation
The Key-in window is shown below, the most recent command are shown at the bottom part of the
form, and available commands are shown in the scrollable window above.

Executing command
The selected command: "mdl load isycadnoise" is the command to load ISY.CAD.Noise. When this
is executed the plug-in may be used. All the commands in the following sections have to be executed
in this Key-in form.

Figure 4.2: MicroStation Command Line Interface

18

4. SOFTWARE DEVELOPMENT 4.2. USER MANUAL

Getting Started

Start MicroStation and establish terrain and mesh:

Terrain model
First establish a terrain model. The easiest way of doing this is to import a terrain model, preferably
from SOSI data[22].

Mesh
Then a mesh needs to be established. A mesh connects all the points of the selected elements and
creates a surface. This is done by selecting "create mesh from contours" in MicroStation and choosing
the lines in the terrain model that are to be the base of the mesh. It is recommended to choose
elevation lines (called "Høydekurver" in Norwegian SOSI data). These are displayed by selecting
that level using MicroStation Level Display. This will create a nice and even mesh as shown below.
The result is shown in figure 4.3. The gray surface is the actual mesh and the white lines are the
elevation lines.

The example used in this User Manual is Visnes Kalk AS. As it is a large mine, only a part of the
terrain model are used in this example.

Figure 4.3: A mesh of a part of Visnes Kalk AS

19

4.2. USER MANUAL 4. SOFTWARE DEVELOPMENT

Creation of grid

A grid has to be defined for SoundKernel to develop a topography model for the computation.

Activate the function "Noise Mesh2Grid" in the Key-in to create grid lines based on the mesh in
section 4.2. These are straight lines going north to south (Primary grid lines), and east to west
(Secondary lines), creating a grid.

The complete result with grid lines are shown below. These lines are saved in the MicroSta-
tion model, and this command only have to be executed once for each model. The intersection
points of the lines are used as the base of the topography model mentioned in the SoundKernel section.

Figure 4.4: Mesh with Primary and Secondary Grid Lines.

The computation will run without errors as soon as a grid is established. However, the results will
be zero unless one or more noise sources are added. There are two types of noise sources that may
be added: Road and Industry noise source. These are described in the next sections.

20

4. SOFTWARE DEVELOPMENT 4.2. USER MANUAL

Road noise sources

Figure 4.5: Form for adding a Road Noise Source

A road noise source is added by activat-
ing the "Noise AddNoiseSource" -> "Road"
function in the command line interface.
The road options form is shown to the
right.

To add the road, the center line of the road is
selected in the MicroStation model.

The level of the line will be changed to
"StøyVeg" - Noise Road in Norwegian. The
possible options for a road are explained be-
low:

Table 4.3: Road Options

Option Description
Road width is defined in meters and as the entire width of the road. For some roads

width may be found on the Norwegian Public Roads Administration (NPRA)
website[24].

Velocity is defined in km/h. Values may be found on the NPRA website[24].
AADT Annual Average Daily Traffic is the number of vehicles passing the road

on an average day. Values may be found on the NPRA[24] or Norwegian
Directorate for Civil Protection (DSB)[25] websites.

Traffic Type defines the vehicles driving on the road. There are currently four possible
traffic types: Heavy, Normal, Dumper or User Defined. These are defined
in Table 4.4.

Traffic Distribution defines a distribution of AADT over time. The distribution is created for
every hour of every day in a week and is the same for all weeks in a year.
This is a simplification as traffic may vary throughout a year. There are
three possible options: General, Work hours and weekdays and User Defined.
These are defined in Table 4.5.

Special type may be used if the road is a bridge or a tunnel. These elements will have
different parameters, for instance will a tunnel generate less noise, except
at its ends.

21

4.2. USER MANUAL 4. SOFTWARE DEVELOPMENT

Table 4.4: Traffic Types

Option Description
Normal this traffic type indicates a common road, for instance a highway, with continuous

traffic throughout both day and night. There is a distribution of light, medium
and heavy vehicles on the road.

Heavy this traffic type consist of only heavy vehicles(buses, trucks, etc.).
Dumper is a traffic type created from noise measurements of a Euclid dumper[5]. A dumper

is a large and heavy vehicle common in many industry and construction areas.
User Defined if there is a specific traffic type on the road, the User Defined traffic type may be

used, and the "Define" button opens the form shown below. Decibel values for
each frequency may be input here and a user defined traffic type is created.

Figure 4.6: User Defined Noise Spectrum

Table 4.5: Traffic Distribution

Option Description
General defines the distribution on most common roads, such as highways.
Work hours and weekdays all traffic is distributed between 08 and 16, Monday - Friday.
User Defined if the traffic distribution is known for the road and does not fit

any of the two options above, the user defined option may be used.
When the "Define" button is pressed, the form in figure 4.7 is shown.
Specific values for daytime, evening and night time on Monday-Friday,
Saturday and Sunday may be input. It is important to make sure
that the AADT-value is the same as the number of vehicles for a day.

22

4. SOFTWARE DEVELOPMENT 4.2. USER MANUAL

Figure 4.7: User Defined Noise Distribution

The image below shows the form with the options for the road, and a selected road. The terrain
model is the same as before, however the levels have been changed to fit this demonstration.

Figure 4.8: Adding a Road Noise Source

23

4.2. USER MANUAL 4. SOFTWARE DEVELOPMENT

Industry noise sources

Figure 4.9: Adding an Industry Noise Source

There are many different types of indus-
try noise sources: machinery, heavy work,
construction etc. The currently available
noise types in ISY.CAD.Noise are more suited
for mining than other industries. How-
ever, many other noise types may be
added. User defined noise sources enable
the use of all types of noise, provided
the noise source may be specified or mea-
sured.

An industry noise source is created by first en-
tering "Noise AddNoiseSource" -> "Industry" in
the Key-in. This invokes the form in figure
4.9. The options available are described in table
4.6.

After the options for the noise source have been
entered, a point, line or shape is selected in MicroStation and the industry noise source is created.

Table 4.6: Industry Options

Option Description
Geometry defines what the noise source will look like. There are four choices: Point, Line,

Area and Volume Source. A point source is defined by a single point and a line
source is a line with two or more points. For the area source, a line or shape
should be chosen and the height of the line or shape will be the height of the noise
source. A volume source should be created in the same way. For a volume source
the noise will be distributed over the volume below the chosen line or shape.

Amount daily average hours of use defines how long for instance a machine runs throughout
a day. This number has to be between 0 and 24. The number of hours is distributed
according to the distribution described below.

Noise Source defines a few types of industry noise. There are currently four possible types:
Crusher, Drilling, Dumper or User Defined. These are defined in Table 4.7.

Distribution this option defines how the hours are distributed over time. The distribution is
created for every hour of all the days in a week and is the same for all weeks in a
year. This is a simplification. There are three possible options: General, Work
hours and weekdays and User Defined. These are defined in Table 4.8.

24

4. SOFTWARE DEVELOPMENT 4.2. USER MANUAL

Table 4.7: Noise Source Types

Option Description
Crusher this is a large machine used for crushing larger rocks into smaller ones.
Drilling when a drilling rig is drilling a hole in rock, a lot of noise is created. The frequency

spectra for this noise source originates from the measurements mentioned in section
3.5 and shown in Appendix B.

Dumper is a large and heavy vehicle common in many industry and construction areas.
User Defined industry noise sources may have a great variation in noise level and frequency

range and the user defined option enables an advanced user to enter specific values
for the different frequencies. The form is the same as in figure 4.6.

Table 4.8: Time Distribution

Option Description
General this distributes the noise over day, evening and night, and all days in

a week are the same.
Work hours and weekdays the hours are distributed between 08 and 16 and Monday - Friday.
User Defined if none of the two options above are suited for the specified noise

source a user defined distribution may be created. The time distri-
bution form looks like the one in figure 4.7. It is important that the
number of hours input to the form matches the daily amount.

25

4.2. USER MANUAL 4. SOFTWARE DEVELOPMENT

Noise Mitigation

Figure 4.10: Noise Mitigation
Form

A mound, screen or wall may be added by selecting the "Noise
AddMound" function and choosing a line to be the base of
the mound. The options form for a mound are in figure
4.10.

It is very important that the line chosen for the new element
is based on elevation lines or other elements that are based on
the terrain, to make sure no errors occur. This function is
quite sensitive to intersecting elements, etc. The options for
the noise mitigation elements are described in table 4.9. The
radio buttons decide which of the values below may be in-
put.

The level of the base line is changed to "Voll" - Mound in Norwegian
and a line indicating the height of the element is added with the
level "VollHøyde" - Mound Height.

Table 4.9: Noise Mitigation Options

Option Description
Screen only the height output needs to be set, the others are zero by default.
Wall height at the left and right side of the wall and the width at the top is input. Left and

right side of the wall is defined based on how the base line for the wall is drawn. A
wall is actually a mound with the base being 20 cm wider than the top.

Mound width at the top and bottom of the mound will be an input in addition to the height
at the left and right side of the mound.

Figure 4.11: Adding a Mound, Screen or Wall

26

4. SOFTWARE DEVELOPMENT 4.2. USER MANUAL

Buildings

To add a building the "Noise AddBuilding" function in the Key-in is selected.

Then a cell or a line string in MicroStation is chosen as the outline of the building. An outline of
the building should be a closed line or a shape at the height of the start of the roof of the building.

Any top lines of the building will be automatically searched for and added. These have to have
"Mønelinje" as Level.

Noise at facade points around the building is computed if the check box is checked. Many facade
points will be added for each building, the house below will for instance have 52 facade points
computed. These are only output if any of the values have a decibel value of 50 or larger.

The data provided by SOSI (Samordnet Opplegg for Stedfestet Informasjon[22]) is compatible with
this function. Below is an image showing the process of adding a building.

Figure 4.12: Adding a Building

Calculation points

If exact noise values are wanted for a house, the building could be added as shown above, and facade
points computation selected. However, if exact values are desired for any other line, shape or solid,
the "Noise AddCalculationPoints" function may be used. The function is selected the same way
as the others, and the specific line, shape or solid is chosen. The noise at the points will then be
calculated and the results output to a file.

The main difference between using facade and calculation points to compute noise levels is that
facade points takes reflections from its building wall into account.

27

4.2. USER MANUAL 4. SOFTWARE DEVELOPMENT

Running the computation

Figure 4.13: Run Computation Form

By activating "Noise RunCalculation" in the Key-
in the form on the right is shown. The
unit(s) to be computed may be chosen here.
These units should be known for a user with
some noise experience. The "Run Computa-
tion" button starts the computation process, which
may take from seconds to several hours de-
pending on how large the model is, how many
noise sources there are and computer perfor-
mance.

Topography Model

SoundKernel creates its own topography model based
on the grid points created in sub section Creation
of grid and the buildings, noise mitigation elements
and roads added. This model is output as an X3D
file and may be viewed using MeshLab[26], a free
open source software. The file will look similar to the
image below, depending on the added elements and the terrain.

It is recommended to check this model to see if all elements are where they should be and look like
they should.

Figure 4.14: Finished Topography Model
28

4. SOFTWARE DEVELOPMENT 4.2. USER MANUAL

Result File

When the computation is finished a form will pop up, showing how long the computation took.
The results and details of the computation, such as point coordinates for the grid, noise sources,
buildings, mounds, computation points, etc have been written to a file called Summary.txt, in the
folder "C:\TEMP". More information about what is output in that file may be found below:

Table 4.10: Information in Summary.txt

Element Information written to Summary.txt
Noise sources the points of the noise sources in addition to if it is a road or industry

noise source. Amount/AADT, distribution, noise type, frequency
spectra and other important parameters are written as well.

Building the inline and outline points of a building.
Noise Mitigation Element the points of the base line, left/right heights and top and bottom

width are output if relevant for the element.
Facade Point results the points, the resulting values and computation unit.
Grid the start and end points of the grid, in addition to number of grid

lines in each direction and total number of points.
Computation points the exact computation points, resulting values and computation unit.

Contour Lines

If the computation has been run for the computation value Lden, the contour lines may be drawn.
Either simple or detailed contours may be chosen and upon pressing the "Create Contours" button,
the contours will be drawn. The contours are color coded and look like the images in figure 4.15 and
4.16 on the following page.

Figure 4.15 shows the simple contour lines, with noise at 65 dB or higher inside the red area, and 55
dB or higher inside the yellow limit. Figure 4.16 shows detailed contour lines, where there are 3 dB
between each color.

29

4.2. USER MANUAL 4. SOFTWARE DEVELOPMENT

Figure 4.15: Drawn Contour Lines

Figure 4.16: Drawn Detailed Contour Lines

30

4. SOFTWARE DEVELOPMENT 4.2. USER MANUAL

Facade Points

The values for facade points are written to the summary file, and may easily be used in for instance
an Excel document. The points are listed with building number, facade point number, position east
and north, decibel value(s) and unit(s). Copy-pasted into Excel the values will look something like
figure 4.17.

Figure 4.17: Facade Points Results

Calculation Points

The calculation points are written to the same text file as the facade point results. The x, y and
z-values of the points are given in addition to the point number, the units computed and the decibel
values for the units. The text file may look like below:

Point 0: x: 418 495,9 y: 6 981 606,7 z: 50,4 Lden: 57,0 Lequ: 53,6
Point 1: x: 418 494,9 y: 6 981 610,9 z: 50,3 Lden: 57,3 Lequ: 53,8
Point 2: x: 418 493,9 y: 6 981 612,1 z: 50,3 Lden: 57,4 Lequ: 53,9
Point 3: x: 418 492,7 y: 6 981 613,4 z: 50,1 Lden: 57,5 Lequ: 54,1
Point 4: x: 418 491,6 y: 6 981 614,5 z: 50,1 Lden: 57,6 Lequ: 54,1

31

4.3. TESTING AND RESULTS 4. SOFTWARE DEVELOPMENT

4.3 Testing and Results
In this section the functions in ISY.CAD.Noise will first be tested one by one, and then there will be
two larger scale tests. All the tests are listed below:

1. Comparing mesh to topography

2. Noise Mitigation Test

3. Building and Calculation Points

4. Road Noise Source, testing traffic type, time distribution and tunnel

5. Industry Noise Source, testing point, line, area and volume source

6. SINTEF Test Case

7. DNV Test Case

Grid and Terrain Model

First the grid should be verified. The grid used in SoundKernel should be similar to the actual
terrain model. This is easily tested by running the computation without any noise sources, buildings
or mounds. The results are shown below:

(a) MicroStation mesh (b) SoundKernel Topography model

Figure 4.18: Comparing MicroStation mesh to Topography model

The two models are very similar, the topography model is a bit more rough, however it is still a
good approximation for the mesh.

32

4. SOFTWARE DEVELOPMENT 4.3. TESTING AND RESULTS

Noise Mitigation

Figure 4.19: Screen in Topography model

A mound, screen or wall should decrease
the noise on the side facing away from the
noise source. This will be tested by run-
ning a computation with a road noise source
twice, once with a screen and once with-
out. The screen will have a height of 5
m.

After the computation has run the mound,
screen or wall should be included in the Sound-
Kernel topography model. To the right is
the topography model with the 5 m high
screen.

The resulting contour noise lines for the two com-
putations mentioned above are shown in figure
4.20:

(a) Without screen (b) With screen

Figure 4.20: Test results for added screen

The screen is drawn in pink. The contour lines are drawn with 3 dB between each.

The effect of the mound is noticeable, the noise levels are lower on the right side of the screen in (b).
Notice the wide green areas on the right side of the screen. If there was a house here, the screen
would probably decrease the outside noise level by 3-6 dB.

Note that the contour lines are computed 4 m off the terrain level and that the screen might have a
larger impact on sound levels closer to the ground. These results correspond well with the values
mentioned in section 3.2.

33

4.3. TESTING AND RESULTS 4. SOFTWARE DEVELOPMENT

Building and Calculation Points

Figure 4.21: Building with Points

A computation was run for a fairly noisy road, a
building with facade points and computation points.
The computation points were the outline of the build-
ing.

The building is shown in figure 4.21, and the six points
of the outline are numbered. The noise source is to the
left of the building. An extract from the results may be
viewed in table 4.11.

Table 4.11: Facade and Computation Point Results

Point Type X [m] Y [m] Height [m] Leq[dB]
1 Computation 418 469.9 6 981 660.7 3.5 49.0

Facade 418 471.1 6 981 660.8 4.1 48.9
Facade 418 471.1 6 981 660.0 1.5 44.7

3 Computation 418 473.9 6 981 644.9 3.5 40.2
Facade 418 473.2 6 981 644.6 2.5 43.0
Facade 418 473.2 6 981 644.6 1.5 40.8

4 Computation 418 459.5 6 981 649.3 3.5 43.2
Facade 418 459.3 6 981 650.5 4.1 50.1
Facade 418 459.3 6 981 650.5 1.5 47.4

6 Computation 418 468.3 6 981 655.5 3.5 49.7
Facade 418 468.0 6 981 656.3 2.5 44.8
Facade 418 468.0 6 981 656.3 1.5 43.1

For point 1 and 3 the results are similar, while for point 4 and 6 there is a larger difference be-
tween the results. For point 4 the facade values are the largest, while for point 6 they are the smallest.

There is a very good explanation for this: The facade points are computed with reflections included.
This means that points on the back of the building and inside corners will get less noise, such as for
point 6. Point 4 is directly exposed to the noise source and will probably have a lot of reflection on
the wall, causing it to have more noise than the corresponding computatioln point.

The computation points does not take into account that there is a building there and will generally
give more even values for the area. In addition, the height of the point has a large influence on the
noise level, generally the noise is lower when the point is closer to the ground.

34

4. SOFTWARE DEVELOPMENT 4.3. TESTING AND RESULTS

Road Noise Source

There are many ways to verify and test the road noise sources, the most important tests will be
performed in the SINTEF Test Case and DNV Test Case sub sections. In this section a few simple
roads will be tested.

Traffic Type
First, three computations will be run, one for Normal traffic type, one for Heavy and one for Dumper,
results are shown below.

(a) Normal (b) Heavy (c) Dumper

Figure 4.22: Test results for different traffic types

As expected, the Dumper traffic type creates more noise than the Heavy and Normal types.

35

4.3. TESTING AND RESULTS 4. SOFTWARE DEVELOPMENT

Time Distribution
The time distribution will have different effects on the results for the various computation units. For
the general traffic distribution, Lnight and Levening should not be zero, and Lden should be higher
than Leq. For the Weekday and work hours distribution Lnight and Levening should be zero and Lden

should have the same value as Leq. Two tests with the two different distributions were run to check
this. The results for the computation points chosen are shown below.

Table 4.12: Results for computation with different Traffic Distributions

Point Lden Leq Lnight Levening

General traffic distribution
0 60.3 56.8 51.6 56.8
1 60.4 56.9 51.7 56.9
2 60.5 57.0 51.8 57.0
Workday and work hours traffic distribution
0 52.5 52.5 -50.0 52.5
1 52.3 52.3 -50.0 52.3
2 52.4 52.4 -50.0 52.4

The results are as expected with the exception of Levening. For Workday and work hours distribution
the expected value is -50.0, which essentially means that there is no value. For General distribution
it should not be the same as Leq. However, as Lden and Leq are the same, they have not been
affected by the Levening value. The reason for the wrong Levening values is that it has not yet been
implemented in SoundKernel.

Tunnel
For a tunnel the noise is lower along the tunnel, but possibly higher at the ends of the tunnel. This
is a result of noise accumulating inside the tunnel. A test was run for a Heavy traffic distribution
and the results are shown in figure 4.23.

(a) Road with tunnel (b) Road without tunnel

Figure 4.23: Test results for Tunnel

The black line in (a) shows the part of the road defined as a tunnel. It is easy to see that the noise
is reduced where the tunnel is, and quickly goes back to a level similar to (b) where the tunnel ends.

36

4. SOFTWARE DEVELOPMENT 4.3. TESTING AND RESULTS

Industry Noise Source

Point Source
This noise source is concentrated in a single point, and should have circular contour lines radiating
from it. The image below shows the resulting contour lines for a point source centered in the red
circle. As expected the noise radiates in a circle close to the source. When the distance from the
noise source increases, the terrain makes the noise distribute differently.

Figure 4.24: Test results for Point industry source
Line Source
For a line source, the noise is dispersed over the length of the line. A dumper line noise source should
therefore be similar to a road noise source with dumper traffic type. Two computations were run,
one for a road noise source of Dumper traffic type, with 200 AADT. The second was an industry
noise source with line geometry, Dumper noise type and an amount of 8 hours. Both had Workday
and work hours distribution. The results are shown in figure 4.25.

(a) Industry (b) Road

Figure 4.25: Comparison of Industry and Road Dumper Noise Source

37

4.3. TESTING AND RESULTS 4. SOFTWARE DEVELOPMENT

The contour lines are similar, however there are some differences. The major difference is that
the industry noise source is defined at terrain height, while the road source has heights at terrain
level and at 75 cm above terrain level. This gives approximately the same noise levels, but slightly
different distribution of noise.

Area and Volume Source
For an area source the noise is based at the height of the area, and noise should be radiating out from it.

For a volume source the noise is distributed from the height of the area to the terrain model. It will
therefore be more dispersed than an area source. A comparison between an area and a volume source
is shown below. These have been created based on the same shape, noise type and distribution type.

(a) Area (b) Volume

Figure 4.26: Area and Volume Noise Source

These are very similar, as they have the same noise and distribution type, and are not too high off
ground level. It is noticable that the area noise source creates more noise. This is, as mentioned
before, a result of the volume noise source being dispersed.

38

4. SOFTWARE DEVELOPMENT 4.3. TESTING AND RESULTS

SINTEF Test Case

An example program was created, which included a grid, a road, a building and some calculation
points. The base height of these elements are set to zero to simplify the computation. Details about
the elements are shown below:

Table 4.13: SINTEF Test Information

Element Description
Terrain model is based on the previously used model of Visnes Kalk AS. The model is

approximately 335 * 275 m, and the z-values were set to 0 for all grid
points giving an even terrain.

Building one building was added, with 7 outline points and two top lines. The
outline had a height of 3.5 m while the top lines had a height of 5.1 m.
Facade point computation was chosen for the building.

Road Noise Source a Dumper traffic type road was created, with width of 10 m, velocity 50
km/h and 200 AADT. Workdays and work hours traffic distribution was
chosen.

Computation Points three lines were chosen and their points were the computation points for
this test. The first line is parallel to the road and quite close to it, and at
terrain height. The second line is the same as the first, except that it is 4
m off terrain height. The third line is orthogonal to the road. The lines,
building and road are drawn in figure 4.30.

The topography model looks like the image below:

Figure 4.27: Topography for SINTEF Verification

39

4.3. TESTING AND RESULTS 4. SOFTWARE DEVELOPMENT

Comparing results: Contour lines

The contour lines created by SINTEF’s code look like the image below.

Figure 4.28: SINTEF Contour Lines

SoundKernel is assumed to be thoroughly tested and reliable and produces correct contour lines. By
comparing figure 4.28 to the contour lines created by code from ISY.CAD.Noise, in figure 4.29, it is
easy to see that these are correct. The highest contour line for the detailed contours are at 59 dB.

Figure 4.29: ISY.CAD.Noise Contour Lines

40

4. SOFTWARE DEVELOPMENT 4.3. TESTING AND RESULTS

Comparing results: Computation and Facade points

SINTEF ICT, Acoustics ran a test based on values from the program in Appendix C and got values
around 51-52 dB for line 1 and 58-59 dB for line 2.

The computation point results from the test program are shown in table 4.14, while the first 40
facade point results are shown in table 4.15.

Table 4.14: Computation Point Results

Point x y z Lden [dB]
0 418 440.0 6 981 677.9 0 51.9
1 418 437.4 6 981 674.1 0 52.4
2 418 434.8 6 981 670.2 0 52.7
3 418 432.5 6 981 666.0 0 52.6
4 418 429.8 6 981 660.2 0 52.1
5 418 427.2 6 981 654.5 0 51.6

6 418 440.0 6 981 677.9 4 58.3
7 418 437.4 6 981 674.1 4 58.5
8 418 434.8 6 981 670.2 4 58.7
9 418 432.5 6 981 666.0 4 58.6
10 418 429.8 6 981 660.2 4 58.4
11 418 427.2 6 981 654.5 4 58.1

12 418 495.9 6 981 606.7 0 29.9
13 418 494.9 6 981 610.9 0 30.2
14 418 493.9 6 981 612.1 0 30.5
15 418 492.7 6 981 613.4 0 30.7
16 418 491.6 6 981 614.5 0 30.7
17 418 490.3 6 981 615.4 0 30.9
18 418 486.4 6 981 617.3 0 31.8
19 418 471.8 6 981 622.8 0 33.8
20 418 446.1 6 981 634.0 0 39.7
21 418 426.3 6 981 642.7 0 47.9
22 418 417.3 6 981 648.1 0 59.7
23 418 412.0 6 981 651.5 0 72.1

41

4.3. TESTING AND RESULTS 4. SOFTWARE DEVELOPMENT

Table 4.15: Facade Results

Facade point Position East Position North Height Lden [dB]
0 418 468,0 6 981 656,3 2,5 43,7
1 418 468,6 6 981 658,2 2,5 44,7
2 418 469,2 6 981 660,1 2,5 45,4
3 418 471,1 6 981 660,8 4,1 46,8
4 418 473,0 6 981 660,3 4,1 45,5
5 418 475,1 6 981 659,6 4,1 44,7
6 418 477,0 6 981 659,1 4,1 44,4
7 418 478,1 6 981 657,2 2,5 37,2
8 418 477,5 6 981 655,3 2,5 34,6
9 418 476,9 6 981 653,3 2,5 33,7
10 418 476,4 6 981 651,4 2,5 33,2
11 418 475,8 6 981 649,5 2,5 32,6
12 418 475,2 6 981 647,6 2,5 32,5
13 418 474,6 6 981 645,7 2,5 32,4
14 418 473,2 6 981 644,6 2,5 39,9
15 418 471,3 6 981 645,1 2,5 40,7
16 418 469,4 6 981 645,7 2,5 40,5
17 418 467,5 6 981 646,3 2,5 41,5
18 418 465,6 6 981 646,9 2,5 41,9
19 418 463,7 6 981 647,5 2,5 42,4
20 418 461,8 6 981 648,1 2,5 41,7
21 418 459,8 6 981 648,6 2,5 45,0
22 418 459,3 6 981 650,5 4,1 47,7
23 418 459,9 6 981 652,4 4,1 47,9
24 418 460,6 6 981 654,5 4,1 48,1
25 418 461,2 6 981 656,4 4,1 48,3
26 418 463,4 6 981 657,5 2,5 45,3
27 418 465,3 6 981 656,9 2,5 44,5
28 418 468,0 6 981 656,3 1,5 41,9
29 418 468,6 6 981 658,2 1,5 42,9
30 418 469,2 6 981 660,1 1,5 43,6
31 418 471,1 6 981 660,8 1,5 42,9
32 418 473,0 6 981 660,3 1,5 41,9
33 418 475,1 6 981 659,6 1,5 41,3
34 418 477,0 6 981 659,1 1,5 41,1
35 418 478,1 6 981 657,2 1,5 34,7
36 418 477,5 6 981 655,3 1,5 32,0
37 418 476,9 6 981 653,3 1,5 31,0
38 418 476,4 6 981 651,4 1,5 30,6
39 418 475,8 6 981 649,5 1,5 30,6
40 418 475,2 6 981 647,6 1,5 30,2

42

4. SOFTWARE DEVELOPMENT 4.3. TESTING AND RESULTS

Line 1 consist of points 0-5 at height 0 m while line 2 consist of points 6-11 at height 4 m, line 2 are
directly on top of line 1. Line 3 consists of points 12-23. The lines, point numbers, building and
contour lines are shown below:

Figure 4.30: Facade, Computation Points and Contour Results

The results in table 4.14 and 4.15 are very good. The following table explains why this test verifies
the results:

Table 4.16: Verification of Computation Results

Element Verification
Line 1 has values corresponding to the SINTEF results as they are all between 51.0 and

52.9 dB. They are inside a contour line with values from 56-59 dB. These values
are higher because they have been computed at a height of 4 meters.

Line 2 has values between 58.0 and 58.9 dB and are within the SINTEF results. They
are computed at a height of 4m and fit nicely within the contour line which has
values from 56-59 dB.

Line 3 has values from 29.9 dB to 72.1 dB. The point closest to the road (point 23), are
actually on the road, and it makes sense that it is that high, especially since the
road is defined at terrain height. As the points are further away from the noise
source, the noise levels drop. These are lower than the contour line values because
the computation points are at terrain height while the contours are computed
at 4m height. For line 1 and 2 the difference was approximately 7 dB, if this
assumption is used on point 12, which has a value of 29.9 dB, the result would be
approximately 37 dB. The point is in a contour with a value of 38 dB or higher,
which is close to the estimated value.

Facade point values range from 30 dB to 50 dB. The building is within contour lines ranging
from 41 to below 50 dB. As mentioned in sub section Building and Calculation
Points, the facade values vary depending on where on the building the points are.
The important thing to look at when verifying the facade points is that they are
within a reasonable range, and that points higher off the ground have a larger
value than corresponding lower points. These points satisfy both terms.

43

4.3. TESTING AND RESULTS 4. SOFTWARE DEVELOPMENT

DNV Test Case

To test ISY.CAD.Noise against the DNV noise map[5], an altered model of Visnes Kalk AS was
used. This model was provided by Erik Ludvigsen at NTNU, Department of Geology and Mineral
Resources Engineering, and was used by DNV when they did their computation. This a very detailed
and accurate model.

As there are no detailed information about how DNV did their computation, assumptions and
simplifications have to be made. One major simplification is that only a part of the mine is taken
into account. If the whole mine had been used, the testing would become very detailed and time
consuming. A critical part of the mine has been chosen. This area has traffic noise, loading and
tipping activity and is shown in figure 4.31.

Figure 4.31: Model used when comparing with DNV
The model is very detailed, so no additional noise mitigation elements were needed. Buildings
had already been added to the mesh in MicroStation, and since facade values are not needed no
additional buildings were added.

Two test cases were used:

1. The roads had an industry noise line source with dumper noise type. There were three of these
with 8 hour workday and work hours distribution added. In addition industry noise point and
area sources were added at tipping and loading areas. These had a user defined tipping noise
source from Appendix B, and 8 hours workday and work hours distribution.

2. Only the roads had defined noise sources. These were road noise sources with dumper traffic
type, 50 km/h velocity and 10 m width. The distribution was workday and work hours with
2500 AADT.

These two cases were only educated guesses and will probably not give exactly the same results as
the DNV mapping. However, the point of this test is not to reproduce the DNV mapping, but to
show that a similar mapping with similar results may be performed using ISY.CAD.Noise.

44

4. SOFTWARE DEVELOPMENT 4.3. TESTING AND RESULTS

The relevant area of the noise map for condition 1 of the DNV noise mapping is shown in figure
4.32.

Figure 4.32: Contour lines from DNV report

Test case 1 focus mainly on the port and tipping area at the northeast part of the mine, results are
shown in figure 4.33. By comparing that area to figure 4.32 one might see that the results are similar,
but not exactly the same. The noise sources in the DNV mapping are lounder than the test case,
and the effect of the water is more visible. If functionality for more detailed ground type information
is implemented in ISY.CAD.Noise (mentioned in section 5.3), the water could be classified according
to how it reflects sound, and the results might be more similar.

Figure 4.33: Test results for case 1
45

4.3. TESTING AND RESULTS 4. SOFTWARE DEVELOPMENT

Test case 2 focus more on the road of the mine and results are shown in figure 4.34. By comparison
the noise level is quite similar, however the distribution is a bit different. The noise source used is
road, and the difference in distribution is probably because it is not an industry noise source. By
referring to figure 4.25 it is easy to see that the industry noise source has a distribution more similar
to the DNV mapping.

Figure 4.34: Test results for case 2

The results for test case 1 and 2 are not exactly the same as the results from the DNV mapping,
however there are many similarities. As it is not possible to know which noise sources DNV used
where, and how they were distributed it would be impossible to exactly reproduce their mapping.
The results for the ISY.CAD.Noise are quite good considering the circumstances and could definitely
be used for a new mapping of Visnes Kalk AS.

Two additional notes were discovered during the testing:

1. It seems that DNV used quite high values for the noise mapping. For instance for the road
noise source in test case 2, the AADT values in ISY.CAD.Noise had to be as high as 2500
vehicles to approximate the results. Representatives from Visnes Kalk AS has estimated an
AADT of 200-300 vehicles. Without knowing the details of the DNV noise mapping, it is
difficult to know exactly how the noise sources were defined, so it is impossible to conclude
anything.

2. Computation time increased quite drastically for the larger model and especially for many
road noise sources. A few tests were run before the two test cases above were established, and
one of these included several industry noise line sources with dumper type on the roads. The
computation time doubled for two dumper sources on a road compared to just one. These
computations are done in SoundKernel, however it is recommended to see if there is a way to
improve the computation time.

46

5
Discussion and Conclusion

5.1 Discussion
NorStøy is a software application for the computation of traffic noise in Norway, created by SINTEF,
Triona and the Norwegian Public Roads Administration[28]. Norstøy and ISY.CAD.Noise both use
SoundKernel, which is assumed to be thoroughly tested and reliable.

Most of the features mentioned in Scope have been successfully implemented:

Table 5.1: Features in ISY.CAD.Noise

Element Discussion
Noise road was a minimum requirement and is fully implemented with choices for traffic

type and distribution in addition to user defined values.
Noise map this was another minimum requirement and is fully implemented with two

types of contour lines: basic lines with red and yellow limits, and detailed lines
with 3 dB between each line.

Grid have been implemented and is based on a terrain mesh created from elevation
lines.

Noise sources several specific noise sources were mentioned, including drilling rig, hammer,
industry noise, loading/unloading of freighters and point noise sources. Some
of these have been implemented in the industry noise function. This function
support point, line, area and volume sources and user defined frequency spectra.
The noise sources mentioned in section 1.2 may be used if the user has the
corresponding frequency spectra.

Noise mitigation screen, wall and mound elements have been implemented.
Exact values for selected elements may be computed by using the calculation point function.

The building function gives exact values for facade points on the building wall.

47

5.2. CONCLUSION 5. DISCUSSION AND CONCLUSION

5.2 Conclusion
The main product of this thesis is the ISY.CAD.Noise plug-in for MicroStation and the NoiseCom-
putation DLL. Neither of these are 100 % finished and ready for professional use, however, successful
connections to both SoundKernel and MicroStation have been created. Not only have the minimum
requirements been met, but additional functions have also been created.The plug-in works well and
gives good results.

This report and a user manual for ISY.CAD.Noise are additional results of this thesis. These explain
the theoretical background of noise, how the plug-in is used, and to some extent how it works and
how the results may be interpreted.

As shown in section 4.3, the test results for the functions in ISY.CAD.Noise are satisfactory, the
grid is fairly accurate, the computation and facade points correspond well with the contour lines,
and the road and industry noise sources behave as expected.

However, there are still many things mentioned in Further Work, that need to be done before
ISY.CAD.Noise may be used professionally. The most important is further error checking and
handling as this is absolutely necessary for an application.

48

5. DISCUSSION AND CONCLUSION 5.3. FURTHER WORK

5.3 Further Work
ISY.CAD.Noise is not a completely finished plug-in, there are still several things that need to be
done before it may be distributed professionally. These are listed in the two forms below:

Table 5.2: Essential further work

Element Description

Installation An installation routine should be created, to make ISY.CAD.Noise
easily accessible.

DLL management As of now, the SoundKernel DLL files, NoiseComputation.dll and
ISY.CAD.Noise.dll have to be in the folder of the MicroStation startup
file. This is inconvenient and untidy, and all the DLLs required for the
plug-in should be in a separate folder.

Saving and loading Every time a MicroStation model is closed, all the buildings, noise
sources, etc are deleted. There should be a save function, to enable
the user to save all progress, and to load the elements when opening
a model. With this function, the user would not have to start from
scratch every time he/she opens a MicroStation model.

Deleting and editing If a wrong line is selected to be a noise source, a mound, etc, there
should be a way of un-doing the selection or deleting the element. A
function for deleting and editing elements would be very helpful if the
user wants to change the environment.

Testing and verification The methods in both ISY.CAD.Noise and NoiseComputation should
undergo thorough testing, to make sure there are no hidden errors. Some
tests have been performed in section 4.3, however these are insufficient
for a professional product.

Error handling There should be added more error and exception handling, to make sure
that the user gets proper information in case the program encounters
any problems. In addition it is necessary to make sure that no invalid
values are used in the computation or the set-up of the environment.
The plug-in as of now assumes an intelligent user, and would for instance
fail if a letter is input where a number should be.

Buttons There should be a row of buttons that the user of MicroStation may
use instead of the Key-in. These should be simple and clear, and there
should be a button for each function in ISY.CAD.Noise. This will
increase the usability of the program.

49

5.3. FURTHER WORK 5. DISCUSSION AND CONCLUSION

Table 5.3: Additional further work

Element Description

Save Frequency Spectra A user might have many noise frequency spectra for different vehicles
or machines, relevant only to that user or company. It should be
possible to create a user defined database of noise sources and their
frequency spectra so that the user may select these from the road
and industry noise forms.

Import measured values When noise measurements are made, a lot of variables are created.
It might be useful to create an input and convert function where
the user can enter raw measurement data. Sound power levels may
be calculated from these data and added to the database of saved
frequency spectra. This would greatly simplify the process of going
from noise measurements to doing a noise mapping.

User Manual There are many values for the grid, road, noise sources and mounds
that are set to default values in the code. It might be useful to create
functions to set some of these. More information may be found in
the ISY.CAD.Noise User Manual[23].

Ground Types and Forest There are different ground types that may be used for the grid
points. There are more information about these in the ISY.CAD.Noise
User Manual[23]. The ground types may influence how the noise is
distributed over the terrain, and a function to set specific ground
types for areas with trees, water, etc could be useful.

Impulse noise Impulse noise are not supported in SoundKernel, however it might
be a useful feature in new versions. Many industries have impulse
noise and have to include it in their noise maps.

Computation Time The run time for the computation should be checked for different
noise sources and models, and an attempt to optimize the run time
could be made. As the computation is performed in SoundKernel,
it is not necessarily possible to do a lot about this, however there is
usually always room for speed improvements in any code.

50

Bibliography

[1] WHO and European Commission, Burden of disease from environmental noise, Quantifica-
tion of healthy life years lost in Europe. Published by World Health Organization(WHO), 2011.
Link: http://www.euro.who.int/__data/assets/pdf_file/0008/136466/e94888.pdf, ac-
cessed 24.04.2013.

[2] Aasvang, G.M., Beregning av helsebelastning som skyldes vegtrafikkstøy i Norge., Published
(in Norwegian) by the Norwegian Institute of Public Health in Oslo, 2012.
Link: http://www.fhi.no/dokumenter/9e0c464e02.pdf, accessed 24.04.2013.

[3] SoundPLAN, Link: http://soundplan-uk.com/, accessed 24.04.2013.

[4] NovaPoint Noise, Link: http://www.vianovasystems.com/Products/
Novapoint-products/Novapoint-Noise#.UXfGQLV7Jg0, accessed 24.04.2013.

[5] Mayer, A. and Bjørklund, P. O. , TN12-51 Visnes Kalk noise evaluation, by Det Norske
Veritas(DNV), 2012. Not published.

[6] Wikipedia, Microsoft Visual Studio, Link: http://en.wikipedia.org/wiki/Microsoft_
Visual_Studio, accessed 24.04.2013.

[7] Wikipedia, C#, Link: http://en.wikipedia.org/wiki/C_Sharp_(programming_language),
accessed 24.04.2013.

[8] Microsoft, C#, Link: http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx, accessed
24.04.2013.

[9] Wikipedia, XML, Link: http://no.wikipedia.org/wiki/XML, accessed 02.06.2013.

[10] AutoCAD, Link: http://www.autodesk.com/products/autodesk-autocad/overview, ac-
cessed 14.05.2013.

[11] Olsen, H. , Noise. Characteristics and effects, Lecture Notes in Norwegian, 2013. Not published.

[12] ISO 3744, Acoustics - Determination of sound power levels and sound energy levels of noise
sources using sound pressure, International standard, Third edition 2010-10-01. International
Organization for Standardization(ISO) in Geneva, 1994.

51

http://www.euro.who.int/__data/assets/pdf_file/0008/136466/e94888.pdf
http://www.fhi.no/dokumenter/9e0c464e02.pdf
http://soundplan-uk.com/
http://www.vianovasystems.com/Products/Novapoint-products/Novapoint-Noise#.UXfGQLV7Jg0
http://www.vianovasystems.com/Products/Novapoint-products/Novapoint-Noise#.UXfGQLV7Jg0
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx
http://no.wikipedia.org/wiki/XML
http://www.autodesk.com/products/autodesk-autocad/overview

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Young, H.D. and Freedman, R.A., University Physics, with modern physics, , tenth edition,
Sears and Zemansky’s. Published by Addison Wesley Longman, Inc., 1999.

[14] Hassall, J.R. and Zaveri, K., Acoustic Noise Measurements, Brüel & Kjær, Published by
K.Larsen & Søn A/S in Glostrup, Denmark, 1988.

[15] Barron, R.F. , Industrial Noise Control and Acoustics, Published by Marcel Dekker, Inc. in
New York, 2003.

[16] ISO 1996-1, Acoustics - Description, measurement and assessment of environmental noise,
International standard, Second edition 2003-08-01. International Organization for Standardiza-
tion(ISO) in Geneva, 2003.

[17] Forurensningsforskriften, FOR 2004-06-01 nr 931: Forskrift om begrensning av foruren-
sning , Kapittel 20. Forurensninger fra produksjon av pukk, grus, sand og singel. Fastsatt av
Miljøverndepartementet(Ministry of the Environment) 17. september 2009.
Link: http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-20040601-0931.html, ac-
cessed 24.04.2013.

[18] T-1442/2012, Retningslinje for behandling av støy i arealplanlegging, By Miljøverndeparte-
mentet(Ministry of the Environment), in Norwegian, 2012.
Link: http://www.regjeringen.no/pages/37952459/T-1442_2012.pdf, accessed 24.04.2013.

[19] Visnes Kalk AS, Link: www.visneskalk.no, accessed 24.04.2013.

[20] Storeheier, S. Å., Brukerveiledning for programmet XISTØY v.1.2, Beregning av ekstern
industristøy. SINTEF Tele og data, Trondheim, 1996.

[21] The Engineering Toolbox, Sound Pressure, Link: http://www.engineeringtoolbox.
com/sound-pressure-d_711.html, accessed 15.05.2013

[22] SOSI Standard in English, Kartverket, Link: http://www.statkart.no/en/
Standarder/SOSI/SOSI-Standard-in-English/, accessed 20.05.2013.

[23] Auglænd, H., Unpublished user manual: ISY.CAD.Noise User Manual, Department of Struc-
tural Engineering, NTNU, Trondheim, Norway, 2013.

[24] Norwegian Public Roads Administration, Road Map, Link: https://www.vegvesen.
no/vegkart/vegkart/, accessed 26.05.2013.

[25] Norwegian Directorate for Civil Protection (DSB) Map, Link: http://kart.dsb.no/
default.aspx?gui=1&lang=2, accessed 16.05.2013.

[26] MeshLab, Link: http://meshlab.sourceforge.net/, accessed 16.05.2013.

[27] Veileder, støykartlegging og trafikkdata, Link: http://www.klif.no/arbeidsomr/stoy/
stoykartlegging/Veileder_Stoy_trafikkdata300610.pdf, accessed 15.05.2013

[28] Gemini, Trafikkstøy inn i stua?, Link: http://gemini.no/2013/03/
trafikkstoy-inn-i-stua/, accessed 15.05.2013

52

http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-20040601-0931.html
http://www.regjeringen.no/pages/37952459/T-1442_2012.pdf
www.visneskalk.no
http://www.engineeringtoolbox.com/sound-pressure-d_711.html
http://www.engineeringtoolbox.com/sound-pressure-d_711.html
http://www.statkart.no/en/Standarder/SOSI/SOSI-Standard-in-English/
http://www.statkart.no/en/Standarder/SOSI/SOSI-Standard-in-English/
https://www.vegvesen.no/vegkart/vegkart/
https://www.vegvesen.no/vegkart/vegkart/
http://kart.dsb.no/default.aspx?gui=1&lang=2
http://kart.dsb.no/default.aspx?gui=1&lang=2
http://meshlab.sourceforge.net/
http://www.klif.no/arbeidsomr/stoy/stoykartlegging/Veileder_Stoy_trafikkdata300610.pdf
http://www.klif.no/arbeidsomr/stoy/stoykartlegging/Veileder_Stoy_trafikkdata300610.pdf
http://gemini.no/2013/03/trafikkstoy-inn-i-stua/
http://gemini.no/2013/03/trafikkstoy-inn-i-stua/

A
Noise maps from DNV

53

APPENDIX A. NOISE MAPS FROM DNV

Noise map, condition 1

54

APPENDIX A. NOISE MAPS FROM DNV

Noise map, condition 1, gradient

55

APPENDIX A. NOISE MAPS FROM DNV

Noise map, condition 2

56

APPENDIX A. NOISE MAPS FROM DNV

Noise map, condition 2, gradient

57

APPENDIX A. NOISE MAPS FROM DNV

58

B
Noise Measurements from Visnes Kalk AS

Table B.1: Information about the noise sources

Number Noise Source Distance [m] Measurement
duration [h:m:s]

1 Tipping 18 (0:0:23)
2 Crusher, mechanical digger and dumper 17 (0:1:0)
3 Crusher, mechanical digger and dumper 24 (0:0:8)
4 Crusher and dumper 24 (0:1:0)
5 Drilling 9 (0:1:0)
6 Drilling 9 (0:0:40)
7 Drilling 9 (0:1:0)
8 Drilling - when changing drill 9 (0:0:19)
9 Moving medium sized rock 17,5 (0:1:0)
10 Moving medium sized rock 17,5 (0:1:0)
11 Moving medium sized rock 22 (0:0:26)
12 Moving medium sized rock 13 (0:0:4)

59

APPENDIX B. NOISE MEASUREMENTS FROM VISNES KALK AS

Table B.2: Measured and Calculated Sound Levels

Measured Noise Level: Leq [dB]
Number 31.5 63 125 250 500 1000 2000 4000 8000 [Hz]

1 70,1 75 83,4 82,9 77,2 74,9 70,6 65,6 58
2 84,6 93,2 95,1 90,3 91,5 88,2 86,1 80,1 73,2
3 79,5 89,1 92,8 84 84,9 81,2 76,9 72 66,5
4 81 90,3 92,5 84,9 85,3 81,4 77,2 72,7 67,2
5 76,9 79,4 88,8 80,8 85,6 85,1 88,2 88,4 88,3
6 81,2 79,6 88,6 78,8 85,5 84 86 86,7 87,5
7 78,3 79,4 88,3 79,9 86,4 86,4 90,1 89,6 90,9
8 80,8 85,4 81,8 75,5 72,7 70,2 71 70,2 71,9
9 73,7 75,8 80,5 83,4 81,2 82,9 84,1 79,3 68,7
10 73,5 76,5 81,2 82,7 79,7 82,7 84,6 80,1 68,9
11 74,5 78,3 83 82,5 77 74,3 74 69,3 60,8
12 74,1 75,4 77,1 80 83,7 88,5 92,2 90,3 81

Sound Power Level: Lw [dB]
Number 31.5 63 125 250 500 1000 2000 4000 8000 [Hz]

1 103,2 108,1 116,5 116,0 110,3 108,0 103,7 98,7 91,1
2 117,2 125,8 127,7 122,9 124,1 120,8 118,7 112,7 105,8
3 115,1 124,7 128,4 119,6 120,5 116,8 112,5 107,6 102,1
4 116,6 125,9 128,1 120,5 120,9 117,0 112,8 108,3 102,8
5 104,0 106,5 115,9 107,9 112,7 112,2 115,3 115,5 115,4
6 108,3 106,7 115,7 105,9 112,6 111,1 113,1 113,8 114,6
7 105,4 106,5 115,4 107,0 113,5 113,5 117,2 116,7 118,0
8 107,9 112,5 108,9 102,6 99,8 97,3 98,1 97,3 99,0
9 106,6 108,7 113,4 116,3 114,1 115,8 117,0 112,2 101,6
10 106,4 109,4 114,1 115,6 112,6 115,6 117,5 113,0 101,8
11 109,3 113,1 117,8 117,3 111,8 109,1 108,8 104,1 95,6
12 104,4 105,7 107,4 110,3 114,0 118,8 122,5 120,6 111,3

Table B.3: Averaged Measured and Calculated Sound Levels

Averaged Measured Noise Level: Leq [dB]
Number 31.5 63 125 250 500 1000 2000 4000 8000 [Hz]
5, 6 and 7 78,8 79,5 88,6 79,8 85,8 85,2 88,1 88,2 88,9
9 and 10 73,6 76,2 80,9 83,1 80,5 82,8 84,4 79,7 68,8

Averaged Sound Power Level: Lw [dB]
Number 31.5 63 125 250 500 1000 2000 4000 8000 [Hz]
5, 6 and 7 105,9 106,6 115,7 106,9 112,9 112,3 115,2 115,3 116,0
9 and 10 106,5 109,0 113,7 115,9 113,3 115,7 117,2 112,6 101,7

60

C
Code from Test Program

The code from the test program is shown on the following page, and is a combination of example
code from SINTEF ICT, Acoustics and code produced in this thesis. It shows, in a basic way, all
that is needed to perform a simple noise mapping.

61

1 using System;
2 using System.IO;
3 using System.Text;
4 using System.Collections;
5 using System.Collections.Generic;
6
7 using CommonUtils;
8 using GeoUtils;
9 using SoundKernel;

10 using MapKernel;
11 using Innemodul;
12 using System.Windows.Forms;
13
14 namespace NoiseComputation
15 {
16 public static class Program
17 {
18 /// <summary>Kotegenereringsobjekt</summary>
19 static mkTriMesh MK = new mkTriMesh();
20
21 /// <summary>Rektangel som omslutter ønsket utsnitt av kartet</summary>
22 static typBBox MapBox;
23
24 static int numCalcPoints;
25
26
27 static typmkLayer[][] layers;
28
29 public static List<NoiseContour[]> contours = new List<NoiseContour[]>();
30
31 public static void Main(string[] args)
32 {
33
34 Queue<typError> Errors = new Queue<typError>();
35 Queue<typError> Warnings = new Queue<typError>();
36
37 double xorigo = 418208.5783;
38 double yorigo = 6981471.4255;
39
40 // Oppretter en (tom) topografimodell
41 skTopography Topo = new skTopography();
42
43 #region Creating Grid
44 int nx = 68;
45 int ny = 56;
46 double x1 = 418208.5783;
47 double y1 = 6981471.4255;
48 double x2 = 418543.5783;
49 double y2 = 6981746.4255;
50 /// <summary>Vinkel for skråplan mot underliggende grid (0=hor., 90=vert.)</summary>
51 int a = 90;
52 /// <param name="m_">Default marktype</param>
53 /// unknown, hard, soft, A, B, C, D, E, F, G, H, Index6
54 enGroundType groundType = enGroundType.soft;
55 /// <param name="s_">Default skoghøyde</param>
56 int s = 0;
57 /// <param name="r_">Default ruhet</param>
58 int r = 0;
59
60 skTopGrid Grid = new skTopGrid(x1, y1, x2, y2, a, nx, ny, a, groundType, s, r);
61
62 Grid.zGrid = new float[nx, ny];
63 Grid.Refresh();
64 Topo.TopGrid.Add(Grid);
65 #endregion
66
67 #region Adding Calculation Points
68 int numUnits = 2;
69 numCalcPoints = 24;
70 skSubTask currentSubTask = new skSubTask(0, 0, numCalcPoints, numUnits);
71
72 currentSubTask.points[0, 0] = 418439.97; currentSubTask.points[0, 1] = 6981677.93;

currentSubTask.hpoints[0] = 0;
73 currentSubTask.points[1, 0] = 418437.375; currentSubTask.points[1, 1] = 6981674.085;

currentSubTask.hpoints[1] = 0;
74 currentSubTask.points[2, 0] = 418434.78; currentSubTask.points[2, 1] = 6981670.24;

currentSubTask.hpoints[2] = 0;
75 currentSubTask.points[3, 0] = 418432.53; currentSubTask.points[3, 1] = 6981666.01;

62

currentSubTask.hpoints[3] = 0;
76 currentSubTask.points[4, 0] = 418429.845; currentSubTask.points[4, 1] = 6981660.245;

currentSubTask.hpoints[4] = 0;
77 currentSubTask.points[5, 0] = 418427.16; currentSubTask.points[5, 1] = 6981654.48;

currentSubTask.hpoints[5] = 0;
78
79 // Same line, 4m higher up:
80 currentSubTask.points[6, 0] = 418439.97; currentSubTask.points[6, 1] = 6981677.93;

currentSubTask.hpoints[6] = 4;
81 currentSubTask.points[7, 0] = 418437.375; currentSubTask.points[7, 1] = 6981674.085;

currentSubTask.hpoints[7] = 4;
82 currentSubTask.points[8, 0] = 418434.78; currentSubTask.points[8, 1] = 6981670.24;

currentSubTask.hpoints[8] = 4;
83 currentSubTask.points[9, 0] = 418432.53; currentSubTask.points[9, 1] = 6981666.01;

currentSubTask.hpoints[9] = 4;
84 currentSubTask.points[10, 0] = 418429.845; currentSubTask.points[10, 1] = 6981660.245;

currentSubTask.hpoints[10] = 4;
85 currentSubTask.points[11, 0] = 418427.16; currentSubTask.points[11, 1] = 6981654.48;

currentSubTask.hpoints[11] = 4;
86
87 // A different line, moving away from the noise source
88 currentSubTask.points[12, 0] = 418495.94; currentSubTask.points[12, 1] = 6981606.73;

currentSubTask.hpoints[12] = 0;
89 currentSubTask.points[13, 0] = 418494.93; currentSubTask.points[13, 1] = 6981610.87;

currentSubTask.hpoints[13] = 0;
90 currentSubTask.points[14, 0] = 418493.86; currentSubTask.points[14, 1] = 6981612.06;

currentSubTask.hpoints[14] = 0;
91 currentSubTask.points[15, 0] = 418492.71; currentSubTask.points[15, 1] = 6981613.4;

currentSubTask.hpoints[15] = 0;
92 currentSubTask.points[16, 0] = 418491.58; currentSubTask.points[16, 1] = 6981614.45;

currentSubTask.hpoints[16] = 0;
93 currentSubTask.points[17, 0] = 418490.33; currentSubTask.points[17, 1] = 6981615.42;

currentSubTask.hpoints[17] = 0;
94 currentSubTask.points[18, 0] = 418486.43; currentSubTask.points[18, 1] = 6981617.28;

currentSubTask.hpoints[18] = 0;
95 currentSubTask.points[19, 0] = 418471.8; currentSubTask.points[19, 1] = 6981622.78;

currentSubTask.hpoints[19] = 0;
96 currentSubTask.points[20, 0] = 418446.08; currentSubTask.points[20, 1] = 6981633.97;

currentSubTask.hpoints[20] = 0;
97 currentSubTask.points[21, 0] = 418426.3; currentSubTask.points[21, 1] = 6981642.67;

currentSubTask.hpoints[21] = 0;
98 currentSubTask.points[22, 0] = 418417.26; currentSubTask.points[22, 1] = 6981648.1;

currentSubTask.hpoints[22] = 0;
99 currentSubTask.points[23, 0] = 418412; currentSubTask.points[23, 1] = 6981651.54;

currentSubTask.hpoints[23] = 0;
100
101 #endregion
102
103 currentSubTask.Sources = new AListWrap(enFC.Source);
104
105
106 // Trenger å lese denne filen for at fasadepunkt skal håndteres korrekt.
107 if (!clsImport.LesKonfigurasjon("C:\\Dev\\Microstation_v8i\\DLL\\NoiseComputation\\bin\\Debug\

\konfig.dat", out currentSubTask.config))
108 throw new Exception("Feil ved lesing av konfig.dat");
109
110 #region Adding Road Noise Source
111
112 skTopRoad newRoad = new skTopRoad("Road0", 10, enHeightBase.sea, enGroundType.hard, "AB16", 1, 30);
113
114 newRoad.pGon[0, 0] = 418548.641875835; newRoad.pGon[0, 1] = 6981739.26413355;
115 newRoad.pGon[1, 0] = 418541.31; newRoad.pGon[1, 1] = 6981739.42;
116 newRoad.pGon[2, 0] = 418518.34; newRoad.pGon[2, 1] = 6981738.37;
117 newRoad.pGon[3, 0] = 418498.99; newRoad.pGon[3, 1] = 6981736.21;
118 newRoad.pGon[4, 0] = 418485.44; newRoad.pGon[4, 1] = 6981734.39;
119 newRoad.pGon[5, 0] = 418476.6; newRoad.pGon[5, 1] = 6981731.48;
120
121 newRoad.pGon[6, 0] = 418468.61; newRoad.pGon[6, 1] = 6981727.44;
122 newRoad.pGon[7, 0] = 418462.49; newRoad.pGon[7, 1] = 6981723.12;
123 newRoad.pGon[8, 0] = 418456.12; newRoad.pGon[8, 1] = 6981717.62;
124 newRoad.pGon[9, 0] = 418448.61; newRoad.pGon[9, 1] = 6981709.9;
125 newRoad.pGon[10, 0] = 418442.67; newRoad.pGon[10, 1] = 6981703.08;
126
127 newRoad.pGon[11, 0] = 418437.45; newRoad.pGon[11, 1] = 6981695.18;
128 newRoad.pGon[12, 0] = 418431.36; newRoad.pGon[12, 1] = 6981685.99;
129 newRoad.pGon[13, 0] = 418420.82; newRoad.pGon[13, 1] = 6981667.12;
130 newRoad.pGon[14, 0] = 418412; newRoad.pGon[14, 1] = 6981651.54;
131 newRoad.pGon[15, 0] = 418406.9; newRoad.pGon[15, 1] = 6981642.59;

63

132
133 newRoad.pGon[16, 0] = 418399.49; newRoad.pGon[16, 1] = 6981631.51;
134 newRoad.pGon[17, 0] = 418392.47; newRoad.pGon[17, 1] = 6981620.68;
135 newRoad.pGon[18, 0] = 418381.75; newRoad.pGon[18, 1] = 6981604.59;
136 newRoad.pGon[19, 0] = 418370.59; newRoad.pGon[19, 1] = 6981589.89;
137 newRoad.pGon[20, 0] = 418361.81; newRoad.pGon[20, 1] = 6981579.08;
138
139 newRoad.pGon[21, 0] = 418354.52; newRoad.pGon[21, 1] = 6981571.99;
140 newRoad.pGon[22, 0] = 418347.62; newRoad.pGon[22, 1] = 6981566.21;
141 newRoad.pGon[23, 0] = 418339.67; newRoad.pGon[23, 1] = 6981559.76;
142 newRoad.pGon[24, 0] = 418329.42; newRoad.pGon[24, 1] = 6981552.74;
143 newRoad.pGon[25, 0] = 418315.84; newRoad.pGon[25, 1] = 6981545.57;
144
145 newRoad.pGon[26, 0] = 418295.84; newRoad.pGon[26, 1] = 6981533.39;
146 newRoad.pGon[27, 0] = 418281.46; newRoad.pGon[27, 1] = 6981524.83;
147 newRoad.pGon[28, 0] = 418270.18; newRoad.pGon[28, 1] = 6981517.09;
148 newRoad.pGon[29, 0] = 418255.2; newRoad.pGon[29, 1] = 6981501.19;
149
150 newRoad.hs = new float[33];
151
152 newRoad.Refresh();
153 Topo.TopRoads.Add(newRoad);
154
155 // adding the noise source
156 float amount = 200;
157 float velocity = (float)(50 / 3.6); // 50km/t
158 int numClasses = 3;
159 skSource newSource = new skSource(enActType.road, enPlaceType.line, enQuantityUnit.ydt, amount,

"Road0", 0, numClasses);
160
161 float[] sourcePeriodTraffic = new float[3];
162 sourcePeriodTraffic[0] = amount; // Distribution Day
163 sourcePeriodTraffic[1] = 0; // Distribution Evening
164 sourcePeriodTraffic[2] = 0; // Distribution Night
165
166 float lightVehicles, mediumVehicles, heavyVehicles;
167 for (int period = 0; period < 3; ++period) //Døgnsegment: Dag, Kveld, Natt
168 {
169 float periodTraffic = sourcePeriodTraffic[period] / newSource.Q;
170
171 heavyVehicles = periodTraffic; // all vehicles are heavy
172 lightVehicles = 0;
173 mediumVehicles = 0;
174
175 for (int vehicleType = 0; vehicleType < 3; ++vehicleType) //Kategorier: Lett, Middels og Tung
176 {
177 float categoryTraffic = (vehicleType == 0 ? lightVehicles : ((vehicleType == 1) ?

mediumVehicles : heavyVehicles));
178 for (int day = 0; day < 7; ++day) //Ukedag: Mandag til Søndag
179 for (int month = 0; month < 12; ++month) //Måned: 1-12
180 {
181 int numberOfWeekdays = 5;
182 float thisContribution = categoryTraffic / (numberOfWeekdays * 12);
183 if (day == 5 || day == 6)
184 thisContribution = 0;
185 newSource.TFac[period, day, month][vehicleType] = thisContribution;
186 }
187 }
188 }
189
190 double[] frequencySpectra = new double[27];
191 frequencySpectra[0] = 3.33333333333333E-21; frequencySpectra[1] = 3.33333333333333E-21;
192 frequencySpectra[2] = 3.33333333333333E-21; frequencySpectra[3] = 12102597.5734628;
193 frequencySpectra[4] = 12102597.5734628; frequencySpectra[5] = 12102597.5734628;
194 frequencySpectra[6] = 635153572.654415; frequencySpectra[7] = 635153572.654415;
195 frequencySpectra[8] = 635153572.654415; frequencySpectra[9] = 2903211966.52028;
196 frequencySpectra[10] = 2903211966.52028; frequencySpectra[11] = 2903211966.52028;
197 frequencySpectra[12] = 4007548115.39138; frequencySpectra[13] = 4007548115.39138;
198 frequencySpectra[14] = 4007548115.39138; frequencySpectra[15] = 4818132569.15309;
199 frequencySpectra[16] = 4818132569.15309; frequencySpectra[17] = 4818132569.15309;
200 frequencySpectra[18] = 3571731017.45868; frequencySpectra[19] = 3571731017.45868;
201 frequencySpectra[20] = 3571731017.45868; frequencySpectra[21] = 856798594.256288;
202 frequencySpectra[22] = 856798594.256288; frequencySpectra[23] = 856798594.256288;
203 frequencySpectra[24] = 71265402.9834077; frequencySpectra[25] = 71265402.9834077;
204 frequencySpectra[26] = 71265402.9834077;
205
206 newSource.Params["RoadSrcSpec"] = populateRoadSourceSpec(frequencySpectra);
207

64

208 newSource.RefID = "0 0.000 0.999"; // Dette vil vanligvis være "ReferanselenkeID FromMeasure
Tomeasure"

209 newSource.Params["RoadSurf"] = newRoad.rs; // Vegdekke
210 newSource.Params["RoadWidth"] = newRoad.b; // Vegbredde
211 newSource.Params["RoadSpeedLim"] = velocity; // 40 km/t
212
213 newSource.Vectors = newRoad.Vectors;
214 newSource.h = newRoad.hs;
215 newSource.Refresh();
216 currentSubTask.Sources.Add(newSource);
217
218 #endregion
219
220 #region Defining a Building
221 skTopBuilding newBuilding = new skTopBuilding(enHeightBase.sea, 7, 4, 1, 1);
222 newBuilding.ID = 0;
223
224 newBuilding.OutLines[0].X = 418468.3; newBuilding.OutLines[0].Y = 6981655.5; newBuilding.OutLines

[0].Z = 3.5f;
225 newBuilding.OutLines[1].X = 418469.9; newBuilding.OutLines[1].Y = 6981660.7; newBuilding.OutLines

[1].Z = 3.5f;
226 newBuilding.OutLines[2].X = 418477.9; newBuilding.OutLines[2].Y = 6981658.3; newBuilding.OutLines

[2].Z = 3.5f;
227 newBuilding.OutLines[3].X = 418473.9; newBuilding.OutLines[3].Y = 6981644.9; newBuilding.OutLines

[3].Z = 3.5f;
228 newBuilding.OutLines[4].X = 418459.5; newBuilding.OutLines[4].Y = 6981649.3; newBuilding.OutLines

[4].Z = 3.5f;
229 newBuilding.OutLines[5].X = 418462; newBuilding.OutLines[5].Y = 6981657.4; newBuilding.OutLines[5].Z

= 3.5f;
230 newBuilding.OutLines[6].X = 418468.3; newBuilding.OutLines[6].Y = 6981655.5; newBuilding.OutLines

[6].Z = 3.5f;
231
232 newBuilding.InLines[0].X = 418475.1; newBuilding.InLines[0].Y = 6981649; newBuilding.InLines[0].Z =

5.1f;
233 newBuilding.InLines[1].X = 418460.7; newBuilding.InLines[1].Y = 6981653.3; newBuilding.InLines[1].Z

= 5.1f;
234 newBuilding.InLines[2].X = 418471.2; newBuilding.InLines[2].Y = 6981650.6; newBuilding.InLines[2].Z

= 5.1f;
235 newBuilding.InLines[3].X = 418473.9; newBuilding.InLines[3].Y = 6981659.5; newBuilding.InLines[3].Z

= 5.1f;
236
237 newBuilding.DoFPnts = true;
238 newBuilding.Refresh();
239 Topo.TopBuildings.Add(newBuilding);
240
241 currentSubTask.sitidx.Add(0);
242 #endregion
243
244 #region All the other stuff
245
246 // Genererer trekantmodell basert på innleste objekter
247 Top2Tri T2T = new Top2Tri(Topo, false);
248 T2T.SetLimits(x1, x2, y1, y2, xorigo, yorigo);
249 T2T.SetBldIDTrans(currentSubTask.buildings, currentSubTask.bldIDTrans, currentSubTask.ih, 0f,

currentSubTask.config);
250 if (!T2T.CreateTriangles(true, true, true, true, true, true, true, null))
251 {
252 // Noe galt skjedde i forbindelse med triangulering
253 MessageBox.Show("Error in triangulation!", "Error", MessageBoxButtons.OK,

MessageBoxIcon.Exclamation);
254 }
255
256 List<conline> ConLines = new List<conline>();
257 List<conpoly> ConPolys = new List<conpoly>();
258 // Henter kanter fra triangulering av topografi (er nødvendig for å bygge opp trekantsamling
259 // for beregningspunkt, for at kotegenerering ikke skal krysse kanter, som f.eks. skjermer og

bygninger.
260 // Dersom dette IKKE er et krav, kan dette utelates. ConLines og ConPolys skal da være tomme.
261
262 // Henter alle linjer og alle TOMME polygoner (= bygninger)
263 T2T.GetLinesPolys(true, true, true, out ConLines, out ConPolys);
264 // Tar med bare et utvalg av linjer og polygoner; Bare skjermer og bygningsomriss; Ikke taklinjer,

etc
265 // Må også sikre at evt. endringer i punktene i forbindelse med trekantsamling for beregning
266 // IKKE påvirker punktene i topografien. Tar derfor KOPIER av linjene og polygonene
267 List<conline> TmpLines = new List<conline>(ConLines.Count);
268 List<conpoly> TmpPolys = new List<conpoly>(ConPolys.Count);
269 for (int i = 0; i < ConLines.Count; i++)

65

270 {
271 if ((string)ConLines[i].par["Otyp"] != "TopoScreen") continue;
272 TmpLines.Add(ConLines[i].Copy(false));
273 }
274 for (int i = 0; i < ConPolys.Count; i++)
275 {
276 if ((string)ConPolys[i].par["Otyp"] != "TopoBuilding") continue;
277 TmpPolys.Add(ConPolys[i].Copy(false));
278 }
279 ConLines = TmpLines; ConLines.TrimExcess(); TmpLines = null;
280 ConPolys = TmpPolys; ConPolys.TrimExcess(); TmpPolys = null;
281
282 // Bestemmer de unike punktene i trekantsamlingen
283 Topo.TopTriang.FindUniquePoints();
284 // Må konvertere alle genererte objekter (trekanter og speil) til globale koordinater
285 // (ConLines og ConPolys forblir i lokale koordinater)
286 Topo.TopTriang.ConvertToGlobal(xorigo, yorigo);
287 Topo.ConvertMirrorsToGlobal(xorigo, yorigo);
288 Topo.TopTriang.RefreshHash();
289 Topo.Refresh();
290
291 // Definerer beregningsenheter: Lden
292 currentSubTask.Units[0].Unit = enSoundUnit.Leq;
293 currentSubTask.Units[0].TW = enTimeWeight.DEN;
294 currentSubTask.Units[0].FW = enFreqWeight.A;
295 currentSubTask.Units[0].L1 = 10.0f;
296 currentSubTask.Units[0].Toler = 0.2f;
297
298 // Definerer Leq
299 currentSubTask.Units[1].Unit = enSoundUnit.Leq;
300 currentSubTask.Units[1].TW = enTimeWeight.none;
301 currentSubTask.Units[1].FW = enFreqWeight.A;
302 currentSubTask.Units[1].L1 = 10.0f;
303 currentSubTask.Units[1].Toler = 0.2f;
304
305 // Spesifiserer værforhold
306 skMetClass Met = new skMetClass();
307 Met.TGrad = 0.0f;
308 Met.Refresh(); // Sluttberegner interne egenskaper for været
309 currentSubTask.MET = new AListWrap(enFC.MET, Met); // Legger været til oppdraget
310 currentSubTask.MET.Refresh();
311
312 // Dumper 3D-modell til fil (for debug innsyn)
313 try //se if it is possible with activityType timecheck for this one
314 {
315 TriGrid2File.WriteParts(Topo, 1.0, true, false, -1);
316 }
317 catch
318 {
319 MessageBox.Show("Some parts are not defined correctly or not on the terrain", "Info",

MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
320 }
321
322 // Definerer beregningsgrid, 20 meter gridstørrelse
323 griddef GrdDef = new griddef();
324 GrdDef.x0 = x1; GrdDef.y0 = y1;
325 GrdDef.xi = 1.0f; GrdDef.yi = 0.0f;
326 GrdDef.Lu = x2 - x1; GrdDef.Lv = y2 - y1;
327 GrdDef.nu = nx; GrdDef.nv = ny;
328 currentSubTask.GrdDef = GrdDef;
329
330 // Bygger trekantmodell for beregningspunkt.
331 // Merk at hvis ConLines og ConPolys IKKE er tomme (men inneholder skjermer og bygningsomriss)
332 // så vil beregningsgridet IKKE være regulært; Det vil bli etablert beregningspunkt BÅDE for
333 // punktene definert i GrdDef OG for alle punktene i ConLines og ConPolys.
334 Grid2Tri G2T = new Grid2Tri(currentSubTask);
335 if (!G2T.CreateCalcTri(GrdDef, ConLines, ConPolys, xorigo, yorigo, null))
336 // Noe galt skjedde i forbindelse med triangulering
337 throw new Exception("Feil ved triangulering av beregningsgrid");
338
339 #endregion
340
341 #region Computation
342 currentSubTask.SubTopoHash = Topo.Hash;
343 currentSubTask.Method = enMethod.N2000R;
344 currentSubTask.ih = enHeightBase.terr;
345 currentSubTask.Sources.Refresh();
346 currentSubTask.Refresh();

66

347
348 // Utfører beregning for beregningspunktene
349 SK.TOPO = Topo;
350
351 // Triks for å sikre at resultatene lagres korrekt
352 SK.Task = skSubTask.Load(currentSubTask.Save());
353
354 SK.Task.bldDetailedFP = new Dictionary<long, int>();
355 SK.Task.bldDetailedFP[0] = 3;
356
357 //resetting and enabling the computation to be run several times
358 SK.Stopped = false;
359 SK.Stopping = false;
360 SK.Errors.Clear();
361 SK.PercentFinished = 0;
362
363 SK.MainStatus = enMStat.active;
364 SK.threadcontrol = new System.Threading.EventWaitHandle(false,

System.Threading.EventResetMode.ManualReset);
365 SK.threadcontrol.Set();
366
367 SK.RunSubTask();
368
369 if (SK.MainStatus == enMStat.error)
370 {
371 // Noe galt skjedde i forbindelse med beregning
372 MessageBox.Show("Feil oppsto under beregning: \n" + SK.Errors.Peek().Desc
373 + ", \n" + SK.Errors.Peek().ErrMsg + ", \n in module: "
374 + SK.Errors.Peek().Module + ", \n and in function: " + SK.Errors.Peek().Func, "Info",

MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
375 }
376 else
377 {
378 float mscale = 5000f;
379 SK.Contours = new List<skContour>();
380
381 // Definerer kotesett for Lden
382 skContour Cont = new skContour();
383 Cont.UnitIdx.Add(0); // Indeks til støyenhet støykotene skal lages for
384 Cont.SmoothRadius = 10f; // Glatteradius 10 m
385 Cont.CellSize = mscale / 1000f;
386 Cont.Levels.Add(new float[2]); // Lager koter for Lden 55 og 65 dB
387 Cont.Levels[0][0] = 55f;
388 Cont.Levels[0][1] = 65f;
389 SK.Contours.Add(Cont);
390
391 // Definerer detaljert kotesett for Lden
392 skContour Cont2 = new skContour();
393 Cont2.UnitIdx.Add(0); // Indeks til støyenhet støykotene skal lages for
394 Cont2.SmoothRadius = 10f; // Glatteradius 10 m
395 Cont2.CellSize = mscale / 1000f;
396 Cont2.Levels.Add(new float[15]); // Lager koter for Lden 35, 38, 41, 44, 47, 50, 53, 56, 59, 62,

65, 68, 71, 74 og 77dB
397 for (int i = 0; i < 15; i++)
398 Cont2.Levels[0][i] = 35 + i * 3;
399 SK.Contours.Add(Cont2);
400
401 layers = new typmkLayer[2][];
402
403 bool stError, SaveOK;
404 SaveResults((skSubTask)SK.Task, Errors, out stError, out SaveOK);
405
406 calculateValues(SK.Task, numUnits);
407 saveFacadeResults((skSubTask)SK.Task, Errors);
408
409 for (int index = 0; index < 2; index++)
410 {
411 if (layers[index] == null)
412 continue;
413 NoiseContour[] newContour = new NoiseContour[layers[index].Length];
414
415 for (int i = 0; i < layers[index].Length; i++) // layers
416 {
417 float level;
418 List<double[,]> p = new List<double[,]>();
419 //double[,,] points= new double[k,layers[i].PolyLines[k].Length,2];
420 level = layers[index][i].Level;
421 for (int k = 0; k < layers[index][i].PolyLines.Count; k++) // lines in layer

67

422 {
423 double[,] points = new double[layers[index][i].PolyLines[k].Length, 2];
424 for (int j = 0; j < layers[index][i].PolyLines[k].Length; j++) // points in lines
425 {
426 try
427 {
428 points[j, 0] = layers[index][i].PolyLines[k][j].x;
429 points[j, 1] = layers[index][i].PolyLines[k][j].y;
430 }
431 catch { }
432 }
433 p.Add(points);
434 }
435 newContour[i] = new NoiseContour(p, level);
436 }
437 contours.Add(newContour);
438 }
439 }
440
441
442 #endregion
443
444 }
445
446 private static double[, , ,] populateRoadSourceSpec(double[] frequencySpectra)
447 {
448 // 3 kjøretøykategorier, 3 kildehøyder [1 cm, 30 cm, 75 cm], 27 frekvenser, 3 enheter [Lw, L5, Lmax]
449 double[, , ,] sourceSpec = new double[3, 3, 27, 3];
450 // Verdier trenger bare fylles ut for kjøretøykategorier og kildehøyder som skal brukes.
451 // NB: Kategori 0 ("lette") bruker kildehøyde 0 (1 cm) og 1 (30 cm).
452 // Kategori 1 ("middels") og 2 ("tunge") bruker kildehøyde 0 (1 cm) og 2 (75 cm)!
453 // Pass på at ulike kategorier har utfylt data for sin(e) kildehøyder.
454 // Enhet 0 må fylles ut for å få beregnet Lden og Leq.
455 // Enhet 2 må fylles ut for å få beregnet Lmax (hvis det er aktuelt).
456 // Enhet 1 (L5) kan utelates.
457
458 for (int vehicle_i = 0; vehicle_i < 3; vehicle_i++)
459 {
460 if (vehicle_i == 0 || vehicle_i == 1)
461 continue;
462 for (int sourceheight_i = 0; sourceheight_i < 3; sourceheight_i++)
463 {
464 if (sourceheight_i == 1)
465 continue;
466 for (int freq_i = 0; freq_i < 27; freq_i++)
467 {
468 for (int unit_i = 0; unit_i < 3; unit_i++)
469 {
470 if (unit_i == 1 || unit_i == 2)
471 sourceSpec[vehicle_i, sourceheight_i, freq_i, unit_i] = 0;
472 //else fylle ut for unit = 1, og frekvenser
473 else
474 sourceSpec[vehicle_i, sourceheight_i, freq_i, unit_i] = frequencySpectra[freq_i];
475
476 }
477 }
478 }
479 }
480 return sourceSpec;
481 }
482
483 private static void calculateValues(skTask task, int numUnits)
484 {
485 string lines = "";
486 float[,] p = task.resultpoints;
487 for (int i = 0; i < numCalcPoints; i++)
488 {
489
490 lines += "\r\n Point " + i + ":\t x: \t" +
491 task.points[i, 0] + "\t y: \t" + task.points[i, 1] +
492 "\t z: \t" + task.hpoints[i] + "\t Lden: \t" + p[i, 0] + "\t" +
493 "\t Leq: \t" + p[i, 1] + "\t";
494 }
495
496 System.IO.File.WriteAllText(@"C:\TEMP\WriteLines.txt", lines);
497 }
498
499 private static void saveFacadeResults(skSubTask subtask, Queue<typError> Errors)

68

500 {
501 double dbval;
502 Bygning B;
503 double mmin = double.PositiveInfinity;
504 double mmax = double.NegativeInfinity;
505
506 int iBld, ifp, iu = 0, nu = subtask.numUnits;
507 string lines = string.Empty;
508
509 for (iBld = 0; iBld < subtask.buildings.Count; iBld++)
510 {
511 B = subtask.buildings[iBld];
512
513 if (B.fasadepunkt.Count == 0) continue; // Skriver ikke "tomme" bygninger
514 lines += "\r\n Building number: " + iBld + ", " + B.bygningsnummer;
515
516 for (ifp = 0; ifp < B.fasadepunkt.Count; ifp++)
517 //recnum++;
518 for (iu = 0; iu < nu; iu++)
519 {
520 lines += "\r\n Facade point: \t" + ifp + "\tPosition East: \t" + B.fasadepunkt

[ifp].sted.posisjonE +
521 "\tPosition North: \t" + B.fasadepunkt[ifp].sted.posisjonN + "\tHeight: \t" +

B.fasadepunkt[ifp].sted.h +
522 "\tDecibel value: \t" + B.fasadepunkt[ifp].utesituasjoner[0].utestøy.nivå[iu].verdi +
523 "\tUnit: \t" + subtask.Units[iu].Unit.ToString();
524
525 dbval = B.fasadepunkt[ifp].utesituasjoner[0].utestøy.nivå[iu].verdi;
526 mmin = Math.Min(dbval, mmin);
527 mmax = Math.Max(dbval, mmax);
528 }
529 lines += "\r\nMin Value: \t" + mmin + "\tMax Value: \t" + mmax;
530 mmin = double.PositiveInfinity; mmax = double.NegativeInfinity;
531 }
532 System.IO.File.WriteAllText(@"C:\TEMP\WriteFacadePoints.txt", lines);
533 }
534
535 public static void SaveResults(skSubTask subtask, Queue<typError> Errors, out bool stError, out bool

SaveOK) {}
536 // **
537 // DISSE RUTINENE ER NØDVENDIG FOR Å LAGRE RESULTATER TIL FILER
538 // DE ER LAGET AV SINTEF OG BRUKES KUN FOR Å SJEKKE RESULTATER
539 // DE ER IKKE RELEVANTE FOR FORSTÅELSEN AV PROGRAMMET OG
540 // INKLUDERES IKKE HER
541 // **
542 }

69

	Title Page
	Introduction
	Background
	Scope
	Outline of the report

	Technologies
	Programming Tools
	MicroStation
	SoundKernel

	Background Information
	Sound
	Mitigating noise
	Legislation and Regulations
	Visnes Kalk AS
	Noise Measurement

	Software Development
	Implementation
	User Manual
	Testing and Results

	Discussion and Conclusion
	Discussion
	Conclusion
	Further Work

	Bibliography
	Appendices
	Noise maps from DNV
	Noise Measurements from Visnes Kalk AS
	Code from Test Program

