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Abstract 
 
Composites play an important role as structural materials in a range of engineering fields 
due to their potential to combine the best mechanical properties of their constituents. In 
biology, composites are ubiquitous and exhibit fascinating and precise architectures at 
fine length scales, where bone, hexactinellid sponges and nacreous abalone shells are 
prime examples. By learning from nature a de novo approach is applied leading to the 
synthesis of bio-inspired tough composites with simple building blocks. Fundamental 
design principles employed by nature in the assembly of mineralized composites are 
elucidated with simple mesoscale discrete lattice models. Computational investigations 
show that specific topological arrangements of soft and stiff phases in composites can 
markedly change the stress and strain transfer through a system, thus fundamentally 
changing their fracture mechanical behavior. Indeed, architectures are created from brittle 
building blocks that exhibit stable fracture propagation under sustained load transfer and 
increasing deformation. Furthermore, a detailed study of the basic interactions between 
constituents phases in a composite lead to fundamental insights of elastic interactions and 
stiffness ratios as controlling elements of the fracture mechanical behavior of composite 
systems. Tuning the linear elastic constitutive behavior of the matrix phase in a bone-like 
topology creates a set of composites spanning a wide area of toughness vs. stiffness in the 
Ashby plot. One specific composite system, designed at ‘minimal cost’, exhibits a 
fracture toughness modulus eight times larger than its constituents while retaining over 
80% of the Young’s modulus of its stiffest phase. Finally the insights gained from the 
computational investigations are used as input in a design process resulting in 3D printed 
bio-inspired composite specimens. Utilizing multi-material 3D printing with structural 
features at micrometer length scales composites are printed with toughness moduli an 
order of magnitude larger than their building blocks. A computational model capable of 
predicting the experimentally observed mechanisms and trends in mechanical behavior is 
also produced. The research presents exciting outlooks for the future design of tough, 
structurally robust bio-inspired materials with applications in a wide range of engineering 
disciplines.  
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1 Introduction 
 

 

Composite materials are commonly designed from building blocks with contrasting 

material properties with the goal of combining two attractive properties in one material 

system. A fundamental question in engineering composite materials for structural 

applications is how to design composites that effectively combine the properties of 

stiffness and toughness. Biologically mineralized composites such as bone, nacre, the 

frustules of diatom algae and deep-sea sponges are structural engineering wonders in this 

regard as they are assembled from simple building blocks and effectively combine high 

stiffness with high toughness and strength [1-10].  

 

A large number of research efforts have focused on investigating the impressive 

mechanical properties of biomineralized materials in light of their hierarchical nature [1, 

10-20]. Amongst other things, these studies have introduced and elucidated the 

importance of the cooperativity of deformation mechanisms across arrays of length scales 

prevalent in natural hierarchical systems. Especially, in the context of fracture, a 

multiscale phenomenon [21], many natural toughening mechanisms are attributed to the 

hierarchy of structural features spanning length scales from the nanoscale to the 

macroscale [1, 10, 17, 22-25]. With the advancement of computational tools, in silica 

studies have also become a popular tool used to gain fundamental insight into the design 

principles employed by nature in developing advanced materials from primitive building 

blocks [26-31]. In [26] the authors utilized finite element models to support their 

arguments that the nanometer size of certain structural features in mineralized structures 

might be a conscious design mechanism employed by nature to optimize local flaw 

tolerance. They predict that there exists a certain length scale at which brittle materials 

become insensitive to flaws, thus enabling them to reach their theoretical strength 

irrespective of cracks or defects. Furthermore, in [30, 31] the authors used a multiscale 

modeling approach, informing mesoscale models with first principles derived full 
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atomistic data of silica to portray a direct correlation between increased toughening 

behavior and number of hierarchical levels in a diatom inspired system. Theoretical 

analyses have also proven very valuable to further elucidate the structure-property 

relationships of bio-composites with several contributions highlighting the essential role 

of large stiffness-ratios in reducing crack tip stress concentrations in lamellar structures 

[32, 33].  

 

Furthermore, a variety of other studies attribute the impressive combination of fracture 

toughness and stiffness exhibited by mineralized composites to other mechanisms. The 

more common and notable mechanisms cited include, but are not restricted to: energy 

dissipation and ductility through protein unfolding in the organic matrix phase [34, 35], 

and frictional dissipation due to shearing of mineral-organic interfaces [12, 36]. 

 

In addition to research efforts aimed at further understanding the fundaments of strength 

of these mineralized composites, significant attention in the materials science research 

community is devoted to developing manufacturing methods with the potential of 

synthesizing composites with equally impressive mechanical characteristics. Since its 

introduction in 1992 the layer-by-layer (LBL) templating technique has been widely used 

for this purpose [37-41]. In [39] technique was used to create an artificial nanostructured 

nacre replica with strength similar to natural nacre and Young’s modulus similar to that 

of bone. While the technique permits a fine control of structural topologies at nano 

length-scales, it is correspondingly demanding to utilize the approach for manufacturing 

macroscale structures. The thickest nacre replicas produced in [39] were 4.9  µμ𝑚 thick. 

Furthermore, self-assembly techniques have also received great interest and the diversity 

of systems attainable with these methods is truly remarkable [42-45]. In [42] DNA was 

assembled into three dimensional nanoscale shapes while the authors in [43] used a 

combination of mineralization and self-assembly to create a mineral-fiber composite with 

a structural configuration similar to that of bone. Looking forward, while both techniques 

are very powerful and have the potential for a precise control of structural features at very 

fine length-scales, to date neither of the methods provides an outlook for large-scale cost-
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effective manufacturing of complex topologies, in particular at larger hierarchical length-

scales. 

 

For many years, computers have proven an essential design tool for structural systems in 

the field of civil engineering. Model systems are typically conceived, subjected to the 

appropriate design loads and iterated upon in various computer software packages until 

satisfactory structural performance is obtained. Subsequently, detailed manufacturing 

orders are produced based on the iterated model systems and parts are assembled by 

separate manufacturers/contractors [46]. In this work a de novo complete design and 

synthesis approach for bio-inspired composites is proposed. Rigorous computational 

modeling providing fundamental insights into novel design principles for bio-inspired 

composites is followed by rapid manufacturing techniques producing composite 

structures with microscale structural features. The synthesized composites exhibiting 

fracture mechanical properties far superior to their individual constituents, with 

toughness moduli values up to 20 times than the individual constituents. Figure 1 displays 

the process flow of the work, from idea to design to model predictions and finally 

experimental results. Conclusively, the model predictions are compared with 

experimental results and possible improvements as well potential and impact of the 

methodology is discussed.

 
Figure 1 Process flow of the approach used here. Starting from the simple model material building blocks 
we build composites with bio-inspired topologies. We manufacture the bio-inspired composites with 3D 
printing and proceed to test the synthesized specimens. The results are compared to model predictions. 
Electron microscopy image of fractured nacre surface is reprinted from http://en.wikipedia.org/wiki/Nacre. 
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By looking beyond complex and highly species-specific structural features of 

biomineralized materials, such as proteinaceous layers or mineral bridges, simpler 

interactions with key contributions to the superior stiffness, toughness and strength of 

biomineralized composites are identified. At some level, diatoms, bone, nacre and deep-

sea sponges universally consist of more and less compliant regions arranged in specific 

geometries. It is hypothesized that ordering these softer and stiffer regions in specific 

geometrical arrangements is a powerful design principle for creating functional materials 

from inferior building blocks. In fact, in light of this principle it is expected that tuning 

and optimizing a confined number of simple geometric features of a single brittle 

material, e.g. silica, can produce superior materials. In Chapter 4 this hypothesis is 

rigorously explored with atomistically informed mesoscale spring bead models providing 

new insights into the influence of topological arrangement of softer and stiffer phases on 

the fracture mechanical response of composites. 

 

Moreover, for a range of mineralized biological composites that combine toughness and 

strength, such as nacre, bone, dentin and enamel, the stiffness ratio between the stiff 

mineral phase and the softer organic phase is quite similar, despite the structures being 

composed of varying constituents [6, 47-50]. Based on these experimental findings a new 

hypothesis guiding further research into the fundamentals of toughness and strength of 

biomineralized composites is developed. Namely, the stiffness ratio, in the linear elastic 

regime of the constituents, controls the deformation and fracture mechanism of a 

composite. It is further hypothesized, that linearly elastic perfectly brittle interactions can 

be sufficient to lay the foundations of superior toughness in two-phase stiff bio-composite 

structures. A new triangular lattice spring bead model is developed, now intended to 

represent composites of constituents with ‘minimal cost’ constitutive behavior, i.e. the 

energy to fracture of the composite constituents is identical. Indeed, the studies show that 

tuning such simple constitutive behavior of the individual materials can optimize the 

interactions of the composite leading to fracture mechanical properties of the composites 

such as toughness modulus over eight times larger than for its building blocks, while 

retaining over 80% of the stiffness of its stiffest constituent. 
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Finally, to close the design loop and complete the leap from computational model to 

synthesized structure of bio-inspired composites, state of the art 3D printing technology 

is employed as a simple and effective rapid manufacturing technique to create physical 

artifacts of these computationally conceived systems with bio-inspired topologies. The 

synthesized composites exhibited structural properties similar to the presented 

computational systems and notably far superior to their constituents. Furthermore, the 

specific deformation and fracture mechanisms induced by the various topological 

arrangements in the experimental systems compared well to the corresponding 

mechanisms exhibited by the simulated composites. Moreover, key deformation 

mechanisms reminiscent of biomineralized structures were observed. The results indicate 

the possibility of designing materials in computers with tailored fracture mechanical 

properties and later realizing these structures with 3D printing. 
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2 Background 
 

 

2.1 Nature as a source of inspiration 
Through the course of history biological systems are continuously forced to optimize 

their design, in the context of their natural design constraints, to best persist the given 

environmental conditions [51]. Nature is an immense resource in terms of engineering 

know-how, a resource only accessible through thorough study. This has sparked the field 

of “Biomimicry” which in later years has assumed a very important role in a wide range 

of research areas [9, 52-54]. Biomimicry is as termed by Benyus in [53] “… the 

conscious emulation of life’s genius. Innovation inspired by nature.” Many impressive 

engineering feats can be directly attributed to a thorough study and emulation of ‘life’s 

genius’ [55-57]. 

 

While nature certainly designs complex and advanced engineering systems with 

impressive performance, it is as noted by Mayer in [9] essential to view natural 

engineered systems in light of their design constraints. Typical biocomposites such as 

bone, the frustules of diatomaceous algae and nacre all likely consist of the same simple 

building blocks, minerals and proteinaceous organics, as these are the most abundantly 

available. Furthermore, as typical biological materials are assembled by self-assembly 

their structural design is a result of minimizing energetic cost while maximizing 

performance [58].  Due to limited resources in demanding environments the building 

blocks of natural systems are commonly very primitive as compared to the materials 

utilized in human engineered systems. Their careful assembly is more likely to be the 

product of evolutionary optimization and research efforts should be directed towards 

understanding this aspect of their design [9]. 

2.2 Mineralized materials and hierarchical structures 
Nature is vast and there is an enormous amount of organisms and species to learn from. 
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As of late mineralized materials have assumed an important role in the solid mechanics 

community with several research efforts highlighting the impressive mechanical 

characteristics of these structures [1, 4, 6, 7, 16, 47, 59]. Most generally, mineralized 

materials are materials that are composed, fully or in part, of inorganic matter formed by 

mineralization, the process in which organic matter is transformed to inorganic matter.  

Furthermore the concept of hierarchical structures has gained increasing importance in 

the bioengineering community in the study of mechanical properties of biological 

materials [1, 5, 10, 60]. In the context of materials a hierarchical structure is one with an 

arrangement of structural features over a range of length scales. In the following sections 

mineralized materials, hierarchical structures and their impressive mechanical properties 

will be discussed in more depth. 

2.2.1 Mineralized materials – ordering simple constituents in a tough composite 

Mineralized natural materials are present in nature in a variety of forms and shapes, 

within the field of solid mechanics much attention has been devoted to the study of bone 

[6, 12], mollusk shells [33, 61], deep sea sponges [1, 62] and the frustules of diatom algae 

[2, 8, 63]. An intriguing feature of the mentioned materials, as is highlighted in the 

reference works, is the primitive building blocks from which they are assembled. These 

are minerals that are commonly very brittle and weak [1, 16, 64, 65] and organics, 

typically soft and weak and assembled to a larger part by clusters of simple hydrogen 

bonds [66-68]. Whilst the building blocks of these mineralized structures are simple, the 

architectural arrangements in which they are assembled are often highly advanced. 

 

Nacre, also known as mother of pearl, is a biological composite found on the inner layer 

of mollusk shells such as oyster and abalone [64]. It shares structural characteristics with 

the nanoscale structure of bone [10] and sponge spicule of the deep-sea sponge 

Euplectella sp. [1]. At a characteristic length scale all three of these biological 

mineralized composites consist of stiff mineral platelets staggered in a soft organic matrix 

[1, 69-73], a topological ordering similar to brick and mortar structures as seen in Figure 

2. Whilst in bone this arrangement is predominant at the nanoscale in nacre and in sponge 

spicule it is observed at the microscale [1, 69].  
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Figure 2 (a) Schematic of the structure of bone showing plate-like crystals staggered in a collagen matrix. 
Figure adapted from [71], with permission from Elsevier. (b) SEM micrograph showing the staggered 
arrangement of aragonite platelets in nacre. A small volume fraction of organic material forms the matrix 
phase connecting the platelets, bar = 2 µm. Figure adapted from [69], with permission from Elsevier. (c) 
SEM image of a fracture spicule revealing an organic interlayer, bar = 1 µm. Figure adapted from [1], with 
from AAAS.  

The platelets in the bone structure shown in Figure 2a are hydroxyapatite (HAp) mineral 

crystals, a ceramic, which are commonly known to be brittle and fracture 

catastrophically. The matrix phase is collagen constituting around 20 wt.% of the entire 

structure [74], whose mechanical properties have been studied by several groups [75, 76], 

and as typical for a protein is soft and extensible. Similarly the platelets in nacre are 

formed by the brittle ceramic aragonite (CaCO3) whilst the matrix phase, constituting 

here a mere 5 wt.% of the structure [64], again is formed of organics. Lastly, the mineral 

phase in the sponge spicule is composed of silica (SiO2), the fundamental building block 

of sand and glass, and again these mineral platelets are separated with a few wt.% of 

weak organics [1, 62].  

 

Experimental investigations has shown nacre to be an extremely fracture resistant 

material; its toughness modulus is 3000 times larger than the aragonite crystals it is 

mainly composed of and fracture toughness values as high as 8 MPa m1/2 have been 
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reported [3, 47, 77]. Similarly groups have reported fracture toughness’s of bone around 

7 MPa m1/2 [78, 79]. These values are quite astonishing keeping in mind the large wt. % 

of ceramics the bio-composites are composed of. Furthermore, the structures attain these 

impressive fracture resistances while retaining a considerable portion of stiffness from 

their mineral constituent. Values of Young’s modulus exceeding 100 GPa have been 

reported for nacre [3].  

 

Similarly experimental investigations of the mechanical properties of siliceous 

composites have revealed truly fascinating mechanical properties. Levi et. al. [80] 

reported results of mechanical testing on the spicules of Monorhaphis sponge showing 

the composite to exhibit an astonishing combination of properties. The silica-based 

spicules dissipated large amounts of energy upon fracture, exhibited considerable 

stiffness and were capable of undergoing large deformations reversibly. Other deep-sea 

sponges with impressive mechanical characteristics include the hexactinellid sponge 

Euplectella aspergillum depicted in Figure 3a (the spicules of this this structure are also 

depicted in Figure 2c) [1, 62]. Despite mainly being composed of the same building block 

as sand and glass these fascinating structures exhibit, as highlighted in the referenced 

work, advanced fracture toughening mechanisms such as crack blunting, crack deflection, 

crack arrest and stress delocalization.  

 

In Figure 3b a variety of different structures of the silica frustules of diatom algae are 

pictured, exhibiting the great diversity among this class of organisms. Diatom algae are 

eukaryotic unicellular organisms that appear ubiquitously in aqueous environments, and 

they are the predominant contributors to bio-silica formation in the ocean. Despite being 

made primarily from this inferior building material, also the cell walls of alga exhibit 

mechanical properties characteristic of a highly advanced material with significant 

fracture toughness the main highlight as shown by recent experimental and computational 

work [2, 8, 27, 31, 65, 81, 82]. An interesting point to not here is that, where the 

structural features depicted in Figure 2 achieve a composite geometry with softer and 

stiffer regions by utilizing different building blocks the systems shown in Figure 3, attain 

a functional grading of material properties with a single building block by the use of 
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topology, porosity and nanoconfinement [1, 8, 81-83]. The different regions of the 

frustules of diatom algae show an astonishing variation of mechanical properties, 

Almqvist et. al. [2] reported elastic moduli varying over two orders of magnitude within 

the same siliceous frustule sample. Figure 3b clearly shows regions of varying density of 

porosity within the frustules thus implying a highly heterogeneous distribution of 

properties of within the algae cell walls.  

 

 
Figure 3 (a) Details of the Western Pacific hexactinellid sponge, Euplectella aspergillum, and its skeleton. 
(A) Illustration (from Schulze, 1887) of two preserved specimens, clearly showing the holdfast apparatuses, 
the external ridge systems, and the terminal sieve plates. (B) Photograph of the underlying siliceous 
cylindrical skeletal lattice exposed by removal of the organic material. (C) At higher magnification, the 
square-grid architecture and regular ordering of the vertical and horizontal components of the skeletal 
system are clearly visible. Scale bars: A: 5 cm; B: 5 cm; C: 5mm. Figure reprinted from [62], with 
permission from Elsevier. (b) Images showing the broad diversity of diatom silica structures. (a) Bar = 1 
µm, (b) bar = 5 µm, (c) bar = 10 µm, (d) bar = 500 nm, (e) bar = 2 µm, (f) bar = 10 µm, (g) bar = 2 µm, (h) 
bar = 2 µm, (i) bar = 50 µm, (j) bar = 2 µm, (k) bar = 1 µm, (l) bar = 10 µm. Figure reprinted from [81], 
copyright © 2007, with permission from American Chemical Society. 

 

Figure 3, and the discussion above clearly shows that nature takes great care in the 
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topological assembly of mineralized structures. In fact, experimental investigations 

indicate that the specific architectural arrangements of the mineralized structures have 

been specialized for the environments the structures are exposed to. Diatoms of the type 

Ellerbeckia arenaria residing in waterfalls resist continuous stress and are able to 

undergo elastic deformation up to 33 % strain [84, 85] and deep-sea sponges anchored to 

the bottom of the ocean can also undergo large deformations without failing [1, 62].  

2.2.2 Hierarchical structures – assembling primitive building blocks at multiple 

scales to advanced functional materials 

Another key structural feature amongst mineralized biomaterials is the hierarchical 

structure they exhibit. The term hierarchy is here used in the sense it is described in [86], 

as an ordered set of interrelated subsystems where no authority relation is implied. In the 

comprehensive works by Fratzl et. al. [24] and Currey [23] hierarchies in biomineralized 

materials are thoroughly discussed. A truly fascinating aspect of the hierarchical nature of 

structures in nature is the range of length scales at which the subsystems exist. In spider 

silk for instance, hierarchy spans over nine orders of magnitude, from nanometers to 

meters [87]. Here the focus will be directed towards the hierarchical structure of four 

mineralized structures; human vertebrate bone, nacre, the hexactinellid sponge 

Euplectella sp. and the cell walls from the diatom genus Coscinodiscus.  

 

The hierarchical structure of both human vertebrate bone and the sponge Euplectalla sp. 

is well documented in the literature [1, 10]. Figure 4 indicates the six hierarchical levels 

of vertebrate bone as identified by Rho et. al. [10] and Figure 5 displays the eight 

hierarchical levels of the glass sponge Euplectalla sp. as identified by Aizenberg et. al. 

[1].  
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Figure 4 Hierarchical structural organization of bone: (a) macrostructure: cortical and cancellous bone; (b) 
microstructure: osteons with Haversian systems; (c) sub-microstructure: lamellae; (d) nanostructure: 
collagen fiber assemblies of collagen fibrils; (e) sub-nanostructure: bone mineral crystals, collagen 
molecules, and non-collagenous proteins. Figure reprinted from [10], with permission of Elsevier. 

 
Figure 5 Hierarchical structure of Euplectella sp. (A) Image of the entire structure, indicating cylindrical 
glass cage. Scale bar: 1 cm. (B) Close up of the cage structure portraying two square-grid lattices super 
imposed on each other at angled orientations. The arrows indicate stabilizing orthogonal ridges. Scale bar: 
5 mm. (C) SEM image showing how each strut (enclosed by a bracket) is composed of a bundle of multiple 
spicules (arrow indicates the long axis of the skeletal lattice). Scale bar: 100 µm. (D) SEM image showing 
the ceramic fiber-composite nature of a fractured and partially HF-etched single beam. Scale bar: 20 µm. 
(E) SEM image showing the cemented nature of the HF-etched junction area. Scale bar: 25 µm. (F) 
Contrast-enhanced SEM image of showing a cross section of a spicular strut. The micrograph reveals the 
large variety of sizes of spicule surrounded by a laminated silica matrix. Scale bar: 10 µm. (G) SEM image 
of a spicule cross section, revealing the laminated structure. Scale bar: 5 µm. (H) SEM of a fractured 
spicule, revealing an organic interlayer. Scale bar: 1 µm. (I) Bleaching of biosilica surface revealing its 
consolidated nanoparticulate nature (25). Scale bar: 500 nm. Figure reprinted from [1], with permission of 
AAAS. 
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Figure 6 (A) SEM image of a silica shell (Coscinodiscus sp.). (B) Schematic showing the structural set-up 
of the valve. (C) High-resolution SEM images of a valve seen in planar view from below (areolae, cribra, 
and cribella) from Coscinodiscus radiatus. Scale bar: 2.5 mm. (D) to (G) shows a schematic drawing of the 
templating mechanism by the phase separation model proposed in [19]. (E) to (H) show SEM images of C. 
wailesii valves in the nascent state. (D) The monolayer of polyamine-containing droplets in close-packed 
arrangement within the SDV guides silica deposition. (E and F) Consecutive segregations of smaller (about 
300 nm) droplets open new routes for silica precipitation. (G) Dispersion of 300-nm droplets into 50-nm 
droplets guides the final stage of silica deposition. Silica precipitation occurs only within the water phase 
(white areas). The repeated phase separations produce a hierarchy of self-similar patterns. Figure reprinted 
from [19], with permission of AAAS. 

Further, although not as comprehensively described, the siliceous frustules of diatom 

algae also exhibit magnificent hierarchical structuring [19, 88]. Specifically, diatoms of 

the Coscinodiscus genus exhibit extraordinary silica patterning, with finely patterned 

arrangements of pores ranging in diameter from under 50 nm to more than 1.600 µm 

[82]. In [19] Sumper presents the hierarchical structure of the Coscinodiscus as the self-

similar silica porous patterns as shown in Figure 6. As illustrated through the figures and 

described in [19] the hierarchy originates from the walls of the honeycomb-like areola 

structure of the valve and consists of deposited silica in self-similar porous patterns of 

decreasing diameter. AFM imaging has further revealed that the siliceous layers are 

composed of silica nanoparticles, similar as for the glass sponge, thus constituting the 

lowest level of hierarchy [89].  
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Figure 7 Hierarchically organized structure of the nacreous layer of the Japanese pearl Pinctada fuctata. a) 
FESEM image of the highest level of hierarchy. Scale bar: 1 µm. b) FESEM image of the second 
hierarchical level. Scale bare: 100 nm. c) FETEM image of the lowest level of hierarchy, the nano building 
block. Scale bar: 10 nm. Panels d) to f) show corresponding schematic drawings of the three levels of 
hierarchy. Figure adapted from [14], with permission of WILEY-VCH. 

The fourth discussed biomineralized structure, nacre, also has a characteristic hierarchical 

nature; this is also a system that has been studied by several research groups, [14, 17, 18, 

90]. The hierarchical structure of the nacreous layers of Japanese pearl Pinctada fuctata 

is presented [14]. Three distinct levels of hierarchy are shown in Figure 7, SEM images 

are presented in Figure 7a-c while Figure 7d-f show the corresponding schematic 

drawings. The hierarchical organization is seen to resemble a self-similar structure with 

the brick and mortar structure of aragonite platelets and organic interlayers repeated at 

progressively smaller scales from the microscale to the nanoscale over almost three 

orders of magnitude.  

 
In Table 1 the various hierarchical levels of the structures introduced above are presented 

and summarized in an organized fashion.  
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Table 1 Tabular representation of the subsystems of the hierarchical structure of the four 

biomineralized materials; human vertebrate bone, the hexactinellid sponge Euplectella 

sp., the siliceous frustule of the diatom algae genus Coscinodiscus and the nacreous 

layers of the Japanese pearl Pinctada fuctata. 
Level of 
hierarchy 

Characteristic 
length scale 

Human 
vertebrate bone 

Euplectella 
aspergillum 
(deep-sea 
sponge) 

Coscinodiscus 
sp. (diatom 
algae) 

Pinctada 
fuctata 
(nacre) 

1 ~ 1 nm Collagen – HAp 
composite 

Silica 
nanoparticles 

Silica 
nanoparticles 

 

2 ~ 10 nm - - Porous structure 
in cribellum 
layer 

Nano 
building 
block – 
hexagonal 
aragonite 
platelets 
(tier 3) 

3 ~ 100 nm Collagen fibril - Porous structure 
in cribrum layer 

- 

4 ~ 1 µm Collagen fiber Laminated 
structure of 
silica and 
organic 
interlayer 

Areola – 
honeycomb 
structure 

Composite 
of nano 
building 
block and 
organic 
matrix (tier 
2) 

5 ~ 10 µm Lamellae Silica beams 
structured as 
ceramic-fiber 
composites 

 Nacreous 
structure 
(tier 1) 

6 ~ 100 µm Osteon with 
Haversian 
system 

Bundle of 
spicules form 
struts 

  

7 ~ 1 mm - Cage structure 
with two 
superimposed 
square grid 
lattices 

Diatom frustule 
structure 

 

8 ~ 1 cm Cortical and 
cancellous bone 

Hexactinellid 
sponge structure 
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3 Methods 
 

 

The hierarchical multiscale nature of biological materials spanning from the individual 

protein molecules at the nanoscale to precise the precise topological arrangement of 

bundles of spicules at the macroscale makes computational methods very appealing tools 

for their study. In silica studies allows access to all scales, notable also the atomistic 

scale, which cannot be effectively probed experimentally. While the last chapter of this 

thesis includes experimental work the main part of this work consists of computational 

investigations and thus that will be the focus of this methods chapter. Methods and 

models will be introduced and put into context here, while their detailed design tailored 

for the individual studies will be outlined in the accompanying chapters. Details on the 

manufacturing methods are given in this chapter while the details on the experimental 

testing are given in Chapter 6. 

3.1 Modeling mesoscale structures – spring bead models  
As was outlined in Chapter 2, biomineralized materials exhibit intricate topological 

arrangements of softer and stiffer phases at the mesoscale. It is hypothesized here that 

these topological arrangements are of prime importance to the superior fracture 

mechanical properties exhibited by biomineralized composites and thus naturally the 

mesoscale plays an important role in this work. Indeed, appropriate modeling must be 

suitable for studying fundamental concepts of fracture at this this intermediate scale. In 

this work discrete lattice models are used to study mesoscale design principles of 

biocomposites. A schematic of a triangular lattice spring bead system is shown in Figure 

8. 



 25 

 
Figure 8 Schematic overview of a spring bead triangular lattice system. The lattice is two-dimensional, 
matter is represented by discrete beads and the beads are connected to their nearest neighbors by springs. 

Discrete lattice modeling techniques have been used widely for the study of fracture at 

meso length scales and have been validated by several independent research efforts [91-

93]. This class of model received much attention in the late 1980’s when used extensively 

to study the influence of randomness and disorder on the fracture behavior of various 

materials [94-96]. Further, in [91] in the context of fracture mechanics, triangular lattice 

spring bead models were shown to reproduce numerical continuum mechanical solutions 

for stress intensity factors in various systems. In the class of spring bead models 

employed here, springs, the bonds between the beads, are allowed to break if they extend 

beyond some critical length, rc. This represents the initiation or growth of a crack and the 

system will fail if a crack, the breaking of bonds, percolates through the network. Two 

key features make this class of models attractive for use here. First of all, cracks are 

represented in a very intuitive way, simply as the breaking of bonds. Moreover, no 

explicit crack propagation criteria is required, this follows naturally as the breaking of 

bonds. These properties of the spring bead system provide significant advantageous over 

conventional finite element methods were the propagation of cracks is a far more 

complex matter. Furthermore, despite their apparent simplicity triangular lattice spring 

bead models have a documented agreement with and good representation of continuum 

fracture mechanics concepts.  

 

The respective phases of the investigated composites are modeled as homogeneous and 

thus the systems studied could be characterized as represented by an ordered 

heterogeneity. Similarly to the representations in [94-96] the beads represent a group of 

smaller particles/molecules, however in the current system we these beads are assumed to 
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be large enough to neglect intrinsic disordered heterogeneity.  

3.2 Material model – starting from bulk and nanoporous silica 
Initially the goal is to show that tough composites can be assembled from the most brittle 

of building blocks simply by utilizing geometries as an active design tool. Thus the 

mesoscale model is informed with first principles derived full atomistic data on the 

constitutive behavior of two distinct forms of silica (the fundamental constituent of 

glass), bulk silica and nanoporous silica. This specific coarse-grained model is developed 

in [30] and is based on the atomistic simulations described in [97]. Excerpts of the results 

of this study are presented in Figure 9 showing the contrasting stress strain response of 

bulk silica and a nanoporous silica sample. The nanoconfinement of the silica structure 

induces a compliant and ductile response.  

 
Figure 9 (a) ReaxFF derived stress-strain response for two of the tested geometries in [97], bulk silica and 
nanoporous silica with sidewall thickness w of 17 Å. Solid lines indicate lines of best fit.  

The constitutive behavior displayed in Figure 9 is used to train the discrete particle lattice 

system shown in Figure 8 by application of the Cauchy-Born rule [30, 98, 99]. Further, to 

ensure a separation of scales between the atomistic simulations and the mesoscale 

simulations the equilibrium spacing between particles in Figure 8 was chosen to be 78 

nm. Thus a mesoscale model was developed, containing first principles based full 
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atomistic information, capable of simulating micrometer length scales. Once the 

influence of topologies has been extensively studied, new material models are designed 

and utilized in this work to explore further research questions. These are treated 

separately in the corresponding chapters.  

 

As the models presented in this work are meant designed to highlight individual 

fundamental design mechanisms it is imperative that they are simple. Several interesting 

studies on mineralized structures attribute toughening mechanisms to interfacial sliding 

effects occurring at the interface of soft organics and the brittle mineral crystals [100]. 

However, this mechanism is not a focus in this work and thus the models are designed 

such as to exclude this effect. Therefore the adhesion at the interfaces of the system 

between the bulk and nanoporous silica (for the primary study and between the 

corresponding model materials for the subsequent studies) is chosen to be perfect. This 

implies that the interface is as strong as the weakest phase, thus excluding interfacial 

failure as an additional toughening mechanism.  

3.3 Measuring stress in a discrete system 
Traditionally, stress has been most commonly utilized as a measure of loading in a 

continuous system. The Euler-Cauchy stress principle states, 

 

“Upon any surface (real or imaginary) that divides the body, the action of one 

part of the body on the other is equivalent (equipollent) to the system of 

distributed forces and couples on the surface dividing the body.” 

 

The internal forces across such a real or imaginary surface normalized by the area of said 

surface are exactly equal to the average of the internal stresses acting over said surface. 

As surfaces are more easily envisioned in continuous systems, the notion of stress is also 

more intuitive in regards to continuous matter. However, with the increased use of 

molecular dynamics accompanied by the larger focus on the nanoscale, discrete systems 

are becoming more commonplace. Moreover, along with the ambition to couple and 

exchange information between discrete systems and continuous systems, stress measures 

have become an important concept also in particle mechanics. Specifically, focus has 



 28 

been directed towards developing a formulation of stress in a discrete system that can be 

proven equivalent to a continuous stress measure. To this end, the virial stress measure 

introduced by Tsai [101] has proven to be of great use. 

3.3.1 The virial theorem and the virial stress 

Initially introduced by Clausius in 1870 the virial theorem provided a link between the 

pressure and the potential energy of a homogenous discrete particle system in 

equilibrium. Over one hundred years later, in 1978 Tsai showed that identical results for 

the pressure calculation could be achieved by analyzing a stress like quantity that was 

subsequently termed the virial stress [101]. The measure introduced has a simple 

interpretation, which will be outlined below, and is understood neatly in connection with 

the conventional continuum Cauchy stress. 

 

In this presentation of the virial stress it will be introduced as the superposition of two 

distinct terms and is thus written as 

𝜎!" =   𝜎!",! + 𝜎!",!. (1) 

The individual terms are due to distinct interactions and are more easily conceived 

separately. Figure 10 shows a cartoon of an imaginary surface across which particles 

interact and the virial stress is evaluated.  

 
Figure 10 Schematic indicating two particles, 𝜶 and 𝜷, interacting across an imaginary surface CC’ at 
which the virial stress is evaluated.  
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The first of the two contributions to the virial stress, 𝜎!",!, is the static equilibrium term 

derived from the virial theorem by Clausius. This contribution accounts for the forces 

acting between atoms across a certain surface and is expressed as follows 

𝜎!",! =
1
2𝑉

𝜕𝜙 𝑟
𝜕𝑟

𝑟!
𝑟 𝑟!

!,!,!!!

. (2) 

Here, 𝑉 denotes the volume of the considered atomistic system, Greek letters alpha and 

beta are used to indicate atoms, subscript Roman letters are used to indicate the 

coordinate direction, 𝜙 represents the interatomic potential and 𝑟 indicates the radial 

distance from the center of mass of an atom. In a system in equilibrium such as the one 

analyzed by Clausius, where the mean velocity of the ensemble of particles is zero, this 

term fully accounts for the system pressure. 

 

The second contribution to the virial stress comes in to effect in non-equilibrium systems, 

systems experiencing a net force. Specifically, in connection with the schematic in Figure 

10 this term accounts for the forces exerted across the surface CC’ due to momentum flux 

imparted by particles crossing the boundary and it is expressed as 

𝜎!",! = −
1
𝑉 𝑚 !

!

𝑣!
! 𝑣!

! . (3) 

Here, 𝑚 !  denotes the mass of atom 𝛼 while 𝑣!
!  is the velocity of atom 𝛼 in the 𝑖 

coordinate direction relative to the mean velocity of the body.  

 

This last kinetic term has caused controversy in the community and in [102] it was 

claimed that this term could in certain systems create negative stresses and was in fact 

non-physical as a contribution to a stress measure in a discrete system. Subsequent 

research efforts presented arguments claiming to disprove this view and in support of the 

virial stress as a stress measure equivalent to the continuum Cauchy stress [103, 104]. 

Furthermore, [103] computational simulations on full atomistic models were conducted 

supporting the virial stress as a discrete equivalent to the Cauchy stress. By regarding the 

kinetic term of the virial measure in the light in which it was presented here, as a 

momentum flux term, it is readily realized that this term is necessary to account for all 

force interactions across boundaries in the system. Moreover, it makes perfect physical 
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sense in a system were particles have non-zero velocities relative to the ensemble 

velocity of the system. It is further noted that the virial stress converges to the continuum 

measure only when averaged in space, hence only in microscopically large systems.  

3.4 Strain measures for discrete lattices 
As well as measuring local stresses in a discrete system it is desirable to be able to 

measure and track the local variations of local strain in a discrete system. Characterizing 

strains can provide many insights and educate about mechanisms occurring at the 

atomistic scale. Further, in order to have an effective framework in which the atomistic 

scale can be coupled with the continuum scale it is essential to have a consistent measure 

of strain that can create a bridge between the two approaches.   

 

Two different descriptions of strains for discrete particle systems are presented in the 

following subsections. The descriptions are accompanied by examples and some 

discussion of their respective advantages and disadvantages. It is noted that the presented 

measures are, with certain exceptions (to be clarified), valid for general discrete systems, 

both atomistic and coarse-grained particle systems alike. 

3.4.1 An atomistic deformation gradient 

In continuum mechanics deformation is conventionally characterized by relating the 

current configuration of a body to its reference configuration [105, 106]. The location of 

a point on a body in the undeformed configuration is typically denoted by an 

uppercase   𝑿 = 𝑋!,𝑋!,𝑋!  while the location of the same point in the deformed 

configuration is denoted by 𝒙 = 𝑥!, 𝑥!, 𝑥! . The deformation can thus be characterized 

by relating the location of a point in the two different configurations through a mapping 

𝒙 = 𝒙 𝑿, 𝑡 . The derivative of this mapping with respect to the undeformed configuration 

is called the deformation gradient,  

𝑭 = 𝜕𝒙
𝜕𝑿. (4) 

The deformation gradient in turn, serves as the basis of many strain measures [107]. In 

the past ten or so years several groups have approached the challenge of defining a 

continuum compatible atomistic strain by defining an atomistic deformation gradient, two 

of these groups arrived at very similar results [108, 109]. The expression developed by 
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Zimmerman and coworkers in [109] will be the one presented here. Further, the strain 

developed through this method will be subsequently termed the virial strain. 

 

By assuming small displacements, including only the linear term in the Taylor expansion 

of the deformation gradient, and noting that the smallest measurable distance in the 

system is the distance to a neighboring atom, the equation for the deformation gradient in 

discrete system can be rewritten as 

𝑥!
!" − 𝐹!"𝑋!

!" = 0. (5) 

Here 𝑥!
!"  and 𝑋!

!"  represent the distance between atom 𝛼 and 𝛽 in the deformed and 

reference configuration for coordinate direction 𝑖 and 𝑗  respectively. It is noted in [109] 

that this relation can only hold exactly for a single neighbor of a particular atom, thus it is 

required that the sum of squares of the errors for all neighboring atoms is a minimum. 

Further, performing some algebra on the least squares expression the following 

expression for the deformation gradient is obtained 

𝐹!"! = 𝜔!"! 𝜂! !"
!! , (6) 

where 

𝜔!"! = 𝑥!
!"

!

!!!

𝑋!
!" , (7) 

and 

𝜂!"! = 𝑋!
!"

!

!!!

𝑋!
!" . (8) 

Here 𝑛 represents the number of nearest neighbors of the atom in question and again 

Greek letters indicate atoms while Roman letters indicate coordinate directions.  

 

While this expression only considers displacements relative to nearest neighbors the 

expression developed by Horstemeyer and coworkers [108] also considers displacements 

relative to particles that are not nearest neighbors. The contribution of these 

displacements is controlled by the introduction of a weighing function that commonly 

decreases as more distant neighbors are considered. The formulation derived by 

Zimmerman et. al. can be viewed as a special case of that derived by Horstemeyer et. al. 
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where the weighing function is unity for nearest neighbors and vanishes for all other 

neighbors.  

 

The functional form of weighting functions and cut-off radius affect the value of the 

computed strain and especially has an influence near strain localizations [110]. In the 

form in which it is presented here the deformation gradient has been shown to comply 

with the essential compatibility requirements enforced through continuum mechanics 

[109].  

3.4.2 Moving least squares fit to displacement field 

In an effort to create a framework for analyzing coupled atomistic-continuum systems 

Belytschko and coworkers developed what they termed a moving least squares (MLS) 

approximation to the displacement field in discrete systems [111, 112]. In short, the MLS 

scheme creates a continuous displacement field by interpolating the displacements of 

particles. With an appropriate finite difference scheme the displacement field can be 

utilized to compute an appropriate deformation gradient and any desired strain measure. 

The method will be presented in brevity below in accordance with its presentation in 

[112]. 

 

With the MLS approximation the displacement at any point 𝒙 is described by the 

continuous function 

𝒖 𝒙 = 𝑝! 𝒙 𝒂! 𝒙
𝒎

𝒊!𝟏

. (9) 

Here 𝑚  is the number of basis functions 𝑝! 𝒙  and 𝒂! 𝒙  are vector coefficients 

computed from the moving least squares approximation, to be described below. This 

form of expressing the displacement is similar to the methodology in continuum finite 

element methods; the basis functions 𝑝! 𝒙  can be regarded as equivalent to interpolation 

functions in FEM. The polynomial order of the basis functions is chosen based on desired 

order of the displacement function. The vector coefficients 𝒂! 𝒙  are found by 

minimizing the weighted 𝐿!-norm, 𝑞 𝒙 , of the displacement field 𝒖 𝒙  and is given by 

the expression 
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𝑞 𝒙 = 𝑝! 𝒙! 𝒂! 𝒙 − 𝒖! !𝑤!"# 𝒙!
!∈!𝒙

− 𝒙 𝑝! 𝒙! 𝒂! 𝒙 − 𝒖! . 

(10) 

In this expression a sum is implied over the repeated indices 𝑖 and 𝑗, the total summation 

is performed for all atoms within the support 𝑆𝒙 and 𝑤!"# 𝒙! − 𝒙  is a weight function 

over the support region. The weight functions can assume many different forms and have 

a significant impact on the performance of the solution field, in general they should have 

large values close to the treated atom at point 𝒙 and smaller values for points further 

away. The support region is the region over which relative displacements are considered 

for a given atom and its size is commonly be tailored depending on the application [111].  

3.4.3 Virial strain vs. MLS approximation – derivation and discussion 

Now the respective methods for evaluating strain are tested, discussed and compared. 

First, however the expressions must be developed from the equations presented earlier.  

3.4.3.1 Derivation of expressions 

Starting with the virial strain, appropriate algebraic manipulation of the deformation 

gradient leads to the following convenient expression for the left Cauchy Green tensor 

𝐁 = 𝐅𝐅𝐓 for atom 𝛼 

B!"! =
1
𝜆

Δ𝑥!
!"Δ𝑥!

!"

𝑟!!

!

!!!

. (11) 

Here 𝑁 indicates the number of nearest neighbors and Δ𝑥!
!" = 𝑥!

! − 𝑥!!  and Δ𝑥!
!" =

𝑥!
! − 𝑥!!  with 𝑥!!  signifying the i-th component of the coordinates of atom 𝛼  in the 

deformed configuration. Further, r0 is the equilibrium spacing of the lattice and 𝜆 a 

prefactor depending on the specific lattice chosen. For the employed triangular lattice 

with only nearest neighbor interactions it is given in [109] that 𝜆 = 3. It is noted that the 

left Cauchy-Green tensor is conveniently expressed solely in terms of the current 

positions of particles in contrast to the more involved expression for the deformation 

gradient 𝐅 as presented earlier. 

 

Now, for the description of strain an engineering strain measure is employed, specifically  
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𝜺 =    𝐁− 𝟏. (12) 

Here, 𝟏 is the identity tensor and the square root of 𝐁 is well defined in terms of its 

eigenvalues and eigenvectors, as it is a symmetric positive definite matrix 

𝐁 = 𝑤!𝒆𝒊⨂𝒆𝒊

!

!!!

, (13) 

where 

𝐁 = 𝑤!𝒆𝒊⨂𝒆𝒊

!

!!!

, (14) 

and wi and ei are the eigenvalues and eigenvectors of the left Cauchy-Green tensor, 

respectively.  

 

As for the description of strain through the MLS-approximation of the displacement field 

the employed weight functions 𝑤!"# are first presented. These weight functions are the 

same as those suggested in [112] and are expressed as 

𝑤!"# 𝑟

=

2
3− 4𝑟

! + 4𝑟!  for  𝑟 ≤
1
2 ,

4
3
− 4𝑟 + 4𝑟! −

4
3
𝑟!  for

1
2
< 𝑟 ≤ 1,

0  for  r > 1.

   
(15) 

Here 𝑟 is naturally the radial distance from the center atom. It is readily recognized that 

the given functional expression fulfills the requirements as outlined above. Further, linear 

basis functions are implemented and the support is restricted to four times the nearest 

neighbor distance as also suggested in [112]. Again an engineering strain measure is 

employed to characterize the strain field and the following familiar expressions are 

retrieved 

𝜀!! =
𝜕𝑢!
𝜕𝑥 , 𝜀!! =

𝜕𝑢!
𝜕𝑧 , 𝜀!"

=
1
2
𝜕𝑢!
𝜕𝑦 +

𝜕𝑢!
𝜕𝑥 . 

(16) 

The derivatives are evaluated numerically with central differences as shown below for 

𝜕𝑢!/𝜕𝑥, 
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𝜕𝑢!
𝜕𝑥 !!!!

≈
𝑢! !!!!!! − 𝑢! !!!!!!

2 ⋅ ℎ!
. (17) 

3.4.3.2 Discussion 

The test case that is used is a linear elastic model material, with and without a notch, 

subjected to pure longitudinal tension. The resulting longitudinal strain field plots are 

plotted with MATLAB and presented in Figure 11. As expected the longitudinal strain 

field is perfectly uniform with both descriptions for the unnotched case. Furthermore, 

both strain descriptions correctly allow the formation of a strain concentration around the 

crack tip in the notched case.  Moreover, inspecting the respective coloring a very good 

quantitative correspondence is observed for the two descriptions. Now that the 

correspondence for this test case has been documented some details of the 

implementation of the two approaches are discussed.  

 
Figure 11 Comparison of longitudinal strain fields from the MLS and virial description.  a) MLS derived 
strain field for unnotched case, b) virial strain field for unnotched case, c) MLS derived strain field for 
notched case, d) virial strain field for notched case. The field plots show very good agreement indicating 
that the MLS description of displacements and virial strain agree well in terms of longitudinal strain. 

The main difference between the two methods for the tested case lies in the 

computational effort. The virial strain description only considers the positions of nearest 

neighbors and thus the strain field is computed far more efficiently with this method. 

Reducing the size of the support region in the MLS-approximation to the displacement 

field can reduce the computing time significantly; however, it does this at the expense of 

the stability of the approximations. Support regions with radii of less than three lattice 

spacing’s commonly lead to expressions with ill-conditioned matrices.  Albeit 

computationally more intensive, the MLS method seems more appropriate for the 
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analysis of systems with discontinuities such as surface boundaries, material interfaces 

and cracks. The MLS-method is not constrained to systems with specific configurations 

or lattice structures and the support region can be tailored such as to express the 

displacement field around any particular particle surround by a host of discontinuities in a 

robust manner. For systems more involved than the one presented here, e.g. an 

amorphous solid, it is clear that the virial strain as derived by Zimmerman in [109] would 

be inapplicable whereas the MLS-approximation to the displacement field remains 

equally useful.  
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4 Designing tough composites from simple 

building blocks with bio-inspired topologies 
 

 

The previous discussion of bio-mineralized materials highlighted the heterogeneous 

distribution of their mechanical properties. Moreover, several examples were given 

illustrating careful arrangements of regions with distinct constitutive behavior in complex 

architectures. As studies of a variety of bio-mineralized structures has revealed these 

characteristics to be common for a range of biological mineralized materials in different 

environments it is interesting from a materials scientist’s and structural engineers point of 

view to study these features in light of them being advanced design principles. 

Computational investigations at the micro-scale gain novel insights into the mechanics of 

bio inspired composites.   

4.1 Introduction 
An intriguing characteristic of some well-studied mineralized materials such as nacre, 

bone, frustules of diatom algae and deep-sea sponges, is that they all, at some length 

scale, are composite materials consisting of stiff, less extensible regions and soft, 

deformable regions. The hypothesis to be explored here is that that ordering these softer 

and stiffer regions in specific geometrical arrangements is a powerful design principle for 

creating functional materials from inferior building blocks.  

 

This study shows that the inclusion of a deformable nanoconfined silica phase in bulk 

silica structures can be sufficient if introduced and distributed in an appropriate manner. 

By studying the mechanisms of deformation and failure of model materials insights are 

gained in the detailed mechanisms by which deformable and brittle regions interact to 

form a fracture resistant composite, and which details of their structural configuration 

make their interaction advantageous for meso- and macroscale structures. Finally it is 

argued that the compliance of the second phase is the key attribute enhancing the overall 
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mechanical behavior of the composite and the specific mechanisms by which the 

response is enhanced depends on the geometrical configuration of the deformable phase. 

4.2 Materials and the Material Model 

The specific model to be utilized in this study is the one outlined in Section 3.2 and it was 

designed and selected for use here with precise intentions. The simplicity of the model is 

a great strength and its key feature. The current study is aimed towards elucidating one 

specific design principle employed by nature in its assembly of bio-mineralized 

structures; the use of architecture and specific topological arrangements of softer and 

stiffer regions to create functional composites. Arrays of hierarchies, proteinaceous layers 

and interfacial effects which have all previously been claimed to be key for fracture 

resistance in mineralized materials, [29, 31, 36], are excluded from the model employed 

here in order to exclusively study the effect of geometry in an intelligible manner. All 

systems contain the same number of hierarchical levels. Secondly, the single building 

block of the composite system is the primitive silica, it occurs in bulk and nanoconfined 

form giving rise to two fundamentally different constitutive behaviors, see Section 3.2 

and specifically Figure 9. Organic interlayers with hidden length, undergoing viscous 

deformation and dissipating vast amounts of energy are not included. Finally, the 

interfaces of the composite system are perfectly bonded and thus no dissipation occurs 

due any interfacial effects.  

 

At this point it is important to highlight the following; it is not claimed that the listed 

mechanisms don’t enhance material performance. On the contrary, as was also outlined in 

previous chapters, nature employs an array of structural features enabling an array of 

mechanisms to achieve desired material performance. However, it is hypothesized that 

also the very simple design mechanism of ordering phases with different constitutive 

behaviors can have a large impact on the meso- and macroscale material behavior and 

can be used to tailor material response. Moreover, in order to effectively prove the 

validity of this hypothesis it is seen as a necessity to utilize the simple model described. 
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4.2.1 Topologies and Experimental Setup 

In order to study the influence on mechanical properties of the careful geometrical 

arrangement of softer and stiffer phases, four different intelligible topologies are chosen 

for investigation. First, as a benchmark, a bulk silica system is characterized. Thereafter, 

as pictured in Figure 12 a bio-calcite-like system Figure 12a, a bone-like system Figure 

12b and a rotated bone-like system Figure 12c are also studied. 

 
Figure 12 Geometries of specimens, here shown with size parameter h = 6.48 µm. With the blue and gray 
phases representing the nanoporous and bulk silica, respectively, for (a) the bio-calcite-like geometry, (b) 
the bone-like geometry and (c) the rotated bone-like geometry. The specimens are loaded by imposing 
stepwise displacement on their right vertical faces, whilst holding the left hand sides still. Periodic 
boundary conditions are employed in the horizontal direction. (d) Constitutive laws for the nanoporous and 
bulk silica phase representing the compliant and brittle phase respectively in our material model (adapted 
from [31] with permission from Nature Publishing Group). 

The two first geometries are examined for their simplicity and contrasting nature. The 

bio-calcite-like comprising of soft platelets dispersed in a stiff matrix and the bone-like 

consisting of stiff platelets staggered in a compliant matrix. These differences are 

hypothesized to define the fundamental mechanics of the structures, changing methods of 

longitudinal and shear, stress and strain transfer and thus having large implications on 

sensitivities to cracks and size dependences of strength. The third, rotated bone-like, 

geometry is included in an attempt to optimize strain transfer through the structures. By 

providing a continuous path for longitudinal strain transfer, it is hypothesized that one 

can induce ductility of the structure and eliminate the catastrophic nature of failure 

commonly associated with silica.  

 

The mechanical characteristics of the geometries are tested by introducing initial cracks 

at midsection extending through a fourth of the height of the specimens (constant notch 
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length to sample size ratio) and loading them until failure. To investigate size 

dependences, crack sensitivities and the up scaling of strength four different size 

parameters for the specimens are chosen: 2.16, 6.48, 23.78 and 36.75 µm. The lengths of 

the specimens and their volume fractions of the soft phase are indicated in Figure 12. The 

geometries were created such as to keep these parameters as similar as possible and the 

inescapable disparities present are viewed as within an acceptable bound such that the 

geometries and results are comparable.  

 

The mechanical behaviors of the composites are a function of the volume fraction of the 

soft phase. Increasing the volume fraction of the soft phase naturally shifts the behavior 

of the composites towards that of the nanoporous silica while decreasing the volume 

fraction of the soft phase makes the composites behave more similar to bulk silica. A 

target volume fraction of around 20% is chosen with the aim of creating a composite that 

can combine the attractive mechanical features of both its constituents; thus combining 

appreciable stiffness, strength and fracture resistance. It is noted that the employed 

volume fraction was not tuned to form a composite with the optimal combination of these 

characteristics; rather a volume fraction was chosen that was believed to satisfy the given 

requirements. 

 

The loading is introduced by applying a displacement boundary condition on the right 

vertical face and holding the left vertical face fixed, a simple tensile test is performed. 

After each displacement increment, the equilibrium positions of the beads are found by 

means of a conjugate gradient energy minimization technique. Hence, static loading is 

simulated. Furthermore, to avoid longitudinal size effects, periodic boundary conditions 

are employed in the x-direction whilst the surfaces facing the z-direction are free. Stress 

and strain data are calculated at each displacement increment by recording positions of 

the beads throughout the deformation. 

4.3 Methods 
The simulations are conducted with the molecular dynamics package LAMMPS. The 

virial stresses as introduced above formed the basis of the stress analysis in this study. 

Virial stresses are output from LAMMPS and the quasi-static nature of the simulation 
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implies that only non-zero term is the static term with forces derived from the inter-

particle potential (the inter-particle potential, force field, is back calculated from the 

constitutive behavior of the respective phases by integration). The LAMMPS package 

calculates stresses without dividing the expressions by atomic/particle volumes, output 

units for the presented study are atm ⋅ Å!, and thus this must be done as a post-processing 

step as well as any unit conversions. Here stresses will be presented in MPa. For the 

analysis of strains the virial strain measure is employed due to its simple and rapid 

evaluation in the current system. 

  

The computed stresses and strains are evaluated by visualization of stress and strain fields 

plotted in MATLAB. Stress and strain fields represent an important analysis tool in this 

study as they provide insight into the mechanisms of deformation and failure of the 

materials. These field plots can also provide insight into the role of the soft phase and its 

geometrical configuration in the context of strain and stress transfer. It should be noted 

that strains in the immediate vicinity of the crack tip might be inaccurate due to the 

inhomogeneity of deformation fields in this region. However, it is argued that the 

toughening mechanisms are mainly encountered away from the crack tip and hence the 

strain plots are meaningful. Finally, a global longitudinal strain is also defined for the 

purpose of characterizing the stress-strain response of the entire structure. Consistently 

with previously employed strain measures an engineering strain measure is chosen for 

this purpose, defined as 

𝜖!! =
𝛥𝐿
𝐿!
. (18) 

4.4 Results 
Stress versus strain trajectories of the loading, up to and including failure, of all four sizes 

of the four geometries is presented in Figure 13. Further, Figure 14 shows the normalized 

strength plotted versus the inverse square root of the size parameter of the specimens for 

all specimens tested. Here the stresses are normalized by the ultimate stresses for the 

respective unnotched specimens.  
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Figure 13 indicates that the bulk-silica system, the benchmark, behaves perfectly elastic 

up to a limiting strain at which point it fails in a brittle manner. Furthermore, the limiting 

strain/strength is seen to be strongly dependent on the size parameter. Comparing this 

behavior with that exhibited by the composites in Figure 13 and Figure 14 strong 

indications are given that the hierarchical topologies can significantly alter and enhance 

the mechanical performance of a material. Among other characteristics all three 

hierarchical systems exhibit a decreased size-dependency of strength. Furthermore the 

rotated bone-like specimens are seen to experience a yielding like behavior prior to 

failure through a deformation period of negligible stiffness. The stress-strain trajectories 

of the rotated bone-like samples seem to indicate that the composites fail in a stable 

fashion. Moreover, Figure 13 indicates that the composites maintain appreciable stiffness 

and strength with the humble volume fraction of compliant nanoporous silica chosen. 

Further considering Figure 14, the strengths of both the bio-calcite-like and bone-like 

geometry show a significantly lesser sensitivity to the presence of the crack.  

 

In order to gain a more fundamental understanding of the mechanisms controlling the 

responses exemplified in Figure 13 and Figure 14, stress and strain field plots are plotted 

and investigated.  
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Figure 13 (a) Stress-strain response for the bulk silica specimen, (b) the bio-calcite-like specimen, (c) the 
bone-like specimen and (d) the rotated bone-like specimen. Circular markers indicate the points at which 
the ultimate stress snapshots are taken.  

 
Figure 14 Normalized strength as a function of specimen size for all four investigated systems. The 
strengths are normalized with respect to the respective strengths of the unnotched samples. 
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4.4.1 Ordered arrangement of nanoporous silica – Decreasing sensitivity to cracks 

Figure 15 shows the Von Mises stress fields immediately prior to failure for the 

unnotched and notched specimens of the all 6.48 µm systems, this corresponds to the 

points indicated by the circular markers in Figure 13. The panels clearly illustrate the 

reduced crack sensitivity exhibited by the hierarchical bio-calcite-like and bone-like 

geometry.  

 

The reference, bulk silica system, Figure 15a, behaves just as one would expect a 

perfectly brittle system to behave. It displays a perfectly uniform stress distribution in the 

unflawed state and a significant localization of stress at the crack tip for the specimen 

with the flaw. Here the bulk of the material is virtually unstressed as opposed to the 

unnotched case and the stress field has completely changed as a result of the introduction 

of the crack.  

 

On the other hand, the observed stress distributions in the composite systems indicate that 

toughening mechanisms are occurring. The specific geometrical arrangements of the 

deformable phase in the bio-calcite-like and bone-like systems allow the stresses to 

distribute throughout the entire specimens despite the flaws. These observations support 

the data presented in Figure 14 exhibiting the increased flaw tolerant behavior of the bio-

calcite-like and bone-like system. In particular the bone-like geometry exhibits quite 

impressive behavior. Naturally, the stress level drops by introduction of the notch, 

however inspection and comparison of Figure 15e and g shows that the overall method of 

stress transfer is the same. The stress distribution is far less affected by the crack than any 

of the other geometries and the stress concentration at the crack tip is significantly less 

prevalent. The soft matrix arranged in the perpendicular grid with components 

perpendicular and parallel with the loading renders a far less sensitive response to the 

notch for the overall structure and a more efficient material usage, the bar plot depicted in 

Figure 16b underlines this point.  
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Figure 16 illustrates, for all notched geometries tested of 6.48 µm size, the efficiency of 

material usage in an intelligible manner. It depicts the distribution of stress levels felt by 

the stiffer particles. Interpreting the mean of these stress levels as a measure of efficiency 

of material usage it is seen that both the bio-calcite-like and bone-like geometry far 

outperform the bulk silica specimen in this sense.  

 
Figure 15 Von Mises stress fields for 6.48 µm (a) unnotched bulk silica, (b) unnotched bio-calcite-like, (c) 
notched bulk silica, (d) notched bio-calcite-like, (e) unnotched bone-like, (f) unnotched rotated bone-like, 
(g) notched bone-like and (h) unnotched rotated bone-like specimens at the instant immediately prior to 
failure. The unnotched bulk silica specimen shows the expected even distribution of stress throughout the 
sample while the notched specimen exhibits the strong characteristic stress concentration at the crack tip. 
The specific topologies have a visible effect on the stress distribution in the composites and the bio-calcite-
like and bone-like specimen both exhibit significant delocalization of stresses in their flawed state. 
Specifically in the bone-like system the load path in both specimens, notched and unnotched, is seen to be 
very similar. This specific hierarchical geometry alleviates the stress tip concentration and maintains the 
same mechanism of load transfer despite the presence of the crack, thus reducing the specimen’s sensitivity 
to the notch. 

The configuration of the rotated bone-like geometry differs from the bone-like geometry 

only by the orientation and spacing of the grid, yet the analysis already unveils that the 

mechanics of the two systems are significantly different. Referring to Figure 14 the 6.48 

µm notched sample of the bone-like geometry is seen to reach almost 60 % that of its 



 46 

theoretical strength, the strength of its unnotched counterpart, quite impressive as 

opposed to the notched bulk silica sample, which endures less than 20 % of its theoretical 

strength. 

 

 
Figure 16 Plots comparing the stress distribution in the notched bulk geometry with the stress distribution 
within the strong particles of the (a) notched bio-calcite-like geometry, (b) the notched bone-like geometry 
and (c) the notched rotated bone-like geometry for the 6.48 µm specimens. The plot clearly shows how the 
strong particles in the bio-calcite-like geometry and the bone-like geometry are significantly higher stressed 
than their counterparts in the bulk-silica specimen, thereby supporting the claim that the stronger phase in 
these structures is more efficiently utilized after the introduction of the notch than in their bulk silica 
counterpart. 

In this context it is noted that the vertical parts of the soft continuous phase in the bone-

like geometry actually carry a significant stress, despite their compliance and weakness. 

Compare the stresses in this phase with the corresponding stresses in the deformable 

phase for the bio-calcite-like geometry and rotated bone-like geometry in Figure 15, the 

corresponding stresses in the bio-calcite-like geometry and the rotated bone-like 

geometry are far lower than for the bone-like geometry. This feature is again a direct 

effect of the specific architectural composition of the bone-like geometry. Significant 

longitudinal stresses will necessarily flow through the stiff platelets thus requiring a 

corresponding participation of the vertical soft phase in the stress transfer. This likely has 

an effect on the crack sensitivity of the geometry, i.e. the flaw tolerant size of the system.  

 

As the term is used here, a structure with a large flaw tolerant size is less sensitive to 

cracks at larger length scales than a structure with a very small flaw tolerant size. 
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Specifically, the flaw tolerant size refers to the size dimension at which the geometry 

reaches its theoretical strength despite the presence of a flaw [26]. Regarding the tested 

specimens in this study as single edged notched tensile specimens, conventional linear 

elastic fracture mechanics predicts the flaw tolerant size to scale with the inverse square 

root of the strength of the material [113]. The specific geometrical configuration of the 

composite in the bone-like geometry thus increases the flaw tolerant size of the material 

for this loading condition by transferring significant stresses through the weak phase.  

 

The compliance of the soft phase makes it well suited for absorbing deformation and 

studying longitudinal and shear strain fields of the respective geometries can identify 

further mechanisms induced by the various topologies. Figure 17 presents strain fields for 

unnotched and notched 6.48 µm specimens of all composites studied. The strain fields for 

the bulk silica specimens are easily inferred from the stress fields and thus not presented 

here.  

 

Figure 17a-l clearly indicate mechanisms explaining the results presented in Figure 14 

and Figure 16. For the bio-calcite-like and bone-like systems the ordering of the 

deformable phase allows strains to spread more evenly through the structures despite the 

presence of the notch and thus forcing stresses to delocalize. Higher stress levels can be 

attained at regions further from the tip of the crack and a more efficient material usage is 

obtained. This behavior is directly linked to the compliance of the deformable phase.  

 

Strain will naturally tend to concentrate in regions of least resistance. In very strong and 

rigid structures such regions are commonly represented by cracks where localizations of 

strains and stresses lead to sudden catastrophic failures, as exemplified by the notched 

bulk silica. Introducing a compliant weaker phase provides alternate regions for the strain 

to concentrate in and around. When appropriately arranged the softer phase is here shown 

to be able to make the effect of the crack less critical. It does this through employing its 

compliant nature to absorb significant strains away from the crack tip thereby more 

evenly distributing stresses throughout the sample and thus minimizing the effect of the 

notch. The specimen to some extent ‘forgets’ that it has a crack and strains and stresses 
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flow in similar ways as in the unnotched case. The geometrical configuration of the soft 

matrix decreases the sensitivity to the crack by means of its compliance and architecture. 

Thereby it is also clear that the specific architecture will determine the efficacy of the 

deformable phase. In light of this a more detailed discussion of the strain transfers in 

these two material systems is now given.  

 
Figure 17 (a) Longitudinal and (b) shear strain fields for unnotched bio-calcite-like geometry at the instant 
immediately prior to failure. (c) Longitudinal and (d) shear strain fields for notched bio-calcite-like 
geometry at the instant immediately prior to failure. (e) Longitudinal and (f) shear strain fields for 
unnotched bone-like geometry at the instant immediately prior to failure. (g) Longitudinal and (h) shear 
strain fields for notched bone-like geometry at the instant immediately prior to failure. (i) Longitudinal and 
(j) shear strain fields for unnotched rotated bone-like geometry at the instant immediately prior to failure. 
(k) Longitudinal and (l) shear strain fields for notched rotated bone-like geometry at the instant 
immediately prior to failure.  
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Considering the strain field plots for the bio-calcite-like geometry one can clearly observe 

that both the longitudinal and shear strain distribution is markedly different between the 

unnotched and notched case. At regions further from the crack tip longitudinal strain 

transfer, in both phases, only persists around the corners of the soft platelets. Furthermore 

it is observed that the shear strain transfer is in fact restricted to these areas also prior to 

introduction of the crack. Even though the dispersed deformable platelets clearly improve 

the mechanical behavior of the material over that of the benchmark system it is apparent 

that the stiff matrix does not provide optimal communication of strain through the 

system. Strain is not easily transferred between the compliant platelets due to the stiff 

nature of the matrix.  

 

In contrast to this stands the method of strain transfer in the bone-like geometry. The 

mechanisms of strain transfer are essentially identical for the unnotched and notched 6.48 

µm specimen of the bone-like geometry. With the combined action of longitudinal strain 

transfer in the vertical compliant phase and shear strain transfer in the horizontal 

compliant phase strains (and stresses) are effectively communicated through the matrix 

and between the stiff platelets. This particular ordering of the compliant phase enables an 

attractive combination of the respective properties of the composite constituents even 

after the introduction of the notch, activating both the strength of the stiff phase and the 

deformability of the compliant phase.  

 

Finally, the rotated bone-like geometry also exhibits a characteristic behavior. Whereas 

the stiff phase participates a considerable amount in the longitudinal strain transfer for the 

unnotched specimen it is virtually unstrained away from the crack tip in the flawed 

specimen. As also highlighted in Figure 14 the 6.48 µm specimen of the rotated bone-like 

geometry actually experiences a larger sensitivity to the presence of the flaw than the 

benchmark bulk-silica system. The inclination of the deformable matrix allows 

longitudinal strains to flow continuously through this phase throughout the specimen. 

After introducing the crack, the geometrical configuration of the soft phase therefore does 

not induce significant strain transfer in the stiffer phase and this flawed composite cannot 

sustain as large forces as its flawed bio-calcite-like and bone-like counterparts.  
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4.4.2 Introduction of weak links – stabilizing fracture 

Failure and fracture of brittle materials such as silica and also silicon is well studied [114, 

115]. Upon loading such materials build up large stress concentrations around flaws and 

crack tips. When these stress concentrations reach some critical value the cracks 

propagate catastrophically at very large speeds leading to complete failure of the 

materials. Such catastrophic fracture commonly occurs without warning and thus these 

types of failure are undesirable.  

 

Figure 18 through Figure 20 illustrate the propagation of fracture through the tested 

samples with size parameter of 23.78 µm. The cracks propagate rapidly without large 

increments in strain for both the bio-calcite-like geometry in Figure 18 as well as for the 

bone-like geometry in Figure 19. The potential for sustaining loading also drops quickly 

as fracture progresses in these geometries. For the bone-like geometry in Figure 19 the 

stress level endured by the sample as a whole has dropped to half its maximum level in 

Figure 19c and the specimen has essentially failed. The rotated bone-like specimen on the 

other hand, presented in Figure 20 exhibits contrasting and quite attractive fracture 

characteristics and the following discussion will highlight the mechanisms behind this 

and connect them to the topology of the system.  

 

The visualizations of the fracture propagation provided in Figure 20a-d show desirable 

stable crack propagation through the 23.78 µm rotated bone-like specimen. The titles of 

the individual panels indicate the strain state at which the snapshots are taken: 4.79%, 

5.17%, 5.40%, and 5.54%, respectively. The strain increment at each step of the 

simulation for this particular geometry is 0.047%. Fracture occurs gradually and stably, 

significant increasing deformations can be sustained and the specimen endures a high 

level of stress despite the propagating crack. Inspect these panels in connection with 

Figure 13b; the fracture propagation corresponds to the yielding plateau of the stress 

strain response. The key here is the inclination of the soft phase. The inclination allows 

the longitudinal strains to flow continuously throughout the specimens, as opposed to the 

other inspected geometries, see Figure 21, thus enabling the crack to be entrapped in the 

soft phase. Consequently, the crack tip is blunted and as stress concentrations scale with 
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the inverse square root of the crack tip radius the severity of the crack lessens and a stable 

propagation of fracture is achieved. The ordered geometry of the nanoporous silica phase 

introduces significant toughening mechanisms in a composite with silica as its building 

block, a material commonly known as very brittle. 

 

 
Figure 18 Crack propagation through the 23.78 µm bio-calcite-like specimen. Snapshots are taken at (a) 
2.15% strain, (b) 2.34% strain and maximum loading, (c) 2.36% strain and (d) 2.50% strain and 
immediately prior to complete failure of the specimen. Strain increments are 0.017%. To visualize details 
in the distribution of stresses the maximum limit of the color bar was lowered to 4000 MPa. 
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Figure 19 Crack propagation through the 23.78 µm bone-like specimen. Snapshots are taken at (a) 3.16% 
strain and maximum loading, (b) 3.18% strain, (c) 3.21% strain and (d) 3.54% strain and immediately prior 
to complete failure of the specimen. Strain increments are 0.019%. To visualize details in the distribution of 
stresses the maximum limit of the color bar was lowered to 4000 MPa. 

 
Figure 20 Snapshots showing stable crack propagation through the 23.78 µm rotated bone-like specimen. 
Snapshots are taken at (a) 4.79% strain, (b) 5.17% strain, (c) 5.40% strain and (d) 5.54% strain and 
immediately prior to unstable crack propagation. Strain increments are 0.047%. To visualize details in the 
distribution of stresses the maximum limit of the color bar was lowered to 4000 MPa. 
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4.4.2.1 Comparing strain transfer in 23.78 µm specimens – summarizing findings 

Figure 21 serves as a nice summary of the discussion above. It presents strain field plots 

at the instant the geometries endure their greatest loading for all 23.78 µm specimens 

studied. Figure 21a shows the large concentrations of strains in the bulk silica 

configuration, the unfavorable benchmark strain distribution that the composites were 

meant to outperform.  

 

Figure 21b-d present the more evenly distributed and desirable strain fields observed for 

the composite structures. As also stated earlier, the soft phases present new areas where 

strains tend to develop, thus forcing strains to distribute in accordance with its 

arrangement and delocalizing loading from the crack. Significant strains are observed 

throughout the structures and all of the flawed 23.78 µm composite samples attain a 

considerably larger fraction of their theoretical strength than the bulk silica specimen, see 

Figure 14. 

 
Figure 21 Longitudinal strain fields for 23.78 µm (a) bulk-silica, (b) bio-calcite-like, (c) bone-like and (d) 
rotated bone-like notched specimens at the instant where each of the specimens reach their maximum 
loading. The plots illustrate how the distribution of the soft phases controls the pattern of the strain transfer, 
and thereby enable a distinct mechanism of deformation and failure. 

Comparing the behaviors in Figure 21b-d the large influence of the specific geometries is 

apparent. It is readily observed that the strain transfer in the bio-calcite like geometry in 
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Figure 21b is obstructed by poor communication of strain through the stiff matrix. On the 

other hand, the geometries with a continuous soft phase in Figure 21c, d show a superior 

strain distribution and higher strain levels despite constituting of the same building 

blocks. Further, the large longitudinal strain achieved in the vertical compliant phase of 

the bone-like geometry actively employs the stiff platelets in the transfer of strain thereby 

giving the structure a robust response independently of the presence of the flaw. Finally, 

the inclined nature of the deformable phase in the rotated bone-like geometry allows the 

longitudinal strain to flow continuously throughout the specimen. Flaws thereby become 

trapped within this phase, preventing catastrophic failure and stabilizing fracture. 

 

4.5 Scalability of results 

Much effort has been devoted to creating artificial mimics of mineralized structures with 

geometries similar to the composites discussed in this study [39, 116, 117]. One of the 

biggest challenges is the dominance of nanosized structural features characteristic of 

these materials. Despite many advances, a large-scale cost-effective production method 

of such synthetic structures is still out of reach. An upswing of focus on self assembly 

techniques as highlighted in [116] provides exciting outlooks. Despite the clear advantage 

of nanoscale structural features in terms of increased flaw tolerance one may argue that 

the results presented here could show that natures design principles are applicable and 

useful at a range of length scales, length scales at which large-scale cost-effective 

production methods do exist. A spring bead model as the one utilized for this analysis is 

applicable at the nanoscale as well as the macroscale [95] with the appropriate adjustment 

of constitutive relations for the springs. Further the employed constitutive relations are 

quite generic and neither are they limited to certain length scales. Thus one may also 

expect the presented results are applicable at a range of length scales and valid for 

geometries with features at length scales beyond the nanoscale.  

4.6 Conclusions 
The study reported here has investigated the mechanics and deformation mechanisms of 

mesoscale structures composed of phases with contrasting constitutive behavior ordered 

in specific configurations. By conducting this study with a simple model in a systematic 
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manner, exploring the effect of different geometries and sizes and the effect of the 

presence of flaws, fundamental insight into intelligible principles employed by nature in 

its design of mineralized materials have been gained.  

 

The mechanism by which a simple compliant phase can improve the mechanical behavior 

of a flawed structure at the mesoscale can desensitize a structure to a flaw simply by 

means of its soft nature. As opposed to a stiff and strong material where stresses 

concentrate around flaws like cracks or voids, the soft phase in the bio inspired 

composites presented here provides an alternate route for deformation and the methods of 

strain transfer and mechanisms of failure depend on its geometrical distribution. A brick 

and mortar like distribution of the stiff and soft phase was shown to give a far more 

efficient material usage in the presence of a crack, while an inclined continuous soft 

phase was shown to inhibit catastrophic propagation of fracture. Further, showing that 

such attractive characteristics can be reached without a vast energy dissipation 

mechanism such as protein unfolding and without the addition of additional hierarchies 

exemplifies the importance of a detailed study of the particular design principles 

observed in nature. Only through such a study can one attain fundamental insights into 

these principles and gain a complete understanding of their potential.  
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5 Designing tougher composites by elucidating 

simple interactions between composite 

constituents 
 

 

The previous chapter served to highlight the important contribution of topologies in 

controlling the fracture mechanical response of composites. Indeed, composites 

exhibiting a wide range of mechanical behaviors were assembled using the same building 

blocks, bulk and nanoporous silica, in the same number of hierarchical arrangements. As 

discussed in the introductory chapters toughness and strength are two widely desired 

material properties that material scientists strive to combine in synthesized materials. In 

Chapter 4 the bone-like topology was shown to exhibit an exceptional combination of 

these two properties, with toughness highlighted by the large length scale of flaw-

tolerance and the significant stress delocalization. In the context of the bone-like 

topological arrangement a new fundamental question is raised; how do the specific 

constitutive behaviors of the composite constituents control the fracture mechanical 

response of the composite?   

 

Furthermore, this chapter aims to highlight whether purely elastic effects can induce 

large-scale toughening and if a range of composites can be obtained by simply tuning the 

constitutive relations of the constituents. To investigate this issue a simple molecular 

mechanics model, similar to that previously employed is applied. The model is not 

intended to describe the full complexity of natural composites, but rather, it is meant to 

examine purely elastic effects on large-scale toughening, as outlined above.   

 

It is further hypothesized stiff composite can be assembled with superior toughness at 

‘minimal cost’ by combining two building blocks, whose fully elastic constitutive laws 

are intimately correlated, exhibiting the identical inferior toughness. Previous 
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computational and theoretical studies have shown that small stiffness ratios can lead to 

crack tip shielding [29] and indeed for vanishing stiffness-ratios, crack tip driving forces 

have been shown to disappear completely in stratified structures [32, 33]. However, at a 

disappearing stiffness-ratio, and a finite extensible compliant phase, the failure 

mechanism transitions to failure by delamination, and other mechanisms are necessary to 

ensure structural reliable materials. Here, by adapting another bio-inspired topology the 

aim is to combine the concept of vanishing stress concentrations at low stiffness ratios 

with structural reliability and propose novel design mechanisms for superior tough 

composites. 

 

5.1 Materials and Methods 

For the purpose of investigating the interactions between composite constituents that 

control the fracture mechanical behavior of the composite structural system, model 

materials are designed. These model materials are intended to model general material and 

composite systems, rather than a specific natural or synthetic system. Again, a triangular 

lattice spring-bead model is employed and the interactions between beads are governed 

by springs following a linear Hookean force extension law derived from a harmonic 

potential (Figure 22a). Here the springs, the bonds between the beads, respond in a linear 

Hookean manner up to a critical extension rc, upon which they break and a crack either 

nucleates or grows. The bone-like topology along with the experimental setup is 

illustrated in Figure 22b. 
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Figure 22 (a) Triangular lattice spring-bead material representation to describe a coarse-grained model of 
the material. All lines are of identical length. We present the constitutive relations for stiff phase as well as 
three example constitutive relations for the soft phase, representing the first three combinations of elastic 
properties listed in Table 1. The area under all four curves drawn is identical. (b) Brick and mortar 
composite topology considered here. Platelets are drawn in red while matrix phase is represented with blue. 
The notch and mode I loading condition used here is also represented.   

 
Table 2 Overview of variables, dimensions and their definitions. Dimensions are given in terms of the base 
dimensions 𝑴, 𝑳 and 𝑻. �  

Variable 𝒌 𝒓𝒄 𝑬 𝝐𝒄 𝝆 𝑫 

Dimension 
𝑀
𝑇!

 𝐿 
𝑀

𝐿 ⋅ 𝑇!
 

𝐿
𝐿

 − 𝑀
𝐿 ⋅ 𝑇!

⋅
𝐿!

𝐿!
 

Definition 
Spring 

stiffness. 

Critical 

spring 

extension. 

Young’s 

modulus. 

Critical/failure 

strain. 

Stiffness 

ratio. 

Toughness 

modulus. 

 

The constitutive relation of the platelets, the phase colored in red in Figure 22b, is kept 

constant throughout the study, and this phase will henceforth often be referred to as the 

stiff phase. The matrix phase, colored in blue in Figure 22b, will be referred to as the 

softer phase.  

 

The fundamental aim here, is to show that purely elastic materials with appropriate elastic 

constants can be combined in a generic composite topology, such as the brick and mortar 

geometry, to create tough composites. Although an energy dissipating matrix phase is 

indeed suited for the assembly of tough composites, the hypothesis that this is not 
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necessary is pursued here. In concert with this hypothesis, constitutive relations of the 

stiff and soft phase are designed to have identical toughness modulus. The force 

extension law of the springs is parameterized with a spring constant 𝑘 and a critical 

extension rc. By use of the Cauchy-Born rule and geometrical considerations the spring 

stiffness and critical spring extension are readily translated to an equivalent Young’s 

modulus, 𝐸, and failure strain, 𝜖! [98]. It is easily validated that  
!!,!"#$
!!,!"#$$

=         and         !!"#$
!!"#$$

= !!"#$
!!"#$$

. (19) 

Introducing the parameter 𝜌 to represent the stiffness ratio, 

𝜌 =
𝑘!"#$
𝑘!"#$$

=
𝐸!"#$
𝐸!"#$$

. (20) 

Furthermore, enforcing the constraint that any two phases have the same toughness 

modulus leads to a scaling law relating the stiffness ratio and failure strains: 

  𝑟!,!"#$ = 𝑟!,!"#$$
!
!
,         𝜖!,!"#$ = 𝜖!,!"#$$

!
!
  . (21) 

The two equalities in Equation (3) are identical. 

 

Figure 22a shows the constitutive relation of the stiffer phase as well as three examples of 

employed constitutive relations of the softer phase. Table 2 presents an overview of all 

variables listed with their respective definitions, and Table 3 summarizes the ensemble of 

constitutive laws used in this study. It is highlighted that the study presented here makes 

no attempt to model specific natural systems or any particular material. It is thus 

convenient to express the parameters and results in non-dimensional units. 
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Table 3 Elastic constants for the stiff (platelets) and soft phase (matrix) of the composite. Constants are 
expressed in normalized units, 𝑬 ∙ 𝝐𝒄𝟐 = 𝐜𝐨𝐧𝐬𝐭. 

Stiff Phase Soft Phase 

𝑬𝒔𝒕𝒊𝒇𝒇 𝝐𝒄,𝒔𝒕𝒊𝒇𝒇 𝑬𝒔𝒐𝒇𝒕 𝝐𝒄,𝒔𝒐𝒇𝒕 

1 1 1 1 

1 1 0.7901 1.125 

1 1 0.6400 1.25 

1 1 0.5289 1.375 

1 1 0.4444 1.5 

1 1 0.2500 2 

1 1 0.1111 3 

1 1 0.0625 4 

1 1 0.0400 5 

1 1 0.0204 7 

 

As indicated in Figure 22b the samples can be regarded as single edged notched tensile 

specimens. The crack extends to a tenth of the specimens length in the 𝑦-direction and 

maintains the same length for all tested samples. Periodic boundary conditions in the 𝑥-

direction are implemented to prevent boundary effects at the location of load application. 

Each system is tested four times, each time with different displacement increments, to 

ensure that the energy minimization works properly, does not cause the system to diverge 

from a global minimum, for a given displacement increment. The four strain increments 

used are 0.42, 0.84, 1.69 and 3.38 ∙ 10!!.  

 

The softer phase comprises approximately 20% of the entire volume of the structure. This 

volume fraction is chosen, as it enables the modeling of a minimal volume fraction of the 

matrix phase at a low computational cost. Experimentations with composite modeling 

using spring bead triangular lattices indicated that a certain minimal number of adjacent 

beads are required in each phase for the system to be well behaved. Restricting the 

volume fraction of the more compliant phase is critical as a basic goal of this study is to 

create a composite combining appreciable stiffness with toughness. 
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5.2 Results 
The range of composite behaviors achieved by tuning the interactions between the two 

phases with perturbations of the constitutive law of the matrix phase is visualized in 

Figure 23. Stress versus strain responses of four representative samples are presented; the 

stiff bulk system, included as a baseline, and three composite structures with stiffness 

ratios, 𝜌 = 0.64, 0.44,  and  0.02. The bulk baseline system, with the same constitutive 

relation for both phases, behaves perfectly linear elastic and exhibits brittle failure, as 

expected. The three composite systems exhibit three fundamentally different behaviors.  

 
Figure 23 Stress-strain responses for the bulk system and three composite structures, 𝝆 = 𝟎.𝟔𝟒,𝟎.𝟒𝟒 and 
𝟎.𝟎𝟐 (recall that 𝝆 = 𝑬𝐬𝐨𝐟𝐭/𝑬𝐬𝐭𝐢𝐟𝐟). The strain and the stress are normalized by the maximum strain and 
stress of the brittle bulk system. Graphs indicate the rapid change in composite behavior as the stiffness 
ratio is varied. 

The first thereof, indicated in green, is a system that behaves very similarly to the bulk 

system; a negligible increase in peak stress and a virtually unchanged Young’s modulus 

are recorded. The second composite system whose response is indicated in red in Figure 

23, reaches a peak stress almost twice as large as the baseline system while 

compromising only a fraction of the bulk stiffness. Finally, the third presented composite, 

indicated in cyan, is the most compliant of the three and exhibits a ductile response with a 

gradual stable failure.  
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The simple tuning of the constitutive law of the matrix phase, constituting only 20% of 

the sample volume, has had a large influence on the composite structural response and 

has given rise to three fundamentally different composite behaviors. Furthermore, it is 

seen that, in addition to post-peak mechanisms, the two latter composites attain larger 

macroscopic strain levels by prolonging their pre-peak elastic response. These 

observations give strong indications that the composites exhibit reduced stress 

concentrations while retaining structural reliability with very simple building blocks, akin 

to mineralized bio-composites. In an effort to gain a more fundamental understanding of 

the mechanical principles governing these composite responses, stress and strain fields of 

the samples are now analyzed. 

 

Figure 24 shows strain and stress field plots, drawn at the instant the structures endure 

their peak loading, for the three composite systems as well as the stiff bulk system. 

Figure 24b, f clearly illustrates that the 𝜌 = 0.64 system behaves very similarly to the 

perfectly brittle bulk system shown in Figure 24a, e. This stiffness ratio proves 

insufficient to significantly redistribute strain and stress from the crack-tip and the large 

localization of stress and strain at the tip of the flaw is maintained. However, once the 

stiffness ratio drops below 0.5 to  𝜌 = 0.44 (Figure 24c and g) a fundamental change in 

deformation mechanisms occurs. For the current geometrical configuration, the mismatch 

in stiffness is sufficient to accommodate a delocalization of strains from the ‘critical’ 

flaw to the softer matrix. Thereby, strains are spread throughout the system and the entire 

composite is incorporated in the strain and stress transfer, leading to a more beneficial 

structural response. Taking the stiffness mismatch one step further, the responses shown 

in Figure 24d and h are obtained and a new shift in the composite deformation 

mechanism is observed. Now the compliance of the matrix phase is so large that the 

matrix phase adsorbs a large share of the deformation of the entire structure and the stress 

level in the stiffer platelets is significantly reduced. The overall structural response is thus 

significantly more compliant and the system can also reach larger levels of strain.  
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Figure 24 Longitudinal strain fields and Von Mises stress fields for the bulk system, (a) and (e); the 
composite structures with stiffness ratios 𝝆 = 𝟎.𝟔𝟒, (b) and (f); 𝝆 = 𝟎.𝟒𝟒, (c) and (g); and 𝝆 = 𝟎.𝟎𝟐, (d) 
and (h). The longitudinal strain field plots clearly show the softer phase taking an increasing portion of the 
strain as the stiffness-ratio decreases accompanied by a delocalization of stress and strain from the crack tip 
and increased stress and strain in regions far from the crack tip. Panels (c) and (g) clearly exhibit the 
superior performance of the 𝝆 = 𝟎.𝟒𝟒 composite structures. Insets for panels (c) and (d) indicate a 
transition in fracture mechanism.  

Moreover, the insets in Figure 24 show that the fracture mechanism also changes as the 

stiffness ratio decreases from 𝜌 = 0.44 to 𝜌 = 0.02. Whereas the fracture propagates 

through both the platelet and matrix phase for the composite with 𝜌 = 0.44, it has 

become energetically more favorable for the fracture to move solely through the matrix 

phase in the softer system with 𝜌 = 0.02. The fracture mechanism has transitioned to a 

platelet pullout mechanism akin to biological brick and mortar systems [68]. In a true 

biological system such as nacre, with a stiffness ratio similar to this composite system, 

platelet pullout is a favorable failure mechanism as it activates additional toughening 

mechanisms such as frictional dissipation from interfacial sliding, breaking of 

nanoasperite bridges, and protein unfolding in the organic matrix. These findings indicate 

that nature designs the stiffness ratio between the mineral and organic phase in bio-
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mineralized composites such as to accommodate platelet pullout. Furthermore, it is noted 

that in the modeled composite system the softer phase does not just act as an isolator 

shielding the platelets from load concentrations; on the contrary, it serves to transmit 

significant stresses and strains. This is a key factor contributing to the reliability of this 

structural system; even regions below the crack tip still have significant contributions to 

the overall mechanical response (Figure 24).  

 

To compare the fracture properties of the composites their toughness modulus is 

compared. The toughness modulus is defined as the area under a stress-strain curve, the 

strain energy density required to fracture a specimen. The toughness modulus is a typical 

metric of fracture resistance in biological materials as they do not obey conventional 

linear elastic fracture mechanics (LEFM) [9] (in which case the J-integral would be a 

natural method for characterizing fracture toughness [118]).  

 

In Figure 25 the normalized toughness modulus 𝑇/𝑇!"#$$ is plotted versus stiffness ratio 𝜌 

for all four tensile tests of the nine different composite systems. The toughness moduli 

are normalized by the toughness of the flawed bulk system whose response is indicated 

with a black data point in the figure. The legend identifies points on the graph with the 

different displacement increments that are utilized in the respective simulations, one 

through four representing  0.42 through 3.38 ∙ 10!!. No consistent trend associated with 

the decrease in displacement increment is observed and thus the results are deemed to 

reliably represent the behavior of the model system subjected to quasi-static displacement 

induced loading. 

 

Figure 25 nicely represents the consequences of the deformation mechanisms observed in 

Figure 24. The first few composite systems with 𝜌 > 0.6 notice barely any change in 

toughness modulus with varying stiffness ratio, whilst for 0.4 < 𝜌 < 0.6 a rapid, almost 

eight-fold increase of the toughness modulus is observed. This large sudden transition 

supports the view of a fundamental change in the deformation mechanism of the 

composite, as was suggested above. The interesting point here, worth underlining, is that 

this first shift in mechanical behavior, from traditional brittle bulk behavior to strong and 
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tough composite behavior, occurs with such a small perturbation in the constitutive law 

of the matrix phase. The dramatic shift is made possible with a 30% decrease in stiffness 

accompanied by a 20% increase in failure strain. Figure 25 illustrates that further 

decreases in 𝜌, accompanied by increases in 𝜀!, do not have as large an influence on the 

toughness modulus. The key inter-constituent interaction that facilitates increases in 

toughness modulus of the flawed composite is the cooperative deformation that alleviates 

the stress localization at the crack tip (Figure 24).  

 
Figure 25 Normalized toughness modulus 𝑮𝐧𝐨𝐫𝐦 plotted versus stiffness-ratio 𝝆 for all four tests on the ten 
specimens. The legend identifies the markers indicating the results for the simulations with the various 
displacement increments, 1 through 4 indicating displacement increments of 𝟎.𝟒𝟐 through 𝟑.𝟑𝟖 ∙ 𝟏𝟎!𝟓. 
The fitted curve is a sigmoid function described by 𝒇 𝝆 = 𝟏 + 𝟔 𝐞𝐱𝐩 −𝟔𝟑𝝆 + 𝟑𝟑 /(𝟏 + 𝐞𝐱𝐩 −𝟔𝟑𝝆 +
𝟑𝟑 ).  The parameters for this fit were found by method of penalized least squared errors. 

Figure 25 displays a sigmoidal function fit to the toughness data. Analyzing the limiting 

cases of the system motivates this functional form for the toughness evolution. In the 

limit as the stiffness ratio approaches the maximum value, 𝜌 → 1, the composite behaves 

entirely as a brittle bulk material and the system achieves its minimum toughness 

modulus, the toughness is bounded from below. On the other hand, considering systems 

with very compliant matrix phases in the context of stress delocalization, and recalling 

that the constituents have constant fracture energy the toughness modulus of the 

composite system has an upper bound as 𝜌 → 0.  
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For composites with a laminated geometry at the crack tip the stress concentration at the 

tip of the crack is predicted to vanish as the stiffness ratio between the compliant and stiff 

phase decreases [32, 33]. In [32] the critical stiffness ratio is given as a function of the 

volume ratio of the softer phase, for a volume fraction of 20% the critical stiffness ratio is 

~0.25. In the system studied here, the brick and mortar structure will serve to alleviate 

the stress concentration at a higher stiffness ratio as the strain is given a continous path 

through the matrix phase (Chapter 4.4.2.1), thus motivating that the transition ocurs at a 

larger stiffness ratio, 𝜌  ~  0.5 (Figure 25).  

 

The limiting cases are revisited to produce an estimate of the maximum attainable 

toughness in the studied system.  As the stress concentration decreases, the deformation 

delocalizes completely and strain distributes throughout the entire structure. As the 

stiffness ratio decreases further, strain concentrates in the matrix phase and at the 

asymptotic limit of a vanishing stiffness ratio it is postulated that the deformation of the 

entire structure will be completely absorbed by the softer phase. The energy required to 

fracture the softer matrix phase will thus account for the entire toughness modulus of the 

system. By design, all constituents have the same toughness modulus and the energy 

required to fracture the compliant matrix as 𝜌 → 0, can be evaluated by investigating the 

theoretical limit of the toughness modulus for the homogeneous system. This theoretical 

limit is readily evaluated by analyzing the behavior of a perfectly homogeneous defect 

free system. Again the fact that all phases require the same energy to fracture is utilized. 
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Figure 26 Stress versus strain response of pristine and flawed system. Again, both stresses and strains are 
normalized by the maximum values of the flawed bulk sample. The pristine sample is seen to fail at a stress 
~5.5 times larger than the flawed bulk sample.   

As shown in green in Figure 26, this defect-free homogeneous system fails at a stress 

approximately five and a half times larger than the flawed bulk system whose response is 

indicated in blue; the stiffness of the pristine system is marginally larger than that of the 

notched system. It follows that 

𝐷!" =
1
2
𝜎!"!

𝐸 ≈
1
2
5. 5𝜎!" !

𝐸 ≈ 30𝐷!", (22) 

where the subscripts “th” denotes theoretical, and “br” brittle, respectively. As the soft 

phase constitutes 20% of the volume and has the same fracture energy as the stiff phase 

by construction, the toughness in the limiting case 𝜌 → 0, can be estimated as as, 

𝐷!"# ≈ 0.2𝐷!" = 6𝐷!".  (23) 

In the intermediate case the load and deformation will be shared by the stiff and 

compliant phase and thus the gain in toughness is expected to exceed this limiting value 

𝐷!"#. In agreement with the prediction by this model the composite systems with smaller 

stiffness ratio 𝜌 exhibit approximately a seven-fold increase in toughness modulus over 

the brittle system. 

 

This study was motivated by the question of whether it is possible to create a composite 

with simple interactions that combines the properties of superior stiffness and toughness. 

In Figure 27 an Ashby plot of normalized Young’s modulus and normalized toughness 
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modulus of the composites studied is shown, red data points correspond to constituents 

and blue data points represent composite systems. Furthermore, blue circular markers 

indicate composites systems with 𝜌 > 0.5, while the blue star markers denote composite 

systems with 𝜌 < 0.5. The figure clearly displays that all composite systems studied here 

outperform their constituent materials in terms of toughness modulus. Furthermore, a 

class of our composites reaches superior toughness at significant stiffness, with the 

toughest system retaining over 80% of the stiffness of its stiffest constituent.  

 

 
Figure 27 Ashby plot of normalized toughness modulus versus normalized Young’s modulus plotted 
together with corresponding representative Ashby plots of synthetic and biological materials. Stiffness’ are 
normalized versus the stiffness of the bulk system and toughness’ are normalized versus the toughness of 
the bulk system. Markers for composite systems with stiffness ratios 𝝆 > 𝟎.𝟓 are drawn with blue circles 
while those for systems with 𝝆 < 𝟎.𝟓 are drawn with blue crosses. The modulus-toughness combinations 
of the building blocks are indicated with red stars (same for all cases, by design). The superior toughness of 
the composite systems with respect to the individual blocks is clearly exhibited. We also see the impressive 
performance of the stiffest 𝝆 < 𝟎.𝟓 system, circled in green, with an eightfold increase in toughness 
accompanied with a stiffness of over 80 % of the stiff bulk system. The fitted curve is a fifth-degree 
polynomial fitted by minimizing residual squared error, again with a non-zero regularization term. The 
curve clearly indicates that our composite structures span the Ashby area in a similar fashion as biological 
composites [119]. Figure 24 exhibits the deformation mechanisms underlying the various mechanical 
performances indicated here.  

Finally, it can be seen that the way in which the interactions between the two composite 

phases are tuned produces a set of composites that span the Ashby area in a similar way 

to biological composites, as both sets of these data points are best summarized by a 
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concave trend line [119]. This may indicate that the fundamental interactions in 

biological composites that control their superior mechanical properties are in fact 

governed by the stiffness ratio between the two phases as was hypothesized here. 

 

It was previously established that stiffness ratios could be tuned to make stress 

concentrations vanish [32, 33]. Here it has been shown that by tuning constitutive laws 

one can further make structurally reliable systems with superior toughness. In systems 

where a softer matrix phase is included to alleviate stress concentrations it is clear that 

this matrix phase must be able to store a certain level of deformation energy in order to 

effectively redistribute loading before failing. The results presented here demonstrated 

that a compliant matrix in a brick-and-mortar structure can induce a significant 

toughening effect in a composite even though its fracture energy is limited to that of the 

stiff and brittle platelet phase. In this light one can view the class of composite structures 

designed in this study as ‘minimal cost’ structures. In mineralized biological structures 

where there are many more toughening mechanisms, structures can clearly achieve yet 

greater toughness values. 
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Table 4 Summary of key mechanisms induced by changes to the constitutive laws. We distinguish between 
three regimes; 𝝆 > 𝟎.𝟔, 𝟎.𝟑 < 𝝆 < 𝟎.𝟓, and 𝝆 < 𝟎.𝟑.  The regime 𝟎.𝟓 < 𝝆 < 𝟎.𝟔  is as indicated in 
Figure 25 a transition regime and is therefore not discussed here. 

Regime Deformation mechanism Failure Mechanism 

𝜌 > 0.6 

The composite behaves largely as 

a bulk material, exhibiting a stiff 

response and a large stress 

concentration at the crack tip. 

Further, strains are approximately 

uniformly distributed in regions 

far from the flaw with minimal 

preferential localization in the 

matrix phase. 

 

The systems fail in a brittle 

manner with cracks propagating 

instantly and catastrophically 

through the system. The 

composites exhibit no significant 

increase in toughness modulus 

w.r.t. the bulk system. 

0.3 < 𝜌 < 0.5 

The compliance of the matrix 

phase is optimally tuned to 

maintain a stiff system response 

and delocalize deformations and 

loads from the crack tip spreading 

stresses and strains uniformly 

throughout the entire composite. 

The entire system participates 

equally in load transfer and the 

two constituent phases cooperate 

efficiently. 

As there is practically no stress 

concentration the dominant crack 

propagates in a stable manner 

allowing the composite to sustain 

increased loads as the system is 

deformed. The crack path is 

markedly jagged and alternates 

between passing through the 

stiffer and softer phase. The 

composite exhibits ductile failure 

with a significant increase in 

toughness modulus. 

 

𝜌 < 0.3 

The matrix phase dominates the 

mechanics of the system leading 

to an overall compliant response. 

The soft nature of the matrix 

effectively delocalizes stresses 

and strains from the crack tip. 

However, deformations 

concentrate in the matrix phase 

and the stiffer platelets are not 

optimally utilized.  

Again, stable crack propagation is 

induced by the absence of a stress 

concentration and the composite 

exhibits ductile failure with a 

significant increase in toughness 

modulus. However, now the crack 

propagates exclusively through 

the matrix phase leading to large 

crack deflection.  
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5.3 Discussion 
By using a simple mesoscale bead model implemented in a molecular mechanics 

framework the mechanics of bio-inspired composite materials with a brick and mortar 

topology have been investigated. The fundamental mechanical interactions between the 

composite constituents were studied by tuning the constitutive law of the matrix phase, 

with the aim of identifying structurally reliable composites materials with high toughness 

and stiffness. The studies showed that the specific elastic behavior of the matrix phase 

controls the response of the composite and with small perturbations in the elastic 

behavior of this phase dramatic shifts in deformation and fracture mechanisms can be 

obtained (Table 4). Furthermore, it was shown that by tuning these simple elastic 

interactions structures combining significant stiffness with superior toughness as well as 

composites reproducing fracture mechanisms observed in mineralized biological 

materials could be designed. Moreover, a range of composite behaviors was produced 

filling an Ashby area in a similar fashion as biological structures, leading to the 

conclusion that the elastic interactions elucidated here are indeed fundamental design 

mechanisms in nature.  
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6 From Computer Models to Synthesized 

Composites – Closing the Loop 
 

 

Computer modeling and computer simulation have offered significant insights to the 

mechanisms controlling fracture mechanical response in bio-inspired structures. Indeed, 

optimal topological arrangements of soft and stiff phases have been identified and the 

fundamental interactions between the composite constituents controlling structural 

reliability have been elucidated. One question naturally arises; can these composites be 

manufactured? Driven by this question, the method of 3D printing for creating functional 

composites is explored.  

 

Three-dimensional (3D) printing has as of late been gaining much attention due to its 

many possible applications in a wide range of industries; indeed exploring the areas of 

applicability of the technique is still an active area of research [120-127]. With the latest 

3D printers capable of printing materials with widely contrasting mechanical behavior 

simultaneously in complex geometries at micrometer resolutions, the potential of this 

technology is growing. Advanced printing technology now offers the possibility to create 

complex topologies with fine features composed of a multitude of materials with varying 

mechanical properties quickly, cheaply and at a large scale.  The specific geometries 

printed are a bone-like geometry, bio-calcite-like geometry and a rotated bone-like 

geometry consisting of a stiff and a compliant phase with a ~20% volume fraction of the 

softer phase (Figure 28).  
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Figure 28 Panel (a) shows schematics of the three investigated topologies. Panel (b) shows the setup of test 
specimens with relevant dimensions and coordinate system indicated. Panel (c) shows an image of the 
setup of the experiment. A specimen of the bone-like geometry is being tested in the picture, shown here as 
an example.  

6.1 Materials and Methods 

6.1.1 Experimental approach: Synthesis  

All specimens used in the study are printed at Objet Inc., in Billerica, MA, USA using an 

Objet Connex500TM multi-material 3D printer. In a single print composites composed of 

two base materials, VeroWhitePlus and TangoBlackPlus, with strongly contrasting 

material properties are manufactured (Figure 29) [128]. Both VeroWhitePlus and 

TangoBlackPlus are photopolymers, based upon proprietary acrylic-based photopolymer 

resins, and will henceforth be referred to as material A and material B, respectively [129]. 

Consistently with the presentation in previous chapters, the lighter phase in Figure 28a 

represents the stiffer constituent and is printed with material A, and the darker phase 

represents the compliant constituent and is printed with material B. Figure 28 indicates 

the planar dimensions of the test specimen. The through thickness of all geometries is 

3.125 mm. 

 

The composites are printed with a dual material jetting technology allowing two distinct 

materials to be printed simultaneously. Each material, residing in cartridges, is funneled 

through a liquid system connected to the printing block consisting of eight printing heads. 

Two printing heads, each containing 96 nozzles with 50 µm diameters, are reserved for 
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each of the two base materials, while the remaining four printing heads are used for 

printing a support material. The printing heads are followed by a UV light that 

immediately cures the printed material allowing new layers to be printed instantaneously 

[129]. Three specimens of each composite system detailed in Figure 28 are printed and 

one of each geometrical configuration is used as test specimens to arrive at a suitable 

experimental approach. The remaining six samples are used for mechanical testing and 

investigation of deformation and fracture mechanisms. 

 

As the materials cure in-situ upon printing, they adhere to each other perfectly, i.e. the 

adhesion is as strong or stronger than the weakest phase. This is confirmed by the 

experimental observation that failure never initiates nor ever occurs at the interface of the 

base materials. The smallest feature size of the compliant phase in the prints is 250 µm 

and is identical for all samples; the compliant phase is indicated in black in Figure 28a. 

The nozzle diameter controls the accessible length scale of the 3D printing. Since the 

specific topological arrangements of the base materials strongly influence the composites 

mechanical response, it is essential to ensure precise printing, thus justifying the feature 

size being a multiple of the nozzle diameter. This implies a larger length scale than that 

associated with the previous computational investigations, raising the issue of scalability 

of results. This was discussed in 4.5 and further comments are given below.  

6.1.2 Experimental approach: Fracture testing  

To investigate the fracture mechanical response of the specimens, they are tested as 

single edged notched tensile specimens. The notches in the samples are cut so that all 

samples have an identical effective size in the dimension parallel to the crack direction, 

i.e. the uncracked length in the z-direction is the same for all samples (Figure 28). The 

notches are cut with a 1/32” thick carbide-slitting saw with a 60 degree included angle. 

When testing the sample specimens, initial crack propagation always occurs at the crack 

tip, thus indicating that the machined notches are sufficiently sharp. 

 

For optimal gripping of the specimens in the testing apparatus, four aluminum strips are 

attached to each sample with Loctite E-90FL epoxy, two on either face of the planar 

specimen. The aluminum is roughed with sand paper to ensure optimal adhesion of the 
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Loctite epoxy and the epoxy is allowed to cure for 36 hours. The aluminum strips are 

positioned such that all samples have the same effective length, (Figure 28).  

 

The 3D printed specimens are tested in an Instron 5582 Universal Testing machine with 

an Instron 100 kN, static load cell and displacement boundary conditions are applied. The 

boundary is loaded at a displacement rate of 3 mm/min. The compliant base material is 

very extensible and a much slower loading rate would require an exorbitant amount of 

time for testing. Typically, a high strain rate leads to brittle response of testing 

specimens; while the observation of stable crack propagation in our samples assures us 

that we still capture essential deformation and fracture mechanisms with our testing 

procedure.  

 

The samples are clamped in place with serrated hardened steel grip faces attached to steel 

vice action grips. The load capacity of the grips is 100 kN and the spring stiffness of the 

entire testing device far exceeds the stiffness of the printed specimens. The specimens are 

attached firmly in the grips and the uncracked length of the geometries is centered with 

the force applied through the vice action grips to ensure pure tension in the specimens 

prior to initial crack propagation. However, it is clear that upon initial crack propagation, 

the specimen will no longer be subjected to pure tension. The force will be acting with an 

eccentricity on the remaining uncracked length of the test specimen. The moment 

induced by the eccentricity influences the near tip stress field of the geometries and thus 

leads to a different loading than a pure tension boundary condition would. 

 

It is emphasized that the testing procedure adopted in this study is not meant to emulate a 

standard procedure as outlined in ASTM; rather an approach is designed that is both 

similar to the previous computational investigations and suited for investigating fracture 

and deformation mechanisms. The main focus here, is to keep the testing procedure 

consistent and similar to a setup that can be emulated with the presented computational 

model, as the main insights gained from this study derive from a comparative study of the 

deformation mechanisms of the manufactured specimens and simulated specimens.  
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6.1.3 Material properties of base materials 

Selections of bulk mechanical properties of the Objet printable materials have already 

been made available [128]. The referenced data indicates that of the materials available 

for printing, the two employed in this study represent the most contrasting mechanical 

behavior. Although this causes some difficulties for our computational modeling, 

material A and material B were still utilized as this made for a more straightforward 

printing. In future work it would be very interesting to explore more material 

combinations. No previous data exists on the stiffness of material B and thus mechanical 

tests are performed on both base materials in order to supply data to the computational 

model. A fundamental interest in this study is also the fracture response of the base 

materials and thus specimens of material A and B are prepared as fracture specimens as 

detailed above. Images of the samples pre- and post-testing along with their stress-strain 

responses are presented in Figure 29. The figure clearly shows the widely contrasting 

constitutive behavior of the two materials. Indeed, the modulus of the compliant material 

B is three orders of magnitude lower than the stiffer material A, by a factor of ~1,500. 

Furthermore, the more compliant base material fails at an order of magnitude higher 

strain than its less compliant counterpart, and both samples fail in a brittle manner 

immediately upon crack propagation.  

6.1.4 Computational modeling 

In order to accommodate the new constitutive behavior of the 3D printed materials the 

constitutive relations in the computational model need to be re-parameterized. 

Independent studies have shown that spring-bead models are still sensible for the purpose 

of investigating fracture mechanics at the length scale of the composites printed here [91, 

95]. In the following the material model utilized is presented along side with the rationale 

motivating it. 

6.1.4.1 Computational material model 

As the base materials cure during printing there is likely a certain amount of mixing 

present at the interface. With the small relative size of the compliant phase and the large 

difference in modulus of the two materials, the effective stiffness ratio is clearly far less 

than what is portrayed in Figure 29. In a simplified model the effective compliant phase 
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can be viewed as a layered composite of material A and material B and Voigt’s rule of 

mixtures can be utilized to find the true stiffness. Assuming an approximate 3-4% mixing 

of the two base materials at the interface an effective stiffness ratio between 45 and 60 is 

estimated, as apposed to ~1500. A stiffness ratio of 50 is used for the computational 

model. The true stiffness of the compliant phase could be measured directly with the use 

of a micro- or nanoindenter. Using a test-apparatus with sufficient resolution would also 

give insight to the amount of interfacial mixing of the base materials. However, in an 

effort to keep the model simple it is found more appropriate to represent the system with 

the Voigt’s rule derived effective stiffness ratio discussed above. In future work the 

model could be extended to account for the true stiffness distribution in the compliant 

phase as measured by indentation. 

 

Independent mechanical tests report extensibilities of material A and material B ranging 

from 10-25% and 170-220% respectively [128]. From a purely geometrical perspective it 

is quite clear that the utilized triangular lattice becomes highly non-linear and unstable at 

such large deformations and it is advantageous to restrict the allowable deformation. That 

being said, it is also clear (and it has been discussed in detail above) that the 

deformability of the compliant phase is an essential feature of the composite and indeed 

plays an active role in the mechanics of natural mineralized materials. Experience with 

harmonic spring bead triangular lattice models indicates that 5% is a suitable minimal 

breaking strain. In order to maximize the extensibility of the compliant phase without 

compromising the stability of the model, this failure strain is thus adopted for the 

computational equivalent of material A. Furthermore the deformability of the compliant 

phase is chosen such that the toughness modulus of the composite constituents is 

identical, similarly as in Chapter 5. The resulting extensibility of the computational 

representation of material B is thus 35%, and the notched stress strain responses of the 

two model materials are given in Figure 29b. 

 

The base materials used in this study are photopolymers, and although they behave 

linearly under the presence of a pre-crack (Figure 29b), their bulk constitutive relations 

are highly nonlinear. As this study represents a first effort to predict the behavior of the 
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3D printed system, the computational material model is restricted to linear elasticity 

(Figure 29b). A main focus in this study is to predict and understand trends in the 

deformation and fracture response of the printed composites and therefore it is sensible to 

start with such a simplified model. Although the specific nonlinearities of the 

photopolymers will clearly influence the particular crack propagation, it is argued that the 

dominating fracture and deformation mechanisms will mainly depend on the stiffness 

ratio and relative extensibilities of the composite constituents, thus validating the model 

selection. In future works the model can be extended to account for the nonlinearities of 

the printed materials and thus could be used for quantitative predictions of the printed 

systems response.  
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Figure 29 Images of samples at the start of testing, the end of testing and graphs of stress-strain response 
for base materials, material A and material B, as well as their computational equivalents. (a) Images of test 
specimens of material A and material B before and after testing. Pictures indicate brittle catastrophic failure 
of the base materials. (b) Stress versus strain behavior of experimental and computational base materials 
drawn in blue and green respectively. The modulus of computational equivalent of material A is seen to 
match with its experimental counterpart. Further, the extreme compliance of material B makes it barely 
visible on the original plot and thus its notched stress strain response is included in an inset of the figure. 
The computational equivalents of material A and B are designed to fail at lower strains to avoid 
geometrical instabilities in the model. Further, the computational equivalent of material B is designed with 
a more humble compliance to avoid instabilities in the simulation, and to also more closely resemble the 
average mechanical properties of the printed compliant phase. 

6.2 Results 

In the following the mechanical response of the 3D printed specimens will first be 

compared with the computational predictions. Thereafter, the fracture mechanisms of the 

printed geometries will be analyzed independently of the simulations.  

6.2.1 Comparison of Computational Predictions with Experiment 

6.2.1.1 Comparing mechanisms: the bone-like topology 

Figure 30 presents a representative set of images comparing the deformation and fracture 

mechanisms of the 3D printed bone-like sample (Figure 30a) with the corresponding 
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mechanisms of the simulated specimen (Figure 30b). As predicted by the computational 

model this specific topological arrangement induces significant stress and strain 

delocalization, which is confirmed in the 3D printed system. The non-localized failure of 

the vertical compliant phase, exhibiting damage throughout the entire specimen, 

highlights this. The continuous compliant matrix phase distributes stress and strain 

effectively throughout the sample inducing a more robust mechanical response of the 

geometry. For the simulation results depicted in Figure 30b the delocalization is 

visualized in terms of snapshots of the longitudinal strain fields of the specimen. The 

vertical portion of the compliant phase adsorbs the bulk portion of longitudinal strain 

whilst the horizontal portion of the softer matrix binds the system together through shear 

strain action. This deformation mechanism exhibited by the computational and synthetic 

system is characteristic of mineralized natural materials such as bone and nacre [26].  

 

In the inset of Figure 30a, a further remarkable trait of the 3D printed specimens is 

highlighted. As noted above, the interfacial adhesion of the constituent materials is so 

strong that the composites do not fail at the interfaces. This is compatible with the design 

of the computational model and underlines the significance of the topological 

arrangements for the mechanical behavior. Indeed, it is argued that the particular 

topological arrangements of the constituent materials are solely responsible for the 

impressive observed fracture mechanical characteristics. 
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Figure 30 We present snapshots displaying deformation and fracture mechanisms for (a) the 3D-printed 
and (b) simulated specimen of the bone-like topology, in direct comparison. The two samples exhibit very 
similar deformation and fracture mechanisms up to a certain point at which the change of boundary 
conditions in the experiment and the nonlinearities of the photopolymers start dominating. This instant is 
indicated with a vertical line in the stress versus strain plots. The figure shows that in both the synthetic and 
computational system the soft phase absorbs the bulk of the deformation and acts to delocalize the stress 
concentration around the notch. For the computational case shown in panel (b) we plot longitudinal strain 
fields in insets to make this clearer. Furthermore, the inset in panel (a) (iii) displays the strong interfacial 
adhesion of material A and material B with failure nucleating through the compliant material B instead of 
at the interface. This is consistent with the results of our computational model. 

Upon further crack propagation the simulation predictions diverge from the 

experimentally observed behavior. As noted in Chapter 6.1.2, crack propagation induces 

eccentricity in the experimental loading conditions, whilst the computational boundary 

conditions remain constant throughout the simulation. The crack tip region in the 
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experimental setup is therefore subjected to a different stress field and thus producing an 

incompatible effect on crack propagation. Furthermore, as also discussed in Chapter 

6.1.2, the specific constitutive relation of the experimental materials is highly nonlinear, 

as opposed to the fully linear constitutive laws of the model materials in the 

computational model. Once the crack propagates through the 3D printed phases the 

nonlinearities come in to play and are expected to have a significant effect on crack-

propagation.  

6.2.1.2 Comparing mechanisms: the rotated bone-like and bio-calcite-like topology 

Next the agreement between simulation and experiment regarding the fracture and 

deformation mechanisms exhibited by the 3D printed bio-calcite-like and rotated bone-

like topology samples is analyzed. Figure 31 compares the computationally predicted 

results with the experimentally obtained behavior for these two composite systems. First, 

analyzing the rotated bone-like system in Figure 31a, the images clearly portray that the 

3D printed sample exhibits impressive mechanical characteristics in terms of stable 

fracture propagation. Again the longitudinal strain fields are plotted along with snapshots 

from the simulation to identify the underlying mechanical mechanisms controlling the 

failure of the specimen. The characteristic initial zigzag fracture path through the 

compliant phase exhibited by both the experimental and the computational system is seen 

to be explainable by the continuous transfer of longitudinal strain in the soft matrix. As it 

is energetically favorable for cracks to propagate through a more compliant material, and 

the stiffness mismatch is so significant, the fracture propagates solely through the matrix. 

Further, as the crack-tip is blunted in the low-stiffness region and the soft matrix 

delocalizes the loading, the crack propagates in a stable fashion through the system 

allowing the specimen to sustain increased deformation and significant loading 

throughout large portions of the fracture process.  

 

Analyzing the further images of Figure 31a, it is noted that the second row of images 

from experiment and simulation indicate a diverging fracture path. The boundary 

condition that acts eccentrically upon initial crack propagation induces the inclined 

driving force on the crack and leads the fracture towards the boundary.  
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Figure 31 Visualization of dominating deformation and fracture mechanisms in experiment and simulation 
for (a) the rotated bone-like geometry and (b) the bio-calcite-like geometry in addition to the respective 
stress-strain responses, again with blue and green indicating results from experiment and simulation 
respectively. Schematics of the topologies are included at the top. Panel (a) displays the characteristic 
zigzag fracture path observed both in the simulation and for the initial propagation in experiment. As the 
effective length of the sample decreases the eccentricity of the applied load increases, changing the 
boundary conditions and thus causing predictions from experiment and simulation to diverge. As is 
apparent from the displayed images, for both simulation and experiment, the compliant phase forces the 
crack to take a longer path thus inducing toughening in the rotated bone-like specimen. The stress strain 
responses also reveal that we correctly predict a very compliant behavior of this topology. Panel (b) 
indicates that the simulation predictions and experimental observations for the bio-calcite-like topology do 
not overlap very well. The inset in panel (b) (ii) shows inaccuracies in the printing that are likely a 
contributing factor. Nonetheless, we do observe a similar toughening mechanism in experiment and 
simulation in that both systems show an initial crack arrest and crack blunting in a soft inclusion; (i), (iii). 

 

In Figure 31b simulation predictions and experimental observations for the response of 

the bio-calcite like topology are compared and contrasted. Although it is observed that 

the topology has not been replicated well by 3D printing (likely due to limitations with 
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respect to the resolution), the properties of the synthesized sample are still worth 

discussing. The images clearly portray that the 3D printed sample possesses fracture 

mechanical characteristics superior to its constituents exhibiting both stable crack 

propagation and significant crack tip blunting prior to main crack propagation. The latter 

toughening mechanism is highlighted in the inset of the figure showing that the initial 

fracture propagation leads the crack to a soft inclusion where the extreme compliance 

blunts the crack tip and delays further crack propagation.  Once the crack does propagate, 

it is again observed to angle out to the boundary due to the resulting eccentricity of the 

applied load.  

 

Due to the inaccuracies of printing for the bio-calcite-like topology, significant agreement 

between simulation and experiment for this case is not expected (Figure 32), although the 

snapshots from simulation do provide some overlapping mechanisms. In future work 

there are several ways to refine the approach outlined here to ensure a better agreement 

between topologies in experiment and simulation. The most apparent strategy is to 

increase the feature size at printing. Another, and possibly more appealing, solution is to 

print the samples vertically, with their thinnest dimension parallel with the ‘build tray’ as 

the machines perform with higher precision in this dimension [129].  

 

Both the prediction of the computational model and the experimental result for the 

response of the bio-calcite-like system presented here differs from that presented in 

Chapter 4, where the composite system had a lower stiffness ratio and a brittle fracture of 

the system was predicted. This is consistent with the study outlined in Chapter 5 

concluding that composites exhibit sudden transitions in deformation and fracture 

mechanisms as the constitutive relations of their constituents are tuned. 

6.2.1.3 Comparing trends in mechanical properties 

Figure 32 displays bar plots comparing select fracture mechanical characteristics of the 

various experimentally tested and simulated specimens respectively. The comparison is 

performed using data from experiment and simulation up to the point in which the two 

systems exhibit diverging mechanisms, i.e. the specimens reach even higher toughness 

modulus values and extensibilities than those indicated here. With exception of the bio-
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calcite-like geometry (for reasons stated above), the trends of the mechanical properties 

have a very good agreement between experiment and simulation. The simulation 

prediction agrees with the experimental observation that the rotated bone-like topology is 

the most compliant and the most extensible. Furthermore, the predictions about the 

relative strength of the bone-like geometry and rotated bone-like geometry are also 

compatible with experiment. Finally, the computational model is able to correctly 

identify the toughest topological arrangement as the bone-like geometry, and the 

experiment shows that this system achieves a toughness modulus more than 20 times that 

of its constituents, a truly impressive result. 
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Figure 32 Bar plot indicating trends of mechanical properties for the base materials and the various 
topologies studied in both (a) experiment and (b) simulation. We perform the comparison using data from 
experiment and simulation up to the point in which the two systems exhibit diverging mechanisms; these 
instants are displayed in Figure 4 and 5. For the simulation data, A and B refer to the computational 
equivalents of material A and material B as presented in Figure 3. We plot stiffness 𝑬, maximum strain 𝜺, 
maximum stress 𝝈, and toughness modulus 𝑫. In panel (a) the data is, as indicated, normalized by the 
respective values for the base material A while in panel (b) the data is normalized by the respective values 
for the computational equivalent of the base material A. The figure portrays that, with the exception of the 
bio-calcite-like sample for reasons stated above, the mechanical properties of the simulated materials 
exhibit the same trends as those of the synthesized materials, i.e. our models predict the correct composite 
to be the most extensible, strongest and toughest. Furthermore, we observe the largely impressive fracture 
toughness of the synthesized bone-like specimen exceeding that of its fundamental building blocks by a 
factor larger than 20. 

6.2.2 Focus: experimentally observed fracture mechanisms 

6.2.2.1 The bone-like topology 

Snapshots of the entire fracture process of the bone-like specimen are presented in Figure 

33. Figure 33c shows the crack propagating in a step pattern around the stiff platelets and 

through the continuous compliant matrix. Simple energy principles predict that a crack 

will choose the path of least resistance, i.e. the most energetically favorable path. 

Furthermore, by applying linear elastic fracture mechanics to the sample at hand one 
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realizes that in order to satisfy the above principle, the crack path will result as a trade-off 

between the minimum crack deflection angle and the path of least stiffness. Figure 33c 

shows that the crack, initially propagates perpendicularly to its original orientation, 

choosing a longer path and propagating exclusively through the compliant matrix with 

stable crack propagation as a result. By the considerations above, this toughness 

mechanism is clearly activated by the combination of the major stiffness mismatch 

between material A and material B and their specific topological arrangement. 

 

Furthermore, in Figure 33d the boundary is seen to influence fracture propagation as its 

presence seemingly inhibits the initial mechanism, detailed above, to continue and the 

crack suddenly propagates through a set of rows of stiff platelets. At this point, the 

sample has incurred substantial damage, and platelets away from the crack tip break. 

Further confirmation is thus obtained that the stress field is strongly delocalized, 

indicating an efficient usage of the material throughout the sample. Furthermore, Figure 

33e and f display repetitions of the initial fracture mechanism observed in Figure 33c and 

d. The composite exhibits impressive toughness (Figure 32a). The failure process 

exhibited by the bone-like sample, detailed here and portrayed in Figure 33, is 

reminiscent of the mechanical failure of natural mineralized composites [3, 6, 10, 17, 32]. 

In future studies, structures could be printed with more repeat units of the topological unit 

cells to avoid the boundary interfering with the fracture path. 
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Figure 33 Snapshots of fracture propagation in the synthesized bone-like specimen. Images clearly show 
two dominating toughening mechanisms exhibited by the printed composite. The second snapshot indicates 
a delocalized load transfer in the topology with damage being sustained away from the crack tip. 
Furthermore, we observe a pronounced crack deflection mechanism induced by the particular topological 
arrangement of the two base materials with widely contrasting constitutive behavior. This causes the crack 
to take a long path through the specimen thus dissipating large amounts of energy on the way. Moreover, as 
the fracture mainly propagates through the extremely compliant base material B the crack is blunted, 
leading to a lesser stress concentration at the crack tip and thus stable fracture propagation. 
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Figure 34 Snapshots of fracture propagation in the synthesized rotated bone-like specimen. The second 
snapshot indicates the significant deformability of the composite in the presence of the crack; an apparent 
blunting of the crack-tip highlights this. We further observe the characteristic zigzag pattern of fracture 
propagation in panel (c) made possible by the extreme compliance of the matrix phase combined with the 
specific composite topology. As the eccentricity of the applied load increases we observe a crack branching 
in panel (d), followed by a dominating crack propagating to and along the boundary in panel (e) resulting in 
complete failure of the composite. 
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Figure 35 Snapshots of fracture propagation in the bio-calcite like specimen. As for the rotated bone-like 
specimen we observe the specimen undergoing significant deformation prior to major crack propagation, 
enabled by the crack-tip blunting displayed in panel (b), this was also highlighted in Figure 5. In panel (c) 
the crack has started to propagate towards the boundary and eventually reaches it in panel (f). The crack 
propagates slowly through the sample undergoing significant deformation in the process. We clearly 
observe that the compliant phase influences the crack propagation path and leads to toughening in the 
composite indicated by the resulting rough fracture surface. 
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6.2.2.2 The rotated bone-like topology 

Figure 34 displays the fracture process in the rotated bone-like specimen. The influence 

of the complaint phase in postponing the main fracture event through blunting of the 

crack tip is clearly visualized in Figure 34b. As the stress concentration scales with the 

inverse square root of crack tip radius, the compliant phase acts to reduce the intensity of 

the stress field at the notch. Upon reaching a critical deformation the fracture propagates 

and does so in a characteristic zigzag pattern. Again, as for the bone-like specimen, it is 

energetically more favorable for the crack to propagate through the compliant matrix and 

thus is forced through the longer route around the stiff rhombus shaped inclusions, 

contributing to additional energy dissipation. As the crack propagates, the eccentricity of 

the applied load increases, resulting in additional moment loading on the sample. This 

leads to crack branching, where the fracture propagates from the crack tip along 

diagonals through the compliant matrix (Figure 34d). Eventually, one of the crack 

branches starts to dominate and propagates through to the boundary quickly resulting in 

complete failure of the composite (Figure 34e, f).  

6.2.2.3 The bio-calcite-like topology 

Finally, snapshots of the complete fracture process in the bio-calcite-like specimen are 

presented in Figure 35. Unlike the bone-like specimen and the rotated bone-like 

specimen, in the bio-calcite-like topology the stiff phase is the matrix. This has a marked 

effect on crack propagation. There is no continuous soft phase for fracture to propagate 

through and it is thus forced to move through the stiffer matrix. The crack attempts to 

minimize the distance it travels through the stiffer phase thus resulting in a rugged 

fracture surface, the fracture propagates in a staccato like manner with consecutive crack 

arrest and crack propagation. Eventually the crack propagates into the boundary and the 

specimen is unloaded. As is displayed in Figure 32a, these mechanisms lead to the 

impressive fracture mechanical characteristics of the specimen, a toughness modulus 

eight times that of the toughest constituent material.  

6.3 Conclusions and outlook 
Here, 3D printed composites were printed who’s fracture mechanical behavior agreed 

well with the predictions obtained by simulation. Notably, the synthesized composites 
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exhibited fracture mechanical properties such as toughness modulus an order of 

magnitude larger than their fundamental building blocks. By printing composites from 

base materials (that have widely contrasting constitutive behavior and which each exhibit 

brittle fracture behavior) in specific topological arrangements, structures that feature 

significant toughening mechanisms and stable crack propagation were created.  

 

Further studies to understand the connection between experimental and computational 

results are needed, including an analysis of the effects of different stiffness ratios between 

the two phases. Moreover, several refinements have been identified here, both to the 

manufacturing process and the computational modeling, which could improve the 

agreement between simulation and experiment, thereby resulting in a system in which the 

designer can more accurately design composite materials with the required mechanical 

properties.  
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7 Discussion and Conclusion 
  
With the aim of optimizing synthetic material design and creating high performance 

materials at a low cost it is essential to exploit the full potential of every design principle 

employed, where the designs developed based on such paradigms encompass a merger of 

the concepts of structure and material [130] and could find widespread applications that 

range from architecture [131] to the design of innovative surfaces [132] or novel impact 

mitigating materials [133]. In this work biological mineralized composites have been 

investigated at a fundamental level providing novel insight into powerful design 

principles. By investigating mesoscale hierarchical structures with brittle silica as the 

fundamental building block and with inspiration from biomineralized composites the 

precise topological ordering of stiff and soft phases was identified as a powerful 

structural design mechanism. Computational simulations exemplified that appropriate 

architectures could render flawed composites far less sensitive to cracks with a notched 

bone-like topology retaining almost 70% of its theoretical strength, as compared to the 

mere 30% retained by flawed bulk silica. Moreover, a rotated bone-like topology was 

introduced, capable of transferring both longitudinal and shear strain continuously 

throughout its area virtually unaffected by a crack. Computational single edge notched 

tensile tests revealed that this highly delocalized strain field induced stable crack 

propagation in the composites composed solely of silica. Furthermore, composites with a 

single geometrical ordering with model materials as constituents were designed to 

investigate the fundamentals controlling the interactions between composite constituents. 

A detailed study revealed that simple elastic interactions were sufficient to conceive a 

composite with a fracture toughness modulus eight times larger than its constituents. 

Additionally, it was shown that such simple interactions composites could be designed 

that spanned an Ashby area of toughness and stiffness in a very similar fashion as 

biocomposites, namely characterized by a concave curve. These results indicated that 

elucidated elastic interactions, defined through a stiffness ratio, indeed might be essential 

design mechanisms employed by nature. Finally, having identified key aspects of 

biomineralized materials with essential contributions to their advanced fracture 
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mechanical properties, three-dimensional printing was employed as a rapid 

manufacturing technique to synthesize the designed composites. The knowledge of the 

influence of topological arrangements was combined with insights on the potential of 

optimal stiffness ratios to produce robust systems free of stress concentrations to 

synthesize bio-inspired composites with fracture toughness moduli an order of magnitude 

larger than the fundamental building blocks. Moreover, the predictive power of the 

employed computational tools was exhibited by the agreement in deformation and 

fracture mechanisms observed in experiment and simulation as well as the similar trends 

in fracture mechanical material properties exhibited by the two methods. 

 

The approach adopted in this thesis provides an exciting outlook for future material and 

structure design, especially in the context of producing composite systems with superior 

fracture mechanical characteristics. Indeed the ability to predict optimal design of 

composites and print them rapidly at fine length scales is very intriguing and certainly, 

with refinements to both the computational approach and the synthesis a better 

quantitative predictive behavior can be obtained. The research presented here represents a 

first iteration on this approach and with many potential refinements to the employed 

methods already identified the potential in this new realm of design is clearly large. As 

3D printers evolve, designers will seize more control over the manufacturing process 

allowing composites to be synthesized at even finer length scales, with more details and 

increased control of constituent material properties, opening the doors for the rapid 

manufacturing of structurally advanced complex multi-hierarchy biomimetic materials 

with applications in a large range of engineering disciplines. Certain specialized three-

dimensional printers are already able to print structures at nanoscale resolution. 

Combining this capability with multi-material printing technology and possibly even 

allowing the simultaneous printing of biomimetic proteinaceous engineered materials 

could clearly open a whole new design space for multipurpose materials. Wild ideas such 

as nanoengineered concrete, with dispersions of mechanotunable proteinaceous organics, 

exhibiting fracture toughness and strength far superior to conventional concrete suddenly 

seems more realizable. 
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Further research should focus on exploring the limits of 3D printing and improving the 

predictive capability of the computational models. While pushing 3D printing technology 

further will lead to the ability to create far more complex structures, the refinement of the 

computational tools and models will narrow the gap between prediction and reality thus 

empowering the design process immensely. As other current manufacturing processes, 

3D printing is indubitably exposed to uncertainty and inaccuracies. On this note, 

stochastic computational models may thus play an important role in the context of 

uncertainty quantification and the direct modeling of heterogeneity. The possible 

improvements of the methods are as the potential of the approach, vast. Future work on 

these topics could have sustainable impacts on a range of engineering disciplines.     
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8 Appendix 

8.1 List of figures 
Figure 1 Process flow of the approach used here. Starting from the simple model material 

building blocks we build composites with bio-inspired topologies. We manufacture 

the bio-inspired composites with 3D printing and proceed to test the synthesized 

specimens. The results are compared to model predictions. Electron microscopy 

image of the fractured nacre surface is reprinted from 

http://en.wikipedia.org/wiki/Nacre. .......................................................................... 11 

Figure 2 (a) Schematic of the structure of bone showing plate-like crystals staggered in a 

collagen matrix [71]. Image adapted and reprinted with permission from Elsevier. 

(b) SEM micrograph showing the staggered arrangement of aragonite platelets in 

nacre. A small volume fraction of organic material forms the matrix phase 

connecting the platelets, bar = 2 µm [69]. Image adapted and reprinted from with 

permission from Elsevier.  (c) SEM image of a fracture spicule revealing an organic 

interlayer, bar = 1 µm [1]. Image adapted and reprinted with permission from 

AAAS. ....................................................................................................................... 16 

Figure 3 (a) Details of the Western Pacific hexactinellid sponge, Euplectella aspergillum, 

and its skeleton. (A) Illustration (from Schulze, 1887) of two preserved specimens, 

clearly showing the holdfast apparatuses, the external ridge systems, and the 

terminal sieve plates. (B) Photograph of the underlying siliceous cylindrical skeletal 

lattice exposed by removal of the organic material. (C) At higher magnification, the 

square-grid architecture and regular oredering of the vertical and horizontal 

components of the skeletal system are clearly visible. Scale bars: A: 5 cm; B: 5 cm; 

C: 5mm [62]. Reprinted with permission from Elsevier. (b) Images showing the 

broad diversity of diatom silica structures. (a) Bar = 1 µm, (b) bar = 5 µm, (c) bar = 

10 µm, (d) bar = 500 nm, (e) bar = 2 µm, (f) bar = 10 µm, (g) bar = 2 µm, (h) bar = 

2 µm, (i) bar = 50 µm, (j) bar = 2 µm, (k) bar = 1 µm, (l) bar = 10 µm. Reprinted 

with permission from [81]. Copyright 2007 American Chemical Society. .............. 18 
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Figure 4 Hierarchical structural organization of bone: (a) macrostructure: cortical and 

cancellous bone; (b) microstructure: osteons with Haversian systems; (c) sub-

microstructure: lamellae; (d) nanostructure: collagen fiber assemblies of collagen 

fibrils; (e) sub-nanostructure: bone mineral crystals, collagen molecules, and non-

collagenous proteins [10]. Figure is reprinted with permission of Elsevier. ............ 20 

Figure 5 Hierarchical structure of Euplectella sp. (A) Image of the entire structure, 

indicating cylindrical glass cage. Scale bar: 1 cm. (B) Close up of the cage structure 

portraying two square-grid lattices super imposed on each other at angled 

orientations. The arrows indicate stabilizing orthogonal ridges. Scale bar: 5 mm. (C) 

SEM image showing how each strut (enclosed by a bracket) is composed of a bundle 

of multiple spicules (arrow indicates the long axis of the skeletal lattice). Scale bar: 

100 µm. (D) SEM image showing the ceramic fiber-composite nature of a fractured 

and partially HF-etched single beam. Scale bar: 20 µm. (E) SEM image showing the 

cemented nature of the HF-etched junction area. Scale bar: 25 µm. (F) Contrast-

enhanced SEM image of showing a cross section of a spicular strut. The micrograph 

reveals the large variety of sizes of spicule surrounded by a laminated silica matrix. 

Scale bar: 10 µm. (G) SEM image of a spicule cross section, revealing the laminated 

structure. Scale bar: 5 µm. (H) SEM of a fractured spicule, revealing an organic 

interlayer. Scale bar: 1 µm. (I) Bleaching of biosilica surface revealing its 

consolidated nanoparticulate nature (25). Scale bar: 500 nm [1]. Figure reprinted 

with permission of Elsevier. ..................................................................................... 20 

Figure 6 (A) SEM image of a silica shell (Coscinodiscus sp.). (B) Schematic showing the 

structural set-up of the valve. (C) High-resolution SEM images of a valve seen in 

planar view from below (areolae, cribra, and cribella) from Coscinodiscus radiatus. 

Scale bar: 2.5 mm. (D) to (G) shows a schematic drawing of the templating 

mechanism by the phase separation model proposed in [19]. (E) to (H) show SEM 

images of C. wailesii valves in the nascent state. (D) The monolayer of polyamine-

containing droplets in close-packed arrangement within the SDV guides silica 

deposition. (E and F) Consecutive segregations of smaller (about 300 nm) droplets 

open new routes for silica precipitation. (G) Dispersion of 300-nm droplets into 50-

nm droplets guides the final stage of silica deposition. Silica precipitation occurs 
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only within the water phase (white areas). The repeated phase separations produce a 

hierarchy of self-similar patterns [19]. Figure reprinted with permission of AAAS. 21 

Figure 7 Hierarchically organized structure of the nacreous layer of the Japanese pearl 

Pinctada fuctata. a) FESEM image of the highest level of hierarchy. Scale bar: 1 

µm. b) FESEM image of the second hierarchical level. Scale bare: 100 nm. c) 

FETEM image of the lowest level of hierarchy, the nano-building block. Scale bar: 

10 nm. Panels d) to f) show corresponding schematic drawings of the three levels of 

hierarchy [14]. Figure adapted and reprinted with permission of WILEY-VCH. .... 22 

Figure 8 Schematic overview of a spring bead triangular lattice system. The lattice is 

two-dimensional, matter is represented by discrete beads and the beads are 

connected to their nearest neighbors by springs. ...................................................... 25 

Figure 10 (a) ReaxFF derived stress-strain response for two of the tested geometries in 

[97], bulk silica and nanoporous silica with sidewall thickness w of 17 Å. Solid lines 

indicate lines of best fit. ............................................................................................ 26 

Figure 11 Schematic indicating two particles, α and β, interacting across an imaginary 

surface CC’ at which the virial stress is evaluated. .................................................. 28 

Figure 12 Comparison of longitudinal strain fields from the MLS and virial description.  

a) MLS derived strain field for unnotched case, b) virial strain field for unnotched 

case, c) MLS derived strain field for notched case, d) virial strain field for notched 

case. The field plots show very good agreement indicating that the MLS description 

of displacements and virial strain agree well in terms of longitudinal strain. .......... 35 

Figure 13 Geometries of specimens, here shown with size parameter h = 6.48 µm. With 

the blue and gray phases representing the nanoporous and bulk silica, respectively, 

for (a) the bio-calcite-like geometry, (b) the bone-like geometry and (c) the rotated 

bone-like geometry. The specimens are loaded by imposing stepwise displacement 

on their right vertical faces, whilst holding the left hand sides still. Periodic 

boundary conditions are employed in the horizontal direction. (d) Constitutive laws 

for the nanoporous and bulk silica phase representing the compliant and brittle phase 

respectively in our material model (adapted from [31] with permission from Nature 

Publishing Group). .................................................................................................... 39 
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Figure 14 (a) Stress-strain response for the bulk silica specimen, (b) the bio-calcite-like 

specimen, (c) the bone-like specimen and (d) the rotated bone-like specimen. 

Circular markers indicate the points at which the ultimate stress snapshots are taken.

................................................................................................................................... 43 

Figure 15 Normalized strength as a function of specimen size for all four investigated 

systems. The strengths are normalized with respect to the respective strengths of the 

unnotched samples. ................................................................................................... 43 

Figure 16 Von Mises stress fields for 6.48 µm (a) unnotched bulk silica, (b) unnotched 

bio-calcite-like, (c) notched bulk silica, (d) notched bio-calcite-like, (e) unnotched 

bone-like, (f) unnotched rotated bone-like, (g) notched bone-like and (h) unnotched 

rotated bone-like specimens at the instant immediately prior to failure. The 

unnotched bulk silica specimen shows the expected even distribution of stress 

throughout the sample while the notched specimen exhibits the strong characteristic 

stress concentration at the crack tip. The specific topologies have a visible effect on 

the stress distribution in the composites and the bio-calcite-like and bone-like 

specimen both exhibit significant delocalization of stresses in their flawed state. 

Specifically in the bone-like system the load path in both specimens, notched and 

unnotched, is seen to be very similar. This specific hierarchical geometry alleviates 

the stress tip concentration and maintains the same mechanism of load transfer 

despite the presence of the crack, thus reducing the specimen’s sensitivity to the 

notch. ......................................................................................................................... 45 

Figure 17 Plots comparing the stress distribution in the notched bulk geometry with the 

stress distribution within the strong particles of the (a) notched bio-calcite-like 

geometry, (b) the notched bone-like geometry and (c) the notched rotated bone-like 

geometry for the 6.48 µm specimens. The plot clearly shows how the strong 

particles in the bio-calcite-like geometry and the bone-like geometry are 

significantly higher stressed than their counterparts in the bulk-silica specimen, 

thereby supporting the claim that the stronger phase in these structures is more 

efficiently utilized after the introduction of the notch than in their bulk silica 

counterpart. ............................................................................................................... 46 
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Figure 18 (a) Longitudinal and (b) shear strain fields for unnotched bio-calcite-like 

geometry at the instant immediately prior to failure. (c) Longitudinal and (d) shear 

strain fields for notched bio-calcite-like geometry at the instant immediately prior to 

failure. (e) Longitudinal and (f) shear strain fields for unnotched bone-like geometry 

at the instant immediately prior to failure. (g) Longitudinal and (h) shear strain fields 

for notched bone-like geometry at the instant immediately prior to failure. (i) 

Longitudinal and (j) shear strain fields for unnotched rotated bone-like geometry at 

the instant immediately prior to failure. (k) Longitudinal and (l) shear strain fields 

for notched rotated bone-like geometry at the instant immediately prior to failure. 48 

Figure 19 Crack propagation through 23.78 µm bio-calcite-like specimen. Snapshots are 

taken at (a) 2.15% strain, (b) 2.34% strain and maximum loading, (c) 2.36% strain 

and (d) 2.50% strain and immediately prior to complete failure of the specimen. 

Strain increments are 0.017%. To visualize details in the distribution of stresses the 

maximum limit of the color bar was lowered to 4000 MPa. .................................... 51 

Figure 20 Crack propagation through 23.78 µm bone-like specimen. Snapshots are taken 

at (a) 3.16% strain and maximum loading, (b) 3.18% strain, (c) 3.21% strain and (d) 

3.54% strain and immediately prior to complete failure of the specimen. Strain 

increments are 0.019%. To visualize details in the distribution of stresses the 

maximum limit of the color bar was lowered to 4000 MPa. .................................... 52 

Figure 21 Snapshots showing stable crack propagation through 23.78 µm rotated bone-

like specimen. Snapshots are taken at (a) 4.79% strain, (b) 5.17% strain, (c) 5.40% 

strain and (d) 5.54% strain and immediately prior to unstable crack propagation. 

Strain increments are 0.047%. To visualize details in the distribution of stresses the 

maximum limit of the color bar was lowered to 4000 MPa. .................................... 52 

Figure 22 Longitudinal strain fields for 23.78 µm (a) bulk-silica, (b) bio-calcite-like, (c) 

bone-like and (d) rotated bone-like notched specimens at the instant where each of 

the specimens reach their maximum loading. The plots illustrate how the distribution 

of the soft phases controls the pattern of the strain transfer, and thereby enable a 

distinct mechanism of deformation and failure. ....................................................... 53 

Figure 23 (a) Triangular lattice spring-bead material representation to describe a coarse-

grained model of the material. All lines are of identical length. We present the 
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constitutive relations for stiff phase as well as three example constitutive relations 

for the soft phase, representing the first three combinations of elastic properties 

listed in Table 1. The area under all four curves drawn is identical. (b) Brick and 

mortar composite topology considered here. Platelets are drawn in red while matrix 

phase is represented with blue. The notch and mode I loading condition used here is 

also represented. ........................................................................................................ 58 

Figure 24 Stress-strain responses for the bulk system and three composite structures, 

ρ = 0.64, 0.44 and 0.02 (recall that ρ = Esoft/Estiff). The strain and the stress are 

normalized by the maximum strain and stress of the brittle bulk system. Graphs 

indicate the rapid change in composite behavior as the stiffness ratio is varied. ..... 61 

Figure 25 Longitudinal strain fields and Von Mises stress fields for the bulk system, (a) 

and (e); the composite structures with stiffness ratios ρ = 0.64, (b) and (f); ρ =

0.44, (c) and (g); and ρ = 0.02, (d) and (h). The longitudinal strain field plots 

clearly show the softer phase taking an increasing portion of the strain as the 

stiffness-ratio decreases accompanied by a delocalization of stress and strain from 

the crack tip and increased stress and strain in regions far from the crack tip. Panels 

(c) and (g) clearly exhibit the superior performance of the ρ = 0.44 composite 

structures. Insets for panels (c) and (d) indicate a transition in fracture mechanism.63 

Figure 26 Normalized toughness modulus Gnorm plotted versus stiffness-ratio ρ for all 

four tests on the ten specimens. The legend identifies the markers indicating the 

results for the simulations with the various displacement increments, 1 through 4 

indicating displacement increments of 0.42 through 3.38 ∙ 10-­‐5. The fitted curve is 

a sigmoid function described by fρ = 1+ 6exp-­‐63ρ+ 33/(1+ exp-­‐63ρ+

33).  The parameters for this fit were found by method of penalized least squared 

errors. ........................................................................................................................ 65 

Figure 27 Stress versus strain response of pristine and flawed system. Again, both 

stresses and strains are normalized by the maximum values of the flawed bulk 

sample. The pristine sample is seen to fail at a stress ~5.5 times larger than the 

flawed bulk sample. .................................................................................................. 67 

Figure 28 Ashby plot of normalized toughness modulus versus normalized Young’s 

modulus plotted together with corresponding representative Ashby plots of synthetic 
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and biological materials. Stiffness’ are normalized versus the stiffness of the bulk 

system and toughness’ are normalized versus the toughness of the bulk system. 

Markers for composite systems with stiffness ratios ρ > 0.5 are drawn with blue 

circles while those for systems with ρ < 0.5 are drawn with blue crosses. The 

modulus-toughness combinations of the building blocks are indicated with red stars 

(same for all cases, by design). The superior toughness of the composite systems 

with respect to the individual blocks is clearly exhibited. We also see the impressive 

performance of the stiffest ρ < 0.5 system, circled in green, with an eightfold 

increase in toughness accompanied with a stiffness of over 80 % of the stiff bulk 

system. The fitted curve is a fifth-degree polynomial fitted by minimizing residual 

squared error, again with a non-zero regularization term. The curve clearly indicates 

that our composite structures span the Ashby area in a similar fashion as biological 

composites [119]. Figure 23 exhibits the deformation mechanisms underlying the 

various mechanical performances indicated here. .................................................... 68 

Figure 29 Panel (a) shows schematics of the three investigated topologies. Panel (b) 

shows the setup of test specimens with relevant dimensions and coordinate system 

indicated. Panel (c) shows an image of the setup of the experiment. A specimen of 

the bone-like geometry is being tested in the picture, shown here as an example. .. 73 

Figure 30 Images of samples at the start of testing, the end of testing and graphs of stress-

strain response for base materials, material A and material B, as well as their 

computational equivalents. (a) Images of test specimens of material A and material 

B before and after testing. Pictures indicate brittle catastrophic failure of the base 

materials. (b) Stress versus strain behavior of experimental and computational base 

materials drawn in blue and green respectively. The modulus of computational 

equivalent of material A is seen to match with its experimental counterpart. Further, 

the extreme compliance of material B makes it barely visible on the original plot and 

thus its notched stress strain response is included in an inset of the figure. The 

computational equivalents of material A and B are designed to fail at lower strains to 

avoid geometrical instabilities in the model. Further, the computational equivalent of 

material B is designed with a more humble compliance to avoid instabilities in the 
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simulation, and to also more closely resemble the average mechanical properties of 

the printed compliant phase. ..................................................................................... 79 

Figure 31 We present snapshots displaying deformation and fracture mechanisms for (a) 

the 3D-printed and (b) simulated specimen of the bone-like topology, in direct 

comparison. The two samples exhibit very similar deformation and fracture 

mechanisms up to a certain point at which the change of boundary conditions in the 

experiment and the nonlinearities of the photopolymers start dominating. This 

instant is indicated with a vertical line in the stress versus strain plots. The figure 

shows that in both the synthetic and computational system the soft phase absorbs the 

bulk of the deformation and acts to delocalize the stress concentration around the 

notch. For the computational case shown in panel (b) we plot longitudinal strain 

fields in insets to make this clearer. Furthermore, the inset in panel (a) (iii) displays 

the strong interfacial adhesion of material A and material B with failure nucleating 

through the compliant material B instead of at the interface. This is consistent with 

the results of our computational model. .................................................................... 81 

Figure 32 Visualization of dominating deformation and fracture mechanisms in 

experiment and simulation for (a) the rotated bone-like geometry and (b) the bio-

calcite-like geometry in addition to the respective stress-strain responses, again with 

blue and green indicating results from experiment and simulation respectively. 

Schematics of the topologies are included at the top. Panel (a) displays the 

characteristic zigzag fracture path observed both in the simulation and for the initial 

propagation in experiment. As the effective length of the sample decreases the 

eccentricity of the applied load increases, changing the boundary conditions and thus 

causing predictions from experiment and simulation to diverge. As is apparent from 

the displayed images, for both simulation and experiment, the compliant phase 

forces the crack to take a longer path thus inducing toughening in the rotated bone-

like specimen. The stress strain responses also reveal that we correctly predict a very 

compliant behavior of this topology. Panel (b) indicates that the simulation 

predictions and experimental observations for the bio-calcite-like topology do not 

overlap very well. The inset in panel (b) (ii) shows inaccuracies in the printing that 

are likely a contributing factor. Nonetheless, we do observe a similar toughening 
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mechanism in experiment and simulation in that both systems show an initial crack 

arrest and crack blunting in a soft inclusion; (i), (iii). .............................................. 83 

Figure 33 Bar plot indicating trends of mechanical properties for the base materials and 

the various topologies studied in both (a) experiment and (b) simulation. We 

perform the comparison using data from experiment and simulation up to the point 

in which the two systems exhibit diverging mechanisms; these instants are displayed 

in Figure 4 and 5. For the simulation data, A and B refer to the computational 

equivalents of material A and material B as presented in Figure 3. We plot stiffness 

E, maximum strain ε, maximum stress σ, and toughness modulus D. In panel (a) the 

data is, as indicated, normalized by the respective values for the base material A 

while in panel (b) the data is normalized by the respective values for the 

computational equivalent of the base material A. The figure portrays that, with the 

exception of the bio-calcite-like sample for reasons stated above, the mechanical 

properties of the simulated materials exhibit the same trends as those of the 

synthesized materials, i.e. our models predict the correct composite to be the most 

extensible, strongest and toughest. Furthermore, we observe the largely impressive 

fracture toughness of the synthesized bone-like specimen exceeding that of its 

fundamental building blocks by a factor larger than 20. .......................................... 86 

Figure 34 Snapshots of fracture propagation in the synthesized bone-like specimen. 

Images clearly show two dominating toughening mechanisms exhibited by the 

printed composite. The second snapshot indicates a delocalized load transfer in the 

topology with damage being sustained away from the crack tip. Furthermore, we 

observe a pronounced crack deflection mechanism induced by the particular 

topological arrangement of the two base materials with widely contrasting 

constitutive behavior. This causes the crack to take a long path through the specimen 

thus dissipating large amounts of energy on the way. Moreover, as the fracture 

mainly propagates through the extremely compliant base material B the crack is 

blunted, leading to a lesser stress concentration at the crack tip and thus stable 

fracture propagation. ................................................................................................. 88 

Figure 35 Snapshots of fracture propagation in the synthesized rotated bone-like 

specimen. The second snapshot indicates the significant deformability of the 
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composite in the presence of the crack; an apparent blunting of the crack-tip 

highlights this. We further observe the characteristic zigzag pattern of fracture 

propagation in panel (c) made possible by the extreme compliance of the matrix 

phase combined with the specific composite topology. As the eccentricity of the 

applied load increases we observe a crack branching in panel (d), followed by a 

dominating crack propagating to and along the boundary in panel (e) resulting in 

complete failure of the composite. ............................................................................ 89 

Figure 36 Snapshots of fracture propagation in the bio-calcite like specimen. As for the 

rotated bone-like specimen we observe the specimen undergoing significant 

deformation prior to major crack propagation, enabled by the crack-tip blunting 

displayed in panel (b), this was also highlighted in Figure 5. In panel (c) the crack 

has started to propagate towards the boundary and eventually reaches it in panel (f). 

The crack propagates slowly through the sample undergoing significant deformation 

in the process. We clearly observe that the compliant phase influences the crack 

propagation path and leads to toughening in the composite indicated by the resulting 

rough fracture surface. .............................................................................................. 90 
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8.2 List of tables 
Table 1 Tabular representation of the subsystems of the hierarchical structure of the four 

biomineralized materials; human vertebrate bone, the hexactinellid sponge 

Euplectella sp., the siliceous frustule of the diatom algae genus Coscinodiscus and 

the nacreous layers of the Japanese pearl Pinctada fuctata. ..................................... 23 

Table 2 Overview of variables, dimensions and their definitions. Dimensions are given in 

terms of the base dimensions M, L and T. 𝑀 ........................................................... 58 

Table 3 Elastic constants for the stiff (platelets) and soft phase (matrix) of the composite. 

Constants are expressed in normalized units, E ∙ ϵc2 = const. ................................ 59 

Table 4 Summary of key mechanisms induced by changes to the constitutive laws. We 

distinguish between three regimes; ρ > 0.6 , 0.3 < ρ < 0.5 , and ρ < 0.3 .  The 

regime 0.5 < ρ < 0.6   is as indicated in Figure 24 a transition regime and is 

therefore not discussed here. ..................................................................................... 70 
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