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Problem Description 

 

Recently there has been a lot of effort in making the Internet of Things (IoT) a reality. 

A central component of this vision is to make low power edge sensor nodes (i.e., nodes with 

few connections that are not used to route data) in a mesh network. Such systems are often 

composed of a low power microcontroller coupled with a low power radio operating at low 

speeds with long duty cycles. A lot of research has been conducted with regards to reducing the 

power consumption of these systems. 

 

A significant portion of the energy is used for fetching instructions from flash. In some 

low-power microcontrollers a small cache is used to exploit temporal locality in the instruction 

stream. Energy is saved, because SRAM used in caches require less energy than flash. 

 

Cache is a very old and well known technique to exploit such differentials in 

speed/energy. This master thesis will build on the tight loop cache approach, use software 

simulations to evaluate if it can be used in an application to save energy, proceed to its hardware 

design and implementation and compare results. 

 

Master thesis was done in collaboration between the CARD group and Silicon Labs, 

where Marius Grannæs was a co-supervisor. 
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Abstract 

Energy efficiency in microcontrollers has played an important role in modern digital 

systems for years. With the increased need for longer battery life and increased complexity of 

functionalities offered, it becomes crucial to lower energy consumption as much as possible. 

Studies show that largest amount of energy in embedded systems gets consumed by the memory 

hierarchy system. Therefore there has been a lot of research pressure in the area of caching 

techniques with the attempt to reduce energy requirements and thus make battery life longer. 

Some of these techniques were studied and analyzed in author’s Semester Project whereas one 

of them, called Tight Loop Cache, was chosen to be implemented and evaluated as the most 

promising when power optimization is concerned. TLC is different from conventional caching 

techniques because it does not include tagging of cache lines nor valid bits which makes it more 

attractive and easy to incorporate into a working system. 

The technique was implemented both in software (Python) and hardware (Verilog) and 

later evaluated by counting parameters close to meanings of cache hits and misses. These 

parameters were then used to calculate power consumption of the system without making use 

of the technique and with incorporating the technique.  

Software simulations showed that using TLC of size only 64B brings benefits of power 

savings from 10% up to 80% for some benchmarks (taking into account only the memory 

system consumption). Relying on these encouraging results, the technique was implemented in 

hardware, synthesized on Xilinx Zynq-7000 and evaluated using power reports generated by 

VIVADO Design Suite. Hardware implementation was built around ARM Cortex-M0 and 

included the design of main instruction memory, TLC Controller and tight loop cache itself.  

Post implementation power reports showed that the use of TLC of 64B can bring around 

25% of power savings into a system working on 10 MHz and synthesized with FPGA fiber. It 

is believed that, if implemented as an ASIC with completely configurable and controllable 

synthesis and place and route tools, the design would bring even more power savings than in 

the case of using a Zynq-7000. 

. 
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1 Introduction 

1.1 Energy Efficiency and Microcontrollers 

There has always been conflict between low cost, high performance and low power 

consumption specifications in modern digital systems. MCUs are by far the best candidates to 

build systems targeting these applications mainly because they are self-contained: CPU, on chip 

SRAM, non-volatile flash memory and other peripherals are all integrated in one chip which 

consumes far less power than if all these components were used separately. Basic principle 

behind energy consumption minimization is to put MCU to sleep for as much time as possible, 

wake it up to perform a certain task as fast as possible and then put it back to sleep. There is no 

gain if a system consumes less power if it takes it much more time to complete the task (energy 

consumption is what actually matters at the end). 

Low power consumption not only brings energy savings, but it also improves system reliability 

as a whole by reducing heat dissipation. This way components have longer life expectancy 

because their temperature does not change rapidly, they operate on a stable temperature and 

therefore there is no need for large cooling systems. 

In most digital systems, memory system consumes great part of the overall power 

consumption and this is why recently a lot of effort has been given to memory hierarchy design 

in a sense it consumes as little power as possible. Instruction memory access is one of the crucial 

points where these design modifications can be considered. The reason lays down in the fact 

that in a typical RISC ISA there are usually four times more instruction than data memory 

accesses [1]. Moreover, data is most commonly stored in SRAM whereas programs are stored 

in flash memory whose access infers much more energy consumption. These are all the reasons 

why it is believed that reducing instruction fetch energy consumption in systems like this would 

bring a great deal of overall energy consumption reduction.  

Embedded application programs usually consist of small number of loops executed 

many times. It comes natural the thought it would be very efficient to read those instructions 

from a small buffer (small cache) and thus reduce energy consumption. Most common 

approaches that involve caching hierarchies put this buffer between CPU and main memory 

which usually infers time penalties whenever there is a cache miss. Other schemes involve 
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accessing main memory in the same cycle if there is a miss but with the penalty of longer cycle 

time. 

This project explores and implements, both in hardware and software, a caching 

technique that is believed to overcome both problems (longer cycle time and multiple cycle 

access) and offer great power savings. It involves using a tight loop cache and a loop cache 

controller as it will be explained in Chapter 2.2. This technique differs a lot from the original 

caching techniques (no tagging, no valid bits) and this is the reason why in this report not too 

much attention was given to basics of caching mechanism. The second reason lays down in the 

fact that basics of cache as well as other conventional and non-conventional techniques were 

covered in depth in the author’s Winter Semester project and more details can be found there 

[2]. 

Since the thesis was a collaboration between NTNU and Silicon Labs, EFM32, MCU 

from Silicon Labs, was used as a starting point to choose the main processing core for the 

system to be built around. Nevertheless, TLC is processor independent and can be integrated 

into almost any modern system. Another reason why EFM32 was chosen was its energy 

friendliness and popularity amongst designers: 

“In a market crowded with MCUs from larger vendors, Silicon Labs’ EFM32 Gecko family 

merits a close look”[3]. 

 

1.2 Thesis Overview and Main Contributions 

Chapter 2 First part of the Chapter describes some of the caching techniques explored 

in [2], both conventional and non-conventional ones. The purpose is to 

show how TLC compares with other techniques putting emphasis on both 

its simplicity and efficiency. 

Second part explains the TLC technique the way it was originally proposed 

in [10].  

Next section of the Chapter explains briefly what was done in the Semester 

Project and what the results and problems were. 

The last section goes into detailed description of the ARM Cortex-M0 

architecture, instruction set and its communication interface with other 

system components through AHB interface. It also gives overview of the 

design modules obtained from ARM  as well as other hardware and 
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software sources found on the internet that were used to build a complete 

environment that could be tested and evaluated. 

 

Chapter 3 Presents details of TLC implementation in software and hardware. 

Software implementation includes modifications made to the simulator 

used in Semester Project with a new state machine employed. 

Hardware implementation describes interfaces of building modules as well 

as details of their operation either in principle or by original simulation 

figures. 

 

Chapter 4 Presents experimental setup and results gained from performing different 

tests of both SW and HW implementations. Evaluation of HW 

implementation contains power reports obtained both form simulation 

(VIVADO) and real time measurements. 

 

Chapter 5 Thesis ends with the summary of the delivered work and discussion about 

possible improvements that could be made to the system. 

 

Through the work on the thesis, author made several achievements that can be regarded 

as a significant effort:  

1. Detection of data transactions in the input benchmarks used in the software 

simulation 

2. Software simulator [2] upgrade with the addition of pseudo states which enabled 

Controller ignore data transactions and thus bring more power savings 

3. Hardware implementation of TLC in Verilog and its integration into a system that 

uses ARM Cortex-M0 Design Start operating on 10 MHz with 32KB Instruction 

Memory 

4. Exploration, description and application of synthesis and implementation power 

optimization design flow offered by VIVADO tools 

 

 

  



4 

 

2 Background and Related Work 

First part of this chapter briefly mentions some of the caching techniques that were 

explored in author’s semester project [2] before tight loop cache was chosen to be implemented 

and tested. Chapter content then continues to explain in details the tight loop cache technique 

and the environment that it was implemented on. It is supposed that the reader has knowledge 

of basics of cache but if that is not the case, more information before reading this Chapter could 

be obtained from [1] and [2].  

2.1 Related Work 

2.1.1 Filter cache 

One of the first techniques that was proposed in [4] in order to bring power savings was 

involving insertion of a small, so called Filter Cache, which was communicating directly with 

the CPU. Although this brought great amount of power savings, it led to a slight performance 

degradation. 

2.1.2 Predictive Filter Cache 

Tang, Gupta and Nicolau went further in [5] and tried to reduce this timing degradation 

introduced when there was a miss in the filter cache. Their strategy involved analysis of 

subsequent fetch addresses at runtime to predict whether next instruction was in the loop cache 

or not. If it was predicted to be a cache miss, the instruction was fetched from next cache level, 

bypassing filter cache (consuming more energy though in case the prediction was wrong but 

eliminating timing penalty in case it was true). The mechanism used to make the prediction was 

comparison of the tag of the current fetch and the tag of the predicted next fetch address: if they 

were the same it was predicted that the next fetch resided in the cache and vice versa.  

2.1.3 Loop Cache 

Technique proposed in [4] was improved in [6] by Bellas, Hajj, Polychronopoulis and 

Stamoulis by enhancing both compiler and hardware properties of the system. The compiler not 

only selected which parts of the code to put into the cache but also did the code structuring to 

avoid instruction conflicts. Additional hardware included extra control to choose whether to 

access Loop Cache or Instruction Memory. . 
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2.1.4 Tagless Hit Instruction Cache 

Another quite recently proposed technique that also tried to improve timing penalty of 

the basic caching idea from [4] was presented by Hines, Whalley and Tyson in [7]. They 

introduced the so called Tagless Hit Instruction Cache (TH-IC) which was placed as L0 (Level 

0) cache between the CPU and L1 cache with a difference it was accessed at the same time as 

L1 cache but the instruction was read from L1 cache only when it was not guaranteed that it 

resided in the cache. By accessing both memories at the same time it was guaranteed that there 

was no timing penalty in case of a cache miss. Another big advantage over other techniques is 

the lack of need for storing tags for each cache entry since the technique itself already excluded 

tag comparison (that is where the name Tagless Hit came from). 

2.1.5 History Based Tag Comparison Cache 

Authors in [8] aimed at lowering tag access energy by using the fact that cache hit rates 

are usually very high which means that data in the cache rarely gets changed and thus tag checks 

do not need to be performed if data in the cache had not been replaced. Only after there was a 

miss (data in the cache had been updated), tags needed to be compared in order to determine if 

the data still resided in the cache or not. The results showed that number of tag comparisons 

can be reduced by even 90% and this way bring great power savings. 

2.1.6 Horizontal Cache Partitioning with Gray encoding 

A study about comparison of different cache techniques that was conducted by Su and 

Despain with results presented in [9], showed that, in general, whenever cache size increased 

missed rate decreased and that direct mapped caches saved more power but had larger access 

time than fully associative ones which was expected as well. It was also shown that when using 

sub-banking, larger blocks (containing entire loops in best case) bring more power savings, 

whereas Gray coding of memory addresses reduces bit switching up to 33% and thus brought 

even more energy savings.  

 

There were more techniques explored in [2] apart from the ones mentioned in this 

chapter and one of them is the one that was chosen to be implemented and tested: 

 

“After thorough analysis, taking into account the information that can be obtained from 

BRCHSTAT signal as well as the notion of the instructions that can be executed by the core, 
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some of the techniques from Chapter 2 were completely discarded and some were purposed for 

implementation. Technique that was regarded as the simplest, the most straight forward and 

with the least hardware control overhead was the one about Tight Loop Cache...” [2]  

 

Next sub chapter explains the technique in details, the way it was originally purposed in [10], 

although when implemented in this project, both in hardware and software, slight modifications 

were introduced as it was already explained in [2]. 

   

2.2 Tight Loop Cache 

Tight Loop Cache, a technique proposed in [10] and chosen to be implemented in this 

project, consisted of a small direct map memory array and a loop cache controller. The 

advantage of using loop cache was double: it did not contain tag nor valid bit for each data 

instance. On the other hand, there was no timing penalty if there was a cache miss since the 

Controller had the early notion whether next fetch was going to be a hit or a miss. Based on this 

information, the core accessed either the loop cache or the main instruction memory. 

General principle was based on the detection of the so called sbb (short backward 

branch) which, when encountered, indicated that a loop was executed for the second time, i.e. 

the moment when loop cache started to be filled. Next detection of the same sbb indicated the 

data was already in the loop cache and could be read from there. 

Short backward branch instruction was any kind of branching instruction, both 

conditional and unconditional, that had the format as shown in Figure 2.1: 

 

 
upper 

displacement 

lower 

displacement 

opcode 11 … 11 XX … XX 

  w bit wide 

 branch displacement 

Figure 2.1 - sbb instruction format 

 

Upper displacement containing all ones suggested that the branching was performed 

backwards (end of the loop is encountered) whereas the lower displacement field determined 

how long the backward jump was (how many instructions the loop consisted of). Lower part of 
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the displacement field was w-bit wide which was directly connected to the size of loop cache, 

i. e. cache could not contain more than 2w instructions (in case of architecture where each 

memory location contained only one instruction and program counter was incremented by 1 to 

access next instruction). 

This made sure the loop size could not be larger than the cache size. As mentioned 

earlier, tight loop cache was direct mapped (contained no address tags), only accessed by index 

field which was w bits wide. When a loop was smaller than 2w instructions, only part of the 

loop cache was used and loop start did not have to be aligned to any particular address as in the 

case of many other techniques. 

Figure 2.2 shows how loop cache was organized and accessed in a case of n=2w entries, 

each entry containing 2 bytes (the last bit of the instruction address was neglected). 

 

Figure 2.2 – Loop cache organization and access [10] 

 

Loop Cache Controller was designed as a state machine with three states: IDLE, FILL 

and ACTIVE. Initially, the Controller was set to be in the IDLE mode all the time until it had 

been detected that there was an sbb in the instruction stream. If the controller determined that 

there was an sbb (information is received from the decoder) and that the branch was taken 

(information received from a branch status signal from the core), this meant there was a loop 

encountered and that it was going to be executed for the second time which made Controller 

move to FILL state. The sbb that forced the Controller enter FILL state was called triggering 

sbb. In the FILL state, instructions were still read from the main instruction memory, but at the 

same time cache was filled with the loop instruction stream. This state continued until there 
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was no other change of flow (cof), i.e. no other branch or jump instruction (the program 

execution was sequential within the loop itself).  

 

 

Controller went back to IDLE state in case it encountered a non-sequential stream in the 

loop sequence which was not caused by the triggering sbb (some other branching/jumping 

instruction inside the loop itself) or if it determined that triggering sbb was not taken. Finally, 

if the triggering sbb was taken again, the Controller entered ACTIVE state and started reading 

instructions from the cache. It stayed in the ACTIVE state as long as the loop within itself 

remained sequential and as long as the triggering sbb, when encountered, was taken (the loop 

was going to be executed again). In any other case, the Controller went back to IDLE state. 

There was no way the Controller could migrate from ACTIVE state back to FILL state which 

was logical considering possible scenarios.  

The most important piece of information for the Controller to determine whether next 

instruction was a hit or a miss was to know when the triggering sbb was fetched, executed and 

whether the cof was caused by the triggering sbb or some other instruction. The mechanism 

that made this possible was implemented as the Loop Counter mechanism shown in Figure 2.4. 

 

Figure 2.3 - Loop cache controller state machine 
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The Controller was initially in IDLE state and stayed there until sbb was detected in the 

decode pipeline stage when its lower displacement field got loaded into the Count Register of 

the Increment Counter. This displacement gave the information of how many sequential 

instructions needed to be executed before sbb was fetched again. After the ld field was saved 

and later on determined that sbb was taken as well, the Controller entered FILL state. While in 

this state, on each sequential instruction execution, Increment Counter was incremented by one. 

By the time Counter reached zero, the Controller knew that the triggering sbb was being 

fetched. If the sbb was taken, the Controller entered ACTIVE state and the Increment Register 

was again loaded with the ld field of triggering sbb. This meant that the execution of the loop 

started from the beginning again. Whenever the counter reached zero again, the same process 

was repeated. Using this mechanism, the Controller knew when a cof was caused by the 

triggering sbb only by examining the value in the Increment Register.  

The original technique of using tight loop cache and loop controller, proposed in [10] 

and briefly explained here, was implemented both in software and hardware with slight 

modifications as it will be described thoroughly in the next chapter. Figure 3.11 shows cache 

being filled and read from with an example of loop execution on the core. 

2.3 Software System Background 

This project was a continuation of work that was conducted during Autumn student 

semester project during which the author explored different caching techniques and chose to 

Figure 2.4 - Design of loop counter [10] 
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implement one of them, the so called Tight Loop Cache (simple and easily adaptable to any 

core environment). The principle of operation of the Loop Cache Controller was based on the 

principle explained in [10] and in the Chapter 2.2 but its implementation in Python was slightly 

different since the input data was different. The input data, as explained in [2] were benchmarks 

that were comprising of .csv files that contained memory addresses of consequently fetched 

instructions. Each next row contained next address to be fetched. A loop was detected by 

comparing two subsequent fetch addresses and determining that the previous address was larger 

than the current one. This meant that an sbb occurred and, if within the size of the loop the 

cache can hold, the Controller left IDLE state and entered FILL state. More details about 

implementation and actual Python code created as part of the Semester project can be found in 

[2]. 

The results from [2] showed that in some benchmarks the technique could bring a great 

deal of power savings (even up to 70%, taking into account only memory power consumption) 

whereas in some other benchmarks there was even loss if the cache was used. At the end of 

project report [2], it was noticed that there were some irregular jumps within loops themselves 

that caused Loop Cache Controller suddenly leave fill or active state and spend most of its time 

in idle state which didn’t bring great deal of savings of course. 

Analysing input data (program traces) more thoroughly this time and plotting them in 

Matlab made it possible to realize a crucial environment setup mistake that led to semester 

project results seem non-understandable. Figure 2.5 shows sequence of instruction fetch 

addresses in one of the benchmarks. As it can be seen, there was a loop consisting of 5 

instructions that was over and over again (instruction addresses were gradually growing 

instruction by instruction and then suddenly dropping to the initial value). The Controller would 

never go to ACTIVE state while executing this loop and the reason is of course the non-

sequential execution within the loop (large jump in address value after two loop instructions).  
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The only possible explanation behind these “jumps” inside loop execution lays down in 

the existence of data reads and writes which are addressed using the same address bus as the 

instruction fetches. Those data reads/writes cause the Controller toggle between IDLE and FILL 

states without ever entering ACTIVE which brought only more power dissipation.    

Software implementation of the tight loop cache system in this project represents an 

upgrade of the system implemented in [2] taking into account these data fetches (sudden jumps 

in address values on the bus) and allowing the controller stay in the same state it was in (not 

going automatically to idle) even though there is a non-sequential fetch. More details about the 

implementation will follow in Chapter 3.1. 

2.4 Hardware System Background 

Work on this project was monitored and supported by the company Silicon Labs, the 

branch located in Oslo, Norway. The company developed two families of microcontrollers that 

support low energy consumption concept:  

- EFM8: 8-bit microcontrollers developed around 8051 and 

EFM32: 32-bit microcontrollers developed around ARM Cortex. 

This project was dealing with EFM32 MCUs which are based either on ARM Cortex-

M0+, ARM Cortex-M3 or ARM Cortex-M4 and are used together with low power peripherals 

to address any low power application (communications, alarm and security systems, control 

Figure 2.5 – Address bus content in time   Figure 2.5 – Example of Instruction fetch addresses sequence  
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systems, industrial sensors, medical solutions, car and traffic control systems …) According to 

Silicon Labs, EFM32 are the world’s most friendly microcontrollers and their advantages over 

other similar products are certainly the use of 5 different energy modes, very fast wake up time, 

reduced processing time, energy efficient peripherals etc. 

EFM32 are classified into 6 categories (Zero Gecko, Tiny Gecko, Gecko, Leopard 

Gecko, Giant Gecko and Wonder Gecko) depending on the CPU they use, amount of program 

memory they have and how much power they consume in different power modes. This variety 

of choice makes EFM32 quite attractive amongst designers: 

 

 “The EFM32 family’s wide variety of MCUs, peripherals, I/O interfaces, packages, and other 

features gives system designers a wealth of choices. In summary, Gecko MCUs are a good 

choice for small embedded systems that spend most of their time sleeping and then awaken for 

brief bursts of activity.”[3] 

 

Next section will explain why Cortex-M0 Design Start was used as a final core in the 

implementation, describe its architecture organization and illustrate briefly how the program 

executed. 

2.4.1 Cortex-M0 

Initially, Cortex-M3 was chosen as the core to implement the cache system around since 

it was used in 4 out of 6 different categories of the EFM32 family. The biggest advantage of 

using Cortex M3 would be its possession of the signal called BRCHSTAT [3:0] which offers 

branch status information of the instruction in decode and next execute pipeline stage. As 

described in [11] this signal could give information if the branching instruction is conditional 

or unconditional, taken or not taken and in decode or execute stage of the pipeline which would 

be extremely useful as input information for the Loop Cache Controller to early determine 

whether next fetch was going to be a hit or a miss in the loop cache. 

Unfortunately, it was not possible to obtain licenses, use the Cortex-M3 core itself and 

simulate the system behaviour in the real EFM32 environment. Instead, a Cortex-M0 core was 

used since its licensing with ARM was not a problem and the Verilog implementation was 

obtained in a fairly easy way. Main architectural differences and similarities between these 

cores are shown in Table 2.1. Furthermore, the obtained core was part of a so called, Design 

Start Package which introduced certain limitations to the usage of the core itself.  
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Table 2.1- Cortex-M0 and Cortex-M3 specification comparison [12] 

 Cortex-M3 Cortex-M3 

Architecture ARMv7-M ARMv6-M 

Pipeline 
3 stage with branch       

prediction 
3 stage 

Insruction set -Thumb (entire) 

-Thumb2 (entire) 

-Thumb (most) 

-Thumb2 (some) 

Interrupts 240, plus NMI 32, plus NMI 

Performance Efficiency 3.34 CoreMarks/MHz 2.33 CoreMarks/MHz 

Performance 

Efficiency 

         1.25 / 1.50 / 1.89 

DMIPS/MHz 

0.87 / 1.02 / 1.27 

DMIPS/MHz 

 

As it can be seen from Table 2.1 both cores have 3 stage pipeline and they use the same 

instruction set which is the necessary condition for the cache system to migrate from one core 

to another although with different power consumption reports of course because they have 

different performance efficiencies which can also be seen from Table 2.1. 

2.4.1.1 Core block diagram 

Cortex M0 processor is a 32b RISC processor with von Neumann architecture (program 

and data memory not separated, share the same bus) which uses Thumb instruction set and 

supports some functions from Thumb-2 (an upgrade of Thumb in a sense that it is possible for 

all the instructions to be executed in one CPU state). Thumb-2 instruction set includes both 16b 

and 32b instructions although latter is only used when none of the former cannot be used to 

complete the operation.  

Cortex-M0 block diagram is shown in Figure 2.6. Main processing core consists of 

register bank (sixteen 32b registers), ALU and control logic with a three stage pipeline: fetch, 

decode and execute. Nested Vectored Interrupt Controller has the ability to accept NMI and up 

to 32 interrupt requests and decide which one to serve comparing their priority levels. 



14 

 

Wake Up Interrupt Controller is an optional module and is used to urge the power 

management unit to wake up the CPU and NVIC if they are in standby mode and there was an 

interrupt request. 

Debug Access Port is used to make system development and testing easier and faster: 

deals with program breakpoints, data watchpoints and debug control in general. 

AHB-lite bus interface is a 32b wide on chip bus protocol which is part of the Advanced 

Microcontroller Bus Architecture (AMBA) specification that was developed by ARM.  

 

Figure 2.6 - ARM Cortex-M0 block diagram [12] 
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2.4.1.2 Core Memory System 

The Cortex-M0 has 4GB of memory address space (232) divided in regions with each 

region having recommended usage that enables easier software migration between devices 

based on this core (programming model for interrupt control and debug are the same). Figure 

2.7 shows different memory regions in 4GB memory space of the Cortex-M0. The core supports 

memory transfers of different sizes, such as byte, half-word and word wide either little or big 

endian memory system.  

 

Figure 2.7- Cortex-M0 memory map [13] 

 

Taking into account the tittle of the thesis it is natural to assume why more attention will 

be paid to the memory section that starts at 0x00000000 and is dedicated to the code. MCUs 

have on-chip flash memory that contains the binary code and some of them also have separate 

boot ROM that contains boot loader program which is executed before the user program (the 

content of this ROM usually cannot be changed). 

In the case of EFM32, program image starts with a vector table (starting addresses of 

interrupt handlers) whose size depends on number of interrupts that are implemented (starting 

address of the vector table depends on the implementer of Cortex-M). Figure 2.8 shows the 

content of vector table with some basic interrupt vectors that have to exist in every system 

whereas all the vectors from address 0x00000040 (address of the vector for IRQ #0) are 

arbitrary and exist only if implemented in the program. As it can be seen in the Figure 2.8, first 

word of the vector table contains initial main stack pointer value (MSP, contains the address of 
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the top of the stack) and right after it comes the reset vector which contains the address of the 

first instruction fetch. 

 

Figure 2.8- Program Memory content [13] 

 

After the reset, processor first reads the first word from the memory and initializes MSP 

with that value. Next step is to read the second word that determines where the program starts 

and start fetching instructions from that address and so on in the next clock cycle. Vector table 

can usually be completely defined using C. This information (first two words from the vector 

table) are often contained in the so called startup code. The reset handler from startup code can 

initialize some general system features, variables and memory that are going to be used 

although this is usually done later in the main(). Startup code is usually found in development 

suites or in software packages from MCU vendors. After the startup code, application code is 

being executed and it usually contains, as stated in [13]: initialization of hardware (clock, PLL, 

peripherals), application processing part and interrupt service routines. 

  

2.4.1.3 ARMv6-M instruction set 

 

First ARM processors were using ARM 32b so called ARM Instruction Set which 

offered very high efficiency but occupied much more program memory space than other 8b or 

16b processors. That is why with the announcement of ARM7TDMI processor, ARM 
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announced new 16b instruction set, called Thumb, but not completely denied use of ARM 

instruction set because it was not possible to implement some functionalities using only Thumb. 

This processor supported both ARM (32b) and Thumb (16b) instructions and used a state 

switching mechanism to choose which decoding scheme should be used (based on the so called 

T bit which was set to 1 in case it was a Thumb and to 0 in case it was an ARM instruction). 

Thumb instruction set creates a 30% smaller code when compared to the code with the same 

functionality but written using ARM instruction set. On the other hand, performance is 

deteriorated by 20%. This is why Thumb-2 instruction set was created: it contains some 32b 

instructions to perform the functionalities that could be done only by ARM set initially and all 

the 16b instructions from Thumb. The same functionality coded with Thumb-2 takes around 

74% of the size of the code coded with ARM IS maintaining the same performance. 

ARM and Thumb instructions are designed to interwork freely but ARMv6-M only 

supports Thumb instructions and this is why interworking instructions in ARMv6-M must only 

reference Thumb state execution. All instructions that were used to test hardware 

implementation in this thesis were 16b Thumb instructions which meant that no interworking 

was needed but if the reader wants to know more about it, it is described in detail in [14]. 

ARMv6-M, the architecture used in Cortex-M0, is mostly using 16b Thumb instructions and a 

minimum subset of essential 32b Thumb instructions: BL, DSB, DMB, ISB, MRS and MSR. 

The instruction fetches are always half-world aligned. ARMv6-M can be configured to use 

either little endian or big endian data interpretation, but in the case of Cortex-M0 DS, used in 

this project, only little endian was supported. 

 

Figure 2.9- Instruction byte order in memory [14] 

 

ARMv6-M has 13 general purpose 32b registers (r0 - r12) and three special purpose 32b 

registers: SP (Stack Pointer, r13), LR (Link Register, r14) and PC (Program Counter, r15, 

loaded with reset handler when core resets) whose usage can be guessed from their names. 

There is also a register called APSR (Application Program Status Register) with least 

significant four bits used as flags: negative, zero, carry and overflow whose values are checked 

when conditional branching instructions are executed.  In this section more attention will be 
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given to these instructions since they are the key instructions when a loop needs to be detected 

which was of crucial importance for this project. 

Branching instructions supported by ARMv6-M are listed in Table 2.2. Since this 

project was focused on loop execution and not function or subroutine calls, only B and BX 

should be considered in details when implementing the algorithm described in Chapter 2.2. 

Chapter 3.2 explains two possible implementations of the same principle where in the first one 

encodings of these specific instructions would have to be used whereas in the second and actual 

implementation from this project, another approach was chosen where instructions encodings 

are not that relevant and that is why they are not mentioned in details in this section. More about 

instruction encodings can be found in [14].   

Table 2.2 – Branching instructions supported by ARMv6-M [14] 

Branch Instruction Description Range 

B Branch to target address +/-2KB 

BL Call a subroutine +/-16MB 

BLX Call a subroutine Any 

BX Branch to a target address Any 

To demonstrate the execution of a loop, execution of a simple test program was 

simulated in VIVADO Design Suite - the signal waveforms are shown in Figure 2.10. 

 

Figure 2.10- Simulation of the loop execution 

 

Most of the time, the simulation shows execution of a loop as it can easily be noticed 

only by observing the values on HADDR bus: 312 – 316 – 318 – 320 – 322 – 324 and then 

going back to 312 and starting all over again. But the last part of the simulation shown in the 

Figure 2.10 shows the part where the loop breaks and the program continues to execute the rest 

of the code (that moment is marked by the blue line). Table 2.3 shows all the instructions that 
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are part of this particular loop: their address, hexadecimal encoding, corresponding assembly 

code, short description and the duration as reported in [12]. 

 

Table 2.3- Loop Instructions 

Address 
Instruction 

(hex) 
Assembly Description 

Execution 

Duration 

[CLK cycles] 

312 (6) 

E001 B<PC+2> 

Unconditional 

branch 2 addresses 

forward 

1 

1C49 
ADDS 

R1,R1,#1 

Increment the value 

of R1 
1 

 

 

316 (7) 

 

 

  

        1C40 

 

       ADDS 

    R0,R0, #1  

Increment the value 

of R0 
1 

318 4290 CMP R2,R0 
Compare values in 

R2 and R0, set flags 
1 
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      320 (0) 

  

        D3FB 

 

    

  BCC<pc-12> 

 

Branch 10 (12) 

addresses backward 

if carry cleared 

3 

322 4B05 
LDR R3, 

<pc+20> 

Load value from the 

address pc+20 into 

register R3 

2 

 

324 

 

         

         2000 

 

 

  MOV R0,#0 

 

 

          Load zero 

into R0 

 

1 

E001 B <pc+2> 

Unconditional 

branch 2 addresses 

forward 

1 

 

At this point it is important to mention again that ARMv6-M architecture has a 3 stage 

pipeline: fetch, decode and execute and that the instruction duration depends on how many 

cycles it takes for it to execute (fetch and decode have fixed duration). The duration column in 

the Table 2.3 shows how many clock cycles the execution stage takes. 

As it can be seen from Figure 2.11, up to two 16b instructions are fetched in one transfer. In the 

next clock cycle first one of them is being decoded and in the third cycle this instruction enters 

the execution stage whereas the second fetched instruction is being decoded. At the same time, 

next two instructions can be fetched since last two left the fetch stage.  

It can be seen from Figure 2.10 : in the case of a taken branch it takes 3 clock cycles to 

execute the branch instruction whereas only 1 in case of a non-taken branch, as stated in [12]. 

In the case of a taken branch some of the instructions are still fetched (those that are not in bold) 

but they are not executed since the architecture cleans the pipeline from them. In case of a non-
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taken branch all of the instructions are executed as it can be seen in Figure 2.10 (e.g. register r3 

is indeed loaded with a value read form the memory, register r0 loaded with zero etc.) 

Figure 2.11- Cortex-M0 pipeline stages[15] 

 

2.4.1.4 ARM Cortex-M0 Design Start 

Design Start Implementation was delivered by ARM with two Verilog modules: top 

module called CORTEXM0DS and an obfuscated sub-module called cortexm0ds_logic.  Top 

module implements ports for the AMBA 3 Lite Interface with possibility of 17 interrupt inputs 

(16 + NMI), three output status signals and one output event signal. The top module interface 

is shown in Figure 2.12 and it contains AHB interface signals, interrupt inputs, event input and 

event and status outputs.  

 

Figure 2.12- Cortex-M0 schematics[16] 
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All interrupt input signals are synchronous and active high, NMI has the highest priority 

whereas priorities of other 16 interrupt signals can be configured. 

There are three output status signals and their meanings will be briefly mentioned here 

whereas more details can be found in [16]: 

-  SLEEPING: an active high signal that indicates the processor is IDLE (usually after 

Wait for Event - WFE or Wait for Instruction - WFI instructions) and will not execute 

any AHB transactions 

- LOCKUP: indicates that the processor is in a non-desirable, LOCKUP state and  

- SYSRESETREQ: HIGH value of this signal indicates that the software wants to 

perform system reset. 

 

Event output signal TXEV is used to indicate that the processor is performing SEV 

instruction whereas the input RXEV signal is indicating that it should wake up from WFE 

instruction. 

 

Cortex M0 Design Start implements AHB 3 Lite System Bus Interface using bus clock 

and reset signals as its global clock and reset signals: HCLK and HRESET. It is important to 

note that the Design Start implementation of the core does not offer all the possibilities offered 

by the full core. Here are some of the restrictions introduced that could not be influenced: 

- 3b HBURST output signal value was always 000 which indicated that the processor 

supported only SINGLE type transfer (no BURST transfer), 

- HMASTLOCK output signal is driven low all the time which indicates that the 

processor is not generating locked sequences. 

- HPROT[1] signal is always driven low indicating that the transaction is always 

PRIVILEGED (program execution can access all memory resources) 
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Cortex-M0 core can generate four types of transfer depending on the signals HSIZE[1:0], 

HTRANS[1:0], HPROT[0] and HWRITE as shown in Figure 2.13. 

The most interesting transfer type at this point is the one involving instruction fetch. As 

described earlier, the fetch involves fetching 32b at a time from the instruction memory with a 

possibility of extracting two 16b instructions from this sequence.  

Although the design start does not offer possibility of hardware debug, there are some 

registers that are routed from internal logic so that their values could be observed while 

simulating. Those are 13 general purpose registers, MSP (main stack pointer), PSP (process 

stack pointer), link register, PC (address of instruction currently in execute), status register 

(XPSR), control and primask register (more about each one of them can be found in [14]).  

 

2.4.2 AHB bus 

AMBA AHB-Lite (Advanced Microcontroller Bus Architecture, Advanced High 

Performance Bus) is a standard on-chip intercommunication specification developed by ARM 

but widely used in high performance electronic designs with many different applications. It is 

based on a master – slave role division concept with one master (Lite suffix), although it can 

Figure 2.13 - Cortex-M0 access types[16] 
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be extended to include more masters, Multi-layer AHB. If there are slaves that are slower (using 

lower bandwidth), they are located on the APB (Advanced Peripheral Bus) part of the system 

and connected to the AHB by a bus bridge. 

Figure 2.14 shows AHB master with three slaves and two inevitable elements which 

determine which slave is going to communicate with the master: decoder and a multiplexer. 

Master starts both read and write processes by driving corresponding control signals and setting 

the address of the slave it wishes to communicate with, decoder decodes the address and 

generates both slave enable signals and a multiplexor selective input to pass corresponding 

output data from the slave into the master. 

Figure 2.15- AHB Master interface 

 

Figure 2.14 - AHB-Lite block diagram [17] 
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Figure 2.15 shows AHB master with its interface to the rest of the AHB system. Many of these 

signals already appeared and were described so in this part emphasis will be put on the situations 

that can happen in the case of using Cortex-M0 Design Start as a master: the transfer type can 

only be single, there can be no locked transfers, the transfer is always privileged and the 

transactions are always non sequential. Each of the output signals sets a type of control over the 

transfer - their role is shown in Table 2.4. Some of the transfer properties are shown in bold and 

those represent properties that were hard wired into the Design Start so the non-bolded transfers 

are not even possible to implement. More information and details about all possible transactions 

on the AHB bus can be found in [17]. 

Table 2.4- AHB Master output signals of interest 

Signal Description 

HADDR Address phase interface address 

HWRITE Address phase read/write information 

HSIZE 

Data phase transaction data size: 

-  byte 

- half-word 

- word 

HBURST 

Address phase burst information 

-single 

- incr 

- wrap [8 16 32] 

- incr [8 16 32] 

HPROT 

Protection information 

-cacheable, 

- bufferable, 

- privileged (has access to all resources) 

- data/ opcode 

HTRANS 

00 or 10 

Address phase transfer type: 

- idle 

- busy 

- non-sequential 

- sequential 
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HMASTLOCK 

Address phase locked information 

- locked 

- unlocked 

 

AHB slave provides information about the status of the transaction by setting values of 

the two signals: HREADYOUT (when HIGH indicates a transfer has finished, but it can be 

driven LOW to extend the transfer) and HRESP (success or failure in the communication). 

Systems that were used in this project, consisted only of instruction memory and a small cache 

which were designed in a way they could provide new data on each new clock cycle if requested 

(the signal HREADY which normally would have been provided to the master by the slave, 

was driven HIGH all the time). Moreover, there was no possibility for slaves to generate errors 

so the signal HRESP was driven HIGH all the time as well.  

 

Figure 2.16- AHB Slave interface 

 

Since Cortex-M0 DS could not perform any other but SINGLE transfer, slaves were not 

generating any errors and were ready to give new data on each clock cycles, the transfer that is 

going to be considered here is the basic unlocked single transfer with no wait states and no 

protection control. 

AHB basic transfer consists of two phases: address and data phase and it takes three 

rising clock edges (two clock periods) for a transfer to complete. After the first rising edge, 

master sets up the right address and control signals (important signal that is not shown in these 
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figure is the HTRANS[1] signal which needs to be set HIGH at this point to indicate AHB 

transfer is about to happen). Signal HWRITE controls the direction of the transfer: if set HIGH 

the master broadcast data on the HWDATA bus and this data is about to be written into the 

slave, whereas in the case of this signal LOW the master wishes to read data from the slave and 

this data is going to appear on the HRDATA bus. On the next clock edge (second), the slave 

samples control and address signals. Finally on the third clock the processor is able to sample 

the correct data on the HRDATA bus or the slave is ready to sample HWDATA bus. Figure 

2.17 also shows how address phase of a transfer overlaps with data phase of the previous 

transfer and this is the fundamental principle that makes AHB a high performance bus used by 

wide spectrum of applications.  

 

 

Figure 2.17 - AHB basic transfer: read and write [17] 
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2.4.3 Simulating the Cortex-M0 core 

As it was mentioned earlier, Cortex-M0 Design Start soft core was obtained from ARM 

as two modules written in Verilog: 

- CORTEXM0DS.v ( a top designer module which shows processor interface ) and 

- cortexm0ds_logic.v (an obfuscated module with processor logic implemented). 

Apart from the hardware implementation contained in these two files there was also a 

testbench provided with a top testing Verilog module which had an AHB system containing a 

master (the core itself) and two slaves:  

- a memory model to load a binary of a program to be executed  and  

- an output console to show the status and results of the running program. 

Figure 2.18 – ARM Design Start testbench deliverables: block diagram 

 

Memory model implemented as a part of testbench was word addressable with an 18b 

wide address bus so the HADDR values that were selecting it were between zero and 2^18 

(0x40000) whereas the address that was accessing output console was set to 0x40000000. The 

binary that was delivered with the testbench (ram.bin) was a binary obtained by compilation of 

the helloworld.c  (also delivered) using ARM’s Real View Complier using commands from the 

Makefile from the package as well.  To make the processor execute this program, it was enough 

only to create a project in any Verilog simulator and make sure that the binary is accessible by 
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the core (it should be within the simulation folder of the project, otherwise there would be a 

mistake reported). In this thesis, verifying simulation was performed using Xilinx VIVADO. 

The output of the simulation were merely messages on the screen showing the status of the 

program execution, Figure 2.19. This simulation was performed only to prove that the core was 

behaving the way expected and that it was possible to load different binaries into it. In the next 

sub chapter it will be explained how the core was synthesized and how the code was being run 

on an actual FPGA board. 

 

Figure 2.19 – Core simulation results 

 

2.4.4 Running the core with Instruction Memory on FPGA [18] 

 

Following ideas from [18] with slight modifications, a system for synthesis on ZC702 

Evaluation Kit was developed. To develop the whole system which would be able to execute 

different programs, simulate processor behavior showing signal waveforms and finally verify 

the correctness by running the core loaded with a program on actual hardware, few system 

integration steps needed to be performed. 

2.4.4.1 Building hardware 

The system block diagram is shown in Figure 2.20and the deliverables that came within 

this tutorial contained these modules. All the blocks were used in the same way as in the manual 

form Louisianan Tech College of Engineering and Science [18] with some slight differences 

since in the tutorial the implementation was adapted to NEXYS2 FPGA board. 

As it was stated earlier, ZC702 Evaluation Kit contains a Zynq-7000 SoC with a Xilinx 

Artix 7 FPGA Programmable Logic Equivalent System (part number  XC7Z020-1CLG484C) 

that needed to be selected as a target device when creating a project in VIVADO Design Suite.  

Next step was to add sources to the project which will represent hardware modules. Figure 2.20 
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shows the overall system (top module, CM0_DSSystem.v file) with hardware modules that 

were part of it. 

 

Figure 2.20 – Block diagram of the system built for implementation on FPGA board 

 

2.4.4.1.1 Clock generation 

The most important part of a synchronous system is the clock: its generation has to be 

stable and accurate in order for the system to behave as planned. Although the Cortex-M0 

processor is said to operate up to 50MHz frequency, in the tutorial [18] system clock was set to 

10 MHz and it was decided to maintain the value in this project as well.  

 

Clock module was created using Clock Wizard IP generator in VIVADO with the 

implementation using MMCM (Mixed Mode Clock Manager) and not DCM (Digital Clock 

Manager) as in [18] since Xilinx 7 Series do not offer DCM any more, only MMCM and PLLs. 

The EK had a 200 MHz Low Voltage Differential Signalling (LVDS) oscillator with a 

Figure 2.21 - Clock generation on zc702 Evaluation Kit 

 



31 

 

differential output: a positive SYSCLK_P and a negative SYSCLK_N.  Clock generator that 

was used to synthesize 10MHz frequency contained a single clock source as input and therefore 

these two signals had to be adapted to be used as a single clock signal. For these purposes, a 

primitive design element from 7Series FPGA, differential signal input buffer IBUFGDS was 

used as a connection to MMCM.  

 

 

Figure 2.22 – 7Series primitive elements: buffer and D flipflop 

 

Two input signals (SYSCLK_P and SYSCLK_N, the board oscillator differential 

outputs) have to have the same frequency but opposite phase. In this case output of the clock 

buffer was equal to the master input which is SYSCLK_P in this case. Single output of the 

buffer (200 MHz) is then loaded into the frequency synthesizer that gave the desired processing 

frequency of 10 MHz. As in the case of any frequency synthesizer, there was a locked signal at 

the output that was indicating if the synthesizer was locked and the output frequency was stable. 

This signal was also used as an output of the system to drive board LEDs and indicate if the 

system had a stable clock which is always the first thing to check when performing system 

debug. Buffer was also used to recover the signal, make rise and fall time smaller. 

2.4.4.1.2 Reset generation 

Second most important step was to design reset circuitry for the system, in this case 

provide a 4 period long low signal for each reset session since that is the reset specification for 

the Cortex-M0 core. There were three modules from the tutorial [18] that were used to create 

the clock: DelayCounter.v , Constant2Pulse.v and SyncReset.v  (for the sake of simplicity, 

Figure 2.23shows only the top module). As it was mentioned earlier, reset pulse needed to be 

at least four cycles long in order to reset the core and in this implementation from [18] it was 

generated only once at the beginning of the system setup and completely internally, i.e. with no 

user controlled reset. The idea was to generate a pulse that would surely stay high for four clock 



32 

 

cycles and then invert it as shown in Figure 2.23.  In order to make the signal four cycles long 

a short pulse (called trigger in figures) was propagated through four D flip flops and then 

outputs from all of them together with the original signal were used as inputs of a 5 input OR 

gate. FDCE elements in the figures are primitive design elements supported by Xilinx 7Series 

[19] which are nothing but D flip flops with clock enable and asynchronous active high reset.  

 

Figure 2.23 – SynqReset module block diagram 

 

In order to generate trigger signal, a module Constant2Pulse was used. Its 

implementation was based on the idea that performing an XOR operation on a constant of a 

signal and its delayed version would produce a pulse at the output. This is shown in Figure 2.24. 

 

 

Figure 2.24 – Constant2Pulse module block diagram 

Generation of the constant signal was done within the module called Counter2Constant 

which is shown in Figure 2.25. The basic idea was to generate a pulse using a binary counter, 

and once it was generated, use a positive feedback to maintain at least one of the inputs of the 

OR gate high which created a constant output signal. These signals are shown in Figure 2.25. 
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Although having a 20b output, binary counter was configured to count only up to the value F9 

and then generate a high signal called thresh which was used as input to the OR gate, whereas 

the 20b output was not used later at all.  Simulation of the reset signal generation is shown in 

Figure 2.26. 

 

 

Figure 2.25 - Counter2Constant module block diagram 

 

 

Figure 2.26 – Reset pulse generation: simulation 

2.4.4.1.3 RAM memory 

RAM memory was created using IP Block Generator from VIVADO that created 2KB 

memory which was word addressable,  having 9b wide address bus (29 x 4B= 2KB) and an 

active high reset. The memory was designed to work in compliance with AHB interface, i.e. if 

enabled, on the next rising clock edge output data from the address that was sampled with the 

current clock edge, was present on the bus as shown in Figure 2.27. Enable signal of the memory 
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block was connected to HTRANS signal of the AHB bus which was completely understandable 

since this signal driven high indicated that a new transaction should be performed. This was 

explained in details in Chapter 2.4.2. 

Memory IP block offers the possibility to load memory with initial content saved in a 

file with an extension .coe. Generation of this file will be explained in Chapter 2.4.4. 

 

Figure 2.27 – Block RAM principle of operation 

2.4.4.1.4 Detector 

The last part of the system in [18] was the module called Detector that was used to 

indicate that the processor was executing the loaded program the way planned.  It is not that 

easy to verify proper functioning of a processor core when it does not have peripherals built 

around it because there are many signals and wide buses that need to be checked. A very simple 

approach was used in [18]: module Detector was toggling an LED at the output when a certain 

value would appear on the data input bus, HRDATA. At the beginning, on a system reset, the 

LED was driven low. Later on, when the value 0xAAAA5555 showed up on the bus, the 

Detector signal would go high and remain high until value 0xF0F0F0F0 showed up. To sum 

up, HRDATA value of 0xAAAA5555 was triggering Detector value to go high whereas the 

value of 0xF0F0F0F0 was driving Detector low. This is shown in Figure 2.29. 
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Figure 2.28 – Detector module interface 

 

 

Figure 2.29 – Generation of Detector signal: simulation 

 

The last step to configure the hardware part of the system was to add the Xilinx Design 

Constraint file (.xdc) to the project constraints. This file was taken over from [20] containing 

net names that corresponded to net names of the latest ZC702 schematics (although only some 

of them were used in the project). 

2.4.4.2 Software 

Previous section explained how hardware modules were designed, what was the purpose 

of each one of them and how they communicated between themselves. Another important 

aspect of enabling system to work is making it behave in the desired way so that processes 

could be performed. This is done, as in any other system, by loading a desired program, which 

was a .coe file in this case into its instruction memory. 

µVision IDE from Keil was used to develop software project, make source file editing 

and program debugging with Cortex-M0 as a target core. Other project properties that needed 

to be set as in [21] were: 

1. Target tab 

- Working frequency: 10MHz 

- Set ROM memory space (size 1KB, starting at zero address) 

- Set RAM memory space (size 1KB, starting at address 0x400) 

2. Output tab: 
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- Select folder which will contain object files  

- Enable the option of creating .hex file when compiling 

3. ASM tab: 

- Choose Thumb Mode 

4. Linker tab: 

- Set the ROM and RAM base addresses, 0x00000000 and 0x00000400 

- Set –entry 0x15 –first=vectors.o(__Vectors) as MiscControls to locate the vector table 

defined by vectors.c 

5. Debug tab: 

-make sure to tick Use Simulator for debugging purposes 

The simple program used for testing the system was completely taken over from [18] 

and the main.c is shown in Figure 2.30. As it was seen in Figure 2.8, program code was starting 

at zero address, but the whole memory space needed to be divided in order to make space for 

heap and stack. This was done within the file called vectors.c which contained stack base 

address (set to 0x47f in this case) and the address of the reset handler only since no other 

interrupts were implemented in the system.  

As it can be seen in Figure 2.8, the top of the instruction memory was set to be in the 

middle of the whole RAM space (0x400 is 1KB and the memory had 2KB), whereas the rest 

was left for other essential memory sections which were not going to be used in a case of a 

simple program as this one but needed to be defined. 

There were four variables defined in the memory: 

- period: loaded with a constant value which could have had two values depending on  

how the system was going to be implemented. If it was intended for the system to be simulated 

only in HDL simulator, in order to be able to see a Detector change in a reasonably short 

simulation window, the period was set to a smaller value (200) whereas in the case of the system 

being implemented on the board, in real time, in order for the human eye to detect a change in 

LED state, the period had to be set to a higher value to make the blinking slower (20000000 in 

this case). 

- counter: a variable that was being incremented on every clock cycle 

- ii: a variable that was incrementing from 0 to 200 and then resetting to zero again 

-trap: a variable that was taking certain values (0xAAAA5555 and 0xF0F0F0F0) when 

the end of period was reached.  
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Figure 2.30 – Source code used in [18] 

 

Table 2.5 shows these variables and their equivalents within the core registers. 

Table 2.5 – C code variables and corresponding core registers  

C unsigned int variable Core register 

counter R1 

ii R0 

            trap R3 

period R2 

 

Using ARM C/C++ Compiler (former ARM RealView Compiler) within uVision the C 

code was translated into .axf file which is an object file with both object code and debug 

information. To transform this file into a binary, fromelf command needed to be used whereas 

the translation of .bin into .coe file was performed by an application that was delivered together 

with the integrating system [18], bin2coe. This is shown in Figure 2.31. 
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Figure 2.31 – Translation from .c file  to .coe file 

 

The resulting .coe file was finally loaded into the RAM. The whole system was 

synthesized, placed and routed, .bit file was generated successfully and the FPGA board 

programmed to blink the corresponding LED each 10s. 

2.4.5 System Design Flow and Power Optimization 

Typical design flow from Specification formulation to actual hardware that is handling 

the algorithm consists of System specification, Architectural Design, RTL design, Synthesis 

and Place and Route as shown in Figure 2.32. 

 

Figure 2.32 – IC Design general flow 

 

The amount of power savings than can be achieved is getting lower as moving through the 

design steps. As the design is moving through different stages it gets harder to detect mistakes 
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and even harder to correct them. That is why proper system verification needs to be performed 

after each level to make sure no mistake flows further into the design 

While first three steps are fully completed by the designer, last two are performed by EDA 

(Electronic Design Automation) tools but can still be controlled by the designer of course.  

System specifications of the system were presented in Chapter 2.2. It is important to 

transform these abstract specifications into actual architectural design that is going to behave 

ain compliance with  system specifications. Apart from this, other system level decisions, 

according to [22] include decisions about: 

- cooling strategies (designing environment that is going to absorb as much power 

dissipated as possible by lowering ambient temperature, increasing airflow etc.) 

- supply strategies (using switching regulators instead of linear ones, select regulators 

with high tolerances etc.) 

- device selection (choose smallest possible device with largest package, smallest static 

consumption). 

In this project, ZC702 Evaluation Kit and the Zynq device on it were selected because they 

offered a possibility of real time power measurements as it will be explained in the next section. 

Not too much attention was paid to the fact that the technology used to build the kit was 28nm 

and therefore dissipating a lot of static power that could not be greatly influenced.  

As it will be mentioned, there were two possible architectural designs of the same TLC 

algorithm: using either decode or address compare controller, which would both fulfill the 

algorithm specifications but in two different ways. Section 3.2.1 will explain which one was 

chosen and why. 

RTL level included HDL design of the system in order to meet system specifications. 

In the case of this project, these included different designs of the sequential decoder which will 

be explained in Chapter 3.2.1 and led to different utilization and power reports. Finally one of 

the RTL designs was chosen as the final one (before that it was checked by post-layout 

simulation that it still met all the system specifications).  
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Figure 2.33 – Digital Design Flow 

 

Figure 2.33 shows more details about the part of the flow that is supported by the EDA tools, 

in this case synthesis and implementation tools that are part of the VIVADO Design Suite. As 

this project was power optimization oriented, several different RTL designs of Controller and 

Loop Cache were taken all the way through Synthesis and Place and Route to determine which 

one of them brought most power savings. Based on the results of the Utilization Report that 

were shown in Table 3.5, the design using least logic elements was chosen as the final one. 

This, basic synthesis and place and route were conducted using default settings which meant 

there was no particular attention paid to power optimization during these processes.   

Nevertheless when the final HDL design was chosen as output from the RTL design stage, 

VIVADO power analysis and optimization documentation [22, 23] were studied to determine 

how power consumption can be further influenced at these levels. 

Synthesis is the process performed by a synthesis tools which translates HDL into 

hardware presentation and at the same optimizes the design following set of constraints. The 

result coming out of the synthesis process is the netlist which is a bond between HDL and final 
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routed hardware.  Each time performed, synthesis can give different netlist and every time a 

small change is made, it should be verified by simulation that the netlist is still fulfilling 

constraints and specifications. In this project the only set of constraints that were applied were 

referring to constraining clock period of the 10 MHz clock. 

One of the optimization techniques used in this project at the synthesis level was the flattening 

design which meant that the whole system could be regarded as one module although it was 

organized as a hierarchy. Allowing for the system to be regarded as one module makes it easier 

for the tool to perform optimizations although it makes it harder to simulate and analyze.  

Timing parameters that are reported and have to be checked after synthesis are TNS 

(total negative slack) and WNS (worst negative slack). Slack time is defined as the difference 

between the time needed for the clock to propagate through clock path and the time needed for 

data to propagate through data path. System meets time constraints if the slack time is positive. 

WNS is the smallest slack (signed value) whereas TNS is the sum of all negative slacks. Both 

of these values should be positive in order for the design to meet timing constraints.  

Both power and timing reports can be generated after synthesis but these values are not 

exact measurements since there is place and route yet to be performed. Power reports can be 

generated in a so called vectorless mode or using a switching activity interchange format (.saif) 

file. One of the main contributors to the overall dynamic power consumption are the switching 

activities of the nets: the more switching the greater the power consumed. Vectorless power 

report is done by using a default static probability and switching activity for all the nodes 

(12.5% in the case of VIVADO) which brings low confidence into the results whereas using a 

.saif file with switching activities calculated from actual simulations of the real conditions gives 

the report high result confidence. It is possible to provide toggling rates only for some nodes 

and leave the rest as default. All different measuring settings and results will be presented in 

Chapter 4. 

Implementation or Place and Route step follows the Synthesis step and it includes actual 

placing of electronic components and logic elements into the FPGA cells as well as 

interconnecting them obeying all design rules applicable to the process of the target device. As 

far as VIVADO is concerned, it offers power optimization at two stages: 

- default optimizations during the opt_design phase which focus on power savings in 

Block RAMs, 

- power optimization during power_opt_design phase 
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All implementation and place and route processes in this project were performed with these 

options enabled. 
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3 Tight Loop Cache Implementation 

3.1 TLC in software 

Although the original description of the TLC technique contained implementation of the 

Controller as a state machine with three states, following [28] it was decided to add a 

COUNTER state as an intermediary state between IDLE and FILL. The Controller entered this 

state when a backward branch was detected but the loop instructions were still not written into 

the cache. The reason why this state was added was to reduce number of writes into the cache 

by going once again through the loop still reading from main memory but at the same time 

counting number of loop instructions, checking if they were sequential inside the loop itself and 

checking if the program loop could for sure physically completely fit inside the loop cache. 

Apart from adding the COUNTER state, another modification was introduced after it 

was noticed there was non-sequential behaviour of the program inside the loop, Figure 2.5. As 

it was explained earlier, these were data reads/writes and normally the Controller should be able 

to distinguish between them and program jumps. Data transactions should not cause Controller 

leave the state it is in. Since there was no other information available apart from the addresses 

of the instructions from the execution flow, the way a data transaction was detected was by 

checking if it was “lonely” in the flow, meaning that after the data transaction program 

execution went back to where it was before. The way of distinguishing between data 

transactions and program jumps is shown in Figure 3.1. 
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Figure 3.1 – Difference between data transaction and program jump with instruction 

addresses as inputs 

 

Since the original principle of operation [10] considered only the loops sequential within 

themselves (those having data transactions are as well), new states had to be introduced inside 

the Controller to make it aware of existence of the data transaction while being in any of the 

states. The new implementation contained 8 states in total: IDLE, PSEUDO_IDLE, 

COUNTER, PSEUDO_COUNTER, FILL, PSEUDO_FILL, ACTIVE and 

PSEUDO_ACTIVE.  Figure 3.2 shows state transitions only for the case of FILL state but all 

the other states have similar mechanisms of switching between states. 

Important thing to notice is that it was possible now for the Controller to go into 

ACTIVE state directly from FILL or from the PSEUDO_FILL in case a triggering sbb was 

detected and taken while the Controller was in this state. To make it possible to keep the notion 

of the instruction flow, in this new implementation it was necessary to hold information about 

not only currently executed instruction but the last two instructions before it as well (variables 

new, old and old_old, Appendix A). This was also one of the differences between the 

implementation in [2] and the new one. In case it was detected that the jump which caused 

switching into any of the PSEUDO states was not a data transaction but an actual program 

jump, the Controller was going back into IDLE state. 
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Figure 3.2 – Insertion of a pseudo state for data transaction detection 

     

Hardware Implementation of the design included a Controller that had only three 

possible states since the core used in the implementation had a signal called HPROT which 

carried information if the transaction was involving data or code which made the solution save 

a lot of additional hardware. The final simulator in Python is listed in Appendix A. 

 

3.2 TLC in hardware 

This section shows how TLC system was built using ARM deliverables, modified 

software and hardware codes from [18] and additional hardware modules, created by the author.  

3.2.1 Adding Loop Cache 

After it was verified that the processor system was behaving in a correct way both in 

simulation and after synthesis (blinking LED on the board) it was possible to continue working 

on the actual topic of the thesis: the addition of small cache to facilitate the execution of program 

loops. 



46 

 

3.2.1.1 System user interface 

As a difference to the system described until now, there were two ways the user could 

control the system: 

- user controlled RESET implemented as a taster on the ZC702 board 

- user controlled configuration of the system: enable or disable use of cache in general, 

implemented as a switch on the ZC702 board 

 

Figure 3.3 – Interface between the system and the user 

 

These two signals and their interface to the system are shown in Figure 3.3. Reset was 

no longer generated internally, but controlled by the user so two modules: Counter2Constant 

and Constant2Pulse were not needed any more. Only SynqReset module was still used with a 

difference that triggering reset signal was the reset taster, user pushbutton SW5 [20] (named 

GPIO_SW_N in the board .xdc file), Figure 2.23. On the other hand, there was a switch on the 

board, SW12 [20] (GPIO_DIP_SW0 from .xdc file) that was used to control the global use of 

cache, i.e. whether the Loop Cache Controller was enabled to consider using cache at all or not. 

The value of this switch was sampled only when the system was coming out of the reset (flip 

flop was triggered by rising edge of the n_reset signal) and could not be changed at any other 

moment, Figure 3.4. 

 

Figure 3.4 – Generation of global_cache_enable signal 
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Figure 3.5 – Introducing Loop cache into the core system 

 

The rest of the system, apart from user interface that has just been explained and the 

Detector module that remained the same as in the case when there was no cache, is shown in 

Figure 2.28. The system was implemented as an AHB bus system that contained one master: 

the processor core, two slaves: main instruction memory and the cache memory and a decoder 

(Controller) to decide which slave to access. The system was not a typical master-slave system 

since the nature of the communication between the Instruction Memory and the core is based 

on a continuous communication, the instruction memory was never written to (HWRITE was 

set low all the time) and therefore was ready to give data whenever the processor made a request 

(HREADY was high all the time). Another thing that was specific for this system was the period 

when the Controller was in the FILL state: both slaves were accessed at the same time: main 

memory was read from and that same data was written into the cache.  Controller was also 

making decision which memory would output instructions into the core by controlling the 

multiplexer. So, this system had more differences than similarities to a typical AHB master 

slave system and in the case of need of adding more slaves to the system they would need to 

have their own decoder and multiplexer of course and respect the principle of continuous 

communication between the memory system and the core.  
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Figure 3.6 – Interface between Controller, Instruction memory and Loop cache 

 

As it can be seen from Figure 3.5, there were three new components added to the system, 

the Loop Cache Controller, Loop Cache and the multiplexer and the implementation of all of 

them will be explained in next sections.  

 

3.2.1.2 Loop Cache Controller 

The purpose of the controller was to determine when the program execution entered a 

loop, fill in the cache with the loop instructions and finally from the third iteration of the loop 

read the instructions from the cache, of course if it was the same loop that was executed all the 

time. Until now, two approaches of loop detection were discussed: the one from Chapter 2.2, 

the original loop detection principle whereas the second approach was explained in the software 

implementation of the system. These two approaches are shown in Figure 3.7 where only 

differences between them are shown, i.e. input signals. 

 

Figure 3.7 – Two different Loop Cache Controller implementations and their interfaces 

 

The first principle, which is going to be called the decode principle, would have to have 

the instruction code as input and originally, as proposed in the paper, a status flag from the core 
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which would give the information about the branch status: if the branch was taken or not. Since 

Cortex-M0 had no branch status signal as it have been the case if Cortex-M3 was used, the 

second input would be the flags from the core (in the case of Cortex-M0 those are last four bits 

of the APSR register: negative, zero, cary and overflow flags). The Controller would perform 

decoding of the instruction: if a potential branch was decoded it would check status of the 

corresponding flag and determine whether to branch or not. Next step would be to calculate the 

branching offset and initiate counter register from Figure 2.2 with that value. The rest of the 

system would behave as described in Chapter 2.2. 

The second principle, called address compare would use only address of the instruction 

to be fetched next, make a delayed copy of the address, compare those two and determine 

whether there was a backward branch or not. This principle was explained in details in Chapter 

3.1 although even more information can be obtained from [2]. 

If Cortex-M3 was used in the project it would have made more sense to use the Decode 

Controller with the branch status flag as input but in the case of Cortex-M0 there was no real 

advantage of using this principle because the decoding logic of loop detection would have to 

be complicated and completely redundant since decoding is already done within the processor 

itself (but its results are unfortunately unavailable). Since whole software implementation in 

Python was done using the second principle, it was more convenient to use this approach in 

hardware as well. The timing differences between two implementations are shown in Figure 

3.8 and it can be seen that decode approach would have the advantage of detecting a loop one 

clock cycle before but with a far more complicated and redundant logic whereas the address 

compare approach would be one cycle late. This one cycle delay cannot create great damage 

only if care is taken that the signal main_cache which controls where data should be read from 

was set and reset at particular rising clock edges as shown in Figure 3.8.  



50 

 

 

Figure 3.8 – Timing comparison between two different controller implementations 

 

As it can be seen in Figure 3.8, in the case of address compare implementation, the 

Controller changed its states from IDLE to ACTIVE and from FILL to ACTIVE on the next 

rising edge after a branch target address was sampled (address 312 in Figure 3.8). The way this 

was really happening when simulating the system itself is shown in Figure 3.9 where it can be 

seen that the cache was behaving correctly and according to AHB transfer rules with an address 

and a data phase. 

 

Figure 3.9 – Controller implementation, its state switching and control signal toggling 



51 

 

Apart from address bus as input shown in Figure 3.7, the Controller had HTRANS[1] 

and HPROT[0] inputs which were indicating that instruction transaction needed to be 

performed. 

Table 3.1 shows conditions that needed to be fulfilled so that the controller switches 

from one state to another. The first condition column shows the logical conditions presented in 

Chapter 2.2 whereas the second condition column shows their equivalents and implementation 

in the real system using the signals that were created in this project.    

Cache_size was the size of cache in words, new_address was nothing but 

HADDR[m+1:2] where m was the width  of the main Instruction Memory address bus and 

previous_address was just a one clock cycle delayed version of the new_address. Branch was 

m bite wide signal that remembered the address of the instruction that caused branching in the 

case of the Controller transiting from IDLE state to FILL whereas branch_target was the 

address of the first instruction inside the loop (also saved when the Controller switched from 

IDLE to FILL).   

Table 3.1 – State switching mechanism with logical switching conditions and their 

implementations 

Present state Next state Condition 
Condition 

Implementation 

IDLE 

FILL 

transaction is 

enabled and it is 

instruction 

transaction 

htrans & (!hprot)=1 

and && 

sbb detected and 

taken 

(previous address – 

new address > 1( 

and && 

loop can fit into the 

cache 

(previous address-

new address <= 

cache size-1) 

IDLE 

sequential execution 

«else» or 

cof but forwards 
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FILL 

FILL 

instruction 

transaction 
!hprot 

and && 

 

no change of flow 

 

(new address == 

previous address 

|| 

new address == 

previous address+1) 

 

and && 

within limits of the 

loop 

(new address <= 

branch) 

ACTIVE 

instruction   

transaction 
!hprot 

and && 

triggering sbb taken 

again 

(new address == 

branch 

&& 

previous address == 

branch target) 

IDLE 

triggering sbb not 

taken again 

Others or 

cof caused by some 

other triggering sbb 

ACTIVE ACTIVE 

instruction      

transaction 
!hprot 

and && 

within loop size 
(new address <= 

branch) 

and && 

cof caused by 

triggering sbb 

(new address == 

branch 

&& 
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previous address == 

branch target) 

or 
|| 

 

no change of flow 

(new address == 

previous address 

|| 

new address == 

previous address + 

1) 

 

 

IDLE 

triggering sbb not 

taken 

«else» Or 

cof not caused by 

triggering sbb 

 

 

It was very important that the signal main_cache toggled before that clock edge (not 

synchronous to the state change) so that proper memory could be used as the source. This is 

also illustrated in the Figure 3.10 where critical signal changes are shown in red. 

 

Figure 3.10 – Controller State Machine with output control signals 
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The signal main_cache and its values shown in red indicate that the signal value had to 

be changed as soon as a certain condition was encountered, it could not wait for the state 

machine to change its state. As it can be noticed, the final version of Controller had only two 

output control signals: cache write enable (cache_we) and a signal that was enabling output of 

either main memory or the cache, depending on the state of the controller (main_cache). 

Signal descriptions and their values depending on the state of the Controller are shown 

in Table 3.2 (values shown in red are the critical ones, the ones that change before the state 

changes). 

 

Table 3.2 – Controller output signals 

Output signal      Description    IDLE     FILL  ACTIVE 

main_cache 

Decides whether data from the 

address now present on the 

address bus should be read from 

cache or from instruction memory 

      1        1        0 

cache_we 

Indicates that data from the  

address currently on the bus 

should be written into the cache 

(on the next clock rising edge) 

      0        1       0 

 

The Loop Cache System interface and detailed communication between different parts 

of the system are shown in Figure 3.6. 

Table 3.3 shows how input enable signal of the instruction memory was depended on 

the  global_cache_enable signal controlled by the user and main_cache output signal from the 

Controller. Input enabling signal of the cache memory was created simply by inverting this 

signal.  

Table 3.3 – Instruction Memory Enable signal generation 

 

global_cache_enable  

                   (A) 

   main_cache  

           (from Controller) 

         (B) 

 instruction_memory_enable 

         (C) 

         0                       0            1 

                     0           1            1 
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          1           0          0 

                      1           1                      1 

 

𝐶 = (�̅� + 𝐴𝐵) 

Definitive enable signal was created of course by multiplying this signal by 

HTRANS[1] signal of the AHB bus which was used to initiate a transaction.  

3.2.1.3 Loop Cache 

As it can be seen from the Figure 3.6, HTRANS[1] was used as input into the cache 

although it was already used to create enable signal which could be disputed as redundant. This 

signal was one cycle delayed within the cache itself (it is called htrans_a inside cache) in order 

to perform correct write since the address the cache was writing data in was also one cycle 

delayed (address_a). The writing process is shown in Figure 3.11. In the case simulated, address 

bus of the loop cache was 3b wide (8 locations each containing 4B) and those were 

HADDR[4:2] bits. Two least significant bits from the address bus were completely neglected 

in the whole system since both memories were word addressable (this is the reason why all the 

conditions for the address comparison in the Table compared if they differed by 1 and not by 4 

what would have been the case if least significant bits of the HADDR were used as well).   

 

Figure 3.11 – Filling of the Loop Cache 

 

Figure 3.11 shows how cache writing process was performed. It clearly illustrates one 

of the benefits of this implementation because instructions did not need to be aligned to any 
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starting address (first location that was written into was 6, the second one was 7, third was 0 

and the last one was 1).  

Address_a was only a one cycle delayed version of address signal and at first it was 

created within the cache module itself but later on it was noticed that there was a signal inside 

loop cache controller module that was already containing the previous address. If a part of that 

signal (lower n bits if n is the width of the address bus of the cache) was taken from there, some 

hardware savings could be gained. 

 

Figure 3.12 – Two different Controller-Cache implementations and interfaces 

  

During the system development there were three different versions of the Controller that 

were implemented, each next version was an improved version of the previous one in a sense 

of resources utilization which later led to smaller power consumptions.  

First version of the Controller had 2 outputs more than the version showed in Figure 3.6 

- these outputs and their description are shown in Table 3.4.  

Table 3.4 – Controller output signals (first version) 

Output signal Description IDLE FILL ACTIVE 

main_enable 

enables that the address present on 

the HADDR bus at that moment  is 

read from the main instruction 

memory  

 

1 1 0 
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cache_enable 

enables that the address present on 

the HADDR bus at that moment  is 

read from the cache 

0 0 1 

      cache_we 

indicates that the data from the  

address currently on the bus should 

be written into the cache (on the next 

rising clock edge) 

 

0 1 0 

      mux_sel 
decides whether processor should 

read data from RAM or cache   
1 1 0 

 

It is quite easy to see that there was redundancy in this implementation: signals mux_sel 

and main_enable had the same values in each state of the Controller whereas signal 

cache_enable had their inverted values. The next logical step was to remove two redundant 

signals and this was how the number of outputs was cut to only two as shown and explained in 

previous sections. The multiplexer was controlled by the same signal that was enabling the main 

instruction memory whereas input enable signal of the cache was the inverted version of this 

signal.  

Second implementation of the Controller had only two controller outputs as explained. 

Moreover, all the conditions to enable state transitions were implemented the way shown in 

Table 3.1. The system was behaving correctly but then it was noticed that there was also 

redundancy present in condition implementation. 

 

Table 3.5 – Utility reports of three different implementations of the Controller  

Description LUT 
Slice 

Reg 
Slice 

LUT 

as log 
LUT ff 

Bonded 

IOB 

BUF 

CTRL 

Redundancy in 

condition 

implementation 

and output signals 

5 41 33 85 100 22      1 

Redundancy in 

condition 

implementation 

   3 41 30 83 90 20      1 
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No redundancy in 

both number of 

output control 

signals and 

condition 

implementation 

    

   9 

 

41 

 

26 

 

59 

 

72 

 

20 

 

1 

 

Instead of repeating same conditions couple of times, new variables (cond1, cond2, 

cond3…) were created to save logical information if this particular condition was fulfilled or 

not and later on, these signals which had already been synthesized elsewhere were reused. This 

lead to the third Controller implementation which brought more utilization savings as shown in 

Table 3.5. 

Final Verilog designs of both Controller and Loop Cache are listed in Appendix B. 
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4 Testing and Measurements 

4.1 Software Implementation 

4.1.1 Methodology 

Simulator input data were the same benchmarks used in [2]: coremark, dijkstra, emlcd 

hex, preamp, primes, sha and touch. As the first version from [2], the new simulator counted: 

- number of reads from the main instruction memory (flash_reads), 

- number of writes into the cache (sram_writes) and 

- number of reads from the cache (sram_reads) 

but now using a little bit more complex state machine. Based on these recorded values, 

simulator calculated hit rate, read/write ratio, power consumption in case cache was not used 

and power consumption in case it was used. The way these evaluation parameters were 

calculated was explained in [2]. Each benchmark was evaluated using 5 different sizes of cache: 

16B, 32B, 64B, 128B and 256B.  

4.1.2 Results 

Table 4.1 shows power saving percentage, hit rate and read/write ratio in the case of 

cache size 64B. Each evaluation parameter has the value obtained in [2] using a state machine 

with only 4 states (called basic here) and next to them, on the right, the results from the new 

simulator (improved) which uses 4 additional pseudo states. 

Table 4.1 – Simulation results for cache size 64B 

Benchmark 
Power savings [%] Hit rate [%] R/W ratio [%] 

basic improved Basic improved basic improved 

Coremark 19 36 29 41 1.02 2.09 

Dijkstra 2 16 14 21 0.68 0.85 

Emlcd 29 38 40 43 1.67 2.97 

Hex 50 61 62 68 2.98 3.98 

Preamp 42 62 54 68 2.89 8.07 

Primes 83 79 97 85 18.562 24.19 

Sha 73 81 86 89 8.86 16.46 

touch -1 43 8 48 0.58 3.48 
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It can be seen that by ignoring data transaction activities on the bus (not allowing them 

to break cache fill or read), the cache hit rate, R/W ratio and therefore the overall power savings 

get to grow significantly. Recording the same system properties for different cache sizes 

showed that power savings get to grow as the cache size increases but only up to a certain point 

(with a cache of around 32B). Increasing cache size over 32B did not show to bring any 

advantages into the system performance mainly because the loop sizes do not get to grow larger 

than 16 instructions at least in the case of the benchmarks used here.  

4.2 Hardware Implementation 

After the system was built, it was necessary to simulate its behaviour and prove it was 

working correctly which was done using VIVADO simulator. The design had to work properly 

both after implementation and after place and route of course, which was proven by 

behavioural, post synthesis and post implementation simulations.  

Next step was to program the board itself and verify the design was working properly 

in hardware as well. There was no easy and direct way of doing this on the board as it was done 

in simulation by checking values of processor registers, other variables and flags. Instead, the 

blinking diode was used as a stable proof the design was working well, as it was used in [18] 

as well. As in [18], a slowly blinking diode was used to verify the design was working properly, 

because a fast change could not be noticed by human eye at all. On the other hand, performing 

a VIVADO simulation of a slowly blinking diode was extremely time consuming and therefore 

was only used as a verification that the system was working correctly. All the power 

measurements and therefore all the power results shown in this report, refer to the case of a fast 

blinking diode because in this way the results can be compared and discussed without the need 

of time consuming simulations. 

Next two sections show different power results for different design settings: the first 

shows VIVADO power reports whereas the second shows measurements performed on the 

board in real time.  

 

4.2.1 VIVADO measurements 

This chapter presents the results gained form VIVADO DS simulation of the system: 

first the Methodology used to evaluate the system is explained and later on the results are listed 

and commented. 
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4.2.1.1 Methodology 

4.2.1.1.1 Low and high confidence of power reports 

As it was mentioned earlier in 2.4.5 , it is possible to measure power both after synthesis 

and after implementation, without toggling information, with toggling information for some 

signals or with complete toggling information for all nodes. Table 4.3 shows power reports for 

the case of Instruction Memory of size 32KB and the cache size of 64B. First column shows 

total power (dynamic and static) consumed by the system with a default toggle rate for all nodes 

(12.5 %). the second column had a specified toggling rate for the global_enable signal (toggle 

rate of 0% and static probability of 1 or 0, depending on the situation examined), whereas the 

third column shows post synthesis power report in the case of using a .saif (switching activity 

interchange format) file that was generated in a post-synthesis simulation which was using a 

testbench with the same clock frequency that was going to be used to perform the power report. 

Last three columns show those results but after implementation (place and route). Next to each 

power number there is a level of confidence stated: low for a report with default toggle rate and 

high when using a switching activity file obtained from corresponding simulation. 

In order to be able to get the feeling about how much power would be consumed in case 

of building the memory system not from FPGA fibre but with the technologies available to 

Silicon Labs, number of cache writes and reads as well as number of reads from main 

instruction memory were recorded in the simulation as well. All the numbers were recorded in 

the same simulation time slot of 125 us. The results are shown in Table 4.6. 

4.2.1.1.2 Test programs 

Testing setups were using Instruction Memory of size 32KB as in the case of Zero 

Gecko whereas different cache sizes (16B, 32B and 64B) and programs with different loop 

sizes (8 instructions, 16 instructions, 24 instructions, 32 instructions and 40 instructions) were 

used. This makes up total number of 15 different configurations to be synthesized and later on 

measured and recorded. Simulating different programs executing on the core meant that 

programs with different loop sizes should be loaded into the Instruction Memory. The easiest 

way this could be done was by modifying the program used in [18], which had 8 instructions 

in the loop, to obtain a greater loop size. Since the original C code had only one line in for loop 

part (counter ++), Figure 2.30, which corresponded to one assembly instruction (inc r1), the 

easiest way to enlarge the loop was to add more of these counter++ lines in C code (as many 

as the difference from the desired loop size and the original loop size was). These source codes 



62 

 

were used to create .coe files that were later on loaded into the Instruction Memory. Table 4.2 

shows how different program loop sizes were achieved. Same binaries (.coe files) were used in 

both VIVADO and real time measurements.   

 

Table 4.2- Source code modification impact on program loop size 

Loop size [instructions] Number of “counter++” lines in source file 

8 1 

16 9 

24 17 

32 25 

40 33 

 

4.2.1.2 Results 

Table 4.3 shows that, as expected, when having no information about the toggle rate and 

assuming default toggle rate for each signal, the power results get worse than in the case of 

knowing the exact toggle rates. 

 

Table 4.3 – Dynamic power reports after synthesis and after implementation using different 

toggling information (32KB Instruction Memory, 64B cache, loop size 8) 

        Instruction Memory (32KB) 1       2       3       4       5       6 

 

global_enable  = 0 

(no cache) 

dynamic 

power [mW] 

104 

 

103 

 

100 

 

117 115 

 

114 

 

report 

confidence 
low low high low low high 

 

global_enable = 1 

(with 64B cache) 

dynamic 

power [mW] 

108 

 

107 

 

106 

 

116 

 

114 

 

113 

 

report 

confidence 
low low high low low high 

 

 

Table 4.4 – Power report generation details for different measurement configurations  

Config Power report generation details 
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1 post synthesis power report with default toggle rate for all nodes 

2 post synthesis power report with exact toggle rate for global_enable signal 

3 post synthesis power report with proper .saif file as input 

4 post implementation power report with default toggle rate for all nodes 

5 post implementation power report with exact toggle rate for global_enable signal 

6 post implementation power report with proper .saif file as input 

 

The results also show that exact power consumption can be known only after place and 

route is performed and that a lot of dynamic power consumption (in this case around 12% and 

7%, depending on global enable signal value) gets consumed by the clock tree and wiring itself. 

Complete power report (with both static and dynamic power numbers), Figure 4.1, shows that 

most of the power consumption (around 69%) belongs to static power consumption which is 

reasonable considering that Zynq-7000 AP SoCs use 28nm High-K Metal Gate (HKMG) 

technology. It is well known that by lowering process node technology, leakage power becomes 

a dominant contributor to the overall power consumption. Therefore it becomes reasonable why 

a non-conventional process had to be used at these gate sizes. 

High-K Metal Gate (HKMG) process is a process where the capacitance of the gate oxide gets 

increased by using a dielectric with a higher κ than the one of a SiO2 that is normally used as a 

gate oxide.  

 

Figure 4.1- Complete power report, VIVADO layout  

(32KB Instruction Memory, 64B cache, loop size 8, cache enabled)  

 

But even with a sophisticated process like this, static power still dominates the overall power 

consumption and not much can be done to reduce it. That is why all the results in the following 

results will refer to dynamic power consumption only since the static one was fixed: 256mW. 
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All the power numbers reported from now on were obtained from post implementation power 

reports with high confidence (with usage of corresponding switching activity files).  

Having a look at the results from Table 4.3, it can be seen that in the case of enabling 

usage of loop cache there was a dynamic power saving of 1mW compared to the case when no 

cache was added into the system. Considering the overall power consumption of 114mW this 

saving of less than 1% was not something to be too much proud of. On the other hand, these 

results show the consumption of the entire system (with the core itself of course) so it was 

necessary to separate the consumption of the core form the consumption of the memory system 

alone. 

This was performed by synthesizing the core alone (with no Instruction Memory, no cache 

memory but with the rest of the system). The post implementation power report is shown in  

Figure 4.2. 

 

Figure 4.2- Power report of the system with no memory hierarchy  

 

Comparing this result of dynamic power consumption of 110mW with no memory hierarchy 

with 114mW using only Instruction Memory and 113mW when enabling use of cache, it is easy 

to conclude that memory system itself consumed either 3mW or 4mW depending if the cache 

was enabled or not. Saving of 1mW when enabling usage of cache now becomes 25% which is 

a result that cannot be neglected.  

 

Figure 4.3 – Design timing repor 
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Another thing worth noting at this point is the design post implementation timing report 

which was checked every time to make sure there were no timing violations (positive TNS and 

WNS) and that all constraints were met. This is clearly shown in Figure 4.3. 

In order to show how different cache sizes and different loop sizes influence power 

reports, 15 different configurations were synthesized and simulated. Configuration settings are 

shown in Table 4.5 whereas the power reports are shown in Table 4.6. 

Table 4.5 – Different testing configurations 

Configuration Loop size [instructions] Cache size [B] 

1 8 16 

2 8 32 

3 8 64 

4 16 16 

5 16 32 

6 16 64 

7 24 16 

8 24 32 

9 24 64 

10 32 16 

11 32 32 

12 32 64 

13 40 16 

14 40 32 

15 40 64 

 

Table 4.6 – Power and statistic reports for different system configurations 

 

Dynamic 

power 

[mW] 

cache 

reads 

cache 

writes 

main 

reads 
R/W ratio Hit rate 

1 113 790 8 20 98.75 97.53 

2 113 790 8 20 98.75 97.53 

3 113 790 8 20 98.75 97.53 

4 114 0 0 810 - 0 

5 113 782 16 28 48.875 96.54 
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6 113 782 16 28 48.875 96.54 

7 114 0 0 810 - 0 

8 114 0 0 810 - 0 

9 113 774 24 36 32.25 95.55 

10 114 0 0 810 - 0 

11 114 0 0 810 - 0 

12 113 766 32 44 23.9375 94.56 

13 114 0 0 810 - 0 

14 114 0 0 810 - 0 

15 114 0 0 810 - 0 

 

As it can be seen from Table 4.6, there was not too much difference in power numbers 

in case of using different configurations. This can be explained by the fact that the VIVADO 

resolution goes as far as 1mW and the configuration changes are sometimes in order of couple 

of bytes which brings power changes that are more subtle than 1mW and cannot be recorded 

by the simulator. Furthermore, although utility reports showed that Instruction Memory was 

built from BRAM blocks and cache memory merely from flip flops (LUTs), there was no notion 

of the power ratio between a read from a BRAM and a read from a flip flop. This is why writes 

and reads numbers can help getting the feeling about real power consumption if the hardware 

was synthesized as an ASIC and not from FPGA fibre. What can be seen from power reports 

in Table 4.6  is that when a loop was larger than the cache size no cache writes and therefore 

no cache reads were performed at all and the power consumption of the system in that case was 

the same as in the case when cache was globally disabled, i.e. not existed at all. 

Cache reads and writes, as well as hit rates and R/W ratios show very good use of the 

TLC technique (around 98% of power savings) but it should not be forgotten that the test 

programs used here were completely synthetically created and that the reads and writes were 

recorded for the period when only one loop was executed over and over again. Future work 

could include the use of test programs that would reflect more truly real embedded program 

execution environment. 
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4.2.2 Real time measurements 

Apart from performing power estimations using VIVADO simulator, system was 

evaluated in real time as well. For those purposes the system was synthesized on a Xilinx ZC702 

evaluation kit which will be briefly introduced in one of the next sections. 

4.2.2.1 Methodology 

This section explains which hardware the system was synthesized on, what kind of 

software support was needed to perform the power measurements and the rest of the evaluation 

system setup. Following [18] it was clear that, apart from the zc702, it was necessary to order 

the Texas Instruments USB-TO-GPIO Interface, download and install the TI Fusion Digital 

Power Designer GUI. Evaluation kit and the GUI will be briefly introduced in the next sections.  

4.2.2.1.1 Evaluation Kit: zc702 

For the purposes of system verification and testing Xilinx ZC702 evaluation board for 

XC7Z020 AP SoC was used. It provides features that can commonly be found in most 

embedded systems, such as DDR3 Component Memory, HDMI Codec, I2C bus, USB to UART 

interface, tri-mode Ethernet PHY…  Before using the board it was necessary to verify its proper 

functioning by performing the Built In Self Test as described in [24] that came loaded into the 

Quad SPI Flash memory on the board (tests UART, I2C, Timer, DDR3 Memory, LEDs, 

Watchdog Timer, SWITHES etc.) The board layout is shown in Figure 4.4 where the elements 

that were used in this project are marked with blue boxes: DIP switches, tasters, LEDs, the 

power management system and the Zynq XC7Z020 AP SoC of course. One of the reasons why 

this board was chosen to be used are “the power regulators and a PMBus compliant system 

controller from Texas Instruments it uses to supply core and auxiliary voltages.” [20] and the 
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possibility to easily monitor and measure those voltages  through a GUI from TI called Fusion 

Digital Power Designer. 

The whole ZC702 hardware system is built around Zynq-7000 XC7Z020-1CLG484C 

AP SoC which consists of an SoC integrated processing system (PS) and programmable logic 

(PL) on a single die. “The PS integrates two ARM Cortex-A9 MP Core processors, AMBA 

interconnect, internal memories, external memory interfaces and peripherals including USB, 

Ethernet, SPI, SD/SDIO, I2C, CAN, UART and GPIO.“[20] 

The main advantage of Zynq-7000 family is the flexibility and scalability of an FPGA combined 

with performance, power and ease of use associated with ASIC and ASSP. ”The integration of 

the PS with the PL provides better performance than the case of two chips used due to their 

limited I/O bandwidth, loose-coupling and power budgets.”[25] All the devices from Zynq-

 

Figure 4.4 - zc702 Evaluation Kit board layout [20] 
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7000 family include the same Processing System although the Programmable Logic and I/O 

Resources differ from device to device.  Since in this project, the PS was not used at all: all the 

system (including the core) was written in HDL and synthesized using only PL features of the 

device, such as Block RAMs for synthesizing Instruction memory, Clock Management to adapt 

200MHz oscillator on the board to the system frequency of 10 MHz and of course CLBs with 

LUTs to synthesize the rest of the system logic. The system input interface as well as status 

signals that enabled communication with the user are shown in Figure 4.5 (this is the part of the 

system marked with a blue frame in Figure 4.4) 

 

Figure 4.5 - System user interface and output status (LEDs, switch and push buttons) 

 

Evaluation kit has several power domains as shown in Figure 4.6. The board uses power 

regulators and a PMBus (Power Management Bus) compliant system controller from Texas 

Instruments to supply core and auxiliary voltages. Apart from 12 V input supply that powers 

the board, there are 5 switching regulators and 1 linear regulator which generate different 

voltages required for different power domains. Voltage outputs of these regulators are 

controlled by three TI power controllers and it is possible to monitor them via a GUI called 

Fusion Digital Power Designer. 
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4.2.2.1.2 TI Fusion Digital Power Designer (FDPD) 

FDPD is a GUI specially designed to monitor 10 different rails on the board. Each rail 

supplies particular subset of components in a corresponding power domain. List of components 

each power rail supplies can be found in [26]. It is possible to monitor voltage, current, power 

and temperature of each node in real time: see waveforms in separate windows as well as save 

the measurements in a .csv file. 

Saving measurements in .csv file not only does give possibility to process this data later in a 

desired way but it also gives opportunity to save data in a higher resolution than it can be shown 

in the figures drawn by the GUI itself (voltage resolution of a mV, current resolution of 100uA, 

power resolution of 100nW). An example of saved measurements is shown in Figure 4.7 where 

four different rails (their voltages, currents and power) are monitored by the same device (TI 

UCD9248). There are two more files with readings of the other two power management devices 

that monitor other 6 rails that are of importance for the supply system of this evaluation board. 

 

Figure 4.7 – Format of a .csv file with real time measurements saved by TI FDPD 

 

Each measurement is recorded at a particular time stamp contained in the first column. It can 

be noticed that a new reading is available each 500ms which is the polling interval of the GUI 

Figure 4.6 - Power domains on the ZC702[26] 
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itself. Voltage and current measurements show the current values at a particular time stamp 

whereas power values show RMS value of the power in time interval between this and the 

previous reading. This means that total power is calculated by summing up these particular 

values. 

4.2.2.2 Results 

As it was mentioned, the way to verify the core was running the program code on the 

hardware, was to observe the behaviour of the LED called detector in . In order for human eye 

to detect the change, the blinking period had to be long (around 10s). Similar principle was used 

to check whether the measurements on the board made sense: board was programmed to blink 

diode very slowly and measurements were recorded separately for the period of diode being on 

and diode being off. In case of a diode being ON, measurements should show higher power 

consumption since LED power consumption is quite significant: around 90mW according to 

[27]. To make this change even more visible the author programmed 4 LEDs to be tuned on 

and off. Total power readings (sum of power consumed by all the rails) was shown to be higher 

in the case when LEDs were off than when they were on which made no sense at all. However, 

the power measurements for a particular rail, VCC3V3, that is used to power up the LEDs, were 

smaller in case of LEDS off: 22.4436mW than in case of LEDs being on: 22.8555mW. The 

difference is around 400mW which is quite close to what four diodes should consume (around 

360mW) but it still stays unclear why total power consumption is smaller in case of LEDs being 

on. These results are summed up in Table 4.7. 

 

Table 4.7 – Total and Vcc3V3 power consumption for 4 LEDs ON and OFF 

 Total power [W] VCC3V3 power[mW] 

4 LEDs on 1.5584 680.8555 

4 LEDs off 1.5612 282.4436 

 

 Another type of measurement was conducted to try to get more information 

about the system: voltages and currents of the system were monitored and recorded while LEDs 

were first on for 10s then off for 10s and repeated that way for 4 times (7 transitions from on to 

off and off to on). Voltages, power and currents were then plotted in MATLAB and the results 

are shown in Figure 4.8 - 4.10. 
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Figure 4.8 – Real time voltage measurements for LEDs periodically ON and OFF (Matlab) 

  

 

Figure 4.9 – Real time power consumption  for LEDs periodically ON and OFF 
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Figure 4.10 – Real time current measurements for LEDs periodicallt ON and OFF 

 

Total number of samples in time was 160 (each state of diodes recorded in 20 samples). 

What was expected to be seen in the figures (only 9 rails shown for the sake of simplicity, the 

last one shows no more information) was that there was a current/voltage drop/rise for different 

states of the system since according to [27], one LED drew 30mA. As it can be seen from Figure 

4.10 there were no falls/rises in values that would have helped drawing conclusions. 

Nevertheless, systems with different cache sizes were configured and tested while 

running the original code with the loop of size 8 instructions, with enabled use of cache and 

disabled use of cache (controlled by the switch on the board) and the energy consumption in a 

particular time slot is shown in Table 4.8. 

 

Table 4.8 – Total power consumption (loop size: 8 instructions) 

 16B 32B 64B 

No cache 1.3642 1.3722 1.3598 

With cache 1.4037 1.4090 1.5297 
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These results show that when using bigger cache, energy consumption gets slightly 

higher in the case of running the same code which is quite clear. Power numbers are now I order 

of 1.5 W which is quite different than the case of VIVADO power reports (around 300mW) 

which is reasonable taking into account that VIVADO does not take into account the board 

system, but only the Zynq device consumption. 

 Unexpectedly, the results show that power consumption is higher in the case of 

including cache into memory hierarchy than not having it as part of the system at all. Although 

this is not very plausible taking into account the idea and goal of reducing power consumption 

by adding cache into the system, this result could be explained if the ratio between RAM and 

register read on this particular FPGA fibre was measured and maybe concluded that it was 

around 1:1 which would not be the case if the system was synthesized as an ASIC. 

Author tried to perform these measurements in the explained experimental setup but since the 

GUI polling (measurement) interval was 500ms and the core was running on 10 MHz (100ns), 

there was no way of knowing power consumption of separate executed instructions and 

therefore no way of measuring RAM and register access power. Another important thing that 

could be checked is whether the RAM generated with IP generator and having an enable signal 

is actually switching its interior logic (mostly consisting of big comparators) and signals 

although not changing its output while disabled or disabling it means really turning of all the 

logic as well. Most probably latter is true but it would not be a bad idea to check this.   
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5 Conclusion and Future Work 

5.1 Conclusion 

There are many different caching techniques that are believed to improve instruction 

fetch energy of microcontrollers, some of them were explored and explained in [2]. One of the 

techniques, called Tight Loop Cache, was chosen to be evaluated as the most promising and 

easy to incorporate into a working system. The technique was implemented both in software 

(Python) and hardware (Verilog), evaluated by counting parameters close to meanings of cache 

hits and misses and by calculating, estimating and measuring energy consumption. 

Software simulations showed that power savings with the use of loop cache can go as 

far as 80% (taking into account only the memory system). These measurements were performed 

by counting reads and writes into the cache and main instruction memory neglecting power 

consumption of the control logic behind the system. Such good potential savings served as 

initial encouragement for the system to be implemented in hardware so that the results can be 

checked and verified.  

It was proven that the principle can be integrated within a system that uses ARM Cortex-

M0 which does not offer any advanced information, such as branch status of the instructions in 

different pipeline stages. This leads to a conclusion that the technique could be easily integrated 

into any modern system. Technique was first built in software, taking into account only memory 

access powers (neglected the control power consumption), where simulations were performed 

in order to prove the feasibility of the system. Excessive simulation of the hardware 

implementation showed the principle can be successfully applied to any modern MCU system. 

Power optimization techniques of VIVADO synthesis and place and route tools were exploited 

to their maximum and showed that the use of the technique could bring up to 25% energy 

savings. 

It was shown that even a small modification of RTL design of a module (Controller in 

this case) can lead to a completely different implementation: different utility reports and 

therefore different power consumptions. Smart changes in the design at this level can bring 

much more savings than changes in synthesis and implementation setup. Different synthesis 

and implementation setup options offered by VIVADO DS and guided by power optimization 

principles were explored deeply and their influence on final power reports was shown. 
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Real time measurements brought a lot of confusion and doubts that are tightly related to 

the initial system setup. Some of these issues were mentioned at the end of last Chapter, such 

as ratio of power of memory access to a bit RAM and a register bit. In the technology available 

at Silicon Labs, this ratio goes as far as 1:10 which would definitely bring more savings since 

this ratio in the FPGA fibre is believed to go as close to 1:1.  

Main conclusion that can be made from all the results discussed is that the initial system 

hardware implementation was not set in a best possible way to achieve correct power saving 

numbers: FPGAs are usually used only to build prototypes and prove principles of operation. 

This was successfully performed: a working design that is using a small cache to store 

instructions from small loops was built and even brought around 25% power savings into the 

memory hierarchy system. 

 

5.2 Future Work 

As it was discussed in the previous section, the initial resources that were available for 

the system to be implemented on (FPGA fibre is not as much power optimized as possible) 

were not optimally chosen. It is believed that if the design gets implemented as an ASIC with 

completely configurable and controllable synthesis and place and route tools, it would bring 

more power savings than in the case of using FPGA.  

Another important thing noticed when analysing benchmarks used as inputs into the 

software simulator was that it happened quite often that a loop was executed many times, which 

was followed by a quick sequential execution and then the return to the same loop execution. 

In the case of the TLC implemented in this project, there was no information about which loop 

the cache was filled with so it happened quite often that new writes were performed into the 

loop cache although it was already filled with the correct data. A possible modification to the 

Controller design would be to allow it directly enter ACTIVE state from IDLE if it was 

concluded that the cache was already filled with the right loop instructions. This way, 

unnecessary cache writes (costly FILL state) would be avoided. 

Chapter 3.2.1.2 mentioned two possible implementations of the Controller but this 

project involved design of only one of the principles. It would be interesting to implement the 

second approach as well and compare the results. 

Another idea that was analysed roughly but could be considered as future work was to 

deal with conditional branches inside the loop as well and to store both situations: branch taken 
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and not taken inside the cache in different places and base on the situation chose to read from 

different parts of the cache. This idea still sounds too costly regarding control hardware 

implementation but it is worth exploring as well. 

Real time measurement potentials of the ZC702 were not explored thoroughly since 

there was not enough time and nobody at the Department ever performed these measurements 

before. This report gives some basic system setup to for the measurements to be done but it 

does not explain the results completely, That is why a good next step would be to analyse power 

domains on the board and see how the use of different domains influences the measurements. 

This would bring better understanding of the measurements reported here. 
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Appendix A 

Code A.1 – Software Implementation of TLC in Python  

""" 

Created on Sun Mar 29 05:03:07 2015 

 

@author: Dell 

""" 

# -------------------------------------------------------------------------

---- 

 

import sys 

import csv 

 

def Simulate(dataSet, cache_size ): 

####### states: 

#IDLE:         0 

#PSEUDO_IDLE:   1 

#COUNT:         2 

#PSEUDO_COUNT:  3 

#FILL:          4 

#PSEUDO_FILL:   5 

#ACTIVE:        6 

#PSEUDO_ACTIVE: 7 

       

  readpwrs = {} 

  writepwrs = {} 

  flashpwr = 180  

   

  readpwrs[16] = 1.875 

  writepwrs[16] = 2.5 

  readpwrs[32] = 3.75 

  writepwrs[32] = 5 

  readpwrs[64] = 7.5 

  writepwrs[64] = 10 

  readpwrs[128] = 15 

  writepwrs[128] = 20 

  readpwrs[256] = 17 

  writepwrs[256] = 24 

  readpwrs[384] = 19 

  writepwrs[384] = 28 

  readpwrs[512] = 21 

  writepwrs[512] = 30 

  readpwrs[640] = 23 

  writepwrs[640] = 34 

  readpwrs[768] = 25 

  writepwrs[768] = 37 

  readpwrs[896] = 27 

  writepwrs[896] = 41 

  readpwrs[1024] = 28 

  writepwrs[1024] = 44 

  readpwrs[1536] = 35 

  writepwrs[1536] = 42 

  readpwrs[2048] = 37 

  writepwrs[2048] = 46 

  readpwrs[4096] = 37 

  writepwrs[4096] = 46 

  sram_reads  = 0 
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  sram_writes = 0 

  valid = 0 

  hit_rate = 0 

  rw_ratio = 0 

  old = 0 

  old_old = 0 

  new = 0 

  position = 0 

   

 

  state = 0 

 

  cache = [] 

  counter = 0 

  loop_size = 0 

  times_executed = 0 

  firsts=[] 

  sbbs=[] 

  loop_sz=[] 

  inst_no=[] 

  times_ex=[] 

  sbb = 0 

  first = 0 

  nextstate = 0 

  flash_reads = 0 

   

 

  # Open dataSet 

  try: 

    file = open(dataSet,'r') 

  except: 

    sys.stderr.write('Could not open dataSet\n') 

    sys.exit() 

 

  # Skip the first line in file (header) 

  file.readline() 

 

  # -----------------------------------------------------------------------

---- 

  # Each line contains one address 

 

  for line in file: 

    position=position+1 

    # Split out the address, ignore time for now 

    try: 

      [timeString, addrHex ] = line.split(',') 

    except: 

      sys.stderr.write('Bad: '+line+"\n") 

      continue 

 

    try: 

      a = int(addrHex, 16) 

      #print a 

      if (a > 0) and (a < 536870911): 

        # don't save idles and dummy values as last address 

        valid = valid + 1 

        old_old = old 

        old = new 

        new = a 

      else: 

        # Ignore idles 
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        continue 

    except: 

      sys.stderr.write('Could not convert %s to int\n' % addrHex) 

      continue 

   

    if (valid == 1): 

        old_old = a 

        old = a 

        new = a 

 

    if state == 0: # idle state 

        cache = []  

        if (new == old+4): # idle => idle 

            nextstate = 0 

            flash_reads = flash_reads + 1 

        else: # idle => count 

            if (new < old): 

                nextstate = 2 

                sbb = old 

                first = new 

                counter = 1 

                flash_reads = flash_reads + 1 

            else: # idle => pseudo_idle 

                nextstate = 1 

                flash_reads = flash_reads + 1 

             

    if state == 1: # PSEUDO_IDLE 

        if (new == old + 4) or (new == old_old + 4): # pseudo_idle => idle 

            old = old_old  

            nextstate = 0 

            flash_reads = flash_reads + 1 

        else: 

            if (new < old): # pseudo_idle => count 

                nextstate = 2 

                sbb = old 

                first = new 

                counter = 1 

                flash_reads = flash_reads + 1 

            else: # stay pseudo_idle 

                nextstate = 1  

                flash_reads = flash_reads + 1 

 

                 

    if state == 2: # COUNT 

        if (new == old + 4) and (new <= sbb):  

            nextstate = 2  # stay in count 

            counter = counter + 1 

            flash_reads=flash_reads + 1 

        else: 

            if (new > old + 4): 

                nextstate = 3 # count => pseudo_count 

                flash_reads=flash_reads + 1 

            else: 

                if (new == first) and (old == sbb) and (counter <= 

cache_size): # count => fill 

                    nextstate = 4  

                    sram_writes = sram_writes + 1 

                    loop_size = counter 

                    counter = 1 

                    cache. append (new) 

                    flash_reads = flash_reads + 1 
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                else: # count => idle  

                    nextstate = 0 

                    flash_reads=flash_reads + 1 

                    counter = 0 

         

    if state == 3: # PSEUDO_COUNT 

        if (new == old_old + 4): # pseudo_count => count 

            old = old_old 

            counter = counter + 1  

            nextstate = 2 

            flash_reads = flash_reads + 1 

        else: 

            if (new == first) and (old_old == sbb) and (counter <= 

cache_size):  # pseudo_count => fill 

                nextstate = 4  

                sram_writes = sram_writes + 1 

                old = old_old 

                loop_size = counter 

                cache. append (new) 

                flash_reads = flash_reads + 1 

            else:  # pseudo_count => idle 

                nextstate = 0 

                flash_reads = flash_reads + 1 

                counter = 0 

                 

    if state == 4: # FILL 

        if (new == old + 4) and (new <= sbb) and (counter < loop_size) :             

            nextstate = 4   # fill => fill             

            counter = counter + 1 

            sram_writes=sram_writes + 1 

            cache. append (new) 

            flash_reads = flash_reads + 1 

        else: 

            if (new > old + 4): # fill => pseudo_fill  

                nextstate = 5  

                flash_reads=flash_reads + 1 

            else: 

                if (new == first) and (old == sbb) and (counter == 

loop_size):  # fill => active  

                    nextstate = 6  

                    sram_reads = sram_reads + 1 

                    counter = 1 

                    loop_sz.append(loop_size) 

                else: 

                    nextstate = 0 

                    flash_reads=flash_reads + 1 

                    counter = 0 

                 

    if state == 5: # PSEUDO_FILL 

        if (new == old_old + 4) and (counter < loop_size): # pseudo_fill=> 

fill 

            old = old_old 

            nextstate = 4   

            counter = counter + 1 

            flash_reads = flash_reads + 1 

            sram_writes = sram_writes + 1 

            cache. append (new) 

        else: 

            if (new == first) and (old_old == sbb) and (counter == 

loop_size): # pseudo_fill => active 

                nextstate = 6  
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                sram_reads = sram_reads+1 

                old = old_old 

                counter = 1 

                loop_sz.append(loop_size) 

            else: # pseudo_fill => idle 

                nextstate = 0 

                flash_reads = flash_reads + 1 

                counter = 0 

                 

    if state == 6: # ACTIVE 

        if (new == old + 4) and (new <= sbb): # stay in active 

            sram_reads=sram_reads + 1 

            nextstate = 6 

            counter = counter + 1             

            if (new not in cache): # sanity check 

                  print("1. Tried to read from cache, but value not there") 

                  print new 

                  print cache 

                  sys.exit()             

        else: 

            if (new == first) and (old == sbb) and (counter == loop_size): 

# stay in active but it is the begining of the loop again 

                sram_reads=sram_reads + 1 

                nextstate = 6 

                counter = 1 

                times_executed = times_executed + 1 

                if (new not in cache): # sanity check 

                      print("1. Tried to read from cache, but value not 

there") 

                      print new 

                      print cache 

                      sys.exit()                   

            else: 

                if (new > old + 4):   # ACTIVE => pseudo_active  

                    nextstate = 7  

                    flash_reads=flash_reads + 1 

                else:    # ACTIVE => idle 

                    nextstate = 0 

                    flash_reads=flash_reads + 1 

                    counter = 0 

                    loop_sz.append(loop_size) 

                    times_ex.append(times_executed) 

                    sbbs.append(sbb) 

                    firsts.append(first) 

                    inst_no.append(position) 

 

    if state == 7: # PSEUDO_ACTIVE 

        if (new == old_old + 4) and (new <= sbb) and (counter < loop_size 

):  # pseudo_active => active 

            old = old_old 

            nextstate = 6 

            counter = counter + 1 

            sram_reads = sram_reads + 1       

        else: 

            if (new == first and old_old == sbb) and (counter == loop_size 

):   # pseudo_active => active but begining of the loop again           

                nextstate = 6 

                counter = 1 

                sram_reads = sram_reads + 1 

                times_executed = times_executed + 1 

            else:   # pseudo_active => idle 
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                nextstate = 0 

                flash_reads=flash_reads + 1     

                counter = 0  

                loop_sz.append(loop_size) 

                times_ex.append(times_executed) 

                sbbs.append(sbb) 

                firsts.append(first) 

                inst_no.append(position) 

                 

    state = nextstate 

  file.close() 

 

     

  power_nocache=(flash_reads + sram_reads)*flashpwr 

  power_withcache=flash_reads*flashpwr + sram_reads*readpwrs[cache_size*4] 

+ sram_writes*writepwrs[cache_size*4] 

  hit_rate=sram_reads/float(flash_reads + sram_reads) 

  rw_ratio=sram_reads/float(sram_writes) 

  x=power_withcache/float(power_nocache) 

  power_savings = 1.0 - x   

  #result='results_final_' + cache_size + dataSet 

  result='results_final_' + str(cache_size) + dataSet 

  with open(result, 'wb') as result_file:     

    csv_writer = csv.writer(result_file) 

    for row in range (1): 

 

       csv_writer.writerow([sram_writes] + ['SRAM Writes:']) 

       csv_writer.writerow([sram_reads] + ['SRAM Reads:']) 

       csv_writer.writerow([flash_reads] + ['Flash reads:']) 

       csv_writer.writerow([' ']) 

       csv_writer.writerow(['Loop size:'] + loop_sz) 

       csv_writer.writerow(['Times executed:'] + times_ex) 

       csv_writer.writerow(['First:'] + firsts) 

       csv_writer.writerow(['Sbb:'] + sbbs) 

       csv_writer.writerow(['Last instruction of the loop (its row in 

dataset) read from SRAM:'] + inst_no) 

       csv_writer.writerow([cache_size] + ['Cache size'] ) 

       csv_writer.writerow([power_nocache] + ['Total Power With No Cache'] 

) 

       csv_writer.writerow([power_withcache] + ['Total Power With Cache'] ) 

       csv_writer.writerow([power_savings] + ['Power Savings'] ) 

       csv_writer.writerow([hit_rate] + ['Hit Rate:'] ) 

       csv_writer.writerow([rw_ratio] + ['RW Ratio'] ) 

  result_file.close()                 

 

datasets = ["coremark.csv", "primes.csv", "dijkstra.csv", "emlcd.csv", 

"preamp.csv", "sha.csv", "touch.csv"] 

 

#datasets = ["coremark.csv"] 

 

for d in datasets: 

  print d 

  for size in [4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]: 

      Simulate(d, size) 
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Appendix B 

Code B.1 – Loop Cache Controller Verilog code 

 

module Loop_Cache_Controller 

( 

input wire clk, 

input wire n_reset, 

input wire global_cache_enable, 

input wire htrans, 

input wire hprot, 

input wire [12:0] new_address, 

output reg main_cache, 

output reg cache_write_enable 

); 

 

parameter cache_size=16; // size of the cache in words 

localparam IDLE=0, FILL=1, ACTIVE=2; 

 

(* mark_debug = "true" *) reg [1:0] present_state, next_state; 

(* mark_debug = "true" *) reg prot_trans; 

(* mark_debug = "true" *) reg [12:0] branch; 

(* mark_debug = "true" *) reg [12:0] branch_target; 

(* mark_debug = "true" *) reg [12:0] previous_address; 

(* mark_debug = "true" *) reg loop_detector; 

 

 

always @(posedge clk or negedge n_reset) 

begin 

    if (~n_reset) 

        previous_address<=13'b0000000000000; 

    else 

        begin 

            if (global_cache_enable) 

                previous_address<=new_address; 

            else 

                previous_address<=13'b0000000000000; 

        end 

end 

 

 

always @(posedge clk or negedge n_reset)  

begin 

    if (~n_reset) 

        present_state <= IDLE; 

    else 

        present_state <= next_state;  

end 

 

always @(posedge clk or negedge n_reset) 

begin 

if (~n_reset) 

    begin    

    branch<= 13'b0000000000000; 

    branch_target<= 13'b0000000000000; 

    end 

else 

    if (loop_detector) 
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        begin 

        branch<=previous_address; 

        branch_target<=new_address; 

        end 

end 

 

always @(*) 

begin 

next_state=present_state; 

main_cache=1'b1; 

cache_write_enable=1'b0; 

loop_detector=1'b0; 

prot_trans=1'b0; 

if (global_cache_enable) 

    begin 

    prot_trans = ~hprot & htrans; 

    case (present_state) 

        IDLE: begin 

            cache_write_enable = 1'b0; 

            main_cache = 1'b1;     

            if  (prot_trans && ($signed(previous_address-new_address) <= 

(cache_size-1)) && ($signed (previous_address-new_address) > 1)) 

                begin 

                next_state = FILL; 

                loop_detector=1'b1; 

                end 

            else 

                next_state = IDLE; 

            end  

       

        FILL: begin  

              if (~hprot) 

                begin 

                if ((new_address==branch_target) && 

(previous_address==branch)) 

                    begin 

                    next_state = ACTIVE;   

                    main_cache = 1'b0;   

                    cache_write_enable=1'b1; 

                    end 

                else 

                    begin      

                    if (((new_address==previous_address) || 

(new_address==previous_address+1)) && (new_address<=branch))  

                        begin 

                        next_state = FILL; 

                        cache_write_enable=1'b1; 

                        main_cache = 1'b1; 

                        end 

                    else 

                        begin 

                        next_state = IDLE; 

                        cache_write_enable=1'b1; 

                        main_cache = 1'b1; 

                        end 

                    end   

                end 

              else 

                begin 

                cache_write_enable=1'b1; 

                main_cache = 1'b1; 
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                next_state = IDLE;           

                end 

              end 

 

 

        ACTIVE: begin          

                if (~hprot) 

                    begin  

                    if (new_address<=branch && 

((new_address==previous_address)|| (new_address==previous_address+1)  || 

(new_address==branch_target && previous_address==branch))) 

                        begin 

                        next_state = ACTIVE; 

                        cache_write_enable=1'b0; 

                        main_cache = 1'b0; 

                        end 

                    else 

                        begin 

                        next_state = IDLE; 

                        cache_write_enable=1'b0; 

                        main_cache = 1'b1; 

                        end 

                    end 

                else 

                    begin 

                    next_state = IDLE; 

                    cache_write_enable=1'b0; 

                    main_cache = 1'b1;  

                    end 

                end 

                 

    endcase 

    end 

else // default values for the case of global_enable=0 

    begin 

    cache_write_enable=1'b0; 

    main_cache=1'b1; 

    next_state = IDLE; 

    prot_trans=1'b0; 

    loop_detector=1'b0; 

    end 

end 

endmodule 

 

 

Code B.2 - Loop Cache Verilog code 

 

module loop_cache #(parameter ADDRWIDTH=4) 

( 

input wire clk, 

input  wire n_reset, 

input wire htrans, 

input wire enable_cache, 

input wire write_enable, 

input wire [31:0] data_in, 

input wire [ADDRWIDTH-1:0] address, 

output  reg [31:0] data_out 

); 
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integer i; 

(* mark_debug = "true" *) reg htrans_a; 

(* mark_debug = "true" *) reg [ADDRWIDTH-1:0] address_a; 

(* mark_debug = "true" *) reg [31:0] cache [2**ADDRWIDTH-1:0]; 

                  

//ADDRESS phase  

always @(posedge clk ,negedge n_reset) 

begin 

    if (~n_reset) 

        begin 

        address_a <= 4'b0000; 

        data_out<= 32'h00000000; 

        for (i=0; i<2**ADDRWIDTH; i=i+1) 

        cache[i] <= 32'h00000000; 

        end 

    else 

        begin 

        htrans_a<=htrans; 

        address_a<=address; 

        if (write_enable&& htrans_a) 

            cache[address_a] <= data_in;// fill 

 

        if (enable_cache && htrans)  

            data_out<=cache[address]; 

        end 

end 

endmodule 

 


