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Summary

Modern communication systems with advanced modulation schemes have increased the
linearity demands of power amplifiers. This thesis investigates the use of behavioral mod-
eling of power amplifiers to perform digital predistortion on a GaN PA from Cree intended
as the transmitter PA in an X-band MIMO-OFDM radar system currently in development
by the Norwegian Defence Research Establishment (FFI). Predistortion is a technique
where the non-linear distortion of the PA is ideally removed by introducing a unit with
the inverse distortion characteristics of the PA. The cascade of the predistorter and the PA
thus achieves a linear input/output relationship. By linearizing the PA there is potential
for higher power outputs without suffering too much distortion which also leads to an
efficiency benefit.

In order to perform digital predistortion linearization, a number of behavioral models based
on the Volterra series have been used. Behavioral models are mathematical models de-
scribing the relationship between the PA input and output. They require no knowledge
about the physical structure of the PA, which is advantageous as this information rarely is
available. Three models have been evaluated; the memoryless complex power series (CPS)
model, the Wiener model and the memory polynomial (MP) model. The models are imple-
mented in MATLAB and used to describe the behavior of two radio frequency power am-
plifiers with different operating frequencies, the first being a PA designed at NTNU based
on the Cree 10W GaN transistor, and the second being the Cree CMPA5585025F GaN
PA intended as the transmitter PA in the radar system. Characterization measurements
are performed using a 16-QAM signal and by using the indirect learning architecture, the
digital predistortion coefficients are calculated and applied to the input signal. Lineariza-
tion is then performed on both a 16-QAM signal and an OFDM signal. The results show
that the adjacent-channel-power ratio (ACPR) and the error-vector magnitude (EVM) of
the 16-QAM signal can be reduced by 15 dB and 5% respectively for the 10W PA at the
1-dB compression point, but only an ACPR reduction of 5 dB was achieved for the OFDM
signal. Linearization of the 25W PA only received an ACPR and EVM reduction of 6 dB
and 3% respectively for the 16-QAM signal, however the ACPR reduction for the OFDM
signal surpassed this, achieving more than 10 dB reduction. The reason for the poorer
linearziation performance of the 25W PA was found to be large memory effects leading to
less accurate behavioral modeling, even for models incorporating memory. For both of the
PAs and signals the linearization performance was quickly reduced as the output power
was increased. Thus for higher power outputs, there are less linearization benefits. The
results lead to a conclusion that there are not very clear benefits of implementing digital
predistortion in the radar system.
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Sammendrag

Moderne kommunikasjonssystemer med avanserte modulasjonsteknikker har økt linearitet-
skravene til effektforsterkere. I denne rapporten brukes matematiske modeller kalt be-
havioral models til å beskrive oppførselen til, og utføre digital predistorsjon på en GaN
effektforsterker (PA) fra Cree. PAen er tenkt å brukes på senderutgangen i et X-bånds
MIMO-OFDM radarsystem under utvikling av Forsvarets forskningsinstitutt (FFI). Pre-
distorsjon er en lineariseringteknikk hvor den ulineære distorsjonen som innføres av PAen
kanselleres av en blokk som har den inverse distorsjonkarakteristikken til PAen. Kaskaden
av denne blokken sammen med PAen gir da ideelt sett et lineært forhold mellom inngang
og utgang. Linearisering av PAen gir potensial for at utgangseffekten kan økes uten at det
innføres for mye distorsjon, noe som også fører med seg effektivitetsfordeler.

For å utføre digital predistorsjon har behavioral modeller basert på Volterra-rekkene blitt
brukt. Disse matematiske modellene beskriver forholdet mellom PAens inngangs- og
utgangssignaler. De krever således ingen kunnskap om PAens fysiske struktur og opp-
bygning, noe som er fordelaktig da slik informasjon sjeldent er tilgjengelig. Tre mod-
eller har blitt evaluert; memoryless complex power series-modellen, Wiener-modellen
og memory polynomal-modellen. Disse er implementert i MATLAB og deretter brukt
til å beskrive oppførselen til to effektforsterkere med forskjellige frekvensområder. Den
første er designet ved NTNU og er basert på Crees 10W GaN transistor, og den andre er
Crees CMPA5585025F PA tenkt som senderforsterkeren i radarsystemet. Karakteriser-
ingsmålinger er gjort med et 16-QAM-signal og ved å bruke den indirekte læringsarkitek-
turen, kalkuleres predistorsjonskoeffisientene og påtrykkes inngangssignalet. Linearis-
eringen er gjort både på et 16-QAM-signal og et OFDM-signal. Resultatene viser at
adjacent-channel-power forholdet (ACPR) og error-vector magnitude (EVM) for 16-QAM-
signalet kan reduseres med henholdsvis 15 dB of 5% for 10W PAen ved 1-dB kompresjon,
men bare en ACPR-reduksjon på 5 dB ble oppnådd på OFDM-signalet. Linearisering af
25W PAen oppnådde bare en ACPR- og EVM-reduksjon på henholdsvis 6 dB og 3%
ved 1-dB kompresjon for 16-QAM-signalet, men ACPR-reduksjonen for OFDM-signalet
overgikk dette og oppnådde en reduksjon påmer enn 10 dB. Årsaken til 25W PAens
dårligere lineariseringsresultater var at den viste store memory-effekter, som igjen førte
til en mindre nøyaktig beskrivelse av oppførselen dens med de matematiske modellene,
selv for modeller som tar høyde for memory. For begge PAene og signalene ble linearis-
eringen dårligere når utgangseffekten økte, som betyr at for høyere utgangseffekter mindre
å hente ved linearisering. Resultatene førte til en konklusjon om at det ikke er vist veldig
klare fordeler ved å implementere digital predistorsjon i radarsystemet.
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Chapter 1
Introduction

1.1 Motivation

The increased complexity of modern wireless communication systems have increased the
performance demand of radio frequency power amplifiers (RFPAs). Modern modulation
techniques allowing higher data-rates are more complex and are more vulnerable to dis-
tortion due to non-linearities than traditional constant envelope modulation schemes. In
addition, modern wideband multi-carrier systems have specific requirements for the power
allowed in adjacent channels. This results in more stringent demands of the linearity per-
formance of PAs.

This thesis investigates the use of digital predistortion (DPD) to improve the linearity of
the GaN based CMPA5585025F RFPA from Cree. Predistortion is a concept where the
input signal is distorted beforehand, through an operation which has the inverse charac-
teristics of the PA, and ideally cancels the distortion from the non-linear PA. The goal is
to achieve a linear relationship between the predistorter input, and the PA ouptut. There
exist analog predistortion techniques, however they are highly unconfigurable and often re-
quire complex circuits and often has lower linearization performance than DPD [1]. With
modern high-speed digital circuits, DPD has shown great improvements in PA linearity
by reducing figures such as adjacent-channel-power ratio (ACPR) and error-vector mag-
nitude (EVM), and has become the most popular method of PA linearization in the later
years [2, 3].

The PA up for linearization is intended as the transmitter PA of an experimental X-band
multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM)
radar system currently in development by the Norwegian Defence Research Establishment
(FFI). MIMO-OFDM is a communication scheme capable of achieving high spectral ef-
ficiency, and thus high capacity and data rates. It is therefore used as a foundation for
many advanced communication standards like WLAN and mobile networks [4]. In a radar
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system, MIMO has the advantage of increasing spatial resolution and improves the proba-
bility of target detection, and also improves the immunity to interference. Combined with
OFDM, frequency selective fading can be reduced. Frequency selective fading can cause
dips in the signal-to-noise ratio (SNR), and by introducing frequency diversity through
OFDM, this can be reduced [5]. OFDM signals tend to be more vulnerable to the non-
linear amplification in the PA than single-carrier systems due to the use of several inde-
pendent sub-carriers resulting in a pulse with a high peak-to-average power ratio (PAPR).
Non-linearities in the PA will reduce modulation fidelity in the desired sub-bands, and
cause spectral regrowth [6]. This motivates the need for linearization of the transmitter
PA.

Linearizing the transmitter PA has several advantages to the radar system. By reducing
the non-linear distortion, it’s easier to extract accurate information about the radar target.
In addition, assuming there is an upper limit to how much distortion can be tolerated, lin-
earization will allow the PA to be driven harder before reaching this limit. This allows for
more output power and also increases power efficiency. The former is important in order
to increase the range and probability of radar target detection, and the latter is important
in order to reduce the need of cooling.

1.2 Objectives

The main objective of this thesis is to investigate the linearization performance of digital
predistortion on Cree’s CMPA5585025F Gallium Nitride power amplifier. This is done
by using several power amplifier behavioral models based on the Volterra series. This
includes the memoryless complex power series, the two-box Wiener and Hammerstein
models, and the memory polynomial model. The models are evaluated through their lin-
earization abilities at the cost of computational complexity, and are compared to each
other and the theoretical achievable limit. The goal is to achieve high linearization at
low computational cost, and without too much increase in the signal’s spectral bandwidth.
Linearization performance is evaluated on both a 16-QAM and an OFDM signal.

1.3 Report Outline

Chapter 2 explains the background theory and notation used in the report. A basic under-
standing of the topics are required to understand the work in the report.

Chapter 3 explains the concept of behavioral modeling of power amplifiers and introduces
some of these models and how they are derived. These models are used as a basis for the
predistortion operation.

Chapter 4 explains the concept of digital predistortion, and how this can be used to lin-
earize a power amplifier through the behavioral models from chapter 3.
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Chapter 5 explains the methodology of testing algorithms and performing measurements,
both when characterizing the power amplifier and performing predistortion.

Chapter 6 presents the PA behavioral modeling and linearization results obtained through
measurements.

Chapter 7 discusses the results from chapter 6 and evaluates the different models’ ability
to achieve linearization through digital predistortion.

Chapter 8 concludes the report and includes suggestions for further work on this topic.
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Chapter 2
Theory

This chapter explains the background theory required to follow the analyses of this re-
port.

2.1 Notation

This section explains the mathematical notation used in this report.

Continuous-time baseband signals are denoted with lowercase font, and with regular paren-
theses x(t), while the RF passband signals are denoted with a bar x̄(t). Discrete-time
signals are denoted with brackets x[n], where n is the time sample index.

Matrices are denoted with uppercase bold font A, column vectors are denoted with low-
ercase bold font b, and row vectors are denoted as transposed column vectors bT . Least-
squares estimates are denoted with a hat b̂. Matrices consisting of submatrices are denoted
in bold font with underline A =

[
X1 · · ·XN

]
.

Matrix conjugate, transpose and conjugate (Hermitian) transpose are denoted A∗, AT and
AH respectively.

2.2 Digital Modulation Techniques

Digital modulation techniques encode the signal information as bits and transfer them
over a communication channel. The information bits may come from a digital source
or an analog source that has passed trough an A/D-converter. Digital modulation thus
consists of mapping the information bits into an analog signal for transmission [7, p.126].
This section briefly explains the two digital modulation techniques which are important
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to understand in this thesis; 16-QAM and OFDM. It also explains the power-to-average
power ratio (PAPR) and how it’s defined in this thesis for the two different modulation
techniques.

2.2.1 Quadrature Amplitude Modulation

Quadrature amplitude modulation (QAM) encodes the information bits in both the am-
plitude and phase of the transmitted signal. This means that QAM can encode more bits
per symbol than techniques like phase shift keying (PSK) or pulse amplitude modulation
(PAM) which use phase or amplitude alone [7, p.148]. 16-QAM have 16 different sym-
bols in a square constellation and can thus encode log2(16) = 4 bits per symbol. The
constellation diagram for a 16-QAM signal with the three amplitude levels is shown in
figure 2.1.
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Figure 2.1: Constellation diagram for 16-QAM.

16-QAM is used in this thesis because it’s easy to both visually observe and mathemati-
cally compute the phase and amplitude distortion introduced by the power amplifier and
how predistortion reduces this.

2.2.2 Orthogonal Frequency-Division Multiplexing

Orthogonal frequency-division multiplexing (OFDM) is a digital multi-carrier modulation
technique, sending several different bit-streams on different orthogonal sub-channels. The
bandwidth of each sub-channel is low, so that it experiences little intersymbol interference
(ISI). By introducing what’s called a cyclic prefix, ISI can in fact be completely removed
for OFDM signals [7]. On each sub-channel the information bits may be encoded using
a single-carrier modulation technique like QAM. An OFDM symbol with N sub-carriers
can be expressed using the inverse fast Fourier-transform (IFFT) as [7, p.286]:
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x[n] =
1√
N

N−1∑
i=0

X[i]ej2πni/N , 0 ≤ n ≤ N − 1 (2.1)

Figure 2.2 illustrates how an OFDM transmitter is implemented with the IFFT.

Figure 2.2: OFDM transmitter with IFFT implementation [7].

The orthogonality of the sub-channels allow adjacent channels to be partly overlapping,
increasing the spectral efficiency of the signal. This is illustrated in figure 2.3 where the
frequency spectrum of an OFDM signal with 8 overlapping sub-carriers is shown.

Figure 2.3: Frequency spectrum of an OFDM signal with 8 overlapping sub-carriers [7].

The radar signal is an OFDM signal consisting of 16 sub-carriers spaced 3.125 MHz,
giving a total bandwidth of 50 MHz, however the OFDM signal transmitted in this thesis
has a bandwidth of 10 MHz due to the signal generator’s maximum sampling frequency
of 100 MHz [8]. This is elaborated further in section 5.2.3.
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2.2.3 The Peak-to-Average Power Ratio

The peak-to-average power ratio (PAPR) of a signal is important to the design of any
communication system. Signals with higher PAPR force the transmitter PA to be operated
in power back-off in order to ensure linear amplification [7, p.393]. This reduces the
maximum power output and efficiency of the PA.

For continuous-time signals, PAPR is defined as [7]:

PAPR = 10log10

[
max|x(t)|2

E{|x(t)|2}

]
(2.2)

Since the input signal to the PA is analog, this is the definition which gives the most sense
to use, however when illustrating PAPR it’s easier to use the PAPR definition for discrete-
time signals:

PAPR = 10og10

[
max|x[n]|2

E{|x[n]|2}

]
(2.3)

For a 16-QAM signal with a uniform symbol distribution, the PAPR is:

PAPR16QAM = 10log10

[
(1)2

4
16 (1)2 + 8

16 (
√
5
3 )2 + 4

16 ( 1
3 )2

]
= 2.6 dB (2.4)

For OFDM signals the PAPR is usually computed in a different manner. Considering the
OFDM symbol from equation 2.1:

x[n] =
1√
N

N−1∑
i=0

X[i]ej2πni/N , 0 ≤ n ≤ N − 1

If the number of sub-carriersN is large, the central limit theorem may be applied, resulting
in x[n] being complex zero-mean random variables with Gaussian distribution [7, p.394].
The results in the envelope of the OFDM signal having a Rayleigh distribution with vari-
ance σ2 and a uniform phase. The Rayleigh distribution has infinite support, meaning
that the signal envelope peak will exceed any given value with a non-zero probability. As
shown in [9], the probability of the PAPR exceeding a threshold P0 =

σ2
0

σ2 is given by [7,
p.394]:

Prob
{

PAPR ≥ P0

}
= 1− (1− e−P0)N (2.5)

The maximum PAPR for an OFDM signal withN sub-carriers can be computed by looking
at N Gaussian independent and identically distributed complex random variables xn (0 ≤
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n ≤ N − 1) with zero mean and unit power. With equation 2.1 as a basis, the average
power of the signal is given by [7, p.394]:

E{|x[n]|2} =
1

N
E
{
|x0 + · · ·+ xN−1|2

}

=
1

N

[
E{|x0|2}+ · · ·+ E{|xN−1|2}

]
= 1 (2.6)

The maximum PAPR value occurs when all xi add coherently:

max|x[n]|2 =

∣∣∣∣ N√N
∣∣∣∣2 = N (2.7)

Thus the maximum PAPR is equal to the number of sub-carriersN . The probability of this
occurrence becomes lower as N increases. The OFDM signal used in this thesis consists
of 16 sub-carriers modulated with BPSK, resulting in a theoretical maximum PAPR of
10log10(16) = 12 dB, however the probability of this occurring is 1/216, i.e. it’s highly
improbable.

A common way to denote the maximum PAPR of an OFDM signal is by expressing the
probability of which it will occur. This is illustrated in figure 2.4, where the fitted probabil-
ity density function and the corresponding cumulative distribution function of the OFDM
signal envelope is plotted, for 10000 different OFDM symbols with 16 carriers.
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Figure 2.4: OFDM signal envelope distribution.

The PAPR of the OFDM signal covering 99% of the outcomes, denoted PAPR99%, is seen
from the red dotted line in figure 2.4:

PAPR99% = 8.2 = 9.1 dB (2.8)

In communication systems, signals pass through a pulse shaping filter in order to reduce
sidelobe energy which may cause adjacent channel interference, and reduce ISI. This will
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increase the PAPR of the signal by preserving the peak values, but lowering the average
power. Thus, the PAPR of the analog input signal to the PA will in fact be higher than
the theoretical non-filtered values computed in this section. The actual PAPR of the two
different input signals is specified in chapter 5.

2.3 Least-Squares Minimization

In order to perform digital predistortion as explained in this thesis, it becomes necessary to
solve sets of linear equations to estimate the optimal DPD coefficients. This can be done
through least-squares minimization. A least-squares problem is an optimization problem
with an objective which is a sum of squares of terms on the form aTi x − bi, and with
no constraints. The convex optimization problem of least-squares minimization can be
formulated as [10, p.4]:

minimize ‖Ax− b‖22 =

N−1∑
i=0

(aTi x− bi)
2 (2.9)

Where A ∈ CN×M , aTi are the rows of A, b ∈ CN and x ∈ CM is the optimization
variable. An RFPA is usually an overdetermined system, meaning there are more equations
than unknowns in the system, i.e. N > M . The solution of the least-squares problem in
2.9 can be found by solving a set of linear equations:

(AHA)x = AHb (2.10)

The goal of the optimization problem is thus to find the vector x̂ which minimizes the
residual of the Euclidean norm ‖ · ‖2 of Ax− b:

x̂ = (AHA)−1AHb (2.11)

In order to solve 2.11 matrix A needs to have full rank. A matrix A ∈ CN×M has full rank
if rank{A} = min{N,M} [10, p.646], meaning A must containM linearly independent
rows. In order to solve 2.11 in the case of rank deficiency, singular value decomposition is
used to find the pseudo-inverse, or Moore-Penrose inverse of matrix A.

A matrix A ∈ CN×M with rank{A} = R can be factored as [10, p.649]:

A = UΣVH (2.12)

Where U ∈ CN×R satisfies UHU = I, V ∈ CR×M satisfies VHV = I, and Σ =
diag(σ1, · · · , σr), with σ1 ≥ σ2 ≥ · · · ≥ σr > 0

The pseudo-inverse of matrix A is defined as:
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A† = VΣ−1UH (2.13)

In the case of solving the least-squares problem when the solution is not unique, A†b
gives the solution with the minimum Euclidean norm.

A more detailed derivation of the pseudo-inverse and its applications can be found in [10,
p.649].

In this thesis, the least-squares approach to minimzation is used to estimate the optimal
coefficients of the DPD operation.

2.4 Effects of Non-linearity in Power Amplifiers

This section describes some of the effects occurring due to non-linearity in power ampli-
fiers. Through knowledge how these effects behave, their corrupting impact on the output
signal of the PA can be reduced by using digital predistortion.

2.4.1 AM/AM Distortion

AM/AM distortion, or gain compression in power amplifiers comes from the fact that
the active components in the system are non-linear. To understand this phenomenon it’s
necessary to take a look at the non-linear model describing the output signal from a non-
linear system. From [11, p.14], the input/output characteristic of a memory-less system
can be expressed as

y(t) = α1x(t) + α2x
2(t) + α3x

3(t) + · · · (2.14)

where y(t) is the output and x(t) is the input of the system. To simplify analysis, only the
first three terms of 2.14 are included. Assuming x(t) is a sinusoidal signal of amplitude A
and angular frequency ω:

x(t) = Acosωt (2.15)

Inserted in 2.14 this gives:

y(t) ≈ α1Acosωt+ α2A
2cos2ωt+ α3A

3cos3ωt (2.16)

= α1Acosωt+
α2A

2

2
(1 + cos2ωt) +

α3A
3

4
(3cosωt+ cos3ωt) (2.17)

=
α2A

2

2
+ (α1A+

3α3A
3

4
)cosωt+

α2A
2

2
cos2ωt+

α3A
3

4
cos3ωt (2.18)
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The second term of 2.18 is the fundamental. The voltage gain experienced by x(t) is thus
given by

GV =
(α1A+ 3α3A

3

4 )cosωt

Acosωt
= α1 +

3α3A
2

4
(2.19)

From 2.19 it’s clear that the gain is affected not only by α1, but also by α3 and A. Further
it’s important to note that for most RF circuits α1α3 < 0, which leads to a compressive
behaviour. This means that the gain decreases as A increases, causing compression of the
fundamental voltage gain.

A common measure used to describe this effect is the 1-dB compression point. This is
the point where the actual gain experienced by the fundamental component is 1 dB below
the small signal voltage gain α1. A is the amplitude of the input signal x(t). The 1-dB
compression point related to the system’s input amplitude can be expressed as:

20log10

∣∣∣∣α1 +
3α3A

2
in,1dB

4

∣∣∣∣ = 20log10|α1| − 1 dB (2.20)

Ain,1dB =

√
0.145

|α1|
|α3|

(2.21)

An illustration of the 1-dB compression point is shown in figure 2.5 where output versus
input power is plotted for an ideal and a compressive amplifier.

Ideal linear amplifier

Compressive amplifier

1 dB

Pin

Pout

P1dB,in

P1dB,out

Figure 2.5: Illustration of 1-dB compression point for a power amplifier

For signals with high PAPR, the high power peaks will suffer from large amounts of gain
compression. To achieve linear operation, the input power needs to be reduced, limiting
both the output power and the power efficiency of the PA. Through digital predistortion
linearization AM/AM distortion can be reduced, allowing higher output power without
suffering from too much distortion, and higher efficiency.
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2.4.2 AM/PM Distortion

In addition to causing compression of the output signal amplitude, the input signal ampli-
tude may be converted to a phase shift at the PA output, producing what is called AM/PM
distortion. This effect can in general be traced to the signal-dependency of key transistor
elements. For FETs, the input capacitance and the depletion and junction resistance of the
gate-source diodes may cause AM/PM distortion [2, p.252].

Considering a PA input signal vi(t) = A1cosωt. For a PA with AM/PM distortion, the
fundamental output component is given by [11, p.33]:

vo(t) = A2cos
[
ωt+ φ(A1)

]
(2.22)

where φ(A1) is the amplitude-dependent phase shift. As explained in [2, p.253], the most
significant effect of this phase shift is to generate additional terms at the same frequencies
as the odd order intermodulation products from AM/AM distortion.

Thus, when AM/PM distortion occurs, variations in the PA’s input signal’s amplitude will
corrupt, or distort, the phase of the output signal causing spectral regrowth.

2.4.3 Memory Effects

"Memory effects" is a term used to describe effects which cause dynamic deviation in the
static input/output characteristic of a PA. A circuit can only be truly memoryless if there
exists no elements storing electrical charge or magnetic flux [12]. This means the circuit
cannot contain any inductors or capacitors, for which the currents and voltages depend
on past values of currents and voltages. Thus, all microwave networks must be classified
as having memory. [2, p.256] explains how memory effects can be traced to three main
causes:

• Dynamic thermal effects

• Modulation of bias circuitry

• Semiconductor trapping effects

Thermal Effects

When the PA is driven at high power the transistor will self-heat, altering its characteris-
tics. This heat will remain high for a period of time, even after power is reduced, resulting
in memory in the system. However, the question is whether heat moves around quickly
enough to cause non-linear changes on an observable timescale. Steve Cripps states in
[2, p.258] that when the timescale is measured in a signal modulation domain from tens
of nanoseconds up to milliseconds, thermal memory effects may cause about 0.1 dB of
gain variation for most varieties of RF semiconductor technologies. This timescale cov-
ers the time domain of typical communication signals and will thus cause dynamic gain
variation.
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Figure 2.6: Bias supply modulation: a) resistive, b) inductive, c) capacitive [2, p.345].

Modulation of Bias Circuitry

Any impedance in the bias supply path will cause a voltage modulation to occur on the
output terminal of the transistor. This results in a modulation of the gain and phase of
the output signal, resulting in distortion of the signal. The impact of this effect naturally
varies with the frequency of the envelope of the modulated signal, and is usually the most
common cause of asymmetrical intermodulation sidebands [2, p.256]. Figure 2.6 shows
how a resistive, inductive and capacitive series impedance affects the bias supply voltage
for a deep Class AB RFPA, at a given angular envelope frequency ωm.

From figure 2.6 it’s clear that ripple in the supply voltage occurs in the same frequency
range as the signal envelope. Altering the bias conditions of the transistor, will alter the
characteristics of the PA, causing dynamic gain and phase distortion to appear at the PA
output as the signal amplitude varies. The question of how much supply ripple can be tol-
erated, depends entirely on the application and the device technology. Different transistor
types show variation in bias sensitivity, and the effects caused by ripple in the bias.

Trapping Effects

Semiconductor trapping effects are according to Cripps in [2, p.256] a generic term which
can be used to describe a number of anomalous effects occuring in a semiconductor. Mod-
ern gallium nitride (GaN) HEMT devices, such as the one used in this thesis, have tradi-
tionally shown more of these trapping effects than other technologies. They occur due to
imperfections in the semiconductor structure, such as parasitic atoms and uneven transi-
tions between layers [12]. This may cause passing electrons to be trapped for an unknown
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amount of time, before being released, causing a so called "current collapse". This is a
temporary reduction in drain current after the application of a high gate voltage level [13].
The release of these electrons is hard to describe as it does not behave deterministically,
and is thus hard to account for.

2.5 Basic Microwave Network Analysis

This section explains the basics of performing analysis on microwave networks.

2.5.1 The S-parameters

The scattering parameters, or S-parameters, describe the electrical behaviour of a mi-
crowave network by expressing the incident and reflected voltage waves at the different
ports of the network [14, p.50]. Figure 2.7 illustrates the incident and reflected waves of a
2-port microwave network.
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Figure 2.7: Incident and reflected current and voltage waves for a 2-port microwave network.

The total voltage and current at port i is:

Vi = V +
i + V −i (2.23)

Ii = I+i − I
−
i (2.24)

For the network in figure 2.7, the two dimensional scattering matrix is given by:

[
V −1
V −2

]
=

[
S11 S12

S21 S22

] [
V +
1

V +
2

]
Sij thus describes the amplitude of the voltage wave V −i coming from port i, when port
j is driven by a voltage wave of amplitude V +

j , and all other incident voltage waves are
zero.

Sij =
V −i
V +
j

∣∣∣∣
V +
k =0 for k 6=j

(2.25)

For a two-port network, S11 and S22 describe the reflected incident power at each port,
and S21 and S12 are parameters describing the transmitted power between the two ports.
In this thesis, a vector network analyzer is used to measure the magnitude and phase of
S21 as a function of input power to characterize the PA’s non-linear behavior.
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2.5.2 The Vector Network Analyzer

A network analyzer is an instrument used for measuring the scattering parameters of a mi-
crowave network. A vector network analyzer (VNA), which is the kind used for measure-
ments in this report, measures both magnitude and phase properties of the S-parameters
for a device-under-test (DUT). The setup for network analysis of a two-port network can
be seen in figure 2.8.

Vector

Network Analyzer
Port 1 Port 2

DUT

Reference planes

Figure 2.8: Setup for analysis of two-port network using a network analyzer.

To correct for systematic errors in the instrument, characteristics of cables and test fixtures
the network analyzer needs to be calibrated to a reference plane. This plane can be placed
wherever is desired in a cascade of components which is practical as an attenuator is often
needed at the PA output to protect the instrument from high power levels.

For the instrument used for measurements in this report, calibration is done using the
SOLT-method. SOLT is an acronym for short, open, load, thru. Calibration is performed
by connecting each of the ports of the VNA to a standardized calibration kit with a short
circuit, open circuit, a 50Ω load and a through connection. After measurements are per-
formed on each of the calibration standard components, correction parameters are calcu-
lated by the VNA, and applied to the data. Error calibration is crucial to obtain correct
measurement data for the S-parameters.

2.6 Efficiency Analysis of Power Amplifiers

Although the scope of this thesis is not to perform a thorough analysis of the efficiency
enhancement possible through predistortion linearization, this issue is still commented
throughout the report, which qualifies for some theoretical background.

Power amplifiers are usually the single most power dissipating units in communication
systems, and thus their power efficiency is an important factor in PA design. PA efficiency
is usually defined by two metrics. The first is called the drain efficiency for FETs (or
collector efficiency for BJTs) and is defined as [11, p.755]:

η =
PL
Psupp

(2.26)
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where PL is the average power delivered to the load, and Psupp is the average power drawn
from the power supply. This metric however, does not account for the input power, which
often can be high, especially for PAs with low power gain. The second metric, called the
power-added efficiency (PAE), accounts for this and is defined as:

PAE =
PL − Pin
Psupp

(2.27)

where Pin is the average input power of the PA.

The efficiency of PAs increase as the average output power increases, seen in figure 2.9
where gain and drain efficiency η is plotted for the CGH40010F GaN transistor from
Cree. By linearizing a PA with predistortion, it can be driven harder before reaching
the same amounts of non-linearities, thus improving both the power output and the effi-
ciency.

Figure 2.9: Gain (blue) and drain efficiency (red), swept CW Data of CGH40010F vs. Output
Power with Source and Load Impedances Optimized for Drain Efficiency at 2.0 GHz VDD = 28 V,
IDQ = 200 mA [15, p.4]

2.7 Predistortion

2.7.1 Introduction to Predistortion

The principle of predistortion is to ideally non-linearities introduced by the PA explained
in section 2.4. This is illustrated in figure 2.10.

In [2], the predistortion operation is expressed mathematically by using a simple third-
order model for the PAs input/output characteristic:

vo = a1vp + a3v
3
p (2.28)
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Figure 2.10: Illustration of predistortion.

where the PA input voltage vp is the output voltage of a predistorter with characteris-
tics

vp = b1vi + b3v
3
i (2.29)

The PA output can then be expanded to be:

vo = a1b1vi + (a1b3 + a3b1)v3i + 3a3b
2
1b2v

5
i + 3a3b

2
3b1v

7
i + a3b

3
3v

9
i (2.30)

In order to cancel the third-order distortion introduced by the second term of equation
2.30, the predistorter can be designed in such a way that:

b3 = −a3b1
a1

This will in fact remove third-order distortion altogether, however it’s clear from equa-
tion 2.30 that higher order harmonics will not be canceled. This means that the predis-
torter itself will introduce intermodulation distortion which is not present without predis-
tortion.

Equation 2.29 reveals that the predistorted signal contains higher order harmonics of the
input signal, and thus has a significantly larger bandwidth than the original signal. [2,
p.402]. This becomes one of the major limitations of predistortion for the radar system.
First of all this requires that the sampling rate of the DSP unit is fast enough to produce the
predistorted signal without aliasing. For systems with large bandwidth this can be a major
constraint in predistorter performance as large bandwidth DACs are usually expensive and
have high power consumptions [16]. In addition the analog electronics must have a large
enough bandwidth to pass the predistorted signal, and this is a very important consideration
which is critical during the radar system design.

2.7.2 Digital Predistortion

Digital predistortion (DPD) has lately become the most active area for PA linearization
due to the development of high-speed DSP technology. In order for a system to allow
digital predistortion digital baseband information about the amplitude and phase of the
PAs input signal is required. This information is only available in a complete transmitter
system where the signal is generated from scratch [2]. Figure 2.11 shows a flow chart of a
basic DPD PA system.
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Figure 2.11: Flow chart of basic DPD PA system [2].

Assuming the PA has a quasi-static behaviour, the output voltage has a fixed, monotonic
relationship to the input voltage:

Vo = F{Vi(t)} (2.31)

where Vo and Vi are the magnitudes of the output and input RF carrier at the same instant
in envelope domain time τ . By characterizing this relationship, a look-up-table (LUT)
shown in figure 2.11 can be created using a priori measurements on the PA.

The system shown in figure 2.11 has some obvious limitations. Changes in PA charac-
teristics will reduce the performance of the predistortion process. However, even with
adaptive calibration of the LUT, implementations have shown mediocre results [2, p.405].
The fundamental reason for this is the memory effects explained in section 2.4.3 causing
short-time variations in PA characteristics. For DPD, there exist models for describing and
somewhat compensating for memory effects by including past samples of the input signal,
which have shown improvement compared to memoryless models.

It’s important to note, however, that the use of a look-up-table for predistortion has major
bandwidth drawbacks. The predistorted signal from a LUT will in essence have an infinite
bandwidth, which is impossible to achieve digitally due to a finite sampling rate. This
will result in aliasing of the spectrum, and will create additional distortion, the severity
of which will increase with an increase in signal bandwidth. Instead of using a LUT for
predistortion, mathematical behavioral models of finite non-linear order are used in this
thesis. These behavioral PA models and their basic derivations are presented in chapter 3.
A more detailed explanation of digital predistortion and the PA linearization problem is
presented in chapter 4.
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Chapter 3
Behavioral Modeling of Power
Amplifiers

Power amplifiers are important for the reliability of wireless communication systems and
a countless amount of studies have been undertaken to understand their limitations and
optimize their performance [17]. PA modeling has been an important field of study in
order to allow PAs to be pushed to their limits of operation. By accurately modeling
the PA’s behavior, an inverse characteristic can be found to perform predistortion. PA
modeling is usually divided into two categories according to the type of data needed to
extract the model parameters: physical models and empirical models.

Physical models require knowledge of the physical effects occurring in the electronic el-
ements of the PA. These models require a detailed description of the PAs internal struc-
ture and such information is usually not available. Behavioral models are on the other
hand solely based on input/output observation of the PA. They are thus very sensitive
to the model structure and parameter extraction procedure, but are much more efficient
in system-level simulations and requires no physical knowledge of the PA. This chapter
presents the basics of power amplifier modeling and the behavioral models used for pre-
distortion in this thesis.

3.1 Power Amplifier Modeling Basics

Assuming the PA has a static behavior, it’s discrete-time output y[n] can be defined as a
non-linear function f of the instantaneous discrete-time input x[n] [17]:

y[n] = f
{
x[n]

}
(3.1)
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If the PA has memory effects such as those explained in section 2.4.3, it is said to be
dynamic. This means that the PA’s output can no longer be determined from the instanta-
neous input, but now also depends on previous input samples. The relation between y[n]
and x[n] now becomes a non-linear operator fD, mapping x[n] to y[n]. This relation can
be expressed as:

y[n] = fD

{
x[n], x[n− 1], · · · , x[n−M ]

}
(3.2)

Operator fD is a non-linear extension of finite impulse response digital filters and depends
on M previous samples of input signal x[n] [17].

Memory effects introduce both linear and non-linear dependencies on previous samples of
the input signal, referred to as linear and non-linear memory. The linear memory effects
are caused by a non-ideal frequency response at the fundamental frequency, whereas non-
linear memory effects come from trapping, matching at harmonic frequencies and poor
bias circuit design [18]. As explained in [17], several authors have shown that these effects
can be represented as a PA on the form shown in figure 3.1.

Figure 3.1: Typical non-linear feedback structure of an RFPA [17].

The filtersH(ω) andO(ω) represent linear memory effects due to input and output match-
ing networks, and F (ω) represents non-linear memory due to thermal hysteresis, trapping
and bias circuitry modulation. The different models presented in the next section have
different abilities in representing memory effects.

3.2 Behavioral Models

3.2.1 Volterra Series Model

For a memoryless system, the non-linear input/output characteristics may be described by
the Taylor series model:

ȳ(t) =

∞∑
k=1

c̄kx̄
k(t) (3.3)

Where x̄(t) and ȳ(t) are the bandpass input and output signals of the system, and c̄k are
constant complex coefficients..
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The Volterra series model is a generalization of the Taylor series model, incorporating
memory effects. If a system is linear, the continuous-time output ȳ(t) can be described by
a convolution between the input x̄(t) and the system’s impulse response h(t) [12]:

ȳ(t) =

∫ ∞
0

x̄(t)h(t− τ) (3.4)

In the linear case 3.4 accurately represents the memory effects of the system. However, in
a non-linear system, ȳ(t) depends on higher order terms of x̄(t). Thus, a generalization of
equation 3.3 is achieved through combination with 3.4, resulting in a series of non-linear
integrals representing the output’s dependency on all orders of the input [12]:

ȳ(t) = h0 +

∞∑
k=1

∫
τ1

· · ·
∫
τk

hk(t, τ1, · · · , τk)x̄(τ1) · · · x̄(τk)dτ1 · · · dτk (3.5)

where h0 is the constant zero order kernel, and hk(τ1, · · · , τk) = hk(τ1) · · ·hk(τk) are
the Volterra kernels.

Due to high computational complexity, the Volterra series behavioral model has not been
implemented in this thesis, but is the basis for the other simplified models presented.

3.2.2 Complex Power Series Model

The complex power series is a basic memoryless system-level model. For memoryless
models it’s assumed that the output envelope reacts instantaneously to changes in the in-
put envelope, and thus assume static AM/AM and AM/PM characteristics. The complex
power series model is derived by making the memoryless assumption to the Volterra series
in equation 3.5, resolving the kernels into multiple Dirac delta functions [17, p.100]:

hk(τ1, · · · , τk) = c̄kδ(t− τ1) · · · δ(t− τk) (3.6)

where c̄k are constant complex coefficients. This reduces 3.5 to the Taylor series in equa-
tion 3.3. Truncating 3.3 to maximum non-linear order K yields:

ȳ(t) =

K∑
k=1

c̄kx̄
k(t) (3.7)

where x̄(t) and ȳ(t) are the bandpass input and output signals respectively, and c̄k are
constant complex coefficients. The real valued bandpass signal x̄(t) is given by:

x̄(t) = Re
{
x(t)ej2πfc

}
(3.8)

where x(t) is the complex baseband signal, and fc is the RF carrier frequency. As the sig-
nal is being generated in baseband, it’s desirable to express equation 3.7 from the baseband
signal x(t). As explained in [19], the baseband representation is given by:
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y(t) =

K∑
k=1

ckx(t)|x(t)|k−1 (3.9)

where x(t) and y(t) are the baseband input and output signals respectively, and ck are the
baseband complex coefficients. In discrete-time this becomes:

y[n] =

K∑
k=1

ckx[n]|x[n]|k−1 (3.10)

Equation 3.10 can be expressed in matrix form as y = Hc ∈ CN , where c = [c1, c2, · · · , cK ]T ∈
CκCPS are the complex coefficients of the model and κCPS = K is the total number of co-
efficients of the model. H ∈ CN×K is the regression matrix of the model constructed from
the system input signal x[n]. For the complex power series it can be written as:

H =


x0|x0|0 x0|x0|1 · · · x0|x0|K−1
x1|x1|0 x1|x1|1 · · · x1|x1|K−1

...
...

. . .
...

xN−1|xN−1|0 xN−1|xN−1|1 · · · xN−1|xN−1|K−1

 (3.11)

where x = [x0, x1, · · · , xN−1]T is the input vector ofN samples where xn = x[n].

To reduce the number of coefficients necessary, and thus computational complexity, many
researchers use a model including only odd-orders, which assumes that the PA non-linearities
are mostly constructed from odd-order functions1. This is implemented to investigate if
the number of coefficients may be reduced by using odd-orders only, without losing too
much linearization performance.

Estimation of coefficients

The coefficients c ∈ CK can be estimated through the least-squares method described in
section 2.3. This yields:

ĉ = (HHH)−1HHy (3.12)

where y = [y0, y1, · · · , yN−1]T is the output vector from the PA corresponding to input
x. Thus the baseband model output ŷ can be found:

ŷ = Hĉ (3.13)

1The modeling results in this thesis show that it’s beneficial to also include even-order terms for the PAs in
question. This is also seen in [12, 20]

24



3.2.3 Two-box Models

Two-box models are subsets of the Volterra series and are obtained by modeling the system
as a combination of a static, memoryless non-linearity and a linear, time-invariant dynamic
subsystem [17], and are capable only of representing linear memory effects. For the im-
plementation used in this report, the static non-linearity is represented by the baseband
complex power series polynomial x[n]|x[n]|k−1. The dynamic LTI-system is a FIR filter
of order M . These two subsystems may be arranged in either way, producing the Wiener
and Hammerstein models shown in figures 3.2 and 3.3.

L

Linear dynamic

FIR filter

x[n] z[n] y[n]

N

Static non-linear

Polynomial

Figure 3.2: The two-box Wiener model [17, p.137].

L

Linear dynamic

FIR filter

N

Static non-linear

Polynomial

x[n] z[n] y[n]

Figure 3.3: The two-box Hammerstein model [17, p.137].

Estimation of coefficients

The intermediate signal z[n] for the two models is2:

zW [n] =

M−1∑
m=0

h[m]x[n−m] (3.14)

zH [n] =

K∑
k=1

ckx[n]|x[n]|k−1 (3.15)

The baseband output of the two models is:

yW [n] =

K∑
k=1

ck

[M−1∑
m=0

h[m]x[n−m]

]∣∣∣∣[M−1∑
m=0

h[m]x[n−m]

]∣∣∣∣k−1 (3.16)

2Subscript denotes model: W for Wiener, H for Hammerstein
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yH [n] =

M−1∑
m=0

h[m]

[ K∑
k=1

ckx[n−m]|x[n−m]|k−1
]

(3.17)

In order to estimate the model coefficients with a linear estimation method, like the least-
squares method, two sets of data vectors (x,y) are needed. These are denoted (x[1],y[1])
and (x[2],y[2]) respectively. The first set is used to find the coefficients for the first
block. For the Wiener model the first set of coefficients are estimated using least-squares
by:

â = (HHH)−1HHy[1] (3.18)

Where a = [h0, · · · , hM−1]T ∈ CM are the filter coefficients for a stable FIR-filter of
order M and H ∈ CN×M is the regression matrix for the first block, given by:

H =


x
[1]
0,0 x

[1]
0,1 · · · x

[1]
0,M−1

x
[1]
1,0 x

[1]
1,1 · · · x

[1]
1,M−1

...
...

. . .
...

x
[1]
N−1,0 x

[1]
N−1,1 · · · x

[1]
N−1,M−1

 (3.19)

Where xn,m = x[n−m].

Further, the second set of input data x[2] is used to find the estimated intermediate signal
ẑ:

ẑ = Hâ (3.20)

Where H is given in equation 3.19, but now constructed using x[2] instead of x[1].

The second set of coefficients is estimated by:

b̂ = (GHG)−1GHy[2] (3.21)

Where b = [c1, c2, · · · , cK ] ∈ CK are the coefficients of the non-linear complex polyno-
mial of maximum order K, and G ∈ CN×K is the regression matrix for the second block,
given by:

G =


ẑ0,0 ẑ0,1 · · · ẑ0,K−1
ẑ1,0 ẑ1,1 · · · ẑ1,K−1

...
...

. . .
...

ẑN−1,0 ẑN−1,1 · · · ẑN−1,K−1

 (3.22)

Where ẑn,l = ẑ[n]|ẑ[n]|l.
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The Wiener model output is now found to be ŷ = Gb̂. The total number of coefficients
that needs computation is κW = K +M .

The same derivation can be performed for the Hammerstein model, only with the order of
the two blocks switched. This is shown in [17], but is not shown here, as the scope of this
thesis is not to give a full review of the derivation of these models.

3.2.4 Memory Polynomial Model

The memory polynomial model is described in [20] as a compromise between the memory-
less non-linearity, and the full Volterra non-linearity. The model is derived by generalizing
the Hammerstein model which involves choosing different filters for each non-linear order
k ∈ [1, · · · ,K] [21], thus incorporating non-linear memory in the Hammerstein model.
This yields:

yGH [n] =

K∑
k=1

M−1∑
m=0

ck,mx
k−1[n−m] (3.23)

By selecting only combinations on the form x[n]|x[n − m]|k−1, the baseband memory
polynomial model from [22] is obtained:

yMP [n] =

K∑
k=1

M−1∑
m=0

ck,mx[n−m]|x[n−m]|k−1 (3.24)

This model has proven effective for predistortion of power amplifiers in [20, 21]. Addi-
tionally, it can be generalized to have potential for even better performance, which is done
in [21] but not implemented in this thesis.

Estimation of coefficients

Expressed in matrix form, equation 3.24 becomes:

y = Hc (3.25)

where c ∈ CκMP are the coefficients and κMP = K ×M is the total number of coeffi-
cients. H is the memory polynomial model regression matrix given by:

H =
[
X0 · · ·XM−1

]
∈ CM×κMP (3.26)

Xm ∈ CN×K are given by:
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Xm = [xn,m,k,xn−1,m,k, · · · ,xn−(N−1),m,k]T (3.27)

where

xn,m,k =
[
x(n−m)|x(n−m)|0, · · · , x(n−m)|x(n−m)|K−1

]T
(3.28)

Through least-squares estimation, the coefficients c can be estimated:

ĉ = (HHH)−1HHy (3.29)

where y = [y0, y1, · · · , yN−1]T is the output vector of N samples.

The model output ŷ is now:

ŷ = Hĉ (3.30)

3.3 Validation of Models

Validating the different behavioral models is done by evaluating the normalized mean-
square-error (NMSE) between the PA output y and the model output ŷ. NMSE is defined
as:

NMSE(y, ŷ) = 10log10

[
‖y − ŷ‖22
‖y‖22

]
(3.31)

A lower NMSE means the model can better describe the PAs non-linear behavior and is
expected to perform better at predistortion linearization.
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Chapter 4
Digital Predistortion

This chapter explains the concept of digital predistortion and how to use it to linearize a
power amplifier. Non-linear behavior in power amplifiers is one of the major challenges
of modern communication systems. As complex digital modulation techniques have de-
veloped, linearity has become more and more critical to avoid distortion and information
loss. Due to the importance of PA linearity, researchers have developed several methods
to linearize their operation. Methods such as feed-forward, feed-back, and analog predis-
tortion are earlier techniques which have only achieved modest results. In addition they
are not very configurable and are often difficult to implement.

Modern high-speed digital circuitry has allowed the implementation of digital predistor-
tion (DPD) techniques which have shown far greater linearity results than the earlier analog
techniques. DPD techniques have the advantage of being highly configurable and cheap
to implement, which have made them the most popular techniques for linearization in the
later years.

The basic idea of digital predistortion is to cancel the non-linear distortion introduced by
the power amplifier and achieve a linear relationship between input and PA output. This
is achieved by performing a digital operation on the input signal which has the inverse
characteristic of that of the PA, to ideally cancel all distortion introduced by the PA and
thus achieve a linear response.

The critical challenge of DPD is obviously finding an accurate inverse of the PA behav-
ior. This challenge is not a trivial one, as PAs usually have complex non-linearities and
dynamic behavior due to memory effects. The linearity results of the DPD system thus de-
pends on the chosen PA model. In this thesis, the behavioral models explained in chapter
3 are used as a basis for the DPD system.
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4.1 The Linearization Problem

Figure 4.1 shows a block diagram of the digital predistortion system operation. The lower
branch consists of the predistorter, N , and the non-linear RFPA, P . When excited with
input signal x ∈ CN , the lower branch produces the output signal y. The upper branch
consists of a linear operator, L, which applies a desired linear voltage gain G to the input
signal x, producing a signal z = Gx. An ideal predistorter will cancel all non-linearities
of the PA, resulting in y = z.

N yP

L

x

z

xd

Figure 4.1: Illustration of the linearization problem for the DPD system.

The linearization problem of the predistortion operation is essentially to minimize the error
between the system output y, and the ideal linear output z.

Assuming the PA can be described by one of the behavioral models explained in chapter
3, the system output y can be written as:

y = Hc ∈ CN (4.1)

Where H is the model specific regression matrix constructed from the input signal x, and
c is the coefficient vector for the specific behavioral model.

In order to solve such a linearization problem it’s important to understand that due to
the PA’s inherently non-linear behaviour, equation 4.1 is not in general possible to solve
analytically. However, for a specific set of input signals around an operating point x0,
there will usually be local solutions allowing linearization of the PA. These local solutions
result in a pre-filter which are only an approximation to the inverse response of the PA for
a limited set of input signals:

∥∥P [N [x]
]
− L

[
x
]∥∥

2
< ε, ‖x− x0‖ < δ (4.2)

Where ε and δ are small positive constants. In order to find the coefficients minimizing the
error ε, it’s important to note that they have a dependency on the predistorter structure N .
This structure is not in general known, however assuming the PA may be modeled with
sufficient accuracy using behavioral modeling, then the inverse characteristic may also
be sufficiently modeled, meaning the coefficients may be estimated using least-squares
estimation.
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In this thesis, the indirect learning architecture (ILA) is used to estimate the predistorter
characteristic, however several other techniques exist. The ILA method is chosen due to
simplicity and acceptable documented results [12, 16].

4.2 The Indirect Learning Architecture

The indirect learning architecture is illustrated in figure 4.2. The feed-back path contains
a post-inverse filter which can be used to estimate the coefficients for the DPD unit, which
works as a pre-inverse filter. Martin Schetzen shows in [23] that the pth-order pre-inverse
of a system H is identical to its pth-order post-inverse. Thus, by finding the coefficients
of the post-inverse filter with y/G as its input and x̂d as its output, the predistorted input
can be found.

N yPx
xd

1/
G

Npost

exd

Figure 4.2: Block diagram illustrating the indirect learning architecture.

Assuming the operators N and Npost are equal as shown in [23], the error signal e can be
expressed as:

e = N
[
y/G

]
−N

[
x
]

= xd − x̂d (4.3)

Achieving zero-error between the actual and estimated predistorted signals, i.e. xd−x̂d =
0, yields:

y

G
= x (4.4)

Which leads to the desired linear input/output relation:

y = Gx (4.5)

It’s desirable to minimize the error e to achieve the closest match between the actual
system output and the desired linear response in equation 4.5. The output x̂d of the post-
inverse filter Npost can be written as:
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x̂d = Hycpost (4.6)

Where Hy is the model specific regression matrix composed from the scaled output y/G.

Finding the coefficients cpost which minimize ‖e‖22 using least-squares minimization ex-
plained in section 2.3 yields:

ĉpost = (Hy
HHy)−1Hy

Hxd (4.7)

The predistorted signal xd can now be found as:

xd = Hxĉpost (4.8)

Where Hx is the model specific regression matrix composed from the system input signal
x.

Thus, based on measurement data, the relation between output vector y and corresponding
input x can be used to generate static predistortion coefficients.

4.3 Figures of Merit

The performance of the DPD operation will be evaluated mainly based on its ability to
reduce out-of-band spectral regrowth and in-band distortion. Figures which describe these
effects are the adjacent-channel-power ratio and the error-vector magnitude.

4.3.1 Adjacent-Channel-Power Ratio

Spectral regrowth is caused by intermodulation from non-linearities and can be reduced
by predistortion. A figure of merit used to measure this reduction is hte adjacent-channel-
power ratio (ACPR). ACPR is in this thesis computed as the ratio of the total power of the
intermodulation distortion (IMD) bands and the total power of the main channel:

ACPRi = 20log10

[ ∫
adjacent

∣∣Y (f)
∣∣∫

main

∣∣Y (f)
∣∣
]

(4.9)

Where adjacent denotes the adjacent channel, main denotes the main channel, and Y (f)
is the output power spectrum from the PA. The main channel is 10 MHz wide centered at
f = 0 Hz. The adjacent channel spacing is set to 14.4 MHz and has a bandwidth of 10
MHz. The upper and lower third order intermodulation adjacent channels are shown in
figure 4.3.
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Figure 4.3: Main (blue) and adjacent (red) channels.

4.3.2 Error-Vector Magnitude

In-band distortion will be evaluated using error-vector magnitude (EVM). EVM is a way of
describing the in-band distortion by looking at the magnitude of the error-vector between
the optimal and received signal vectors at the correct sampling points. This is illustrated
in figure 4.4.

xrec

xopt

xopt - xrec

(0,0)

Figure 4.4: Illustration of error-vector magnitude.

The EVM definition used in this thesis is:

EVM% =
mean

(
|xopt − xrec|

)
mean

(
|xopt|

) ∗ 100% (4.10)

Where xopt and xrec are the optimal and received signal vectors respectively at the correct
sampling points.
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Chapter 5
Methodology

This chapter describes the approach when testing algorithms in MATLAB and performing
measurements for PA characterization and predistortion. In order to thoroughly test the
different models, behavioral modeling and predistortion linearization are performed on
two different PAs with different operating frequencies.

The first is the Cree CMPA5585025F off-the-shelf GaN PA intended as the transmitter PA
for the radar system, with a frequency band of 5.5 to 8.5 GHz. The second is a class F PA
designed at NTNU, based on Cree’s CGH40010F 10W GaN transistor with a frequency
band of 1.8 to 2.6 GHz. It’s biased in class AB, but harmonic tuning of the output match-
ing network makes it class F. The two PAs are from here on referred to as the 25W PA,
meaning the CMPA5585025F intended for the radar system, and the 10W PA, meaning the
CGH40010F-based PA.

5.1 MATLAB

The predistortion algorithms are implemented and tested in MATLAB1. The 25W PA is
an off-the-shelf product for which there exists no physical model describing its behavior.
In order to test the algorithms in MATLAB, a single tone characterization of the 25W PA
is performed. The AM/AM and AM/PM distortio data is imported to MATLAB and used
to create a function emulating a signal being sent through the PA. This function returns
the output signal y[n] which together with input signal x[n] is used to find the PA and
predistortion coefficients as explained in chapters 3 and 4. This model is memoryless
however, meaning the models’ ability to model memory effects is not tested.

1Selected MATLAB code is found in appendix B
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5.2 Characterization of the Power Amplifier

In order to perform digital predistortion on the PA, its non-linear behavior needs to be
characterized and described with one of the behavioral models described in chapter 3.
This characterization can be done in more than one way, e.g. by using a single-tone input
signal, swiping the input power. This will reveal the static AM/AM and AM/PM distortion
introduced by the PA. In order to excite the memory effects causing dynamic deviation
in this distortion, a different signal is needed. By applying a signal with non-constant
envelope, like a 16-QAM signal, these effects may be characterized.

5.2.1 Driver PAs

To drive the PAs as much as possible into compression, driver PAs are necessary. For the
25W PA, two drivers are used. This is because the first driver, a Hewlett Packard 83017A
with a gain of ∼ 35 dB, is not able to deliver enough output power to drive the PA very
far into compression, before introducing too much distortion. It’s desirable for the driver
to operate as linearly as possible, while driving the DUT PA into compression such that
the distortion at the output is clearly dominated by the DUT PA’s non-linearities. This
is unfortunately only the case for a limited set of input power levels, before the driver’s
distortion starts dominating. Therefore, a second driver is needed to deliver more output
power. This second driver is a class A PA based on the same Cree’s 10W GaN transistor
and has a gain of ∼ 6.5 dB at 8.25 GHz. A class A PA is biased in such a way that the
transistor has a 360° conduction angle, and thus introduces minimal non-linear distortion,
especially when operated far into back-off. The driver PA used for the 10W PA is also class
A and based on the Cree 10W GaN transistor, with a gain of ∼ 12 dB at 2.0 GHz.

5.2.2 Lab Equipment

The lab equipment used for measurements is:

• Vector Network Analyzer, Agilent E8364B

• Vector Signal Generator, Rohde & Schwarz SMU200A

• RF Source, Rohde & Schwarz SGS100A

• Signal Analyzer, Rohde & Schwarz FSQ40

5.2.3 PA Characterization Setup

Single tone measurements are performed as shown in figure 5.1. Using a power sweep on
the VNA, the magnitude of the transmission parameter S21 as a function of input power
is extracted. The frequency of the tone is 8.25 GHz for the 25W PA and 2.0 GHz for the
10W PA.

36



Vector

Network Analyzer
Port 1 Port 2

Driver PA PA

Coupler

50

50
Circulator

Attenuator

-10 dB

-13 dB

Calibration points

Figure 5.1: Setup for single tone measurements.

In order to characterize the PAs’ dynamic AM/AM and AM/PM distortion, a 16-QAM
signal is used as the input. The signal consists of random symbols generated in MAT-
LAB, and is sent to the SMU200A vector signal generator via a LAN connection. The
specifications of the 16-QAM input signal are shown in table 5.1.

Parameter Value
Symbol rate 10 MHz

PAPR 6.4 dB
No. of symbols 2048

fs 100 MHz
Oversampling rate 5

Filter Raised cosine
Filter roll-off 0.22

No. of samples 20880

Table 5.1: 16-QAM signal specifications

The 16-QAM signal is filtered with a raised cosine filter to avoid intersymbol interference.
The measurement setup differs slightly for the two PAs. This is because the SMU200A
is not able to up-convert the signal as high as 8.25 GHz which is the center frequency
intended for the radar pulse. For the 25W PA, the SGS100A RF source receives the base-
band 16-QAM signal from the SMU200A through separate channels for I and Q, and
up-converts the signal to center frequency 8.25 GHz and delivers it to the PA. For the 10W
PA, the center frequency is 2.0 GHz, and the up-converting operation can be performed
by the SMU200A alone. The output signal y[n] from the PAs is extracted by the FSQ40
signal analyzer and sent back to MATLAB, normalized to a maximum envelope of 1. The
two signals x[n] and y[n] are aligned through cross-correlation, finding the best match be-
tween the two vectors. The gain G is then computed as the mean gain of normalized input
envelope values below, 0.4, i.e. x/max|x| < 0.4. In order to keep the internal clocks of
the generators and spectrum analyzer synced, the SMU200A’s clock is used as a reference
in order to avoid phase drift.
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Measurement setups for the two PAs are as shown in figure 5.2. The 25W PA is biased
with VDS = 28 V and IDS = 285 mA, and the 10W PA is biased with VDS = 28 V
and IDS = 160 mA. Since the input impedance of the PAs can change as the input power
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(a) Setup for 25W PA.

Driver PA 10W PA

R&S

SMU200A

R&S

FSQ40

50

Circulator

Coupler

50

Attenuator

-10 dB

-13 dB

MATLAB

MATLAB

x[n]

y[n]

2.0 GHz

(b) Setup for 10W PA.

Figure 5.2: Measurement setup for PA characterization using 16-QAM signal.

increases, a circulator is placed between the driver and the PA to ensure that the driver
output sees no reflection. This means the driver output is always matched to 50Ω as the
input power increases. The coupler and attenuator at the PA output are there to protect the
VNA from the PAs’ high power output levels. The coupler and circulator are terminated
with 50Ω to ensure minimal reflection. The loss from the PA output to the signal analyzer
was measured to be 25.0 dB at both 2.0 and 8.25 GHz. Both PAs are driven to the point
where the driver’s non-linearities become too severe to neglect.

Characterization is performed at different power levels, and after the PAs have been char-
acterized, the predistortion coefficients are computed in MATLAB for each power level
and applied to the input signal. The predistorted signal will now have an increased PAPR
compared to the original signal, because the peaks which suffer from large amounts of
compression have been increased to compensate. Driving the PA this hard will induce
major non-linearities and memory effects not characterized. In order to avoid this, the in-
crease in PAPR is limited to 3 dB above the original signal PAPR, and peaks above this are
hard clipped. The predistorted signal is then sent to the signal generator. In addition to the
16-QAM signal from table 5.1, an OFDM signal consisting of 16 sub-carriers, is applied.
The OFDM signal specifications are shown in table 5.2.

38



Parameter Value
No. of sub-carriers 16

Sub-channel spacing 625 kHz
Bandwidth 10 MHz

PAPR 9 dB
Filter Gaussian

Filter bandwidth-time product 0.8
No. of samples 20682

Table 5.2: ODFM signal specifications

The actual radar OFDM signal will have a bandwidth of 50 MHz, however the SMU200A
signal generator has a maximum sampling rate of 100 MHz [8], which limits the bandwidth
of the transmitted signal. The Nyquist criterion limits the bandwidth of the transmitted
signal to 50 MHz, but as explained in section 2.7.1, a predistorted signal will have a larger
spectral bandwidth than the original signal, meaning it will not be possible to predistort a
signal with 50 MHz bandwidth with the lab equipment available in this thesis. Therefore
the OFDM bandwidth has been reduced to 10 MHz to allow implementation of digital
predistortion.
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Chapter 6
Results

This chapter presents the behavioral modeling and linearization results. First, the different
models’ abilities to model the PA are validated by the achieved NMSE between the PA out-
put y and the model output ŷ. Then, the models are used to perform digital predistortion
linearization and the results are presented. The linearization performance of the different
models will be evaluated using ACPR and EVM as explained in section 4.3. Discussion
and evaluation of the results follows in chapter 7.

The results are presented separately for PA modeling and linearization, and also for each
of the two PAs. In each section, an introduction explains which kinds of measurements
have been performed, and each PA subsection starts by explaining what can be seen in
each figure. The different models are denoted CPSordersK for the complex power series,
MP ordersK,M for the memory polynomial,W orders

K,M and for Wiener. K denotes the maximum
non-linear order andM is the memory length, and orders denotes which non-linear orders
are included in the polynomial: odd-only or all.

The Hammerstein model implementation did not work as intended in practice in spite of
numerous tests in MATLAB. It achieved somewhat reasonable modeling results, however
it was unable to linearize through predistortion and instead resulted in more distortion
than without predistortion. The results for the Hammerstein model has therefore not been
included.

6.1 PA Modeling Results

Using the same 16-QAM signal for all measurements as specified in table 5.1 and the mea-
surement setup shown in figure 5.2, the dynamic AM/AM and AM/PM characteristics of
the two PAs are measured. The different models are then used to model the PA behavior
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while varying non-linear orders keeping a constant memory length, and varying the mem-
ory length keeping a constant non-linear order. Each model’s ability to describe the PA
behavior is evaluated through the achieved NMSE(y, ŷ) as described in section 3.3. The
models are evaluated up to a maximum non-linear order of K = 9 and memory length
M = 9.

6.1.1 10W PA

Table 6.1 shows the measured specifications of the 10W PA. Figure 6.1 shows the power
density spectra of the PA output at different values of average P̄out, and how spectral
regrowth is affected by the output power. Figures 6.2 and 6.3 show NMSE(y, ŷ) for
the different models using all or odd orders only. Figure 6.4 shows AM/AM and AM/PM
distortion, modeled with the MP all4,3 model. The average power P̄out is given for each
figure and the RF center frequency for the measurements is 2.0 GHz.

Table 6.1: Measured specifications of the 10W PA at fc = 2.0 GHz.

P̄in [dBm] P̄out [dBm] Gain [dB] ACPRlower ACPRupper [dBc]
9.6 26.0 16.4 −49.7 −49.8
11.6 27.8 16.2 −45.9 −45.9
13.6 29.5 15.9 −43.0 −43.0
15.5 31.2 15.7 −41.4 −41.3
17.7 33.0 15.3 −40.9 −40.7
19.7 34.7 15.0 −40.6 −40.2
21.7 36.2 14.5 −39.4 −38.7
23.8 37.7 13.9 −36.1 −35.5
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Figure 6.1: Normalized output power density spectra for 10W PA for different P̄out.
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Figure 6.2: All orders, 10W PA, NMSE(y, ŷ) for the different models, P̄out = 36 dBm.
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(a) Varying non-linear order, constant M = 3.
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Figure 6.3: Odd orders only, 10W PA, NMSE(y, ŷ) for the different models, P̄out = 36 dBm.
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Figure 6.4: Normalized non-linear distortion of 10W PA (blue) and MP all
4,3 model output (red),

P̄out = 36 dBm.
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6.1.2 25W PA

Table 6.2 shows the measured specifications of the 25W PA. Figure 6.5 shows the power
density spectra of the PA output at different values of average P̄out, and how spectral
regrowth is affected by the output power. Figures 6.6 and 6.7 show NMSE(y, ŷ) for
the different models using all or odd orders only. Figure 6.8 shows AM/AM and AM/PM
distortion, modeled with the MP all4,3 model. The average power is given for each figure,
and the RF center frequency is 8.25 GHz.

Table 6.2: Measured specifications of the 25W PA at fc = 8.25 GHz.

P̄in [dBm] P̄out [dBm] Gain [dB] ACPRlower ACPRupper [dBc]
5.1 25.1 20.0 −35.6 −38.3
7.1 26.4 19.3 −35.9 −37.3
9.0 27.7 18.7 −35.6 −36.4
11.0 28.8 17.8 −33.8 −37.0
12.8 30.0 17.2 −33.1 −37.3
14.7 31.5 16.8 −32.6 −37.7
16.6 33.7 17.1 −35.6 −38.2
18.5 34.9 16.4 −34.6 −36.0
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Figure 6.5: Normalized output power density spectra for 25W PA for different P̄out.
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Figure 6.6: All orders, 25W PA, NMSE(y, ŷ) for the different models, P̄out = 33.7 dBm.
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,ŷ

)
[d
B
]

 

 

CPSodd
K

W odd
K,3

MP odd
K,3

(a) Varying non-linear order, constant M = 3.
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Figure 6.7: Odd orders only, 25W PA, NMSE(y, ŷ) for the different models, P̄out = 33.7 dBm.
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Figure 6.8: Normalized non-linear distortion of 25W PA (blue) and MP all
4,3 model output (red),

P̄out = 33.7 dBm.
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6.2 Linearization Results

Linearization is performed both using a 16-QAM signal and an OFDM signal. The spec-
ifications of these signals are found in tables 5.1 and 5.2. Since using all orders of the
non-linear polynomial gave better modeling results, predistortion was only performed us-
ing all orders.

6.2.1 10W PA

16-QAM Signal

Figures 6.9 and 6.10 shows ACPR and EVM of the linearized output as functions of non-
linear order K and memory length M respectively. Figures 6.11 and 6.12 show the ACPR
and EVM of the original and linearized output signals as a function of average output
power P̄out. Figure 6.13 shows the PA output power spectra before and after linearization.
Figure 6.14 shows the 16-QAM constellation diagram before and after linearization. Fig-
ure 6.15 shows the AM/AM and AM/PM distortion of the linearized PA output compared
to the original output.
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Figure 6.9: ACPR and EVM of linearized 10W PA output signals as functions of maximum non-
linear order K, P̄out = 33 dBm.
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Figure 6.10: ACPR and EVM of linearized 10W PA output signals as functions of memory length
M , P̄out = 33 dBm.
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Figure 6.11: ACPR of original and linearized 10W PA outputs, as functions of P̄out, solid lines
represent lower channel, and dashed lines represent upper channel.
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Figure 6.12: EVM as a function of P̄out for linearized 10W PA output.
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Figure 6.13: Normalized power density spectra for 10W PA with original y and linearized yd output
using MP all

4,3 model, P̄out = 33 dBm.
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Figure 6.14: 16-QAM constellation diagram for 10W PA, optimal (blue) and measured (red) points,
predistortion is done using the MP all

4,3 model, P̄out = 33 dBm.
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(a) AM/AM distortion.
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Figure 6.15: Normalized non-linear distortion of 10W PA without predistortion (red) and with
predistortion (red) using MP all

4,3 model, P̄out = 33 dBm.
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OFDM Signal

Figure 6.16 shows the ACPR of the original and the linearized output as functions of
average output power P̄out. Figure 6.17 shows the output power spectra before and after
linearization. Figure 6.18 shows the AM/AM and AM/PM distortion of the linearized PA
output compared to the original output.
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Figure 6.16: ACPR of original and linearized OFDM 10W PA outputs, as functions of P̄out, solid
lines represent lower channel, and dashed lines represent upper channel.
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Figure 6.17: Normalized power density spectra of original y and linearized yd OFDM 10W PA
output using MP all

4,3 model, P̄out = 29.5 dBm.
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Figure 6.18: Normalized non-linear distortion of OFDM signal, 10W PA without predistortion (red)
and with predistortion (red) using MP all

4,3 model, P̄out = 29.5 dBm.
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6.2.2 25W PA

16-QAM Signal

Figures 6.19 and 6.20 shows ACPR and EVM of the linearized output as functions of
non-linear polynomial order K and memory length M respectively. Figure 6.21 shows
the ACPR and EVM of the original and linearized output signals as a function of aver-
age output power P̄out. Figure 6.22 shows the PA output power spectra before and after
linearization. Figure 6.23 shows the 16-QAM constellation diagram before and after lin-
earization. Figure 6.24 shows the AM/AM and AM/PM distortion of the linearized PA
output compared to the original output.
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Figure 6.19: ACPR and EVM of linearized 25W PA output signals as functions of maximum non-
linear order K, P̄out = 23.5 dBm.
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(a) ACPR, solid and dashed lines represent
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Figure 6.20: ACPR and EVM of linearized 25W PA output signals as functions of memory length
M , P̄out = 23.5 dBm.
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Figure 6.21: ACPR and EVM of linearized 25W PA output signals as functions of P̄out.
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Figure 6.22: Normalized power density spectra of original y and linearized yd 25W PA outputs,
P̄out = 23.5 dBm.
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Figure 6.23: 16-QAM constellation diagram for 25W PA, optimal (blue) and measured (red) points,
predistortion is done using the MP all

4,3 model, P̄out = 23.5 dBm.
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(a) AM/AM distortion.
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Figure 6.24: Normalized non-linear distortion of 25W PA without predistortion (red) and with
predistortion (red) using MP all

4,3 model, P̄out = 23.5 dBm.
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OFDM Signal

Figure 6.25 shows the ACPR of the original and the linearized output as functions of
average output power P̄out. Figure 6.26 shows the output power spectra before and after
linearization. Figure 6.27 shows the AM/AM and AM/PM distortion of the linearized PA
output compared to the original output.
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Figure 6.25: ACPR of original and linearized OFDM 25W PA outputs, as functions of P̄out, solid
lines represent lower channel, and dashed lines represent upper channel.
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Figure 6.26: Normalized power density spectra of original y and linearized yd OFDM 25W PA
output using MP all

4,3 model, P̄out = 25.8 dBm.
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(a) AM/AM distortion.
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Figure 6.27: Normalized non-linear distortion of OFDM signal, 25W PA without predistortion (red)
and with predistortion (red) using MP all

4,3 model, P̄out = 29.5 dBm.
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Chapter 7
Discussion

This chapter discusses the results from chapter 6. The most important topics for discussion
are the different behavioral models’ linearization performance relative to their computa-
tional complexity and also the increased spectral bandwidth as this is a major limiting
factor when performing predistortion in the radar system. When discussing results, refer-
ences will be made to figures in chapter 6, which will require some page flipping.

7.1 PA Modeling Through Behavioral Models

The PA modeling results are found in section 6.1. Figures 6.1 and 6.5 show that increasing
the output power leads to an increase in spectral regrowth. The main difference between
how this effect occurs in the two PAs, is that the 25W PA seems to be more non-linear than
the 10W PA, and introduces more non-linear distortion. Even for low output powers, the
25W PA has quite high third order IMD, and increasing the power introduces quite high
values of fifth order IMD as well, which is not seen for the 10W PA. The 25W PA also has
more asymmetry in between the lower and upper adjacent channels. This can most likely
be traced to large amounts of AM/PM distortion even at low power levels, shown e.g. in
figure 6.8b, which as explained in section 2.4 will produce intermodulation products in the
odd order harmonic bands.

Figures 6.2 and 6.6 reveal that the memory polynomial model achieves the best model-
ing performance at an NMSE(y, ŷ) of −41 dB for the 10W PA, and −22.5 dB for the
25W PA. Measurements on the 25W PA was found to give a much larger spread than the
10W PA, visible e.g. from figure 6.8a. This spread was present on all measurements for
the 25W PA, but varied slightly from one measurements to the next, and although mea-
surements were run up to 20 times for each power level, no better results than the ones
presented were obtained. This suggests that the 25W PA suffers from much more severe
memory effects than the 10W PA, making behavioral modeling harder. Even for models
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incorporating memory effects, the NMSE(y, ŷ) does not improve drastically compared
to the memoryless CPS model, even when increasing the memory length M of the mod-
els. This is elaborated further in section 7.2, but can most likely be traced to non-linear
memory effects due to bias circuitry modulation causing AM/PM distortion which further
causes asymmetry in sidebands. An additional reason for the larger spread might also be
the additional noise introduced due to the use of two drivers as opposed to one for the 10W
PA.

It’s clear that little modeling improvement is achieved from using non-linear orders higher
than K = 4, or a memory length of more than M = 3, as NMSE(y, ŷ) for all of the
models flatten out for higher values of K and M . The memoryless CPS model has the
worst performance, showing that it’s beneficial to include memory in the models, suggest-
ing that memory effects are present in the PAs.

From figures 6.3 and 6.7 it’s clear that only using odd orders of the polynomial gives a less
accurate model of the PAs as NMSE(y, ŷ) values are higher when using odd orders only
as opposed to using all orders. This suggests that both PAs introduce orders of non-linear
distortion which even order non-linearities are better at describing than odd orders, as an
odd order polynomial requires a much higher degree to achieve the same NMSE(y, ŷ)
results.

Based on the modeling results, a higher non-linear order than K = 4 is not expected to
give any drastic linearization improvements. In the same manner, linearization is not ex-
pected to improve significantly when using a memory length of more than M = 3. When
implementing predistortion to the radar system, it’s desirable to achieve the best perfor-
mance with as low maximum order K and memory length M as possible. This is both to
reduce computational complexity, but also because signals predistorted with smaller val-
ues of K and M will have a smaller spectral bandwidth which will ease the constraints on
both the digital and the analog electronics of the system. The importance of this issue is
discussed further in section 7.4. Minimizing the number of coefficients which need com-
putation is desirable, however this issue might not be a critical one. In the radar system
predistortion is mainly implemented to investigate the benefits of linearization. Due to
this experimental nature, the predistortion implementation will only use static coefficients
that can be updated once in a while, allowing the computational complexity to be higher
as coefficients are not computed that often. This would be a much more critical issue for
a system using adaptive coefficient updating. The MP model is the most complex of the
three with a total number of κMP = K ×M coefficients. The W model has a total of
κW = K + M coefficients, and the CPS model has κCPS = K coefficients. Thus, the
models perform in scale of their complexity, which is a sensible result.
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7.2 Digital Predistortion Linearization

7.2.1 ACPR and EVM

The linearization results are found in section 6.2. For the 10W PA, figures 6.9 and 6.10
show how the ACPR and EVM of the 16-QAM signal is affected by predistortion lin-
earization with different values of maximum non-linear order K and memory length M ,
at one specific output power. Based on these figures it would seem that a non-linear or-
der of K = 6 and memory length M = 3 would yield the best result, however figure 6.11
shows that a model withK = 4 andM = 3 yields a more stable linearization performance
as the output power varies, and was found to give the best results overall. This instability
is seen from the large variation in ACPR as power increases in figure 6.11b. The same
can be said for the EVM shown in figure 6.12. This leads to a conclusion that the behav-
ioral models are more sensitive as their complexity increases. It seems that performing
predistortion also cause asymmetries in the lower and upper IMD sidebands which are
not present without predistortion. This is seen in figure 6.11 where difference between
the upper and lower IMD bands can be as much as 5 dB after predistortion although the
uncorrected 10W PA has almost no asymmetry. This effect is present for all models, mem-
oryless or otherwise. A single-tone characterization shown in appendix A shows that the
1-dB compression point of the 10W PA is at 33 dBm, at which point predistortion was
able to reduce ACPR by 15 dB for the 16-QAM signal, but only about 5 dB for the OFDM
signal, most likely due to the increased PAPR of the OFDM signal. EVM is reduced by
5% for the 16-QAM signal. The linearization gradually worsens as the output power in-
creases, as predistortion is not able to correct the severe non-linearities occurring when the
PA is far into compression.

For the 25W PA the best linearization performance was also found to be models with
K = 4 and M = 3, however as mentioned in section 7.1, the characterization of the 25W
PA behavior was much less accurate than for the 10W PA, with an NMSE(y, ŷ) of only
−22.5 dB, naturally leading to lower linearization performance. Figure 6.21 shows ACPR
and EVM reduction for the 16-QAM signal by more than 10 dB and 3% respectively us-
ing the MP all4,3 model for output power levels below 25 dB, however past this, the CPSall4

model achieves the best performance. The EVM reduction however is not very clear, as
seen in figure 6.21b. There is a huge variation in EVM as the power output increases, and
the main reason for this was the large spread in measurements on the 25W PA. This spread,
visible e.g. in figure 6.8a, was present on all measurements for the 25W PA, but varied
randomly from one measurement to the next. Extracting the best measurement from 20
runs per power level still did not yield any better results, meaning it’s hard to confidently
conclude that EVM has actually been reduced. EVM is calculated on the received PA out-
put vector in MATLAB, leading to a suspicion that this is an issue occurring when the data
is dumped from the signal generator and back to MATLAB. The ACPR results are com-
puted by the FSQ40 signal analyzer directly and are more confident. It’s clear that also for
the 25W PA, predistortion can introduce IMD asymmetry, however the uncorrected 25W
PA has quite large asymmetries by itself. The single-tone characterization in appendix A
shows that the 1-dB compression point of the 25W PA is at 30 dBm, at which point pre-
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distortion was able to reduce ACPR by no more than 6 dB for the lower and even less for
the upper channel, with the 16-QAM input. The ACPR of the OFDM signal was reduced
slightly more, by up to 10 dB for the lower, and 5 dB for the upper channel, which is a
surprising result as the OFDM signal had a PAPR of 9 dB compared to 6.4 dB for the
16-QAM signal. This again only goes to show how sensitive the predistortion operation is
with regard to the PA characterization results, which for the 25W PA proved less accurat
than for the 10W PA. The linearization performance was better for lower output powers,
with a maximum ACPR reduction of more than 10 dB for average output powers below 28
dBm.

The most important issue for getting good linearization results was found to be good char-
acterization measurements of the PAs. Behavioral models are very sensitive to measure-
ment noise and inaccuracies, and this was a major issue in the 25W PA. This suggests that
the PA has large amounts of non-linearity and memory effects which even models with
memory have a hard time describing, leading to lower linearization performance than for
the 10W PA. An effect also suggesting large amounts of memory effects in the 25W PA
is seen in the asymmetric lower and upper ACPR values in figures 6.21a and 6.25 show-
ing a difference of up to 5 dB between channels. As explained in [2], and mentioned in
section 2.4.3, this usually comes from modulation of bias circuitry. In [3, p.98] this is
elaborated further, showing that sideband asymmetry can be traced to AM/PM distortion.
This is very interesting, as it was clearly observable that the AM/PM distortion of the 25W
PA was much more severe than for the 10W PA, and the 10W PA showed much more
symmetrical IMD sidebands.

7.2.2 16-QAM Constellation Diagram

The reduction of EVM for the 10W PA is clearly visible in the constellation diagrams in
figure 6.14, where the measured points are closer to the optimal points after linearization.
The diagram is plotted at the 1-dB compression point where there are degrees of both
AM/AM and AM/PM distortion, resulting in compression of the outer most measured
points, and a phase shift of the measured points is visible as well. Digital predistortion is
able to correct both the AM/AM and AM/PM distortion and reduce the EVM.

For the 25W PA, the constellation diagram shown in figure 6.23 is for a power level quite
well below the 1-dB compression point. The reason for this was due to the large spread in
measurements, and figures for higher power levels did not clearly illustrate how predistor-
tion improved the constellation. However, for lower power levels, the distortion introduced
by the 25W PA is dominated by large amounts of AM/PM distortion, which is clearly vis-
ible in the diagram without predistortion. After linearization the AM/PM distortion has
been corrected and the points are closer to the optimal points.

7.2.3 AM/AM and AM/PM Distortion

The main characteristic separating the two PAs is that the 25W has quite severe AM/PM
distortion even at low power outputs compared to the 10W PA. This is visible in figure
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6.24b compared to 6.15b. The result of this is relatively high ACPR values, −35.6 dBc,
even for the lowest power outputs, as seen in table 6.2 compared to −49.7 dB in table
6.1 for the 10W PA, and an asymmetry in lower and upper sidebands. Most of the ACPR
and EVM reductions at low power levels come from linearizing the phase of the 25W PA
output.

The linearization of the input/output characteristic of the 10W PA is clearly visible in
figure 6.15 where the AM/AM distortion is much more linear and the relative phase shift
between the input and output vectors is closer to zero. In figure 6.24 the linearization
improvement of the 25W PA is not equally clear. The power level for which the AM/AM
distortion has been plotted is not high enough that the PA has started to compress, yet the
AM/PM distortion is quite severe. After linearization this is improved, in addition to a
linear AM/AM response.

It was expected that the PA modeling and linearization results would match in such a way
that the model performing the best in PA modeling would also be the best for predistortion.
This was found to untrue, as the CPS model actually outperformed the two models in
some cases, even though it had the worst performance in PA modeling. This shows that
the added complexity introduced by the two models incorporating memory increases their
sensitivity and might result in lower linearization performance.

7.3 Comments on Efficiency Enhancement

As mentioned before, the scope of this thesis does not include a detailed analysis of the ef-
ficiency enhancement benefits of performing digital predistortion linearization. However,
some comments on the possibilities are appropriate.

7.3.1 10W PA

Figure 7.1 shows the single-tone power-added efficiency of the 10W PA and the ACPR
values obtained on the OFDM signal with predistortion1. If an upper limit of an adjacent-
channel power ratio is set to −45 dBc, P̄out can be increased from 26 to 33 dBm using
predistortion with the CPSall4 model. Keeping in mind that the PAE data is from single-
tone measurements it still indicates that the PAE can potentially be increased significantly
by increasing the output power. However as an efficiency analysis was not performed on
the 16-QAM or OFDM signals, no conclusion can be drawn as to the actual efficiency
benefits of linearization.

1The PAE measurements were performed by Richard Samuelsen, designer of the 10W PA used in this thesis
and are plotted with his courtesy.
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Figure 7.1: PAE of 10W PA and ACPR of OFDM outputs with predistortion.

7.3.2 25W PA

For the 25W PA it was shown in figure 6.25 that for the OFDM signal, both upper and
lower ACPR values have been reduced to −45 dBc for a quite wide dynamic range for the
25W PA using the MP all4,3 model for predistortion. Figure 7.2 is collected from the 25W
PA data sheet [24] and shows linearity and PAE of as functions of output power. Although

Figure 7.2: CMPA5585025F X-band Linearity, Gain, and PAE vs Average Output Power, VDS =
28 V, IDS = 285 mA, Offset-QPSK, 1.6 Msps [24, p.6].

the signal applied here is a OQPSK signal with much lower PAPR than the signals used in
this thesis, and with a bandwidth of only 1.6 MHz, the linearity results are comparable to
those obtained in this thesis, showing ACPR values between −35 and −42 dBc for output
power levels from 25 to 34 dBm. By reducing these by 10 to 5 dB through DPD, the PA
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can be driven slightly harder before reaching these values, which will slightly increase the
PAE of the PA. This increase will however most likely be small. In figure 6.25 it’s shown
that for average output power levels of 30 dBm and above the ACPR for the predistorted
output starts to increase and the ACPR reduction from predistortion relative to the original
output will likely be consumed within a few dB of extra output power. Looking at the PAE
curve in figure 7.2 shows that there are not much efficiency to gain from adding a couple
of dB past the 30 dBm mark.

Exactly how much harder the PA can be driven is only speculation, however, as the PA was
not driven harder than an average output power of 33 dBm for the OFDM signal due to
the non-linearities introduced by the drivers past this. It can also be said that the efficiency
enhancement will depend on the application and its upper limits of non-linearity. These
comments were aimed at the radar system in question, where the desired output power is
as high as possible.

7.4 Limitations of Digital Predistortion

Digital predistortion linearization has many benefits and has achieved better results than
traditional linearization techniques such as feed-forward, feed-back, and analog predis-
tortion. DPD is very versatile, however there are some limitations that are important to
consider.

The first limitation is the increased computational complexity required to compute the co-
efficients from characterization of the PA. For adaptive algorithms updating coefficients
during operation, this might introduce a constraint, however for the experimental radar
system in question in this thesis the thought is to use static coefficients that can be com-
puted once in a while, instead of adaptively updating them. This reduces the limitation
that computational complexity puts on the system.

A second, and for the radar system very important, limitation of DPD is the increased
bandwidth of the predistorted signal compared to the original signal. To cancel the PA’s
intermodulation distortion, the predistorter introduces intermodulation products, increas-
ing the spectral bandwidth of the signal. Figure 7.3 shows the spectrum of the predistorted
input signal xd at different values of the maximum polynomial order K. It’s clear that
the bandwidth increases as the maximum non-linear order K increases. This introduces
demands to both the digital and analog electronics of the radar system. First of all, the
sampling rate of the DAC must to be high enough to produce the IMD products without
introducing aliasing, which effectively limits the maximum non-linear polynomial order of
the behavioral models used for linearization. A signal with bandwidth 10 MHz will have
a fifth-order IMD bandwidth of 5 ∗ 10 MHz = 50 MHz, which according to the Nyquist
criterion requires 100 MHz to represent without aliasing. For the signal generator used for
measurements in this thesis, the maximum sampling frequency is 100 MHz, meaning this
limits the maximum non-linear orderK for the models used for predistortion toK = 5 for
a signal with 10 MHz bandwidth. For high bandwidth applications like the MIMO-OFDM
radar in question in this thesis, this issue may be critical. These stringent demands to the
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Figure 7.3: Power density spectra of predistorted 10W input signal xd at different values of non-
linear order K.

DAC requires a trade-off between cost and linearization performance. The sampling rate
of the DAC intended for transmission of the OFDM signal is 250 MHz. Predistortion will
thus theoretically only be able to reduce spectral regrowth for the 50 MHz OFDM signal
in a 125 MHz band. In addition, the increased bandwidth is important to consider when
designing the analog electronics, as the IMD products have to be present until the signal
has passed through the entire front-end system for the predistortion to work. If this has not
been considered during the design of the radar system, it might prove costly to implement
at later stages in the development process.

To see how critical this issue is, an additional set of measurements was performed on
the 10W PA where a filter operation is applied on the predistorted input signal xd. Four
Chebyshev filters H1, · · · , H4, each with different "sharpness", are designed in MAT-
LAB and used to filter xd before transmission to the signal generator. The magnitude
responses of the filters are shown in figure 7.4, together with the predistorted signal xd

spectrum.

This resulted in ACPR values shown in figure 7.5 which show that a filtering of the pre-
distorted signal prior to the PA will definitely affect and potentially completely ruin the
linearization. However the severity of this depends on the sharpness of the filter operation,
as the less sharper filters still achieve some degree of ACPR reduction. From this it must
be concluded that such filtering should be avoided, meaning the analog electronics at the
DAC output must be able to handle the increased bandwidth of the predistorted signal.

A third concern is the increased PAPR of the predistorted signal. To compensate for gain
compression, the predistorted input signal has higher peaks than the original input, mean-
ing the DAC needs to be able to deliver enough power. A larger DAC is usually more power
consuming, which might absorb the efficiency enhancement introduced by the predistor-
tion operation. For this specific system, however, the most critical issue is not necessarily
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Figure 7.4: Power density spectrum for predistorted input xd for 10W PA, P̄out = 33 dBm, and
four filter magnitude responses.
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Figure 7.5: ACPR values for 10W OFDM signal predistorted with MP all
4,3 model and filtered with

four different filters before reaching the PA.

the total power consumption, but the power dissipation in the PA itself. Cooling of the
system front-end is much more critical as the radar system consists of 64 separate radar
channels each with an individual transmitter PA dissipating heat. Instead moving some of
this power dissipation to the separately placed DAC might be advantageous.

7.5 Supplementary Comments

The purpose of this thesis was to show how digital predistortion linearization can benefit
the MIMO-OFDM radar system. Linearization of the transmitter PA does have some ben-
efits, however based on the results presented in this thesis they seem to be modest. After
linearization, the ACPR of the OFDM signal was reduced by up to 10 dB for lower output
powers, however this reduction was quickly consumed when output powers are increased.
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For the radar system application, it’s desirable to achieve high output powers, meaning
digital predistortion will have limited benefits. A theoretical analysis performed in [25]
shows the benefit of PA linearization in an OFDM system to be low, obtaining a maximum
of 3 dB output back-off operating point improvement. This means that the PA could be
driven 3 dB harder achieving the same linearity measured in EVM. The results presented
in this thesis does not tell a vastly different story. Combining these results with the added
complexity of adding a digital predistortion scheme, the costs might exceed the benefits of
the implementation.

68



Chapter 8
Conclusion

8.1 Conclusion

The scope of this thesis was to investigate the linearization performance of digital pre-
distortion of the Cree CMPA5585025F GaN PA intended as the transmitter PA in an X-
band MIMO-OFDM radar system currently in development by the Norwegian Defence
Research Establishment (FFI). This investigation was done by using mathematical behav-
ioral models to linearize two RFPAs through digital predistortion. The first was a class
F PA designed at NTNU based on the Cree 10W GaN transistor, and the second was
the Cree CMPA5585025F GaN PA. By implementing indirect learning architecture algo-
rithms in MATLAB based on the memoryless complex power series model, the Wiener
model and the memory polynomial model, figures such as ACPR and EVM have been
measured before and after linearization on 16-QAM and OFDM signals with 10 MHz
bandwidth.

Modeling results showed that the MP model was superior in describing both PAs’ behav-
iors, achieving an NMSE(y, ŷ) of −41 dB for the 10W PA, but only −22.5 dB for the
25W PA due to more severe memory effects which all models had a hard time represent-
ing.

The linearization results show that ACPR and EVM for a 16-QAM signal can be reduced
by more than 15 dB and 5% respectively at the 1-dB compression point for the 10W PA
using the MP all4,3 model. Only a more modest reduction was achieved for the 25W PA,
with a reduction of 6 dB in ACPR and 3% in EVM at 1-dB compression, however the
EVM results shows large variations and a confident conclusion regarding the EVM re-
duction can not be drawn. For the OFDM signal, ACPR was reduced by more than 15
dB for the 10W PA for lower power levels, however as power levels were increased, the
reduction quickly worsened. For the 25W PA, ACPR reduction of the OFDM signal ac-
tually surpassed the reduction seen for the 16-QAM signal with a reduction of more than
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10 dB using the MP all4,3 model, however this reduction was also quickly consumed as the
output power was increased. The conclusion to draw from this is that there are not very
clear benefits of implementing digital predistortion to the radar system. The additional
cost of implementing the scheme and considerations regarding computational complex-
ity and increased signal bandwidth may exceed the modest linearization benefits achieved
in this thesis. The increased bandwidth issue was shown to be of great significance as
a filtering of the predistorted signal prior to the power amplifier greatly reduced the lin-
earization.

Integrating digital predistortion into the radar system may seem a trivial challenge from the
outside, however it requires that both the digital and analog electronics have the necessary
bandwidth to support the increased spectral bandwidth of the predistorted signal. If this
has not been considered during the design of the radar system, it might prove costly to
implement at this stage in the development process.

8.2 Further Work

In this thesis, the efficiency benefits of digital predistortion linearization only received a
short superficial analysis. Further work should include a thorough efficiency analysis, to
show how the power efficiency of the PA can be improved by allowing it to be driven
harder before reaching the upper limit of distortion allowed. This could be of importance
for the radar system as it consists of 64 individual radar channels which are closely spaced,
making cooling a major challenge. The transmitter PA is the single biggest contributor to
heat dissipation due to the high power outputs. Minimizing the heat dissipation in each
channel will ease the issue of system cooling, making high efficiency desirable.

Due to the SMU200A vector signal generator’s sampling rate of 100 MHz, the bandwidth
of the OFDM signal was reduced from 50 MHz to 10 MHz in order to allow predistortion
to be applied. In order to draw a more confident conclusion of the benefits of implement-
ing DPD to the radar system, an analysis using a signal generator with a higher bandwidth
should be performed. That said, the results presented in this thesis should give an indi-
cation of the benefits of such a DPD implementation, and that they in fact point toward
limited benefits.
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Appendix A

PA Single-tone
Characterizations
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Figure A.1: Single-tone measurements on 10W PA, Pout as a function of Pin and P1dB .
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Appendix B
Selected MATLAB Code

B.1 Regression Matrix Generation

% ---- FUNCTION: GETMATRIX ---- %
%
% Author: Magnus Bache
%
% Function for generating regression matrix for the different
% behavoral models.
%
% Inputs:
% x -> PA input signal vector.
% y -> PA output signal vector.
% Model -> String specifying model.
% Orders -> String specifying polynomial orders.
% MaxOrder -> Maximum polynomial order.
% MemLength -> Memory length of model.
%
% Outputs:
% Hreg -> Regression matrix composed from input signal.

function Hreg = getMatrix(x,y,Model,Orders,MaxOrder,MemLength)

if strcmpi('cps',Model)

if (strcmpi('odd',Orders))
Hreg = zeros(length(x),floor((MaxOrder+1)/2));
for k = 1:floor((MaxOrder+1)/2)

Hreg(:,k) = x.*abs(x.^(2*(k-1)));
end

elseif (strcmpi('even',Orders))
Hreg = zeros(length(x),ceil((MaxOrder+1)/2));
for k = 1:ceil((MaxOrder+1)/2)
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Hreg(:,k) = x.*abs(x.^(2*k-1));
end

elseif (strcmpi('all',Orders))
Hreg = zeros(length(x),MaxOrder);
for k = 1:MaxOrder

Hreg(:,k) = x.*abs(x.^(k-1));
end

else
error('Orders not specified correctly.');

end

elseif strcmpi('mp',Model)

lengthx = length(x);
x = [zeros(MemLength,1); x];

if (strcmpi('odd',Orders))
Hreg = zeros(lengthx,MemLength*(floor((MaxOrder+1)/2)));
for n = 1:lengthx

for k = 1:floor((MaxOrder+1)/2)
Hreg(n, (k-1)*MemLength + (1:MemLength)) = ...
((x((n+1):(n+MemLength))).*(abs(x((n+1):(n+MemLength))...

.^(2*(k-1))))).';
end

end
elseif (strcmpi('even',Orders))

Hreg = zeros(lengthx,MemLength*(ceil((MaxOrder+1)/2)));
for n = 1:lengthx

for k = 1:ceil((MaxOrder+1)/2)
Hreg(n, (k-1)*MemLength + (1:MemLength)) = ...
((x((n+1):(n+MemLength))).*(abs(x((n+1):(n+MemLength)))...

.^(2*k-1))).';
end

end
elseif (strcmpi('all',Orders))

Hreg = zeros(lengthx,MemLength*MaxOrder);
for n = 1:lengthx

for k = 1:MaxOrder
Hreg(n, (k-1)*MemLength + (1:MemLength)) = ...
((x((n+1):(n+MemLength))).*(abs(x((n+1):(n+MemLength)))...

.^(k-1))).';
end

end
else

error('Orders not specified correctly.');
end

elseif strcmpi('w',Model)

Hreg = zeros(length(x),MemLength);
for m = 1:MemLength

Hreg(:,m) = delay_signal(x,m);
end
if rank(Hreg)==min(size(Hreg))

c1 = Hreg\y;
else
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c1 = pinv((Hreg')*Hreg)*(Hreg')*y;
end

v = Hreg*c1;

if (strcmpi('odd',Orders))
Hreg = zeros(length(v),floor((MaxOrder+1)/2));
for k = 1:floor((MaxOrder+1)/2)

Hreg(:,k) = v.*abs(v.^(2*(k-1)));
end

elseif (strcmpi('even',Orders))
Hreg = zeros(length(v),ceil((MaxOrder+1)/2));
for k = 1:ceil((MaxOrder+1)/2)

Hreg(:,k) = v.*abs(v.^(2*k-1));
end

elseif (strcmpi('all',Orders))
Hreg = zeros(length(v),MaxOrder);
for k = 1:MaxOrder

Hreg(:,k) = v.*abs(v.^(k-1));
end

else
error('Orders not specified correctly.');

end

elseif strcmpi('h',Model)

if (strcmpi('odd',Orders))
Hreg = zeros(length(x),floor((MaxOrder+1)/2));
for k = 1:floor((MaxOrder+1)/2)

Hreg(:,k) = x.*abs(x.^(2*(k-1)));
end

elseif (strcmpi('even',Orders))
Hreg = zeros(length(x),ceil((MaxOrder+1)/2));
for k = 1:ceil((MaxOrder+1)/2)

Hreg(:,k) = x.*abs(x.^(2*k-1));
end

elseif (strcmpi('all',Orders))
Hreg = zeros(length(x),MaxOrder);
for k = 1:MaxOrder

Hreg(:,k) = x.*abs(x.^(k-1));
end

else
error('Orders not specified correctly.');

end
if rank(Hreg)==min(size(Hreg))

c1 = Hreg\y;
else

c1 = pinv((Hreg')*Hreg)*(Hreg')*y;
end
v = Hreg*c1;
Hreg = zeros(length(v),MemLength);
for m = 1:MemLength

Hreg(:,m) = delay_signal(v,m);
end

else
error('Desired model is not possible.');
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end

end

B.2 Finding Coefficients and Model Output

% ---- FUNCTION: GETMODELANDOUTPUT ---- %
%
% Author: Magnus Bache
%
% Function for generating regression matrix for the different
% behavoral models.
%
% Inputs:
% x -> PA input signal vector.
% y -> PA output signal vector.
% Model -> String specifying model.
% Orders -> String specifying polynomial orders.
% MaxOrder -> Maximum polynomial order.
% MemLength -> Memory length of model.
%
% Outputs:
% y_hat -> Estimated model output.
% coeffs -> Vector with least-squares coefficients.
% Hreg -> Regression matrix composed from input signal.

function [y_hat,coeffs,Hreg] = getModelAndOutput(x,y,Model,Orders,MaxOrder,MemLength)

Hreg = getMatrix(x,y,Model,Orders,MaxOrder,MemLength);

if rank(Hreg)==min(size(Hreg));
if strcmpi('mp',Model)

lengthx = length(y);
y = [zeros(MemLength,1); y];
coeffs = Hreg\y(MemLength+(1:lengthx));

else
coeffs = Hreg\y;

end

else
disp('Regression matrix rank deficient. Solving using pseudoinverse.');
if strcmpi('mp',Model)

lengthx = length(y);
y = [zeros(MemLength,1); y];
coeffs = pinv((Hreg')*Hreg)*(Hreg')*y(MemLength+(1:lengthx));

else
coeffs = pinv((Hreg')*Hreg)*(Hreg')*y;

end
end

y_hat = Hreg*coeffs;

end
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B.3 Script for Generation of Predistorted Signal

Pin = -16; % Input power from generator [dBm];
Meas = 'DriverAndPA'; % Which data to use; ['Driver','DriverAndPA'].
What = 'FFI'; % Which amplifier; ['FFI','Richard'].
Signal = 'QAM'; % Which signal; ['QAM', 'OFDM'];

% ---- Model parameters ---- %

Model = 'mp'; % String specifying model; ['cps','mp','w','h'].
Orders = 'all';

% Memory length
MemLength = 3; % Max memory length.
% Polynomial order
MaxOrder = 4; % Max polynomial order.

% ---- Load file containing input and output data --- %

Path = 'C:/Users/.../';
fileName = sprintf('%s/Meas%s%s_%sPin%idBm.mat',Path,Meas,What,Signal,Pin);
load(fileName);

% ---- Find linear gain of PA ---- %

LinRegion = logical((abs(x)<0.4).*(abs(x)>0.05)); % Linear region of amplifier.
LinGain = mean(abs(y(LinRegion)./x(LinRegion))); % Mean gain in linear region.

% ---- Find DPD coefficients ---- %

[~, DPDcoeffs] = getModelAndOutput(y/LinGain,x,Model,Orders,DPDOrder,DPDMemLength);

% --- Generate regression matrix ---- %

Hreg = getMatrix(x,y,Model,Orders,DPDOrder,DPDMemLength);

% ---- Generate predistorted signal ---- %

xDist = Hreg*DPDcoeffs;

B.4 Script for Sending And Receiving Data

clear all;
close all;
%% Set ports A and B

PORT1 = 1;
PORT2 = 2;

%% SG Parameters

RFpowdBm = 6;
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RFfreqGHz = 2.0; % in GHz
powLimdBm = 21; % Limit for the peak input power
Pin = RFpowdBm;

%% SA Parameters
S.RefLevel_dBm = 30;
S.fs_Hz = fs;
S.RBW_MHz = 50; % SA Resolution BW when reading in IQ-mode
S.asr = 20e6;
Nper = 4; % nr of times the seq. is repeated
S.timebase = Nper * Nsamp / fs;
S.Npoints = ceil(Nper .* Nsamp .* S.asr ./ fs);

Meas = 'DriverAndPA'; % Which data to measure; ['Driver','DriverAndPA'].
What = 'Richard';
Signal = 'QAM';
% ---- Model parameters ---- %

%% Load input signal

fileName = sprintf('%s.mat',Signal);
load(fileName);

p2 = abs(x1).^2;
p = (p2 - min(p2)) / (max(p2) - min(p2));

% --- Calc. average RF power for the SG
PAPRdB = 10*log10(max(p) / mean(p));

if PAPRdB + RFpowdBm > powLimdBm
error('Maximum input power exceeds POWLIMDBM.')

end

%% Load signal into SG
closecom
status = ConnectPortToIQOuput(PORT1);
SendWaveformTOSG_J(x1,RFfreqGHz,RFpowdBm,fs, PORT1); % Load RF-signal to the SG

% --- Get the I/Q data
[ySA, Settings] = CollectIQdata2(RFfreqGHz,2*Nsamp, S);
[ySAal, ynorm] = alignSignal(x1,ySA,128);

xNoDist = ynorm;
yNoDist = ySAal;

BW_channel = SR;
ACP_spacing = SR*(1+2*rolloff)*[1,2];
rolloffSA = rolloff;
[PodBm_nocomp, IM3and5dBcNoDist] = MeasACP_ALTP(RFfreqGHz*1e9,...

BW_channel, ACP_spacing, rolloffSA);

fileName = sprintf('Meas%s%s_%sPin%idBm.mat',Meas,What,Signal,Pin);
save(fileName,'xNoDist','yNoDist','ovs','Nsym','filtdelay',...

'rolloff','SR','fs','Nsamp','PodBm_nocomp','IM3and5dBcNoDist');
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