NTNU - Trondheim
Norwegian University of

Science and Technology

FPGA virtualization layer for
non-deterministic state machines

Tormod Heimark

Master of Science in Electronics
Submission date: June 2015
Supervisor: Kjetil Svarstad, IET

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Summary

In this thesis a virtual layer for running self-cloning state machines on FPGAs has been
developed. The goal has been to connect software with hardware resources, and to make
partial reconfigurability more available. Previous work has been done on defining self-
cloning state machines that can run on an FPGA, but was not tested with partial runtime
reconfiguration. A framework for reconfiguration has been used in this thesis, which had
previous shown some difficulties regarding synchronous designs.

Specifications for the virtual layer were defined, and the different modules constructed.
The virtual layer was implemented on a Virtex-4 FPGA, with an embedded PorwerPC
microprocessor running a Linux operating system. The virtual layer gives software appli-
cation an interface for defining state machines, which will be mapped to the FPGA and
executed. The modules on the FPGA are separated into two parts, one reconfigurable re-
gion and one static region. The static region contains a back-end that handles the control
of the NFSM and communication with the processor. The reconfigurable region contains
the NFSM, which is divided into several clones. The clones can be inserted or removed by
using partial runtime reconfiguration.

Many difficulties were experienced when trying to implement the virtual layer with
support for partial runtime reconfiguration. The tool support was lacking and the space
on the FPGA became a problem. Only one clone could be fitted on the FPGA. Therefore
the verification of the system was divided in two. A state machine with four clones was
tested and verified. The virtual layer was able to take input from software and map this
into a functional self-cloning state machine. Some limitations had to be put on the system
to make it possible to implement. A second test was performed with partial runtime recon-
figuration to show that clones could be added or removed from the design at runtime. The
test was successful, but could only be done with one active clone. The limitations of the
Virtex-4 platform can be avoided by implementing the virtual layer on a more state of the
art FPGA. The system defined in this thesis should work on any FPGA, but will require a
lot of work, especially porting of the framework for reconfiguration.

ii

Sammendrag

I denne oppgaven har et virtuelt lag for selv-kopierende tilstandsmaskiner blitt utviklet.
Malet med oppgaven har vert a knytte software sammen med ressurser pa hardware, samt
a gjgre partiell rekonfigurering enklere a bruke. Tidligere arbeid har blitt gjort med &
definere og teste selv-kopierende tilstands maskiner, men dette ble aldri testet pa et fullt
system med rekonfigurering. Et rammeverk for rekonfigurering har blitt brukt i denne
oppgaven, tidligere har det vert problemer a bruke dette pa synkrone design.

Spesifikasjoner ble satt opp for det virtuelle laget, og de forskjellige modulene som
trengtes ble konstruert. Dette ble implementert pa en Virtex-4 FPGA, som har en Pow-
erPC microprosessor med et Linux operativsystem innebygd. Det virtuelle laget tilbyr et
grensesnitt for a definere tilstandsmaskiner i software, disse definisjonene blir sa lastet ned
pa FPGAen og realisert som en kjgrende tilstandsmaskin. FPGAen er delt inn i to deler,
en statisk del, og en rekonfigurerbar del. Den statiske delen bestar av en back-end som
héndterer kontrollen av tilstandsmaskinene som kjgrer pa FPGAen, og den handterer kom-
munikasjonen mellom FPGAen og prosessoren. Det rekonfigurerbare delen inneholder
tilstandsmaskinene, som er delt opp i forskjellige kloner. Klonene kan bli satt inn eller
fjernet ved hjelp av partiell rekonfigurering ved kjgretid.

Det var en del vanskeligheter nar systemet skulle implementeres, og spesielt nar det
gjaldt den partielle rekonfigureringen. De tilgjengelige verktgy var vanskelige & bruke,
og hadde en del mangler. Det viste seg ogsa at plass pA FPGAen var et problem. Det
var bare plass til en klone om gangen, hvis stgtte for partiell rekonfigurering ble lagt til.
Derfor ble testingen av systemet delt i to. Den fgrste delen testet en hel tilstandsmaskin
men fire tilkoblede kloner. Testingen viste at det virtuelle laget kunne ta en definisjon i fra
software og gjgre dette om til en kjgrende selv-kopierende tilstandsmaskin. For a gjgre
det mulig 4 implementere dette systemet matte det settes en del begrensninger, spesielt for
hvilke typer tilstandsmaskiner som kunne kjgres. Den andre testen ble utfgrt med partiell
rekonfigurering av en klone. Dette fungerte og klonen kunne bli byttet ut. Begrensin-
gene pa Virtex-4 plattformen gjorde at et stgrre system med rekonfigurering ikke kunne
bli gjennomfgrt, men det virtuelle laget skal kunne fungere pa nyere FPGAer ogsa. A im-
plementere det virtuelle laget pa andre FPGAer vil kreve en del arbeid, spesielt med tanke
pa rammeverket for rekonfigurasjon, som akkurat na er bare laget for Virtex-4.

Preface

Making a system that runs on both hardware and software is very interesting, and is the
reason for why I chose to work with this in my thesis. It has been challenging but I have
learned a lot. I want to thank Professor Kjetil Svarstad for the help and advice he has given
me.

Table of Contents

Summary i
Sammendrag iii
Preface iv
Table of Contents vii
List of Tables ix
List of Figures xi
List of Source code listings xiii
Abbreviations Xiv
1 Introduction 1
1.1 Problemdescription 1
1.2 Motivation o e e e e e e 1
1.3 Contribution e e 2
1.4 Method e 2
1.5 ReportStructure 3
2 Previous work 5
2.1 Previouswork from NTNU 5

2.1.1 Daniel Blomkvist’s master thesis (June 2013): Self-cloning state
machineson FPGA 5

2.1.2 Sverre Hamre’ master thesis (June 2009): Framework for self re-
configurable system on Xilinx FPGA 5

2.1.3 Vegard Endresen’s master thesis (June 2010): Hardware-software
intercommunication in reconfigurable systems 6

2.1.4 Sindre Hansens’s master thesis (June 2011): Self Reconfiguration

of Clock Networkson FPGA 6

22 Othersources v v v v v v it 7
2.2.1 A heterogeneous multicore system 7

2.2.2 A homogeneous network on-chip system 7
Theory and background 9
3.1 Development environment 9
3.2 Field programmable gate array 11
33 TheVirtex-4 e 12
34 Software 12
3.5 Runtime reconfiguration 13
351 Busmacros 14

3.6 Framework for reconfiguration L. 14
36,1 CLBRead 14

362 dcapowriteo 15

3.7 Finitestatemachine oL oL 15
37.1 Cloning 16
Design of the virtual layer 21
4.1 Requirements 21
4.2 System OVEIVIEW v v v v v v e e e e e e e e e e e e 21
4.2.1 Reconfigurablemodule 0. 25
422 Back-end 27

423 Software 29
424 Datapath 29

4.3 Limitations 30
4.4 TImplementation alternatives, 31
4.4.1 A Self-Reconfigurable Gate Array Architecture 31
442 Xilinxdevelopmentflow, 31
Implementation and verification 33
5.1 Implementing the virtual system 33
5.1.1 0 Timin@isSues o v i e 34

5.2 Runtime reconfiguration 34
5.2.1 Restriction of logic placement 34

522 FPGAEditor 35

523 Clocksignal 37

53 Drivers e 38
54 Program L e e 39
5.5 Verification oL 40
5.5.1 Test with substring detector 40

5.5.2 Partial runtime reconfigurationtest. 41

6 Use of the virtual layer
6.1 Configuration vectors e
6.2 Creatingtheinputfile o L.
6.3 Running the state machine
6.4 Reconfiguring with the HWICAPmodule

7 Results

7.1 First test case with four connectedclones
7.2 Second test case with one clone and partial runtime reconfiguration

7.2.1

8 Discussion

Timing

8.1 Thevirtuallayer.
8.2 Partial runtime reconfigurationon Virtex-4

9 Conclusion

9.1 Futurework e

Bibliography
Appendix

A
B

C
D
E

Usefulcommands.
Example of input text file used for configuring and running the
NESM . . . e
runNFSM sourcecode
Synthesisresults
Development computer

43
43
43
44
44

47
47
49
51

53
53
54

57
57

59

List of Tables

3.1
32

4.1
4.2

6.1

Specifications of the Suzaku-Vboard. 11
Specifications of the Virtex-4 FPGA 12
Inputbits 28
Outputbits e 28
Configuration vectors for the substring detector 44

List of Figures

3.1
32
33
34
35

3.6
3.7
3.8

39
3.10
3.11

4.1
4.2
4.3
44
4.5

5.1
52
53
54
55
5.6

The Suzaku-V developementboard 10
The Suzaku-V components 10
Architecture of a typical FPGA 12
Organization of the different blocks on the FPGA, taken from Hamre (2009) 13

Drawing showing the bus macros with legal and illegal routing. Taken

from Hansen (2011) 15
Example of a deteministic finite state machine 16
Example of a non-deterministic finite state machine 16
State machine for detecting substrings of three consecutive ones, based on

state machine from Svarstad and Volden (2011) 17
Twoactiveclones L 17
Three activeclones 18
Four active clones, acceptedinput 19
Overview of thesystem 22
Structure of the virtual layer, 23
Connectionofclones 24
Internal components of theclone 25
Example structure of a configuration vector 26
Modules divided into pblocks in PlanAhead 35
Example of illegal routing crossing the bus macro CLB columns 36
Example of routing in the /O column 36
Example of a completed rerouting process with only legal wires 37
Global clockrouting L 38
Closer look of the clock signal 39

Xi

Listings

5.1
52
6.1
6.2
6.3
7.1
7.2

Changes made to the HWICAP driver. 39
Changes made to the icap_write program. 39
Installing the driver and running the state machine 44
Extration of a partial bitfile 45
Reconfiguring CLB columns 45
Output from testing substring detector 47
Partial runtime reconfigurationoutput 49

Xiii

Abbreviations

FPGA
NFSM
DFSM
CLB
LUT
NFS

Field-programmable gate array
Nondeterministic finite state machine
Deterministic finite state machine
Configurable logic block
Lookup-table

Network file system

Chapter

Introduction

1.1 Problem description

Previous work on implementing self-cloning state machines on FPGAs has been done in
Blomkvist (2013). This thesis will continue on that work by implementing a system for
cloning the state machines using partial runtime reconfiguration, and defining a virtual
layer that will combine both hardware and software resources. The goal of this thesis is
to implement a system that can make the speed and parallel features of the FPGA more
available to applications running on software.

1.2 Motivation

The ever shrinking transistor size comes with an increase in complexity. In the recent years
there has been a struggle to keep up with this increasing complexity, and efforts to increase
the productivity of designs have been made. One solution has been to use reconfigurable
hardware to bridge the gap between hardware and software. Many systems today use
FPGA modules as hardware accelerators, often able to perform certain tasks much faster
than a processor, and much cheaper to develop than ASIC designs. The FPGA offers the
flexibility and reconfigurability of software, and the fast and parallel features of hardware.
Partial runtime reconfiguration, where only parts of the FPGA is reconfigured at a given
time, extends the flexibility and makes it possible to adapt at runtime. The drawback is
that the availability and use of these features vary from manufacturers, and that adding
partial runtime reconfiguration to a system requires detailed knowledge of the device. The
support from development tools have been scarce, leading to a much more complicated
implementation process and possible risk of device failure.

Using self-cloning state machines as a way to make partial runtime reconfiguration
easier to use and more available was first introduced by Svarstad and Volden (2011). State
machines can be used to solve many computational problems, for example applications
that are centered on pattern matching. If they can be implemented on FPGAs, they can be

1

Chapter 1. Introduction

used to execute certain tasks for software, saving time and resources. Self-cloning state
machines will clone/copy themselves whenever they encounter problems that can have
two or more possible outcomes. They cannot know which outcome that is correct, and
have to clone several state machines to evaluate all outcomes. When the correct outcome
becomes clear, all the other state machines can be removed. The cloning aspect makes
them ideal to fully make use of the partial runtime reconfiguration features on FPGAs. A
more thorough introduction to the self-cloning state machine will be given in the Theory
and background chapter. By using state machines one can create an interface for the
applications, where the resources on the FPGA can be used without knowing any specific
details about the hardware. The idea behind the virtual layer is to create a system that
can handle job requests from applications in software, and make sure they are executed
correctly in hardware, all while hiding factors like implementation and resource usage.
This layer will create the same interface no matter what device it is implemented on. This
will help to connect software and hardware even more, and remove some of the drawbacks
of using FPGA mentioned earlier. The virtual layer will even make it possible for defining
systems that exceeds the actual hardware capacity, just like virtual memory.

1.3 Contribution

The work in this thesis will mostly be based on combining and further developing the
previous work done on the self-cloning state machines and partial runtime reconfiguration
on FPGAs. The contributions in this thesis are:

e Defining a system that can perform partial runtime reconfiguration of the self-cloning
state machines.

e Defining a virtual layer with an interface that makes the self-cloning state machines
available for the applications running on software.

e Implementation of these systems on the Suzaku-V platform. Simple testing and
experiments to verify the systems.

1.4 Method

As mentioned earlier the tool support for implementing partial runtime reconfiguration is
lacking. Previous work on the subject has offered some helpful guidelines and tutorials,
but will still require a great deal of insight and knowledge to use. The Suzaku-V system
includes an FPGA and a microprocessor with its own operating system. The number of
different components needed and the level of complexity is high, and a lot of time has been
spent on setting up all the parts required to run the system. This includes all the hardware
modules, software programs, drivers, and the development tools. To correctly implement
and use all these parts requires a good understanding of how they work. Implementing
the partial reconfiguration is the most challenging, since a lot of intricate designs steps are
needed. Without a very good understanding of the reconfiguration process, the FPGA can
easily be damaged.

2

1.5 Report Structure

Most of the work in this thesis has been done with an experimental approach. Some
of the design decisions made have been educated guesses, since it has been difficult to
foresee any effects before proper testing.

1.5 Report Structure

The next chapters are divided into Previous work, Theory and Background, Design of the
virtual layer, Implementation and verification, Use of the virtual layer, and Results. The
first chapter presents some of the earlier work done on this subject. The next chapter
introduces some theory and background information useful for understating the scope of
this thesis better. The presentation of the work done in this thesis starts with the chapter
Design of the virtual layer, were details of the design are given. In the next chapter a closer
look at the implementation and verification of the system is presented. A guide to use the
finished virtual layer on the Suzaku-V platform is given in the following chapter. Results
of the verification process are presented in the Results chapter.

Chapter 1. Introduction

Chapter

Previous work

This chapter introduces some of the previous work done on this subject. The work that is
studied consists of three different subjects, running self-cloning state machines on FPGAs,
partial runtime reconfiguration on FPGAs and implementing virtual systems on FPGAs.

2.1 Previous work from NTNU

A natural place to start is to investigate the work that has been done on NTNU. This thesis
is a continuation on the work done on a previous thesis from NTNU. Also there has been
some work done on partial runtime reconfiguration on NTNU.

2.1.1 Daniel Blomkvist’s master thesis (June 2013): Self-cloning state
machines on FPGA

In the master thesis, Blomkvist (2013), a single state representation for self-cloning state
machines was developed. Several single states was connected together and used to repre-
sent non-deterministic state machines on a Virtex-4 FPGA. These state machines were set
to copy themselves when multiple transitions from the same input occurred. Much of the
work was focused on making the single state representation generic, so that it could rep-
resent any state in any state machine. The single state contained registers that were used
for configuring the state, these configuration vectors together with the input was used to
determine if the state should be active. A datapath was connected to the state machine to
perform a multiply-accumulate operations of the FPGA, using the state machine to control
the flow of operations.

2.1.2 Sverre Hamre’ master thesis (June 2009): Framework for self
reconfigurable system on Xilinx FPGA

Sverre Hamre has in his master thesis, Hamre (2009), developed a framework for par-
tial runtime reconfiguration on FPGAs. The framework was set up on a Suzaku-V board,

5

Chapter 2. Previous work

which utilizes either a Virtex-2 or Virtex-4 FPGA. The FPGA’s include a PowerPC micro-
processor that was set up with a Linux operating system. The main contributions in this
thesis are the two programs icap_write and CLBRead. Also included is a general method
for implementation, with the use of bus macros, to ensure that partial runtime reconfigura-
tion can be executed properly. The program CLBRead can be used to extract partial FPGA
designs from the bitfiles generated from the standard tools of FPGA development. The
program icap_write can be used on the FPGA at runtime, to read or write to the FPGA’s
configuration memory. Some work was also put in defining a hardware operating system
(HWOS) that can be used alongside with the Linux operating system, and offer better
control over the hardware resources.

2.1.3 Vegard Endresen’s master thesis (June 2010): Hardware-software
intercommunication in reconfigurable systems

Vegard Endresen has in his master thesis, Endresen (2010b), worked to further develop
the framework for partial reconfiguration. He developed a system for exchange of data
between software and reconfigurable modules on the FPGA. He made both hardware and
software components, with the focus of fast communication between them. A back-end
module was put on the FPGA to facilitate the operation of the reconfigurable modules,
and also to support loading and saving of the processes running on the reconfigurable
modules. This last feature was added so that interrupts could be supported. A HWOS
was implemented, running in the background of the Linux system. All user application
requests from running processes on the hardware goes through the HWOS, which was
fitted with a scheduler to facilitate a fair distribution. The support for interruption means
that a process that is not finished after using up the time slot, can be stopped and saved in
memory, giving time to other processes.

2.1.4 Sindre Hansens’s master thesis (June 2011): Self Reconfigura-
tion of Clock Networks on FPGA

Sindre Hansen has in his master thesis, Hansen (2011), studied partial reconfiguration of
synchronized modules and clock networks. This was found to be problematic in Endresen
(2010b), where partial reconfiguration of synchronized modules failed. The details of the
local and global clock networks on the Virtex-4 FPGA were studied. It was found that
clock signals could not be routed through the bus macros, and that clock signals had their
own separate network. It was found that the existing framework for reconfiguration could
be used to reconfigure these clock networks, the only thing that has to be ensured when
reconfiguring synchronized modules is that the clock signal has to enter the reconfigurable
modules at the exact same spot for all designs. Efforts were also made to integrate the
software hardware communication interface from Endresen (2010b) with clocked mod-
ules. The HWOS was completely rewritten, including a new round-robin scheduler. Much
focus was put on making a robust system. However when trying to reconfigure some of
the larger synchronous designs with this system, the tests failed and the FPGA locked up.

6

2.2 Other sources

2.2 Other sources

Other than the work done in Blomkvist (2013), there has not been much work done on
implementing NFSMs on FPGAs. The little that exists does not use the self-cloning ap-
proach. When it comes to implementing a virtual layer on FPGAs some work can be
found. These implementations are not made specifically for NFSMs, but rather for a more
general use. Still the implementation ideas could be useful when defining a system in this
thesis.

2.2.1 A heterogeneous multicore system

The work done in Hubner et al. (2011) introduces a virtual FPGA layer that separates the
FPGA into several heterogeneous virtual cores. These cores can be configured in different
sizes. The virtual cores are made up of logic cells within the physical FPGA. They can
run any application that is described in a hardware descriptive language. Together with
these cores is a built in microprocessor in the FPGA connected with an AMBA bus. The
virtual cores offer the possibility of partial reconfigurability even for FPGA families that
does not originally support this feature. The applications that can run on this design will
work independently of the FPGA hardware the virtual layer is made of. In the FPGA
there is a configuration controller that is responsible for configuring the virtual cores. The
controller is connected to the cores with a configuration bus. The configuration inside the
virtual cores is realized by using configuration units, containing shift registers.

2.2.2 A homogeneous network on-chip system

The paper Yang et al. (2010) talks about how to realize a true virtual FPGA. It stating by
saying that the concept of virtual FPGA is the same as virtual memory, but that it is not that
widespread because that virtual FPGA is much harder to accomplish than virtual memory.
One of the reasons is that memory is place independent and hardware is not. A unit needs
to communicate with other units, but the routing between them is place dependent. The
paper states that some critical requirements need to be fulfilled for the system to be real
virtual FPGA. The first is partial reconfigurability, this enables the system to reconfigure
some part of the system while the other is running, so that task that are completed or
that is not running anymore can be switched out with other task. The second requirement
is removing circuit location dependency and I/O independency. The system proposed
is made up of several homogeneous configurable regions (CRs), and a network on-chip
(NOC) that can connect all the CRs together in an efficient manner. The NoC also connects
I/0 blocks to the other units in the system. The CRs are large enough to accommodate most
single modules. The paper uses paging partitioning, which divides CRs into block of fixed
size, compared to segmentation where the blocks have variable sizes. The system also has
a configuration module responsible of deciding when to swap configurations in and out of
the CRs, and also loading these configurations onto the CRs.

Chapter 2. Previous work

Chapter

Theory and background

This chapter presents some background information on the development environment
used, and also some theoretical information on certain key subjects for this thesis.

3.1 Development environment

The development board Suzaku-V form Atmark-Techno has been used to implement and
test all systems in this thesis. The board has a Xilinx Virtex-4 FPGA, which is also fitted
with a PowerPC microprocessor. The board comes with a functional Linux operating
system already installed, based on pClinux. An image of the OS can also be downloaded
from the Atmark-Techno (2015) download page, if a custom system is wanted. Atmark-
Techno also supplies an FPGA project download that includes all the basic modules needed
for running the OS and the FPGA together. Custom user modules can then be added to this
base design. Specifications of the board and FPGA are listed in Table 3.1. A block diagram
of the Suzaku-V is depicted in Figure 3.2, the FPGA is a different version of the one used
in this thesis but the components are the same. The actual board is shown in Figure 3.1.
The board is easy to use and requires minimal time to set up. The OS on the board does
not have any compiler support, so any program or driver must be compiled on a cross
development environment and then added. This can be done in two ways, the first requires
the compiled source code to be added to the OS image before it is downloaded. The second
option uses a network file system (NFS), and makes it possible to update drivers and user
programs in a folder on the same network. The drawback of using the Suzaku-V board
is that the FPGA has become slightly outdated, with a lack of space compared to newer
versions. The tools used for development are all form the ISE Design Suite, made by
Xilinx. An overview of the programs used and their purpose is shown below.

e ISE: Used for developing VHDL design files, verifying and testing done with test-
benches and waveforms.

e EDK: Used for setting up the implemented system with the rest of the components
on the FPGA, synthesizing, and place and route for the Virtex-4.

Chapter 3. Theory and background

72 mm

47 mm

Figure 3.1: The Suzaku-V developement board

FPGA.

PlanAhead: Used for grouping and restricting placement of logic on the FPGA.
FPGA Editor: Used for inspecting and rerouting the designs from EDK.

bitinint Used for initializing the completed bitfiles before downloading them to the

bitgen Used to generate bitfiles from custom edited place and route files.

Xilinx Virtex-ll Pro

CPU
PowerPC 405

USER
I uwmr |
. EXPANSION | ——

[wereRsuRT conTROL LéRi e
AREA :

USER EXPANSION 1'0

L BUS CONTROLLER

1

1 1
- I RS5232C Confi —
33V l DC-0C | DrwRev ‘ TETIZ{?
1 1

CON JTAG

Flash
aMB

SDRAM
3zMBe

LAN

100BASE-TX

Figure 3.2: The Suzaku-V components

The version of the ISE Designs Suite used in this thesis was both the 11.5 and the
10.1. The reason for this is that 11.5 was used at first, but it was later discovered that some

10

3.2 Field programmable gate array

parts of the reconfiguration framework did not fit with this version, and 10.1 was used
instead. The newest version of ISE Design Suite is 14.7, but the FPGA project files given
by Atmark-Techno are only updated to the 11.5 version. The different versions are not
very compatible with each other and in most cases the programs refuse to open projects
that are not specifically made for that version. The advantage of using newer versions is
that many modules have been updated to work better, and to use less resources. Updating
all the design files to the newest version is probably possible, but will require a lot of work.

Model SZ410-U00

FPGA-device Xilinx Virtex-4 FX XC4VFX12-SF363
FPGA CPU PowerPC 405 (32bit RISC core)
CPU Clock 350MHz

Crystal Oscillator | 100MHz

DRAM 32MB

Flash Memory 8MB (SPI)

Ethernet 10BASE-T/100BASE-TX
Linux version 2.6.18-atll

User 1/0 Pins 86

Serial Port 1ch (RS232C)

Configuration SPI Flash

Board Size 72x47 [mm]

Power Input DC3.3V

Table 3.1: Specifications of the Suzaku-V board

3.2 Field programmable gate array

A field programmable gate array (FPGA) is an electronic circuit that can be configured
after manufacturing, and that can be reconfigured multiple times. The positive effects of
this are many, for example the possibility for fixing design problems and bugs in the field.
Compared to an application-specific integrated circuit (ASIC), that cannot be reconfigured
after production, an FPGA is much more flexible. Production costs are unusually much
higher on ASIC designs, so on low volume productions, FPGAs are often the better choice.
However the FPGA suffers in speed and resource consumption compared to ASIC designs.
Processors and microprocessors can also offer flexibility, but lacks in speed and parallel
capabilities compared to the two other choices.

The internal architecture of the FPGA depends on the manufacturer, but will generally
consist of several configurable logic blocks (CLBs), and ways to connect them together.
The CLBs are usually made up of several lookup tables (LUTs), which will do the actual
computations in the FPGA. They can be configured to model any n-input boolean function.
Other blocks like I/O , RAM and DSPs can in many cases also be found on the FPGA.

11

Chapter 3. Theory and background

LI

Logic —— Connect Logic —— Connect
Block —— Block Block —— Block

JlLL% il I

il

l

.....
Connect ——HSwitch Connect Switch
—— Block ——H Box E% Block

% Connect Logic
Block Block 1 Bk:ck]
[[

Il

il

It

Switchg

Box H

Connect

Connect HSwitch
—— Block

—— Block ——H Box
1

[A

TTITTT

Figure 3.3: Architecture of a typical FPGA

3.3 The Virtex-4

The FPGA on the Suzaku-V is a Virtex-4. The internal specifications of the FPGA is listed
in Table 3.2. The CLBs are distributed in an array of 64x24, with four major rows 16 CLBs
in height. Each CLB has four slices, which again contains 2 LUTs and 2 flip-flops. Some
of the rows and columns are used by the processors, so the total number of available LUTs
is 10944. The FPGA is also fitted with BRAM, DSP and I/O blocks, placed in between the
CLB blocks. The FPGA blocks are depicted in Figure 3.4. The I/O columns are marked in
red, the BRAM in blue and the DPS in green. The rest of the columns are CLB columns,
which are put in sets of four. The black box is the microprocessor placed on the FPGA.

Model Virtex-4 FX XC4VFX12-SF363
Speed grade -10

CLBs (Rows x Cols) | 64x24

Slices 5472

LUTs 10944

Flip-flops 10944

Table 3.2: Specifications of the Virtex-4 FPGA

3.4 Software

As mentioned earlier some changes had to be made to the default OS running on the
Suzaku board. Module support for the kernel had to be enabled, so that drivers could be
installed from the NFS. To enable NFS, the device was set up with a static IP address,
some network features were removed, and a NFS server was set up on a host computer.
A detailed tutorial for setting up the Linux distribution and the NFS can be found in the
appendix in Hansen (2011). Device drivers were used to connect hardware with software

12

3.5 Runtime reconfiguration

b Tl M B o Fo e W L e B B Kl T T K B T P T T T Wi T T Y T P [L D L L e B L e e e L L s e e e T T Fa Y T T T T L K T T T fa e L L

|pE56556656 Saaaa6 556556565656 Aa6A6666666aa6aan0a0a0a6055866508 GA555666|
ASHATAAA SAAAAASSAASAASSS ASASASAASAAAAAASAAAAAAASASSSSSHA AASSSSAN,
ASAAAAA AAAAAASAAASAASSA AASAAAAAAAAAAAASAAAAAAAAASSAAAA[AASSS90H|

[(ABonAnnn ononanonaoonannn onooaonnnonnnannn annaooonaoonan o0 aonaaoan
ASAASAA8 SARAAASAAA 5848580 ASSAAAAAAAAAAAAS AARAAA5A55AA8 88 A58 995,
p5665666 560065565 556666 656655666 6666G666G000006865556660 GA5556G06|
ASHAAAA SARAAAAAAAAAAASN AAAAASHASAAANAAA AARAAAASAASAAARA AASAS AN
PEAAAAAA AAAAAASAAASAAASASASASAANAARARAAS AAAAAAASASAASAARNSASSAAAN

SRR EEEEEEEEE SRR R EEEEEEEEE EEE R EE T s S s = T = R = T
ASAAAAA AAAAAASAAASAASAS AAAAAAAAAAAASAAASAAAAAASAASAAAAAAAAAA8EEH

ASSAAAA SAANAASAAASAAASN AAAS
AAARAAAS AAANAASAAASAAAAN AAAS

poaainaaaaaaasa6a6a5a6658 Ga5a6
AAARAAAA AARAAAAAAAAAAAAN ARAA

pS855685 5665685656556658 6556566606666 666686656606655586060 Aa555850)
ASARAAA IARAAAASAAAAAASE ASAAARAARAAAAAAAARAAAAAASSAAAAE AASSEAAAH]
Boafinaa 083668856 35008a 0380000808008 8055050065 555A00 Aaa55aa0l
BEHAARAA HAANAASAAASSAASHSAASASAASHERAAAAHARAAASSASSSAAHA AASESHER

Organization of the different blocks on the FPGA, taken from Hamre (2009)

Figure 3.4

The hardware modules implemented on the FPGA cannot directly be ac-

applications.

cessed by user applications, so device drivers can be used to facilitate the access for user

applications. Two drivers were used in this thesis

access_reg driver used to access

the sw_

)

a software accessible register, written by Hansen (2011), and a xilinx_hwicap driver used

to access the HWICAP module described in the next section.

101N

3.5 Runtime reconfigurat

Typically an FPGA device is configured before it is booted, but in some cases it can be

useful to reconfigure the FPGA while it is running. For example if a different commu-

nication protocol is needed, and a complete reboot of the device is not possible. Any
system that can be optimized at runtime can benefit from using runtime reconfiguration.
The Virtex-4 used in this thesis supports runtime reconfiguration. Reconfiguring only a
part of the FPGA, while the rest is still running is called partial runtime reconfiguration.

The reconfiguration is done by writing changes to the configuration memory on the FPGA.
This memory is divided into several frames, a frame is the smallest unit that can be recon-

figured. On the Virtex-4 a frame consists one column in a major row, a total of 16 CLBs.

There are also frames for the other blocks

, but they will not be reconfigured in this thesis.

The configuration memory can be reached by using the internal configuration access

13

Chapter 3. Theory and background

port (ICAP) on the FPGA, which can be used for both writing and reading. To access the
ICAP interface from software, Xilinx has made a HWICAP module that can be placed on
the FPGA. The module uses the PLB bus and is connected to the processor. A driver for
this module is also available, with a few modifications described in Hamre (2009), it can
be used to write or read content in the configuration memory. Configuration of the FPGA
can be stored in a bitfile, and this bitfile can written to the configuration memory. A partial
bitfile can be written to the configuration memory to perform a partial reconfiguration.

3.5.1 Bus macros

Executing partial runtime reconfiguration on FPGAs is not a straight forward process. The
problem lies in the connection between the part that is reconfigured, and the rest of the
FPGA. If no considerations are taken, the routing in and out of the reconfigurable area
will not be the same after reconfiguration, and some wires will be unconnected. This will
leave the FPGA in an unusable state, and can possibly damage the hardware. What is
required is a permanent connection between the static parts of the FPGA and the areas
to be reconfigured. This can be solved by placing bus macros between the static and the
reconfigurable area. The bus macros are hard macros, they have already been routed,
and can be placed on CLB columns connecting the static and reconfigurable area. This
routing will not change during the reconfiguration, and serve as a static connection. As
long as there is no other routing entering or leaving the reconfigurable area, the partial
reconfiguration will succeed. An example showing bus macros connecting the static part
of the FPGA with the reconfigurable part, and examples of legal and illegal routing is
depicted in Figure 3.5. The drawback by using bus macros is that the place and size of
any reconfigurable area must be known at design time, and the number of connections
in and out cannot be changed at runtime. This requires that the maximum number of
connections for any module placed in the reconfigurable area must be known before the
design is downloaded to the FPGA. The bus macros used in this thesis are taken from
Hamre (2009), and has a width of 8 bits. More bus macros can be added if 8 bits is not
enough. They can only be used in one direction, so there must be at least one set for input
and output.

3.6 Framework for reconfiguration

A framework for partial runtime reconfiguration has been developed for the Suzaku-V and
the Virtex-4. This includes the programs CLBRead and icap_write, bus macros and drivers
for both user modules and the HWICAP module.

3.6.1 CLBRead

This program can be used to read out one or more CLB columns from a bitfile. The
program handles only the CLB blocks, and not the BRAM, DSP and I/O blocks. The
CLB(s) will be placed in a separate partial bitfile. The program can also insert this partial
bitfile into another bitfile, replacing the corresponding frames. In this project only the first
functionality was used.

14

3.7 Finite state machine

Legal routing..

— lﬂ_ (RE ! Egic fl:I
| elements for
||— —l_ modﬁe

Bus macro('s) L‘

Cutline/boundary for
reconfigurable module -
everything outside this
boundary is out of interest

lllegal rodting

FPGA

" lo-banks

Figure 3.5: Drawing showing the bus macros with legal and illegal routing. Taken from Hansen
(2011)

3.6.2 icap write

This is a program that is used to write bitfiles partial to the configuration memory via the
HWICAP module. The driver for the HWICAP module will only read and write packets
to the configuration memory, and does not facilitate the required setup that has to be done
before a partial reconfiguration. This is handled by the program. It takes a partial bitfile
as input, the start and end columns, and the total numbers of frames in the partial bitfile.
In a bitfile, it takes 22 frames to describe one CLB frame in the configuration memory. So
a partial reconfiguration of CLB columns 21 to 23, would require 66 frames in the bitfile.
This is a mostly experimental program, and the addresses are hard coded.

3.7 Finite state machine

A finite state machine (FSM) is an abstract machine that can be used for many purposes.
The state machine consists of a finite number of states, and can only be in one of these
states at a time. This state is called the current or active state. The state machine receives
an input, and will transition to new states based on this input. In Figure 3.6 a simple state
machine is shown. The state machine has three states, with one start state and one accept
state. If the state machine reaches the accept state, the state machine will accept the input.
In the example the input ab is needed for the state machine to accept the input. This state
machine is called a deterministic finite state machine (DFSM), because for any state there
is only one transition for any allowed input.

An example where this is not the case is shown in Figure 3.7. In the second state there

15

Chapter 3. Theory and background

is two transitions for the input b, one leading to the accept state and one leading back to the
same state. This is called a non-deterministic finite state machine (NFSM). As shown in
the example an NFSM can have several transitions to other states given the same input. An
NFSM can solve the same problems as a DFSM, and it is possible to convert an NFSM to
a DFSM, but creating NFSMs for certain tasks can sometimes be easier. The self-cloning
state machines used in this thessi will be NFSMs.

e

Figure 3.6: Example of a deteministic finite state machine

b

e a . b .
Figure 3.7: Example of a non-deterministic finite state machine

3.7.1 Cloning

When running NFSMs on FPGA:s, it can be challenging to handle multiple transitions from
one state. When such a transition occurs the NFSM will be in multiple states at once. In
this project these multiple active states will be treated like multiple state machines running
in parallel. That means that for every multiple transition encountered, the state machine
has to copy or clone itself into one or several more state machine. For later reference
such a transition will be called a copy transition, and the new state machines will be called
clones. A state machine is shown in Figure 3.8. This state machine was used in Svarstad
and Volden (2011) to show how the self-cloning state machine worked. It has four states,
where the start state has a copy transition for the input *1’. This state machine will accept
substrings of three consecutive ones. The copy transition is what makes the NFSM able to
accept all substrings, and not just the first. The NFSM starts by having one state machine
in the first state. In Figure 3.9 an input of ’1’ is sent to the state machine. This triggers
the cloning of the state machine, since there has to be two active states. The initial state
machine goes back to the initial state, while the new clone transitions to the second state.
The NFSM now has two active clones. In Figure 3.10, a second ’1’ is sent to the NFSM.
The initial clone triggers another copy transition, and a new state machine is cloned. The
second clone activates its third state. There are now three clones active. When the third "1’
is sent to the NFSM, in Figure 3.11, the second clone reaches the accept state, and a fourth

16

3.7 Finite state machine

clone is added. The NFSM has accepted the input of three consecutive ones. If another 1’
is sent to the input, the third clone will accept this substring. Since the second clone has
reached the accept state, it can be removed. At the same time a new clone is also added,
keeping the active number of clone at four as long as the input is never a ’0’. If a’0’ is sent
to the input, all clones except the initial clone will encounter an illegal input, and can be
removed. This state machine will be used later in this thesis to verify the cloning process
on the FPGA. The state machine will be referred to as the substring detector.

Figure 3.8: State machine for detecting substrings of three consecutive ones, based on state machine
from Svarstad and Volden (2011)

: . : 1
sl > > s3

Figure 3.9: Two active clones

17

Chapter 3. Theory and background

o " 2 o
S~
D ‘-': . :) = =
i
Y
C)
b
i
Y
o
w
-

Figure 3.10: Three active clones

18

3.7 Finite state machine

s3

[y
A
(’J)
(]
[y
A 4
[y

.
A4
@ °
<M>
[[
v
[=

o
@ 2 @ L L L
iy = = iy

s3

=
=
=

Figure 3.11: Four active clones, accepted input

19

Chapter 3. Theory and background

20

Chapter

Design of the virtual layer

The purpose of the virtual layer designed in this thesis is to make the FPGAs resources
more accessible to software applications. A self-cloning state machine has been imple-
mented on the FPGA, with an interface for the software to make it possible for applications
to define state machines and run them on the FPGA. This chapter describes the system that
was implemented, and why it was chosen.

4.1 Requirements

Before any designs steps can be taken it is important to clearly state the requirements of
the system. This makes the designs process much easier because the end goals will be very
clear. A list of the system requirements follows:

e The virtual layer has to consist of both hardware and software components, and a
connection between them. The hardware components will be placed on the FPGA,
while the software components will be running on the PowerPC microprocessor.

e The virtual layer has to provide an interface for the software to configure and run
any NFSM.

e There has to be a static part on the FPGA that can maintain connections to the
NFSM during partial runtime reconfiguration. The NFSM has to be placed at a
reconfigurable part of the FPGA.

e The system must be able to copy an NFSM when a copy transition is detected, and
it must be able to remove any clones that are no longer valid.

4.2 System overview

For the virtual layer to map any NFSM down to the FPGA at run-time, the normal approach
where an NFSM is designed before configuring the FPGA cannot be used. Instead a

21

Chapter 4. Design of the virtual layer

generic NFSM design is needed. Making the state machine generic can be achieved by
adding registers. These registers can then be used as lookup tables, were every transition
for the state machine is stored. The state machine can use the lookup table to find every
active state for each input. When the state machine is implemented the registers can be
configured with the correct lookup table, and the state machine is ready to run. This
is pretty much the same approach as used in Hubner et al. (2011). Naturally this will
consume more resources, but is necessary if the NFSM is to be generic.

In this thesis the NFSM consist of one or more clones, depending on the input and
transitions. Ideally this would be the only logic needed on the hardware side, and the
clones could be freely placed all over the FPGA. There is however a need for several other
modules as well. These modules are needed to facilitate connections between hardware
and software, and also to set up a connection to the configuration memory. Also the clones
have to be separated from the rest of the components on the FPGA to make partial runtime
reconfiguration possible. Without this separation the FPGA will fail and possibly also
be damaged during reconfiguration. Therefore a reconfigurable module that is separated
from the other logic on the FPGA was added to the design. This module contains the
NFSM. On the static part of the FPGA a second module was placed. This is the back-end
of the system, and is needed so that a permanent connection with the software running
on the processor can be maintained. It is also useful because any feature that does not
need to be a part of the reconfigurable module can be placed here. For example handling
the configuring of clones, and handling the communication back and forth. This helps to
make the reconfigurable module less complicated, and save space. The resource usage in
the back-end is less important than in the reconfigurable module, mostly due to restrictions
in the reconfigurable area of the FPGA. A detailed description on these restrictions is given
in the next chapter.

Static FPGA

Reconfigurable
Bus macros

Back end Reconfigurable
module

Figure 4.1: Overview of the system

22

4.2 System overview

An overview of the system is depicted in Figure 4.1. The main components of the
system are the reconfigurable module, the bus macros, the back-end, and the PowerPC
microprocessor running the user applications. The bus macros connect the reconfigurable
module to the back-end. The number of bus macros needed depended on how many clones
that is connected. There had to be at least two bus macros connected to every possible
clone, with every bus macro providing eight bits of width. One half of the bus macro is
static and the other half will be reconfigured during partial reconfiguration. This means
the number of bus macros also has to be static and set at design time. During design and
testing it was found that two input bus macros were needed, while only one bus macro
was needed for the output. For the experiments done in this thesis only four clones were
needed, so the number of bus macros was set to match this.

Figure 4.2: Structure of the virtual layer

Figure 4.2 shows the process of mapping a definition of a self-cloning state machine
down to the hardware on the FPGA. The user application interacts with the interface for
defining and configuring a state machine. The information is transferred to the back-end
module on the FPGA, and further to the NFSM clones. The state machine can now be
realized as logic on the FPGA. Software components are marked in blue, user modules on
the FPGA in green, and the actual hardware components in red.

The back-end needs a way to communicate with the processor. The PowerPC PLB bus
is already in place on the FPGA and offers a standard communication interface between
hardware and software. This is more than enough for the simple systems tested in this
thesis, so the back-end is connected to a software accessible register, and added as a slave
of the PLB bus peripheral. One half of the register is used as the input to the back-end,
written from software, and the other half is used as the output of the back-end and can be
read by the software. The size of this register can be altered after the needs of the system.

One of the major decisions that had to be made is how to handle the copying of clones.
The ICAP interface has the ability to both read and write to the configuration memory. A
copy operation can be done by reading a clone’s configuration frames, and then writing
them to another location on the FPGA. However in Endresen (2010b) it was shown that the

23

Chapter 4. Design of the virtual layer

read operation of the ICAP interface is considerably slower than the write operation. It is
safe to assume that copying a NFSM clone by reading the configuration frames will also be
slow. The time spent on reconfiguration is critical, since all operation in the NFSM must
be halted. Even though the rest of the FPGA can run during reconfiguration, the timing
between the different clones of the NFSM must be the same. In Endresen (2010b) a faster
solution was found by implementing a module on the static part of the FPGA that could
load and save the state of a connected reconfigurable module. It was decided to adopt
this approach, and implement support for loading and saving the states of NFSM clones in
the back-end module. In this way, new clones added during partial reconfiguration will be
unconfigured and will receive the configuration vectors from the back-end. There is still be
a need for partial runtime reconfiguration, for example when there are no more available
clones, or the parameters of the clones needs to be changed, but the slow read operation of
the ICAP interface will be avoided. This implementation strategy raises the possibility for
adding more clones during reconfiguration than what is actually needed at the time. When
the next clone is needed it can already be in place. Just like prefetching in processors, this
can possibly help save time in larger systems. Obviously adding too many clones would
be inefficient, so proper analysis of such a system would be necessary.

Back end

|

Figure 4.3: Connection of clones

24

4.2 System overview

4.2.1 Reconfigurable module

The reconfigurable module is the main part of the virtual layer since it contains the actual
NFSM. The virtual layer will actually consist of several reconfigurable modules, since it
will need room for one or more clones. All of the clones are connected to the same back-
end, but they have no connections between themselves. Figure 4.3 shows how the clones
are connected. With reconfiguration the number of clones can be changed at runtime,
although the maximum number of clones must be known at design time since there has
to be an equal amount of bus macros in place. In Blomkvist (2013) a singular state was
intended to be the unit that could be cloned and reconfigured. This strategy requires a
reconfigurable module with bus macros for every state in every NFSM clone, and for each
cloning process all states must be cloned. Alternatively one would have to find a way to
manipulate connections between modules at runtime, perhaps with a NOC system like in
Yang et al. (2010). This was thought to be unnecessary complicated, and it was decided to
place a whole NFSM clone with all its states inside one reconfigurable module. This makes
the cloning process much easier. Still many of the implementation ideas from Blomkvist
(2013) were used, and some of his designs files were used as a starting point.

The internal design of the NFSM clone is depicted in Figure 4.4. It consists of a
controller, the actual NFSM with all its states, and a configuration memory.

h J

NFSM

F 3

Controller

A 4

Configuration memory

Figure 4.4: Internal components of the clone

The controller handles the communication with the back-end, controls the operation of
the NFSM and handles the configuration of the memory registers. The controller has three
modes of operation:

e IDLE: Nothing is done, no information in the registers, the NFSM is not operating.
The controller waits for an enable signal from the outside (back-end) that configu-
ration vectors are ready.

¢ CONFIGURE: Configuration vectors are received on the input. These vectors are

25

Chapter 4. Design of the virtual layer

serially shifted into the configuration memory. The time this takes depends on the
number of registers used per state. The NFSM is still not operating.

e OPERATE: The configuration memory is ready to be used. The NFSM is now
activated, and will update the active state. The controller is monitoring the NFSM,
and will signal the back-end if the NFSM either accepts the input stream, finds a
copy transition, or if it has no legal transition.

The configuration memory stores the configuration vectors used by the NFSM to de-
termine the next state. The memory contains several sets of registers, one set for each state
and an extra set for the possible copy transitions. The vectors are shifted in serially by
the controller and connected in parallel to the NFSM. The size of the memory can vary,
both in the number of vectors and in the number of registers per vector. The number of
vectors is determined by how many states there are in the NFSM, and how many vectors
there are used for each state. Proper analysis is needed to find suiting number vectors for
each state, but as a rule of thumb the number of vectors per state can be set to match the
number of states in the NFSM. The number of registers per vector is determined by the
number of states and the number of inputs to the state machine. This is where the runtime
reconfiguration really shows its worth, because if the configuration memory is too small
to operate a given NFSM, the memory can be expanded by swapping the clones in the
reconfigurable modules.

As the number of inputs and states can vary between different state machines, the
structure of the vectors also changes. This can be challenging when matching the inputs
and active states with the vectors. As a general rule all the input bits are placed to the left
of the vectors and the rest of the bits are used for the states, the rightmost bit representing
the first state. In Figure 4.5 a vector with two input bits and four states is shown. To match
this vector the state machine has to receive two ones on the input and the first state has
to be active. The vector will be placed with the state that should be activated during this
transition.

110001

input states

Figure 4.5: Example structure of a configuration vector

The NFSM module contains the actual states of the state machine simulated. It eval-
uates the next transition by comparing the current active state and input with the vectors
stored in the configuration memory. One of the states will be designated as the accept
state of the NFSM, if it becomes active the NFSM module signals the controller that the
input stream is accepted. This will also disable the NFSM, since it cannot transition out
of the accept state. If there is no match found in the configuration memory, no state will
be activated and the NFSM will signal the controller that the input is rejected. The whole

26

4.2 System overview

NFSM clone should now be deactivated and deleted. If a copy transition match is found,
the NFSM will also signal the controller. The state machine encountering a copy transition
should just transition to the state that is indicated in the configuration vectors. Copying of
the new clone that will transition to the other state is handled by the back-end.

If more than one clone is active in the system, the timing between them becomes
important. All clones should receive inputs at the same time. This becomes an issue
when one of the clones is copied, or a reconfiguration is performed. In this thesis it is
assumed that such operations will be able to finish before any new input is sent to the state
machines. In other words, the shortest time between two consecutive input signals will be
longer than any operation done by the system, so that the entire state machine will always
be ready to receive when the next input arrives. This may not always be the case in a
real world example, but the assumption is important in this thesis because the system is
experimental and not developed on all areas. The long time between inputs means that the
state machines will have to idle in many clock cycles waiting for the next input. To avoid
the state machines continuing to evaluate their next active state even with no new inputs
arriving, a control signal was inserted in the back-end to signal the state machines when a
new valid input would be available.

4.2.2 Back-end

The back-end is the bridge between the software and the NFSM clones. The back-end
controls the configuration of new clones, and deletion of clones that are no longer running.
The back-end does not control the actual reconfiguration of modules, this has to be con-
trolled in software and the HWICAP module. That means that the back-end can only copy
a new clone if it is already placed on the FPGA, either at the start or after partial runtime
reconfiguration. The back-end sends information back to the software about what modules
are active, and if the input stream is accepted.

The back-end is part of the static design, and will not be altered during partial runtime
reconfiguration. This requires the back-end to be carefully designed since it cannot be
changed like the reconfigurable modules. The back-end receives the configuration vectors
from the software. Since it has to be able to configure several clones at different times,
a memory module to store the configuration vectors was included in the back-end. This
memory has to be large enough to support NFSMs with big configuration vectors. One
problem with the back-end being static is that the connections to the reconfigurable mod-
ules also have to be static, which means the maximum number of clones connected to the
back-end cannot be altered at runtime. If the maximum number of clones is big enough
this should not be too much of an issue. Nevertheless it will set restrictions on what kind
of NFSMs that can be implemented on the FPGA. A solution to this can be to use one of
the features of a virtual system, like virtual memory that can support more memory than
the actual capacity, the virtual layer could be made to support more NFSM clones that
there actually would be capacity for. This would mean having some of the clones stored in
memory in the software, while the rest would be running on the FPGA. Then the remain-
ing clones could be swapped into the FPGA while the other clones would be stored. It is
easy to see that this could give great value to a system, especially a system with limited
resources. This could only be done is all state machines could be evaluated before the next
input would arrive. The support for such a feature was not implemented in this project, but

27

Chapter 4. Design of the virtual layer

could be interesting to develop in future work.

To communicate with the software, the back-end has access to the software accessible
register. The register can be added when inserting user modules in EDK. The smallest
size available is 32 bit, which is more than enough for the experimental work done in this
thesis. Increasing the register size is possible if a larger system is to be implemented. The
register is divided in two. The first 16 bits are used by the software to send inputs to the
back-end, and the other 16 bits are used by the back-end to send its outputs to the software.
A table showing the use of the input bits is shown in Table 4.1, and a table for the output
bits is shown in Table 4.2.

15-11 10 9 8 7-0
Notused | Sync flag | Start configure | Reset | Input vector

Table 4.1: Input bits

15-5 4-1 0
Not used/Debug | Active clones | Accepted input

Table 4.2: Output bits

Due to the nature of the software accessible register some kind of synchronization
is needed between software and the back-end. Without this it will be difficult for the
back-end to know if a new input vector has arrived from the software, for example if two
consecutive vectors are exactly the same. To handle the synchronization the Sync flag
input was added. The idea is that this bit, sent form software, has to match a sync flag
stored in the back-end. Each time they match, the back-end reads the input and changes
its internal sync flag. If a new input has to be sent, the software has to update the sync
flag, so the two flags match again. The Start configure signal is used to tell the back-end
that simulations can start and that configuration vectors will be shifted in on the next clock
cycle. The Input vector is used to shift in the configuration vectors and also to send the
input stream. If larger configuration vectors are needed, the ordering of input and output
bits can of course be changed, but this cannot be done after configuring the FPGA. The
back-end configuration memory needs to match the size of the Input vector.

Fewer bits are used on the output bits of the register. Some are used for debug purposes,
like signaling the state of the back-end and what the next sync flag should be, to ease the
testing of the system. The Active clones signals have one bit designated for each clone to
tell if they are active or not. This was mostly used to see if the system acted as expected
when testing, but could potentially be used for a system that keeps track of when new
clones has to be added to the FPGA. The Accepted input signal tells if any of the active
clones has accepted the input stream.

The operation of the back-end has these modes of operation:

e IDLE: Nothing is done, no information in the back-end memory, all connected
clones are unconfigured. The back-end waits for software to signal that the con-
figuration vectors are ready.

28

4.2 System overview

e INIT: Configuration vectors are sent to the software register serially, the back-end
shifts in the vectors to the memory module. All clones are kept at idle.

e CONFIGURE-SM: All vectors are now ready in the back-end memory. This mode
is used to configure the clones, only one clone can be configured at a time.

e RUN: Configured clones are now activated. The back-end waits for a valid input
to arrive in the software accessible register. All clones are put on hold until a valid
input is received.

4.2.3 Software

The software part of the virtual layer consists of two programs, runNFSM and icap_write.
The runNFSM program handles the configuration and input to the NFSMs on the FPGA.
Any application running on the operating system can use this function to run a desired
NFSM, all that is required is the NFSMs configuration vectors and input stream. At this
point the input stream must be set before the simulation starts, but this could easily be
extended to real time functionality if needed. The program sends the configuration vectors
and the input stream, and reads the output from the system. The program was based on
a test program taken from Hansen (2011), that was made to send input and read from the
software accessible register. The configuration vectors can be stored as a textfile. Ideally
the input to the program running the NFSM could be something like regular expressions,
expressing computational problems, and then having a program to translate this into a state
machine with a set of configuration vectors. Most of the focus in this thesis has been of
the hardware features, so configuration vectors are sent to the program directly.

The connection between the user program and the software accessible register is han-
dled by a device driver. The driver is a char driver, it allows the user program to access the
register with simple open, read, and write operations. Since the system only uses a simple
32-bit register for the communication, the driver is relatively simple. The char driver used
in this system has been compiled on the cross development environment from Atmark-
Techno. Since the Linux running on the Virtex-4 supports kernel modules, the compiled
driver can be put on the NFS shared folder and installed after boot up of the system.

The second program is the icap_write program, described in more detail in 3.6.2, is
used to facilitate the partial runtime reconfiguration. The program CLBRead is needed to
extract partial bitfiles, but this can be done before boot up time and does not have to be
handled by the virtual layer.

4.2.4 Datapath

To make an FSM more powerful, a datapath can be added to the system. The state machine
will act as a controller, controlling the flow of operation, and the datapath performs a set
of operations. This has been done in Blomkvist (2013). For each state machine a datapath
was included. The datapath was used to perform a multiply-accumulate operation. Adding
a datapath to the current system could make it more porwerful and more flexible in the
tasks that it could solve, but would also cause some challenges, especially considering the
partial reconfiguration. A datapath would have to be connected to each clone, but since

29

Chapter 4. Design of the virtual layer

different tasks would require different datapaths there would have to be a system, just like
with the clones, for generically implementing the datapaths. Perhaps a similar system
with lookup tables could be used, or something more instruction based like a processor. A
datapath has not been added to the design in this thesis, but would be a useful next step in
the further development of the design.

4.3 Limitations

The virtual layer has been made with the idea that it can be implemented and tested on
the FPGA, and actually run some selected NFSMs on the system. Given the nature of an
NFSM, which in theory can have an infinite number of variations, some limitations had to
be set on the system. The system was mainly designed to simulate small and simple state
machines, with not too many complex connections. It certainly is capable of handling
larger state machines, but not all. Further, there’s only support for one initial state. There
can only be one state with a copy transition, and it will only handle one copy. Also there
can only be one accept state. To add support for more complicated state machines more
information would have to be added to the configuration vectors, this increases the size
of the reconfigurable modules, and requires more communication between the static and
reconfigurable modules. As there is only 16 bits for the input to the system, the number
of bits for the input stream and the configuration vectors are limited. The size of the
input and output register could of course be expanded, but this would again require the
memory in the back-end to be expanded since it has to be able to handle the larger input and
configuration vectors. This will require more resources. If this system should ever be used
in any real way, it would probably be a good idea to analyze the resource requirements, so
the maximum size of the system could be determined.

What limits this system the most is having the support for runtime reconfiguration.
Setting up a reconfigurable module with bus macros is a cumbersome process, and if
it is not done correctly the reconfiguration will fail and leave the FPGA in an unusable
state before it can be reflashed. The problem is that the space on the Virtex-4 FPGA
is limited. The virtual layer with the back-end and the reconfigurable modules does not
take up too much resources, but the system needed for the PLB bus and the HWICAP
module does. This would not be a such a big problem if the normal tool chain with the
many placement optimizations could be used. But since the support for reconfiguration
requires the reconfigurable modules to be completely free for all other routing than from
themselves and the bus macros, there are limits on how close other modules can be to the
reconfigurable modules. What makes this worse is that when designing the system with
the tools from Xilinx, restrictions can only be set on where the logic should be placed and
not the routing. This causes routing from nearby logic to be routed into the reconfigurable
logic. There are tools to reroute such signals, but they are not very effective, and can
only handle a handful of illegal signals. The lack of space was such a big problem that
only one reconfigurable module could be placed on the FPGA. However one of the main
advantages of developing the virtual layer is that it should be possible to implement on
other FPGA devices. The interface would stay the same, and for the user applications there
would be no difference. The reason for why the Suzaku-V development board was chosen
is that it came with an installed operating system and a cross development environment

30

4.4 Implementation alternatives

available. The fact that the framework for reconfiguration was made for this board made
it an obvious choice. Other boards with newer and larger FPGAs could have been used,
but would require a lot of time setting up a functional system, especially converting the
framework for reconfiguration to this new board.

4.4 Implementation alternatives

It can be useful to evaluate some alternative implementations to better evaluate the imple-
mentation chosen in this thesis.

4.4.1 A Self-Reconfigurable Gate Array Architecture

The paper Sidhu et al. (2000) presents a new alternative to hardware architecture like the
FPGA. The self-reconfigurable gate array architecture (SRGA) offers much better sup-
port for reconfiguring devices at runtime. Architectures like the Virtex-4 used in this the-
sis offers support for runtime reconfiguration, but is slow and comes with little support.
This new architecture is capable of doing partial reconfiguration with single cycle context
switching and single cycle random access to the on-chip configuration memory. Trying to
implement the hardware part of the virtual layer on such architecture could be interesting,
and would most likely ease the process of partial runtime reconfiguration. This process
has proved to be very cumbersome on the Virtex-4 architecture. However one of the ad-
vantages of implementing the virtual layer on the Virtex-4 is that it has been easy to use
and set up the connection between hardware and software, something that probably would
take some time on architectures like the SRGA.

4.4.2 Xilinx development flow

The support for partial runtime reconfiguration on Xilinx devices has been scarce, but a
few years ago they added support for their own partial runtime reconfiguration develop-
ment flow. Support was added in the program PlanAhead. User modules on the FPGA
could now be set as reconfigurable modules. This makes it possible place and route the
design without adding bus macros and without having to check and reroute the design in
Jfpga_editor. The program can also extract partial bitfiles, with complete address locations.
The reason this alternative was not used was that the partial bitfiles can only be placed at
one particular reconfigurable module, compared to the approach used in this thesis where
one partial bitfile can be placed in all the reconfigurable areas. In a big system with many
reconfigurable modules and many versions of the design the amount of partial bitfiles will
increase dramatically. Also later on it was discovered that this development flow is only
supported in ISE 12, and not in the 10.1 and 11.5 versions used in this thesis. Updating
the basic FPGA design from Atmark-Techno would be extensive work as described in 3.1.
The framework for partial reconfiguration would also have to be updated.

31

Chapter 4. Design of the virtual layer

32

Chapter

Implementation and verification

In this chapter the method for implementing and verifying the virtual system is shown. The
final verification of the virtual layer was divided into two separate tests cases, one test case
with four NFSM clones and no runtime reconfiguration, and a second test case with only
one NFSM clone but with runtime reconfiguration. The reason for separating the testing
in two parts was that the substring detector, with four available clones, could not be fitted
on the FPGA together with support for partial runtime reconfiguration. Because of this
the virtual layer was first implemented without support for partial runtime reconfiguration
and tested. Then a smaller system was tested with partial runtime reconfiguration. The
details of these two test cases is described in 5.5. As mentioned earlier the virtual layer
was designed with an experimental approach that took a lot of trial and error to find the
best solutions.

5.1 Implementing the virtual system

The implementation of the system was done in several steps. The development flow was a
bottom up approach, and began with designing the NFSM clone. This was done in the ISE
program, were synthesis and simple testbenches could be used to verify the behavior of the
module. The focus of these tests was to see if the clone could be configured properly and
use the lookup table to find the next active state. When the NFSM clone was determined to
function properly, the back-end was added to the design, and new testbenches were made.
Further, the back-end was expanded to be able to handle more than one clone. Four clones
were connected to the back-end, and the system was tested to see if the back-end could
configure new clones when copy transitions were detected.

Then the system with four NFSM clones and the back-end was added to the EDK
project from Atmark-Techno, where all modules needed for the hardware software con-
nection were already in place. The bus macros had to be inserted between every clone and
the back-end. The guide Endresen (2010a) gives a detailed description on how to add a
custom module to the FPGA, and how to connect it to the PLB bus. The module was given
a 32-bit software accessible register, and connected as a slave to the PLB peripheral. The

33

Chapter 5. Implementation and verification

bus address was set to be ’0x81000000°, same as in the guide. This address has to match
the one given in the driver. The project was then synthesized, and a bitfile was generated.
Before this bitfile was downloaded to the FPGA, it was put through the program bitinit to
initialize the memory on the FPGA. If this is not done the FPGA will not boot after the
bitfile has been downloaded. The initialized bitfile was downloaded to the FPGA, and the
system was tested.

5.1.1 Timing issues

When doing initial testing on the FPGA, the system acted strangely and there seemed to be
problems with the timing. The output of the system was not as expected for given inputs,
and the configuration memory in the back-end seemed to not be correctly configured. It
was hard to confirm this suspicion since debugging the system on the FPGA was limited,
and the content of the memory registers could not be read from software. Further simu-
lations were done in ISE to try to locate the source of the problem, but the problems only
occurred when testing on the FPGA. It was suspected that delays in the circuits caused
the problem, so the system was given more time to handle each input. This did not fix
the problem, so something else had to be wrong. After further debugging on the FPGA,
it was discovered that if the input was set before updating the sync flag, the system gave
the correct response. It seemed like the two input bytes arrived at different times, and that
this caused the system to receive the vectors at wrong times. It was concluded that the
driver sent the input in one byte at the time, and that the first byte would be detected by the
system before the other could be sent. This became a problem because the sync flag was
not in the same byte as the input for the system. The problem was fixed by being careful
and sending the input to the system without updating the sync flag, and then sending the
input with the correct sync flag.

5.2 Runtime reconfiguration

To make partial runtime reconfiguration possible, several steps had to be taken. The logic
had to be restricted in different sections, and the routing had to be inspected to make sure
that the reconfigurable module did not have any routed wires crossing in and out except
for the bus macros. The HWICAP module was added to the project design, connected to
the PLB peripheral and given the start address of *0xFOF00000°.

5.2.1 Restriction of logic placement

At first the system was added to EDK and synthesized, but instead of routing and placing
the design, the synthesized system was opened in PlanAhead. Here the different modules
were put in different Pblocks, and placed on the FPGA. The reconfigurable module was
placed in the top right corner. The other modules were placed as far away from the recon-
figurable module as possible to give space, and to avoid any unwanted logic crossing into
the reconfigurable area. The bus macros were not placed in Pblocks, but rather placed man-
ually by specifying the slices they would occupy in the constraints file. They were placed
on the 20th and 21st CLB column. The design with all the modules placed in Pblocks

34

5.2 Runtime reconfiguration

e e s

|
I
f
I

Figure 5.1: Modules divided into pblocks in PlanAhead

is shown in Figure 5.1. The reconfigurable module can be seen as the small rectangle in
the top right corner, and the back-end module to the left of it. The PLB connections and
the other modules like the HWICAP were placed in the other Pblocks, making up most of
the space on the FPGA. The placement restrictions were exported to a constraints file, and
merged with the constraints file from the EDK project. The system was then placed and
routed.

5.2.2 FPGA Editor

Before the bitfile could be used, the routing and placement was inspected in FPGA Editor.
Routing that crossed the 20th and 21st CLB columns without being a part of the bus macros
had to be rerouted. In Figure 5.2 an example of such illegal routing is shown. The illegal
wires crossing the CLB columns are marked in red, while the bus macros are marked in
white. The rerouting was done by a trick showed in Endresen (2010a), that unroutes and
connects an unused slice to the illegal wires, and then routes them again by using the
autoroute function. The added slices were placed in areas that were ideal for the wires to
go through, avoiding a path crossing the reconfigurable module. This method worked well

35

Chapter 5. Implementation and verification

in most cases, and was considerably easier than to manually route signals. However there
were some cases with signals that refused to change their path. Adding more unused slices
was tried, as suggested by Hansen (2011), but sometimes the path of the signal could not
be changed no matter how many slices were added. In these cases the place and route was
done again, until a more manageable routing was found.

Figure 5.3: Example of routing in the I/O column

When inspecting the routing of the design, one of the I/O columns would sometimes
be used to route signals. An example of this is shown in Figure 5.3. The I/O columns
is located to the right of the three CLB columns used for the reconfigurable module. It

36

5.2 Runtime reconfiguration

seemed that even though it had no active logic, the place and route algorithms would
use the column for routing. This is not an ideal situation, considering that the available
framework for reconfiguration is only able to handle CLB columns. When partial bitfiles
are extracted by the CLBRead program, they will not include the routing that goes through
the I/O columns. If partial reconfiguration is done with such bitfiles, the resulting routing
on the FPGA is likely to become incomplete and the FPGA will be damaged not able to
boot. This is also true for any of the other columns on the FPGA like the BRAM and
DSP. When the rerouting of the design was done, great care was taken to make sure there
was no routing in any of these columns inside the reconfigurable module. In Figure 5.4 a
completed rerouted design is shown, the bus macros are highlighted in red.

Figure 5.4: Example of a completed rerouting process with only legal wires

In fact this problem is probably the reason why the sequential multiplier designs in
both Endresen (2010b) and Hansen (2011) failed to reconfigure. The reconfigurable areas
of these designs crossed though a BRAM column, and had routing in the I/O column.

After the routing was checked, and illegal routing rerouted. The bitfile was created by
using the program bitgen. Then the partial bitfiles were extracted using CLBRead.

5.2.3 Clock signal

According to Hansen (2011) the clock signal cannot be routed through the bus macros,
and has to be routed trough the global clock network instead. In Figure 5.5 an example of
the reconfigurable module’s connection to the global clock network is shown. The clock
signal enters the module via the global network and does not go through the bus macros.
This would normally be considered illegal routing. However, since the clock signal has
to enter the reconfigurable module from somewhere, and cannot use the bus macros, it

37

Chapter 5. Implementation and verification

must be considered legal. To not cause any problems during partial reconfiguration, like
unconnected wires, the reconfigurable module’s connection to the global clock network
has to be exactly the same before and after every reconfiguration. The routing inside
the module can be different, since the routing of the clock signal in the CLB columns
is handled by the CLBRead program. In Figure 5.6 a closer look of the routing of the
clock signal at a branch point is depicted. All the wires shown are part of the global clock
network. The clock signal connected to the reconfigurable module is marked in red. It
does not matter which branch that is used, as long as all of the reconfigurable designs have
routed the clock signal through the same branch when entering the reconfigurable module.
If this is done, the clock signal should stay intact after a partial reconfiguration. The clock
signal for both designs tested was studied to make sure they used the same routing branch.
When this was confirmed, the clock signal was considered ready for reconfiguration.

Figure 5.5: Global clock routing

5.3 Drivers

Both the drivers that were used was put in the NFS folder and tested. The driver for the
software accessible register was installed successfully, and worked as expected. There

38

5.4 Program

node = GLOBAL(33857,82212)

Figure 5.6: Closer look of the clock signal

was however a problem with the HWICAP driver. It refused to be installed with the major
number given in the source file for the driver, and the default location for the driver /dev
had a write protection. Therefore some minor changes had to be made to the driver. The
major number was reduced to 250, which was accepted, and the location was changed to
/var. Since the location folder of the driver was changed, the minor changes were also
made in icap_write. This fixed the problems and the driver was installed successfully. The
alterations made in the driver and program are shown below.

#define XHWICAP-MAJOR 250

Listing 5.1: Changes made to the HWICAP driver.

#define ICAP ”/var/icap”

Listing 5.2: Changes made to the icap_write program.

5.4 Program

At first all these design steps were taken in the ISE 11.5 design suite, since this was the
newest version available with the FPGA project from Atmark-Techno. This worked fine
until it was time to use the HWICAP driver and user program. The driver was not able to

39

Chapter 5. Implementation and verification

contact the HWICAP module. The reason for this was that the HWICAP module in 11.5
had been updated from the 10.1 version. A driver for this version probably exists, but it
is likely that several changes would have to be done to make it run on the Linux 2.6.18
distribution. The user program icap_write would probably also need big changes. It was
uncertain how much time this would require, and if at all possible to do. Therefore it was
decided to move the project over to the 10.1 version. The design process was in most cases
exactly the same, but the HWICAP module used considerably more resources. This made
it more challenging to place the logic on the FPGA. The resources used by the different
HWICAP modules can be seen in Appendix D.

5.5 Verification

To verify the virtual layer the substring detector presented in 3.7.1 was implemented and
tested. This is a simple state machine that requires only a few configuration vectors, while
still containing all the aspects of an NFSM needed to test the virtual layer properly. The
most important thing is that is contains a copy transition, so copying can be tested. Origi-
nally it was planned to test all features of the virtual layer in one complete test, but when
implementing the partial reconfiguration and going through the design steps described in
the previous sections, this proved to be problematic. The resources required by the non-
user modules and the HWICAP module were high, and left little space for the modules of
the back-end and the reconfigurable module(s). Sadly there was only room for one recon-
figurable module with support for reconfiguration on the FPGA. Therefore it was decided
to separate the verification process into two tests. One full test of substring detector, with-
out any reconfiguration, and a second test to verify the partial runtime reconfiguration with
only one clone.

5.5.1 Test with substring detector

In the first test case the back-end is connected to four NFSM clones. This is done to test
how the system handled copying and deletion of clones, and how it will handle the control
of several clones. One of the four clones is set to be the initial clone and will always be
active. The other clones are set to be inactive, and will wait to be initialized and configured
by the back-end.

The test is started by sending a series of ones to the NFSM, to see if it will be able
to copy new clones during a copy transitions. These new clones should be configured by
the back-end and put in the correct state. When three consecutive ones have been sent, the
NFSM should accept the input string and then delete the accepted clone. The next one on
the input should be treated as a separate accepted substring of ones, and the NFSM should
continue to accept the input string until a zero is received. When a zero is received the
NFSM should delete all the clones that signal for an illegal transition, which should be all
clones except the initial clone. The NFSM should now reject the input string.

40

5.5 Verification

5.5.2 Partial runtime reconfiguration test

In the second test only one clone is connected to the back-end, this should be enough to
verify the reconfigurability of the virtual layer. The general procedure of runtime recon-
figuration is the same no matter how many clones are connected, and only one clone can
be reconfigured at a time anyway. In the first test case, clones with room for four states
are used. The aim of this test is to change the type of clones during runtime. The clones
can be varied in the number of states and in the size of the configuration memory. It does
not really matter what kind of clones that are used as long as it can be shown that they can
be swapped. It was decided to use the same 4-state clone as in the first test, and then to
design a new clone with different parameters. A different clone needs a separate bitfile,
so a design with a different clone had to be put through the same implementation steps
as mentioned in the first sections of this chapter. At runtime all the different clones must
have their own bitfile. The bitfiles can be used to write the desired clone to reconfigurable
modules on the FPGA.

Originally the second clone used in this test was planned to have more states than
the first clone, but the increase of space made it difficult to fit a bigger clone inside the
reconfigurable module. It was decided to use a smaller clone instead. A clone with three
states and a smaller configuration memory was implemented, and a bitfile was extracted.
The design for the 4-state clone NFSM was downloaded to the FPGA, and the the partial
bitfile for the 3-state clone was added to the NFS folder. The 3-state clone could now be
swapped with the 4-state clone by using runtime reconfiguration.

The second test uses the detector from in the first test case, but with the copy transition
removed. The 4-state clone is configured as a state machines that accepts three consecutive
ones, and the second clone is configured as a state machine that accepts two consecutive
ones. Configuring these state machines and sending inputs so they accept should only
work with their respective clones. The 4-state clone is tested and then swapped with the
3-state clone. Using the different configurations and test should verify a successful change
of clones.

41

Chapter 5. Implementation and verification

42

Chapter

Use of the virtual layer

In this chapter gives a guide of how to use the virtual layer to run a self-cloning NFSM on
the FPGA. This guide presumes that the virtual layer has been implemented on the FPGA,
and that all the required components are in place.

6.1 Configuration vectors

The first step is to transform the state machine into configuration vectors, for the system
to read. The format of these vectors will be as shown in Figure 4.5 and Table 4.1. Every
transition has to represent one vector, were the transitions belong to the state they transition
to. As an example the transforming of the substring detector is described in this chapter.
The first state has two transitions. The second state would normally have one, but this is
part of the copy transition that should lead to a copy of a new state machine, and copying
is handled by the back-end which also includes forcing the new state machine into this
second state. Therefore there are no configuration vectors in the second state. However
the transition has to be put in the copy transition section of the vectors, so that they can be
detected by the NFSM. These vectors will not cause any transitions in the NFSM, but will
signal the back-end. The actual transition for the copy transition is in the first state. The
next two states both have one transition each. The amount of configuration vectors for each
state has to be the same, where the minimum number of vectors for this example is two. To
fill any unused registers one can either fill them with copies of other vectors in that state,
or fill all the registers with ones, in both cases this should prevent the state machine of
having any uncontrollable transitions. The configuration vectors for the substring detector
are shown in Table 6.1, the vectors are given in hexadecimal.

6.2 Creating the input file

The input text file can now be created. One byte is needed for the configuration vectors.
A second byte is also needed, containing the sync and enable configuration signals. This

43

Chapter 6. Use of the virtual layer

State 1 | State 2 | State 3 | State 4 | Copy
01 ff 12 14 11
11 ff 12 14 11

Table 6.1: Configuration vectors for the substring detector

byte will be put first due to the PowerPC endian byte system, more on this can be found
in Endresen (2010b). To set the FPGA ready for receiving the configuration vectors, one
has to send a Start configure signal, and preferably also reset the modules on the FPGA.
When sending the vectors the sync flag has to be updated for every vector. Due to the
issues discussed in 5.1.1 extra words have to be sent when changing the input byte. An
example of a complete configuration file is shown in Appendix B. This file configures the
detector, where five vectors were used for every state. The first vector for every state has
the correct input but the incorrect sync flag. Therefore six vectors are used for every state.
There are also six vectors for the copy transition. The number of configuration vectors and
input vectors must be given at the beginning of the file. The completed input textfile can
now be put in the NFS folder.

6.3 Running the state machine

Including the input textfile, the runNFSM program and the driver must be in the NFS
folder. The name of the driver for the software accessible register is sw_access_reg, and
must be installed as a kernel module. The state machine is now ready to run. The com-
mands for installing the driver and running the state machine is given in Listing 6.1.

cd var

mknod swreg ¢ 240 0

cd tmp

insmod sw_access_reg.ko
./runNFSM < input. txt

Listing 6.1: Installing the driver and running the state machine

6.4 Reconfiguring with the HWICAP module

To perform partial run time reconfiguration, the HWICAP driver, the icap_write program,
and a partial bitfiles must be placed in the NFS folder. The process of extracting a partial
bitfile is shown in Listing 6.2, where the 3-state clone was extracted from the full design
and put in a separate partial bitfile. The address of the columns reconfigured is hard coded
in the icap_write program. Columns 21 to 23 were used in this thesis, so the program
has been set to configure these columns. Other columns can also be reconfigured. This
can be done by changing the addresses in the program and recompiling. The process

44

6.4 Reconfiguring with the HWICAP module

of reconfiguring the 21st, 22nd and 23rd CLB columns with a partial bitfile is shown in
Listing 6.3.

$./test —i 3—st—reru —10.1.bit —o part—3—st.bit —fmR —sc 21
—ec 23 —verbose

Listing 6.2: Extration of a partial bitfile

cd var/

mknod icap ¢ 250 0O

cd tmp/

insmod xilinx_hwicap_-m.ko
./icap_write —i part—3—st.bit —f 66

Listing 6.3: Reconfiguring CLB columns

45

Chapter 6. Use of the virtual layer

46

Chapter

Results

This chapter presents the results from the verification process.

7.1 First test case with four connected clones

The results from testing the substring detector is shown below in Listing 7.1. At first the
driver for the software accessible register was installed. Then the NFSM was configured
with the configuration vectors from the input textfile, and the input stream was sent to
the state machine, by running the program runNFSM. The NFSM started with one active
clone. After the configuration completed the output of the system was *0x0302°. An
output of 03’ means that the back-end has reached the RUN state. So the back-end had
successfully been configured, and the configuration vectors had also been sent to the clone.
The ’02’ output told that the first clone was active, and the the input was not accepted. The
system was now waiting for the input stream. When the first *1” was sent on the input,
the output of the system changed to ’0x0706°. This meant that a second clone had been
activated by the back-end. The input stream was still not accepted. When the next ’1’
was sent, a third clone was activated, and when the third 1’ was sent a forth clone became
active. The back-end now signaled that the input was accepted. When more ones were sent
on the input the NFSM continued to accept all the substrings of three consecutive ones, and
four clones remained active. This meant that the NFSM managed to delete the accepted
clone, and copy a new clone at the same time. When a *0’ was sent to the state machine,
the input stream was rejected, and all the clones except the initial one were deactivated. A
new series of three ones was sent to the state machine to see if it still was able to accept
new sub strings. The state machine accepted the new sub string of three ones.

uname —a

Linux SUZAKU-V.SZ410 2.6.18 —atll #1 Mon Mar 16 12:29:01 CET
2015 ppc unknown

cd var/

47

Chapter 7. Results

mknod swreg ¢ 250 O

cd tmp/

insmod sw_access_reg.ko

Major number captured: 0

./runNFSM < input. txt}

Program for running NFSM. Program takes configuration
vectors and input from textfile

Accessing Hardware

FPGA Memory access successful
Configuring NESM. ..

NFSM configuration finished.
Output from NESM: 0x0302
Number of active NFESM clones: 1
Accepted input (0 no, 1 yes): O

Sending input to NFSM

Sending input: 1

Output from NESM: 0x0706
Number of active NFSM clones: 2
Accepted input (0 no, 1 yes): O

Sending input: 1

Output from NESM: 0x030E
Number of active NESM clones: 3
Accepted input (0 no, 1 yes): O

Sending input: 1

Output from NESM: 0x071F
Number of active NFSM clones:
Accepted input (0 no, 1 yes): 1

Sending input: 1

Output from NESM: 0x031F
Number of active NFSM clones:
Accepted input (0 no, 1 yes): 1

Sending input: 1

Output from NESM: 0x071F
Number of active NFSM clones:
Accepted input (0 no, 1 yes): 1

Sending input: O
Output from NFESM: 0x0302
Number of active NFSM clones: 1

48

7.2 Second test case with one clone and partial runtime reconfiguration

Accepted input (0 no, 1 yes): O

Sending input: 1

Output from NESM: 0x0706
Number of active NFSM clones:
Accepted input (0 no, 1 yes): O

[\

Sending input: 1

Output from NESM: 0x030E
Number of active NFSM clones:
Accepted input (0 no, 1 yes): O

(O]

Sending input: 1

Output from NESM: 0x071F
Number of active NFSM clones: 4
Accepted input (0 no, 1 yes): 1

Listing 7.1: Output from testing substring detector

7.2 Second test case with one clone and partial runtime
reconfiguration

The results from the partial runtime reconfiguration test is shown below in Listing 7.2.
Both the software accessible register driver and the HWICAP driver were added and in-
stalled in the kernel. At first the 4-state clone was tested by running the program runN-
FSM, three consecutive ones was sent on the input and the state machine accepted. Then
icap_write was used to change the clone in the reconfigurable module. The CLB columns
21 to 23, containing the NFSM clone was replaced using the partial bitfile for the 3-state
clone. The reconfiguration completed successfully after a couple of seconds. The NFSM
was tested again, this time with the configuration for the 3-state clone. The NFSM ac-
cepted the input after the second "1’ was sent to the input.

Synthesis results with resource usage of all the systems tested can be found in Ap-
pendix D.

uname —a

Linux SUZAKU-V.SZ410 2.6.18 —atll #2 Fri Apr 17 14:23:19 CET
2015 ppc unknown

cd var/

mknod icap ¢ 250 0

mknod swreg ¢ 240 0

cd tmp/

insmod sw_access_reg.ko

Major number captured: 0O

insmod xilinx_hwicap_m .ko

H o H H H*

49

Chapter 7. Results

Xilinx ICAP driver init

Xilinx ICAP driver platform_driver_register

Xilinx ICAP driver probe

Xilinx ICAP driver setup

icap icap.0: Xilinx icap port driver

icap icap.0: ioremap f0Of00000 to c5008000 with size 1000

setup after device_create

./runNFSM < input—for—4—states . txt

Program for running NFSM. Program takes configuration
vektors and input from textfile

Accessing Hardware

FPGA Memory access successful
Configuring NESM. ..

NFSM configuration finished.
Output from NFESM: 0x0702
Number of active NFSM clones: 1
Accepted input (0 no, 1 yes): O

Sending input to NESM
Sending input: 1

Output from NESM: 0x0302
Number of active NFSM clones:
Accepted input (0 no, 1 yes): O

—_—

Sending input: 1

Output from NESM: 0x0702
Number of active NFSM clones:
Accepted input (0 no, 1 yes): O

—_—

Sending input: 1

Output from NFESM: 0x0303
Number of active NFSM clones: 1
Accepted input (0 no, 1 yes): 1

./icap_write —i part—3—st.bit —f 66
Frames: 66

Access Hardware

Xilinx ICAP driver open

FPGA Memory accessing

Xilinx ICAP driver write

Writing frames

Xilinx ICAP driver write

Finished writing frames

Postconfig

50

7.2 Second test case with one clone and partial runtime reconfiguration

Xilinx ICAP driver write

Getting Status of FPGA

Stat acces word 2800E001

Xilinx ICAP driver write

Xilinx ICAP driver read

Xilinx ICAP driver write

Status: 78FC

closing device

Xilinx ICAP driver release

./runNFSM < input—for—3—states . txt

Program for running NFSM. Program takes configuration
vektors and input from textfile

Accessing Hardware

FPGA Memory access successful
Configuring NFSM. ..

NFSM configuration finished.
Output from NESM: 0x0702
Number of active NFSM clones: 1
Accepted input (0 no, 1 yes): O

Sending input to NFSM

Sending input: 1

Output from NESM: 0x0302
Number of active NFESM clones: 1
Accepted input (0 no, 1 yes):

Sending input: 1

Output from NFESM: 0x0703
Number of active NFSM clones:
Accepted input (0 no, 1 yes): 1

Listing 7.2: Partial runtime reconfiguration output

7.2.1 Timing

In Hansen (2011) the reconfiguration of large synchronous designs was reported to take up
to several seconds, which was in contrast to what the other reports, Endresen (2010b) and
Hamre (2009), on partial reconfiguration had found. In their experiments the reconfigu-
ration would only take milliseconds. When performing the same tests in this project the
time to completion was also several seconds. Sindre speculated that this could be because
the clock signal was also rerouted, or it could have been because of hardware failure, al-
though very unlikely. Because this problem also occurred in this project, the problem was
investigated further. The HWICAP driver and icap_write program uses a lot of print outs
to the terminal for debug purposes. It was suspected that this caused the slow reconfigura-
tion times, since the program has to spend a lot of time writing debug information to the

51

Chapter 7. Results

terminal. The debug print outs were removed from the driver and the program. When par-
tial runtime reconfiguration was tested, the program finished much faster, under a second.
A more accurate measurement was not possible since the OS lacked any proper analysis
tools. This seemed to fit more with the reconfiguration times reported in the other reports.
This was probably also the reason why Sindre’s runtime reconfiguration took so long, but
it is hard to confirm since the actual terminal output was not omitted in the report.

52

Chapter

Discussion

8.1 The virtual layer

When tested, the virtual layer performed as expected. From configuration vectors defined
in software, the system managed to send the information to the hardware modules and
implement the vectors as a running NFSM. When encountering copy transitions the system
managed to duplicate itself and add new state machines. The system also managed to
remove those state machines that no longer had valid transitions, and made place for new
ones. The system managed to control the timing when controlling several NFSM clones
at once. The test of the virtual system was done with relative simple state machines,
but verified that all the implemented features worked. Setting up tests with the virtual
layer was hard, since little information could be extracted from the FPGA if anything
went wrong. For example inspecting all the memory registers after configuration was not
possible. Running the same tests on simulation software from Xilinx could only do so
much, and would not simulate any components from the processor and hardware bridge.

By using small state machines and only having one module for reconfiguration avail-
able, it is hard to evaluate how effective the system is. It would be interesting to compare
the speed of the system to a pure software implementation. One would probably have to
test quite large systems to observe any speedup, if any. It is also plausible that the use of
self-cloning state machines is only suitable for certain tasks, where others tasks gives no
speedup at all.

To make the virtual layer able to simulate any state machine, memory registers had to
be added. These registers were the primary use of resources, and the amount increased
linearly with the number of states and inputs in the state machines. In one sense, the
NFSMs implemented on the FPGA could be seen as something like a processor, flexible
and capable to perform many tasks, but sacrificing in resources and speed. To truly make
use of this virtual layer something like the datapath discussed in Chapter 4 would have to
be added. This would make the system able to handle more complex computations, and
make it more powerful.

The system that was implemented has some restrictions in regards to what NFSMs

53

Chapter 8. Discussion

can be used. It was necessary to set limitations, so that the system did not become too
complex at first. This was a good approach and helped to simplify some of the problems
encountered in the early phases of the project. Features could then be added along the way,
as the system became more and more complete. There are definitely more feature that can
be added, some more easier than others.

When running much larger systems, the implementation of a hardware operating sys-
tem (HWOS) would certainly be interesting. Support for running more than one user
application at the same time could be implemented by adding a scheduler. A more com-
plex system for reconfiguration could be added, keeping track of all the resources used by
the system. One could also add the support for running some of the NFSM clones while
having the rest stored in memory.

8.2 Partial runtime reconfiguration on Virtex-4

When trying to implement support for partial runtime reconfiguration it became clear that
the Virtex-4 platform was limited in what kind of system that could fit on the relative small
FPGA. The experimental work done in this thesis was done with small and simple state
machines, and even so the limit of the resources on the FPGA was reached. However the
lack of logical elements was not the only limiting factor. When restricting the placement
of logic on the FPGA by using Pblocks, it helped create a clear boundary between the
static and reconfigurable areas on the FPGA, but definitely also affected how much the
routing and placement could be optimized. The fact that routing could not be restricted in
the same manner as logic also made things worse. It became nearly impossible to have any
logic placed near the reconfigurable area without unwanted routing crossing over. With the
limited tools for rerouting available the only solution was to place other logic even further
away from the reconfigurable area. This made only the top row of CLB columns available
to place reconfigurable areas. A reconfigurable module was placed in the far right corner,
so that the least amount of illegal routing would go through the area. There would probably
have been space for one or two more of these small reconfigurable modules on the top row,
but there would have been no way to stop routing from these modules crossing in to each
other. In the end only one reconfigurable module was implemented on the FPGA. When
inspecting the routing in fpga_editor it became clear that signals were also routed through
the non-CLB blocks, like the I/O blocks shown in Figure 5.3. Again the tools available
for rerouting made it difficult do anything about this, other than trying to move the logic
further away. What had once been three columns of CLBs for the reconfigurable module
became only one, just to simply achieve a result without illegal routing.

Still, two different designs were implemented, and by using the framework for recon-
figuration they could be swapped at runtime. These tests proved that NFSM clones could
be added or altered by using partial runtime reconfiguration. This adds flexibility to the
design. It can be used to create a highly customized system, reacting to the environment at
run time. Having the ability to add clones only when they are needed can help save power.
Alternatively the reconfigurable areas could be used by other systems that share the same
resources, creating possibilities for enhanced effectiveness.

Only small synchronous designs like one or two flip-flops had successfully been re-
configured in previous work. The fact that these reconfigurable modules, like the sequen-

54

8.2 Partial runtime reconfiguration on Virtex-4

tial multiplier in Endresen (2010b), crossed through several non CLB columns proba-
bly caused the reconfigurations to fail. There were simply no way to reconfigure these
columns, since the support for this had not been included in the CLBRead program.

During testing, a single partial runtime reconfiguration took several seconds when us-
ing the HWICAP driver given by Hamre (2009). This was the same results as reported
in Hansen (2011). However when the relatively large amount of debug print outs was re-
moved, the time was reduced to under a second, corresponding better to the results seen in
both Hamre (2009) and Endresen (2010b). The debug print outs was most likely also the
cause of the slow reconfiguration times in Hansen (2011).

55

Chapter 8. Discussion

56

Chapter

Conclusion

Using self-cloning state machines to bridge the gap between hardware and software is an
interesting idea. Even though FPGA designs have gotten considerably easier to imple-
ment in the recent years, the process is still not close to being as easy to implement as
software designs. The virtual layer makes hardware resources available without having
to go through complicated design processes. It also makes the partial runtime reconfig-
urability features of the FPGA available to use, without having to go through a slow and
complicated process that requires a detailed knowledge of the hardware. During testing
the virtual layer was shown to be functional, and state machines could be described in
software and mapped to hardware. The process of changing the clones at runtime was
successful, but only a limited test could be performed.

It became clear that the Virtex-4 is not suitable for implementing large designs. This
project focused on using this development environment because it meant that more time
could be spent on defining and implementing the virtual layer, instead of using a lot of
time on finding and setting up a better development environment.

9.1 Future work

o Implement the framework for partial reconfiguration on a more modern FPGA de-
velopment environment, like the Xilinx Virtex-6 or -7. This will require rewriting
of the programs CLBRead and icap_write, or complete new ones, to fit the new CLB
and bitstream structure. Also adding the possibility to reconfigure DSP, I/O and
BRAM blocks could be very benefitial. Alternatively, research could be done in
extending the Xilinx own partial reconfiguration flow, so that partial bitfiles will not
be limited to a specific area.

e Do a closer study on the timing requirements of the system, and the partial recon-
figuration. How fast could a application use this system, and would it be any faster
than running everything on a processor.

57

Chapter 9. Conclusion

e Implement a HWOS like in Hansen (2011) and Endresen (2010b) to better facilitate
resources on the FPGA.

e Add support for a datapath to extend the use and power of the self-cloning state
machines.

58

Bibliography

Atmark-Techno, 2015. Downlaod page.
URL http://download.atmark-techno.com/

Blomkvist, D., 2013. Self-cloning state machines on fpga. Master’s thesis, NTNU.
Endresen, V., 2010a. Creating a reconfigurable fpga system. Tutorial.

Endresen, V., 2010b. Hardware-software intercommunication in reconfigurable systems.
Master’s thesis, NTNU.

Hamre, S., 2009. Framework for self reconfigurable system on a xilinx fpga. Master’s
thesis, NTNU.

Hansen, S., 2011. Self reconfiguration of clock networks on fpga. Master’s thesis, NTNU.

Hubner, M., Figuli, P., Girardey, R., Soudris, D., Siozios, K., Becker, J., May 2011. A het-
erogeneous multicore system on chip with run-time reconfigurable virtual fpga archi-
tecture. In: Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on. pp. 143-149.

Sidhu, R., Wadhwa, S., Mei, A., Prasanna, V., 2000. A self-reconfigurable gate array
architecture. In: Hartenstein, R., Griinbacher, H. (Eds.), Field-Programmable Logic and
Applications: The Roadmap to Reconfigurable Computing. Vol. 1896 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 106—-120.

URL http://dx.doi.org/10.1007/3-540-44614-1_12

Svarstad, K., Volden, K., 2011. Replicating non-deterministic finite state machines as a
mechanism for run time reconfiguration on fpgas.

Yang, J., Yan, L., Ju, L., Wen, Y., Zhang, S., Chen, T., June 2010. Homogeneous noc-
based fpga: The foundation for virtual fpga. In: Computer and Information Technology
(CIT), 2010 IEEE 10th International Conference on. pp. 62—67.

59

http://download.atmark-techno.com/
http://dx.doi.org/10.1007/3-540-44614-1_12

60

Appendix

A Useful commands

This section presents some commands and use of programs that could be useful when
using the framework for reconfiguration or setting up designs on the Suzaku-V platform:

// Downloading a Linux image to the FPGA via the serial port

sudo hermit download —i image.bin —r image —port /dev/
ttyUSBO

// Flashing the FPGA with a bitfile , using the serial port

sudo hermit download —i test_bitgen.bit —r fpga —force—
locked —port /dev/ttyUSBO

// Using bitgen to generate a bitfile from ncd file

bitgen —w —f bitgen.ut completed—design.ncd

// Using bitinit to generate initialize a bitfile before
flashing the FPGA, performed in the root folder of the
EDK design. First for the 10.1 and second for the 11.5
version .

bitinit xps_proj.mhs —pe ppc405_system ppc405_system/code/
executable.elf —bt implementation/test.bit —o
test_bitgen . bit

bitinit —p xc4vfx12sf363 —10 xps_proj.mhs —pe ppc405_system
ppc405_system/code/executable . elf —bt implementation/
Xps_proj.bit —o test_bitgen.bit

61

Example of input text file used for configuring and running the
NFSM

34
12
00
01
00
02

00
04
00
04
00
04

04
00
04
00
04
00

00
04
00
04
00
04

04
00
04
00
04
00

00
04
00
04
00
04

—Number of configuration vectors
—Number of input vectors

00

00 —Reset

00

00 —Start configure

01 —Vectors for 1st state
11
11
11
11
11

ff —Vectors for 2nd state
ff
ff
ff
ff
ff

12 —Vectors for 3rd state
12
12
12
12
12

14 —Vectors for 4th state
14
14
14
14
14

11 —Vectors for copy transition
11
11
11
11
11

62

04 01 —Vectors for input
00 01
04 01
00 01
04 01
00 01
00 00
04 00
04 01
00 01
04 01
00 01

+*When using the textfile it cannot contain comments

C runNFSM source code

/x Application for accessing software accessible register
on the FPGA, and configuring and sending input to the
modules on the FPGA.

Author: Tormod Heimark, based on setreg.c by Sindre
Hansen

*/

#include <stdio.h>
#include <stdlib .h>
#include <stdint.h>
#include <fcntl.h>

#define FPGADEVICE ”/var/swreg” // Memory mapped FPGA

//A function that takes the output bytes from the FPGA and
calculates the number of active clones
int active_.NFSM(int8_t byte) {
int active = 0;
int 1;
for (i=1;i<5;i++){
if(byte & (1 <<(i))){
active ++;
}

63

}

return active;

}

// Function for determing if the input is accepted
int accept_o(int8_t byte){

return byte & (1 <<(0));
}

int main(int argc, char x argv[])
{
char readbuf[12]; //Buffers for input and output
char writebuf[12];
unsigned int A, B;
int handlemem;
int ret,i, j,n,conf_count,input_count;

//Scanning the input file to find the number of
configuration vectors and input vectors

scanf (”%d”, &conf_count);

scanf (”%d”, &input_count);

printf ("Program._for._running .NFSM. _Program._takes .
configuration._vectors.and_input.from_.textfile\n\n”);

printf (" Accessing _.Hardware_\n");
handlemem = open (FPGADEVICE,ORDWR); //Access through the

driver
if (handlemem == —1){
printf (”FPGA_Memory_could _not_be_accessed\n”);
goto err;
}
else {

printf ("FPGA_Memory._access._successful\n”);

}

printf (”Configuring .NFSM...\n”);

for (n=0; n < conf_count ; n++) { //Taking the vectors
from the file and sending them to the software
accessible register

scanf ("%x”, &A);
scanf ("%x”, &B) ;
writebuf [0] = A;
writebuf [1] = B;

64

ret = pwrite (handlemem, writebuf, 2, 0);

printf ("NFSM_configuration._finished.\n”);
ret = pread (handlemem, readbuf, 4, 0);

printf (”Output._from _NFSM: ") ;
if (readbuf[2] < 16) {

printf (7_.0x0%X”, readbuf[2]);
} else {

printf (7.0x0%X”, readbuf[2]);
}

if (readbuf[3] < 16) {

printf (70%X\n”, readbuf[3]);
1 else {

printf (70%X\n”, readbuf[3]);
}

printf ("Number_of_active .NFSM.clones : %d\n” ,active_NFSM (
readbuf[3]));

printf (”Accepted_input_.(0O.no,.l_yes): . %d\n\n”,accept_o(
readbuf[3]));

printf (”Sending._input._to NFSM\n”) ;
int last = writebuf[0];
for (n=0; n < input_count ; n++) {
scanf ("%x”, &A);
scanf ("%x”, &B);
writebuf [0] = A;
writebuf[1] = B;
ret = pwrite (handlemem, writebuf, 2, 0);
if (last != writebuf[0]){ //Check for avoiding
unecessary print outs
printf (”Sending._input:. %d.\n”, accept_o(writebuf[1]))
ret = pread (handlemem, readbuf, 4, 0);
printf (”Output._from _NFSM: ") ;
if (readbuf[2] < 16) {
printf (7_.0x0%X”, readbuf[2]);
} else {
printf (”.0x0%X”, readbuf[2]);
}

if (readbuf[3] < 16) {

65

printf (”0%X\n”, readbuf[3]);

} else {
printf (”0%X\n”, readbuf[3]);
}

printf (”Number_of_active .NFSM.clones: _%d\n”,
active_NFSM (readbuf[3]));
printf (”Accepted_input.(0O.no,.l.yes): . %d\n\n",
accept_o(readbuf[3]));
last = writebuf[0];
}
}

err:
return O;

}

D Synthesis results
Design with 4 clones, no HWICAP module

LUTs | FFs | Slices
All modules 5374 | 5190 | 3166
User modules 665 791 483

Reconf modules 432 572 350
Single clone 108 143 88

Reconfigurable design with 4-state clone

LUTs | FFs | Slices
All modules 8293 | 5105 | 5060

User modules 214 237 146
Single clone 50 67 42

Reconfigurable design with 3-state clone

LUTs | FFs | Slices
All modules 8254 | 5086 | 5036

User modules 175 218 134
Single clone 41 48 30

66

HWICAP module

LUTs | FFs | Slices
From 10.1 | 3264 | 418 | 1992
From 11.5 970 848 518

E Development computer

Setting up a design on the Suzaku-V board requires a development computer, different
operating systems were used for various tasks:

e Linux Ubuntu 14 64-bit Used for setting up the serial port connection to the board,
and also host the other operating systems as virtual machines. Does work with some
of the Xilinx development tools, but not all.

o Atmark-Techno’s virtual machine Atmark-Techno delivers a virtual machine with
all required packages for the cross compiling of source code and building the OS
image. A detailed tutorial for setting this up can be found in Hansen (2011).

e CentOS 5.11 32-bit This operating system was the only one tested were all pro-
grams of the Xilinx 10.1 development tools worked. The OS can be installed as a
VM. These were the steps taken to set up the tools once the OS was installed:

Install Xilinx 10.1 and update ISE, EDK and PlanAhead to 10.1.03

The setup might not run on a fresh install of CentOS, if so go to System - Adminis-
tration - Security Level and Firewall, set SELinux to ’Disabled”

Install two packages: yum install openmotif22.i386 yum install libstdc++.50.5

Then try to open fpga_editor, remember to set settings32.sh, something like “source
/opt/Xilinx/10.1/ISE/settings32.sh”

If this still does not work, try setting the DISPLAY environment variable to :0 in-
stead of :0.0

“export DISPLAY=:0"

67

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Source code listings
	Abbreviations
	Introduction
	Problem description
	Motivation
	Contribution
	Method
	Report Structure

	Previous work
	Previous work from NTNU
	Daniel Blomkvist's master thesis (June 2013): Self-cloning state machines on FPGA
	Sverre Hamre' master thesis (June 2009): Framework for self reconfigurable system on Xilinx FPGA
	Vegard Endresen's master thesis (June 2010): Hardware-software intercommunication in reconfigurable systems
	Sindre Hansens's master thesis (June 2011): Self Reconfiguration of Clock Networks on FPGA

	Other sources
	A heterogeneous multicore system
	A homogeneous network on-chip system

	Theory and background
	Development environment
	Field programmable gate array
	The Virtex-4
	Software
	Runtime reconfiguration
	Bus macros

	Framework for reconfiguration
	CLBRead
	icap_write

	Finite state machine
	Cloning

	Design of the virtual layer
	Requirements
	System overview
	Reconfigurable module
	Back-end
	Software
	Datapath

	Limitations
	Implementation alternatives
	A Self-Reconfigurable Gate Array Architecture
	Xilinx development flow

	Implementation and verification
	Implementing the virtual system
	Timing issues

	Runtime reconfiguration
	Restriction of logic placement
	FPGA Editor
	Clock signal

	Drivers
	Program
	Verification
	Test with substring detector
	Partial runtime reconfiguration test

	Use of the virtual layer
	Configuration vectors
	Creating the input file
	Running the state machine
	Reconfiguring with the HWICAP module

	Results
	First test case with four connected clones
	Second test case with one clone and partial runtime reconfiguration
	Timing

	Discussion
	The virtual layer
	Partial runtime reconfiguration on Virtex-4

	Conclusion
	Future work

	Bibliography
	Appendix
	Useful commands
	Example of input text file used for configuring and running the NFSM
	runNFSM source code
	Synthesis results
	Development computer

