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Preface

This thesis is submitted in fulfilment of the degree philosophiae doctor at the 

Norwegian University of Science and Technology. The work has been carried out at the 

Department of Structural Engineering under the supervision of Professor Odd Sture 

Hopperstad and Professor Tore Børvik. The thesis consists of four articles accepted or

submitted to international scientific journals. The articles are referred to as parts, as they 

represent different parts of the thesis. The content of the parts is bound together by a 

synopsis. The first author has been responsible for the experimental and numerical work 

in the different parts as well as processing the data and writing the manuscripts. 

Exceptions from this are the mechanical formability tests in Part II, which were carried 

out under main supervision of Mr Dmitry Vysochinskiy, and the optical measurements 

in Part I and Part II, which, respectively, were conducted by Dr Egil Fagerholt and 

Dr Tèrence Coudert.

Gaute Gruben

Trondheim, 3 July 2012
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Abstract

The thesis is focused on quasi-static ductile fracture in the low range of stress triaxiality 

of the dual-phase steel Docol 600DL. The study includes mechanical testing, theoretical 

aspects of ductile fracture and numerical simulations. Ductile fracture in the low range 

of stress triaxiality is an interesting topic since experimental data from various studies 

suggests that the ductility of the material is not only governed by the hydrostatic stress-

state, but is also influenced by the deviatoric stress-state.

The thesis consists of four journal articles bound together by a synopsis, where 

the introduction gives the motivation for the work and a state-of-the-art of the topics 

examined in this study. After the introduction, the objectives for the study are given 

followed by a summary of the work, conclusions and suggestions for further work. 

Finally the four articles are given. The articles are referred to as parts as they give

detailed information of the different parts of the study.

In Part I and Part II the experimental side of the study is described. These parts

give detailed information regarding the material, test set-ups, specimen geometries and 

optical measurement procedures. The results from the experiments in form of the minor 

versus major principal strain as well as the stress triaxiality, the Lode parameter, and the

equivalent strain at fracture are presented and used to describe the material’s fracture 

characteristics. Macroscopically the material displayed typical ductile behaviour with 

large strains before fracture. This was confirmed by scanning electron microscopy of 

selected specimens since all showed ductile dimples. Further, the material displayed a

significant drop in ductility when exposed to plane-strain loading; an observation that 

suggests that the material’s fracture properties are Lode dependent. 

In Part III several uncoupled criteria for ductile fracture which explicitly take

into account the effect of the Lode dependence were assessed. One of the criteria, the 

modified Mohr-Coulomb criterion, was taken from literature, while two of the criteria, 

the extended Cockcroft-Latham criterion and the extended Rice-Tracey criterion are

augmented versions of existing criteria. The data given in Part I and II were used in 

evaluating the various criteria and it was found that the proposed extended Cockcroft-

Latham criterion managed to give accurate predictions on the equivalent strain at 
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fracture, while a somewhat larger spread was observed for the modified Mohr-Coulomb 

criterion and the extended Rice-Tracey criterion.

Part IV focuses on numerical modelling of ductile crack propagation. Here the 

experimental tests from Part I were used in assessing the extended Cockcroft-Latham 

and modified Mohr-Coulomb criteria on crack propagation. Additionally the effects of 

using a high-exponent yield surface and material softening were investigated. It was 

found that the different fracture criteria as well as a change of yield function had little 

effect on the crack propagation. By including material softening through damage 

coupling, slant shear fracture as observed in some of the experiments was captured, but 

this did not alter the global response in form of the force-displacement curves.
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Synopsis

1 Introduction

1.1 Background and motivation

The need for accurate numerical models is present in e.g. offshore, metal forming and

automotive industry. The constant development of computational power makes it 

possible to run increasingly more sophisticated numerical models within a reasonable 

computational time. Fracture has usually not been included in full scale numerical 

models of e.g. car crash, due to computational costs and coarse spatial discretization. 

Driven by the economical needs of industry and the increase of computational power, 

robust and sufficiently accurate criteria for fracture are needed as well as robust 

numerical techniques for simulation of fracture propagation. A profound understanding 

of ductile fractural behaviour, physically, mechanically and numerically, is needed to be 

able to make good predictions of fracture propagation. 

Weight reduction is an important course in order to reduce CO2 emissions in 

cars. It is estimated that by reducing the weight of a car by 1 kg, the CO2 emissions are 

lowered by 20 kg after 170 000 km driving [1]. By using advanced high-strength steels 

(AHSS), it is possible to make structural and energy-absorbing parts with thinner walls, 

thus reducing the total weight of the car. Another important issue is car safety. In 1997

the European New Car Assessment Program (Euro NCAP) was launched, forcing car 

producers to increase their attention on car safety [2]. By use of AHSS, the deformation 

of the cars during a crash has been decreased significantly, thus providing better 

protection for the passengers [3]. Fig. 1 illustrates typical automotive applications of 

AHSS, including bumper reinforcements, crash boxes and door impact beams [4]. The 

material used in this study, Docol 600DL, is an example of an AHSS that may be used 

in chassis components in cars. The material, which is delivered by Swedish Steel AB, is 

a dual-phase steel consisting of ferrite and martensite, where the ferrite gives good 

formability features and the martensite produces high strength [5]. The material is 

delivered as sheets, and can be ordered with thickness dimensions in the range from 

0.5 mm to 2.1 mm. The material is meant for cold forming, and the producer reports 
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that the steel has good formability features in bending, rollforming and pressing. The 

weldability of the material is very good due to its low contents of alloying elements in 

relation to its high strength.     

Fig. 1 Body-in-white showing examples of energy absorbing parts where different 
types of AHSS may be utilized [4].

Since the energy absorbing parts in cars usually are made of thin walled 

structures, the parts are in a near plane-stress condition during deformation, i.e. the

shear and normal stresses in the thickness direction are small compared to the in-plane 

stresses. The plane-stress condition restricts the stress triaxiality, , in the material to 

the low and negative range, i.e. 2 2
3 3 . The stress triaxiality parameter gives 

information about the hydrostatic stress state of the material and is defined as the ratio 

of the hydrostatic stress, h , and the von Mises equivalent stress, VM , viz.

h

VM

(1)
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The hydrostatic (or mean) stress, h , and the equivalent von Mises stress, VM , are in 

turn given by

1
3 ( )h I II III (2)

2 2 21
2 ( ) ( ) ( )I II II III III I (3)

In Equations (2) and (3), ,  , ,i i I II III , are the principal stresses ordered so that 

I II III . Ductile fracture is governed by nucleation, growth and coalescence of 

microvoids during plastic deformation [6-7]. The microvoids as well as the 

accumulation of strains in the neighbourhood of defects in the material or the breaking 

of bonds can be summed up in a damage variable following continuum damage 

mechanics [8-9]. The damage of the material is hard to determine experimentally, but 

several approaches can be utilized e.g. by measuring the change in Young’s modulus

[8], measuring the void volume fraction through scanning electron microscopy [10] or 

by measuring the change in volume of the material through optical measurements [11].

For negative values of stress triaxiality ( 0) the growth of voids is restrained due to

the hydrostatic overpressure, and so the damage that accumulates in the material is 

through breaking of bonds i.e. void nucleation. On the other hand, in the high stress 

triaxiality range ( 1) increased stress triaxiality gives decreased ductility of the 

material due to increased rate in the growth of microvoids, which in this case is the 

governing damage mechanism. Macroscopically the ductility of a material can be 

measured as the equivalent plastic strain at fracture or fracture strain, defined as 

0

2 : ,
3

ft
p p

f dtD D (4)

where pD is the plastic part of the rate-of-deformation tensor and ft is the time at 

fracture. Clausing [12] found that plane-strain specimens displayed a significantly lower 

ductility than uniaxial tension specimens for seven different types of steel. More recent 

studies [13-16] carried out on ductile materials with axisymmetric as well as thin-walled 

specimens in the low range of stress triaxiality (0 1) also indicate that the 
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ductility does not decrease monotonically with increased stress triaxiality. Although 

voids do not grow in pure shear, it has been argued that the effect of void deformation 

and reorientation in shear contribute to the softening of the material [17-19]. Thus, the 

deviatoric stress state should also be taken into account when modelling ductile fracture 

in the low range of stress triaxiality (which is the case for thin-walled structures as 

noted above). The deviatoric stress state of the material can be expressed by several 

parameters, e.g. normalized third deviatoric stress invariant [20], the Lode angle [17, 

21] or the normalized Lode angle [22-23]. In this study, the Lode parameter, , [24]

which is related to the third deviatoric stress invariant is chosen. The Lode parameter 

has the range 1 1, and is defined as

2 II I III

I III

(5)

In plane stress there is a one-to-one relation between the stress triaxiality and the Lode 

parameter, viz.

2

2

2

2 3 10            
3 33 3
1 2 10           
3 33 3
1 3 20           
3 33 3

I

II

II

II

I

I

(6)

Fig. 2 displays the locus under plane stress as well as the position of the plane-

stress states, pure shear, uniaxial tension/compression, plane-strain tension/compression

and biaxial tension/compression. Additionally, Fig. 2 displays the loci representing the 

special stress-states [14]

Generalized shear                 2   0  II I III (7)

Generalized tension                 1I II III (8)

Generalized compression        1I II III (9)
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Fig. 2 Relation between stress triaxiality and Lode parameter in plane stress, 
generalized shear, generalized tension and generalized compression.
Additionally, the positions of specific stress-states are marked.

1.2 Previous work

Several criteria have been proposed in the literature over the years to describe ductile 

fracture. Most of these criteria can be expressed as a damage variable that accumulates 

with plastic straining. These accumulative fracture criteria can be divided into two main 

groups; criteria using a coupled approach and criteria using an uncoupled approach. For 

the criteria with a coupled approach, influence of damage is included in the constitutive 

equations. This can be modelled by porous plasticity, e.g. Shima [25], Gurson [26] and 

Rousselier [27], or by continuum damage mechanics, e.g. Lemaitre [8] and Lemaitre 

and Chaboche [9]. In the criteria with the uncoupled approach, the yield criterion, 
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plastic flow and strain hardening are unaffected by the damage. Some of these criteria 

are empirical e.g. Freudenthal [28], Cockcroft-Latham [29], Wilkins [30], Johnson-

Cook [31] and Xue-Wierzbicki [20], while the Rice-Tracey [7] criterion, on the other 

hand, is based on porous plasticity. Although these criteria initially were presented as 

uncoupled with the constitutive equations, they can be coupled by following e.g. [32-

34]. A different method to predict material failure, which is much used in metal forming 

industry, is the Keeler-Goodwin approach [35-36]. In this method, the principal strains 

at plastic instability are plotted in a forming limit diagram. This approach relies on a 

proportional loading assumption which is often not the case for crashworthiness 

problems. Stoughton [37] argued how a stress-based forming limit diagram is less 

affected by non-proportional loading paths, and can so be used for more complex load 

situations. The stress-based forming limit curve can be expressed by a stress-based 

instability criterion, e.g. the Bressan-Williams-Hill criterion [38] or by stress-based 

fracture criteria, e.g. the maximum shear stress criterion [39] and the maximum stress 

norm criterion [40]. These criteria do not explicitly take into account the accumulative 

deterioration of the material, but do account for this in an implicit way when used with 

an isotropic yield surface that expands with accumulative plastic strain.

In a finite element model where fracture is to be included, the deformation of the 

material needs to be given a sufficiently good description if the fracture initiation and 

propagation is to be well captured. The choice of fracture criterion depends on the 

problem to be modelled. For analysis of large structures (e.g. cars or ships), a number of 

simplifications are typically done in the numerical model to reduce the computational 

time. Shell elements are often used, which again simplify the geometry, and the 

constitutive relation is often given a relatively simple description. Effects like stochastic 

variations in the material or geometrical imperfections are usually not modelled, but can 

have a significant influence of local or global buckling as well as fracture, and can be 

readily included at a low computational cost [41-43]. In problems involving large 

structures the use of an uncoupled damage accumulation criterion, see Refs. [44-45], or 

a stress based criterion, see Ref. [45], may be sufficient. On the other hand, if local 

phenomena like localized necking or shear-band instability are to be captured, more 

sophisticated models are required. Localized necking can be captured by shell elements
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if a non-local approach is used, cf. [46]. However, the use of 3D solid elements is

preferred if a detailed description of the deformation is needed. If the material displays 

anisotropic behaviour in terms of work hardening or plastic flow, advanced models of 

the constitutive relation are needed, e.g., Hill [47] or Cazacu and Barlat [48]. The 

fracture criterion for this type of problem should express the deterioration of the 

material as an accumulative variable in order to capture the physical process with 

microvoid nucleation growth and coalescence as well as breaking of bonds. In case of 

modelling slant shear fracture the effect of damage should be coupled with the 

constitutive relation [49-50].

As for the modelling of the crack propagation, several techniques exist, such as 

node splitting [51-52], cohesive elements [53-55], remeshing adaptivity [56-57] and the 

extended finite element method [58-59]. A method that is relatively simple, robust and 

has proven to work well in problems involving large deformations is the element 

erosion technique [60-62]. In this technique, the load-carrying capacity of the element is 

set to zero when the fracture criterion is met at one or more integration points. The 

technique is readily used for problems involving coarse spatial discretizations with shell 

elements [44-45] as well as in detailed modelling of local material instabilities with 3D 

solid elements e.g. [60, 63-64]. When using element erosion, it is preferable with small 

time increments due to the non-linear behaviour emerging when one element is deleted. 

Generally both implicit and explicit time integration can be used, but for quasi-static 

problems the normal advantage of implicit time integration is not as substantial, since

small increments are needed to ensure a stable solution. In analysis with explicit time 

integration, the mass is lumped to the nodes and so mass is conserved even if one 

element is deleted. If all elements connected to a node are deleted, the node’s mass still 

contributes to the total kinetic energy, and the node can still be used in contact 

constraints. In case of an implicit solver this situation is problematic as there is no 

stiffness contribution to the node, and the system of equations becomes singular. In the 

explicit non-linear finite element code LS-DYNA [65], the integration points belonging 

to a deleted element are simply skipped in the material subroutine. When the first 

element is deleted in an explicit analysis, the elastic energy stored in the neighbouring 

elements is released and induces stress waves. In problems where fracture is not 
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preceded by strain localization, the history variables in the neighbouring elements are 

nearly the same as in the first deleted element. In these cases the stress waves might 

cause that many elements are eroded in this region within the next few time increments.

Damage softening reduces this effect, and another aspect is that ductile fracture is

usually preceded by strain localization. Aside from being numerically robust in explicit 

analyses, one of the main strengths of the element erosion technique is that the 

prediction of crack propagation is straight forward. The fracture criterion is evaluated in 

each integration point of the element, and the element is deleted when the criterion is 

fulfilled in one or more of the integration points (typically one for solids and several for 

shells). In this perspective the crack propagation can be viewed upon as a sequence of 

fracture initiations in the eroded elements. 

In this study the fracture characteristics in terms of the stress triaxiality, the Lode 

parameter and the equivalent strain at fracture of the 2 mm thick Docol 600DL steel 

sheet is determined by quasi-static mechanical experiments with optical field 

measurements and numerical simulations. The crack surface of selected specimens has 

been studied in a scanning electron microscope and it was found that the fracture 

mechanism was nucleation, growth and coalescence of microvoids. Various uncoupled 

ductile fracture criteria have been calibrated to the material and assessed with respect to 

fracture initiation and damage evolution. The main criteria investigated were the 

modified Mohr-Coulomb criterion [23] found in literature and novel extensions of the 

Cockcroft-Latham and Rice-Tracey criteria. The modified Mohr-Coulomb and extended 

Cockcroft-Latham criteria were further implemented in a user-defined material model in 

LS-DYNA and used in explicit finite element simulations of ductile crack propagation 

of the dual-phase steel sheet. The sheet was discretized using tri-linear solid elements 

and the element erosion technique was used to model the crack propagation.
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2 Objectives and scope
The objectives of this work are to gain knowledge of instabilities, ductile fracture 

mechanisms, and modelling of ductile fracture and crack propagation in a high-strength 

steel sheet. The main objectives can be summarized as the following:

Investigate the potential of the digital image correlation technique for collecting 
information of the ductile fracture characteristics of sheet materials
Propose a ductile fracture criterion that explicitly accounts for the Lode 
dependence, and assess the criterion for fracture initiation
Evaluate the criterion as well as modelling techniques for crack propagation 
within the framework of the finite element method 

Some limitations are apparent in this study. The material was chosen due to its 

macroscopically isotropic behaviour, which should make the constitutive modelling 

reasonable to handle. For anisotropic ductile materials more considerations need to be 

taken. Further, the study is limited to quasi-static loading rates and behaviour at room 

temperature, so the effects of high strain rates and elevated temperatures are not 

considered. As for the crack propagation modelling, only preliminary studies on other 

techniques than the element erosion technique were preformed (these were the extended 

finite element method and the node-splitting method). Since the results obtained in the 

preliminary studies were not encouraging, it was chosen to focus on the element erosion 

technique. 
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3 Summary of work
The work in this PhD thesis is presented as four independent journal articles which are 

published or submitted for possible publication in international scientific journals. In the 

following the articles are referred to as Part I-IV, as they represent four different parts of 

the thesis. In Part I and II the experimental work is presented, while Part III addresses

various ductile fracture criteria calibrated to the experimental data from Parts I and II. In

Part IV, numerical models of the tests from Part I are used in assessing selected fracture 

criteria from Part III with respect to crack propagation. The titles of the journal articles

are presented in Table 1, followed by a short summary of each part.

Table 1 Journal articles included in the thesis.
Part Journal articles

I Gruben G, Fagerholt E, Hopperstad OS and Børvik T
Fracture characteristics of a cold-rolled dual-phase steel
European Journal of Mechanics – A/Solids, 2011(30), p.204-218

II Gruben G, Vysochinskiy D, Coudert T, Reyes A and Lademo O-G
Determination of ductile fracture parameters of a dual-phase steel by optical 
measurements                                                                                              
Submitted for possible journal publication, 2012

III Gruben G, Hopperstad OS and Børvik T                                                         
Evaluation of uncoupled ductile fracture criteria for the dual-phase steel 
Docol 600DL 
International Journal of Mechanical Sciences, 2012(62), p.133-146

IV Gruben G, Hopperstad OS and Børvik T                                                   
Simulation of ductile crack propagation in dual-phase steel
Submitted for possible journal publication, 2012
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Part I

In Part I, mechanical tests using five different test set-ups were carried out. The 

specimens (uniaxial tension, plane-strain tension, in-plane shear and 45 and 90 degree 

modified Arcan) were cut from 2 mm thick sheets of the dual-phase steel Docol 600DL. 

The force and displacement were measured by the hydraulic test machine, and optical 

field measurements of the tests were conducted using the Digital Image Correlation 

(DIC) technique. Finite element (FE) simulations of the tests were run to gain 

information of the stress and strain state during deformation. From the FE simulations, 

the stress triaxiality, the Lode parameter and the equivalent strain histories at the point 

of fracture initiation were collected and used to describe the fracture characteristics of 

the material. Additionally, a novel method for determination of the stress triaxiality, the 

Lode parameter and the equivalent strain from the optical measurements was presented 

and applied on the tests. The method gave average values of the stress triaxiality and 

Lode parameter as well as fracture strain values that were in good agreement with the 

results from the FE simulations. Only moderate variations in the ductility were found in 

these tests, see Fig. 3 below. In general it was found that fracture is most likely to 

initiate in the through-thickness centre of the specimens where the stress triaxiality and 

the equivalent strain is higher. In the shear test it was not possible to determine whether 

fracture initiated on the surface where the strains are larger or in the centre where the 

triaxiality is larger. 
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Part II

In this study Marciniak-Kuczynski and Nakajima formability tests conducted on 

material from the same batch as used in Part I were presented. The DIC based method 

for experimental determination of the stress triaxiality, the Lode parameter and the 

equivalent strain presented in Part I was utilized on the formability tests. The main 

finding was that the material displays a significant drop in ductility in plane-strain 

tension stress-state compared to shear, uniaxial and biaxial tension, cf. Fig. 3. High 

magnification fractographs of selected formability tests revealed that fracture occurred 

due to void growth and coalescence, and that this mechanism was mainly present in 

localized areas controlled by shear-band instability. A verification of the experimental 

method in collecting the fracture parameters was also carried out, utilizing the FE 

models from Part I.

Fig. 3 Results derived from optical measurements in Part I and Part II. (a) Gives 
fracture strain as function of stress triaxiality, (b) shows fracture strain as 
function of Lode parameter and (c) displays the position of the various 
experiments in the stress triaxiality – Lode parameter space together with the 
plane stress locus.
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Part III

In Part III, three uncoupled criteria for ductile fracture were applied on data from the 

tests presented in Part I. The criteria were the Modified Mohr-Coulomb (MMC) 

criterion found in the literature and novel extensions of the Rice-Tracey (ERT) criterion 

and the Cockcroft-Latham (ECL) criterion, as well as sub-versions of the latter two 

criteria. The stress and strain histories taken at the through-thickness centre in the FE 

models were used in assessing the criteria. Additionally, the data from the surface of the 

specimens in Part I and Part II collected by the DIC based method was applied in 

evaluating the ability of the fracture criteria to predict fracture initiation. The predicted 

fracture strain as function of stress-state for each criterion was evaluated. It was found 

that the three criteria possessed a similar topology in the triaxiality-Lode-fracture strain 

space, although some variation in the range of predicted fracture strain was apparent due 

to the different basis of the three criteria, see Fig. 4. The damage accumulation as 

function of equivalent strain for the three criteria was presented. In the case of the MMC 

and ECL criteria the damage is almost linear with the equivalent plastic strain, while it 

is exponential with the equivalent plastic strain for the ERT criterion. The shape of the 

exponential damage evolution is similar to the evolution of void area fraction in a

comparable steel material. For each criterion, the predicted and experimental equivalent 

strains at fracture initiation were compared on the two datasets. Due to its flexibility, the 

ECL criterion proved to give a good fit to both datasets, while a somewhat larger spread 

was observed using the ERT and in particular the MMC criteria. 

Fig. 4 Predicted fracture strain as function of stress triaxiality and Lode parameter for 
MMC, ECL and ERT criteria. The loci comprising generalized shear, 
generalized tension, generalized compression and plane stress are marked. Note 
that the range in fracture strain differs significantly in the different plots. 
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Part IV

Part IV focused on crack-path prediction in FE simulations with the modified Mohr-

Coulomb and the extended Cockcroft-Latham fracture criteria, as well as the sub-

versions of the ECL criterion; the Cockcroft-Latham criterion and the integral-based 

Tresca criterion. Additionally the effect of different shapes of the yield surface is 

assessed. The test specimens presented in Part I were discretized with solid elements 

and crack propagation was simulated by means of the element erosion technique in the 

explicit finite element code LS-DYNA version 971 [65]. The main conclusion is that 

the predicted force-displacement curves and crack paths were only to a small degree 

influenced by the fracture criterion and it is hard to select one fracture criterion that out-

performs the others, see Fig. 5. It was further found that only small changes in the 

predicted force-displacement curves and crack paths were obtained when changing from 

the von Mises to the Hershey yield criterion with a high exponent. Slant fracture as 

observed in some of the experimental tests was captured in the numerical simulations if 

material softening was accounted for and a sufficiently fine mesh was used. The 

prediction of slant fracture did, however, not have any significant effect on the global 

response as represented by the force-displacement curves.

Fig. 5 Force-displacement curves from the tests performed in Part I, and simulations 
with different fracture criteria and 2J plasticity from Part IV.
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4 Concluding remarks
The fracture properties of the 2 mm thick dual-phase steel-sheet Docol 600DL have 

been investigated by means of quasi-static mechanical experiments, numerical models 

and high-magnification fractography. First a series consisting of uniaxial tension, plane-

strain tension, in-plane shear and modified Arcan tests were carried out, and later a test 

series of Marciniak-Kuczynski and Nakajima formability tests were conducted. The test 

specimens were in a near plane-stress state during testing and covered a range from pure 

shear to biaxial tension (i.e. 2
30 ). The material displays macroscopically a 

ductile behaviour with large values of equivalent strain at fracture. A significant drop in 

ductility was observed in plane-strain tension compared to pure shear, uniaxial tension 

and biaxial tension. Microscopically the material displayed ductile dimples that indicate

that the mechanism governing fracture is nucleation, growth and coalescence of 

microvoids in the stress range investigated. It is further clear that fracture was preceded 

by shear-band instability. 

Three uncoupled ductile fracture criteria that accounts for stress triaxiality and 

Lode dependence have been calibrated to the Docol 600DL material. These where the 

modified Mohr-Coulomb (MMC) criterion found in literature, and novel extensions of 

the Rice-Tracey (ERT) and the Cockcroft-Latham (ECL) criteria. The predicted fracture 

strain as function of stress triaxiality and Lode parameter had a similar topology in the 

three criteria. However the range in fracture strain predicted by the MMC criterion was 

larger than in ERT and ECL criteria. The MMC and ECL criteria displayed a near linear 

evolution of damage as function of equivalent stain, while the ERT criterion displayed 

an exponential damage evolution that may have a better shape compared to the damage

evolution in the material. The ECL criterion predicted well the equivalent strain at 

fracture on two different datasets from respectively the through-thickness centre of the 

test specimens of the first test series and from the surface of the test specimens from 

both test series. On the other hand the ERT criterion and in particular the MMC 

criterion displayed a larger spread in the prediction of the fracture strain on the two 

datasets.

The MMC and ECL criterion were implemented as a user-defined material 

model in the non-linear finite element software LS-DYNA [65] and utilized in 
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numerical simulations of the specimens from the first test series. Despite these two 

criteria gave a significantly different response in the fracture initiation investigation, the 

crack-paths predicted by these criteria as well as the resulting force-displacement curves 

were quite similar. The effect of changing from the von Mises to the Hershey yield 

criterion with a high exponent was investigated and it was found that this gave only 

small changes in the predicted force-displacement curves and crack paths. Slant fracture 

as observed in the experimental uniaxial tension and plane-strain tension tests was 

captured in the numerical simulations if material softening was accounted for and for a

sufficiently fine mesh. The prediction of slant fracture did, however, not have any 

significant effect on the global response as represented by the force-displacement 

curves. 
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5 Suggestions for further work
Based on the work in this thesis, the following suggestions may give interesting 

information about high-strength steel-sheet materials or aspects concerning numerical 

modelling of such materials.

Experimental:

A closer study on the material by use of SEM analyses with emphasis on the 

void nucleation and growth in the material during deformation could be carried 

out. Here the mechanisms that control void nucleation could be quantified. In 

other words quantify the percentage of voids that initiate due to debonding 

between the ferrite/martensite interface compared to the amount of voids that 

initiate at inclusions or due to cracking of martensite particles. Further, an 

investigation could be carried out on how the voids that initiate by the different 

mechanisms expand during plastic deformation, and a quantification of the void 

volume fraction could be carried out. The methods proposed by Avramovic-

Cingara et al. [10] could be applied on the uniaxial tensile specimens carried out 

in Part I. 

New experiments in the negative regime of stress triaxiality e.g. plane-strain

compression from rolling of plates, as well as tests with non-radial loading e.g. 

plane-strain compression followed by uniaxial tension could be conducted. By 

applying SEM analysis on such experiments, information about the different 

void initiation mechanisms under negative triaxiality and how they affect the 

ductility under both negative and positive stress triaxiality could be achieved.

Experiments could be carried out to investigate the effect of higher strain rates 

on the ductility for the material, and compare this with the fracture criteria 

presented in Part III. 
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Numerical:

Finite element models with eight-node solid elements could be made of the 

Marciniak-Kuczynski and Nakajima formability tests in order to investigate the 

stress and strain state in the through thickness centre of the specimens during 

deformation.

The fracture criteria, yield functions and damage softening applied in Part IV 

could be tested on the numerical models of the formability tests.

The prediction of fracture initiation and propagation of the coupled, shear-

modified extended Gurson model [19] could be tested. 

FE models of the modified Arcan tests could be run with very dense meshes and 

damage coupling in order to see whether this would give a more accurate 

description of the drop in force level as well as the in-plane crack-path and the

through-thickness slant fracture.
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a b s t r a c t

In this study, the fracture characteristics of a cold-rolled, low-strength, high-hardening steel sheet (Docol
600DL) under quasi-static loading conditions are established using five different test set-ups. In all the
tests, the sheet material is initially in plane-stress states. Optical field measurements with digital image
correlation were used to determine the strain fields to fracture, to calibrate the material model for the
sheet material and to validate the finite element models of the tests. Based on the field measurements,
a novel method for experimental determination of the stress triaxiality and the Lode parameter is
presented for isotropic materials and plane-stress states. These parameters were also obtained from
finite element simulations. Comparisons show that the two methods give approximately the same
average values of the stress triaxiality and the Lode parameter up to fracture. The sheet material displays
only moderate variation in ductility as a function of the stress triaxiality and the Lode parameter within
the investigated range of these parameters. The most critical through-thickness position in the speci-
mens was found to be in the centre where the strains and the stress triaxiality are highest.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

The equivalent strain at fracture, 3f , is a convenient measure of
a metal’s ductility. Knowing the history of the equivalent strain, 3,
(neglecting the elastic component) and how its fracture value, 3f , is
affected by the stress state, makes it possible to predict fracture in
a specific material. Bridgman (1952) found through his experi-
ments that the ductility is strongly increasing with decreasing
hydrostatic stress, sh. This phenomenon was later explained by
McClintock (1968) and Rice and Tracey (1969) to be due to the
restraining of the void growth inside the grains of the metal. In the
modelling of void nucleation, growth and coalescence, the stress
triaxiality, s*, is commonly used as a parameter representing the
hydrostatic stress state (McClintock, 1968; Rice and Tracey, 1969;
Hancock and Mackenzie, 1976). More recent studies on an
aluminium alloy conducted by Bao and Wierzbicki (2004a,b) have
indicated that the equivalent strain at fracture has a local maximum
in the lower region of stress triaxiality (z0.4). A similar observation
was reported by Barsoum and Faleskog (2007) who conducted
plane-strain experiments on mid-strength and high-strength
steels. However, in that study the local maximum was observed at
a higher triaxiality (z0.9). Based on the observations from Bao and

Wierzbicki (2004a,b) and other experiments, Wierzbicki et al.
(2005), Bai and Wierzbicki (2008) and Bai et al. (2009) argued
that the fracture strain is also depending on the deviatoric stress
state of the material. This conclusion was supported by Gao and
Kim (2006) and Kim et al. (2007) who studied the effect of the
stress state on 3f , based on numerical modelling of microvoids in
a representative material volume. The deviatoric stress state can
conveniently be represented by the Lode parameter, m (Lode, 1926).

Bridgman(1952)used analytical expressionsbasedoncontinuum
mechanics in finding the stress and strain values in the neck of the
material test specimens. He experimentally proved that the
assumption of constant strain over the neck in an axisymmetric
specimen was proper, and found an expression for the stress distri-
bution over the neck, based on the specimen geometry, boundary
conditions, the equations of equilibrium and the von Mises yield
function. This type of analysismade it possible to calculate stress and
strain parameters with reasonable accuracy for a large range of
material test specimens. The global stress and strain field values in
the specimen are however not captured by this type of analysis.With
the development of computers and computational mechanics, it
becamepossible to calculate thefield values aswell asmore accurate
values in theneck of the specimens.Wilkins et al. (1980) described in
detail how a numerical model can be adapted to the experiment and
give information about the stress and strain history. The use of
numerical models has been themainmethod in collecting stress and
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strain values since their introduction (Wilkins et al., 1980; Hancock
and Brown, 1983; Johnson and Cook, 1985; Børvik et al. 2003; Bao
and Wierzbicki, 2004b; El-Magd and Abouridouane, 2006). Mohr
and Oswald (2008) presented a new experimental technique for
calculating the strain and stress fields during loading in butterfly-
shaped plane-stress specimens under various stress states. Thefields
were found using a combination of optical measurements, the
measured force and the geometric relations of the test specimen.
Mohr and Ebnoether (2009) used this methodology in deriving the
equivalent strain and the stress triaxiality history for a martensitic
boron steel.

In this paper, the fracture characteristics of a low-strength, high-
hardening, cold-rolled steel of type Docol 600DL are determined,
using mechanical tests, full-field measurements and finite element
analysis. The experiments are performed on specimens cut from
a 2 mm thick sheet. Five different specimen geometries are used to
vary the stress state. The equivalent strain at fracture, 3f , is obtained
as a function of the stress state as represented by the stress triaxi-
ality, s*, and the Lodeparameter,m. A novelmethod for experimental
determination of s* and m is presented for isotropic materials and
plane-stress states. Themethod is based on accuratemeasurements
of the displacement field using Digital Image Correlation (DIC) and
assumes a Levy-Mises material, i.e. von Mises yield function, asso-
ciated flow rule and neglectable elastic strains, see e.g. Hill (1950).

The paper is organized as follows. Section 2 describes the
material and the various experimental set-ups. In Section 3, the
procedures for mechanical testing with DIC are presented, along
with the method used to calculate the strain fields from the
displacement fields derived with the DIC method. The experi-
mental results in form of force-displacement curves and strain
values from the different tests are presented in Section 4. A method
for describing the stress state in terms of s* and m from the strain
values is given in Section 5. In Section 6, a description of the Finite
Element (FE) models of the variousmaterial tests is given, while the
material’s fracture characteristics derived from the field measure-
ments and the FE analyses are presented in Section 7.

2. Experimental tests and set-ups

2.1. Material

Thematerial is a low-strength, high-hardening, cold-rolled steel
of type Docol 600DL supplied by Swedish Steel Ltd. (SSAB). It was
delivered as a 2 mm sheet. The steel is subjected to a heat treatment
which produces a two-phase structure of ferrite and martensite,
where the ferrite gives the formability features and the strength is
dependent on the martensite proportion. Table 1 gives the nominal
chemical composition of the material (SSAB, 2009). The nominal
yield strength is reported from the manufacturer to be in the range
from 280 MPa to 360 MPa, while the nominal tensile strength is
reported to be between 600 MPa and 700 MPa.

2.2. Mechanical testing

Experiments were carried out using 5 different test set-ups. All
the experiments were conducted at room temperature with strain
rates of about 10�3 s�1. The specimens were cut from the 2 mm
thick sheet with the longitudinal axis along the rolling direction. An

exception from this is the tension tests, which in addition had
specimens cut with longitudinal axis 45� and 90� to the rolling
direction. Two successful tests from each set-up are presented,
again with the tension tests as an exception with three tests pre-
sented in each direction.

2.2.1. Uniaxial tension tests
The uniaxial tension tests were carried out using 200 mm long

tensile specimens with a gauge length of 70 mm, see Fig. 1(a). The
tensile specimens were numbered UT-XX-Y where XX marks the
angle (0�,45�,90�) between the rolling direction of the plate and
the longitudinal axis of the specimen, and Y is the specimen number
(1,2,3) for each angle. The cross-head velocity of the actuator was
2 mm/min, which corresponds to an average strain rate of approxi-
mately 0.5�10�3 s�1 before necking. The force, F, and the displace-
ment, u, weremeasured by thehydraulic testmachine at 10 Hz for all
the tests, and the displacement field was measured using DIC for all
the tests except for UT-00-1 and UT-45-1. In addition, an extensom-
eter with gauge length of 40 mmwas used tomeasure displacement
for tests UT-00-1, UT-45-1 and UT-90-1.

The initial cross-section areawas measured at three locations, at
the centre of the gauge length and 30 mm from the centre in both
longitudinal directions. It was found that the average initial cross-
section area varied from 24.6 mm2 to 25.2 mm2. From the tension
tests the engineering stress was calculated as ~s ¼ F=A0, where F is
the measured force and A0 is the initial cross-section area. DIC
measurements were used to calculate the engineering strain,
~e ¼ ðl� l0Þ=l0, where l and l0 are the current and initial gauge
lengths (in pixels), respectively. The curves were plotted with ~e as
the abscissa and ~s as the ordinate and corrected for the abscissa
offset. Precautions were taken so that the engineering stress and
the engineering strain are coherent in time. The corrected values, e
and s, were used to calculate the Cauchy stress s¼ s(1þ e), and the
logarithmic strain, 3¼ ln(1þ e). The logarithmic plastic strain was
calculated from 3p ¼ 3� s=E where E ¼ 178 GPa is the calculated
modulus of elasticity from the elastic part of the se3 curve. Note
that the calculated value of the modulus of elasticity is not neces-
sarily representing the real value, as more detailed experiments are
needed to establish this property.

The Cauchy stress tensor in the gauge area before necking is
theoretically expressed as s ¼ sXXeX5eX , where eX is a unit vector
in the longitudinal direction of the specimen, see Fig. 1. This gives
a theoretical initial stress triaxiality s0* ¼ 1/3 and an initial Lode
parameter m0¼�1, see Equations (21) and (23).

2.2.2. Plane-strain tension tests
The plane-strain tension test specimens have a gauge length of

15 mm, which is smaller than the gauge width of 26 mm, see Fig. 1
(b). This geometry exerts a nearly plane-strain condition due to the
confinement of the deformation over the relatively short length.
This precludes the contraction over the width to a greater extent
than what is the case for an ordinary uniaxial tension test.

Two tests were conducted with a velocity of 0.56 mm/min.
Assuming that the deformation ismainly distributed over a length of
15 mm, this gives an average strain rate of approximately 0.6�
10�3 s�1 before necking. During the experiments the specimenswere
clamped 24.5 mm from the longitudinal edges. The initial cross-
section area at the centre of the specimens was measured respec-
tively to 50.73 mm2 and 50.95 mm2. The force and the displacement
were measured by the servo-hydraulic testing machine at 10 Hz.

Assuming plane strain in the in-plane transverse to the longitu-
dinal direction at the centre of the specimen, the theoretical Cauchy
stress tensor is expressed as s ¼ sXXeX5eX þ 1=2sXXeY5eY ,
where eY is the in-plane normal to eX following the right hand rule,
see Fig.1. Here, the vonMises yield criterion and the associated flow

Table 1
Chemical composition of Docol 600DL (in wt%).

C Si Mn P S Altot %

0.10 0.40 1.50 0.010 0.002 0.040
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rule have been assumed. The initial equivalent and hydrostatic
stresses in the centre of the specimen are then expressed as
s ¼

ffiffiffi
3

p
=2sXX and sh¼ 1/2sXX, respectively, giving an initial triaxi-

ality s*0 ¼
ffiffiffi
3

p
=3z0:58 and an initial Lode parameter m0¼ 0.

2.2.3. In-plane shear tests
The geometry of the shear specimens used in this study was

developed by Eriksson et al. (2006) based on a design proposed by
Bao and Wierzbicki (2004b) for fracture tests in the regime of low
stress triaxiality. The specimen is designed to obtain predominant
shear deformation under plane-stress conditions and to avoid
plastic instability. Two successful shear tests were performed with

a cross-head velocity of 0.42 mm/min, which gives a strain rate of
about 1.4�10�3 s�1. Fig. 1(c) shows the geometry and dimensions
of the specimen. The two specimens were measured with a slide
calliper in the gauge area, and themeasured thickness was 1.96 mm
and the measured length was 5.15 mm for both specimens. The
force was measured by the servo-hydraulic test machine and the
displacement by an extensometer with gauge length of 40 mm.
These measurements were recorded at 10 Hz.

If a pure shear stress state is assumed, the stress tensor in the
gauge area is expressed as s¼sXYeX5 eYþsYX eY5eX. The initial
stress triaxiality and Lode parameter are consequently equal to
zero, i.e. s0* ¼ m0¼ 0.

Fig. 2. (a) Modified Arcan test set-up with b¼ 45� , and (b) sketch of brackets with specimen defining the loading direction b.

Fig. 1. Geometry of the test specimens (in mm): (a) uniaxial tension specimen, (b) plane-strain tension specimen, (c) in-plane shear specimen, and (d) modified Arcan specimen.

G. Gruben et al. / European Journal of Mechanics A/Solids 30 (2011) 204e218206



2.2.4. Modified Arcan tests
The experimental set-up for the modified Arcan test is illustrated

in Fig. 2. The set-up is a modification based on thework by Voloshin
and Arcan (1980), which in turn is based on the original specimen
presented by Arcan et al. (1978). A test series was carried out with
loading direction, b, set to 45� and 90�, see Fig. 2. The test set-ups
were labelledArcan-b to specify the loadingdirection. Twosuccessful
tests were conducted for each loading direction. The notched speci-
mens, shown in Fig. 1(d), were mounted in the four loading brackets
using 12M6-bolts. The thickness wasmeasured at three locations in
the gauge area and practically no deviation was found within each
specimen. The thickness was in the range 1.95e1.97 mm for the
different specimens. Thewidth of the gauge areawas alsomeasured,
and found to be 32.1 mm for all the specimens. The tests were con-
ducted with a cross-head velocity of 1 mm/min. Force and
displacement were recorded by the hydraulic test machine at 10 Hz.

Due to the complex geometry of the notched Arcan specimen,
the initial stress state and strain rate of the material have to be
determined through FE analysis.

3. DIC procedures and calculation of strain field values

Prior to the tests, one side of the specimen was spray painted
with a combination of black and white paint, obtaining a fine-
grained and high-contrast speckle pattern that was used to
enhance the optical measurements. During testing, 8-bit grey-scale
images of the speckle-patterned specimen surfacewere recorded at
a framing rate of 2 Hz using a Prosilica GC2450 digital camera
equipped with a 28e105 mm Nikon lens. The spatial resolution of
the recorded images was 2448� 2050 pixels. The recorded images
were post-processed using an in-house two dimensional DIC soft-
ware (Fagerholt et al., submitted for publication), obtaining infor-
mation on displacement and strain fields on the surface of the
specimens. Table 2 gives the element size used in the DIC mesh of
the different tests. The camera was pre-arranged with its optical
axis normal to the specimen surface. A linear relationship between
coordinates on the specimen surface and the image coordinates is
assumed in the DIC analysis.

The DIC algorithm is essentially based on the conservation of
optical flow. The displacement fields are calculated by carrying out
a global optimization of the nodal displacements in a mesh of
quadrilateral elements. This “finite element”DICmethod is based on
theprocedureproposedbyBesnard et al. (2006). The strainfields are
then calculated from the nodal displacements in a similar manner
as in total Lagrangian, non-linear FE methods. Let u¼ u(X,t) and
v¼ v(X,t) be the displacement fields in the eX and eY directions, and
X¼ XeXþ YeY thematerial coordinates and t the time. Assuming the
continuumhypothesis, the displacement inside a “DIC element” can
be expressed using a standard FE formulation as

u ¼ N0dX ; v ¼ N0dY (1)

where dX¼ dX(t) and dY¼ dY(t) are column vectors containing the
measured nodal displacements in the eX and eY directions of the
DIC element, and N0¼N0(x,h) is a row vector containing the shape
functions for a standard isoparametric Q4 element, where (x,h) are
the coordinates of the parent element, see e.g. Cook et al. (2002).
The in-plane displacement gradient is then calculated as

vu
vX

¼

2
66664
vN0

vX
dX

vN0

vY
d X

vN0

vX
dY

vN0

vY
dY

3
77775 (2)

where u¼ ueXþ veY. The derivatives in Equation (2) are conve-
niently calculated from the derivatives with respect to the natural
coordinates and the inverse of the Jacobi matrix as8>>>><
>>>>:
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The material coordinates inside the element are found from iso-
parametric mapping, X¼N0cX and Y¼N0cY, where cX and cY are the
material nodal coordinates in the eX and eY directions. The
displacement gradient is evaluated at the centre of the element
(x¼ h¼ 0), which corresponds to the superconvergent integration
point in linear analysis for rectangular elements. The deformation
gradient tensor, F¼ F(X,t), is now calculated from

F ¼ vu
vX
þ I (4)

where I is the second order identity tensor. The right Green
deformation tensor, C¼ C(X,t), is then obtained using

C ¼ FT$F (5)

The principal in-plane stretches, li¼ li(X,t), i¼ 1,2, are found from
solving the eigenvalue problem for the right Green deformation
tensor�
l2i I� C

�
$ni ¼ 0 (6)

where ni, i¼ 1,2, are the principal in-plane directions of C. The
logarithmic in-plane principal strains, 3i¼ 3i(X,t), i¼ 1,2, are then
calculated as

3i ¼ lnðliÞ (7)

Assuming plastic incompressibility and negligible elastic strains the
out-of-plane principal strain, 3Z, is estimated as

3Z ¼ �ð31 þ 32Þ (8)

The effective logarithmic strain, 3e¼ 3e(X,t), is here defined by

3e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
�
321 þ 322 þ 32Z

�r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3
�
321 þ 3132 þ 322

�r
(9)

where the relation from Equation (8) is used in the last part. The in-
plane Green strain tensor is calculated from

E ¼ 1
2

�
FT$F� I

�
(10)

To gain information of the stress state of the material from the DIC
recordings, objective strain increments were needed. The incre-
ment in Green strain is expressed as

DE ¼ 1
2
ðFTnþ1$Fnþ1 � FTn$FnÞ (11)

where Fnþ1 and Fn are the deformation gradients at the increments
nþ 1 and n respectively. The rate-of-deformation tensor, D, is
achieved by the push-forward of DE as

Table 2
Characteristic element size in DIC analyses (in mm).

Tension Plane strain Shear Arcan-45 Arcan-90

0.90 0.55 0.22 0.51 0.56

G. Gruben et al. / European Journal of Mechanics A/Solids 30 (2011) 204e218 207



DtD ¼ F�Tnþ1$DE$F
�1
nþ1 (12)

Since D vanishes in a rigid rotation, incremental objectivity is
ensured (Belytschko et al., 2000). The in-plane principal strain
increments, D3i, i¼ 1,2, are then calculated by solving the eigen-
value problem

ðD3iI� DtDÞ$ni ¼ 0 (13)

where ni; i ¼ 1;2 are the corresponding direction vectors. By
assuming plastic incompressibility, and neglecting elastic strains,
the through-thickness strain increment is estimated as

D3Z ¼ �ðD31 þ D32Þ (14)

The equivalent strain, 3, is calculated by summing up the equivalent
strain increments, D3 as

3 ¼
X

D3 ¼
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
�
D321 þ D322 þ D32Z

�r
(15)

Under proportional loading, the equivalent strain, Equation (15),
and the effective logarithmic strain, Equation (9), give the same
values.

4. Experimental results

4.1. Uniaxial tension tests

Fig. 3 shows the forceedisplacement (Feu) curves measured by
the servo-hydraulic test machine from the uniaxial tension tests. As
seen, the material displays moderate anisotropy and the curves
exhibit low spread within each direction. The location of necking in
the gauge area was arbitrary from specimen to specimen, but all
specimens fractured in a mode where the crack initiated in the
centre of the neck and propagated in the transverse direction. Fig. 4
(a) shows one of the fractured specimens. Using the relations from
Section 2, the se3p curve was calculated from the UT-00-3 test, see
Fig. 5.

Fig. 3. Forceedisplacement (Feu) curves from the tension tests and the FE simulation.
The circle marks the point of initial fracture assumed in the simulation.

Fig. 4. Specimens after fracture: (a) uniaxial tension specimen, (b) plane-strain tension specimen, and (c) in-plane shear specimen.
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4.2. Plane-strain tension and in-plane shear tests

The Feu curves for the plane-strain tension tests and the shear
tests are given in Fig. 6. The displacement is measured by the servo-
hydraulic test machine for the plane-strain tension tests and by an
extensometer for the shear tests. The small jump in one of the Feu
curves for plane-strain tension is due to a slip in the clamping
during the experiment.

For the plane-strain tension tests the fracture initiated in the
centre of the specimens, and propagated slowly towards the edges
in the transverse direction. Fig. 4(b) shows that the deformation is
larger at the centre of the fractured specimen. For the shear tests,

fracture occurred almost simultaneously over the whole fracture
area. The initiation point was not captured by the DIC recording,
and could not be pinpointed during the test. A fractured specimen
is shown in Fig. 4(c).

4.3. Modified Arcan tests

Fig. 6 shows the Feu curves for themodifiedArcan testsmeasured
by the hydraulic test machine. The Arcan-90 tests show some devi-
ation in the displacement values. This is due to a small slip in the
beginningof oneof the tests. Fracture initiated close to thenotch root
in theArcan-45 tests andin thenotchroot in theArcan-90 tests. In the
Arcan-45 tests the fracture propagated approximately 35� to the
longitudinaldirectionof thespecimen in thebeginningandgradually
changed intoanalmostperpendicularmode, see Fig. 7. The fracture in
theArcan-90 specimenspropagated in the transversedirectionof the
specimen. The relatively slow propagation of the crack in all the
modified Arcan tests is reflected in the gradual decrease in the force
level in the Feu curves after the peak force value.

4.4. Strain fields

The strain fields were derived from one selected specimen from
each test set-up. Figs. 8 and 9 show the effective logarithmic strain
derived from the last image before fracture initiation for the
selected specimens. The figures are plotted in the initial configu-
ration. An arrow marks the point where the in-plane principal
strains are collected from each test. This point corresponds to the
point of fracture initiation for all the tests, except from the shear
test. In the shear test, the point of fracture initiation was not

Fig. 5. Stressestrain (se3p) curve from UT-00-3 and fit to the extended Voce hard-
ening rule.

Fig. 6. Forceedisplacement curves from the plane-strain tension, shear and modified Arcan tests and corresponding FE simulations. The circle marks the point of initial fracture
assumed in the FE simulation.
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accurately captured, and the point in the centre of the shear zone
was chosen to represent the strain behaviour.

Fig. 10 presents the first in-plane principal strain versus the
second in-plane principal strain from the experiments as obtained
from the fieldmeasurements. As can be seen, all the tests except the
plane-strain tension test, display a first in-plane principal strain
approximately equal to 0.8 at fracture. The first in-plane principal
strain at fracture is less and about 0.6 in the plane-strain tension
test. The shear test displays an almost pure shear mode, while the
plane-strain tension test gradually tends towards a plane-strain

condition. The Arcan-90 and the tension test exhibit very similar
behaviour, while the Arcan-45 test shows a somewhat larger
magnitude of the second in-plane principal strain.

5. Stress-state parameters

On the surface of the specimens a plane-stress condition is
fulfilled, and the principal stresses and principal strain increments
are expressed as

Fig. 7. Fractured specimens from the modified Arcan tests: (a) b¼ 45� , and (b) b¼ 90� .

Fig. 8. Effective logarithmic strain fields for uniaxial tension, plane-strain tension and shear tests from DIC recordings and FE analyses. The elements used in collecting 2D principal
strain values are marked with arrows.
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s1 > 0; s2 ¼ as1; sZ ¼ 0 (16)

D31 > 0; D32 ¼ bD31; D3Z ¼ �ðbþ 1ÞD31 (17)

Here (s1,s2) are the first and second in-plane principal stresses,
while sZ is the principal stress in the thickness direction of the sheet.
In our experiments, the first principal stress will always be positive,
so this assumptionhasbeenadopted in thederivations.Analogously,
(D31,D32) are the first and second in-plane principal strain incre-
ments asdefinedbyEquation (13),whereasD3Z is theprincipal strain
increment in the thickness direction as definedbyEquation (14). It is
presupposed that thematerial is isotropic and that the elastic strains
are negligible. The coefficients a and b are the stress ratio and the
incremental strain ratio, respectively, which take values within the
following ranges:�N< a� 1 and�2< b� 1. Under the assumption
of a Levy-Mises material, the relation between a and b can be
expressed as

a ¼ 2bþ 1
bþ 2

; b ¼ 2a� 1
2� a

(18)

The hydrostatic stress can be expressed in terms of b by using
Equations (16) and (18)

sh ¼
1
3
ðsI þ sII þ sIIIÞ ¼ 1

3
ðs1 þ s2Þ ¼ bþ 1

bþ 2
$s1 (19)

Fig. 9. Effective logarithmic strain fields for modified Arcan tests from DIC recordings and FE analyses. The elements used in collecting 2D principal strain values are marked with
arrows.

Fig. 10. In-plane principal strain paths to fracture based on the unsmoothed
displacements from DIC recordings.
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where (sI,sII,sIII) are the principal stresses ordered so that
sI� sII� sIII. For the plane-stress condition sI is always equal to s1,
whereas sII equals s2 for a� 0 (or b��1/2) and sZ otherwise. The
von Mises equivalent stress is in the same manner expressed as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

h
ðsI � sIIÞ2þðsII � sIIIÞ2þðsIII � sIÞ2

ir

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 � s1s2

q
¼

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ bþ 1

q
bþ 2

$s1 (20)

The stress triaxiality is defined as the ratio of the hydrostatic stress
and the von Mises equivalent stress:

s* ¼ sh
s

(21)

By using Equations (19) and (20) the stress triaxiality can be
expressed in terms of b as

s* ¼
ffiffiffi
3

p

3
bþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ bþ 1
q (22)

The Lode parameter (Lode, 1926), which characterizes the devia-
toric part of the stress state, is defined as

m ¼ 2sII � sI � sIII
sI � sIII

(23)

Under the plane-stress assumption, the Lode parameter is conve-
niently expressed in terms of b as

m ¼

8>>>><
>>>>:

3
bþ 1
b� 1

for � 2 < b � �1
2

3b
bþ 2

for � 1
2
< b � 1

(24)

In calculating the average values at fracture of the stress triaxiality
and the Lode parameter, an integral expression over the equivalent
strain is used

s*avg ¼
1
3f

Z3f
0

s*ð3Þd3 ; mavg ¼
1
3f

Z3f
0

mð3Þd3 (25)

where we recall that 3f is the equivalent strain at fracture.
As can be seen from the previous equations, s* and m are derived

values from the measured displacements. In order to achieve
sensible results for s* and m filtering was necessary. Several tech-
niques were tested (moving average, Fourier analysis, polynomial
curve fitting, spline curve fitting), and they all gave approximately
the same results in terms of savg* and mavg. However, to avoid
oscillations in the smoothed curves and their derivatives, low-order
polynomials were found most suitable. The measured nodal
displacements, dX¼ dX(t) and dY¼ dY(t), from the quadrilateral DIC
element surrounding the point of fracture initiation in each test
(see Figs. 8 and 9) were fitted by C2 continuous cubic splines by the
least squares method. Constraints were imposed on the splines so
that the initial and final displacements in the smoothed curves
were the same as in the original curves. The constraint in the final
displacement ensures that the derived effective logarithmic strain
at fracture, 3ef , from the smoothed curve is the same as it would be
from the original curve, as this value depends on the final
displacement only. The number of splines had to be evaluated for
each test. The least possible number that still captured the trend in
the displacement and effective logarithmic strain was sought. This

resulted in 17 splines for the uniaxial tension test, 5 splines for the
plane-strain and in-plane shear tests and 3 splines for the modified
Arcan tests. The high number of splines for the uniaxial tension test
stems from small displacements in the eY direction that turned out
to be important in order to capture the deformation properly. The
history of s* and m from the experiments, as defined by Equations
(22) and (24), was compared with the values from the surface of the
FE simulations as defined by Equations (21) and (23). In this regard
it was found convenient to use a spline fit also on the b value from
Equation (17). Two cubic, C2 continuous splines were fitted to the
be3 curves with a constraint on the final value. This did not
significantly alter the average values of savg* and mavg, but gave
smoother trend curves especially for uniaxial tension. It should be
noted that also the equivalent strain, 3, as defined by Equation (15),
was derived from the smoothed displacement curves.

6. Numerical study

6.1. Material model

The nominal elastic properties were described by a Young’s
modulus of 210 GPa and a Poisson’s ratio of 0.33. The material did
not display much anisotropy, and the J2 flow theory was found
suitable to describe the plastic behaviour. A constitutive model was
fitted to the se3p curve using the least squares method. The
extended Voce rule with a multiplicative viscosity-hardening law
was found adequate and is expressed as

s ¼
 
s0 þ

X2
i¼1

Qið1� expð � Ci3ÞÞ
! 

1þ
_3
_30

!q

(26)

where s0 is an adjustable parameter representing the yield stress
and Qi and Ci (i¼ 1,2) are adjustable material parameters governing
in turn the primary and secondary hardening. The parameters q
and _30 are material constants defining the strain-rate sensitivity,
and _3 is the rate of the equivalent strain. In uniaxial tension the
logarithmic strain is equal to the equivalent strain, and the Cauchy
stress is equal to the equivalent stress. Thus, the derived se3p curve
from the uniaxial tension test before diffuse necking was used as
a basis for the plastic properties. In the calibration process of s0, Qi

and Ci, _3 was set to zero. The strain-rate sensitivity of the material
was not explicitly investigated in this study, but as shown in
Tarigopula et al. (2006) and Curtze (2009), appropriate values for q
and _30 in dual-phase steels are respectively 0.005 and 0.001. After
the necking process has started in the material, the strain rate
increases significantly and delays the evolution of the neck. The
strain-rate sensitivity term is thus included to capture this effect.

To capture the post necking material behaviour, an iterative
method similar to the one described by Bao and Wierzbicki (2004a)
was used. The primary hardening in Equation (26) saturates for
small strains, while the post necking stress is controlled by the
secondary hardening. Using a small value for C2 and a large value for
Q2 in Equation (26) yields an almost linearhardening for large strains.
In the calibration process, the extended Vocemodel fitted to the pre-
necking se3p curve was used in FE models of the tension and shear
tests, andFeucurves fromtheFEsimulationswerecomparedwith the
measured ones. Then the C2 value was adjusted to change the post
neckingbehaviour. The other parameters in the extendedVocemodel
were onceagainfittedusing the least squaresmethod. The Feu curves
obtained in simulations with the new set of parameters were then
compared to the measured ones, and this process was repeated until
a satisfactory resultwasachieved.All the adjustableparameters in the
extended Voce model are given in Table 3, and a comparison of the
Vocefit and thederivedse3pcurve fromexperiment isshowninFig.5.
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6.2. Finite element modelling

The implicit solverof thenon-linearfinite element code LS-DYNA
(LSTC, 2007) was used in the simulations. The use of implicit time
integration proved to be less time consuming than explicit time
integrationwith mass scaling. The finite element analyses were run
with 1000 increments which proved to be enough to capture the
necking instability properly. Deviations from the geometry given in
Fig. 1 were not taken into account in the FE models. The modified
JohnsoneCook model (Børvik et al., 2001), *MAT_107 in LS-DYNA,
was used in the simulations with a constitutive behaviour as
described. Forall the FEmodels 8-node, trilinear brickelementswith
selective reduced integration (LS-DYNA solid elform 2) were used.
The FEmodels had 9 elements in the thickness direction. To capture
the stress and strain state on the surface in the gauge area, a thin
layer (10�4 mm) of BelytschkoeTsay shell elements (LS-DYNA shell
elform 2) was mergedwith the surface nodes of the brick elements.
The shell elements had the same material properties as the brick
elements. Convergence tests were carried out on all the models to
check for mesh size sensitivity, and the simulated time was
approximately the sameas the timeobserved in the experiments, i.e.
tz 600 s.

The uniaxial tension test was modelled with deformable
elements in the specimen while the bolts connecting the specimen
to the hydraulic actuator were modelled using elements with rigid
body definition. In Fig.11(a) the specimenmesh is shown as shaded,
while the meshes of the bolts are shown inwhite. In the gauge area

25 elements were used over the width and 141 elements over the
length, giving an in-plane size of approximately 0.5� 0.5 mm2. A
prescribed displacement of 6 mmwas given to each of the bolts to
simulate the loading. A node-to-surface contact algorithm without
friction, using the bolts as master nodes, was used to describe the
contact interface. To prevent out-of-plane movement, one node of
the specimen part was constrained in the eZ-direction.

TheFEmodel of theplane-strain tension specimenused rigidbody
definitions in the areas equivalent to the clamped areas of the test
specimen. Fig.11(b) shows themesh of themodel. The elements with
rigid body definition are shown in white while the deformable
elements aredisplayedas shaded.The rigidbodyassumption isa good
approximation of theboundary conditions in the test, as the clamping
prevents deformation in the transverse direction as well as in the
longitudinal direction. The rigid body areas were given prescribed
displacements equal to the loading in the test rig. The in-plane
element size in the gauge area was approximately 0.5� 0.5 mm2.

In the shear tests, nearly all deformation appeared in the shear
zone. In the FE model of the specimen, deformable elements were
used in the area close to the shear zone. Fig. 11(c) shows the mesh
with rigid elements in white and deformable elements as shaded.
The rigid body parts were given a prescribed displacement to
simulate the loading. The in-plane element size in the gauge area
was approximately 0.1�0.1 mm2. The elements are smaller in the
model of the shear test specimen than the other models, since the
gauge area is smaller and thus the deformation is more localized.

The modified Arcan specimen was modelled with deformable
elements, while each of the loading brackets and the bolts con-
necting the specimen to the respective brackets were modelled
with rigid elements. The cross-heads were also modelled with rigid
body definition and the loading was applied to the cross-heads as
a prescribed displacement. This model ensures that boundary
conditions are given a correct description. Fig. 11(d) shows the FE
model of the Arcan-45 test, where the deformable elements are

Table 3
Values used in the Voce hardening model.

s0 [MPa] Q1 [MPa] C1 Q2 [MPa] C2

283.3 268.3 39.38 396.6 5

Fig. 11. Finite element meshes: (a) uniaxial tension test, (b) plane-strain tension test, (c) in-plane shear test and (d) Arcan-45 test.
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shaded, whereas the rigid elements are white. Contact was handled
in the same manner as in the model of the uniaxial tension test.
Also the models of the modified Arcan specimen were constrained
to prevent out-of-plane movement. The in-plane element size in
the gauge area was approximately 0.3� 0.4 mm2.

6.3. Collecting stress and strain values from the FE models

To investigate to which extent the equivalent strain, the stress
triaxiality and the Lode parameter vary over the thickness of the

specimens, surface shell and centre brick elements located at the
same in-plane coordinates were used in collecting the stress and
strain values. Fig. 12 shows the location of the two elements picked
in the Arcan-45 model. The in-plane positions of the elements
picked in the various models correspond to the positions where
fracture initiated in the tests, except in the uniaxial tensile test
where the effective logarithmic strain was slightly asymmetric in
the experiment. The element with the highest effective logarithmic
strain in the FE model was in this case selected. The selected
elements are shown in Figs. 8 and 9.

The principal stresses were collected from LS-DYNA and post-
processed in MATLAB to compute the stress triaxiality s* and the
Lode parameter m. The equivalent strain from the FE analysis, 3FEA,
which is the work conjugate with the von Mises equivalent stress,
was calculated from the plastic part of the rate-of-deformation
tensor in LS-DYNA during the simulation and collected directly
from the program.

6.4. Calculation of simulated time at fracture

To find the time at fracture, tf, in the numerical simulations,
different approaches have been reported in the literature. Wilkins
et al. (1980) compared a photograph taken just before fracture
initiation with the deformed numerical model, and the displace-
ment over an area in the vicinity of the fracture initiation point was
compared for finding tf. Bao (2003) compared the global forcee
displacement curves to find the global displacement at fracture,
and used this to determine tf. Both methods are displacement

Fig. 12. Surface shell and centre brick elements used for picking history values in the
Arcan-45 model.

Fig. 13. In-plane principal strain paths to fracture from DIC recordings and FE analyses. The strains from the DIC analyses are based on the smoothed displacements. The circle marks
the point of initial fracture assumed in the FE analysis.
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based, i.e. the simulated time at fracture is found from the
measured displacement at fracture, i.e. uf¼ uFEA(tf). In this study,
a local strain-based criterion is used. The displacements at the
nodes in the shell element corresponding to the location of fracture
initiation, see Figs. 8 and 9, were collected and used to calculate the
effective logarithmic strain, 3eFEA, by Equation (9). The simulation
time at fracture, tf, is taken as the time when 3e

FEA is equal to the
effective logarithmic strain at fracture, 3ef , from the DIC recording,
i.e. 3ef ¼ 3e

FEA(tf). Fig. 13 shows the in-plane principal strain curves
from the DIC and FE analyses calculated from Equation (7), where
the circles on the FE curves mark the values at tf. The deformation
over a larger region around the fracture initiation point is also
similar in the FE models and the test specimens. Figs. 8 and 9 show
the effective logarithmic strain field from the last image before
fracture initiation in the tests compared with the effective loga-
rithmic strain field in the FE models at tf.

7. Results and discussion

The results from the FE analyses in form of forceedisplacement
curves are shown in Figs. 3 and 6. The circle on the FE curves marks
the Feu values at the time of fracture initiation, tf. The predicted
force levels in the FE simulations of the plane-strain tension test
and themodified Arcan tests show some deviation compared to the
experimental results, see Fig. 6. This is at least partly attributed to
the shape of the yield function in the deviatoric plane. The influ-
ence of J3 through e.g. a higher exponent term in the yield function
as proposed by Hosford (1972) tends to reduce the force level in

these simulations. The global displacement at fracture in the
simulations is in general close to the global displacement at fracture
in the experiments. The exceptions are the simulations of the
modified Arcan tests in which the displacement at fracture is
somewhat lower than in the experiments.

The results from the DIC and FE analyses in form of 3es* and 3em

curves are shown in Fig. 14. Here Equations (15), (22) and (24) are
used to determine the DIC values, while Equations (21) and (23) are
used for calculating the stress state in the FE analyses. The equiv-
alent strain in the FEA is collected directly from LS-DYNA. The
fracture strain 3f from the five tests is given in Table 4 as a function
of the average values of the stress triaxiality, savg* , and the Lode
parameter, mavg. The table also compares the values of savg* and mavg
obtained with DIC and FE simulations. The stress state parameters
s* and m and the equivalent fracture strain, 3f , derived from the field
measurements can be compared directly with those obtained from
the surface shell elements in the FE analyses, as they are extracted
from the same locations on the surface of the specimens.

The stress state parameters s* and m as obtained by DIC and FEA,
show significant difference. Looking at the 3es* curves in Fig. 14,
the triaxiality at fracture, sf*, is higher in the DIC analyses than the
corresponding FE shell elements for the uniaxial tension and Arcan-
90 tests. This stems from the higher convex curvature in the 31e32
curves from the DIC analyses shown in Fig.13. For the shear test, the
value of sf* extracted from the DIC measurements is lower than the
corresponding value found from the FE analysis. This is coherent
with the concave shape at the end of the 31e32 shear curve from the
DIC analyses, see Fig. 13. For the plane-strain tension test the 31e32

Fig. 14. Equivalent strain as function of triaxiality, 3 ¼ 3ðs*Þ, or Lode parameter, 3 ¼ 3ðmÞ, from DIC recordings, surface shell elements and centre brick elements.
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and 3es* curves are similar in the DIC and FE analyses, while for the
Arcan-45 test some deviations are again exhibited.

The deviations in the Lode parameter derived from the DIC
measurements and the surface shell elements are larger than those
for the stress triaxiality. This is as expected as a small variation in
stress triaxiality results in a much larger variation in the Lode
parameter when the two parameters are related through the plane-
stress condition. This is illustrated by the slope of the plane-stress
locus shown in Fig. 15. It is also noted that the 3em curves from the
modified Arcan tests, as obtained from the DIC results in Fig. 14, are
not continuously differentiable at m¼�1. At this point, b¼�0.5 in
Equation (24) and the expression for the Lode parameter in terms of
b changes.

The average stress triaxiality, savg* , obtained with the DIC and FE
analyses (see Table 4) is not considerably affected by the deviations
found in the 3es* curves. In agreement with the preceding
discussion, the average Lode parameter, mavg, exhibits more signif-
icant discrepancies, in particular for the uniaxial tension test and
the Arcan-90 test.

An interesting observation is that while the FE models of the
tension and shear tests exhibit a very close fit to the experimental
data in form of the global Feu curves, they display some deviation
in terms of the local 31e32 and 3es* curves compared to data from
the DIC analyses. For the FE simulation of the plane-strain tension
test the opposite trend is seen. Looking at the 31e32 curves for the
tension and shear tests in Fig. 13, the deviations in the FE values
arise in the last stages of the straining at a time after necking has
occurred in the tests.

In order to investigate how the equivalent strain 3 and the
stress-state parameters s* and m vary through the thickness, values
from the shell elements at the surface and the brick elements in the
centre of sheet material are compared, see Fig. 14. In general the
equivalent strain at fracture, 3f , is 5e10% higher in the brick
elements at the centre than in the corresponding shell elements at
the surface. The FE model of the shear test is an exception, since
here the shell element exhibits approximately 5% higher equivalent
strain at fracture than the corresponding brick element. The devi-
ations in m between the shell and brick elements are smaller than
the deviations in s*, as shown in Fig. 14. This is possible as the
centre brick elements are not subject to the plane-stress condition.
Fig. 15 shows how the stress paths in the brick elements deviate
from the theoretical plane-stress locus in the s*em space, while the
stress paths from the shell elements lie exactly on the locus. The
average values of s* and m do not deviate much in the brick and
shell elements in most analyses, as shown in Table 4. The largest
differences in savg* and mavg between the shell and brick values are
apparent in the simulation of the shear test, where the deviations
are 0.13 and 0.17, respectively. The analytically derived initial values
of the stress triaxiality, s0*, and the Lode parameter, m0, are
summarized in Table 4. These values are based on a plane-stress
assumption, and can adequately be compared with the average
values savg* and mavg from the DIC analyses and the shell elements on
the surface. The analytical values for the shear test are in good
agreement with the values from the DIC and FE analyses, while the
analytical values for the tension test are somewhat low. The
analytical values for the plane-strain tension test deviate signifi-
cantly from the values obtained in the DIC and FE analyses. From
the FE model it was seen that the stress state at the centre of the
specimen is s¼ sXXeX5 eXþ AsXXeY5eY with Az 0.4 rather than
the assumed A¼ 0.5. Using this correction, the resulting analytical
values are s0* z 0.54 and m0z�0.20 which are in very good
agreement with the values found in the DIC and FE analyses.

Mohr and Ebnoether (2009) studied the fracture behaviour of
a martensitic boron steel under plane-stress conditions. They found
a distinct peak in 3f ¼ 3f ðs*Þ for s*z 0.4, and a rather large
dispersion in 3f in the range of stress triaxiality studied
(0� s*� 0.67). In a study conducted by Bai et al. (2009), a 1045
steel displayed the same kind of peak in the ductility for s*z 0.4. In
the same study, it was found that DH36 steel did not show this
behaviour, but rather a decreasing ductility with increasing stress
triaxiality. The former result in the study of Bai et al. (2009) is in
accordance with the results from Hancock and Brown (1983), who
investigated the fracture properties of two grades of a plain carbon
steel. The fracture strain as a function of average stress triaxiality,
3f ¼ 3f ðs*avgÞ, is shown in Fig. 16 for the Docol 600DL sheet material
used in this study. The average stress triaxiality is based on the FE
simulations and both the fracture strains at the surface and in the
centre of the sheet are presented. It is evident that the material

Table 4
Effective logarithmic strain at fracture, equivalent strain at fracture and average
values for the stress triaxiality and the Lode parameter at initial fracture in the
different tests.

DIC FE surface FE centre Analytical

Uniaxial tension 3e
f 0.810 e e

3f 0.818 0.804 0.849 e

savg
* 0.427 0.373 0.429 0.333

mavg �0.631 �0.846 �0.769 �1.000
Plane-strain tension 3e

f 0.680 e e

3f 0.682 0.674 0.765 e

savg
* 0.542 0.539 0.609 0.577

mavg �0.167 �0.179 �0.154 0.000

In-plane shear 3e
f 0.912 e e

3f 0.940 0.953 0.905 e

savg
* 0.005 0.049 0.178 0.000

mavg �0.013 �0.129 �0.301 0.000

Arcan-45 3e
f 0.812 e e

3f 0.821 0.810 0.872 e

savg
* 0.311 0.352 0.391 e

mavg �0.836 �0.924 �0.993 e

Arcan-90 3e
f 0.829 e e

3f 0.848 0.826 0.920 e

savg
* 0.415 0.358 0.401 e

mavg �0.637 �0.901 �0.902 e

Fig. 15. Relation between stress triaxiality and Lode parameter for plane-stress states
(plane-stress locus) and stress paths from shell elements at the surface and solid
elements at the centre of the sheet. The dashed lines are from surface shell elements
and lie exactly on the plane-stress locus, while solid lines are from centre brick
elements. The deviations for the solid elements show that the plane-stress assumption
is not fulfilled at the centre of the sheet.
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exhibits only moderate variations of ductility within the investi-
gated range of stress triaxiality. It is further noted that, in general,
the equivalent strain is larger and the average stress triaxiality
higher in the centre of the sheet than at the surface, and it is thus
reasonable to assume that the fracture process started at the centre.
This is in accordance with the findings of Dunand and Mohr (2010)
for a TRIP steel sheet. In this study, an exception from this
phenomenon is the shear test in which the equivalent strain is
largest at the surface, while the stress triaxiality is highest in the
centre of the sheet. If the fracture strain at the centre is considered,
the equivalent strain to fracture seems to be about the same for all
tests, except the plane-strain tension test which exhibits somewhat
lower ductility. There might even be a weak tendency towards
a somewhat higher ductility at a stress triaxiality around 0.4 as
found in the abovementioned studies. Considering instead the
surface of the sheet, there is a nearly linear increase in the equiv-
alent strain at fracture with decreasing average stress triaxiality.
The results from the surface give generally a conservative estimate
on the ductility of the material, if we assumed that the fracture
occurs in the centre of the sheet. If the sheet material were to be
modelled with plane-stress shell elements, which is indeed often
the case, the fracture criterion should be based on the equivalent
fracture strain at the surface. If solid elements were used, it would
be more appropriate to determine the fracture criterion from the
equivalent fracture strain at the centre.

It is important to realize that two spatial discretizations are
applied to obtain the fracture characteristics of the steel sheet. In
both the DIC and the FE analyses, the element size determines the
resolution of the strain gradient occurring as the strain localizes
before final fracture. Since bothmethods adopt linear interpolation,
the relative resolution depends only on the mesh size. It follows
that the resulting fracture locus (as shown in Fig. 16) depends
on the element size used to determine the strain fields. A coarse
grid will underestimate the fracture strain and lead to conservative
estimates. However, since the degree of localization may well vary
between the different specimen geometries, it is not certain that
the fracture locus is equally conservative for all levels of stress
triaxiality. It was for instance noted that the strain field was
extremely localized in the shear test, which would tend tomake the

measured fracture strain more conservative for this loading case. It
is important to keep the discretization issue in mind when inter-
preting fracture data from experiments. The DIC analysis is,
however, limited in the way that a smaller element size gives
increasing amount of noise in the measured displacement field
(Fagerholt et al., submitted for publication). This should therefore
be considered when planning the experiments and making the
finite elementmodels. By reducing the camera field of view, the DIC
element size (in mm) can be reduced to the desired size. In this
study, the characteristic element size was about the same in the DIC
and FE analyses of the plane-strain tension test, while for the shear
test the element size was about twice as large in the DIC analysis.
These were the two extreme cases. Ideally one should aspire to use
the same element size in the DIC algorithm as in the FEM analysis.
In implicit FEA also the time discretization is an issue, in the way
that too large increments delay the necking process. However, it
should be noted that as long as the simulated time at fracture in the
FE models is determined by the effective logarithmic strain at
fracture from the DIC recording, rather than a displacement
measure, see Section 6.4, the parameters s*, m and 3 from the FEA
are not significantly affected by the element size. The only excep-
tion is the fracture strain from the centre of the FE models which
must be considered as conservative. A simulation of the uniaxial
tension test with 32 elements through the thickness and propor-
tionally decreased in-plane element size resulted in a fracture
strain 3.7% higher at the centre element.

8. Conclusions

Experiments have been carried out using five different specimen
geometries to characterize the fracture characteristics of a cold-
rolled, low-strength, high-hardening steel sheet (Docol 600DL). The
tests ranged from plane-strain tension tests to shear tests, covering
a domain of stress triaxiality from about 2/3 to zero. The fracture
characteristics were obtained using optical fieldmeasurements and
finite element simulations in combinations with the mechanical
testing. A novel method for derivation of the stress triaxiality and
the Lode parameter on the surface of the specimen based on DIC
measurements was proposed, assuming a Levy-Mises material. In
the range of stress states investigated, only moderate variations in
the fracture strain were found. In general, the fracture process is
likely to initiate at the centre of the specimens where the equiva-
lent strain is larger and the average stress triaxiality is higher than
at the surface. For the shear test it was not possible to determine
whether the fracture initiates at the surface where the strains are
larger or in the centre where the triaxiality is higher.
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ABSTRACT: Marciniak-Kuczynski and Nakajima tests of the dual-phase steel Docol 600DL 

have been carried out for a range of stress states spanning from uniaxial tension to equi-biaxial 

tension. The deformation histories of the specimens have been recorded by digital images, and 

the displacement and strain fields have been determined by post-processing the images with 

digital image correlation software. The stress triaxiality, Lode parameter and the equivalent 

strain are calculated from the optical measurements, and presented as parameters to describe 

the fracture characteristics of the material. It is found that the material displays a significantly 

lower ductility in plane-strain tension than in uniaxial tension and equi-biaxial tension. 

Fractographs of selected specimens reveal that fracture is due to dilatational growth and 

coalescence of voids that occur in localized areas governed by shear-band instability. A

verification of the method used in deriving the stress triaxiality and the Lode parameter has 

been conducted.

KEY WORDS: Digital image correlation, dual-phase steel, ductile fracture, Lode parameter,

stress triaxiality

Introduction

Ductile fracture is controlled by nucleation, growth and coalescence of microvoids as 

explained by McClintock [1] and Rice and Tracey [2]. Increased hydrostatic pressure 

tends to decrease the rate of void growth, and so increase the ductility. The ductility can 
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be expressed by the equivalent strain at fracture, ( )f ft , where ft is the time at 

fracture and is the equivalent strain, defined as 0 2 / 3t
ij ijD D dt where ijD is the 

rate-of-deformation tensor. A commonly used parameter to describe the hydrostatic 

stress state is the stress triaxiality, , defined as 

h (1)

where / 3h ii is the hydrostatic stress and  3 / 2ij ijs s is the von Mises 

equivalent stress  with ii as the Cauchy stress tensor and ijs as the stress deviator. 

Recent findings from macro-scale experiments e.g. [3-5] indicate that the deviatoric 

stress state also influences the ductility in the range of low stress triaxiality . The 

deviatoric stress state can be expressed by the Lode parameter, , defined as [6]

2 II I III

I III

(2)

where ,  , ,i i I II III are the principal stresses ordered so that I II III .

The Digital Image Correlation (DIC) technique [7] is a powerful tool for

determining material properties from experiments. DIC was applied by Wu et al. [8] to 

estimate the accumulated damage in a 15-5PH steel during plastic deformation. 

Kirugulige and Tippur [9] used DIC to determine the stress intensity factors of a foam 

material under dynamic loading, while Luo and Wang [10] used DIC in determining the 

stress intensity factors as well as the J-integral from compact tension shear specimens 

made of 2024-O aluminium. However, stress and strain histories from material tests are

traditionally found from numerical simulations of the tests, e.g. [3, 11-15], or analytical 

models, e.g. [16-17].

Gruben et al. [18] carried out experiments in the low range of stress triaxiality on 

steel sheets of Docol 600DL. The five test series included uniaxial tension, plane-strain 

tension and in-plane shear as well as two types of modified Arcan tests. In that study a

novel method for experimental determination of and based on optical 
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measurements of the displacement fields was presented and applied on selected tests.

The method was used to derive and as well as the equivalent strain, . In 

addition, , and were derived from finite element simulations, and it was found 

that the average values of the stress state parameters, avg , avg , as well as the fracture 

strain, f , extracted by two approaches were in good agreement. It was further found 

from the finite element simulations that the equivalent strain and the stress triaxiality 

were larger in the centre than on the surface of the specimen in four out of five tests, 

and so fracture was more likely to initiate in the centre of the specimen in these tests. As 

the experimental method is restricted to the surface of the specimen, it was concluded 

that use of surface displacement fields to determine the fracture strain could be 

considered a conservative approach for these tests.

In this study, the experimental technique presented in [18] is applied to

Marciniak-Kuczynski [19] and Nakajima [20] formability tests conducted on specimens 

made of Docol 600DL material from the same batch as used in [18], and thus expanding 

the experimental database for this material. Further, the measuring technique is verified 

against finite element models utilized in [18], and the fracture surfaces of selected test 

specimens are studied in a scanning electron microscope (SEM). It is concluded that the 

ductility of the material is significantly lower for (in-plane) plane-strain tension than for

uniaxial tension or equi-biaxial tension, and that fracture is governed by nucleation, 

growth and coalescence of microvoids that occur in shear bands.

Experiments

Material

The material is a dual-phase steel delivered as 2 mm thick sheets from Swedish Steel 

AB (SSAB). It can be characterized as a low-strength, high-hardening material where 

the nominal yield stress is reported from the manufacturer to be in the range 280-

360 MPa and the nominal ultimate stress is reported to be between 600 MPa and 

700 MPa [21]. Through heat treatment the material is given a two-phase structure of 

ferrite and martensite, in which the ferrite gives the formability features, while the 
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martensite proportion determines the strength. The nominal chemical composition of the 

material is given in Table 1. A previous study has shown that the material exhibits a 

nearly isotropic behaviour in terms of work hardening and plastic flow [18].

Table 1 Chemical composition of Docol 600DL (in wt %) [21].
C Si Mn P S Altot 

0.10 0.40 1.50 0.010 0.002 0.040

Experimental set-up and optical measuring procedure

The Marciniak-Kuczynski and Nakajima experiments were carried out in a Zwick/Roell

BUP 600 test machine as depicted in Figure 1(A). All experiments were carried out 

under quasi-static loading conditions and displacement control. The punch velocity was 

0.3 mm/s, and two duplicate tests were performed for each specimen geometry. For 

both tests, a sheet of the material was clamped between a die and a blank holder with a 

clamping force. The clamping force can be altered, and in order to obtain fracture in the 

fracture zone and not in the clamping, some tests were carried out to determine a 

reasonable clamping force for the tests in this study. This might be different for a 

different material and sheet thickness. Further details about the clamping force can be 

found in [22].

Apart from the test set-up and the use of a three-dimensional DIC, the approach 

in collecting data from the optical measurements is the same as in [18]. The main 

aspects of the approach are repeated here for convenience. Before testing, one side of 

the specimen was spray-painted by a combination of black and white paint, obtaining a 

high-contrast speckle pattern to improve the optical measurements. Two Prosilica 

GC2450 cameras equipped with 50 mm Nikon lenses were attached above the 

specimens as shown in Figure 1(A). The cameras were recording the experiments with a 

framing rate of 2 Hz. A zone of each image from the gauge area, Figure 1(B), were 

post-processed by the three-dimensional DIC software 7D [23] following the 

coordinates of nodes, initially lying in a square pattern with 0.77 mm distance between 

them, see Figure 1(C). Triangular elements were used in deriving the effective 
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logarithmic strain field in the gauge area of each test in the last frame before fracture. 

The effective logarithmic strain is here defined as 

2 2 2
1 2

2
3e Z (3)

where ,  1, 2i i are the in-plane principal strains, found by solving the eigenvalue 

problem for the right Green deformation tensor (see [18] for details), and Z is the 

through-thickness strain. Assuming incompressibility and that the through-thickness 

shear strains are negligible (i.e. the thickness direction is assumed to be a principal 

direction), we have that 1 2( )Z .

Figure 1 (A) The Zwick/Roell BUP 600 test machine with two cameras for DIC 
measurements and (B) specimen with speckle pattern and zone (in 
yellow) for DIC measurement [22]. (C) DIC nodes in the first image. 
The nodes constituting the element used for collecting fracture 
parameters are marked. (D) Effective strain in the last frame before 
fracture. The arrow points at the element used for collecting fracture 
data.
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It was generally not possible to pinpoint the exact position of fracture initiation

within the gauge area. The point of the largest effective logarithmic strain in the last 

image before fracture was thus chosen as the point for collecting the deformation data; 

this is illustrated in Figure 1(D). The four nodes enclosing the point of fracture initiation

cf. Figure 1(C), constituted the element used in calculating the fracture parameters. It 

was found that warping of this four-node element was negligible in all the tests, i.e. the 

out-of-plane displacement was neglected. Using a total Lagrangian formulation, the 

displacement gradient was evaluated at the centre point of the element from the 

displacement histories of the nodes. Further, the in-plane Green strain tensor, E , was 

calculated and the temporal increment of the in-plane Green strain tensor, E , was 

derived. The push-forward operation was conducted on E to obtain an objective in-

plane strain-increment tensor. The principal in-plane strain increments, 1 2( , ) , were 

then calculated by solving the eigenvalue problem for the objective in-plane strain-

increment tensor (see [18] for details). From 1 2( , ) the stress triaxiality and the 

equivalent strain were calculated under the assumption of a Levy-Mises material. These 

parameters are expressed as

2

3 1
3 1

(4)

2 2 2
1 2 Z

2 ( )
3

(5)

where

2
1 Z 1 2

1

0,        1 ,       ( ) (6)

The last relation in Equation (6) is found by assuming incompressibility and that the 

thickness direction is a principal direction. Filtering was necessary to calculate and 

, and the same procedure as described in [18] was applied. Thus, 2C continuous cubic 

splines were fitted by the least squares method to the histories of the nodal 

displacements. The initial and final displacements were used as boundary conditions on 
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the smoothed curves. In the tests used in this study, 12 splines were found to be suitable. 

For the history curve of , the same filtering as used in [18] was applied for 

visualization purposes. When calculating the logarithmic strains, 1 2, , Z and the 

effective logarithmic strain e , filtering was not used. For further details regarding the 

method, the reader is referred to [18].

Marciniak-Kuczynski set-up

The Marciniak-Kuczynski (M-K) test set-up is illustrated in Figure 2(A). The test 

specimens are rectangular plates with a length of 205 mm and varying widths of

155 mm, 160 mm, 165 mm and 205 mm, see Figure 2(B). The specimens were labelled

MK-XXX-Y, where XXX is the width of the specimen, and Y=1,2 is the duplicate

number. A centring device, cf. Figure 2(C), was used to lock the position of the 

specimen at the centre of the punch. To ensure that no tractions from the punch acted on 

the centre zone of the specimen, a friction sheet with the same width and length as the 

specimen and with a centred hole of 40 mm diameter was placed between the punch and 

the specimen. The friction sheet was 1.4 mm thick and made of a steel material with 

yield and ultimate stress around 185 MPa and 375 MPa, respectively. The friction sheet 

was sand blasted on the side facing the specimen to increase the friction between the

specimen and the friction sheet. This ensured that the friction sheet deformed together

with the specimen. In order to reduce the strains in the specimen around the punch 

edges and make sure that fracture would occur at the centre of the specimen [24], a

0.1 mm thick layer of PTFE (Teflon) was placed between the punch and the friction 

plate, and the punch was lubricated with grease.
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Figure 2 Marciniak-Kuczynski test set up (measurements in mm). (A) Sketch of 
test set-up, and (B) specimen dimensions (the hole is only for the friction 
sheet). (C) Centring devise used for the specimens.

Nakajima set-up

The Nakajima test specimens consist of circular disks with eight various cut-outs. The 

specimens were labelled NK-X-Y, where X=1,2,..,8 is the test number and Y=1,2 is the 

duplicate number. Figure 3(A) displays the specimen geometries. The specimens were 

cut as illustrated in Figure 3(B) with 3 mm strips still attached to rectangular blanks, 

thus allowing the use of the same centring device as used in the M-K tests to ensure a 

proper position of the specimens. The set-up is similar to the M-K test set-up displayed

in Figure 2(A), but without the friction sheet. A 0.1 mm thick layer of Teflon was 

placed between the specimen and the punch to reduce friction. While the M-K test 

utilize a flat punch as illustrated in Figure 2(A), the Nakajima tests are carried out with

a hemispherical punch with a radius of 50 mm. 
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Figure 3 (A) Nakajima test geometries, and (B) close-up of a specimen attached to 
the rectangular blank [22].

Verification of experimental procedure

The experimental procedure used in extracting the stress triaxiality and the equivalent 

strain were compared with the more traditional approach using a hybrid experimental-

numerical procedure in [18]. The results in terms of average stress triaxiality, cf. 

Equation (8) below, and fracture strain derived by the two approaches were in good 

agreement. However, a proper verification of the method was not conducted. As part of 

this study, a verification of the method has been carried out. In order to do so, the finite 

element models utilized in [18] have been used. The method was applied on the nodal 

displacement histories from the finite element simulations. In this way the calculated

curve could be compared directly with results extracted from the finite element 

corresponding to the nodes. Figure 4 displays the discretizations of the five tests used in 

the verification. Here Figure 4(A) gives the uniaxial tension test, while (B) shows the 

plane-strain tension test, (C) gives the in-plane shear test and (D) displays the modified 

Arcan test. In the modified Arcan tests the angle in Figure 4(D) was set to 45 and

90 . The tests covers a range of initial stress triaxiality from simple shear ( 0) to 

plane-strain tension ( 0.58) . For further details regarding the finite element 

simulations the reader is referred to [18]. The principal stress histories from the 

elements at the surface corresponding to the in-plane point of fracture initiation in each 

test were collected and used in deriving the histories of the stress triaxiality according to 
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Equation (1). The equivalent strain histories from the same elements were also 

collected, and the results in terms of curves are shown in Figure 5(A).

Additionally, the displacement histories of the corresponding surface nodes were used 

in calculating 1 and 2 . Subsequently, and were calculated from 

Equations (4) and (5), respectively. In these calculations filtering were not applied since 

the displacement curves from the finite element analysis were sufficiently smooth. The 

results in terms of curves are shown in Figure 5(B). As can be seen from 

Figure 5(A) and (B), the two different approaches are in very good agreement. The 

Lode parameter is not shown in the verification as there is a unique relation between the

Lode parameter and the stress triaxiality in plane stress, see Equation (7) below.  

Figure 4 Finite element models used in verification of the experimental procedure
[18]. (A) uniaxial tension test, (B) plane-strain tension test, (C) in-plane 
shear test and (D) modified Arcan test. 
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Figure 5 Validation of experimental procedure. (A) curves as collected 
directly from the integration point in the finite element software, and (B)

curves as derived from the nodal displacements and the 
experimental procedure.

Results

Marciniak-Kuczynski tests

Three of the set-ups are close to plane-strain tension (MK-155, MK-160 and MK-165), 

while the fourth is close to equi-biaxial tension (MK-205). Two of the test specimens

did not fracture (MK-165-2 and MK-205-1), due to premature termination of the test.

Figure 6 gives the effective logarithmic strain for the successful tests in the last image 

before fracture as well as the fractured specimens. The position at which deformation 

data were collected is indicated by arrows. The results in form of major vs. minor 

principal logarithmic strains and fracture strain as function of stress triaxiality are 

shown in Figure 7(A) and (B), respectively. As can be seen in Figure 7(A), the MK-155

and MK-160 tests display very similar histories, while MK-165 starts out with a 

deformation unlike the other two, but ends up in plane-strain deformation. The MK-205 

test is in a deformation state near equi-biaxial tension throughout the whole history. 

Figure 7(B) shows that the fracture strain differs about 0.05 in the two set-ups where 

both duplicates were successful. Notably, the test in equi-biaxial tension displays a 

significantly higher ductility than the other tests.
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Figure 6 Effective logarithmic strain in the last frame before fracture in the 
Marciniak-Kuczynski tests, and specimens after fracture. The arrows 
show where the deformation histories are collected, while the circles 
display the zones where the DIC measurements were applied. 
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Figure 7 Results from Marciniak-Kuczynski tests. (A) Principal in-plane 
logarithmic strains and (B) equivalent strain as function of stress 
triaxiality. 

Nakajima tests

The stress state in the Nakajima tests varied between equi-biaxial tension for NK-1 to 

near uniaxial tension in NK-8. Two of the tests failed (NK-4-1 and NK-4-2) as fracture 

occurred in the clamping zone rather than in the gauge area. The effective logarithmic 

strain in the last image before fracture in each successful test is shown in Figure 8. The 

major vs. minor principal logarithmic strains for all 14 successful tests are given in 

Figure 9(A). As can be seen, the deformation state is very similar in both duplicate tests

for each set-up. All tests except NK-8 (uniaxial tension) start out in equi-biaxial tension

before they move into their assumed “natural” stress state when the major principal 

strain is around 0.035. NK-8 starts out in near plane-strain tension before it moves over 

to uniaxial tension. Fracture strain versus stress triaxiality for all tests is given in 

Figure 9(B), which also shows that the fracture strain between duplicates is consistent

for four of the specimen geometries. On the contrary, in NK-1, NK-2 (equi-biaxial

tension) and NK-6 (plane-strain tension) tests the difference in fracture strain between 

the duplicates is somewhat larger, see Figure 9(B). As in the M-K tests, high ductility in 

equi-biaxial tension and low ductility in plane-strain tension is observed. 
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Figure 8 Effective logarithmic strain in the last image before fracture in the 
Nakajima tests. The arrows show where the deformation values are 
collected.

Figure 9 Results from Nakajima tests. (A) Principal in-plane logarithmic strains, 
and (B) equivalent strain as function of stress triaxiality.
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Instability and fracture

Instability and fracture of the material in the investigated range of stress-states is 

examined by selecting a few tests that are subject to a closer study. The NK-8-2 test 

represents uniaxial tension, while the NK-5-1 and MK-155-1 tests represent plane-strain 

tension, and the NK-1-1 and MK-205-2 tests represent equi-biaxial tension. As 

indicated in Figure 10(A), the Nakajima tests in uniaxial tension display a diffuse neck 

and a through-thickness neck before fracture. Figure 10(B) and (D) show that the 

Nakajima and M-K tests in plane-strain tension display a through-thickness neck, while 

Figure 10(C) and (E) show that the equi-biaxial Nakajima and M-K tests do not exhibit 

necking instability before fracture. Figure 11(A) displays the effective strain as function 

of time, ( )e t , taken from the spatial point of fracture initiation, see Figure 6 and 

Figure 8. The time derivative of the effective strain, ( )e t , are given in Figure 11(B). As 

illustrated in Figure 11(A), the NK-1-1 and MK-205-2 tests, which are in equi-biaxial 

tension, display a gradual increase in the strain-rate. This stems from a nonlinear 

correlation between the applied displacement and the straining. The necking instability 

in the NK-8-2, NK-5-1 and MK-205-2 tests can be interpreted as the abrupt change in

( )e t displayed in Figure 11(B). Before final failure, shear-band instability occurs in the 

material in all tests. This phenomenon occurs on a scale which is too small to be 

captured by the DIC technique with the resolution of the images used in this study. 

However, shear lips which typically follows shear-band localization, are present in all 

the fractured specimens. This is exemplified by the specimens displayed in Figure 10. It 

is noted that the specimens in plane-strain tension display a more rough fracture surface, 

as illustrated in Figure 10(B) and (D), than the specimens in uniaxial or equi-biaxial 

tension. 
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Figure 10 Necking instability and fracture of selected tests. (A) NK-8-2, uniaxial 
tension, with diffuse and through thickness necking, (B) NK-5-1, plane-
strain tension, with through thickness neck, (C), NK-1-1, equi-biaxial 
tension, and no necking instability, (D) MK-155-1, plane-strain 
tension, with through-thickness necking and (E) MK-205-2, equi- biaxial 
tension, with no necking.

Figure 11 Plots of (A) ( )e t and (B) ( )e t curves for selected tests. MK-155-1,
NK-5-1 and NK-8-2, display an abrupt change in strain rate due to 
necking instability, while tests MK-205-2 and NK-1-1 display only 
moderate change in strain rate.
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The fracture surfaces of the five selected tests were further investigated in a

scanning electron microscope of type Hitachi SU6600. Figure 12(A-E) displays high

magnification fractographs of the fracture initiation point in the Nakajima and M-K

tests, while Figure 12(F) displays the fracture surface of the NK-1-1 test at low

magnification. It can be seen from Figure 12(A-E) that most of the dimples are small,

5 . This suggests that voids are nucleated at small particles that are closely spaced,

and that the voids coalesce before they reach a larger size, leaving a macroscopically 

smooth surface typical for shear lips [25]. Three larger dimples with visible inclusions 

marked with an ‘i’ can be seen in Figure 12(A-B) and (D). Areas with elongated 

dimples typical for shear fracture can be observed in Figure 12(A-C). Some of these 

areas are marked with an ‘s’. An interesting observation in the NK-5-1, NK-1-1 and 

MK-205-2 tests is a groove located at the centre of the fracture surface. The groove, 

which is marked with a ‘g’, is illustrated in Figure 12(F) at low magnification and in 

Figure 12(B-C) and (E), at higher magnification. The groove might be a result of the 

concentrated deformation at the locus where the two shear bands meet.

Figure 12 (A-E) High magnification SEM fractographs of selected Nakajima and 
Marciniak-Kuczynski tests and (F) NK-1-1 at a lower magnification. ‘s’ 
indicates some typical areas with shear fracture, while ‘i’ marks 
inclusions, and ‘g’ shows grooves found on the surface in three of the 
tests.
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Ductility as function of average hydrostatic and deviatoric stress state

As a complementary stress-state parameter to the stress triaxiality, the Lode parameter,

, can be used to describe the deviatoric stress state of the material. Assuming von 

Mises yield function and plane-stress conditions, it can be shown that the Lode

parameter can be expressed as a function of stress triaxiality as

2 4 2 1
3 32

2
1
32

2
1
32

2 4 1 2
3 32

3 1 12( ) 27( ) for 0,   
9( ) 1

27( ) for 0,   0
4 9( )

27( ) for 0,      0
4 9( )
3 1 12( ) 27( ) for 0,     

9( ) 1

I

II

II

III

(7)

When the material is in a plane-stress condition, the Lode parameter does not provide 

more information about the stress-state due to the one-to-one relation between the Lode 

parameter and the stress triaxiality. However, while the change in stress triaxiality is 

small when going from plane-strain tension ( 0.58) to equi-biaxial tension

( 0.67) the change in the deviatoric stress state is significant. This is captured by 

the Lode parameter which is zero in plane-strain tension and unity in equi-biaxial 

tension. Similarly the Lode parameter clearly distinguishes the uniaxial tension stress 

state by 1 . Figure 7(B) and Figure 9(B) which gives as function of do not

display the large change in the deviatoric stress state. In order to explicitly illustrate the 

effect of both the hydrostatic and deviatoric stress state on the fracture strain, data 

including the Lode parameter are given in this section and used in the subsequent 

discussion. Here, the average values of the stress triaxiality and the Lode parameter are 

used rather than the history curves. The average values are calculated by an integral 

expression over the equivalent strain as

avg avg
0 0

1 1( ) ,        ( )
f f

f f

d d (8)
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In order to facilitate the comparison of data from the different tests, the average values 

of the two duplicates for each test is presented. In the two M-K tests where only one 

duplicate was successful, the value from this test is presented. The results are compared 

to the data from [18] and given in Figure 13 and Table 2. Figure 13(A) displays the 

fracture strain as function of average stress triaxiality, while Figure 13(B) gives the 

fracture strain as function of average Lode parameter. The plane-stress locus as defined 

by Equation (7), is compared to the parameters avg avg( , ) from the 16 tests in 

Figure 13(C). It is noted that the deviation from the plane-stress locus in Figure 13(C),

most notably observed for the modified Arcan tests [18], stems from the averaging 

defined by Equation (8).

Figure 13 (A) Fracture strain as function of average stress triaxiality. (B) Fracture 
strain as function of average Lode parameter, a trend line for the tests 
with avg 1/ 3 is marked. (C) Average stress triaxiality versus 
average Lode parameter for the various tests compared to the plane 
stress locus. 
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Table 2 Fracture characteristics data for Docol 600DL steel.
Test name avg avg f

Uniaxial tension [18] 0.427 -0.631 0.818
Plane-strain tension [18] 0.542 -0.167 0.682
In-plane shear [18] 0.005 -0.013 0.940
Arcan-45 [18] 0.311 -0.836 0.821
Arcan-90 [18] -0.415 0.637 0.848
MK-155 0.576 -0.004 0.521
MK-160 0.586 0.049 0.505
MK-165 0.601 0.143 0.481
MK-205 0.666 0.911 0.851
NK-1 0.663 0.8359 1.041
NK-2 0.664 0.870 1.007
NK-3 0.658 0.667 0.791
NK-5 0.585 0.069 0.498
NK-6 0.530 -0.192 0.667
NK-7 0.463 -0.474 0.660
NK-8 0.429 -0.595 0.719

Discussion

From Figure 13(A) it is seen that the tests in plane-strain tension display a drop in 

ductility compared to the tests in uniaxial tension and equi-biaxial tension. The low 

ductility in plane-strain tension is coherent with previous observations from thin-walled 

experiments on a martensitic boron steel by Mohr and Ebnoether [5] and on a TRIP780 

steel by Dunand and Mohr [26]. Figure 13(A) also shows that the shear test displays a 

somewhat larger fracture strain than the tests in uniaxial tension. The abrupt increase in 

ductility observed when going from plane-strain to equi-biaxial tension in Figure 13(A)

is due to a large change in the Lode parameter. This is illustrated by expressing the

experimental data in the avgf space, see Figure 13(B), where a V-shaped pattern is 

observed for the tests with 1/ 3. As can be seen in Figure 13(B), there is a 

tendency for higher ductility in equi-biaxial tension, 1, than uniaxial tension

1. This is also in accordance with the observations in [5] and [26]. By inspecting 
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Figure 13(A) it can be seen that the Nakajima tests differ somewhat from the other tests

in ductility for comparable stress triaxiality values. In uniaxial tension the fracture strain 

is lower than in the other tests, while in equi-biaxial tension the ductility is higher than 

in the other tests. The larger ductility in the equi-biaxial Nakajima tests compared to the

M-K result may stem from a through-thickness strain gradient induced by the cone-

shaped punch. The fracture strains found in the plane-strain tension Nakajima and M-K

tests are consistent. In this case, the effect of the cone is reduced in the Nakajima tests 

due to the reduced transverse straining. The apparent lower ductility in the Nakajima 

tests in the lower range of stress triaxiality avg( 0.4 0.5) compared to the tests 

presented in [18] is harder to explain. This might be due to experimental scatter.

As pointed out above, fracture occurs due to the nucleation-growth-coalescence 

mechanisms in localized areas. In the literature several fracture criteria have been 

proposed that include this mechanism, most notably the Rice-Tracey criterion [2] which 

is uncoupled with the constitutive relation and the Gurson model [27] which is coupled 

with the constitutive relation. These criteria do not, however, include the effect of the 

deviatoric stress-state on the fracture strain, and would not be able to predict the drop in 

ductility in plane-strain tension as observed in Figure 13(A) and (B). Attempts have 

been made to include the effect of the deviatoric stress state in ductile fracture criteria. 

Examples of coupled approaches are e.g. the modified versions of the Gurson model 

presented by Xue [28] and Nahshon and Hutchinson [29].  In a parallel study [30], the

modified Mohr-Coulomb criterion presented by Bai and Wierzbicki [31], and the 

extended Cockcroft-Latham and the extended Rice-Tracey criteria presented in [30]

have been assessed for the Docol 600DL material. These three criteria are examples of 

uncoupled fracture criteria which explicitly takes into account the effect of the 

deviatoric stress state for low values of stress triaxiality.
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Conclusions

In this study, two series of formability tests have been performed using Marciniak-

Kuczynski and Nakajima test set-ups. Displacement field data obtained by use of digital 

image correlation have been used to determine the fracture strain of the material as 

function of stress triaxiality and Lode parameter. The results have been compared with 

results from a previous study on the same material with other material tests. The main 

finding is that the material displays a significant drop of ductility in the range of 

triaxiality around plane-strain tension, which was not captured by the tests conducted in 

the previous study. Further, it is found that fracture is due to void growth and 

coalescence that mainly occurs in localized areas controlled by shear-band instability. 

The experimental method used for deriving the stress triaxiality, Lode parameter and 

equivalent strain gives results that are in good agreement with results obtained directly 

from stress and strain histories of FE models. 
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a b s t r a c t

The modified Mohr–Coulomb (MMC) fracture criterion recently proposed in the literature and novel

extended versions of the Cockcroft–Latham (ECL) and Rice–Tracey (ERT) fracture criteria, explicitly

accounting for Lode dependence, are evaluated for the cold-rolled, dual-phase steel Docol 600DL. In

addition, two special cases of the ECL criterion as well one special case of the ERT criterion are assessed.

To this end, experimental data from uniaxial tension, plane-strain tension, in-plane shear and modified

Arcan tests on 2 mm thick steel sheets are utilized. The experimental results display only moderate

variation of the fracture strain as a function of the stress state. The criteria are calibrated by using two

of the tests, while the remaining three tests are used for validation purposes. The shape of the fracture

strain surface as function of stress-state is similar for the MMC, ECL and ERT fracture criteria, but the

MMC criterion tends to give a larger range in predicted fracture strain, and the ERT criterion does not

distinguish between axisymmetric stress states having Lode parameter equal to þ1 and �1. The

damage evolution of the MMC and ECL criteria are linear functions of the equivalent plastic strain,

while the damage evolution is exponential with the equivalent plastic strain for the ERT criterion. The

damage evolution of the ERT criterion displays a similar shape as the evolution of void area fraction of a

comparable steel material. The fracture strains obtained with the fracture criteria are compared with

experimental data. In order to extend the range of the experimental validation, additional data from

formability tests conducted on material from the same batch are employed. The ECL criterion gave good

predictions on the equivalent strain at fracture initiation, while a somewhat larger spread was observed

for the ERT and MMC criteria.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over the years several criteria have been proposed to describe
ductile fracture. These criteria can be divided into two main
groups: criteria using a coupled approach and criteria using an
uncoupled approach. For the criteria with a coupled approach,
influence of damage is included in the constitutive equations. This
can be modelled by porous plasticity, e.g., Shima [1], Gurson [2]
and Rousselier [3], or by continuum damage mechanics, e.g.,
Lemaitre and Chaboche [4] and Lemaitre [5]. In the criteria
with the uncoupled approach, the yield criterion, plastic flow
and strain hardening are unaffected by the damage. Examples
of such criteria are Freudenthal [6], Cockcroft-Latham [7],
Wilkins [8], Johnson-Cook [9] and Xue-Wierzbicki [10]. The
coupled approach is, in general, based on a more sound physical
theory, but the identification of the parameters is usually more
involved.

The physical mechanism controlling ductile fracture is the
nucleation, growth and coalescence of microvoids in the material
during plastic deformation [11]. The Rice–Tracey (RT) criterion [12]
describes the growth of a spherical void with radius R in an infinite
medium. It was assumed that the material was perfectly plastic and
obeying the von Mises yield criterion with the associated flow rule.
According to the RT criterion, the void growth is defined by

_R

R
¼ kg exp csn

� �_ep ð1Þ

where kg¼0.283 and c¼1.5; ep is the equivalent plastic strain, and
sn is the stress triaxiality defined as

sn ¼ sh

s ð2Þ

The hydrostatic stress sh and the equivalent von Mises stress s
are in turn given by

sh ¼ 1
3ðsIþsIIþsIIIÞ ð3Þ

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ðsI�sIIÞ2þðsII�sIIIÞ2þðsIII�sIÞ2
h ir

ð4Þ
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In Eqs. (3) and (4), si, i¼ I, II, III are the principal stresses ordered
so that sIZsIIZsIII. The Rice–Tracey criterion is widely used in
prediction of ductile fracture, see e.g., [3,13–14]. It is then
common to assume that fracture (or void coalescence) initiates
as the void growth ratio R/R0 reaches a critical value (R/R0)C,
where R0 is the initial void radius. As discussed in [3], it is possible
to combine the RT criterion for void growth with a void nuclea-
tion criterion, a void coalescence criterion accounting for both the
void growth ratio and the void spacing, and the length scale
introduced by the microstructure of the material.

A phenomenological approach to describe ductile fracture was
presented by Cockcroft and Latham in [7]. The Cockcroft–Latham
(CL) criterion states that fracture occurs when the tensile princi-
pal stress integrated over the strain path reaches a critical value

W ¼
Z ep

0
sIh ideprWC , sIh i ¼maxðsI ,0Þ ð5Þ

where WC is the critical value of W at which fracture occurs. This
criterion has since its introduction been used in many studies to
describe ductile fracture, e.g., [15–18]. Calibrated for a given
material, both the RT and the CL fracture criteria implicitly
express the equivalent plastic strain at fracture, epf , henceforth
called the fracture strain, as a decreasing function of the hydro-
static stress (assuming a constant value of the Lode parameter,
see below). This is coherent with micromechanical theory, since
increased hydrostatic pressure restrains the void growth [11,12].

Recent studies on an aluminium alloy conducted by Bao and
Wierzbicki [19], two steel types examined by Barsoum and
Faleskog [20] and a dual-phase steel investigated by Gruben
et al. [21] indicate that the fracture strain does not decrease
monotonically with increased hydrostatic stress for some ductile
metals in the low range of stress triaxiality. Thus the deviatoric
stress state should explicitly be taken into account when predict-
ing the fracture strain for low triaxiality stress states. As a
supplement to the hydrostatic stress-state parameter, sn, the
deviatoric stress state can be represented by the Lode parameter,
m, defined by the principal stresses as [22]

m¼ 2sII�sI�sIII

sI�sIII
ð6Þ

Three special cases of the Lode parameter are identified, namely
generalized tension (m¼�1), generalized shear (m¼0) and gen-
eralized compression (m¼þ1) [20]. The Mohr–Coulomb criterion
has been widely used as an uncoupled approach for materials like
rock and soil, e.g., [23]. Recently, Bai and Wierzbicki [24] pro-
posed a modified version of the Mohr–Coulomb criterion for use
with ductile metals. The criterion was calibrated and validated for
the aluminium alloy 2024-T351 and the TRIP RA-K40/70 steel
sheet material. The criterion gave good prediction of the fracture
strain as a function of stress triaxiality in plane stress, and
captured well the variation in fracture strain in the low range of
stress triaxiality.

In this study, three uncoupled ductile fracture criteria, all of
which account explicitly for the stress triaxiality and the Lode
dependence of the damage evolution, have been assessed. The
considered fracture criteria was the modified Mohr–Coulomb
(MMC) criterion proposed by Bai and Wierzbicki [24] and novel
extensions of the Cockcroft–Latham (ECL) and Rice–Tracey (ERT)
criteria. The data extracted from a hybrid experimental-numerical
study of a 2 mm thick dual-phase steel sheet conducted by Gruben
et al. [25] comprising results from uniaxial tension, plane-strain
tension, in-plane shear and modified Arcan tests are used in
evaluating the fracture criteria. The fracture strain collected from
the through-thickness centre of the numerical models of the five
tests in [25] displayed low variation as a function of stress state,
while the fracture strain measured experimentally on the surface

through optical measurements displayed more variation in ductility.
It was argued [25] that for simulations with 3D solid elements, a
calibration should be based on data from the through thickness
centre, while a calibration for plane-stress elements could be based
on data from the surface. A more recent study on material from the
same batch carried out using Marciniak–Kuczynski and Nakajima
set-ups [21] found that the material displays a significant drop in
ductility in plane-strain tension compared to uniaxial tension and
biaxial tension. In [21] the data were obtained from the surface of
the specimens through optical measurements. A second calibration
of the fracture criteria was carried out through an optimization of
the data from the surface of the specimens in [21] and [25]. This
gave an opportunity to assess the predicted equivalent strain at
fracture by the criteria on two datasets; one from the surface and
one from the centre of the specimens.

2. Experimental–numerical program

Gruben et al. [25] conducted experiments on specimens under
five different stress states in the low range of stress triaxiality.
The material used was a cold-rolled, dual-phase steel of type
Docol 600DL delivered by Swedish Steel Ltd. (SSAB). The chemical
composition of the material is given in Table 1 [26]. The speci-
mens were cut from a 2 mm thick plate with the longitudinal axis
along the rolling direction. Fig. 1 shows the geometry of the four
different specimen types used (uniaxial tension, plane-strain
tension, in-plane shear and modified Arcan). The test set-up for
the modified Arcan tests is shown in Fig. 2, and the b value was
set to, respectively 451 and 901 in these tests. All experiments
were conducted at room temperature under quasi-static loading
with pre-necking strain rates in the vicinity of 10�3 s�1. The force
and displacement were measured in each test by the hydraulic
test machine. Digital image correlation was used to measure the
displacement field and to calculate the strain field on the surface
of the specimens. The point of fracture initiation was identified in
each test, and a novel method for determining the stress triaxi-
ality sn, the Lode parameter m and the fracture strain ef from the
optical measurements were presented and employed. In this
approach a Levy–Mises material was assumed, i.e., epf ¼ ef .

The stress state was determined from Finite Element (FE)
simulations of the five tests. All numerical analyses were exe-
cuted by the implicit solver of the non-linear finite element code
LS-DYNA 971 [27]. For all the FE models 8-node trilinear brick
elements with selective reduced integration were used. The FE
models had nine elements over the thickness. The geometries and
meshes of the FE models are shown in Fig. 3, while the char-
acteristic in-plane element size at the spatial point of fracture
initiation of each model is given in Table 2. The nominal elastic
properties were described by a Young’s modulus of 210 GPa and a
Poisson’s ratio of 0.33, while the plastic behaviour was described
by the rate-dependent J2 flow theory. The flow stress, s, was
expressed by the extended Voce rule and a multiplicative viscos-
ity-hardening law as

s¼ s0þ
Xn
i ¼ 1

Qi 1�expð�CiepÞ
� � !

1þ
_ep

_e0

 !q

ð7Þ

where s0 represents the yield stress, and Qi and Ci (i¼1,2) are
material parameters governing in turn the primary and the

Table 1
Chemical composition of Docol 600DL (in wt%) [26].

C Si Mn P S Altot

0.10 0.40 1.50 0.010 0.002 0.040

G. Gruben et al. / International Journal of Mechanical Sciences 62 (2012) 133–146134



secondary hardening. The parameters q and _e0 defines the strain-
rate sensitivity of the steel. The hardening parameters were found
by a fit of the pre-necking values of the Cauchy stress versus
logarithmic plastic strain curve from the uniaxial tension test, and
by inverse modelling for large strains using the uniaxial tension
and the shear test. The post-processing of the FE simulations was
stopped when the effective logarithmic strain at the (surface)
point of fracture initiation in the FE models reached the optically
measured value [25]. The FE simulations displayed that the
equivalent plastic strain and the stress triaxiality in the centre
of the specimens subjected to tensile loading were larger than at
the surface, and so fracture is more likely to initiate here in these
instances. Fig. 4(a) displays the trajectories of the equivalent
plastic strain, epðtÞ, versus the stress triaxiality, sn(t), from the

centre element of the five simulations, where t is the time. The
average stress triaxiality and Lode parameter were calculated
over the strain path, i.e.,

sn

avg ¼
1

epf

Z ep
f

0
snðepÞdep, mavg ¼

1

epf

Z ep
f

0
mðepÞdep ð8Þ

The fracture strain collected from the centre of the specimens is
plotted versus the average values of the stress triaxiality in
Fig. 4(b). The stress state in the form of the average Lode
parameter and the average stress triaxiality collected from the
centre of the specimens in the five simulations are shown in
Fig. 5(a) together with the loci for generalized tension (m¼�1),
generalized shear (m¼0), generalized compression (m¼þ1) and

Fig. 1. Geometry of the test specimens (in mm): (a) uniaxial tension specimen, (b) plane-strain tension specimen, (c) in-plane shear specimen and (d) modified Arcan

specimen [25].

Fig. 2. (a) Modified Arcan test set-up with b¼451 and (b) sketch of brackets with specimen defining the loading direction b [25].
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plane stress. Assuming the von Mises yield criterion, the plane
stress locus is defined by Eq. (12) below.

For reasons that will be explained in Section 5.1, new FE
simulations of the tests were conducted in this study with an
extra hardening term in the strain hardening function. That is, in
Eq. (7), Qi and Ci with (i¼1, 2, 3) are used. The tertiary hardening
term was added to include strain hardening for large strains
ðep41:0Þ. The hardening parameters were found from curve
fitting and inverse modelling like in the former analyses.
Table 3 shows the calibrated parameters used in the constitutive
equation. The simulated time at fracture, tf, was found in a similar
way as in [25], and the post-processing of the results was stopped
at tf. The same FE models as used in [25] were used in this study,
but this time they were run with the explicit solver of LS-DYNA. A
time scaling by a factor 105 was found necessary to reduce the
simulation times. It was carefully checked that the kinetic energy
was negligible compared to the internal energy of the specimens.
The results from the new FE simulations in terms of the dimen-
sionless parameters sn

avg,mavg and epf are within 0.01 of the values
produced in [25]. Table 4 sums up the most important results
from the combined experimental–numerical program where the
new simulations have been used. Note that the use of time scaling
was compensated by increasing the material constant _e0 in the
multiplicative viscosity hardening law defined in Eq. (7) by a
factor 105. The time scaling further led to a corresponding
increase in the strain rate values summed up in Table 4. The
calibration and validation of the various fracture criteria in this
study are based on the new simulations.

As shown in Fig. 4, the material undergoes large straining
before fracture. In the former study [25] it was therefore assumed
that the fracture process for the material is governed by micro-
porosity under the stress states investigated. However, as a part of
this study an investigation of the fracture surface has been carried
out. Fig. 6 shows fractographs taken in a scanning electron
microscope (SEM) at the assumed location of fracture initiation
in selected specimens from the uniaxial tension, plane-strain

tension and in-plane shear tests. All specimens show ductile
fracture with dimples. On the macroscopic level, the uniaxial
tension test displays a less rough surface than the plane-strain
tension test, while the in-plane shear test exhibits a smooth
fracture surface. Further, most of the dimples seen in the uniaxial
tension and plane-strain tension tests are small and less than
5 mm, which may indicate that fracture is dominated by nuclea-
tion of voids as the voids do not grow larger. Some inclusions are
observed in the uniaxial tension and plane-strain tension tests,
which are marked with an ‘i’, while some shear dominated areas
are marked with an ‘s’. In the shear test, elongated dimples typical
for shear failure are observed.

The observation of small dimples in the fractographs is
coherent with the observations from fractographs of the
Marciniak–Kuczynski and Nakajima tests carried out on material
specimens from the same batch and presented in [21]. The stress
triaxiality sn, the Lode parameter m, and the fracture strain ef at
the surface of the Marciniak–Kuczynski and Nakajima specimens
were collected using digital image correlation and the method
introduced in [25]. The two studies [21] and [25] give together
data from the surface of specimens in 16 tests. The fracture strain
ef as function of average triaxiality sn

avg at the surface of the
specimens in these tests are presented in Fig. 4(c), while
Fig. 5(b) gives the average triaxiality sn

avg as a function of the
average Lode parameter mavg as well as the loci for generalized
tension (m¼�1), generalized shear (m¼0), generalized compres-
sion (m¼þ1) and plane stress. As pointed out in [25], the fracture
strain as function of stress triaxiality in the uniaxial tension,
plane-strain tension, in-plane shear and modified Arcan tests
exhibits a larger variation on the surface of the specimens than
in the centre, and this can be observed by comparing Fig. 4(b) and
Fig. 4(c). Further, as pointed out in [21] and seen from Fig. 4(c),
the material displays a significant drop in ductility in plane-strain
tension compared to uniaxial tension and biaxial tension. This is
coherent with the findings of Clausing [28], where the ductility
for seven different steels are significantly reduced in plane-strain
tension compared to uniaxial tension. More recent studies on
plane-stress specimens, e.g., Mohr and Ebnoether [29] for a boron
steel and Dunand and Mohr [30] for a TRIP steel, have observed a
similar drop in ductility in plane-strain tension as well as an
increase in biaxial tension. It is noted that contrary to the data
collected from the surface, the data collected from the centre of
the specimens in [25] are not exactly in plane stress. This can be
seen from Fig. 5(a) and (b) where the data from the surface of the

Table 2
Characteristic in-plane element size used in the FE models (in mm).

Tension Plane strain Shear Arcan

0.50 0.46 0.10 0.36

Fig. 3. Finite element meshes of the test specimens [25].

G. Gruben et al. / International Journal of Mechanical Sciences 62 (2012) 133–146136



specimens are closer to the plane-stress locus than the data from
the centre of the specimens. The small deviation from the plane-
stress locus in Fig. 5(b), most notably seen in the Arcan-45 test,
stems from the averaging defined by Eq. (8).

3. Fracture criteria

3.1. The modified Mohr–Coulomb criterion

The Mohr–Coulomb criterion is expressed as

tþc1sn ¼ c2 ð9Þ

where t is the shear stress and sn is the normal stress at fracture
on the critical plane of the material. c1 is often referred to as the
friction, while c2 is the cohesion. The limits of the parameters are
c1Z0 and c240. The criterion can be expressed in terms of
the maximum and minimum principal stresses at fracture as

Fig. 5. The ðsn ,mÞ space with loci representing states of plane stress, generalized shear, generalized tension and generalized compression: (a) ðsn
avg ,mavgÞ values from the

centre of the specimens based on FE simulations and (b) ðsn
avg ,mavgÞ values from the surface of the specimens based on DIC measurements.

Table 3
Values used in the rate-dependent extended Voce hardening model. The large

value for _e0 is due to the time scaling.

s0 [MPa] Q1 [MPa] C1 Q2 [MPa] C2 Q3 [MPa] C3 _e0½s�1� q

286.2 287.9 34.93 341.1 5 6000 0.01 100 0.005

Table 4
Resulting values from the experimental–numerical analyses on Docol 600DL. The

large values on the strain rates are due to the time scaling.

sn
avg mavg epf _eavg ½s�1� _ef ½s�1�

Uniaxial tension 0.428 �0.771 0.855 915 1916

Plane strain 0.607 �0.152 0.765 479 840

In-plane shear 0.172 �0.313 0.909 185 298

Arcan-45 0.390 �0.991 0.876 353 511

Arcan-90 0.399 �0.901 0.916 833 800

Fig. 4. (a) Trajectories of snðtÞ�epðtÞ from the centre of the specimens, (b) ep
f
versus sn

avg from the centre of the specimens and (c) ef versus sn
avg from the surface of the

specimens.
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(see, e.g., Bai and Wierzbicki [24])ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc21

q
þc1

� �
sI�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc21

q
�c1

� �
sIII ¼ 2c2 ð10Þ

Alternatively, the Mohr–Coulomb criterion can be expressed as

fsIþ 1�fð Þ sI�sIIIð Þ ¼ C ð11Þ

where

f¼ 2c1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc21

q
þc1

, 0rfr1, and C ¼ 2c2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc21

q
þc1

40

For an isotropic material the stress state can be expressed by
three invariants. One possible combination is the von Mises
equivalent stress, s, the stress triaxiality, sn, and the Lode
parameter, m. By solving the expressions in Eqs. (2), (4) and (6)
with respect to the principal stresses, we have

sI ¼ snþ 3�m
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p
 !

s, sII ¼ snþ 2m
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p
 !

s,

sIII ¼ sn� 3þm
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p
 !

s ð12Þ

The Mohr–Coulomb criterion can now be expressed in terms of
the invariants s, sn and m, by inserting (sI, sIII) from Eq. (12) into
Eq. (11), and the result reads as

f 3sn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p
�3�m

� �
þ6

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p s¼ C ð13Þ

Bai and Wierzbicki [24] presented a modified version of the
Mohr–Coulomb criterion (the MMC criterion) which is expressed
by an accumulative damage variable. To achieve this, an expres-
sion for the fracture strain is required. As the Docol 600DL
material is described by the von Mises yield criterion, the fracture
strain for proportional strain paths can be found by combining
Eq. (13) with Eq. (7). The fracture strain, epf , is then defined implicitly
as a function of the fracture parameters (j, C), the stress state
(m, sn), the constitutive parameters ðs0,Qi,Ci,q, _e0Þ, and the equiva-
lent plastic strain rate _ep. The MMC criterion is then expressed as

DðepÞ ¼
Z ep

0

dep

epf
ð14Þ

where epf for the Docol 600DL material is calculated from Eqs.
(7) and (13), and fracture initiates when D equals unity. Even if epf in
Eq. (14) is defined for proportional loading conditions, the MMC
criterion is assumed valid for non-proportional loading owing to the
damage accumulation rule.

3.2. The extended Cockcroft–Latham criterion

While the starting point for the MMC criterion was the stress-
based Mohr–Coulomb criterion, the extended Cockcroft–Latham
(ECL) criterion assumes that the damage evolution is driven by the
plastic power per unit volume amplified by a factor representing the
influence of the stress triaxiality and the Lode parameter. The ECL
criterion is here defined as

D¼ 1

WC

Z ep

0
f
sI

s þ 1�fð Þ sI�sIII

s

� �D Eg
sdep ð15Þ

where Uh i is the Macaulay brackets and WCZ0, gZ0 and 0rjr1
are the fracture parameters. Here WC defines the overall ductility of
the material, j controls the relative influence of the major principal
stress and the maximum shear stress, and g governs the strength of
the stress-state dependence. As for the MMC criterion, it is assumed
that fracture initiates as D equals unity. By examining the expression
in Eq. (15), we find the following special cases of the ECL criterion

f¼ 1, g¼ 1 ) D¼ 1
WC

R
sIh idep Cockcroft-Latham criterionð Þ

f¼ 0, g¼ 0 ) D¼ 1
WC

R
sdep ðFreudenthal criterionÞ

f¼ 0, g¼ 1 ) D¼ 1
WC

R
sI�sIIIð Þdep Integral-based Tresca criterionð Þ

The Freudenthal criterion [6] implies that damage depends entirely
on the plastic power per unit volume, while the integral-based
Tresca criterion is independent of the hydrostatic stress state.

The ECL criterion can, in the same manner as the Mohr–Coulomb
criterion, be expressed by the invariants ðs,sn,mÞ, by inserting the
expressions for sI andsIII from Eq. (12) into Eq. (15). Setting D equal
to unity at fracture, the ECL criterion is formulated as

Z ep
f

0

f 3sn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p
�3�m

� �
þ6

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p
* +g

sdep ¼WC ð16Þ

Under the assumption of proportional straining, combination of
Eq. (16) with Eq. (7) for the constitutive relation gives an implicit
equation for the fracture strain as function of stress state, i.e.,
epf ¼ epf ðsn,mÞ. Although it is not necessary to calculate this func-
tion in an FE implementation of the criterion, it can be helpful in
evaluating its properties, see Section 5.1.

3.3. The extended Rice–Tracey criterion

As shown by, e.g., Rousselier [3], the Rice–Tracey criterion for
void growth may be written as

_f ¼ 3kgf ð1�f Þexp csn
� �_ep ð17Þ

where f is the void volume fraction. It is assumed here that kg and
c are parameters that may be fitted to experimental data, and the

Fig. 6. SEM photographs taken at the centre of the fracture surface of representative uniaxial tension, plane-strain tension and in-plane shear specimens. Some inclusions

are marked with an ‘i’ and some zones failing in shear are marked with ‘s’.
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void growth relation is assumed to be valid also for hardening
materials. The initial void volume fraction is f0, whereas nuclea-
tion of voids is neglected. It should, however, be noted that void
nucleation is readily included as explained in [3]. To account for
damage growth in shear-dominated stress states at low stress
triaxiality, and thereby introducing the Lode dependence, the
original RT criterion has to be augmented. Following along the
same lines as Nahshon and Hutchinson [31] in their modification
of the Gurson model, Eq. (17) is extended to

_f ¼ 3kgf ð1�f Þexp csn
� �_epþksfo ðmÞ_ep ð18Þ

here, ks is a constant, whereas 0ro (m)r1 is a function of the
Lode parameter, viz.

o ðmÞ ¼ 1� 9m�m3
� �2
m2þ3
� �3 ð19Þ

The parameter o is zero for axisymmetric stress states (m¼71)
and unity for stress states given by a pure shear stress plus a
hydrostatic pressure (m¼0) (see [31] for details). As pointed out
in [31], f should now be regarded as an effective void volume
fraction or rather a damage variable, since it is no longer uniquely
defined by the classical void growth relation. In the special case of
axisymmetric stress states, o is equal to zero, and then f can still
be identified as the void volume fraction. As commonly assumed
for the original RT fracture criterion, it is here assumed that
fracture occurs as f reaches a critical value fC. It is sometimes
convenient to work with an alternative damage variable, D¼ f/fC,
which equals D0¼ f0/fC in the reference configuration and unity at
fracture initiation.

Assuming proportional loading, the fracture strain can be
obtained by integration of Eq. (18) as

epf ¼
Z ep

f

0
dep ¼

Z f C

f 0

df

3kgf ð1�f Þexp csnð Þþksfo ðmÞ

epf ¼
1

3kgexp csnð Þþkso ðmÞ ln
f C 1�f 0
� �

3kgexp csnð Þþkso ðmÞ� �
f 0 1�f C
� �

3kgexp csnð Þþkso ðmÞ� �
ð20Þ

This expression is useful in the calibration of the fracture para-
meters based on experimental data. If f0 and fC are assumed to be
small compared with unity, Eq. (20) reduces to

epf �
ln f C=f 0
� �

3kg exp csnð Þþkso ðmÞ ð21Þ

In this case, the function epf ¼ epf ðsn,mÞ depends on the parameter
c and the two compound parameters kg=ln f C=f 0

� �
and

ks=ln f C=f 0
� �

.

4. Parameter identification

The three fracture criteria presented in Section 3 are calibrated
from the experimental–numerical analyses of the uniaxial tension
test and the in-plane shear test. The elements used for collec-
ting the data are shown in Fig. 7. The post-processing of the FE
models are stopped when the simulation time at fracture, tf, is
reached. Since a rate-dependent constitutive model is utilized,
the strain rate at fracture, _epf , is used in the calibration of the
MMC criterion, while the average strain rate, _epavg, is used in
the calibration of the ECL criterion. These quantities are here
defined as

_epf ¼ _epðtf Þ, _epavg ¼
1

epf

Z ep
f

0

_epðepÞdep ð22Þ

It is noted that the effect of the strain rate on the calibration is
small. The strain rates from the different simulations are sum-
marized in Table 4. Since the ERT and RT criteria are independent
of the constitutive relation, the strain-rate and the constitutive
parameters are not needed to calibrate these fracture criteria.

The MMC criterion is calibrated by combining Eq. (13) with Eq.
(7) and assuming that the loading is approximately proportional.
The average parameters sn

avg and mavg together with epf and _epf
from Table 4 are used in the calibration, and the two resulting
algebraic equations yields j¼0.208 and C¼1037 MPa.

For the ECL criterion the parameter g is set to unity, due to the
limited variation of the fracture strain with stress state, while the
parameters j and WC are calculated directly from Eq. (15)
utilizing the principal stress histories from the FE models. The
resulting values are calculated from the two nonlinear equations
by the secant method, and this gives j¼0.383 and WC¼790 MPa.

Calibrations have also been carried out for two of the three
special cases of the ECL criterion. The Cockcroft–Latham criterion
gives WC¼722 MPa, while the integral-based Tresca criterion
gives WC¼832 MPa. Both these criteria are calculated directly
from Eq. (15) utilizing the principal stress histories from the FE
models. These two criteria only need one test to be calibrated, but
the calibrated values given here are average values from the
tension and shear test, i.e., WC ¼ ðW tension

C þWshear
C Þ=2.

In the ERT criterion, the c parameter is set to 1.5 as in the
original RT criterion [12]. The initial and critical values of f were
not measured experimentally for Docol 600DL. However, Avra-
movic-Cingara et al. [32] measured the evolution of the void area
fraction in uniaxial tensile tests made from a 1.8 mm DP600 steel
sheet. In their study, the approximate values of the initial and
critical void area fractions were found to be 0.001 and 0.013,
respectively. By invoking the principle of Delesse, these values are
used here as f0 and fC in the calibration of the ERT criterion. Since
these values are small compared with unity, their exact values
will only influence the calibrated values of kg and ks. The average
value of the function o¼o(m), denoted oavg, in the uniaxial

Fig. 7. Elements used for calibration of fracture criteria: (a) uniaxial tension test and (b) in-plane shear test [25].
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tension and the in-plane shear tests, respectively, was found by
inserting mavg from Table 4 into Eq. (19). The parameters oavg and
sn
avg were then inserted into Eq. (20) together with f0, fC and c.

The resulting two algebraic equations gave kg¼0.509 and
ks¼1.154. The original RT criterion (i.e., ks¼0) was calibrated

based on the tension and shear tests. Using c¼1.5, ks¼0,
f0¼0.001 and fC¼0.013, the optimal value of the void growth
parameter was kg¼0.651. Note also that Rousselier [3] stated that
kg seems to depend on f0, and should be in the vicinity of 0.5–0.7
for initial void volume fractions of the order 10�3�10�4.

Fig. 8. Calibrated fracture surfaces in the ðsn ,m,ep
f
Þ space assuming proportional loading. The plane stress, generalized shear (m¼0), generalized tension (m¼�1) and

generalized compression (m¼þ1) loci are also plotted for comparison. Note that the range of the fracture strain differs significantly in the various plots.
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5. Evaluation of the fracture criteria

5.1. Ductility as function of stress state

The predicted fracture surfaces as function of the stress state
epf ðsn,mÞ for the six calibrated criteria are displayed in Fig. 8. The
figures also show the fracture loci for plane-stress, generalized
shear (m¼0), generalized tension (m¼�1) and generalized com-
pression (m¼þ1). The _epf and _epavg values from the tension and the

shear tests, see Table 4, were averaged and used in deriving the
fracture surface of the MMC and ECL criteria, respectively. Even
though Fig. 8 clearly displays the topology of the fracture surface
obtained with the different fracture criteria, it is difficult to
compare the experimental results to the predicted fracture strain
using these surfaces. To compare the experimental data with the
predicted fracture strains, 2D projections of the fracture loci
shown in Fig. 8 are given in Fig. 9 together with the experimental
values of the fracture strain epf versus average stress triaxiality

Fig. 9. Fracture loci in the ðsn ,epÞ space for the different criteria plotted together with the experimental fracture strains.
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sn
avg for the five tests. Since the stress states in the five test

specimens are close to plane stress, cf. Fig. 5(a), the distance
between the plane-stress fracture locus and the experimental
fracture points gives an indication of the accuracy of the fracture
criteria.

Figs. 8 and 9 show that the fracture surfaces of the MMC and the
ECL criteria have similar shape, but epf spans over a considerably
larger region for the MMC criterion. The reason is that a small
change in the equivalent stress at fracture (as a function of sn and m)
results in a large change in fracture strain for the MMC criterion. On
the other hand, for the ECL criterion a change in the plastic work per
unit volume at fracture yields an almost proportional change in the
fracture strain as long as the stress-state dependence parameter g is
close to unity. This is illustrated in Fig. 10(a) and (b). It is also shown
in Fig. 10(a) that a certain work hardening is needed for large strains
in the MMC criterion. If not, the predicted fracture strain will
approach infinity as the hardening saturates. This is the reason for
adding a tertiary term in the extended Voce rule. As can be seen
from Figs. 8 and 9, the ERT criterion predicts a span in epf that lies
between the MMC and the ECL criteria. The shape is not unlike the
shape of the MMC and ECL criteria, but since the function o (m) is
symmetric around m¼0, the ERT criterion does not, in contrast to
the MMC and the ECL criteria, distinguish between generalized
tension (m¼�1) and generalized compression (m¼þ1).

The Cockcroft–Latham criterion yields a fracture surface that
goes to infinity for a certain combination of (sn,m), i.e.,
3sn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p
þ3�m¼ 0. Two limiting cases are uniaxial compres-

sion ðsn,mÞ ¼ ð�1
3,1Þ, and biaxial compression ðsn,mÞ ¼ ð�2

3,�1Þ.
This is seen from Eq. (16) with g¼1 and j¼1, and explains the
higher values for epf compared to the ECL criterion in Fig. 8. The
fracture surface obtained with the integral-based Tresca criterion
is, on the other hand, not much affected by a variation of (sn,m).
This can be seen from Eq. (16) with g¼1 and j¼0, i.e.,R
sdep ¼WC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2

p
=2. The fracture surface is only affected by

the Lode parameter, and the minimum value of the plastic work
per unit volume at fracture is 87% of the maximum value. From
Fig. 10 it is seen that epf is approximately proportional to the
plastic work per unit volume. It is noted that the integral-based
Tresca criterion behaves very similar to the Freudenthal criterion
which gives a constant value for the fracture strain. In contrast to
the integral-based Tresca criterion, the Rice–Tracey criterion is
Lode independent, as can be seen in Figs. 8 and 9. The criterion
predicts a decreasing epf for increasing s

n, as is evident from Fig. 9.
The variation in epf is approximately in the same range as for the
ERT criterion. In fact, the effect of the shear modification (ks) on

the ERT fracture surface is lower values of epf in generalized shear
(m¼0) and higher values in axisymmetric stress states (m¼71).
It can also be seen from Fig. 9 that the effect of the ks parameter is
decreasing for increasing stress triaxiality.

5.2. Damage accumulation

The fracture loci depicted in Fig. 9 do not give information on
the damage accumulation of the various criteria. In order to get
information on the damage accumulation histories of the fracture
criteria as well as an accurate measure of their predictions of
fracture initiation, they were integrated in time using the actual
stress and strain histories at the location of fracture in the
different specimens. In the FE models, the element at the location
of fracture initiation in the experimental tests was determined.
The time histories of equivalent plastic strain ep tð Þ and the
principal stresses, sI(t),sII(t),sIII(t), at the critical location were
then used in the temporal integration of the damage evolution
rule defined by the different fracture criteria. The time of fracture,
tf, was defined by the condition D (tf)¼1 and the corresponding
fracture strain is determined as epf ¼ epðtf Þ. The damage evolution
as function of equivalent strain given by each fracture criterion is
displayed in Fig. 11 for the uniaxial tension, plane-strain tension
and in-plane shear tests, and in Fig. 12 for the modified Arcan
tests. The fracture strain in each test found from the hybrid
experimental–numerical procedure [25] is also displayed in
Figs. 11 and 12. By inspecting the damage evolution curves in
Figs. 11 and 12, it is clear that the MMC, ECL, CL and IT criteria
gives an almost linear relation between damage and plastic strain.
An exception is the MMC criterion when applied on the data from
the uniaxial tension test. This anomaly is due to the fact that the
MMC criterion initially predicts epf � 1:8, a value that decreases
rapidly when sn increases after diffuse necking, thus changing the
size in the damage increment, see Eq. (14). The RT and ERT criteria
display an exponential increase in damage as function of equiva-
lent strain in all the tests. This damage evolution is similar in
shape as the evolution of the area void fraction in a DP600 steel
investigated by Avramovic-Cingara et al. [32].

5.3. Prediction of fracture initiation

As seen from Fig. 11, all criteria give reasonable predictions of
the fracture strain in the uniaxial tension and in-plane shear tests,
while the MMC, ERT and RT criteria predicts a too low ductility in

Fig. 10. (a) Flow stress versus equivalent plastic strain ðs�epÞ and (b) plastic work per unit volume versus equivalent plastic strain, ðR sdep�epÞ. The figure illustrates how

small variations in the flow stress and plastic work density influence the equivalent plastic strain to different degrees.
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the plane-strain tension test. This is coherent with the plane-
stress fracture loci of the fracture criteria depicted in Fig. 9. As
displayed in Fig. 12, the various fracture criteria predicts

reasonable well the ductility in the Arcan-45 test, except the
MMC criterion which predicts very high ductility. Fig. 5(a) shows
that the Arcan-45 test lies exactly on the generalized tension

Fig. 11. Damage evolution as function of equivalent plastic strain for the various fracture criteria in the uniaxial tension, in-plane shear and plane-strain tension tests. The

fracture strain determined for each test through the experimental–numerical analysis is also plotted.
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locus (m¼�1), and close to the plane stress locus. By inspecting
the generalized tension and plane stress fracture loci for the MMC
criterion in Fig. 9, it is observed that these two loci predict
significantly different ductility for the stress triaxiality value of
the Arcan-45 test. This illustrates the difficulty of evaluating
fracture initiation in the ðsn,epÞ space unless the experimental
tests are placed exactly on or at least very close to the plane-stress
locus. In the Arcan-90 test, the MMC criterion predicts high ductility,
the RT criterion predicts low ductility, and the other criteria give
good predictions of the fracture initiation, as illustrated in Fig. 12.
The root-mean-square error (RMSE) for the predicted fracture strain
relative to the measured one was calculated for each of the criteria.
This resulted in; RMSEMMC¼0.393, RMSEECL¼0.023, RMSECL¼
0.080, RMSEIT¼0.060, RMSEERT¼0.096 and RMSERT¼0.153. The
high RMSE for the MMC criterion mainly stems from the large
deviation in the Arcan-45 test. It is further noted that the ECL, CL
and IT criteria yields lower RMSEs than the ERT and RT criteria, and
that the ECL criterion clearly gives the lowest RMSE of all criteria.

A second calibration of the fracture criteria were also carried
out on the dataset extracted by DIC measurements from the
surface of the 16 tests described in Section 2. The average values
of stress triaxiality and Lode parameter, sn

avg and mavg, and the

fracture strain, ef , for the 16 tests are found in [21]. In the
assessment of the criteria using this dataset, the strain-rate sensi-
tivity of the material was not included in the MMC criterion and the
various criteria in the ECL criterion. In the fitting process, an
optimization procedure was applied where the RMSE for each
criterion was minimized. Fig. 13 presents the plane-stress loci of
the fracture criteria in the sn2ep space compared to the experi-
mental data. Since the surface of the specimens is in a state of plane
stress, the plane-stress locus gives a good estimation of the fracture
strains obtained with the various criteria. As can be seen from
Fig. 13, the ECL criterion once again captures the experimental
results well, having a RMSE of 0.083 which is approximately half of
the RMSEs for the CL, IT and ERT criteria and approximately one
third of the RMSEs for the MMC and RT criteria.

6. Discussion

The fracture criteria adopted in this study are based on
different assumptions. The MMC criterion starts from the stress-
based MC criterion, which is used to find the fracture strain for a
given stress state, and then a damage accumulation rule is used to

Fig. 12. Damage evolution as function of equivalent plastic strain for the various fracture criteria in the modified Arcan tests together with the fracture strains determined

for both tests through the experimental–numerical analysis.
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calculate the damage evolution. Since the MC criterion is stress
based, small changes in stress state may induce large changes in
fracture strain as seen in Fig. 10(a). In the ECL criterion, damage is
driven by the plastic power multiplied by an amplification factor
accounting for the stress state. Depending on the amplification
factor, the criterion may be made more or less sensitive to the
stress state. The ERT criterion is based on a damage growth
expression given by Eq. (18). In contrast to the MMC and ECL
criteria, the constitutive parameters are not included in the
expression of the predicted fracture strain, ef .

When the fracture criteria were applied on the data obtained
from the centre of the specimens [25], which displayed low
variation in fracture strain, the intrinsic properties of the MMC,
ERT and RT criteria forced the criteria to predict a large range in
fracture strain. This is in contrast to the ECL, CL and IT criteria,
which predicted a small variation in fracture strain within the
stress range of the experiments. On the other hand, when the
criteria were applied on the dataset obtained from the surface of
the specimens [21,25], including the formability tests which had a
significant variation in ductility, the ECL criterion displayed a
large range in ef , while the CL and IT criteria displayed low
variation in ef as these criteria do not include the stress-state
dependency parameter g. The MMC criterion exaggerates the
range of ef also when compared to the data from the formability
tests, while the ERT criterion captured the trend from the
experiments, but displayed too high ductility in uniaxial tension
and too low ductility in biaxial tension. The RT criterion predicted
a decreasing ef for increasing sn and did not capture the high
ductility in the biaxial tension tests. Of the six criteria, the ECL
criterion seems to be the only one that predicts a low range in
fracture strain on the dataset with low variation in ductility and

at the same time predicts a large variation in fracture strain on
the dataset that displayed a large variation in ductility. It is noted
that the ECL criterion is a function of three parameters while the
other criteria are functions of two parameters (MMC and ERT) or
one parameter (CL, IT and RT). Thus, the ECL criterion has more
flexibility compared to the other criteria. It is further noted that
the ERT criterion would fit better to the two datasets if the c
parameter also was considered as a variable, and that the MMC
criterion would predict a smaller range in fracture strain, thus
fitting the fracture datasets better, if a larger work hardening for
large strains was assumed.

While the MMC and ECL criteria predict an almost linear damage
evolution as function of equivalent plastic strain, the exponential
shape of the damage evolution in the ERT and RT criteria is similar
to the evolution of the porosity as function of through-thickness
strain of the DP600 steel investigated by Avramovic-Cingara et al.
[32]. If the fracture criteria were to be used in numerical simulations
in combination with e.g., the element erosion technique, the shape
of the damage evolution is not important as long as the fracture
criterion is not coupled to the constitutive equation. If the fracture
criterion is coupled to the constitutive equation, the MMC, ECL, CL
and IT criteria would introduce too much softening in the early
stages of simulation due to the nearly linear relation between the
damage and the equivalent strain, while the ERT and the RT criterion
would give a more realistic softening. Xue and Wierzbicki [33]
employed a damage evolution rule similar to Eq. (14) in simulations
of three-point bending and compact tension specimens made of
aluminium alloy 2024-T351. In that study an exponential weaken-
ing factor in the coupling with the stress tensor was introduced. The
weakening factor made it possible to reduce the influence of damage
on the constitutive relation for small and moderate strains.

7. Conclusions

Several ductile fracture criteria have been evaluated against the
fracture characteristics of the dual-phase steel Docol 600DL. The
fracture properties of the material were determined through a
hybrid experimental-numerical procedure from the centre of speci-
mens employed in uniaxial tension, plane-strain tension, in-plane
shear and modified Arcan tests. In addition, a dataset from the
surface of the specimens based on DIC measurements were applied,
and in this dataset the fracture parameters from Marciniak–
Kuczynski and Nakajima formability tests were included. The
experimental–numerical dataset from the centre of the specimens,
which is suitable for calibration of numerical models with 3D solid
elements, showed moderate variation of the fracture strain as a
function of the stress triaxiality. On the other hand, the dataset
from the surface of the specimens, which is suitable for calibration
of numerical models with plane-stress elements, displayed a sig-
nificant drop in fracture strain in the formability tests exposed to
plane-strain tension loading. All the tests displayed macroscopically
ductile behaviour with large strains before fracture, efc0:1, and by
inspection of the fracture surfaces of selected specimens in a
scanning electron microscope, it was found that all specimens
displayed ductile fracture with dimples.

The modified Mohr–Coulomb (MMC) fracture criterion and
novel extended versions of the Cockcroft–Latham (ECL) and Rice–
Tracey (ERT) fracture criteria, all of which explicitly accounts for
the stress triaxiality and the Lode dependence on the damage
evolution, were evaluated for the material. The predicted fracture
strain as function of stress-state for each criterion was evaluated,
and it was found that the MMC fracture criterion predicts a large
variation in the fracture strain as function of stress-state due to
the coupling with the flow stress. The ECL criterion displays the
same shape as the MMC criterion in the ðsn,m,epÞ space, but can

Fig. 13. ef versus sn
avg from all tests derived from optical measurements on the

surface of the specimens compared with the fracture loci obtained with the

(a) MMC, ECL and ERT criteria and (b) the IT, ERT and RT criteria. The root-mean-

square error (RMSE) for each criterion is given in the legend.
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adjust the range of predicted fracture strain through a fitting
parameter. Both the MMC and ECL criteria predicts a larger
fracture strain in generalized compression than in generalized
tension for the same stress triaxiality, while the ERT criterion
predicts the same fracture strain for the two axisymmetric stress
states. The range of the fracture strain obtained with the ERT
criterion is less than the range found by the MMC criterion. The
damage accumulation for the MMC and ECL criterion is almost
linear with the equivalent plastic strain, while it is exponential for
the ERT criterion. The shape of the exponential damage evolution
is similar to the evolution of void area fraction in a comparable
steel. For each criterion, the predicted and experimental equiva-
lent strains at fracture initiation were compared for the two
datasets, respectively from the centre and surface of the speci-
mens. Due to its flexibility, the ECL criterion proved to give a good
representation of both datasets, while somewhat larger devia-
tions were observed using the ERT and the MMC criteria.
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Abstract

The modified Mohr-Coulomb and the extended Cockcroft-Latham fracture criteria are used in explicit 

finite-element simulations of ductile crack propagation in a dual-phase steel sheet. The sheet is discretized 

using tri-linear solid elements and the element erosion technique is used to model the crack propagation. 

The numerical results are compared to quasi-static experiments conducted with five types of specimens 

(uniaxial tension, plane-strain tension, shear, 45° and 90° modified Arcan) made from a 2 mm thick sheet 

of the dual-phase steel Docol 600DL. The rate-dependent J2 flow theory with isotropic hardening was 

used in the simulations. The predicted crack paths and the force-displacement curves were quite similar in 

the simulations with the different fracture criteria. Except for the 45° modified Arcan test, the predicted 

crack paths were in good agreement with the experimental findings. The effect of using a high-exponent 

yield function in the prediction of the crack path was also investigated, and it was found that this

improved the crack path prediction for the 45° modified Arcan test. In simulations carried out on finite 

element models with a denser spatial discretization, the prediction of localized necking and crack 

propagation was in better accordance with the experimental observations. In four out of five specimen 

geometries, a through-thickness shear fracture was observed in the experiments. By introducing strain 

softening in the material model and applying a dense spatial discretization, the slant fracture mode was 

captured in the numerical models. This did not give a significant change in the global behaviour as 

represented by the force-displacement curves.

Keywords: Crack propagation; Dual phase steel; Ductile fracture; Finite element method; Material 

instability
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1 Introduction

Various approaches exist for predicting fracture initiation and crack propagation 

numerically. In problems involving ductile materials, the failure criteria typically 

express the deterioration of the material by an accumulative damage variable. The 

damage variable can be coupled with the constitutive relation of the material as in

porous plasticity models e.g. Shima and Oyane (1976), Gurson (1977) and Rousselier 

(1987), or continuum damage mechanics models Lemaitre and Chaboche (1990) and 

Lemaitre (1992). Another approach is utilized in the uncoupled models e.g. Cockcroft 

and Latham (1968), Wilkins (1980) and Johnson and Cook (1985), where the damage 

has no effect on the constitutive behaviour. As most ductile failure criteria depend on 

the deformation history of the material, it is crucial that the numerical model is capable 

of describing the deformation processes taking place before fracture in order to make 

good predictions of fracture initiation and crack propagation. Stochastic variations of 

the material characteristics may also influence the results to various degrees depending 

on the problem at hand see e.g. Fyllingen et al. (2007) and Dørum et al. (2009). A range 

of techniques exists for simulating crack propagation with the Finite Element (FE) 

method, such as node splitting (Kazutake, 1999; Komori, 2005), cohesive elements

(Needleman, 1990; Tvergaard and Hutchinson, 1996; Tvergaard, 2001), remeshing 

adaptivity (Bouchard et al., 2000; Mediavilla et al., 2006) and the extended finite 

element method (Areias, 2006; Fagerström and Larsson, 2006). A method that is 

relatively simple, robust and has proven to work well in problems involving large 

deformations is the element erosion technique (Xue and Wierzbicki, 2008; Fagerholt et 

al., 2010; Kane et al., 2011). In this technique, the load-carrying capacity of the element 

is set to zero when the fracture criterion is met at one or more integration points. 

In this study, the modified Mohr-Coulomb criterion presented by Bai and 

Wierzbicki (2010) and the extended Cockcroft-Latham criterion presented by Gruben et 

al. (2012a) are used in explicit finite-element simulations of ductile crack propagation in 

a low-strength, high-hardening dual-phase steel, and the results are compared to 

experimental data reported by Gruben et al. (2011). The fracture criteria have been 

calibrated and assessed with respect to fracture initiation for this material by 



Gruben et al. (2012a), under assumption of 2J flow theory. In this study, the fracture 

criteria are evaluated with respect to fracture propagation by use of FE analyses in 

combination with the element erosion technique. It is shown that the fracture criteria 

neither give large variations in the predicted crack paths nor in the force-displacement 

curves. Additionally, the effect of the shape of the yield surface on the fracture 

propagation is studied. It is shown that for moderate changes in the yield surface, the 

effects on the crack paths and the force-displacement curves are small in the single-

mode fracture tests. In the mixed-mode fracture test, a higher exponent of the yield 

surface gives a better prediction compared to the experiment. The effects of mesh 

refinement and coupled damage have also been studied. Mesh refinement leads to more 

rapid strain localization, followed by a more rapid global failure. By including strain 

softening on the dense-mesh FE models, it is possible to numerically predict slant 

fracture, but this has virtually no influence on the global response in terms of force-

displacement curves.

2 Experiments

Gruben et al. (2011) carried out experiments on specimens in the low range of stress 

triaxiality. A description of the material and test set-ups is briefly repeated here,

together with supplementary information on the material from more recent studies.

Finally, a detailed discussion of the crack propagation in the various test specimens is 

given.

The material used was a low-strength, high-hardening, steel of type Docol 

600DL. This is a dual-phase steel where the ferrite gives the formability and the 

martensite gives the strength. The chemical composition of the material is given in 

Table 1. Fig. 1 displays the geometry of the four different specimen types used (uniaxial 

tension, plane-strain tension, in-plane shear and modified Arcan) in the rectangular 

coordinate system defined by the base vectors X Y Z( , , )e e e . Fig. 2 displays the test set-up

for the modified Arcan tests. Here the angle was set to respectively 45 and 90 . All 

specimens were cut from a 2 mm thick steel sheet with the longitudinal axis in the 



rolling direction, except the uniaxial tension tests, which also were cut 45 and 90 to 

the rolling direction in order to determine the anisotropy of the material. The 

experiments were conducted under displacement control at room temperature with pre-

necking strain rates in the vicinity of 3 110  s . The force and displacement were 

measured in each test by the hydraulic test machine. In addition, an in-house digital 

image correlation (DIC) code (Fagerholt, 2012) was used to measure the displacement 

fields and to calculate the strain fields. The force-displacement ( )F u curves from 

typical tests in the five set-ups are given in Fig. 3. The fracture characteristics of the 

material were determined at the through-thickness centre of the specimens by a hybrid 

experimental-numerical procedure, and at the surface of the specimens by utilizing an

experimental procedure based on optical measurements. It was found that the variation 

in ductility as function of stress state was rather small for the stress states investigated 

and that the range in ductility was somewhat larger on the surface than in the centre. It 

was further argued that for calibration of 3D solid elements the data from the through-

thickness centre should be used, while for plane-stress elements the data from the 

surface are relevant. A more recent study of the fracture surfaces of the specimens by 

scanning electron microscopy (Gruben et al., 2012a) showed that the governing fracture 

mechanism in the tests was nucleation, growth and coalescence of microvoids. This 

observation is supported by a study comprising formability tests on material from the 

same batch (Gruben et al., 2012b). The formability tests revealed that the material 

displays a significantly lower ductility in plane-strain tension than in uniaxial tension 

and biaxial tension.

Table 1 Chemical composition of Docol 600DL (in wt. %),(SSAB, 2009).

C Si Mn P S Altot

0.10 0.40 1.50 0.010 0.002 0.040



Fig. 1 Geometry of the test specimens (in mm): (a) uniaxial tension, (b) plane-strain 
tension, (c) in-plane shear, and (d) modified Arcan (Gruben et al., 2011).

Fig. 2 (a) Modified Arcan test set-up with 45 , and (b) sketch of brackets with 
specimen defining the loading direction (Gruben et al., 2011).



Fig. 3 Force-displacement curves from experiments and simulations with J2 flow 
theory and the four fracture criteria.

Three parallels of the uniaxial tension test were performed on specimens cut 0 ,

45 and 90 to the rolling direction (a total of nine tests). Only small variations could 

be observed in the force-displacement curves, and the plastic flow was assumed to be 

nearly isotropic (Gruben et al., 2011). The force-displacement curves from two typical 

tests in the rolling direction are displayed in Fig. 3. From the hardening law fitted to one 

of the tests in the rolling direction, see Equation (1) below, the Considère criterion 

estimates diffuse necking to take place at an equivalent plastic strain of 0.18 (ignoring 

strain rate effects). By using Hill’s criterion, localized necking is predicted at an 

equivalent plastic strain of 0.31. The equivalent strain at fracture, henceforth called the 

fracture strain, was calculated from DIC measurements and found to be 0.82. The 

characteristic element size used in the DIC analysis was 0.9 mm. This value of the 

fracture strain refers to fracture initiation and is valid for the surface of the specimen. 

The fracture strain has also been determined by calculating the logarithmic strain from 

the area reduction at fracture, i.e. 0ln( / )f fA A , (Johnsen, 2009). Here 0A is the 

initial cross-section area, and fA is the projection of the cross-section area in the Xe



plane at global failure. This approach resulted in a fracture strain 0.80f for the same 

specimen. For the nine tests an average fracture strain 0.81f with a standard 

deviation of 0.03 was found from the area reduction measurement. This indicates that 

the material is isotropic also with respect to fracture. From the finite element analysis 

conducted by Gruben et al. (2011), it was found that the equivalent plastic strain at 

fracture is larger at the centre of the specimen. Here it is estimated to 0.85 by a finite 

element analysis using 3D solid elements with a characteristic size of 0.38 mm. This 

simulation did however not capture the through-thickness shear bands observed in the 

specimens during testing. Experimentally the crack appeared within these shear bands in 

all nine tests, but three different modes were observed, see Fig. 4(a-c). The first mode is 

a slant fracture where the fracture plane is approximately 43 to Ze , see Fig. 4(b), with 

in-plane direction parallel to Ye , as illustrated in Fig. 4(c). Only one of the nine tests 

exhibited this mode. The second mode is a double through-thickness shear mode, or a 

V-mode; see Fig. 4(b). The V-mode displayed in-plane localization inclined 

approximately 22 in all three tests where it appeared; cf. specimen 2 in Fig. 4(c). The 

third mode is a combination of the two first modes, and was observed in five tests. In all 

the tests fracture initiated at the in-plane centre of the neck and propagated to the edges 

in less than 0.5 s corresponding to a actuator displacement increment 0.017 mmu .

In the plane-strain tension tests, fracture initiated in the in-plane centre of the 

specimens and propagated roughly perpendicular to the loading direction; see Fig. 4(d). 

At the centre of the specimen, a rough surface was observed, but shear-lips were present 

also in this area as illustrated in Fig. 4(d). A slant fracture mode occurred as the crack 

propagated towards the edges, as displayed in Fig. 4(d). As seen in Fig. 3, global failure 

occurred approximately 0.47 mmu after fracture initiation.



The in-plane shear tests displayed a flat crack surface through the sheet thickness 

as illustrated in Fig. 4(e). Due to rotation of the material during the test, the crack 

surface was rotated approximately 22 with respect to Xe , as displayed in Fig. 4(f). The 

fracture mode was the same in both tests, and global failure occurred in the instant that 

fracture initiated. From the force-displacement curves in Fig. 3, a small drop in force is

observed in the last part of the curve. This may be due to a combination of material 

softening and a small reduction of the shear area.

Fig. 4 Pictures (a), (b) and (c) display the three different modes of fracture in the 
uniaxial tension tests, where “1” is the slant fracture, “2” is the V-mode and “3” 
is a combination of “1” and “2”. Picture (d) shows fracture in the plane-strain 
tension test, while picture (e) and (f) illustrate fracture in the in-plane shear test.



The two Arcan-45 tests were exposed to a mixed-mode loading resulting in a 

curved crack path as displayed in Fig. 5(a). Fracture initiated in the notch root in a V-

mode at a displacement 7 mmu , but after less than 1 mm propagation it turned into a 

slant fracture mode, see Fig. 5(b). In both tests the crack then propagated uniformly in 

this mode until 11.5 mmu . Here the crack got arrested and did not propagate further 

until the specimen failed completely at 12.5 mmu . In this last 1
10 of the crack path,

in-plane shear localization occurred and produced a flat-fracture mode similar to the one 

observed in the in-plane shear tests, see Fig. 5(a) and Fig. 5(b). The point of fracture 

initiation can be seen in the force-displacement curve in Fig. 3 as a sudden drop in the 

force level when 7 mmu , while the in-plane shear failure can be seen as the drop in 

force at 12.5 mmu . At 10 mmu , the force curve flattens out. This may be due to a 

kinematic artefact stemming from the rotation of the specimens and the brackets. 

For the Arcan-90 tests, fracture initiated in the centre of the notch and 

propagated in a direction nearly parallel to Ye as displayed in Fig. 5(c). In both tests, 

the crack was in a V-mode at first. The tests exhibited this mode as the crack propagated 

approximately 2 mm and 5 mm, respectively, as displayed in Fig. 5(d). The crack then 

switched to a slant fracture mode. In one of the tests, the crack propagated in the same 

slant fracture mode until global failure, while in the other test the crack switched to the 

other shear band halfway through the specimen, see Fig. 5(d). As can be seen from the 

force-displacement curves in Fig. 3, the force level flattens out in a similar way as in the 

Arcan-45 tests in the last part of the curve before global failure. From the DIC analysis 

it was observed that the crack propagation velocity decreased in the final stages of the 

test. The reduction of the crack propagation velocity might be due to the rotation of the 

specimens and brackets.



Fig. 5 Pictures (a) and (b) display fracture of the Arcan-45 tests. Fracture started in a 
V-mode and then propagated in a slant fracture mode before the crack got 
arrested and finally ended in a flat shear mode. Pictures (c) and (d) display 
fracture of the Arcan-90 tests, where fracture initiated in a V-mode and 
continued in a slant fracture mode to global failure.

3 Numerical modelling

The spatial discretizations and boundary conditions of the FE models in this study are 

based on the models described by Gruben et al. (2011). In this study the simulations 

were run with the explicit solver of LS-DYNA version 971 (LSTC, 2007) with the 

constitutive model and fracture criteria described below implemented as a user-defined 

material model. The modified Arcan specimens were discretized with a random element 

distribution in the Ze plane, while the other models had a structured mesh. The 

discretizations are displayed in Fig. 6. In all these models nine elements were used over

the thickness, giving an initial element height of 0.22 mm. Table 2 gives the in-plane 

element size in the different models. In addition, models of the uniaxial tension, plane-

strain tension and in-plane shear tests with finer discretizations were made. Fig. 7

illustrates the discretization of the uniaxial tension specimen with finer mesh. A small 



geometric trigger was used in this model to obtain diffuse necking in the centre of the 

zone with finer mesh. Since the elements undergo large deformations before fracture, 

the initial aspect ratio of the elements in the fracture zone of the uniaxial tension and 

plane-strain tension dense-mesh models were made so that the elements had a nearly

cubic shape at the point of failure. The final density of the mesh in the dense-mesh 

models was found at the point where a denser mesh did not produce a significant change 

in the fracture mode. The FE models with the fine discretization have 18 elements in the 

thickness direction, corresponding to an initial height of 0.11 mm. The characteristic in-

plane element sizes of the dense-mesh FE models are summed up in Table 2. The 

modified Arcan tests were not simulated with denser mesh, since the computational 

time was too long. The elements used in the coarse-mesh FE models in Sections 5.1 and 

5.2 below were eight-node, trilinear solids with selectively reduced integration (Type 2 

in LS-DYNA). Due to computational costs, eight-node, trilinear solid elements with 

reduced integration (Type 1 in LS-DYNA) were utilized in the FE models in Section 5.3

below. The simulation time was reduced by a factor 510 to maintain a reasonable 

computational time. Control with the kinetic energy and comparisons with simulations 

using implicit time-integration showed that this time scaling is admissible. The 

reference strain rate 0 in Equation (1) was increased by a factor 105 to maintain the 

correct proportions due to the time scaling.

Table 2 Characteristic initial in-plane element size used in the FE models with 

coarse and fine discretization (in mm).

Uniaxial 
tension

Plane-strain 
tension

In-plane 
shear

Modified 
Arcan

0.50 0.46 0.10 0.36
0.077 0.065 0.064 —



Fig. 6 Finite element meshes of the test specimens: (a) uniaxial tension, (b) plane-strain 
tension, (c) in-plane shear and (d) modified Arcan.

Fig. 7 Discretization of uniaxial tension specimen with dense mesh.



3.1 Constitutive relation

3.1.1 Work hardening

The work hardening of the material was fitted to the extended Voce rule with a 

multiplicative viscosity-hardening law as (Gruben et al., 2012a)

3

0
1 0

1 exp( ) 1
qp

p
i i

i
Q C (1)

where is the equivalent stress defined by the yield criterion, 0 is a material 

parameter representing the yield stress, and iQ and iC ( 1, 2,3)i are material 

parameters governing in turn the primary, secondary and tertiary hardening of the 

material. The parameters q and 0 are material constants defining the strain-rate 

sensitivity of the material. The strain-rate sensitivity was not investigated 

experimentally for this material, but reasonable values for dual-phase steels (Tarigopula 

et al., 2006; Curtze, 2009) were used. The hardening parameters were found by a fit of 

the Cauchy stress – logarithmic plastic strain curve from the uniaxial tension test up to 

diffuse necking, and by inverse modelling for large strains using the uniaxial tension 

and in-plane shear tests. Table 3 gives the work-hardening parameters for the material. 

Table 3 Parameters in the rate-dependent extended Voce hardening model in the 
uncoupled (top row) and coupled (bottom row) damage model. The high 
value of 0 is due to time-scaling.

0  [MPa] 1  [MPa]Q 1C 2  [MPa]Q 2C 3  [MPa]Q 3C 1
0  [s ] q

286.2 287.9 34.93 341.1 5.00 6000 0.01 100 0.005
287.1 297.1 33.72 339.4 4.63 6000 0.01 100 0.005

3.1.2 Yield function

The plastic flow of the material was found to be virtually isotropic, and the modelling in

the previous studies (Gruben et al., 2011; Gruben et al., 2012a) was done by the 2J flow 

theory. It was discussed by Gruben et al. (2011) that a high exponent yield function 

might give a better description of the material’s yield surface. As part of this study, a 

high-exponent, isotropic yield function, as proposed by Hershey (1954), was used to 



investigate the effect of the shape of the yield surface. The equivalent stress is expressed 

as   

2 2 22
1 ( ) ( ) ( )
2

k k kk
I II II III III I (2)

where ,  , ,i i I II III are the principal stresses ordered so that I II III , and the 

integer k controls the curvature of the yield surface. The von Mises yield surface is 

obtained with 1k , while k gives the Tresca yield surface. Previous studies 

(Hutchinson, 1964a, b) have indicated that the yield surface of BCC materials is closer 

to the von Mises yield surface, while for FCC materials it is closer to the Tresca yield 

surface. The Docol 600DL material mainly consists of ferrite (BCC) and martensite 

(BCT).

3.1.3 Damage coupling 

In general, material softening is the macroscopic effect of adiabatic heating or micro-

porosity during plastic deformation. Xue and Wierzbicki (2008) presented a 

phenomenological model introducing material softening due to micro-porosity as

(1 )D (3)

where is the effective Cauchy stress assumed to act on the un-deteriorated matrix 

material, 0 CD D is the damage parameter and 0 is the weakening factor 

controlling the influence of the accumulated damage on the Cauchy stress tensor . If

D is larger than the critical value, CD , the element loses its load-carrying capacity and 

is deleted. In this study, it was chosen that the element is deleted if CD is reached in one 

integration point, even if the element have several integration points. Further, the CD

value was set to 0.995 to ensure that the equivalent stress of the damaged material 

always stayed positive in the beginning of the next time increment. Note that the 

limiting value leads to no coupling between the damage and the Cauchy stress

tensor. The damage coupling procedure used is similar to the methodology described by 

de Borst (2004), i.e. is substituted in all constitutive relations.



3.2 Fracture criteria

3.2.1 The modified Mohr-Coulomb criterion

The Mohr-Coulomb fracture criterion is expressed in the stress space as

1 2nc c (4)

where is the shear stress and n is the normal stress at fracture on the critical plane 

of the material. The material constant 1c is often referred to as the friction, while 2c is 

the cohesion. An alternative formulation of the Mohr-Coulomb criterion is

2

2
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Here VM is the von Mises equivalent stress, i.e. 1k in Equation (2), while is the 

stress triaxiality and is the Lode parameter (Lode, 1926), defined as

2,
3

I II III II I III

VM I III

(6)

A modified version of the Mohr-Coulomb criterion for ductile fracture was introduced 

by Bai and Wierzbicki (2010). This modified version utilizes a calculated fracture strain 

that depends on the stress state, ( )p p
f f . Gruben et al. (2012a) estimated the 

fracture strain p
f by replacing VM in Equation (5) with the expression for the work 

hardening, Equation (1). In the case of a Hershey yield function, a modification is 

needed to have consistency between the constitutive relation and the fracture criterion. 

It can be shown that the relation between the von Mises equivalent stress and the 

Hershey effective stress from Equation (2) is expressed by the Lode parameter, , and 

the integer k as
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In order to estimate the fracture strain, p
f , the equivalent stress, , in Equation (7) is 

replaced with the expression from Equation (1), and the resulting expression for VM is

inserted into Equation (5). The modified Mohr-Coulomb criterion (MMC) may then be 

expressed as a damage parameter

0

p p

p
f

dD (8)

where fracture initiates when D equals unity.

3.2.2 The extended Cockcroft-Latham criterion

The extended Cockcroft-Latham (ECL) criterion was introduced by Gruben et al. 

(2012a), and is expressed as 

0

1 1
p

pI I III

C

D d
W

(9)

where is the Macaulay brackets and 0CW , 0 1 and 0 are the fracture 

parameters. The overall ductility of the material is defined through CW , while 

weights the influence of the major principal stress and the maximum shear stress, and 

controls the strength of the stress-state dependence. As for the MMC criterion, fracture 

is assumed to initiate when D equals unity. The ECL criterion is a generalization of 

several other fracture criteria. By setting 1 an integral-based representation of the 

Mohr-Coulomb criterion is obtained, where the special case 1,  0 gives the 

Integral-based Tresca (IT) criterion (Gruben et al., 2012a). The combination 

1,  1 gives the Cockcroft-Latham (CL) criterion (Cockcroft and Latham, 1968),

while 0 gives the Freudenthal criterion (Freudenthal, 1950).



4 Calibration of fracture criteria

The fracture models presented in Section 3.2 were calibrated by Gruben et al. (2012a)

under the assumption of 2J flow utilizing the data from the centre of the specimens 

obtained by the hybrid experimental-numerical procedure conducted by Gruben et al. 

(2011). These calibrations were based on FE models with coarse mesh similar to the 

ones described in the beginning of Section 3, see Table 2. More calibrations based on 

the coarse-mesh FE models have been carried out with the Hershey yield function, using 

the same procedures as Gruben and co-workers (2011; 2012a). The in-plane shear test 

and the uniaxial tension test were used to calibrate the MMC, CL and IT criteria. For the 

ECL criterion, additional data from the plane-strain tension test were used, and the 

criterion was calibrated for yield functions with 1,3, 4k . Table 4 gives the results 

from the calibrations. The fracture strain loci in the ( , )p
f space defined by the 

various fracture criteria, assuming proportional loading and plane-stress, are displayed

in Fig. 8 for 1k ( 2J flow theory) and 4k . The exponent k in the yield function 

does affect the predicted fracture strain, especially for the MMC and the ECL criteria.

For the MMC criterion, the 4k calibration led to a lower value of , which again led 

to lower dependency of the stress triaxiality, cf. Equation (5). In the ECL calibrations, it

is seen from Table 4 that a higher value of k leads to a higher value of the stress-state 

dependency parameter, , which is followed by a larger range in the predicted fracture 

strain as function of stress state.



Table 4 Calibrated fracture parameters for Docol 600DL.

Fracture criterion / CC W

Modified Mohr-Coulomb ( 1k ) 1037 0.208 —
Modified Mohr-Coulomb ( 4k ) 1033 0.078 —
Extended Cockcroft-Latham  ( 1k ) 815 0.335 1.55
Extended Cockcroft-Latham ( 3k ) 886 0.192 3.02
Extended Cockcroft-Latham ( 4k ) 1035 0.0884 5.75
Cockcroft-Latham ( 1k ) 725 1.000 1.00
Cockcroft-Latham ( 4k ) 722 1.000 1.00
Integral-based Tresca ( 1k ) 834 0.000 1.00
Integral-based Tresca ( 4k ) 801 0.000 1.00
ECL, dense mesh  ( 1,   k ) 888 0.335 1.55
ECL, dense mesh  ( 1,   6k ) 1033 0.335 1.55

Fig. 8 Calibrated fracture locus ( , )p
f for the various fracture criteria under the 

assumption of proportional loading and plane stress. (a) J2 flow theory ( 1)k ,
and (b) Hershey yield surface ( 4)k . The avg( , )p

f values for the three tests 
used in calibration of the ECL criterion are also plotted.

The dense-mesh FE simulations, with and without damage softening, displayed 

increased strain gradients compared to the coarse-mesh FE simulations. Accordingly,

the fracture strain in the dense-mesh FE simulations increased, and it was found that the

increase in ductility was approximately 7 % in the case without softening. To account 



for this, a new set of input parameters had to be determined for the dense-mesh FE 

models. Simulations of the uniaxial tension test were used to scale the parameters in the 

material model with the ECL criterion and the von Mises yield surface. It was assumed 

that the weighting between the major principal stress and the maximum shear stress, ,

as well as the stress-state dependence, , was unaffected by mesh refinement and 

damage softening. Thus, the only fracture parameter to be adjusted was the ductility 

parameter, CW . It was found that the relation between D and p in the uniaxial tension 

test simulation with uncoupled damage was given a good approximation by 
1.25( ) ( / )p p p

fD . Since CW is used in normalizing D , cf. Equation (9), the CW

value was scaled by a factor 1.251.07 to account for the increased fracture strain due to 

mesh refinement. For the case with dense mesh and coupled damage the calibration was 

more involved. Here it was postulated that the plastic work per volume up to fracture,

0

p
f pd , is invariant to material softening. In order to ensure this, the work hardening 

parameters, 0 , iQ and iC , had to be adjusted in addition to the ductility parameter, 

CW , for a given weakening factor, . This can be done by inverse modelling. However, 

a good estimate can be made based on the ( )pD relation in the uncoupled case. By 

using the latter approach, the work hardening curve for the damage softening material 

was readily produced by trial and error in MATLAB (2009). The resulting work-

hardening curve for 6 is compared with the work-hardening curve of the material 

without damage softening in Fig. 9(a). The material with damage softening exhibits an 

increase in fracture strain of 13 % compared to the case with dense-mesh and uncoupled 

damage. Accordingly, the ductility parameter, CW , was increased by a factor 1.251.13 .

The weakening factor, , was found by trial and error from simulations of the uniaxial 

tension and in-plane shear tests, and 6 was found to give reasonable results for both 

tests. The work-hardening parameters for 6 are summed up in Table 3, while the 

fracture parameters for the dense-mesh calibrations with and without damage softening 

are given in Table 4.



Fig. 9 (a) Work-hardening curves for uncoupled and coupled damage. The plastic work 
(area under the curves) is the same. (b) Damage evolution as function of 
equivalent strain without weakening factor, ( )pD , and width weakening factor 

( )pD .

The damage evolution of the Docol 600DL material has not been studied 

experimentally. However, Avramovic-Cingara et al. (2009) determined the area void 

fraction as function of thickness strain for uniaxial tensile tests cut from a comparable 

DP600 steel-sheet. They found that the evolution of the area void fraction had an 

exponential shape with initial value 0.001 and final value 0.013. The near linear shape 

of ( )pD shown in Fig. 9(b) is not coherent with the evolution of the area void fraction 

in the comparable DP600 steel. On the other hand, the ( )pD curve from the damage 

softening calibration displays an exponential shape more similar to the evolution of the 

void area fraction. Another aspect of the damage-softening modelling in this study is the 

value of CD . This value should represent the total damage on the material from 

microvoids, accumulation of micro-stresses at defects, and breaking of bonds. The study 

of Avramovic-Cingara et al. (2009) indicated that the microvoids contribution to CD is 

very small, and in this perspective 0.995CD is a very large value. This value is 

however used here, since the objective is to show how damage softening influences the 

numerical simulations. For other studies, a lower value of CD should be considered. In 

this perspective it is noted that the critical void volume fraction in the Gurson model 

(Gurson, 1977) is often set in the vicinity of 0.15 for carbon steels (Anderson, 2005).



5 Simulation of crack propagation

5.1 Effect of fracture criterion

The effect of the fracture criterion on the crack propagation is presented in the following 

for the case of the coarse-mesh models, 2J flow theory and uncoupled damage. The 

influence of the fracture criterion on the crack path in the five different tests is displayed

in Fig. 10, which shows plots from the final stage of the simulation for each case. The 

displacement, u , corresponding to each plot is given in the figure. In the simulations of 

the uniaxial tension, plane-strain tension and modified Arcan tests, the elements in the 

thickness direction were deleted in a tunnelling mode; an example from the Arcan-45 

test is given in Fig. 11(a). In the in-plane shear test all the elements through the 

thickness were deleted almost simultaneously.

The location of fracture initiation in the in-plane centre of the specimen was

captured in the uniaxial and plane-strain tension tests by all fracture criteria, and the in-

plane crack paths were similar to the experimental ones. Fracture initiates at the 

displacement where a significant drop in force level occurs in the F u curves in 

Fig. 3. In the simulations of the uniaxial tension test this drop occurred at almost the 

same displacement for all fracture criteria and fits well with the experimental values.

This is in accordance with the fracture initiation prediction of the criteria found by 

Gruben et al. (2012a). In the simulations of the plane-strain tension test, the MMC 

criterion gave an early drop in force level, while the IT criterion predicted a somewhat 

late drop. The fracture initiation was predicted well by the ECL and CL criteria 

compared to the experimental results. This is also in accordance with the results from 

Gruben et al. (2012a). However, the crack propagation velocities were somewhat low in

all simulations of the uniaxial tension, plane-strain tension and modified Arcan tests 

compared to the experiments.



Fig. 10Crack paths in simulations of different specimens with the four fracture criteria 
using J2 flow theory. From top: uniaxial tension, plane-strain tension, in-plane 
shear, Arcan-45 and Arcan-90. The contours are equivalent plastic strain, and the 
displacement u corresponding to the given plot is marked in each case. 



Fig. 11Fracture initiation in Arcan-45 simulations: (a) Tunnelling effect observed in 
simulation with the ECL criterion and (b) elements eroded at a certain distance 
away from the expected fracture initiation point with the MMC criterion, (c) and 
(d) give the contour plots of respectively the stress triaxiality and the Lode 
parameter just before the first element is eroded in the simulation with the MMC 
criterion.

In the shear test, the global failure in the simulations occurred just after fracture 

initiation as observed in the tests. This can be seen in Fig. 3 where there is a sudden 

drop in the force level and no “tail” of F u curves. The displacement at global failure 

was slightly overestimated in the simulations with the MMC and CL criteria. As shown 

in Fig. 3, the experimental values are between the results from the simulations with the 

ECL and IT criteria. The angle between the crack path and Xe was approximately 21

in the simulations with the ECL and CL criteria and approximately 18 in those with 

the MMC and IT criteria. As illustrated in Fig. 4(f), this angle is approximately 22 in 

the experiment. 



The displacement at final failure in the simulations of the Arcan-45 test was

close to the experimental values, but the numerically obtained F u curves were not in 

agreement with the experimental curves after fracture initiation, as displayed in Fig. 3.

Further, the simulation with the MMC criterion yielded an earlier drop in force level 

and a larger displacement at global failure than the simulations with the other criteria. 

Gruben et al. (2012a) showed that the fracture strain predicted by the MMC criterion at 

the assumed location of fracture initiation was larger than the experimentally 

determined value. In the present study, the drop in force level, which is related to 

fracture initiation, occurred significantly earlier in the simulation with the MMC 

criterion than in the experiments. This apparent paradox is explained by the fact that 

elements away from the root of the notch were eroded before the elements in the notch 

root when using the MMC criterion; see Fig. 11(b). This is in contrast to the 

experiments and simulations with the other fracture criteria where the crack initiated in 

the notch root, as displayed in Fig. 11(a). The MMC criterion predicted a very high 

ductility for uniaxial tension and low ductility for plane-strain tension, as illustrated in 

Fig. 8(a). The elements first eroded by the MMC criterion were practically in a plane-

strain tension stress state with stress triaxiality 0.58 and Lode parameter 0 .

This is illustrated in Fig. 11(c-d) where contours of the stress triaxiality and the Lode 

parameter are plotted just before the first elements are eroded. In the simulations of the 

Arcan-45 tests, the MMC criterion gave an F u curve with qualitatively better shape 

than those from simulations using the other fracture criteria, as displayed in Fig. 3. This 

may be due to the bilinear crack trajectory predicted by the MMC criterion which is 

more similar to the experimental crack path than the crack paths predicted by the other 

criteria, cf. Fig. 5(a) and Fig. 10. The bilinear crack path in the MMC simulation stems 

from the low ductility predicted by the criterion in plane-strain tension, which in the 

early stages of crack propagation drives the crack in a different direction than the 

direction with the largest equivalent strain.

In the simulations of the Arcan-90 test, the predicted crack paths using the 

various fracture criteria were very similar, as illustrated in Fig. 10. The fracture initiated

in the root of the notch in all simulations, except in the simulation with the MMC 

criterion. Here elements with a certain distance away from the notch root were eroded 



first, as in the simulation of the Arcan-45 test; see Fig. 11(b). This premature erosion of 

elements led to an earlier drop in force level compared to the simulations with the other 

fracture criteria, as evident in Fig. 3. The simulation with the MMC criterion gave, 

however, a good prediction of the displacement at global failure, while the simulations 

with the other fracture criteria tended to overestimate this value.  

5.2 Effect of exponent in yield function

Simulations were also carried out using the Hershey yield function given by 

Equation (2). Fig. 12 illustrates how the yield loci for 3k and 4k are placed 

between the von Mises yield locus ( 1)k and the Tresca yield locus ( )k . The 

cases 3, 4k were chosen since BCC materials have proven to be closer to the von 

Mises than the Tresca yield surface (Hutchinson, 1964a). Results from the coarse-mesh 

FE models with the ECL criterion are presented in this section. Fig. 13 gives the results 

in terms of force-displacement curves. As can be seen, there is no notable difference 

when using a Hershey yield function in the simulations of the uniaxial tension test. In 

the simulations of the plane-strain tension test, a higher exponent tended to decrease the 

peak force and the displacement at fracture initiation and global failure. The opposite 

trend was observed in the simulations of the in-plane shear test where a higher exponent 

slightly increased the peak force and gave a significant increase in the displacement at 

global failure. Further, in the simulations of the Arcan-45 test, the force-displacement 

curves up to fracture initiation were not altered for increasing k values, but the 

displacement at global failure was increased. The simulations of the Arcan-90 test gave 

a trend in the force-displacement curves similar to the one observed for the plane-strain 

tension test; an increase in k gave a decrease in peak force and displacement at global 

failure. 

In all but the simulations of the Arcan-45 test, the 2J flow theory gave good 

predictions of the in-plane crack paths. With the Arcan-45 test as an important 

exception, the in-plane crack trajectory was not changed in the simulations with a 

Hershey yield function. However, for the Arcan-45 test, the simulation with 4k gave

a curved crack path that to a higher extent resembles the experimental result. The crack 



trajectory in the simulation with 3k ended between the crack paths obtained with

4k and 2J flow theory, but closer to the latter as displayed in Fig. 14(a-c). The 

change in the crack path may explain the larger displacement at global failure for higher 

k values in these simulations.

Fig. 12

First quadrant of 

normalized yield 

surfaces obtained 

with the Hershey 

yield function. 

Fig. 13 Force-displacement curves from experiments and simulations using the 
extended Cockcroft-Latham criterion and yield functions with different k
values. 



In Fig. 14(d-f), a plot of the early stages of fracture is shown from the simulation 

with 2J flow theory and the ECL criterion. The contours are equivalent plastic strain, 

stress triaxiality and Lode parameter. The elements that will be eroded later in the 

simulation are marked. From Fig. 14(e-f) it is evident that the stress triaxiality is higher 

and the absolute value of the Lode parameter is lower on the upper left-hand side of the 

crack path. Since the ECL criterion predicts lower ductility for higher hydrostatic stress

and for low absolute values of the Lode parameter, this indicates that both the 

hydrostatic and the deviatoric stress state drive the crack to the upper left side in this 

simulation. However, as seen in Fig. 14(d), the equivalent plastic strain is largest in the 

direction of the crack path. From this we may conjure that the direction of the crack 

path is governed by the equivalent plastic strain in the simulation with 2J flow theory.

In the case with high exponent ( 4k ) shown in Fig. 14(g-i), it is clear that the stress 

triaxiality and the Lode parameter drive the crack path in a different direction than the 

equivalent plastic strain, in the same manner as in the simulations using 2J flow theory. 

In this case, however, it is seen that the crack path is governed by the stress state 

approximately the first 3
5 of the total trajectory before it bends into the direction having 

the maximum equivalent plastic strain in the last part.



Fig. 14Plots (a)-(c) display the effect of the yield function on the crack path in the 
Arcan-45 simulations. Plots (d)-(i) present contours of p , and in the 
early stages of fracture in the Arcan-45 simulations with: (d)-(f) 2J flow theory 
and (g)-(i) Hershey yield function ( 4)k . The subsequent crack path is marked 
in plots (d)-(i). 

5.3 Effect of mesh refinement and slant shear fracture

The slant shear fracture seen in most of the experiments was not captured in the finite 

element simulations in the previous sections. The reason for this is bipartite; firstly the 

spatial discretizations used in the models are too coarse to capture this phenomenon. 

Secondly the classical elastic-plastic solid with a smooth yield surface does not predict 

shear-band localization at realistic levels of straining unless the material displays a very 

low work hardening (Hutchinson and Tvergaard, 1981; Needleman and Tvergaard, 

1992). However, by introducing a yield surface vertex, non-normality or material 



softening, the critical strain to capture shear band localization is considerably lowered 

(Hutchinson and Tvergaard, 1981).

In order to investigate the effect of mesh refinement and slant shear fracture in the 

numerical analysis, additional simulations were carried out on models with finer 

discretization, 2J flow theory and the ECL fracture criterion with and without coupled 

damage. As pointed out by Needleman (1988), the size of the shear band in the 

simulation is restricted by the element size. The shear-band width was not measured for 

the Docol 600DL material under the quasi-static, isothermal loading, and the authors 

could not find data in the literature for a similar material deformed under similar 

loading. However, the final element size of the dense-mesh FE models ( 80 may

be in the vicinity of the experimental shear-band width, based on the experience from 

the study conducted by Solberg et al. (2007). In that study it was found that the width of 

adiabatic shear bands in three different types of Weldox steels were in the vicinity of 

10 100 , somewhat depending on the material. The F u curves and the crack 

surfaces from the dense-mesh simulations of the uniaxial tension, plane-strain tension 

and in-plane shear tests are given in Fig. 15. Here the F u curves are compared with 

results from coarse-mesh FE analyses utilizing the ECL criterion, 2J plasticity and 

reduced integrated elements. In the FE simulations of the uniaxial tension and plane-

strain tension tests, the strain softening gave a pronounced through-thickness slant 

fracture. However, the F u curves were nearly identical to the curves from the dense-

mesh, uncoupled damage FE simulations where no slant fracture was predicted. This is 

in accordance with the findings of Li et al. (2011). The crack in the uniaxial tension

simulation with coupled damage displayed an in-plane angle not unlike what is 

observed in the experiments, while the V-mode was not as pronounced as in the 

experimental tests. The simulation of the plane-strain tension test with coupled damage, 

on the other hand, displayed a more distinct slant fracture in the centre of the specimen 

than in the experiments. It is noted that the symmetry and anti-symmetry of the fracture 

surfaces observed in the uniaxial tension and plane-strain tension simulations disappear

if e.g. material inhomogeneity is introduced. However, since the slant fracture surfaces 

in the experiments had a stochastic nature, an exact match between the experimental and 



simulated fracture surface cannot be expected. The mesh refinement led to a lower 

displacement at fracture initiation. This can be explained by the increased strain 

gradient in the dense-mesh FE models which advances the through-thickness 

localization. The effect of strain softening was more pronounced on the F u curves of 

the shear test simulation than in the simulations of the other two tests. This is because 

the shear tests do not exhibit necking instability before fracture. The displacement at 

fracture in the experimental shear tests is 3.5 mmfu , which is between the 

displacement at fracture predicted by the simulations with a denser mesh using coupled 

and uncoupled damage, respectively. The fracture surface in the shear simulations was 

not influenced by mesh refinement or damage softening as can be seen in Fig. 15, and is 

similar to the fracture surface observed in the experiments. 

Fig. 15Force-displacement curves in FE analyses with coarse and dense mesh without 
softening and dense mesh with softening. The crack surfaces are from 
simulations with dense mesh, with and without softening.



6 Discussion

The crack trajectories in the simulations of the material tests with coarse mesh, i.e. 

uniaxial tension, in-plane shear and plane-strain tension were similar, independent of 

fracture criterion and yield function. The same yields for the simulations of the Arcan-

90 test. The crack paths in all these tests are controlled by the geometry of the 

specimens and the test set-ups, so only small variations in the predicted crack paths 

were observed. The crack paths in the simulations of the mixed-mode Arcan-45 test, 

however, differed to a certain degree when the fracture criterion and yield function were 

changed. The combination of 2J flow theory and the MMC fracture criterion gave a

crack path initially governed by the stress state before it abruptly changed to the 

direction of the largest equivalent plastic strain, leaving a bilinear crack trajectory. The 

simulation in which the Hershey yield function with 4k and the ECL criterion were

used, gave a crack path that was a result of a competition between the stress and 

equivalent plastic strain fields in the specimen during the first part of the crack 

trajectory. This led to a curved shape on the crack path in this region that resembled the 

experimental results. In the last part, the crack path propagated in the direction of the 

largest equivalent plastic strain, and formed a linear trajectory. All the other simulations 

of the Arcan-45 test gave a nearly linear crack path in the direction of largest equivalent 

plastic strain. These results show that the Arcan-45 test is more challenging than the 

other tests for evaluating fracture criteria with respect to crack propagation. 

In the simulations of the uniaxial tension, plane-strain tension and modified 

Arcan tests, the displacement increment from fracture initiation to global failure, u ,

was large compared to the experiments. In the simulations of the plane-strain tension

test, it can be seen from Fig. 3 and Fig. 15 that the displacement increment from fracture 

initiation to global failure is 1.5 mmu and 2.1 mmu in the simulations with 

coarse mesh in combination with selectively reduced (Section 5.1) and reduced 

integration (Section 5.3), respectively. The dense-mesh simulations gave 1.3 mmu

for both uncoupled and coupled damage, while the experiments had 0.5 mmu . In 

the simulations of the uniaxial tension test, the same trend is observed in Fig. 3 and 

Fig. 15. Here the simulations with coarse mesh gave 0.6 mmu and 1.0 mmu

for selective-reduced and reduced integration, respectively, 0.3 mmu for the 



simulations with finer mesh, while 0.02 mmu in the experiments. Since the damage 

is driven by plastic strain and the crack propagation is a sequence of fracture initiation 

in the eroded elements, the observations suggest that a large number of degrees of 

freedom should be used in the FE models to capture the crack propagation speed found 

experimentally. There was a significant effect when increasing the number of elements 

as well as when going from elements with selectively-reduced integration to reduced 

integration, whereas damage softening and prediction of slant fracture did not 

significantly influence the speed of the crack propagation in the simulations. The 

displacement at global failure, fu , in the uniaxial tension, plane-strain tension and in-

plane shear simulations was reduced when selective-reduced integration or a denser 

mesh was employed in the FE models, due to a more realistic prediction of the local 

necking process and crack propagation. It is noted that the prediction of slant fracture in 

the uniaxial tension and plane-strain tensions simulations had virtually no effect on the 

global force-displacement curves in Fig. 15. This suggests that the energy dissipated 

after the onset of shear-band localization in the FE simulations is very small compared 

to the energy dissipated in local necking, as also discussed by Nielsen and Hutchinson

(2011). It is further noted that the uniaxial tension simulation with refined mesh and no 

softening given in Fig. 15, displays a tendency to slant fracture surface. Indeed, in a 

simulation where the ductility parameter CW was increased to 1400 MPa, slant fracture

was predicted, even though no damage softening was included. This increase in CW did, 

however, lead to unrealistically large local deformations.

Tensile tests on Docol 600DL specimens with 0.7 mm thickness, but apart from

this the same geometry as displayed in Fig. 1, were presented in Rakvåg et al. (2012).

They showed that the material behaviour of the 0.7 mm and 2.0 mm thick Docol 600DL 

sheets was similar. The 0.7 mm thick uniaxial tensile specimens displayed no shear lips

and fractured in the through-thickness neck as illustrated in Fig. 16(a) and (c). To see 

whether the FE models of the uniaxial tension test used in Section 5.3 could predict this 

behaviour, the models were scaled in the Ze direction to obtain 0.7 mm thickness, and 

run in LS-DYNA. As can be seen from Fig. 16(b), through-thickness slant fracture was 

not predicted in the model with damage softening. Fig. 16(c) displays that the in-plane 



angle between the fracture surface and the Xe direction in the simulations with dense 

mesh is in excellent agreement with the experimental data, while the simulation with a 

coarse mesh does not capture this instability and the corresponding fracture mode. From 

this study it is evident that a rather fine mesh is required to capture local necking and 

the correct fracture mode for the thin-sheet specimens and that damage softening is not 

necessary to predict this fracture mode.

Fig. 16Experiments and FE simulations of tensile tests on 0.7 mm thick specimens. (a) 
Failed specimen in experiment, (b) failed specimen and fracture surface in FE
simulation with coupled damage. (c) In-plane angles of fracture surface in 
parallel tests Nos. 1, 2 and 3 and in FE simulations with different mesh density 
and coupled/uncoupled damage.



7 Conclusions

The modified Mohr-Coulomb and the extended Cockcroft-Latham fracture criteria have 

been used in explicit finite-element simulations of ductile crack propagation in a dual-

phase steel sheet. The sheet was discretized with solid elements and the crack 

propagation was simulated by element erosion. The simulation results were compared to 

experiments conducted on five different types of specimens (uniaxial tension, plane-

strain tension, shear, 45° and 90° modified Arcan) made from a 2 mm thick Docol 

600DL steel sheet. The main conclusion is that the predicted force-displacement curves 

and crack paths were only to a small degree influenced by the fracture criterion, and it is 

hard to select one fracture criterion that out-performs the others. It was further found 

that only small changes in the predicted force-displacement curves and crack paths were 

obtained when changing from the von Mises to the Hershey yield criterion with a high 

exponent. However, an improvement of the in-plane crack path in the simulation of the 

mixed-mode 45° modified Arcan test was achieved by using the Hershey yield function. 

The use of selective-reduced integration rather than reduced integration for the eight-

node, tri-linear solid elements, or use of a denser mesh in the FE models gave an 

improved resolution of the large strain gradients in the simulations. This led to 

predictions of the localized necking instability at a lower actuator displacement as well 

as higher crack propagation speed, both of which are in better accordance with the 

experiments. Slant fracture as observed in the experimental uniaxial tension and plane-

strain tension tests was captured in the numerical simulations if material softening was 

accounted for and a sufficiently fine mesh was used. The prediction of slant fracture did, 

however, not have any significant effect on the global response as represented by the 

force-displacement curves.
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