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Abstract

The work in this thesis has been a part of the task of using a radar to separate between
humans and animals in a alarm and surveillance context. For the radar to be able to
separate between humans and animals it would use a classifier that rely on features
extracted from the radar data. The thesis considers two types of targets; either a
human or a dog, and by using micro-Doppler signature, determines some fundamen-
tal features which can be the used to classify them. The micro-Doppler signature is
the superposition of frequency modulations represented in the joint time and Doppler
frequency domain, where the modulations are caused by di�erent moving components
associated with the desired target. The micro-Doppler signature has been widely used
for radar classification.

The thesis has succeeded in developing algorithms and a system to extract micro-
Doppler signatures from targets. Signatures from both humans and dogs has been
produced and some simple features extracted from them. The major problem with the
signatures created is that the radars pulse repetition frequency is a limiting factor and
causes aliasing in the Doppler spectrum that corrupts the signatures. This has limited
the study of targets to slow moving humans and dogs.

Three important features for classification was extracted from the micro-Doppler
signature by calculating the gait-Doppler map. They are, i) the average Doppler fre-
quency fav(or average radial velocity vav), ii) fundamental gait frequency fg and iii)
the stride length Ls which is derived from the two former features.

The result points towards the possibility to separate humans and dogs using these
parameters. The reason is that since the dogs limbs are shorter than a human it also
has shorter stride length at a specific speed. However, this may not be su�cient for
decisions to be made in a robust alarm system, since it can be fooled by a smart intruder
that could for example take unnatural short steps and simulate a dogs combination of
the aforementioned features.

In addition the determination of features are sensitive to large changes in radial
speed. This can be mitigated by preprossing before the calculation of the features.

The conclusion is, that based on substantial measurements of signatures ( approx.
50 series) and calculations of the three features one has arrived at a fairly robust
method to distinguish between the two type of target in this thesis.
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Sammendrag

Denne masteroppgaven fokuserer på en del av det større problemet med å benytte
radar til å idenifisere og skille mellom ulike observerte mål i forbindelse med alarm
og overvåkingssytemer. Oppgaven fokuserer da på to typisk mål som er relevant ifm
hus alarm/overvåkningssystemer; menneske og hund. For å kunne separere mellom
mennesker og dyr så må man basere seg på spesifikke egenskaper som identifiserer
målet. Ved å benytte mikro-Doppler e�ekten kan dette oppnås. Mikro-Doppler sig-
natur fremkommer ved en superposisjon av ulike frekvensmodulasjonser både i tid og
frekvens, hvor mudulasjonene er et resultat av forskjellige bevegelses komponeneter
generert av målet. Teknikk er kjent i utgangspunktet og benyttet i en rekke anven-
delser.

I denne masteroppgaven er det utviklet algoritmer satt i et system for å ekstrahere
mikro-Doppler signaturer fra mål. Man har gjennomført en rekke målinger som gir
grunnlag for beregne spesifikke egenskaper. Hovedproblemet med å beregne signaturer
er radarens puls repitisjonsfrekvens er begrenset og vil for hurtige bevegelser gi opphav
til aliasing. Dermed er analysen begrenset til sakt bevegelig mål.

Tre sentrale egenskaper tilbruk for klassifering er ekstraher fra mikro-Doppler sig-
nalet, dette er; i) gjennomsnittlig radial hastighet, ii) grunnleggende gange frekvens,
og iii) skittlengde.

Resultatene viser at ved å bruke disse parametrene kan man skille mellom menneske
og hund. En egenskap som skiller de to type er at en hund har kortere ben og dermed
en høyere gange frekvens og lavere skrittlende ved samme radial hastighet, sammen
liknet med et menneske.

Det er usikkert om dette er godt nok for et robust alarm/overvåkningssytem, bla
fordi man kan tenke seg at en inntrenger kan “lure” systemet ved å bevege seg med
feks korte skritt.

I tillegg viste det seg at egenskapene er følsomme for store endringer i radial
hastighet. Dette kan sannsynligvis motvirkes ved en preprossesering før egenskapene
bestemmes.

Hovedkonklusjoner er at på grunnlag av omfattende målinger av signaturer, ca 50
måleserien og omfattende beregninger og kombinasjone av de tre sentrale egenskap,
har kommet frem til en av de mest robuste metodene for å skille mellom de to type
mål man har sett på i oppgaven.
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Preface

This thesis was suggested and developed with the help of Novelda AS. It is a growing
R&D based technology company based in Norway. Specializing in nanoscale wireless
low-power technology for ultra-high resolution impulse radar. They have developed a
flexible Ultra Wide Band (UWB) radar that can be used for a broad range of applica-
tions. One of the areas of interest is using the radar to automatically classify targets.
Specifically on the subject of a home alarm system it is vital that the alarm is only
triggered by a human and not animals (pets). To build a complete radar classifier for
human and every type of pet is a tall order for a one man thesis. It was therefore
decided to limit the scope of the thesis to only humans and dogs and not implement
the classifier itself which is quite a large subject of its own. In addition it was decided
to use the micro-Doppler signature to separate human and animals.
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Chapter1
Introduction

The basic radar concept was first demonstrated by experiments done by Heinrich Hertz
from 1885 to 1888 and has more or less been continually improved upon since then.
It was during the second world war however that the radar truly became ubiquitous
and a vital part of a nations defense system. Still, it was after the war that the radar
became more than a “blob” detector. [9, p.14-p.19].

The introduction of relative low-cost digital processing in the 70s meant that the
pulse-Doppler approach that could measure target velocity and detect motion became
dominant, having been held back by hardware limitations and cost. This allowed
techniques like synthetic aperture radar (SAR) that previously had performance issues.
The 70s is also the decade ultra wide band (UWB) started being used in commercial
applications. [10][1]

A broad and interesting area is that of using the radar to classify radar targets
so called automatic target recognition (ATR). Which is this thesis area of interest.
Attempts at ATR has been made for a long time in radar. The earliest attempts
seems to have been in 1937 with adding resonant dipole antennas to friendly planes
to distinguish them from enemy aircraft. Such systems was of limited use especially
when flying in formation. Other systems were later used but they relied upon the
target cooperating (having transponders on targets) a so called “co-operative target”.
Identifying a “non co-opertive target ” both for convenience or necessity, must most
of the time be identified solely on the basis of the backscattered radar signal without
reliance on external inputs. [10]

1.1 Problem description

This thesis concerns itself with the classification of humans and dogs by using the
micro-Doppler signature.
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1.1. Problem description

1.1.1 Motivation and tasks

The classification of di�erent animals is of great interest for example in a home alarm
system. The radar will monitor a area and start an alarm if unwanted people (targets)
are detected there. However one would not want to trigger the alarm for targets that
are welcome like pets. In Skolniks Introduction To Radar System[9] there are nine
radar techniques/phenomena identified that may be used for ATR, like High Range
Resolution (HRR) or Radar Cross Section (RCS) fluctuation. All the phenomena are
well understood but there is still areas of active research since the practical implemen-
tation of ATR is challenging. Instead of using all available techniques it was decided to
focus on a technique that was broadly applicable to all kinds animals and explore how
the radar performed and identify challenges. The technique chosen and explored in
this thesis is what Skolnik called Jet Engine Modulation (JEM) which after continued
research is now known as the more general micro-Doppler signature.

1.1.2 The micro-Doppler signature

A pulse radar measures the distance to target by emitting a signal and waiting for
its echo from a target. Based on the time delay of the received signal the radar
can measure the range of an object. If the target is moving the frequency of the
received signal will be shifted from the emitted signal, this is known as the Doppler
e�ect. The Doppler frequency is determined by the radial velocity of the target. The
micro-Doppler e�ect is the intricate frequency modulations that are induced by the
returns from the di�erent moving components associated with the target that do not
necessarily move with with the exact same radial speed as the bulk motion of the target
(micro motions). Examples of such a component can be a moving limb on a animal,
a propeller on a plane or the vibrations of its engine. The superposition of all these
frequency modulation represented in the joint time and Doppler frequency domain is
the micro-Doppler signature. It is labeled a signature since it is often distinct and can
be used to di�erentiate and characterize targets. [3][10]

2 Micro-Doppler Signatures Associated with Humans and Dogs



1.1. Problem description

1.1.3 Draft of a possible solution

Figure 1.1: Draft of a possible solution to separate between human & animals

Figure 1.1 shows a possible solution to the problem of how a UWB radar can deter-
mine if a target is a human or a animal. Each step (boxes) performs a vital signal
processing step that leads to classifying a radar target as a type of animal or unknown.
It all starts in the Radar where the radar echo (data) is collected and sent to the
Time-Frequency transform where time and Doppler frequency data of the radar echo
is produced. Based on this data the Extract µ-Doppler signature step produces the
micro-Doppler signature. Based on the micro-Doppler signature the feature extraction
step attempts to take out characteristic information from the signature and pass it to
the classifier. The features are passed on to the Target classifier that makes a decision
based on the features what class should be assigned to the target. Modern classifiers
are usually trained with a large amount of data so they can learn the best way to de-
cide what class is appropriate. It could be conceivable to pass the whole micro-Doppler
signature to the Target classifier and let it do the work and skip extracting features.
This is probably not a good idea as a few dominant characteristic properties of the
signature would dominate the classifier and the result would be poorer [10].

As mentioned the classifier will not be implemented or further discussed in this
thesis. The Radar, Time-frequency transform and Extract µ-Doppler signature step
will be discussed in detail in the next chapter. Some features will be extracted from
the micro-Doppler signature but they will be treated less rigorously theoretically so
the Feature extraction step will be discussed less formally. It is the micro-Doppler
signature that is the main focus of this thesis.

Micro-Doppler Signatures Associated with Humans and Dogs 3



1.2. Outline of thesis

1.2 Outline of thesis
Here a short overview of the chapters of the thesis is provided.

1 Introduction The subject of the thesis is introduced with a short historical account
of radar and the problem and motivation behind it is described.

2 System Description The overall system and signal processing used to create the
micro-Doppler signatures is described and necessary theory provided.

3 Results & Discussion How the system was tested and the most relevant results
is presented. The results are discussed with the relevant results on the following
pages.

4 Concluding Remarks Some suggestions on the further work that could be done
is discussed and the thesis is concluded.

A Selected Matlab Code Some of the Matlab code used in the thesis is provided.

4 Micro-Doppler Signatures Associated with Humans and Dogs



Chapter2
System Description

To create a good micro-Doppler signature the data received from the radar must be
processed heavily. In this chapter a conceptual description of this processing will be
presented and subsequently examined in detail.

2.1 System Overview

Figure 2.1: Conceptual overview of the system

Figure 2.1 shows a conceptual overview of how the signal received from the radar is
processed. Each box in the figure is a high level representation of a important signal
processing step. The radar box is of course also a sensor that is measuring the real
world. Apart from the radar all the boxes has at least one input and one output which
will be defined and described in the following sections.
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2.1. System Overview

It all begins with the radar that produces frames �i that the Frame bu�er assembles
into two matrices of frames Y1,i and Y2,i. The first matrix Y1,i is sent to the Parameter
estimation and Clutter removal & |FFT|2. The Clutter removal & |FFT|2 step outputs
the range-Doppler map matrix Gi. The range-Doppler map has had its clutter removed
with the help of the set of parameters {W1,i, A1,i} that the Parameter estimation
has estimated based on Y1,i. These parameters is along with the range-Doppler map
sent to the Synthesize µ-Doppler signature step where two micro-Doppler signatures
are produced. The di�erence between the two signatures is that they rely on di�erent
time-frequency transforms. The micro-Doppler signature µi uses the data in the range-
Doppler map Gi which is based on the Short Time Frequency Transform (STFT). The
more experimental micro-Doppler signature ›i is based on the parameters {W1,i, A1,i}
which are estimated by the RELAX algorithm (called parameter estimation in the
figure) which is a time frequency transform that completely parameterize the data.

Both signatures are only interested in information from the ranges where the target
is currently present. This is where the range gate defined by its lower bound bL,i and
its higher bound bH,i is used. The bounds are created by the Tracking & range gate
step which rely on the parameters {W1,i, A1,i} estimated by the Parameter Estimation
step that has Y2,i as its input.

The signatures are sent to the row-wise FFT step where the gait-Doppler map is
created and from which some features can easily be determined.

6 Micro-Doppler Signatures Associated with Humans and Dogs



2.2. Radar

2.2 Radar

A monostatic radar is a radar that has its transmitter and receiver located at the same
place. A radar that has its transmitter and receiver separated in space is known as
a bistatic radar, similarly a radar with several receivers located at di�erent places is
known as a multistatic radar. The radar used in this thesis is the Novelda Xethru
UWB radar developed by Novelda AS in Norway. Although it technically has the
transmitter and receiver separated they are so close that it is in practice a monostatic
radar. Developed to be flexible and used in a range of tasks. It has been used to
detect the presence of people, monitor respiration, tracking and more. It is uses little
power and emit little power so its safe to use on and near living things. The table 2.1
lists the most relevant information about this radar. UWB radars are probably more
instructive to think about in terms of their ultrashort in time pulses despite of the ultra
wideband label. It’s the spatially short pulses that usually are smaller than the length
of most targets that distinguish the UWB radars not the fact that they are wideband
(of course the wideband in frequency is a direct result of the short in time pulses).
That the UWB pulse is shorter than the length of the target means that the target will
decompose into its individual scattering components known as point scatterers [1].

Figure 2.2: Conceptual overview of the radar with only one point scatterer (L = 1)

The target (human or dog) along with the environment that the radar detects will be
modeled as a collection of point scatterers. Without loss of generality the theory can
be developed with a single point scatterer since one can assume that the real target and
the multipath interference is superposition of L point scatterers. A simplified overview
of the radar used in this project is shown in figure 2.2. The model consist of a pulse

Micro-Doppler Signatures Associated with Humans and Dogs 7



2.2. Radar

Table 2.1: Radar configuration

Carrier frequency (fc) ≥ 7 GHz
Wavelength (⁄) ≥ 4.35 cm
Pulse repetition frequency (fp) 70 Hz
Samples per frame (N) 77
Frame span length ≥ 2.7 m

radar that emits a pulse s(t), captures the echo contained in r(t) from a single point
scatterer and downconverts it to baseband for further processing. The distance (range)
between the radar and the point scatterer is denoted R(t).

Unlike most radars that downconverts the carrier in the analog domain, the Xethru
radar does this in the digital domain as outlined in figure 2.2. Using a ADC with a
extremely high sampling frequency the radar digitizes r(t) directly. The radar does not
samples r(t) all the time however and will digitize only a portion of r(t) after a pulse
is emitted. This digital portion of r(t) is called a frame. The radar captures N = 77
samples for every frame. The frame spans approximately 2.7 meters in space and its
distance from the radar (frame o�set) can be adjusted so that the frame span covers
the desired target. This concept is illustrated in figure 2.3.

Figure 2.3: Frame o�set and frame span illustrated, with a time line detailing when
and where events happen.

Figure 2.3 illustrates the first cycle of emitting a pulse and recording its echo into a
frame. The three main events of the emitted pulse is assigned letters (a,b and c) in
the figure to make it easier to see where and when theses events occurs. At a when

8 Micro-Doppler Signatures Associated with Humans and Dogs



2.2. Radar

t = 0, the radar begins emitting the first pulse. Then, at b when t ¥ ·
2 , the pulse

is reflected o� the target (black circle), where · = 2R(t)
c

. Later, when t = ts the radar
starts recording (sampling) r(t) until the time t = te. At c when t = · the pulse
is appearing in the receiver. Therefore ts < · < te must be true if the pulse is going
to be sampled and be a part of the frame. T is the pulse repetition period so when
t = T , the second pulse starts emitting, beginning the cycle again. This means that,
T = 1

fp
where fp is the pulse repetition frequency. For every pulse emitted one frame

is produced.
The analog signal s(t) being sent out of the pulse generator, is defined as the sum

of all pulses sent out, mathematically defined as

s(t) =
Œÿ

i=0
p(t ≠ iT ) cos(Êc(t ≠ iT )), i = 0, 1, 2, . . . Œ (2.1)

Where Êc is the angular carrier frequency which is defined as Êc = 2fifc where fc is the
carrier frequency used by the radar. The function p represent a Gaussian pulse which
is defined as

p(t) = exp
A

≠
(t ≠ Tp

2 )2

(2‡)2

B

(2.2)

Typical values for ‡ and pulse duration Tp are 0.2 ns and 1 ns respectively. Figure 2.4
is a plot of such a pulse.

Figure 2.4: Gaussian pulse used in the UWB radar.

We define td as the time variable within the time interval (0,T ). Then the global time
t can be written as

t = td + iT (2.3)

Micro-Doppler Signatures Associated with Humans and Dogs 9



2.2. Radar

With this definition of t it is easy to separate individual pulses (and therefore frames)
with the variable i. It follows that td = t ≠ iT as long as 0 < td < T . This means that
the ith sent pulse is

si(td) = p(td) cos(Êctd) (2.4)

When disregarding the attenuation, distortion and noise, the ith pulse being received
by the antenna is the same signal as was sent, but now with a time delay · .

ri(td) = si(td ≠ ·) = p(td ≠ ·) cos(Êc(td ≠ ·)) (2.5)

Where · is given as

· = 2R(t)
c

= 2R(td + iT )
c

(2.6)

Substituting equation 3.1 into equation 2.5 results in

ri(td) = p

A

td ≠ 2R(td + iT )
c

B

cos
A

Êc

A

td ≠ 2R(td + iT )
c

BB

(2.7)

Conversion of the signal from equation 2.7 into a frame, is done in the ADC shown
in fig 2.2 but only when ts < td < te. Mathematically we do this by substituting
td = ts + �tn where �t is the sampling period and

n = 0, 1, 2, ...N ≠ 1 (2.8)

Where N is the number of samples in the frame. ts is, as illustrated in figure 2.3,
the time o�set determining the distance from the radar to the frame span. The time
instant te can be expressed as te = ts + �t(N ≠ 1). Substituting td yields

ri[n] = ri(ts + �tn)

= p

A

ts + �tn ≠ 2R(ts + �tn + iT )
c

B

◊ cos
A

Êc

A

ts + �tn ≠ 2R(ts + �tn + iT )
c

BB
(2.9)

Since we are observing humans and animals that move a extremely short distance
during the time the frame is recorded (about 9 nanoseconds) we can make the following
simplification.

R(ts + �tn + iT ) ¥ R(iT ) (2.10)

We can now write equation 2.9 as

ri[n] ¥ p

A

ts + �tn ≠ 2R(iT )
c

B

cos
A

Êc

A

ts + �tn ≠ 2R(iT )
c

BB

(2.11)

Next, the signal needs to be downconverted to baseband. As shown in figure 2.2 the
received signal is sent to the digital downconverter. The downconversion is performed

10 Micro-Doppler Signatures Associated with Humans and Dogs



2.2. Radar

by simply multiplying equation 2.11 and the complex sinusoid exp(≠jÊc(ts + �tn)).

ri,bbu[n] = ri[n] ◊ exp(≠jÊc(ts + �tn))

= 1
2 ◊ p

A

ts + �tn ≠ 2R(iT )
c

B

◊
C

exp
A

≠j2ÊcR(iT )
c

B

+ exp
A

≠ j2Êc

A

ts + �tn + R(iT )
c

BBD
(2.12)

ri,bbu goes through to low pass filter and removes the unnecessary last term of equation
2.12 and normalises it so we have

ri,bb[n] = p

A

ts + �tn ≠ 2R(iT )
c

B

exp
A

≠j2ÊcR(iT )
c

B

(2.13)

Let ⁄ = c
fc

where ⁄ is the wavelength. Using this definition we express 2.13 with the
wavelength instead of the carrier frequency.

ri,bb[n] = p

A

ts + �tn ≠ 2R(iT )
c

B

exp
A

≠j4fiR(iT )
⁄

B

(2.14)

Equation 2.14 shows that the contribution from a point scatterer to the frame is simply
a amplitude provided from the Gaussian pulse and a phase from the remaining expo-
nential function, in other words a phasor. It is the phase of the phasor that determines
the Doppler shift. Let the phase be denoted „i and defined as

„i = ≠4fiR(iT )
⁄

(2.15)

The rate of change of „i is the angular Doppler frequency Êd = 2fifd where fd is the
Doppler frequency. We have

Êd = d„i

dt

= ≠4fi

⁄

dR(iT )
dt

= ≠4fivr

⁄

(2.16)

Where vr = dR(iT )
dt

is the radial velocity. The real targets (humans and animals) can
as mentioned be modeled as a group of point scatterers. We therefore assume that
the target and clutter can be modeled with L point scatterers, and so the ith frame
denoted as �i[n] is expressed as

�i[n] =
L≠1ÿ

l=0
p

A

ts + �tn ≠ 2Rl(iT )
c

B

◊ exp
A

≠j4fiRl(iT )
⁄

B

+ vi[n] (2.17)

Where Rl(iT ) is the range of the lth point scatterer and vi is a vector containing the
noise for the ith frame. Note that �i[n] = ri,bb[n] only when L = 1 if we ignore the
noise term.

Micro-Doppler Signatures Associated with Humans and Dogs 11



2.3. Time-Frequency Transforms

2.3 Time-Frequency Transforms
In general time-frequency analysis attempts to represent and manipulate a signal in
time and frequency simultaneously. This is useful when observing signal whose fre-
quency content changes over time, like music, speech, and the micro-Doppler signature
from animal movements. Time-frequency analysis can therefore be thought of as a
generalization of Fourier analysis which is most useful when the signal in question is
stationary [4, p. 25]. There is a body of di�erent techniques and methods to decompose
a signal in both time and frequency. In this thesis two di�erent time-frequency trans-
forms is explored. The first is the well known short time Fourier transform (STFT) and
the second is a parameter estimation performed with a algorithm known as RELAX
[6]. Both methods work by having a sliding window extract a portion (in time) of the
signal(s) and calculate the spectral contents of that portion. In this system two di�er-
ent window lengths are used, one for creating the range-Doppler map (more on that
later) and one to track the desired target. First in this section the frame bu�er that
decides the window lengths is presented. Secondly what that information is contained
in the windows is discussed in the subsection The Doppler Spectrum & range-Doppler
map. After that the next subsection details the processing done in the Clutter removal
step and the Calculate spectrogram step.

2.3.1 Frame Bu�er

Note that from this point on, we denote matrices as boldface uppercase letters. The
frame bu�er takes several consecutive frames and groups them together into two dif-
ferent matrices denoted Y1,i and Y2,i. Y1,i has M1 consecutive frames in each column
with the center column containing �i[n]. Similarly Y2,i has M2 consecutive frames in
each column with the center column containing �i[n]. Since the only di�erence be-
tween the two matrices is the number of frames each contain both can be defined by
the general matrix

Yq,i =

S

WWWWWWU

y0,0 y0,1 · · · y0,Mq≠1

y1,0 y1,1 · · · y1,Mq≠1
... ... . . . ...

yN≠1,0 yN≠1,1 · · · yN≠1,Mq≠1

T

XXXXXXV
, q = 1, 2 (2.18)

where
yn,m = �i≠—+m[n], m = 0, 1, · · · , Mq ≠ 1 (2.19)

and
— =

7
Mq

2

8
(2.20)

The reason Y1,i and Y2,i use a di�erent number of frames is that they are used for
di�erent purposes. The matrix Y2,i is used as the basis for tracking the desired target.
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2.3. Time-Frequency Transforms

The matrix Y1,i is used for the time-frequency transform that produce the micro-
Doppler signature. Both matrices is illustrated in figure 2.5 below. Note that M2 is
always larger or equal to M1.

Figure 2.5: Illustration of matrices Y1,i(top) and Y2,i(bottom) assuming that M1 < M2

2.3.2 The Doppler Spectrum & the Range-Doppler Map

To extract the Doppler information from the radar, data from more than one frame
(pulse) must be processed. The reason is that the pulse width Tp is about 1ns. To
be able to observe the Doppler shift with a single pulse it is generally required that
fdTp > 1 [9, p. 109]. In this thesis the Doppler frequency fd cannot exceed 70Hz
(fp) without aliasing (why not fp/2 is explained later in this section). Observing the
Doppler shift with a single pulse is therefore safely out of the question. Instead the
Doppler information is sampled every time a pulse is received. The sampling frequency
of this system then becomes the radars pulse repetition frequency fp. We work with
each range bin n separately when processing the Doppler information. In order to
begin let

yn[m] = yn,m = �i≠—+m[n], m = 0, 1, · · · , Mq ≠ 1 (2.21)

yn[m] is in other words just the signal from the nth row vector from Yq,i. By using
equation 2.17 and ignoring the noise term it can be written as

yn[m] =
L≠1ÿ

l=0
p

A

ts + �tn ≠ 2Rl((i ≠ — + m)T )
c

B

◊ exp
A

≠j4fiRl((i ≠ — + m)T )
⁄

B (2.22)
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We assume that the window length Mq is so short that we can assume that no point
scatterer is changing its radial speed vr,l. This gives

Rl((i ≠ — + m)T ) ¥ Rl,i + vr,lmT (2.23)

where
Rl,i = Rl(i ≠ —) (2.24)

Also assume that the amplitude of the point scatterers (in the specific range bin) is
non-changing for the window duration.

p

A

ts + �tn ≠ 2Rl((i ≠ — + m)T )
c

B

¥ fln,l (2.25)

We can now write yn[m] as

yn[m] ¥
L≠1ÿ

l=0
fln,l exp

A
≠j4fi(Rl,i + vr,lmT )

⁄

B

+ vn[m] (2.26)

Where we have added back a noise term with the same statistics as the one in equation
2.17. The equation above can be expressed as

yn[m] =
L≠1ÿ

l=0
fl̃n,l exp

A
j2fifd,lm

fp

B

+ vn[m] (2.27)

where fl̃n,l and fd,l is the complex amplitude and the Doppler frequency of the lth point
scatterer respectively. They are defined as

fl̃n,l = fln,l exp
A

≠j4fiRl,i

⁄

B

(2.28)

2fifd,l = ≠4fivr,l

⁄fp

(2.29)

As mentioned fp = 1/T is the pulse repetition frequency. Since yn[m] is a digital signal
with fp as its sampling frequency, it is simplest to express it with its normalized angular
Doppler frequency Ễd defined as

Ễd = Êd

fp

= 2fifd

fp

(2.30)

meaning that the normalized angular Doppler frequency of the lth point scatterer is

Ễd,l = 2fifd,l

fp

(2.31)

yn[m] then becomes

yn[m] =
L≠1ÿ

l=0
fl̃n,l exp(jỄd,lm) + vn[m] (2.32)

Realistically most of the L point scatterers will have a amplitude fln,l that is not large
enough to be measured in noise in the specific range bin n. This is of course the point
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of using a UWB radar that has a short (in time) pulse. It makes it possible to separate
targets in range since the pulse they reflect appears and disappears relatively quickly.
It is therefore more useful to think of the subset of the L point scatteres that is relevant
in a specific range bin n. By relevant we mean the point scatterers that are observable
in the current noise. On this basis we write equation 2.32 on the form

yn[m] =
K≠1ÿ

k=0
–n,k exp(j�n,km) + ṽn[m] (2.33)

Where –n,k and �n,k is the complex amplitude and the normalized angular Doppler
frequency respectively of the kth point scatterer in the range bin n that is observable.
yn[m] is now expressed with the K Æ L point scatterers that is relevant at that range.
Note that yn[m] itself has not changed since the noise has changed to account for the
small contributions from the remaining point scatterers. Since K can (and probably
will) vary depending on the range bin n it should strictly speaking be denoted as a
variable dependent on n like for example Kn. This not done however to reduce clutter
in the notation, still the reader should keep this in mind. This relationship between L

and K is illustrated in figure 2.8.
By calculating the magnitude of the DTFT of equation 2.33 we obtain the Doppler

spectrum of range bin n centered at the time t = iT . By standard DTFT transform
theory we see that if yn[m] were infinitely long we would have

|Yn(Ễd)| = |DTFT{yn[m]}| =
K≠1ÿ

k=0
–k,l”(Ễd ≠ �n,k) + |DTFT{ṽn[m]}| (2.34)

Where ”(·) represent the Dirac delta function. Equation 2.34 shows that under its
idealized conditions the amplitude response produced by the DTFT would represent
the kth point scatterer as a peak with amplitude |–n,k| and located at Ễd = �n,k. The
peak will be visible if its amplitude is larger than the noise floor created by the last
term of equation 2.34. In practice yn[m] is limited to Mq samples so there would be
leakage. Assuming a rectangular window of length Mq equation 2.34 becomes

|Yn(Ễd)| =
K≠1ÿ

k=0
–n,k

----------

sin
C1

Ễd ≠ �n,k

2
Mq

2

D

sin
C1

Ễd ≠ �n,k

21
2

D

----------

+ |DTFT{ṽn[m]}| (2.35)

Comparing equation 2.35 and 2.34 it is easy to see that the the Dirac delta function has
been replaced by a fraction of two sinusoids that closely resembles the sinc function.
This means that peaks now have a main-lobe and side-lobes as illustrated by figure
2.6. The main-lobe has a bandwidth given by

Main-lobe bandwidth = fp

Mq

= 1
MqT

(2.36)
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Figure 2.6: DTFT of a single point scatterer with constant radial speed so that fd =
fp/4 (black). Included is the DTFT with a Hanning window applied first to the same
point scatterer (gray). The amplitude of the windowed DTFT has been corrected for
amplitude loss. In both cases Mq = 14.

In practice when calculating the STFT a Hanning window is applied resulting in a wider
main-lobe bandwidth but suppressed side-lobes (also illustrated in 2.6). The RELAX
algorithm however (which is defined later in this text) and the mathematics in this
section uses a rectangular windows. Equation 2.36 expresses the trade-o� between time
and frequency, that lies at the heart of all time frequency analysis. It clearly states that
the main-lobes bandwidth is inversely proportional to the total time span of the signal.
A smaller main-lobe meaning better frequency resolution requires that a bigger window
in time (bigger Mq). A bigger window in time means that the assumptions made from
equation 2.23 to 2.25 becomes less accurate. The resolution in time (how accurate the
spectrum reflects the situation at a specific instance) is reduced. Another e�ect of a
bigger window is better signal to noise ratio. The reason is that the DTFT performs
coherent radar pulse integration. In theory, coherent integration is lossless, meaning
that the signal to noise ratio of Mq integrated pulses denoted SNRMq is exactly Mq

times that of a single pulse denoted SNR1 [9, p.46]. Because of the early transition from
the analog to the digital domain that the radar does it has very good coherence (phase
accuracy). Therefore assuming SNRMq ¥ Mq ◊ SNR1 should be a good assumption
(at least for Mq < 30). This is the motivation to use the matrix Y2,i which has
more pulses (frames) included compared to Y1,i (M2 > M1) for tracking. Having good
enough signal to noise ratio to tracking is a prerequisite to create a good micro-Doppler
signature and therefore worth the reduced time resolution.
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The Doppler spectrum is as discussed a superposition of point scatterers and noise.
The point scatterers represent echos from everything in the environment the radar
observes. All the echoes that is from the natural environment that is unwanted is
known as clutter. Often non-moving and very slow moving objects will dominate the
echoes received and will be the biggest source of clutter. This means that if the desired
targets are moving slow enough they have a great risk of being masked by the clutter.
The figure 2.7 is an illustration of a plausible Doppler spectrum. A noise floor (white
noise in the figure) means that only targets (point scatterers) reflecting enough power
to be above the floor are observable. Clutter dominates around 0 Hertz in the spectrum.
Two moving targets are observed, one moving away from the radar (outbound) and
one moving towards the radar (inbound) twice as fast.

The reason a target can theoretically be observed without aliasing with a fd right
below fp (as opposed to fp/2) is a result of knowing the targets direction (in relation to
the radar). Given that we know the target’s direction and no other targets or clutter
is moving the opposite direction. If the direction is inbound the Doppler frequency is
equal to or greater than 0Hz meaning that if the inequation chain 0 Æ fd < fp is true
there is no aliasing. Similarly a outbound direction means if 0 Ø fd > ≠fp is true there
is no aliasing.

Figure 2.7: Illustration of a Doppler spectrum with two moving targets with clutter
and noise. The inbound moving target is twice as fast compared to the outbound
moving target

The range-Doppler map Gi is simply a matrix consisting of the Doppler spectrums of
all the individual radar ranges. As seen in figure 2.1 it is the output of the Calculate
spectogram step. It consists of all N Doppler spectrums obtained from Y1,i. Its formal
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definition is in the next section below. To visualize the range-Doppler map observe
figure 2.8 that illustrates a range-Doppler Map where N = 11 and L = 24 idealized
point scatterers.

Figure 2.8: Illustration of a range Doppler map with a total of L = 24 point scatterers
and N = 11

2.3.3 Clutter Removal & |FFT|2

The clutter contain no information about our desired target and its DTFT leakage
interferes with the spectrum. Removing the clutter is therefore a useful step to create
a good micro-Doppler signature. Since the micro-Doppler signature is based on the
range-Doppler map the clutter should be be removed before the range-Doppler map
is created. The details of how the clutter is removed is in the table 2.2 which details
how the range-Doppler Map Gi is calculated. It is built column by column by the row
signal from Y1,i which we in this subsection temporarily denote as yn[m] (yn[m] was
strictly speaking defined on the basis of Yq,i in the section above). It still has the same
form

yn[m] =
K≠1ÿ

k=0
–n,k exp(j�n,km) + ṽn[m], m = 0, 1, 2, . . . , M1 ≠ 1 (2.37)

To perform the clutter removal the matrices {W1,i, A1,i} from the parameter estima-
tion step is used. The matrices are defined by the equations 2.50a and 2.50b. These
matrices contain the K estimated angular frequencies {�̂n,k}K≠1

k=0 and complex ampli-
tudes {–̂n,k}K≠1

k=0 for all N range bins. These parameters are used to remove the clutter
in the the time domain before calculating the range-Doppler map. In this case clutter
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is defined as having the absolute value of the estimated angular normalized frequency---�̂n,k

--- less than a threshold ‘f . After the clutter is removed a Hanning window is ap-
plied and the signal zero-padded to have a length of D which is the frequency sampling
factor used in the fast Fourier transform (FFT). Consequently d = 0, 1, 2, . . . , D ≠ 1 is
the discrete frequency index. The usual way of using a time-frequency representation
from the STFT is with the spectogram which is simply the squared of its magnitude
response [5]. The spectogram of the signal x for example is

spectogram{x} = |STFT{x}|2 (2.38)

Remember that yn[m] is the STFT signal portion (after clutter removal and zero-
padding) in this case. The spectogram convention is therefore followed by expressing
range-Doppler map Gi with the magnitude-squared of the FFT performed on the zero-
padded signal (see table 2.2).
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Table 2.2: Range-Doppler map creation (clutter removal & |FFT|2)

input

{W1,i, A1,i} ∆

Y
_]

_[

{–̂n,k}K≠1
k=0 , n = 0, 1, . . . , N ≠ 1

{�̂n,k}K≠1
k=0 , n = 0, 1, . . . , N ≠ 1

Y1,i ∆ yn[m], m = 0, 1, . . . , M1 ≠ 1, n = 0, 1, . . . , N ≠ 1
initialize
w[m] = M1 samples long Hanning window
yp[d] = 0, d = 0, 1, . . . , D ≠ 1
for n = 0, 1, . . . , N ≠ 1

ỹ[m] = yn[m], m = 0, 1, . . . , M1 ≠ 1
for k = 0, 1, . . . , K ≠ 1

if
---�̂n,k

--- < ‘f

ỹ[m] = ỹ[m] ≠ –̂n,k exp(j�̂n,km), m = 0, 1, . . . , M1 ≠ 1
end if

end for
ỹ[m] = ỹ[m] ◊ w[m], m = 0, 1, . . . , M1 ≠ 1
yp[m] = ỹ[m], m = 0, 1, . . . , M1 ≠ 1 (zero-padding)
gn,d = 1

M1

---
qD≠1

s=0 yp[m] exp(≠j2fid

s
D

)
---
2
, d = 0, 1, . . . , D ≠ 1

end for
output

Gi =

S

WWWWWWU

g0,0 g0,1 · · · g0,D≠1

g1,0 g1,1 · · · g1,D≠1
... ... . . . ...

gN≠1,0 gN≠1,1 · · · gN≠1,D≠1

T

XXXXXXV

2.3.4 Parameter estimation (RELAX)

The parameter estimation is a way of getting a better trade o� between time and
frequency resolution compared to using the STFT. By performing a spectral analysis
with a spectral estimation algorithm (also referred to as a super-resolution algorithm)
the resolution in frequency and time can be improved [4, p.13]. The algorithm used
is the RELAX algorithm proposed by Jian Li and Petre Stoica [6]. The algorithm is
designed with feature extraction in radar applications in mind such as inverse synthetic
aperture radar (ISAR) imaging. It is applied on the rows of Y1,i and Y2,i. It is used to
estimate complex sinusoids in a noisy signal. We therefore make the same assumptions
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made from equation 2.23 to 2.25. Then we can work on the signal from equation 2.33.

yn[m] =
K≠1ÿ

k=0
–n,k exp(j�n,km) + ṽn[m] (2.39)

The algorithm will be attempting to estimate the angular Doppler frequencies �n,k and
the corresponding complex amplitudes –n,k. This equation expresses yn[m] as the sum
of the K point scatterers that are above the noise floor. How many that actually are is
unfortunately unknown and varies depending on the range n. Instead of attempting to
estimate how many there is, a constant K is assumed. By setting K high enough one
ensures that no point scatterer is likely missed, this also implies that a number of non
existing point scatterers is estimated but this is acceptable. Practical testing revealed
that K = 8 was enough to work well with one target. These parameters will be used to
performing tracking and clutter rejection, in addition some experimentation of using
it as a alternative to the STFT to create a micro-Doppler signature is investigated. As
shown in figure 2.1 this parameter estimation is done on both matrices Y1,i and Y2,i.
The results from Y1,i is the parameters used both for removing clutter and create a
micro-Doppler signature. The parameters from Y1,i is used for the tracking and range
gating of the target.

We recognize that equation 2.39 shows that the general form of the equation does
not change with n (the range bin currently being processed). We therefore omit n to
make the notation less cluttered when presenting the algorithm.

y[m] =
K≠1ÿ

k=0
–k exp(j�km) + ṽ[m] (2.40)

Just as before we denote matrices as boldface uppercase letters, now in addition we
denote vectors as boldface lowercase letters. Note that (·)T is the transpose, (·)H is the
conjugate transpose and Î·Î is the euclidean norm. We define the following vectors

a(�k) = [1 exp(j1�k) exp(j2�k) · · · exp(j(Mq ≠ 1)�k)]T (2.41)

v =
Ë
ṽ[0] ṽ[1] · · · ṽ[Mq ≠ 1]

ÈT
(2.42)

y =
Ë
y[0m] y[1] · · · y[Mq ≠ 1]

ÈT
(2.43)

Using these equations, equation (2.40) can be written as

y =
K≠1ÿ

k=0
–ka(�k) + v (2.44)

The maximum likelihood (ML) estimator given zero-mean white Gaussian noise re-
quires solving the minimization problem [7]

{–̂k, �̂k}K≠1
k=0 = arg min

{–k, �k}K≠1
k=0

.....y ≠
K≠1ÿ

k=0
–ka(�k)

.....

2

(2.45)
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Which is a nonlinear least-squares fitting problem and can be solved e�ciently with
the RELAX algorithm. The algorithms pseudocode is outlined in table 2.3.

Table 2.3: RELAX Algorithm

initialize
–̂k = 0, k = 1, 2, . . . , K ≠ 1
(�̂k values are not needed to initialize)
for s = 0, 1, . . . , K ≠ 1

ŷs = y ≠ qK≠1
k=0,k ”=s –̂ka(�̂k)

�̂s = arg max�

...aH(�)ŷs

...
2

Îa(�)Î2

–̂s = aH(�̂s)ŷs...a(�̂s)
...

2

repeat
for j = 0, 1, . . . , s

ŷj = y ≠ qs
m=1,m”=j –̂ma(�̂m)

�̂j = arg max�

...aH(�)ŷj

...
2

Îa(�)Î2

–̂j = aH(�̂j)ŷj...a(�̂j)
...

2

end for
until(convergence)

end for

One of the reasons the algorithm is e�cient is because it relies on the periodogram
(which uses the FFT) to estimate the angular frequency �k. The periodogram of y[m]
is

P (�) = 1
Mq

-----

Mq≠1ÿ

m=0
y[m] exp(≠j�m)

-----

2

=

...aH(�)y
...

2

Mq

(2.46)

The signal should be zero-padded enough to achieve high accuracy when estimating
frequency. The signals used in this thesis was zero-padded to a length of 2048 which
is twice the length used in [6].

The minimization problem 2.45 is solved by successively solving the simpler problem

{–̂s, �̂s} = arg min
{–s, �s}

Îŷs ≠ –sa(�s)Î2 (2.47)
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Minimizing the right side of 2.47 with repect to –s gives us

–̂s = aH(�̂s)ŷs...a(�̂s)
...

2 (2.48)

Substituting equation 2.48 into 2.47 results in

�̂s = arg max
�s

...aH(�s)ŷ2
s

...

Îa(�s)Î2 (2.49)

Observe that Îa(�s)Î2 = Mq and that equation 2.49 is therefore equal to the peri-
odogram of ŷs. In this way the �t is used to estimate �̂s by taking the location of the
biggest peak in the periodogram of ŷs. With the location of ŷs the complex amplitude
–̂s can be easily found with the same �t.

To utilize these results to the fullest a relatively simple cyclic concept is used where
the new parameters {–̂s, �̂s} are not estimated until {–̂s, �̂s}i≠1

s=1 are “su�cently good”.
In other words, until the previous estimates converge. Convergence is determined by
checking how much the cost function 2.45 changes between two successive iteration of
the repeat-until-loop. When the di�erence is less than a predefined threshold ‘c the
estimates are said to have converged. The RELAX algorithm takes advantage of the
fact that the calculation of the dominant peak in the periodogram is more accurate
when it consists of a single sinusoid, instead of two or more sinusoids. This especially
true if the sinusoids are closely spaced to eachother. This is a very attractive feature
use since it is desirable to use a few samples (small Mq) so one can have good time
resolution, which result in a lot of leakage (low resolution) in the periodogram. This
is mitigated however since ŷs is assumed to eventually consist only of one complex
sinusoid, the others and their interfering leakage removed.

The results of the RELAX algorithm is of the set of all K angular frequencies
and complex amplitudes estimated at range n denoted {�̂n,k}K≠1

k=0 and {–̂n,k}K≠1
k=0 . The

algorithm is applied to all ranges and the result is collected in two matrices Wq,i and
Aq,i where just as before q = {1, 2} and denotes if the input was Y1,i or Y2,i. Given
that Yq,i is the input to the parameter estimation and the parameters estimated at
range n is {�̂n,k}K≠1

k=0 and {–̂n,k}K≠1
k=0 . The output of the parameter estimation is {Wq,i,

Aq,i} defined as

Wq,i =

S

WWWWWWU

�̂0,0 �̂0,1 · · · �̂0,K≠1

�̂1,0 �̂1,1 · · · �̂1,K≠1
... ... . . . ...

�̂N≠1,0 �̂N≠1,1 · · · �̂N≠1,K≠1

T

XXXXXXV
, q = 1, 2 (2.50a)
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and

Aq,i =

S

WWWWWWU

–̂0,0 –̂0,1 · · · –̂0,K≠1

–̂1,0 –̂1,1 · · · –̂1,K≠1
... ... . . . ...

–̂N≠1,0 –̂N≠1,1 · · · –̂N≠1,K≠1

T

XXXXXXV
, q = 1, 2 (2.50b)

2.4 Extract µ-Doppler signature

The micro-Doppler signature µi is extracted from the range-Doppler map by summing
together all the range bins that contain point scatterers from the desired target. Let
the range bin nearest the radar containing point scatterers from the desired target at
time t = iT be denoted bL,i. Similarly let the range bin furthest away from the radar
containing point scatterers from the desired target at time t = iT be denoted bH,i.
bL,i and bH,i define the lower bound and higher bound of the range gate respectively.
Only the range bins inside the range gate will be added together and become a part of
the micro-Doppler signature µi. This is illustrated by figure 2.9 where the range bins
inside the range gate of Gi is colored red. They are added together and becomes the
last entry (in the column dimension) of signature µi.

Figure 2.9: The range Doppler map Gi give rise to the micro-Doppler spectrum.

The next subsection will explain how the bounds are determined.
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2.4.1 Tracking & range gate
To produce a good micro-Doppler signature it is important that the bounds bL,i and
bH,i are accurate. The bounds are calculated in the Tracking & range gate step and as
the name implies tracking is a vital step in setting good bounds. Tracking a target with
radar is a big subject and not really the focus of this thesis. Therefore a very simple
tracking algorithm was developed and used. It got the job done in most circumstances.
Table 2.4 contains the pseudocode detailing how the tracking works. As seen there it
starts to check if the A2,i contains the largest point scatterer (in amplitude) up till
that point in time. If so the position of the target is automatically set to be at the
same position as that point scatterer. If not it finds the largest point scatterer that lies
in a box surrounding the previous position of the target. That box is defined in range
by Nlim and in Doppler frequency by �lim. Table 2.5 has the pseudocode describing
how bL,i and bH,i are calculated. The principle behind this range gate is simple. The
gate has a predefined fixed length defined as two times the half gate length denoted
Nw. This means that bH,i = bL,i + 2 ◊ Nw unless the gate happens to go over one of
the edges. The for-loop goes through every combination that keeps the target inside
the range gate. In the end the combination that has the largest Frobenius norm Î·ÎF

(sum of the squared absolute value of all elements in matrix) denoted F is chosen as
the range gate. In practice Nw = 13 which means that it is assumed that the target
spans about 1 meter in range.
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Table 2.4: Tracking

input

W2,i =

S

WWWWWWU

�̂0,0 �̂0,1 · · · �̂0,K≠1

�̂1,0 �̂1,1 · · · �̂1,K≠1
... ... . . . ...

�̂N≠1,0 �̂N≠1,1 · · · �̂N≠1,K≠1

T

XXXXXXV
= {�̂n,k}K≠1

k=0 , n = 0, 1, . . . , N ≠ 1

and

A2,i =

S

WWWWWWU

–̂0,0 –̂0,1 · · · –̂0,K≠1

–̂1,0 –̂1,1 · · · –̂1,K≠1
... ... . . . ...

–̂N≠1,0 –̂N≠1,1 · · · –̂N≠1,K≠1

T

XXXXXXV
= {–̂n,k}K≠1

k=0 , n = 0, 1, . . . , N ≠ 1

initialize
–̃ = recall the amplitude of the biggest point scatterer from memory
{np, �p} = recall last position from memory
{ñ, k̃} = arg maxn,k{|A2,i|}
if –ñ,k̃ > –̃

–̃ = –ñ,k̃

nt = ñ

�t = �̂ñ,k̃

else
Nmin = max{0, np ≠ Nlim}
Nmax = min{N ≠ 1, np + Nlim}
Ã = {–̂n,k}K≠1

k=0 , n = Nmin, Nmin + 1, . . . , Nmax
repeat

{ñ, k̃} = arg maxn,k{
---Ã2,i

---}
�̃ = �̂ñ,k̃

if �̃ is within the interval (�p ≠ �lim, �p + �lim)
�t = �̃
nt = ñ

else
–ñ,k̃ = 0

end if
until �t and nt are found

end if
save to memory �p = �t, np = nt and –̃

output
{�t,nt}
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2.4. Extract µ-Doppler signature

Table 2.5: Range gate

input

W2,i =

S

WWWWWWU

�̂0,0 �̂0,1 · · · �̂0,K≠1

�̂1,0 �̂1,1 · · · �̂1,K≠1
... ... . . . ...

�̂N≠1,0 �̂N≠1,1 · · · �̂N≠1,K≠1

T

XXXXXXV
= {�̂n,k}K≠1

k=0 , n = 0, 1, . . . , N ≠ 1

and

A2,i =

S

WWWWWWU

–̂0,0 –̂0,1 · · · –̂0,K≠1

–̂1,0 –̂1,1 · · · –̂1,K≠1
... ... . . . ...

–̂N≠1,0 –̂N≠1,1 · · · –̂N≠1,K≠1

T

XXXXXXV
= {–̂n,k}K≠1

k=0 , n = 0, 1, . . . , N ≠ 1

and
{�t,nt}
initialize
E = 0
Nmin = max{0, nt ≠ Nw}
for ñ = Nmin, Nmin + 1, . . . , nt ≠ 1

Nmax = min{N ≠ 1, ñ + (2 ◊ Nw)
Ã = {–̂n,k}K≠1

k=0 , n = ñ, ñ + 1, . . . , Nmax
F̃ =

...Ã
...

F

if F̃ > F

bL,i = ñ

bH,i = Nmax
F = F̃

end if
end for
output
{bL,i, bH,i}
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2.4. Extract µ-Doppler signature

2.4.2 Synthesize µ-Doppler signature

The STFT based micro-Doppler signature µi is the sum of the gated range-Doppler
map. Mathematically it is defined as

µi =

S

WWWWWWU

u0,0 u0,1 · · · u0,i

u1,0 u1,1 · · · u1,i

... ... . . . ...
uD≠1,0 uD≠1,1 · · · uD≠1,i

T

XXXXXXV
(2.51)

where

ud,i =
bH,iÿ

n=bL,i

gn,d (2.52)

As defined in table 2.2 gn,d denotes the entries in the range-Doppler map Gi.

In addition to the STFT based micro-Doppler signature a experimental micro-
Doppler signature is created with the aim of creating a signature that has improved
time-frequency resolution compared to the STFT based signature. This micro-Doppler
signature is based on the parameters {W1,i, A1,i} (the same parameters used to remove
the clutter from the STFT based signature) from the RELAX algorithm and is denoted
›i. Table 2.6 contains the pseudocode that details how it is made. It is simply a
matrix where the estimated point scatterers from {W1,i, A1,i} is placed in the correct
corresponding Doppler frequency bin with its estimated amplitude. If the estimated
point scatterer has a estimated angular normalized frequency whose absolute value---�̂n,k

--- is less than a threshold ‘f (which is defined to be clutter) it is left out. Finally
when a section of this experimental signature is used the signature is smoothed a bit
using the imfilter function in Matlab (not in the pseudocode).
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2.4. Extract µ-Doppler signature

Table 2.6: RELAX based micro-Doppler signature

input

W1,i =

S

WWWWWWU

�̂0,0 �̂0,1 · · · �̂0,K≠1

�̂1,0 �̂1,1 · · · �̂1,K≠1
... ... . . . ...

�̂N≠1,0 �̂N≠1,1 · · · �̂N≠1,K≠1

T

XXXXXXV
= {�̂n,k}K≠1

k=0 , n = 0, 1, . . . , N ≠ 1

and

A1,i =

S

WWWWWWU

–̂0,0 –̂0,1 · · · –̂0,K≠1

–̂1,0 –̂1,1 · · · –̂1,K≠1
... ... . . . ...

–̂N≠1,0 –̂N≠1,1 · · · –̂N≠1,K≠1

T

XXXXXXV
= {–̂n,k}K≠1

k=0 , n = 0, 1, . . . , N ≠ 1

and
{bL,i, bH,i}
initialize
zi[d] = 0, d = 0, 1, . . . , D ≠ 1
for n = bL,i, bL,i + 1, . . . , bH,i

for k = 0, 1, . . . , K ≠ 1
if

---�̂n,k

--- < ‘f

f̃d = �̂n,kfp

2fi

d̃ = round{f̃d ◊ D
fp

}
zt[d̃] = |–̂n,k|

end if
end for

end for
output

›i =

S

WWWWWWU

z0[0] z1[0] · · · zi[0]
z0[1] z1[1] · · · zi[1]

... ... . . . ...
z0[D ≠ 1] z1[D ≠ 1] · · · zi[D ≠ 1]

T

XXXXXXV

Both the STFT and RELAX based micro-Doppler signatures are subject to quite
heavy fluctuation in the targets intensity (mainly dependent on range). To counter
this every time bin (column) of the signatures are normalized to have almost the same
maximum amplitude.
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2.5. Gait-Doppler Map (feature extraction)

2.5 Gait-Doppler Map (feature extraction)
The term gait (not to be confused with gate) is a term applies to the pattern of
movements of the limbs of animals and humans. Most of the time it can be thought of
as “walking pattern”. The pattern which a animal uses to walks can vary from specie to
specie common to all of them is that they repeat to bring the animal forward. One cycle
before the pattern starts over again is referred to as a gait cycle. The gait-Doppler
map is used to estimate the frequency of the gait cycle called the fundamental gait
frequency denoted fg.

The gait-Doppler map is simply created by taking the FFT of the rows of the
micro-Doppler signatures. This means that the gait-Doppler map share the column
dimension with the range-Doppler signature which is the Doppler frequency spectrum.
The gait-Doppler map can also be used to find the average velocity/Doppler shift of
the target.
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Chapter3
Results & discussion

3.1 Test setup

The system was tested in a big garden depicted in figure 3.1. The radar is situated in
the middle if the red circle. The radars direction line is marked with the blue line and is

Figure 3.1: Annotated picture of the test
setup. Radar circled in red. Radar direction
line in blue. Frame span inner and outer limit
in green

simply the direction the radar is point-
ing meaning it is the direction the main
beam of the radar is pointed. Finally
the inner and outer limit of the frame
span is illustrated with the two green
lines. Note that the dog is between
the two lines and therefore inside the
radars frame span (would therefore be
detectable). The only clutter source of
note in this setup was the ground, in
addition there was very little multipath
interference. Figure 3.2 shows a birds
eye drawing of the same test setup.
Just as the picture above the radar is
in the middle of a red circle, the radar
direction line is blue and the green lines
are the limits of the frame span. In ad-
dition the target path (the route the
target used during the test) is illus-
trated with a black line. The targets
(including the dog) paths was made
to always cross the direction line at
roughly the same point called the com-
mon intersection point (small black cir-
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3.2. Micro-Doppler signatures

Figure 3.2: Birds eye illustration of the test setup, showing the common intersection
point and the target path angle ◊

cle). This point was chosen to not be in the middle of the frame span but a bit closer
to the radar. This means that a targets specific route can be defined by a single angle
the target path angle ◊. It is defined as the angle (grey in the figure) between the radar
direction line and the target path. For example is the target path angle is ◊ = 0 the
target would be moving along the radar direction line.

3.2 Micro-Doppler signatures

The first and most important results that will be discussed is the micro-Doppler sig-
natures. First the challenges identified with producing the micro-Doppler signature
will be discussed. Then the human micro-Doppler signature and the e�ects of di�erent
window sizes will be discussed. After that micro-Doppler signatures from the dog will
be presented and discussed.

3.2.1 Human Signature & the E�ects of Window Length

On the following pages the same human micro-Doppler signature is depicted over and
over again from figure 3.3 to 3.7 (nor 3.8) with changing window length (M1 ◊ T ).
Both the STFT based micro-Doppler and the more experimental RELAX based micro-
Doppler signature is shown for each window length. In these signatures a adult woman
is moving inbound along the direction line (◊ = 0¶). The most striking pattern that
is seen in all figures is the “zig-zag” pattern from the high intensity (dark red) areas.
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3.2. Micro-Doppler signatures

This pattern is created by the reflections from the torso and shows that the torso
of person does not have a constant speed during walking. The limbs create weaker
“spikes” protruding from the torso zig-zag. This is expected since the limbs alternate
between moving slower and moving faster than the torso when walking. The highest
and strongest spikes probably corresponds to the legs that normally moves faster than
the arms (mainly because they are longer) and since they have a larger Radar Cross
Section (RCS) compared to the arms. Observe that the spikes (legs) tend to come
out as the torso is in a local valley in its Doppler frequency (speed). This means
that the torso is moving at its slowest when the foot moving forward is at its fastest.
Correspondingly the torso is moving at its fastest as the forward moving foot has
stopped or almost stopped and the weight of the body is being shifted to it.

As all the figures show the window length has a big e�ect on the micro-Doppler
signature. Figure 3.3 is produced with the smallest window used in this thesis lasting
just 5 pulses equivalent to about 71.4 ms. There a lot of leakage in the STFT Doppler
spectrum and the aliasing is apparent. This signature has the greatest sensitivity
for frequency change provided by its excellent time resolution. The RELAX based
signature has as expected better frequency resolution and is perhaps a little bit easier
for a human to identify structures and patterns. However it still struggles with quite
some spread in the “dots” it has estimated. If this spread represent the underlining
structure of the signal and is just not estimator noise there seems to be no easy way
to make immediate sense of the structure. Note the band around 0 Hz in the RELAX
based signature that shows the band where the clutter has been removed. This band
has been removed in its STFT counterpart as outlined previously but the leakage of
the Doppler spectrum masks this making it seem like no clutter has been removed. As
the window length gets longer the removed clutter band in the STFT becomes more
apparent. The increasing window length provide better and better frequency resolution
and the more fine structure in the Doppler frequency dimension emerges. The time
resolution su�ers however although it may be less apparent. Figure 3.7b showing the
RELAX based signature with a window of 0.4 seconds may look impressive with a lot
of details of di�erent scatterers but a lot of it is probably heavily corrupted by the
relative large time scale. Still it seems that with a slowly walking person the window
length can safely be used up to 0.2 seconds and perhaps more depending on the use.

Figure 3.8 shows the signature of a man slowly walking outbound with a target
path angle of about 60¶. The signature is similar in nature to the one discussed earlier
but here the target seem to accelerate between the first and third second judging by
the rising torso zig-zag. In this case the acceleration does not come from the target
moving faster but is a result of the targets path. The first second the target is moving
close to the radar and with a ◊ = 60¶ the radial velocity of the target seen from the
radar is small. As the target moves away from the radar the Line Of Sight (LOS)
between the radar and the target becomes more and more aligned with the target path
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3.2. Micro-Doppler signatures

and more of the targets movement is in the direction of the radar. This result in larger
radial velocity and higher Doppler frequencies. This goes for the limbs as well that has
smaller spikes in the beginning of the signature compared to the end. This “aligning”
e�ect dies out around the 3 seconds mark as the angle between the LOS and target
path changes less and less. If the target was moving Inbound instead the e�ect would
be the same except in reverse and the target would seem to slow down.
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3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.3: Micro-Doppler signature based on FFT (a) & RELAX (b) of a woman
slowly walking with a inbound direction. ◊ = 0¶. Window length 71.4 ms

Micro-Doppler Signatures Associated with Humans and Dogs 35



3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.4: Micro-Doppler signature based on FFT (a) & RELAX (b) of a woman
slowly walking with a inbound direction. ◊ = 0¶. Window length 0.1 seconds
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3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.5: Micro-Doppler signature based on FFT (a) & RELAX (b) of a woman
slowly walking with a inbound direction. ◊ = 0¶. Window length 0.143 seconds
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3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.6: Micro-Doppler signature based on FFT (a) & RELAX (b) of a woman
slowly walking with a inbound direction. ◊ = 0¶. Window length 0.2 seconds
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3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.7: Micro-Doppler signature based on FFT (a) & RELAX (b) of a woman
slowly walking with a inbound direction. ◊ = 0¶. Window length 0.4 seconds
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3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.8: Micro-Doppler signature based on FFT (a) & RELAX (b) of a man slowly
walking with a outbound direction. ◊ = 60¶. Window length 0.143 seconds
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3.2.2 Dog signature

The dog used for testing is depicted in figure 3.9. It is a medium sized dog of the
pointer breed. From the nose to the tail the dog is about 110cm (90cm without the
tail).

Figure 3.9: Picture of the dog used for the tests, a medium sized pointer.

The figures 3.10 to 3.13 focus on the same micro-Doppler signature created with dif-
ferent window lengths (only up to 0.2 seconds this time). Again both the STFT based
and RELAX based signatures are displayed. The signatures from the dog was more
sensitive to aliasing simply because the getting the dog to move slow enough was a
challenge. However in the first signature presented in the dog mostly moves slow
enough to not create a lot of aliasing. In fact at about the 0.8 seconds mark the dog
stands mostly still and most of its echoes are removed by the clutter removal. Since
the micro-Doppler signature is normalized to have almost the same maximum ampli-
tude at each time bin the noise is amplified when the dogs echos are removed and a
noticeable vertical line is produced that could be mistaken for a fast moving limb but
is in fact mostly noise. The dog micro-Doppler signature looks a lot like the human
one with a torso that creates a high intensity zig-zag line across the signature and the
limbs creating spikes. The limb pattern is however a bit shorter and narrower in time
(sharper spikes) compared to the human limb pattern. This is because the dogs limbs
are shorter and accelerates and decelerate quicker than their human counterparts.

The figure 3.14 shows a more typical dog signature obtained from the test in that
the dog is moving faster and with a lot more aliasing, before it slows down at the end.
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3.2. Micro-Doppler signatures

The dog is walking outbound in this case with ◊ = 0¶.

(a)

(b)

Figure 3.10: Micro-Doppler signature based on FFT (a) & RELAX (b) of a dog slowly
walking with a outbound direction. ◊ = 10¶. Window length 0.071 seconds
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3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.11: Micro-Doppler signature based on FFT (a) & RELAX (b) of a dog slowly
walking with a outbound direction. ◊ = 10¶. Window length 0.1 seconds
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3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.12: Micro-Doppler signature based on FFT (a) & RELAX (b) of a dog slowly
walking with a outbound direction. ◊ = 10¶. Window length 0.143 seconds

44 Micro-Doppler Signatures Associated with Humans and Dogs



3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.13: Micro-Doppler signature based on FFT (a) & RELAX (b) of a dog slowly
walking with a outbound direction. ◊ = 10¶. Window length 0.2 seconds
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3.2. Micro-Doppler signatures

(a)

(b)

Figure 3.14: Micro-Doppler signature based on FFT (a) & RELAX (b) of a dog walking
with a outbound direction. ◊ = 0¶. Window length 0.143 seconds
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3.3 Gait-Doppler Map & features
As mentioned in chapter 2 the gait-Doppler map is obtained by taking the row-FFT
of the micro-Doppler signature.

3.3.1 Gait-Doppler Map from Human
The figure 3.15a shows the same micro-Doppler signature used earlier of a woman slowly
walking inbound with ◊ = 0¶ and with its corresponding gait-Doppler map which has
had its DC component removed. Three features are labeled in the gait-Doppler map
the 2 is the fundamental gait-frequency fg, 3 and 4 is its harmonics. Produced by
the moving limbs and torso. Figure 3.15b shows the same gait-Doppler map where the
DC has not been removed. This makes it possible to observe feature 1 which is the
average Doppler frequency of the torso fav. With fav and fg we can define the stride
which is the length the foot moves each step the target takes as

stride = Ls = vav

fg

= fav⁄

2fg

(3.1)

where vav is the average velocity of the torso and Ls is the length of the stride in
meters. In the case of the current signature fg ¥ 0.75Hz and fav ¥ 12.5Hz yielding
a Ls ¥ 0.36meter. Since the length of the limbs of human and animal are di�erent is
should be possible to separate humans and dogs by knowing their stride. The shorter
legs of the dogs means it can’t take as long steps as a human. The stride however will
change depending how fast the animal is moving so all three features fg, fav and Ls

should be considered.
Figure 3.16a shows the same signature but based on RELAX and its gait-Doppler

map as 3.15a. The fundamental gait frequency is still observable but its harmonics are
harder to spot, it does not seem better in any particular way. Figure 3.16b contains
the micro-Doppler signature and the gait-Doppler map of the man discussed earlier
which was moving outbound with ◊ = 60¶. In this case will the increasing speed due to
the “aligning e�ect” create a low frequency component that could be mistaken for the
fundamental gait frequency. The true fundamental gait frequency and its harmonics
are still observable however. That the radial speed is dependent on the ◊ means that
all the average Doppler frequency fav is such a robust feature that one would like. By
extension this also applies to the stride length Ls. Observing the target over time can
somewhat mitigate this challenge.
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(a)

2 3 4

(b)

1

Figure 3.15: Gait-Doppler Map (DC - removed) and micro-Doppler signature of woman
slowly walking with a inbound direction. ◊ = 0¶. Window length 0.143 seconds (a) &
(b) The same Gait-Doppler map but with the DC intact. Features in the gait-Doppler
map has been labeled.
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(a)

(b)

Figure 3.16: Gait-Doppler Map (DC - removed) and micro-Doppler signature of woman
slowly walking with a inbound direction both based on the RELAX algorithm. ◊ =
0¶. Window length 0.143 seconds (a) & (b) Gait-Doppler Map (DC - removed) and
micro-Doppler signature of a man slowly walking with a outbound direction. ◊ = 60¶.
Window length 0.143 seconds.
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3.3.2 Gait-Doppler Map from Dog
Figure 3.17a is the same dog micro-Doppler signature discussed earlier and its gait-
Doppler map. The dog is moving slowly outbound (stopping a short while) and ◊ = 10¶.
The dogs fundamental gait fg is easy to pick out and is approximately 0.83 Hz. It is
however harder to spot its harmonics. Below figure 3.17b is the same gait-Doppler map
but with the DC intact and the average Doppler frequency fav of the dog is about 8
Hz. This means that the stride Ls is around 0.21 meters. Figure 3.18a shows the same
signature and gait-Doppler map as figure 3.17a but based on the RELAX algorithm.
This gait-Doppler map does not seem much better, the harmonics of the fundamental
gait frequency is maybe a bit easier to pick out. Finally there is figure 3.18b also a
signature looked at earlier with its gait-Doppler map. The dog as mentioned is here
walking normally with ◊ = 0¶. Just as seen with figure 3.16b the “radically” changing
radial speed of the target create low frequency components in the gait-Doppler map
that could be mistaken for the fundamental gait-frequency. Also it is not clear by
looking at the gate-Doppler map what fg really is.

Table 3.1: Feature Comparisons

Woman Dog
Fundamental gait frequency fg 0.75 Hz 0.83 Hz
Average Doppler frequency fav 12.5 Hz 8Hz
Stride length Ls 0.36 m 0.21 m

Table 3.1 compares the features obtained from the from the woman and dog gait-
Doppler map. Notice that even if the dog is moving at a lower speed than the woman
it has a higher fundamental gait frequency. This is reflected by the stride length which
is shorter compared to the woman.
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(a)

(b)

Figure 3.17: Gait-Doppler Map (DC - removed) and micro-Doppler signature of a dog
slowly walking with a outbound direction. ◊ = 10¶. Window length 0.143 seconds (a)
& (b) The same Gait-Doppler map but with the DC intact.
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(a)

(b)

Figure 3.18: Gait-Doppler Map (DC - removed) and micro-Doppler signature of of a
dog slowly walking with a outbound direction both based on the RELAX algorithm.
◊ = 10¶. Window length 0.143 seconds (a) & (b) Gait-Doppler Map (DC - removed)
and micro-Doppler signature of a dog walking with a outbound direction. ◊ = 0¶.
Window length 0.143 seconds.
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3.3.3 Challenges
The greatest problem with the micro-Doppler signature in this test was aliasing in the
Doppler spectrum due to the pulse repetition frequency fp being limited to 70 Hz. As
was shown in chapter 2 the induced Doppler frequency from a target/point scatterer
is dependent on its radial speed. This limit in the radar was known before hand and
the plan was to make the targets move slow enough that there would be little or no
aliasing. This worked okay when observing humans but getting the dog to move slow
enough was a problem.

The signal to noise ratio seemed to be good enough for both adult human and the
dog. The SNR was however noticeably worse for the dog and the in the test done
the range was never more than 4.4 meters. At any range greater than that or if the
animal is smaller than the dog used here caution regarding the SNR is advised. Other
preliminary testing done indoors revealed that multipath interference could contribute
to the micro-Doppler signature and should therefore be taken into account.

The tracking and range-gating worked well most of the time and is vital to achieve
a good micro-Doppler signature. Tests showed that if clutter as not removed it would
often dominate the signature so removing it often vital.

As discussed two of the features Ls and fav is sensitive to the angle between the
target path and radar LOS. This reduces their usefulness as features for classification.
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Chapter4
Concluding remarks

4.1 Further work

To create a robust system that can separate between humans and dogs let alone other
animals will require further work based on the results from this thesis. Consider the
overall problem, figure 1.1 can be of help here, in this thesis focus has been on the
Doppler information represented by the micro-Doppler signature, but the output of
the time-frequency transforms does contain data about the range as well. Using the
range information in addition would mean more diversity in the collected features and
the classifier would almost surely perform better. When it comes to the classifier (which
was not treated in this thesis) a database of human and animal radar data should be
collected so training of the classifier and testing di�erent approaches can be performed
e�ectively.

When it comes to the time-frequency resolution of the STFT it can be improved
either by using a super-resolution algorithm like RELAX or through one of the many
other time-frequency transforms like the TFDS [2] that can gradually trade better time-
frequency resolution in return for more and more cross-term interference. The RELAX
algorithm worked well both when used for tracking and clutter removal, however it can
be quite computationally demanding. This can remedied in several ways. Calculating
the same amount of complex sinusoids every time the algorithm is used is ine�ective and
some way of determining how many should be estimated would probably be beneficial.
The algorithm itself can also be made more e�ective by following this [8] paper.

The micro-Doppler signature worked well enough in this thesis but it can be im-
proved. For example instead of a range-gate which includes everything inside it, a
algorithm that only includes targets/point scatterers that is above a certain threshold
in the signature could be used. Further preprocessing of the time-frequency data like
that could improve the SNR a great deal. The signal strength from the target can vary
widely, especially as it moves closer or further away from the radar. The signatures in-
tensity can vary quite a bit over time. In this thesis every time instant in the signature
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is normalized to have almost the same maximum intensity. This method works quite
well but can increase the noise dramatically if the target is lost momentarily for exam-
ple if it is standing still and considered clutter. Instead of normalizing the signature
itself the range-Doppler map could normalize its intensity based on the range. Each
range bin would be multiplied by a di�erent coe�cient so that the varying intensity
from the target will only be (in theory) from the radar cross section.

The gait-Doppler map is less e�ective when the average velocity of the target
changes a lot and the target is spread in the Doppler spectrum. Estimating such a
trend would give a good tool in estimating the targets average velocity, but could
also be used to “normalize” the signature so that the fundamental gait-frequency can
more easily be estimated. More features from the micro-Doppler signature should be
investigated. For example the bandwidth of the signature.

4.2 Conclusion

The thesis has focused on and succeeded in developing algorithms and a system to
extract micro-Doppler signatures from targets. Signatures from both humans and dogs
has been produced and some simple features extracted from them. The major problem
with the signatures created is that the radars pulse repetition frequency is a limiting
factor and causes aliasing in the Doppler spectrum that corrupts the signatures. This
has limited the study of targets to slow moving humans and dogs. Apart from the
aliasing the signatures signal to noise ratio was good enough for tracking and the
features investigated for both dog and human within the range of 4.4 meters. With the
relatively slow targets being investigated it was found that the time windows used in
the time-frequency analysis could be as long as 0.4 seconds although a shorter window
is probably more useful. The experimental RELAX based micro-Doppler signature
was developed and it has better time-frequency resolution but it is not clear that this
would aid in any way with the classification problem. The features gathered from the
STFT based signature seemed to perform just as well as the one from the RELAX
based signature.

Three important features for classification was extracted from the micro-Doppler
signature by calculating the gait-Doppler map. They are, i) the average Doppler fre-
quency fav(or average radial velocity vav), ii) fundamental gait frequency fg and iii)
the stride length Ls which is derived from the two former features. The result shows
that it is possible to separate humans and dogs using these parameters see table 3.1.
The reason is that since the dogs limbs are shorter than a human it also has shorter
stride length at a specific speed. However, this is not enough features for an alarm
system, since it can be easily fooled by a smart intruder that could for example take
unnatural short steps and simulate a dogs combination of the aforementioned features.
The way features are calculated is dependent on having 3 to 4 gait cycles available.
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This is realistic, but to get a good estimate of the features it is a requirement that
the average radial speed of the target does not change a lot during these cycles. This
e�ect can probably be mitigated by preprocessing the signature before calculating the
gait-Doppler map.

The Doppler frequency contains a lot of information about the target, and the
micro-Doppler signatures attempts to brings forth all of the information contained in
the Doppler shift. Signatures like the ones created in this thesis would be very useful
in classifying di�erent animals. Still, to create a truly robust classification system
that can be used in a alarm and surveillance application, it may be easier to meet a
specification by utilizing at least some of the range information and not only rely on
the micro-Doppler signature.
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AppendixA
Selected Matlab code

Included here are some of the central Matlab code.

A.1 The RELAX algorithm

function [eTheta, eAlpha] = RELAX(y, K, threshold, N_fft)

%Estimate the K dominating sinusoids in the signal y using

%threshold as threshhold for convergence. N_fft is the length

%of the zero padded FFT signal

%Make sure y is in standard vector form

y_size = size(y);

if y_size(2)>y_size(1)

y = y';

end

%Initialize

eAlpha = zeros(K,1);

eTheta = zeros(K,1);

N = length(y);

n = 0:N≠1;

n = n';

f_step = 1/(N_fft≠1);

f_limit = floor(N_fft/2);

for i=1:K

count = 0;

est_y_1 = zeros(N,1);

for k = 1:(i≠1)

est_y_1 = est_y_1 + eAlpha(k)*exp(2j*pi*eTheta(k).*n);

end

y_diff = y≠est_y_1;
y_diff_fft = fft(y_diff,N_fft);
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A.1. The RELAX algorithm

[~, theta_i] = max(abs(y_diff_fft));

%Correct Matlab indexes (it starts at 1) in the below if≠else
if (theta_i) > f_limit

eTheta(i) = f_step*(N_fft≠(theta_i≠1))*≠1;

else

eTheta(i) = (theta_i≠1)*f_step;

end

%estimate alpha

eAlpha(i) = y_diff(theta_i)/N;

est_y_1 = est_y_1 + eAlpha(i)*exp(2j*pi*eTheta(i).*n);

cost1 = sum(abs(y≠est_y_1));
convergence = false;

while ((convergence == false) || (count == 100))

count = count+1;

for k = 1:i

est_y_2 = zeros(N,1);

for p = [1:(k≠1) (k+1):K]

est_y_2 = est_y_2 + eAlpha(p)*exp(2j*pi*eTheta(p).*n);

end

y_diff = y≠est_y_2;
y_diff_fft = (fft(y_diff,N_fft));

[~, theta_i] = max(abs(y_diff_fft));

%Correct Matlab indexes (it starts at 1) in the below if≠else
if (theta_i) > f_limit

eTheta(k) = f_step*(N_fft≠(theta_i≠1))*≠1;

else

eTheta(k) = (theta_i≠1)*f_step;

end

eAlpha(k) = y_diff(theta_i)/N;

end

%Calculate change in cost function

est_y_2 = est_y_2 + eAlpha(i)*exp(2j*pi*eTheta(i).*n);

cost2 = sum(abs(y≠est_y_2));
change = (cost1≠cost2);
if change < threshold

convergence = true;

else

cost1 = cost2;

end

end

end

end

60 Micro-Doppler Signatures Associated with Humans and Dogs


