
Tracking A Person Using UWB Pulse 
Doppler Radar

Morten Åsheim

Master of Science in Electronics

Supervisor: Lars Magne Lundheim, IET
Co-supervisor: Jan Roar Pleym, Novelda As

Department of Electronics and Telecommunications

Submission date: June 2015

Norwegian University of Science and Technology



 



i

Abstract

There are today a large number of different tracking systems and the subject of tracking

targets is not a new one. A lot of the tracking done is in connection with aviation and

military uses, but as the ”internet of things” has become more popular the possibility to

expand to households has appeared. To be able to track people in buildings or your own

house opens a lot of possibilities for different applications, for example in home security.

The usage of small radars, in the size of a few square centimeters, for tracking in house-

holds was an interesting topic for Novelda AS, which this thesis was written in collabo-

ration with. The task was therefore to create a tracking system using Novelda’s Xethru

short-range radars, to track a walking person in a room.

A tracking system was developed to be used in said environment. The total system

consisted of four main parts. The first part was the kalman filter. The kalman filter

smoothed out noisy data and provided estimates of the range and speed of the target.

Then the gating was implemented, allowing only measurements from the radar that was

within a certain range from the predicted position. Then, in the case when there was

received multiple measurements at the same time, the global nearest neighbour method

chose the measurement closest to the predicted position. In the end, a triangulation

function was made to give out a final position (x, y) using the two radars.

The thesis first gave a thorough description of the problem. Important parts of the

tracking system was then explained and implemented. The system was then tested in

simulations and later with real radar measurements. All the simulation and real radar

measurements results were then presented in various plots and then discussed. Topics

for further work were discussed and in the end a conclusion was drawn. It was concluded

that the tracking system provided satisfactory results relative to the SNRs given. The

simulation gave a good track estimation up to 5.66 m distance from origo, while the real

radar measurements gave the same at 4 m. The author then concluded that the tracking

system algorithm performed well, but not well enough for it to be used in any household

tracking system with its current SNR values. The performance could be improved by

following some of the suggestions mentioned in further work.
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Chapter 1

Introduction

1.1 Background

The task presented in thesis was made in collaboration with Novelda As, an up and com-

ing Norwegian company that has created a high precision sensor technology. Common

sensor technologies such as infrared, ultrasound and microwave, are mainly designed to

perform a single task involving detection of either range, motion or presence. These

sensors usually work under very limiting conditions, such as limited range, only moving

or only stationary objects and so on. Each of the different sensors have their advantages

and disadvantages, and ultimately one have to chose what feature is most important for

the application.

Some applications need a combination of the different features given by the different

sensor technologies, and it is here that more advanced radars come into play. Advanced

impulse radars has the capabilities to measure even the most minute movements of

objects in its vicinity. They can detect proximity, distance, presence and motion for

stationary and moving targets, at different ranges. It can also see through objects and

can therefore easily be hidden out of sight for security or esthetic purposes.

For a radar that is so small, powerful and precise, it is applicable in a vast number of

different systems. For example, the radar is proposed to work as a tracking system.

Tracking itself is not a new topic, but it has not been done using the Xethru (”see-

through”) radars yet. The radar is supposed to work in an indoor environment with low

power consumption and without radiation that is dangerous to people. Therefore, it is

both interesting for the author and Novelda to explore these possibilities further.

1
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1.2 History

Radar and tracking using radar are not new concepts. They can be traced back to a

handful of clever scientists in the epoch before and during the World Wars.

Often, the first person mentioned in this regard is the German physicist Heinrich Rudolf

Hertz. In 1887, his experiment showed that electricity could be transmitted using elec-

tromagnetic waves. These waves would pass through some materials and would be

reflected by others. He was the first person to generate and detect these signals later

known as radio waves [1].

The next man to make a name for himself in radar technology, was the Italian Guglielmo

Marconi. Inspired by Hertz’s work, Marconi began building his own radio devices. In

1899, his radio signal broadcasts was received over the English channel. He presented

the accumulation of his work i New York City in 1922, and that meeting is now referred

to as the event that began the widespread of interest in radar development [2].

Building on the work done by Hertz and Marconi, the German engineer Christian

Hülsmeyer was in 1904 able to demonstrate his invention which he called the ”tele-

mobiloscope”. This invention was a transmitter-receiver system that was able to detect

distant metallic objects as far as 3 km away by sending radio waves. It was designed

to detect ships at sea to avoid collision. Mounted on a ship, its antenna would rotate

and send out a signal. When a similar signal was received a bell would ring meaning a

object was in that direction. The ”telemobiloscope” was not able to detect the range,

but Hülsmeyer solved this problem by using a triangulation system. The antenna would

be mounted on a tower and scan the horizon. Knowing the height of the tower and the

angle of the most intense return signal, the range could be calculated [3].

A lot of research and development of radar systems was done in the years leading up to

WW2. The radar would prove its usefulness in the UK where the British were in need

of a defense-system against air-raids from Germany. The British were outnumbered in

the sense of the number of available fighter-planes compared to the Germans. To deal

with this problem they figured that if they could have a system that would in advance

notify the military about the raids, they could gather their forces and fend off the the

attacks. This led up to the creation of the ”Chain home” defense system.

The ”Chain home” system [4] consisted of many 110 m tall steel towers, spaced out

along the coastline of the UK. These towers flooded the airspace with radio frequency

pulsed energy. Air crafts within the range of the towers would reflect the signals to a

set of crossed dipole antennas. Using the time of travel of the reflected pulse and the

angle calculated from the X-and Y- components of the crossed antennas, they were able
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to pinpoint the position of the incoming air crafts. This gave the British air forces an

much needed advantage over the Germans and it had a huge impact on the war, at least

for the British.

In the years following WW2, the cold war came. In this period the plan was to use

radars and tracking systems defensively against missiles and other threats. In 1955

Nelson Wax found a way to automatically predict aircraft’s future positions using math-

ematical functions. Later, in 1964 Robert Sittler used Bayesian statistics to connect

radar observations to existing targets. This work, in combination with the success of

the Kalman filter, has enabled Yaakov Bar-Shalom and Robert Singer to develop the

foundation of today’s modern tracking systems[5].

In the later years, it has become more relevant to use short range radars, as the ones

used in this thesis. For applications where there are people exposed, in home or medical

situations, the short range ultra wide band (UWB) radar is a good choice since the radar

pulses have such low energy that they are not harmful.

1.3 Thesis Structure

A short overview of the thesis structure is given

1. Introduction. A brief introduction about the background of the sensors used and

the history behind radars.

2. Problem Description. A thorough description of the problem that is to be

solved in the thesis.

3. Tracking Filter. Three different Kalman filter versions are introduced here, and

how they are used in this thesis is explained.

4. Methods for Data Association. The principle of data association is explained.

The gating and global nearest neighbour methods are then presented.

5. Simulations. The total simulation setup and all the necessary assumptions are

explained. Then the actual results from the simulations are presented and dis-

cussed.

6. True Radar Tracking. The true radar setup with real radar measurements are

shown and the results of the tracking are presented and discussed.

7. Further Work. Some thoughts about how to improve the tracking are made, and

expansion possibilities are discussed.
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8. Conclusive Remarks. A short conclusion at the end.



Chapter 2

Problem Description

2.1 General Task

The main problem is revolved around creating a functional two-sensor system and de-

velop a tracking algorithm that uses this system to track a moving target, in this case

a walking person. The target does not have to be a walking person, but the simulation

values, such as speed, are based on this.

The problem focus of the thesis is centered around the output values from the radars

and will not include changes to the actual radar hardware itself.

The tracking itself is a noisy operation and a filter will be needed.

The radars are stationary sensors in the sense that they do not rotate or give any

information about where in the field of view the reflected signal arrives from. This is

the reason why two sensors will be used to gain the actual position of the target using

triangulation.

2.2 Description of Radar System

Small and energy saving Ultra Wide Band (UWB) radars are well suited for detecting

objects at a few meters distance. They separate moving objects from stationary ones by

distance- and Doppler-analysis. In surveillance and alarm applications it is important

to follow position and speed of targets in the xy-plane. A Cartesian coordinate system

will be used to represent the position as seen in figure 2.1. In this figure the walking

target is seen from above in a bird’s eye view.

5
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Figure 2.1: Cartesian coordinate system

The target is the red square and d′ is the distance from origo to the target, represented

by a green line. The target will never go below the x-axis since the radars do not

have any vision there. The position of the target (x, y) will in the end always be given

relative to the origo of the coordinate system, regardless of the position of the sensors

used, represented in the figure as two blue circles on the x-axis. Upward will represent

positive values on the y-axis and positive values on the x-axis will be to the right. The

angle of the target α is 0 radians in the x-direction and increase counterclockwise to π.

The information of the target state (position and velocity) given by the radar sensors,

R1 and R2, are in the form of range d1 and d2 and radial velocity v1 and v2, found in

figure 2.1. Using these measurements, the Cartesian (x, y) position can be found with

the use of trigonometry.

The radars used operate with spherical coordinates. Spherical coordinates means that

the position is usually given by range, azimuth and elevation, but for the stationary

radars used here the azimuth and elevation is not available for each of them alone. If

the radar sends out a pulse to detect the target, the pulse propagates in the antenna

direction until it is reflected back to the receiver antenna. There is no elevation or angle

information here, only range and velocity. This means that the radar does not know

from where in the radars vision the reflection came from. It is important to note that

the radars still operates with a spherical system, because the range measurement can

come from any point in the radars field of view, not just from a zero-elevation plane in

front of the radar.
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The key quantities, d′1, d′2, v′1 and v′2, have been introduced and figure 2.2 has been

made to illustrate the total problem to be solved in this thesis. The difference between

the notation d′ and d is that the former is the actual distance from the target while the

latter is the distance delivered by the radar. The same notation counts for v and v′. In

general situations, where it does not matter whether it is radar R1 or R2 that is being

talked about, d and v will be used instead of d1, d2, v1 and v2.

Figure 2.2: Problem overview

In figure 2.1 the d1, d2, v1 and v2 are shown. These measurements are the ones given

by the radars and represents the starting point of the problem. These are the input of

the question mark block in figure 2.2. The question mark represents all the processing

and algorithms done to finally get the estimated outputs x̂ and ŷ which is the estimated

Cartesian position of the target.

As portrayed here, the radars just give of one value each for d and v, but this is not

always the case. There can be many potential values for d and v at each time iteration

and it can be hard to know which of the values to chose. d1 and v1 can for example be

as shown below

d1 = [d1,1, d1,2, d1,2, ..., d1,N ] (2.1)

v1 = [v1,1, v1,2, v1,2, ..., v1,N ] (2.2)

The same goes for d2 and v2. This will be addressed later in chapter 4.

Now that the starting point and the end product of the problem is defined, the solu-

tions to the problem, residing in the question mark box, can be introduced. Things
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like Kalman filters, gating, data association and triangulation will all be a part of the

solution.



Chapter 3

Tracking Filter

The purpose of tracking filters is to to improve our estimate of what state the target

is in [5]. This state is defined in this thesis as the actual position and velocity of the

target. This will be the first step to eventually gain a good estimate (x̂, ŷ), shown in

figure 2.2, of the Cartesian (x, y) position of the target.

It is important to understand, before going through this chapter, that the different filters

can operate on each of the radars separately with d1 and v1 in parallel with d2 and v2,

and then using triangulation to find x, y, vx and vy, or do the triangulation first and

then use the filters on the resulting d and α shown in figure 2.1. It is easier to explain

the latter option first, and then simplify the filters to work with the first option after.

Which option that will be implemented as a final solution will be discussed in a later

chapter, but as the filters are explained here, no option is ruled out.

A Kalman filter, no matter what type[6], will work in the fashion shown in figure 3.1

below

Figure 3.1: Kalman general process

9
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Here the vector z(k) contains the measurements from the radar, whether it is z(k) =

[d(k), v(k)]T before any triangulation or z(k) = [x(k), y(k), vx(k), vy(k)]T after triangu-

lation, and the state vector x̂(k) contains the accompanying updated filter estimates of

the measurements z(k) holds.

3.1 Model

When making measurements with any sensor, noise will be introduced. To negate that

noise, many different versions of tracking filters has been developed. The filters all have

in common that they need a model to describe the system they are working on[7]. The

model explains how the sensor observations relates and translates to the actual state of

the target (range and radial velocity). The model that will be used here is a discrete-time

Markov process written out as

x(k) = f [x(k − 1)] + w(k) (3.1)

z(k) = h[x(k)] + v(k) (3.2)

Equation 3.1 is a recurrence equation that describes the target dynamics using the actual

target states in terms of a Markov process. In this case it is defined as the process where

the current state x(k) is completely determined by the previous state x(k− 1), and the

process noise w(k). The process noise is denoted as w(k) and the measurement noise is

v(k), more about the noise later in this chapter.

To keep track of which iteration of the radar measurements that is being worked on,

the value k has been made. The first radar measurement taken into the Kalman filter

will be the first iteration and represented as k = 1. k− 1 represents the previous target

iteration, while k represents the current one.

h(·) is called the measurement function, and describes the relationship between the

measurements and the actual state. f(·) is called the state transition function and is

assumed known. This function takes advantage of the physical aspect of the states.

Using time, velocity and the laws of physics, the next state can be found. Note that

there are many different versions of the h(·) and f(·) functions, corresponding to the

different situations the kalman filter is used in.

Noise is added in order to make the model realistic. The process noise w(k) and measure-

ment noise v(k) are added on in equation 3.1 and 3.2, respectively. The measurement

noise v(k) is the uncertainty of the sensor. So the hardware and physical environment
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determines the measurement noise and the statistical properties of the noise can some-

times be found by reading the sensor specifications. The process noise w(k) on the other

hand, is not that easily found. It represents the error in the model itself and therefore

the difference between the actual state and the state transformed by the state transition

function, as seen in equation 3.1. The actual state is the true position and velocity of

the target. This noise becomes more prominent when the target is moving in an uneven

track because the transition function is based on linear lines.

Depending on the application, z(k) will vary and therefore the components in x̂(k)

and x(k) vary. For this thesis, where the tracking is done in the XY-plane, only the

range and velocity are used. The acceleration is assumed low and not necessary for the

tracking of low speed targets such as a person. So the state vector will consist of x(k) =

[x(k), y(k), vx(k), vy(k)]T or x(k) = [d(k), v(k)]T , depending on if the triangulation is

done before or after the kalman filter, respectively. Measurements from the sensor are a

combination of the systems state components and uncorrelated noise and is stored in the

measurement vector z(k) found in equation 3.2. The model will be used in the Kalman

filters shown next.

3.2 Kalman Filter

Even though the Kalman filter is over 50 years old, it is still a very important data

fusion algorithm today. Data fusion is defined as the process of integrating multiple

data of the same real-world object into an accurate and useful representation. The filter

was created by Rudolph E. Kalman and found great success because of its simplicity

and small computational complexity. The typical uses are smoothing out noisy data

and giving estimates of important parameters. The filter is used in applications like

global positioning system receivers, phase locked loops in radio equipment and tracking

of objects, as in this thesis.

The Kalman filter is an algorithm which gives an estimate of the wanted parameters, and

by learning from the previous iteration, decides how much to trust the estimated values

compared to the measured values [8]. By doing this, it can update its estimate which is

supposed to be better than the previous estimation. A more detailed explanation about

how this works, will be gone through in the following chapters.

Before using the model in the kalman filters, some assumptions are made about the noise.

If the noise is white Gaussian, the kalman filter minimizes the mean square errors of

the position and velocity estimates. Both the process and measurement-noise, w(k) and

v(k), needs to be white Gaussian. White noise is defined as noise with many frequencies
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with equal intensities. If the noise is not Gaussian, the Kalman filter will still give the

best linear estimator, but a nonlinear estimator would prove to be better. Because the

noises v(k) and w(k) are white they are uncorrelated both with themselves and each

other. This is written out as

w(k) = N (0, Q) (3.3)

v(k) = N (0, R) (3.4)

where R and Q are the matrices shown below and also used later in the filters. R and

Q could change over the different iterations k, but for simplicity they are chosen to be

constant through out all iterations. R and Q are first made with the assumption that

the two sensors has been used in a triangulation function so that the state vector is

x(k) = [x(k), y(k), vx(k), vy(k)]T . This gives the following

R =

[
σd

2 0

0 σα
2

]

Q =


σx

2 0 0 0

0 σy
2 0 0

0 0 σvx
2 0

0 0 0 σvy
2


As shown above, in R, the variances of the noise in the distance d and angle α measure-

ments shown in figure 2.1, are along the diagonal. In Q, the variances of the different

states components can be found along the diagonal. Note that these two matrices will be

subjects to change according to the type of Kalman filter being used, but also according

which measurement components that are being used. As previously stated, if the filters

are used on each of the sensors in parallel, before any triangulation, the state vector

becomes x(k) = [d(k), v(k), ]T and

R =
[
σd

2
]

Q =

[
σd

2 0

0 σv
2

]
In the following chapters, as the standard and extended kalman filters are introduced,

the state vector is assumed to be x(k) = [x(k), y(k), vx(k), vy(k)]T .
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3.3 Standard Kalman filter

As previously stated, the kalman filter is an optimal estimator which calculates parame-

ters of interest using inaccurate and uncertain observations. The simplest version of it is

the linear Kalman filter, henceforth called the standard Kalman filter. For the standard

Kalman filter to work optimally, the model used must be linear. This is not necessarily

the case for the model presented in chapter 3.1 because f(·) and h(·) can be non-linear.

Therefore, some small alterations has to be made to assure linearity.

x(k) = Fx(k − 1) + w(k) (3.5)

z(k) = Gx(k) + v(k) (3.6)

The nonlinear functions f(·) and h(·) has been replaced with the linear matrices F and

G, respectively.

The Kalman filter algorithms works in a cyclic fashion. It consists of two main steps;

the time update (prediction) step and measurement update (correction) step as shown

in figure 3.2.

Figure 3.2: Kalman Cycle

Before going into the cycle, a few definitions are made. A is just a dummy character

used for exemplification. A refers to a prediction, Â is a updated estimation, Ã is a

error variable, AT means a transposed matrix and A−1 is a inverse matrix. Now that

the definitions are in order, the cycle can be explained step by step starting of with the

prediction part.

To make the next few equations easier to understand, a block diagram of the Kalman

filter process has also been made. The most important aspects are shown in this figure
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Figure 3.3: Kalman Block Diagram

3.3.1 Time Update (Prediction)

The first equation in the time update uses the system model to predict the future state

of the system in the following way

x(k) = F · x̂(k − 1) (3.7)

Here the x(k) was predicted using the previous state and the transition matrix F . F is

created using laws of physical motion that connects the previous state x(k − 1) to the

next state x(k). In this case, with the chosen state components (range and velocity)

and F equation 3.7 looks like this

x(k) =


1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1

×

x

y

vx

vy

 =


x+ vx∆T

y + vy∆T

vx

vy



where ∆T is the time between samples and F is a m×m matrix where m is the length

of the state vector x(k).

The second equation of the prediction step is a bit more complicated. It is where

the covariance matrix P (k) is calculated, which also has to be predicted for the next

estimate. This matrix tells the algorithm how much to trust the current prediction and

is written out as follows

P (k) = FP (k − 1)F T +Q (3.8)
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Although equation 3.8 shows the way P (k) is used, it can be easier to understand using

its definition

P (k) = E[(x(k)− x̂(k))(x(k)− x̂(k))T ] (3.9)

The information of the covariance matrix lies in the diagonal. The diagonal will contain

the variances for all the state components from the estimated x̂(k). Which means the

variance of x, y, vx and vy, in that order. In the end the process noise matrix Q is

added. Q is a difficult matrix to calculate, and it is supposed to take account for the

uncertainties in the model. The Q can therefore affect the whole filter to a great extent

and is often used as a tuning tool. In practice, Q might change for each iteration, but

it is assumed to be constant, shown on page 12.

3.3.2 Measurement Update (Correction)

The correction part of the algorithm is, in terms of computation, the bigger part. It

starts with

z̃(k) = z(k)−Gx(k) (3.10)

where z̃(k) is the error between the observation z(k) from the sensor and the predicted

Gx(k). The measurements from the sensor z(k) has to be in the same format as the

state components in x(k). Since the sensor uses spherical coordinates, the z(k) values

has to be transformed into Cartesian coordinates before they are used in the filter and

the G matrix has to transfer only the position states from x(k). This makes sure all the

values are in the same format.

G =

[
1 0 0 0

0 1 0 0

]

G is a h×m matrix where h is the dimension of z(k) and m is the dimension of x(k).

The next thing to find, much like the P (k), is a measure for how accurate the measure-

ments from the sensor are. This comes in the form of S(k)

S(k) = GP (k)G(k)T +R (3.11)

Again, as for P (k), it can help to see the definition for a better understanding of S(k)

S(k) = E[(z(k)−Gx(k))(z(k)−Gx(k))T ] (3.12)
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S(k) is called the innovation covariance matrix and it holds the information about how

much to trust the measured values z(k) compared to the model. The measurement noise

matrix R is also added on here which means that R can have a big impact on how much

the algorithm trusts the measurements.

Both P (k) and S(k) will now be combined and used in what is called the Kalman gain.

K(k) = P (k)GTS(k)−1 (3.13)

It is in the Kalman gain K(k) where the the decision of how much to weight the measure-

ment compared to the predicted estimate is taken, and it is the heart of the algorithm.

The bigger the values in the K(k) matrix becomes the more the measurements will be

weighted compared to the model as seen in the next equation.

x̂(k) = x(k) +K(k)z̃(k) (3.14)

P̂ (k) = P (k)−K(k)S(k)K(k)T (3.15)

These last two equations are the corrected updates of the system. x̂(k) and P̂ (k) will

be the improved state estimate and the improved covariance , respectively, and used as

an input for the next cycle of the algorithm. If everything works properly the result

will be a state estimate with reduced model- and measurement-noise, which is the whole

purpose of the Kalman filter.

To sum all this up in an orderly fashion, the pseudo code is given below. The pseudo

code will work as the cycle figure 3.2 illustrates.
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Table 3.1: Standard Kalman filter Algorithm

Time Update (Prediction)

x(k) = F · x̂(k − 1)

P (k) = FP̂ (k − 1)F (k)T +Q

Measurement Update (Correction)

z̃(k) = z(k)−Gx(k)

S(k) = GP (k)GT +R

K(k) = P (k)GTS(k)−1

x̂(k) = x(k) +K(k)z̃(k)

P̂ (k) = P (k)−K(k)S(k)K(k)T

New Cycle...

Using only one radar at the time makes the vector x(k) = [d(k), v(k)]T . Which is a

simpler form of the standard Kalman filter that has been described above. Some of the

matrices has to be scaled down to match the matrix dimension, but the filter works in

the same way.

Figure 3.4: Standard Kalman, 1 radar example

The green straight line in figure 3.4 is the path that has been simulated and works as

the original path. The blue graph is the noisy measurements from the sensor z(k) and

the red graph is the Kalman filtered result x̂(k). On the x-axis the discrete time is
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multiplied with the sample interval ∆T and on the y-axis the distance from the radar

is shown in meters. As seen in figure 3.4 there has been a decent improvement the red

graph compared to the blue one.

3.4 Extended Kalman filter

As previously mentioned, the radar requires its measurements in spherical coordinates

and because the coordinate system used requires Cartesian coordinates, the model is

nonlinear[9]. The standard Kalman filteris optimal if the system is linear, but in a non-

linear environment the extended Kalman filter may perform better, and it will therefore

be implemented next.

The extended Kalman filter is very similar to the standard Kalman filter, but there are

a few important differences. The measurement function h(·) becomes unlinear, but the

transition function f(·) stays linear. This results in a new model where F (k) is still the

same matrix, but h(x(k)) needs a new definition.

x(k) = Fx(k − 1) + w(k) (3.16)

z(k) = h(x(k)) + v(k) (3.17)

The cycle goes on in the same way as show before, but the first part of the measurement

update (correction) is different from equation 3.10 and is now written as

z̃(k) = z(k)− h[x(k)] (3.18)

The function h(·) is supposed to transform the Cartesian estimates into spherical values,

so that the error between measurement and state can be estimated. Using the following

spherical transformation rules this can be done.

z(k) = h[x(k)] =

[
d

α

]
=

[
hd[x(k)]

hα[x(k)]

]

hd[x(k)] = d =
[√

x(k)2 + y(k)2
]

hα[x(k)] = α =

[
arctan

(
y(k)
x(k)

)]
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where d and α refers to the values presented in figure 2.1. The error z̃(k) can now be

estimated, but there are still places in the algorithm where the outdated matrix G is

used. A new matrix that operates with spherical coordinates has to replace G. This will

be the Jacobian linearized measurement matrix H(k) and it is defined as

H(k) =
∂h

∂x

∣∣∣∣
x

(3.19)

The H(k) is a h×m matrix, where h and m is the dimension of z(k) and x(k), respec-

tively. With x(k) = [x(k), y(k), vx(k), vy(k)] and z(k) = [d(k);α(k)], H(k) will end up

looking like this

H(k) =

 ∂d(k)
∂x(k)

∂d(k)
∂y(k)

∂d(k)
∂vx(k)

∂d(k)
∂vy(k)

∂α(k)
∂x(k)

∂α(k)
∂y(k)

∂α(k)
∂vx(k)

∂α(k)
∂vy(k)


x=x(k)

=

 x(k)

d(k)

y(k)

d(k)
0 0

−y(k)

d(k)2
x(k)

d(k)2
0 0


With these alterations the algorithm changes as seen in the next table.

Table 3.2: Extended Kalman filter Algorithm

Time Update (Prediction)

x(k) = F · x̂(k − 1)

P (k) = FP̂ (k − 1)F T +Q

Measurement Update (Correction)

z̃(k) = z(k)−H(k)x(k)

S(k) = H(k)P (k)H(k)T +R

K(k) = P (k)H(k)TS(k)−1

x̂(k) = x(k) +K(k)z̃(k)

P̂ (k) = P (k)−K(k)S(k)K(k)T

New Cycle...

It is also possible with the extended Kalman filter to use x(k) = [d(k), v(k)]T when using

measurements from only one radar.

As a proof of concept, as for the Standard Kalman filter, the extended Kalman filter

produced the following figure
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Figure 3.5: Extended Kalman, 2 radars example

In this case the x values and y values are given in meters on the x-and y-axis, respec-

tively. The x and y values represent the estimated position of the target in the Cartesian

coordinate system. The green graph is the original simulated track, the blue line repre-

sents the measurements z(k) and the red graph comes from the updated filter estimate

x̂(k).

3.5 Include Radial Velocity

Until this point, only the range measurements, d1 and d2, have been actively used to give

an improvement in the tracking. Since the pulse Doppler radar also gives information

about the Doppler speed, an even better tracking performance could be achieved utilizing

both range and Doppler speed.

From the Beijing institute of technology, J. Wang, P. He and T. Long have described a

way to add the Doppler speed, or radial velocity as it will be called from now on, to the

Kalman filter[10]. It is done in a sequential way where the states first are predicted using

the range, and afterwords the radial velocity is added to the prediction. The general

way that the algorithm works makes it possible to add more measurements to the state

prediction if more information about the target is available. For this thesis though, only

the range and radial velocity will be used.

The sequential kalman filter is proposed superior to the conventional extended Kalman

filter and it is close to an ideal filter[10]. It begins with the same algorithm as shown
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in table 3.2 as the first sequence. Then the next sequence, which will include the radial

velocity, continues.

3.5.1 Pseudoradial Velocity Measurement Update

After the measurement update in table 3.1, which is really the position measurement

update, the new cycle began. Now, five more lines will be added before the new cycle

begins. This part will be called the pseudoradial velocity measurement update.

There are a lot of new definitions made in this section, and they will be explained one

by one until they are all stringed together in the end. The first new component is called

the directional cosine

Λ(k) =
√(

Y (k)TY (k)
)
Y (k)T (3.20)

where Y (k) is the filtered position estimate after the position measurement update.

The algorithm is originally proposed to work with x, y and z. In the case where the

radar is 1 dimensional, the Y (k) = d1 or Y (k) = d2 and it will be for the rest of

this implementation, just because the complexity increases a lot with the increase of

dimensions. Even just using x and y values, as was done with the previous linear and

extended kalman filters, proved more difficult than first explained in the paper [10].

Next, a variable denoted A(k) will be defined as following

A(k) =
√(

Y (k)TY (k)
)(
I − Λ(k)TΛ(k)

)
(3.21)

which will later be used in the creation of a new measurement matrix. I is simply the

identity matrix.

Let

B(k) =

[
0 0.5A(k)

0.5A(k) 0

]

and define C(k) = B(k)P̂ (k) where P̂ (k) is the filtered state covariance from the position

measurement update. cij will be the element on row i column j of the C(k) matrix. The

new measurement matrix is defined

Hc
2(k) =

[(
A(k)Ẏ (k)

)T
Λ(k)

]
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where Ẏ (k) = v1 or Ẏ (k) = v2 contains the velocity estimate. In the end, a new noise

variance matrix R needs to be defined

Rc2(k) = σ2
v + 2

I∑
i

J∑
j

c2
ij (3.22)

where σ2
v is the variance of the velocity measurements and I and J are the lengths of

the row and column of the C matrix, respectively.

These new definitions will now be used in equations familiar to those shown in chapter

3.3 and 3.4.

S2(k) = Hc
2(k)P̂ (k)Hc

2(k)T +Rc2(k) (3.23)

which is the innovation covariance used in the next Kalman gain equation

K2(k) = P̂ (k)Hc
2(k)TS2(k)−1 (3.24)

Now, the measurement error denoted z̃c(k) is defined as

z̃c(k) = z(k)− trace(C(k)) (3.25)

Finally, the last two equations can be found

x̂v(k) = x̂(k) +K2(k)z̃c(k) (3.26)

P̂ v(k) = P̂ (k)−K2(k)S2(k)K2(k)T (3.27)

where x̂v(k) and P̂ v(k) are the state estimate and the filtering error covariance after the

radial velocity measurements are taken into account.

This algorithm is called the practical sequential pseudomeasurement filter (PSPMF) and

its pseudo code is shown below.
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Table 3.3: PSPMF Algorithm

Time Update (Prediction)

x(k) = F · x̂(k − 1)

P (k) = FP̂ (k − 1)F T +Q

Measurement Update (Correction)

z̃(k) = z(k)−H(k)x(k)

S(k) = H(k)P (k)H(k)T +R

K(k) = P (k)H(k)TS(k)−1

x̂(k) = x(k) +K(k)z̃(k)

P̂ (k) = P (k)−K(k)S(k)K(k)T

Pseudoradial Velocity Measurement Update

z̃c(k) = z(k)− trace(C(k))

S2(k) = Hc
2(k)P̂ (k)Hc

2(k)T +Rc2(k)

K2(k) = P̂ (k)Hc
2(k)TS2(k)−1

x̂v(k) = x̂(k) +K2(k)z̃c(k)

P̂ v(k) = P̂ (k)−K2(k)S2(k)K2(k)T

Other Measurement Updates

...

New Cycle ...

Again, as a proof of concept the following figure is produced using one simulated radar.
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Figure 3.6: Extended Kalman with pseudoradial velocity added, 1 radar example

Without doing any analysis of figure 3.6 in this chapter, it can already be seen that this

is a improvement from the standard Kalman filter shown in figure 3.4.



Chapter 4

Methods for Data Association

In a radar tracking system, such as the one in this thesis, there can be multiple mea-

surements at each iteration k which can come from the actual state of the target or from

noise around it. As mentioned in chapter 2 this is represented as

d1 = [d1,1, d1,2, d1,2, ..., d1,N ] (4.1)

v1 = [v1,1, v1,2, v1,2, ..., v1,N ] (4.2)

Consequently, for every iteration there are lots of possible data for the target state, for

both multiple- and single-targets systems. The methods where this data is interpreted

are called methods for data association[6]. There are many methods within this category,

but in this thesis only a few are used.

The two different data association techniques are showed in the following figure

Figure 4.1: The total system path

25
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Figure 4.1 can be used as a overview as the techniques are explained, but it also shows

that it has been decided to use a separate Kalman filter for each of the radars and then

triangulate the estimations. This means that the state vector, introduced in chapter

3, is x(k) = [d(k), v(k)]T for both filters. This is an important decision as the option

to triangulate and then use the filter is from this point on ruled out. The option to

filtrate the radar measurements separately and then triangulate was chosen because of

complexity considerations.

4.1 Gating

Figure 4.2: Illustration of gating

The first data association method used is called gating. It is based on a simple principle

and has very good synergy with the Kalman filters. The basic idea is to create a

range centered around the predicted state x(k) of the target, where only the data that

is within that range will be considered further. As shown i figure 4.2, the gates are

centered around the predicted target states, x(k) from the Kalman filter, represented as

black filled circles. When the current state x(k) = [d(k), v(k)]T is filtered through the

Kalman filter, only probable values that has passed the gate will be considered. The

complexity of the gate can vary a lot, but a simple and effective way of creating it is by

using the innovation covariance matrix S from the Kalman filters. This way, the more

error introduced in the system, the bigger the gate will be. The gate is a circle with

radius G which is decided by the following formula

G = c · σ · S(k + 1)−1 (4.3)
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where c is a constant used for tweaking, and chosen to be c = 4 here. S(k + 1) is the

predicted innovation covariance matrix and σ is the standard deviation of either d(k) or

v(k) from z(k). S(k + 1) is found by the following equations

P̂ (K + 1) = F (k)P̂ (k)F (k)T +Q(k) (4.4)

S(k + 1) = H(k)P̂ (K + 1)H(k)T +R(k) (4.5)

where these equations should be familiar from chapter 3.

Now that the gate around the estimated position is set, only a measure to find out if the

data is inside or outside the gate is needed. This measure is found in the following way.

d2 = z̃(k + 1)TS(k + 1)−1z̃(k + 1) (4.6)

What remains now is testing whether d2 is smaller than the radius G of the gate , if it

is, then the value tested is within the gated region and can be accepted as a possible

candidate for the actual position of the target.

A check needs to be done for each iteration k to see if the measurements are within

reasonable distance from the predicted position of the target. As seen i figure 4.2 the

gates are the dotted circles created with radius G and are calculated in equation 4.3.

Every possible measurement value is evaluated using d2 found in equation 4.6. If the

measurement falls within the gate it is validated, represented by a green x, if not it

is discarded and represented in the figure as a red x. Sometimes there are multiple

validated measurements, and for this the global nearest neighbour is used, as discussed

later in subchapter 4.2.

In the case that no measurement is within the calculated gate, there will be no output

value d(k). This happens when the target is very far away from the radar and the

measurements are quite noisy. To deal with this, the following quick addition is made

to the kalman filter. Before the values are used in the filter, a check is done to find out

whether the value is empty or a valid number. If it is empty, the next state is solely

predicted from the the previous state x̂(k) = x(k). This will only help if there are not

too many consecutive empty values in a row. If too many empty values appear in a row,

the state prediction becomes increasingly inaccurate.

When using these gates, very noisy measurements, that are most likely false targets,

are disregarded before they enter the Kalman filter. This way, the values that has

the potential to cause big errors are never taken into the filter, resulting in a better

performance.
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The gating explained until now has just been gating with the distance d in mind. Since

both the distance d and velocity v is available for each sensor, the gating can be further

improved by using both the position and velocity. The way to implement this is to use

exactly the same procedure as before, but this time use velocity instead of position.

Then there will be two gating criteria, one for position and one for velocity, where both

has to be within their gates for the state to be accepted as valid. The gating is this way

stricter and demands more in the sense of precision from the filters.

4.2 Global Nearest Neighbour

After the gating has been completed, there are three possible outcomes. First, it is

possible that none of the measurements has been validated within the gate and a weak

prediction of the state has to be used, as mentioned in section 4.1. It is also possible that

only one value has been validated, which makes that the only possible choice. Lastly,

there could be a lot of validated measurements within a gate, which makes the Global

Nearest Neighbour data association method necessary.

The GNN (Global Nearest Neighbour) is intuitively easy to understand by looking at

figure 4.3.

Figure 4.3: Illustration of GNN

It is an algorithm which will chose one of all the measurements received represented as

Z = [Z1, Z2, Z3, ..., ZN ]. Z can contain either d, v or both depending on what is chosen
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to be gated. In this thesis both d and v are gated. The GNN will chose the measurement

that is closest to the predicted position, the black filled circle. Since the gating algorithm

already has calculated all the distances d2, it is easy to test these distances sequentially

to see which are nearest to the predicted position. The algorithm will therefore chose, as

the name suggests, the nearest neighbour. It is a simple technique and yet very effective.



Chapter 5

Simulations

An extensive part of this thesis, has revolved around creating realistic simulations of the

tracking. Using realistic simulations is a good way to ensure that your filter- and data

association-algorithms work properly in a controllable environment, before using the

algorithms in a real life situation. The simulations and results from these simulations will

be addressed in this chapter. The simulation function codes can be found in appendix

A

5.1 Track Simulation

The intention of the thesis is to track only one walking person at the time, and the

simulation has been done with that in mind. The simulations create values for said

walking person that can be used to test the filters and algorithms. The initial speed

(vx, vy), position (x, y) can be set in the simulator, found in appendix A.2, and therefore

indirectly the direction of that person, but also if and when that person will maneuver

during the path. A maneuver is defined here as a deliberate change in the persons

direction or speed. As previously discussed, the end product of the algorithms will be a

position (x̂, ŷ) in the Cartesian coordinate system.

The next figure shows an example track.

30
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(a) A straight track

(b) A maneuver track

Figure 5.1: Track Simulations

In figure 5.1(a), the starting point is given in Cartesian coordinates (x, y) = (0, 0).

The speed is (vx, vy) = (0.1, 0.1) meters/second and the target continues in the same

direction throughout the whole path. The second track, in figure 5.1(b), has a 120 degree

maneuver in the middle of the path, but the starting values are still the same.
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5.2 Noise

An important aspect of making the simulation realistic is the addition of noise in the

system. The way the noise is added, has a big impact on the performance of the system

and therefore needs to be as accurate as possible.

The Xethru radars being used in this thesis has a signal to noise ratio, SNR, that varies

with respect to the distance d the target is from the radar, given by the following formula

[11].

SNRdB(d) = 52− d× 12 (5.1)

The formula is plotted in the next figure.

Figure 5.2: Illustration of the noise magnitude

As shown in figure 5.2 the noise, blue line, decays linearly with respect to the distance

d. At 1 meters distance the SNRdB(d) is 42 dB and decays 12 dB per meter. As

the SNRdB(d) goes below about 10 dB, the SNRdB(d) is really too low to give any

reasonable value, and really noisy values are to be expected here.

The noise has to be transformed into linear SNRlin before it can be added on to the

track simulation. The transformation is done in the following way

SNRlin = 10
SNRdB(d)

10 (5.2)

The SNRlin and the values calculated from it will all be functions of the distance d

because the SNRdB(d) is, but will be written without the (d) for simplicity sake.
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This SNRlin will be used in two different noise generators. They both use the same

SNRlin, but one will generate the standard deviation for the distance σd and the other

will generate σv for the velocity. First, the distance noise will be generated.

To do this, the range resolution for the Xethru radar has to be found. The pulse length

will be called Tpulse. It is set to Tpulse = 1 nanosecond . The distance resolution becomes

this

∆R =
c× Tpulse

2
=

3× 108 × Tpulse × 1× 109

2
= 0.15m (5.3)

where c is the speed of light. δR can then be used in the following equation [11]

σd =
δR√

2× SNRlin
(5.4)

To calculate the σv, a speed resolution is needed. The radio frequency wavelength

λ = c
f = 3×108

7×109
= 0.04929m where f is the radars operating frequency and the integration

time in pulse Doppler Tint = 1sec. The Tint basically decides how many pulses received

in the radar that are used to generate each output of the radar. So the bigger the Tint

the better the speed resolution gets. These values are used in the next equation

δV =
λ

2× Tint
=

0.04929

2× 1
= 0.0215m/s (5.5)

and then [11]

σv =
δV√

2× SNRlin
(5.6)

σd and σr will be the standard deviations of the noises ud(k) and ur(k), respectively,

added on to the tracks in figure 5.1. The noise is added on in the following way

x(k) = x′(k) + ud(k)

y(k) = y′(k) + ud(k)

vx(k) = v′x(k) + ur(k)

vy(k) = v′y(k) + ur(k)

(5.7)
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This will result in a random noise where the standard deviation increases as the target

moves away from the radar. When this noise is used with the simulated noiseless tracks

it can look like the graphs in the next figure.

(a) A straight track with noise

(b) A maneuver track with noise

Figure 5.3: Track Simulations with noise

In figure 5.3 we see the same tracks as in figure 5.1 only this time the noise has been

added, seen as the blue + signs. The origo of the Cartesian coordinate system has here

been chosen as the zero point of the distance d and d decides the standard deviation of

the noise. This will change as the radar positions are decided later. Then d1 and d2 will

be zero at the position of the radars R1 and R2 from figure 2.1.

The figure 5.3 shows that the noise acts as anticipated. The noise becomes greater as

the track moves further away from the origo. At the end of the green graph in figure

5.3(a), the target is about d =
√

(5m)2 + (5m)2 = 7.07m from the origo. This results in

all the scattered noise close to the end of the track. At the end of the track, the green

graph in figure 5.3(b), the noise tends to stay closer to the track, than what is seen in

figure 5.3(a). This is because the total distance d =
√

(3.2m)2 + (3.5m)2 = 4.74m and
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therefore does not produce as much noise. The further away the radar is from the target,

the more noise is generated, and this is the wanted realistic effect of the noise.

5.3 Simulated Radar Setup

In the simulation, the radars can be placed at any desired position. The radars are

placed first and then the coordinate system is defined as if these two radars were placed

on the x-axis, as shown in figure 2.1 This is a reasonable placement because they are

not in each others field of view and also gives a big joint field of view. It is important

to place them at such a distance apart that both radars are close to the area where the

tracking will be done. If for example they are 10 m apart, a target that goes between

them will be really noisy. Also, if they are too close, even the smallest noise will effect

the triangulation function. So for this simulation it has been chosen to put them no

more that 1m apart. That means, R1 at (-0.5,0) and R2 at (0.5,0).

The track simulation has until now been made without any regard to the fact that there

is actually two radars R1 and R2. Therefore, the original track is converted with a

algorithm, found in appendix A.3, into measurements representing the same track, but

with two radars placed on the x-axis. . Radar R1 will have the values d1 and v1, and R2

has d2 and v2 for distance and velocity respectively. Now that there are two separate

radars with different measurements representing the same track, the simulated noise will

also vary depending on the distances d1 and d2.

Previously, in chapter 2, figure 2.2 showed the radar measurements d1, v1 ,d2 and v2

from the two radars going into a question mark box. It is now time to look further into

the content of that box. Note that this is the same figure as figure 4.1.

Figure 5.4: The total system path
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As shown in figure 5.4 the previously unknown box is replaced with two separate paths

which ends up in a triangulation function. The two paths are identical except that the

inputs d1, d2, v1 and v2 are different. First, the radar measurements d and v goes into

each path. The values are then gated as explained in chapter 4. The gated values are

then further processed by the GNN (global nearest neighbour) function. After this point

there is supposed to be one value for d and one value for v for each path. As discussed

before in chapter 3, sometimes there are no values within the gate and sometimes there

is only one single value.

When the filtered values d̂1, d̂2, v̂1 and v̂2 are found, they are sent into a triangulation

function found in appendix A.8, which, using common trigonometry transforms the

separate radar measurements into one single estimated position (x̂, ŷ) which is the goal

of the thesis.

5.4 Triangulation Expected Error

The two radars R1 and R2 both have their own noise and uncertainties. This will result

in an accumulated error in the triangulation function. What this error will look like

and how big it will be is at this point unknown. To get a better understanding of what

errors to expect in the triangulation, a function has been made which produces some

interesting figures of the triangulation concept, found in appendix C

The figure’s goal is to exemplify the concept of triangulation and the errors generated

from that. When the two radars are 1 m apart, as the case is for the simulations, the

following figure is produced.
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(a) Triangulation error area

(b) Triangulation error area, zoom

Figure 5.5: Triangulation error area

Figure 5.5 contains two figures which show the same plot, but one is zoomed in. 5.5(a)

shows four lines. The two blue lines are from radar R1, and the position of the target

can be anywhere between the two lines. How big the gap between the lines of the same

colors are, is decided by SNRdB. The red lines are from the other radar, R2. 5.5(b)

shows the intersection of the lines. The diamond shape area with a green star in the

middle, is the area where the targets can appear due to noise. The green star is the

actual position of the target. If there were no noise in the system, the gap between the

two blue lines, and also between the red ones, would be gone, and there would only be

one intersection point on top of the green star, the actual target position. Since there

is noise in the system, we get 4 intersections points, which all confines the uncertainty

area of the triangulation.

Figure 5.5(b) shows the area when we have a SNRdB = 10 at the position (0, 4). So

in a worst case scenario, the estimated position can be at the point furthest away from

the actual target, at the intersection all the way to the right or left of the figure. At

this distance the worst error in the x-direction is 0.8 m and 0.1 m in the y-direction.
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So, in the simulation or for the real radar values, one can expect error close to those

values at about 4 m distance from origo. This figure is very handy when checking if the

triangulation gives out reasonable values for different ranges.

5.5 Simulation Results and Discussion

Before showing any results, there are a few settings that needs to be explained.

5.5.1 Settings

Since the system is set up in the way as shown in figure 5.4, with two separate paths

joined into one in the triangulation function, the state for one path is just x(k) =

[d(k), v(k)]T . This again means that, as mentioned in chapter 3, the R and Q becomes

this

R =
[
σd

2
]

=
[
0.22

]
Q =

[
σd

2 0

0 σv
2

]
=

[
0.22 0

0 0.12

]

Also, the decision to use or to not to use the radial velocity has to be taken. In the next

figure a comparison between d and d̂ with and without the addition of radial velocity

has been made for both radars.
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(a) |d1 − d̂1| in Radar 1, Straight track

(b) |d2 − d̂2| in Radar 2, Straight track

Figure 5.6: With and without radial velocity

Both these subfigures in figure 5.6 has been simulated with the straight path shown in

figure 5.1(a). They show the difference |d1 − d̂1| and |d2 − d̂2| where the addition of

radial velocity in the system is toggled on and off. d1, d̂1, d2 and d̂2 are found in figure

5.4. As seen there the values has not been run through the triangulation function yet.

The red line represents the error without the use of radial velocity in the filter, while

the blue line is with the use of radial velocity.

Figure 5.6 shows that the inclusion of radial velocity gives less error that without it, for

both radars, and it is from this point on chosen to use the addition of radial velocity in

the Kalman filters.
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5.5.2 Gate, GNN and Kalman Filter

Now that Q, R and the use of radial velocity in the kalman filters has been decided, a

plot of the path from each radar through the gate, GNN and filters can be plotted.
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(a) Radar 1, whole figure

(b) Radar 1, 1x zoom

(c) Radar 1, 2x zoom

Figure 5.7: Gating, GNN and Filter of Straight track from Radar 1
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(a) Radar 2, whole figure

(b) Radar 2, 1x zoom

(c) Radar 2, 2x zoom

Figure 5.8: Gating, GNN and Filter of Straight track from Radar 2
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The two figures 5.7 and 5.8 both show the same principles, except that the measurements

comes from radar R1 and radar R2, respectively. Radar R1 is positioned at (−0.5, 0)

and radar R2 is at (0.5, 0). There will therefore be a slight difference between the two

figures other than the difference created by the noise. This is because the simulated

track, shown in figure 5.1(a), is moving closer to R2 than R1. The difference is seen as

the target continuously moves away from R1, but for R2 the distance decreases before

it increases.

The subfigures in figure 5.7 are all taken from the same plot, but with different scales.

Subfigure 5.7(a) is the graph with no zoom at all. It is seen that after about 46 seconds,

when the target is about 6m away from radar R1, the filtered measurement d̂1 no

longer follows the original green track. This is because the noisy measurements d1

differ too much from the predicted measurements and they end up outside the gate. As

previously mentioned, when there are no values inside the gate the kalman filter uses

x(k) to estimate x̂(k). This is sometimes a good enough estimate, except when there are

no values inside the gate for many iterations in a row. This happens after 46 seconds,

and d̂1 becomes increasingly worse.

The intention of figure 5.7(b) is to zoom in on the ranges where the noise is still at a

reasonable level. The filtered measurements d̂1 stays close to the green original track as

wanted as long as the target is closer than 6m from the radar, which matches the noise

model in figure 5.2. Subfigure 5.7(c) is a even more zoomed in version of the graph and

was made to exemplify that the even when the noise conditions are good, the kalman

filter still improves the outcome d̂1.

The subfigures in figure 5.8 are also from the same plot and the subfigures here are made

for the same reasons as for the subfigures in figure 5.7. There are a lot of similarities,

but one difference can be seen in figure 5.8(b) when the target moves closer to the

radar, which is as expected. This results in a longer range with reasonable noise levels

compared to radar R1. R1 kept its measurements d1 inside the gate for about 43-47

seconds, while R2 keeps them inside the gate for about 49 seconds. This translates into

6m versus 6.5m acceptable distances for radar R1 and R2, respectively.

Different gates and gating methods gives a lot of different performances. To prove that

is is the gating that is the part of the path that holds back the rest, a new plot where

the gating has been turned off.
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(a) Radar 1 without gating

(b) Radar 2 without gating

Figure 5.9: Paths shown without gating

In the figures 5.9(a) and 5.9(b) it can be seen that d̂1 and d̂2 does a good job of following

the original tracks. They are different from figure 5.7(a) and 5.8(a) in the way that

towards the end of the track, the noisy values are still used in the kalman filter. This

can be seen as the filtered measurement d̂ is still trying to follow the original track.

While with the gates on, the estimates are moving steadily away from the track after

about 47 seconds since no values are within the gate. So the question is then, why is the

gate even needed? The reason is that the estimated d̂’s are still too noisy to get a good

final position (x̂, ŷ) after they are run through the triangulation function, which will be

shown soon. Also, when we are using real radar measurements, some unexpected noise

signals seem to appear at random times during the tracking and without gating away
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those values, they would distort the whole estimation process, but more about that in

chapter 6. The next part of the path is the triangulation and will be shown next.

5.5.3 Triangulation

Now that the radar measurements from the two radars has been through gating, GNN

and Kalman filtering, it is time to join the two paths with the triangulation function.

There is no magic to this function. It uses the two radar measurements d̂1 and d̂2 and

the two radar positions s1 = (−0.5, 0) and s2 = (0.5, 0) to find the actual position (x̂, ŷ).

The main part of the triangulation formula is shown below. Note that d0 is the distance

between the radars divided by two, d0 = |s2−s1|
2 .

x̂(k) =
d̂1(k)2 − d̂2(k)2

4d0

ŷ(k) =

√
d̂2(k)2 − d2

0 +
d̂1(k)2 − d̂2(k)2

2
−
(
d̂1(k)2 − d̂2(k)2

4d0

)2

(5.8)

Because of the independent noise from both radars the final target might be in two

different positions depending on if d1 or d2 is prioritized. Depending on the target

position compared to s1 and s2 the function prioritizes different values. The function

prioritizes the measurements from the radar that is closest to the target and therefore

minimizes the error.

The next figure shows the result of the triangulation function from the same path as

before, shown in 5.1(a).
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(a) Triangulated x values

(b) Triangulated y values

(c) Triangulated final position

Figure 5.10: Triangulated values
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Figure 5.10 shows three subfigures that represents the final position (x̂, ŷ) after the

triangulation. Figure 5.10(b) holds the y values, 5.10(a) holds the x values and 5.10(c)

holds both the x and y values.

Since the estimated position (x̂, ŷ) is generated from a combination of both radars R1

and R2, the accuracy of the final estimated positions will be effected by the accuracy

of either of the radars. If for instance R1 gives a good estimation, but R2 does not, the

triangulated final position (x̂, ŷ) will also be inaccurate . It can already be seen in both

figure 5.10(b) and 5.10(a) that the radar measurements x and y start becoming bigger

than the range that the gates allows. For example if R1 has really noisy measurements

after 5m, the whole system will be affected by that. Since this system is based around

origo this will result in very noisy measurements already at 4.5m distance. Imagine that

the simulated track just follows the x-axis in the positive direction. So when the target

is 4m away from origo, it is actually 4.5m away from R1 and 3.5m away from R2. R1

will in this case be the main contributor of really noisy measurements since the noise

model varies with distance.

The way the noise model is defined, the resulting filtered measurement x̂, ŷ does not

give any position worth trusting after about 4m distance on both axis. This amounts to
√

4m2 + 4m2 = 4×
√

2m = 5.66m distance from the origo.

When only looking at the radar measurements, the blue lines, the position becomes

untrustworthy way sooner than the estimated position, red lines, in all three figures in

figure 5.10. This means that the gate, GNN and kalman filters contributes positively

towards a better position estimate.

The figure 5.10(c) gives out reasonable values compared with the triangulation simu-

lations from section 5.4. At the position (2.8, 2.8) the target is about 4 m away from

origo. As the simulation shows in figure 5.5(b), the expected error is about 0.8 m in the

x-direction. This is in the same ballpark as the difference between the radar measure-

ments (x, y) and the original track in figure 5.10(c). It was not expected that the error

was exactly what was predicted, but it helps to know that they are not too far off.

As mentioned before, the necessity of the gate shows itself when looking at figure 5.10(c)

compared to the next figure
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Figure 5.11: Triangulation without gating

Figure 5.11 shows the triangulation results when no gating is being used. This is much

worse than what is seen in figure 5.10(c). The radar measurements, blue lines, are all

over the plot and the filtered measurements are also worse.

Having worked with the filters a lot, it has become evident that it is possible to tweak

the filters into giving more accurate estimations. By altering Q, R and some of the

initial conditions one can get a even better estimation than what has been shown here.

The problem is that these settings and performances are based on unrealistic settings,

and almost psychic initial guesses. Given that the goal of these simulations were not to

provide the best estimation of the position, but rather the best estimates given realistic

settings and noises, the result is more than acceptable.

The reason the simulations are set to be realistic is because the simulation process is

merely a means to develop algorithms that can be used in real situations with real radars.

If the simulations only focused on giving the best possible estimations, the algorithms

would most likely not work in real situations. The way the author use the simulations is

to provide the most robust algorithms to be used in said real situations. This is easier

to do in a simulation environment when the inputs are controlled and the outputs are

predictable.

The next step is to use the system of algorithms in a real situation where a walking

person is tracked using the real radars.
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True Radar Tracking

Now that the complete path from radar to position (x̂, ŷ), shown in figure 5.4, has been

proven to work during simulation, it is time to try it out with real radars.

This will be done with the same radar setup as shown in figure 5.4, step by step starting

out with only one radar at the time, testing out gating, GNN and kalman filtering.

In the end the two paths will be joint in the triangulation function. The real radar

measurement functions can be found in appendix B.

Before the results are shown it is important to note that for the actual radar measurement

the time between samples is 1 second, compared to the simulated 0.1 seconds. That is

just the way the radars are programmed at the moment, but it is enough as long as the

person is walking. Therefore, the simulation samples are spaced closer together and can

in theory handle faster targets. Another note is that the radar operates in the space 1.5

m- 4.5 m. So values outside those ranges will not be detected.

6.1 Radar Results and Discussion

The results will be divided into two sections, one for the single radar and another for

both radars working simultaneously. First, it will be shown that 1 radar works properly

by itself. In other words, that one of the paths gives reasonable values d̂.

6.1.1 Gating, GNN and Kalman Filter for One Radar

Figure 6.1 shows how the raw values from the radar comes in to be processed. It

represents a track made of a person walking in a straight path, starting close to the

radar, walking away from it and then walking back to it.

49
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Figure 6.1: Raw values

It is seen that multiple measurements can appear at the same instant. This means

that the GNN is highly necessary. Without it the algorithm would not know which

measurements to filter. The cluster of values up in the top right and top left corner of

the figure, pointed at by the arrows, are unfortunate false values. These appear because

the current radar still has some unresolved bugs when the target is outside the given

range 1.5−4.5m. These false values will somewhat be resolved by the gating algorithms.

Figure 6.2: Raw values and GNN

Figure 6.2 above shows the effect of the GNN. The measurements closest to the predicted

state x(k) will be stored and colored like a green ring. Only the green rings will be

considered by the Kalman filter and the two clusters of measurements are not corrupting

the system as much anymore.
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Now, the values can be run through the filter as shown in the next figure.

(a) Radar 1 without gating

(b) Radar 1 with gating

Figure 6.3: Walking path without and with gating

In figure 6.3 there are two subfigures 6.3(a) and 6.3(b) which represents the complete

system of algorithms before triangulation without and with gating, respectively.

In the first figure 6.3(a) the red crosses, representing the filtered position d̂, does a decent

job of finding a reasonable position for a person walking back and forth. Still, it can be

seen at several points in the graph, showed with arrows, that the filtered positions gets

pulled away from what is most likely the correct path. For example, after 3 seconds the

green circle pulls the filtered measurements away from the rest of the values. The same

happens again after 26 seconds. This may be because there are few values at those times

and the closest measurement given by the GNN is still really far away from the path.
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To fix this problem, the gating is activated. This has been done in the second figure

6.3(b). It can be seen that the previous green circles at for example the 3rd and 26th

second is no longer green, but blue. This means that they will no longer be evaluated

by the Kalman filter and as a result gives a better filtered measurement representing the

targets position. The improvement is clear when comparing the evenness of the path

made by the red crosses in bot figures.

After about 25 seconds, in both 6.3(a) and 6.3(b) there seems to be no values for a long

time. This may be because the person has walked outside the set range of the radar.

There, the Kalman filter uses its previous estimations and the F matrix from chapter 3.

It does this until the person appears again in the range of the radar at the 42nd second.

So far the the system path, starting from the radar to the triangulation function, has

worked properly. Some problems have appeared, but they have been solved by different

parts of the path, either gating, GNN or filtering. Some of these problems has occurred

because of how the radar is not completely tuned to be doing tracking.

Individually the radars works properly and it is time to test out two radars at the same

time.

6.1.2 Two Radars and Triangulation

During the simulations, the radars were stationed 1 m apart from each other. Due to

space limitations in the office, it was decided to place them 0.6 m apart for the actual

radar measurements. This is still a perfectly good placement and going from 1 m to 0.6

m will not have a critical impact on the results.

The target used was a average sized person. His starting position was about (x, y) =

(0, 2). He was told to walk away from the radars and stop, then turn around and walk

back towards the radars. There was not used a secondary system to track the person,

so there is no original track to compare the results to, other than the description of the

path above.

The results are shown in the next figure
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(a) From radar R1

(b) Fron radar R2

(c) Triangulated final position

Figure 6.4: Triangulated values
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Figure 6.4 contain three subfigures. The two first are figure 6.4(a) and 6.4(b). These

should show familiar values as the ones seen in figure 6.3(b) and what we see in them has

previously been discussed. The two first figures are also quite similar. This is because

the walked path has been in the middle of both radars and the distances are supposed

to be similar. The reason figure 6.4(a) and 6.4(b) is shown, is because they are the exact

values that was used to create the third figure 6.4(c).

Figure 6.4(c) shows the final position estimate that is calculated by the triangulation

function. The dotted black line is there as a visual tool to imagine where the supposedly

walked path was. As the distance increases, the estimated (x̂, ŷ) stray further from

the path, which is as expected, and backed up by the simulations. At about (0, 2) the

difference between the original path and filtered measurement is really accurate. About

0.1 m from the supposed track.

The radar measurements, blue circles, are at most up to 2 m away from the original

path, and the algorithms do a decent job to correct for this. The difference between

the radar measurements and the original path in figure 6.4(c), are a bit higher than

predicted by the simulated in section 5.4. This means that the actual SNR might be a

bit lower than what was simulated with in figure 5.5.

6.1.3 Comparison to Simulations

Comparing the final position (x̂, ŷ) from the real radars to the simulated final position

is not a trivial problem. For the true radar tracking, values for a original path is not

available and it is hard to directly compare how similar the performances are to the

simulation. The simulation has been used as a tool to create a safe environment to

build the algorithms used in the true radar tracking, where the outputs and inputs are

controlled. The point was not to make the simulation perform exactly as the true radar

tracking, but rather make them work in the same manner, and have similar values.

Therefore a direct comparison has not been made in this thesis between the results from

the simulation and the true radar tracking.

Using the various figures from chapter 5 and 6, some important points can still be made

when comparing the results from the two chapters.

The results show that the simulated noise acts close to realistic. Looking at figure 6.4(c)

and figure 5.10(c) the noise increases greatly in both figures as the distance from origo

increases. When the target is about 2-3 m away from origo, the radar measurements

are about 0.1-0.2 m away from the original tracks. As seen in figure 5.10(c), the noise

increases a lot when the target is more than 4 m away from origo. The position (x̂, ŷ) is
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about 1-2 m away from the original track. This is what we see in figure 6.4(c) as well,

but the filtered estimate (x̂, ŷ) is a lot better in the simulation at that distance.

The figures in 6.4 and 5.10 also show that the gating, GNN and kalman filters work

properly and improve the (x̂, ŷ). Still, it seems that the kalman filters do a better job

with the simulation values. The simulations gives a better general performance than the

real radar setup, but this is to be expected.



Chapter 7

Further Work

The investigations and results made in this thesis show that there are several areas for

further work that may lead to some improvements. These topics might be interesting

to follow up on at a later time.

First of all, in this thesis the focus has been on tracking one target. In advanced

tracking systems, it is normal to have the ability to keep track of multiple targets. The

implementation of multiple target is definitely worth looking into.

Another part of the system that has room for improvement is the gating. The gating

function used in this thesis is a circular one. Tracking can be done with for example

elliptical or asymmetrical gating which is better when the target is maneuvering. It

might at least be worth trying out different gating methods.

The global nearest neighbour (GNN) method is well suited for the tracking of one target.

If the goal is to track multiple targets, a closer look into different data association

methods is needed. In this area there are a lot of different association methods that

would be worth researching further.

This thesis did not focus on the actual performance of the sensors. It is still important to

note that the radars used has not been optimized to be used in tracking. If these radars

are to be used for tracking in the future, the radars themselves has a lot of potential to

improve and a lot of further work could be done with these.
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Chapter 8

Conclusive Remarks

The study set out to create a target tracking system using two stationary pulse Doppler

radars. Using range and Doppler speed, a walking person was to be tracked. Key

elements, such as Kalman filtering, data association and triangulation has been imple-

mented and tested in simulations and with real radar measurements.

The Kalman filter is used to filter out noise from the measurements and provide a better

estimation of the position of the target. It is found that a extended kalman filter (EKF)

is needed in this system. With the inclusion of radial velocity into the EKF, there is a

considerable improvement in the estimated position.

Two data association methods proves to be crucial to the tracking system. The gat-

ing shows great synergy with the Kalman filter by using components calculated in the

filter in its own gating functions. During the real tracking, the gate shows that it can

remove false and really noisy measurements preventing these measurements from dis-

torting the estimated track. The global nearest neighbour method shows its usefulness

in the real radar tracking as well, being able to chose the measurement that is closest

to the predicted position among many potential values.

The simulation and true radar tracking results has a lot of similar values. The simulation

does give a better estimation of the track, which means the simulated noise is most likely

smaller that for the real radars.

Individually, the simulated radars are able to follow the original track up to about 6m

distance seen in figure 5.7(a) and 5.8(a). After triangulation, this distance is reduced to

4 m on each axis which accumulates to 5.66 m from origo, seen in figure 5.10.

The true radar tracking is able to follow the target up to about 4.5 m from origo, as

seen in figure 6.4(c). At 4 m distance the estimated position is about 1 m away from
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the original track. That is a big error, but it is about the same error that the simulation

predicts. To improve the tracking and minimize the error there has to be less noise from

the actual radars.

The proposed tracking system proves to perform well in both the simulations and for

the real tracking, but at these given SNR levels it is not be beneficial to use the system

to track targets. By improving the SNR in the radars themselves and following some of

the proposed suggestions for further work, a robust system that can be used in many

different tracking applications, may be developed.



Appendix A

Matlab Simulation Code

A lot of different codes and versions of those codes has been made in this thesis. It has

been chosen to only include the most essential ones and also leave out the plot functions.

In appendix A, the simulation codes will be presented.

A.1 Main code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Morten Aasheim, filter then gather with gating, GNN Triangulate %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

close all

T=0.1;

for t=1:1

%% Values from the two sensors

out=XY sim(); % [x;y;vx;vy]

[d1, d2]=twoSensorSim(out); % change radar pos here.make the original sim

% into two sensors worth

%% Add realistic noise

x1 1=noise gen(d1);

%x1 1=d1; % test without noise

x1 2=noise gen(d2);

%x1 2=d2; % test without noise

%% gate, GNN and filter the two sensor readings
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single=1; % decides if we use more signals or just a single signal

L=length(x1 1);

if (single==1)

x2 1=zeros(2,L);

x2 2=zeros(2,L);

x3 1=zeros(2,L);

x3 2=zeros(2,L);

end

[Nearest 1,X upd 1,X next 1]=gate GNN filter(x1 1,x2 1,x3 1,single); % first sensor

[Nearest 2,X upd 2,X next 2]=gate GNN filter(x1 2,x2 2,x3 2,single); % second sensor

%% Gather the two sensor measurements

L=length(Nearest 1);

x upd=zeros(1,L);

y upd=zeros(1,L);

x=zeros(1,L);

y=zeros(1,L);

for i=1:L

[x upd(i), y upd(i)]=angleTriangle(X upd 1(1,i),X upd 2(1,i),-0.5,0.5); %from 2 sensors

%to one from origo

[x(i), y(i)]=angleTriangle(Nearest 1(1,i),Nearest 2(1,i),-0.5,0.5); %from 2 sensors

%to one from origo

end

A.2 Track simulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Morten Aasheim simulation of movement of walking human

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out=XY sim()

%% Startup %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x start=0; %m

y start=0; %m

vx start=0.1; %m/s

vy start=0.1; %m/s

v abs=sqrt(vx startˆ2 + vy startˆ2); %no more than 0.2 m/s

T=0.1; %step time s

turn=0; %degrees , counterclockwise

turn start=10; %when the maneuver is starting seconds

turn stop=20; %when the maneuver is stopping seconds
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turn rate=turn/(turn stop-turn start); %degrees/s

turn rate rad=turn rate*(pi/180);

T tot=50; % total amount of seconds

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Storage

L=T tot/T;

x=zeros(1,L);

y=zeros(1,L);

vx=zeros(1,L);

vy=zeros(1,L);

%% simulate

vx temp=vx start;

vy temp=vy start;

x(1)=x start;

y(1)=y start;

vx(1)=vx start;

vy(1)=vy start;

rad=atan2(vy start,vx start); %start angle

for t=2:L

if((t*T) >=turn start && (t*T)<turn stop)

rad=(turn rate rad*T)+rad;

vx temp=v abs*cos(rad);

vy temp=v abs*sin(rad);

end

x(t)= x(t-1)+(vx temp*T);

y(t)= y(t-1)+(vy temp*T);

vx(t)=vx temp;

vy(t)=vy temp;

end

out=[x;y;vx;vy];

end

A.3 Two Radars Track simulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% %%%

%%% Morten Aasheim, simulation with two sensors %%%

%%% %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function [d1, d2]=twoSensorSim(out)

%out=XY sim(); % [x;y;vx;vy]

L=length(out);

%% Sensor position

s1=[-0.5,0]; %[x,y]

s2=[0.5,0];

%% find distance to the sensors

d1=zeros(2,L); % [r,vr]

d2=zeros(2,L);

T=0.1; % seconds between samples

for i=1:L

temp=[out(1,i), out(2,i)];

d=temp-s1;

d1(1,i)= sqrt(sum(d.ˆ2)); %sensor 1 distance

d=temp-s2;

d2(1,i)=sqrt(sum(d.ˆ2)); %sensor 2 distance

end

%% sensor velocity

for j=1:L-1

% sensor 1

d1(2,j)=(d1(1,j+1)-d1(1,j))/T; %speed in sensor 1

% sensor 2

d2(2,j)=(d2(1,j+1)-d2(1,j))/T; %speed in sensor 2

end

d1(2,L)=d1(2,L-1); %just make the last speed equal to the previous one...

d2(2,L)=d2(2,L-1);

end

A.4 Generate Noise

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Morten Aasheim , Generate noise based on distance from radar %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Test

% out=XY sim();

% x(1,:)=out(1,:);

% x(2,:)=out(3,:);

function y=noise gen(x) %take in a vector of range and velocity
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pulse length ns=1;

dR=3e8*pulse length ns*1e-9/2; % range resolution

lambda=0.0429; % lambda=3e8/7GHz= 0.4929 m - RF radar wavelength

T=1; % integrasjonstid i PulseDoppler (6 sekund dettype1 og 1 sekund dettype 2)

dV=lambda/(2*T); % speed resolution

L=length(x);

E d=zeros(1,L);

E v=zeros(1,L);

y=zeros(2,L);

for i=1:L

R=x(1,i);

SNR=10ˆ((52-R*12)/10); % function to decide linear SNR based on range

sigma d=dR/sqrt(2*SNR); % make sigma for the range

error d=sigma d*randn(1,1); % random distance error with this sigma

sigma v=dV/sqrt(2*SNR);

error v=sigma v*randn(1,1);

y(1,i)=x(1,i)+error d;

y(2,i)=x(2,i)+error v;

E d(i)=error d;

E v(i)=error v;

end

end

A.5 Gate, GNN and Kalman Filter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Morten Aasheim, apply gating, GNN and filtering %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Nearest,X upd,X next]=gate GNN filter(x1,x2,x3,single)

L=length(x1);

%% matrixes

T=0.1; % seconds per measurement

F=[1 T; 0 1]; % transition matrix, Newton

s x=0.2; % sigma r

s v=0.1; % sigma v

Q=0.1*[(Tˆ2)/3 T/2; T/2 1]; % Process noise,liten Q - lite avvik,

% stor Q - stort avvik

%Q=1*[s x 0; 0 s v];

bUseVr=1; % 0 - dont use vr measurement, 1 -use vr measurement
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%% predict the first P next

P upd=0.1*[0.1 0; 0 0.1];

x upd=1.0*x1(:,1); % MULIG FEIL HER

%% the loop

X next=zeros(2,L);

X upd=zeros(2,L);

Nearest=zeros(2,L);

first=1; % takes care of the first iteration skip

if (single==1)

non gated=x1;

else

non gated=[x1;x2;x3]; %[x1;vx1,x2,vx2,x3,vx3];

end

nearest=x1(:,1); % just for the first iteration

for i=1:L

if (first==0)

nearest=gate and GNN(P upd,H1,H2,F,Q,s x,s v,non gated(:,i),x pred);% find nearest neighbour

end

first=0;

%% Kalman

[x upd,P upd,x pred,H1,H2]= ...

extended Kalman pseudo multivar(nearest(:,1),x upd,P upd,F,Q,s x,s v,bUseVr);

X next(:,i)=x pred;

X upd(:,i)=x upd;

Nearest(:,i)=nearest;

end

end

A.6 Gate and GNN

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Morten Aasheim, gate and Global nearest neighbour %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function nearest=gate and GNN(P upd,H1,H2,F,Q,s r,s v,non gated,x pred)

[row, col]=size(non gated);

gated=zeros(row,1);

%nearest=[NaN;NaN];

nearest=non gated(:,1);

%% Gate the position
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bound=1e20; % set so high it will pass no matter what the first time

for k=1:2:row % go through the three different xes

P pred=F*P upd*transpose(F)+Q;

%% Range gate

S r=H1*P pred*transpose(H1)+ s r; % predict S

z r=non gated(k,1)-x pred(1,1); % the current residual in x

dr2=z r'*inv(S r)*z r; % use predicted S

Gr=4*s r*inv(S r); % Gate for distance

% Gr=1.0e20;

%% velocity gate

S v=H2*P pred*transpose(H2);

z v=non gated(k+1,1)-x pred(2,1);

dv2=z v'*inv(S v)*z v;

Gv=4*s v*inv(S v); % Gate for velocity

% Gv=1.0e20;

if(dr2<Gr && dv2<Gv) % keep value if d2 is within the gates

gated(k)=non gated(k,1); % x

gated(k+1)=non gated(k+1,1); % vx

else % outside the gate, replaced with NaN

gated(k)=NaN;

gated(k+1)=NaN;

end

%% GNN

if (dr2<bound) % the nearest point is found

nearest(1,1)=gated(k);

nearest(2,1)=gated(k+1);

bound=dr2;

end

end

end

A.7 Kalman Filter w/Radial Velocity

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Morten Aasheim, extended kalman filter w/radial velocity %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [x upd, P upd, x pred, H1, Hk4]=...

extended Kalman pseudo multivar(z,x prev,P prev,F,Q,sigma r,sigma vr,bUseVr)

%% Predict

x pred=F*x prev; %2x1 %State pred
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P est=F*P prev*transpose(F)+Q; %2x2 %State pred. cov.

%% Calculations

h= x pred; %2x1

H1=[1 0];

%% Check if the value is NaN

if (isnan(z))

x upd=x pred;

P upd=P est;

Hk4=H1; % So velocity gate can be used even if the value is NaN

return;

end %1x2

%% Update

z upd=z(1,1) -h(1,1); %1x1

S=H1*P est*transpose(H1)+ sigma r; %1x1 % Innovation cov.

K=P est*transpose(H1)*inv(S);%2x1 % Kalman gain

x upd=x pred+ K*z upd;%2x1 % Updated state estimate

P upd=P est-K*S*K'; %2x2 JRP % Updated state covariance

if (bUseVr==0) %if we only want to use x, not Vr

x pred=F*x upd; % not pseudo % State prediction to next time

Hk4=H1;

%P pred=F*P upd*transpose(F)+Q; % not pseudo % State pred. cov. to next time

return;

end

%% Radial velocity update

xk3=x upd; %temporal storage

Pk3=P upd; %temporal

Yk k=xk3(1,1); % x values

Ypk k=xk3(2,1); % vr values

DirCosk k=(Yk k'*Yk k)ˆ(-0.5)*Yk k'; % Directional cosine, eq 11

I=eye(1); % identity matrix

Ak=(Yk k'*Yk k)ˆ(-0.5)*(I-DirCosk k'*DirCosk k); % text after eq 14

Bk=[zeros(1,1) 0.5*Ak;0.5*Ak zeros(1,1)]; % 2x2, eq 15

Ck=Bk*Pk3; %2x2

Hck2=[(Ak*Ypk k)' DirCosk k]; % text after eq 17

Hk4=Hck2;

l=length((diag(Ck))); %length of diagonal

sum cij=0.0;

for i1=1:l %2 atm

for j1=1:l

sum cij=sum cij+Ck(i1,j1)ˆ2; % text after eq 17
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end

end

Rck2=sigma vrˆ2+2*sum cij; % eq 18

sigma2 4=Rck2;

Sk4=(Hk4*Pk3*Hk4'+sigma2 4); %eq 30, innovation cov

Kk4=Pk3*Hk4'/Sk4; %eq 30, kalman gain

trace Ck=trace(Ck); % the diagonal vector of Ck

Zck=z(2)-trace Ck; % text after eq 17

xk4=xk3+Kk4*(Zck-Hck2*xk3); %eq 28, updated state estimate

Pk4=Pk3-Kk4*Sk4*Kk4'; %eq 29, updated cov,Pk4=Pk3-Kk4*Hck2*Pk3;?

x upd=xk4; % new x with radial velocity included

P upd=Pk4; % new P with radial velocity included

x pred=F*x upd; % State prediction to next time

end

A.8 Triangulation

% find the angles of the triangle given the side lengths

% d1 and d2 are lengths of the "legs", s1 and s2 are the koorrdinates of the sensors

function [x,y]=angleTriangle(d1,d2,s1,s2)

d0=abs(s1)+abs(s2); %s1 and s2 are the koordinates of the two sensors on the x axis

d=d0/2; % distance to origo

% %use the cosine rule

% a1=real(acos((d1ˆ2 + d0ˆ2 -(d2ˆ2))/(2*d1*d0))); % in radians, only real values

% a2=real(acos((d2ˆ2 + d0ˆ2 -(d1ˆ2))/(2*d2*d0))); % in radians

%% fix1, if value d2 is empty

if(isempty(d2))

d2=NaN;

end

if(isempty(d1))

d1=NaN;

end

%% Main

%x= (1/2)*(d2ˆ2+d0ˆ2-d1ˆ2)/d0-d0/2;

%y= (1/2)*sqrt(4*(d2ˆ2)-(d2ˆ2+d0ˆ2-d1ˆ2)ˆ2/(d0ˆ2));
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x=real(((d1ˆ2)-(d2ˆ2))/(4*d));

y=real(sqrt((d2ˆ2)-(dˆ2)+ 2*(((d1ˆ2) - (d2ˆ2))/4) - ((((d1ˆ2) - (d2ˆ2))/(4*d))ˆ2)));

%% Main

% if (d2<=d1 | | isnan(d1)) % use the most accurate angle

% x= s2-cos(a2)*d2;

% y= sin(a2)*d2;

% elseif (d1<d2 | | isnan(d2))

% x= s1+cos(a1)*d1;

% y= sin(a1)*d1;

% end

%% fix2, if x and y is empty

if(isempty(x))

x=NaN;

end

if(isempty(y))

y=NaN;

end

end



Appendix B

Matlab Real Radar Measurement

Code

In appendix B, the real radar measurement codes will be presented and they are intended

to perform the same task as the ones in appendix A.

B.1 Main Code, 1 Radar

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% %%%%

%%% Morten Aasheim , find values from radar %%%

%%% Used with : Radar gate GNN filter.m %%%

%%% Radar gate and GNN.m %%%

%%% extended Kalman pseudo radar.m %%%

%%%% %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close all

clear all

% function

%% original

%load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2Just1.mat')

%% Test

load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2straight2R1.mat');

Ndet2=length(AccumDetList2); % decided to use detlList2

onlyHighestSNR=0; % 1-only use the value with the highest SNR, 0- use all

% for i=1:Ndet2-2 % makes the sets start at the same time

% AccumDetList2{i}=AccumDetList2{i+2};
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% end

[Nearest,X upd,X next]=Radar gate GNN filter(AccumDetList2,onlyHighestSNR);

%% for the legend only

figure();

plot(-1,1.5,'bo');

hold on

plot(-1,1.5,'go');

hold on

plot(-1,1.5,'r+');

%% Lets plot stuff

plot trix=0;

for i=1:Ndet2-6 % chose what values to plot

time=AccumDetList2{i}.Time+1; % It starts at 0

%% plots all the possible values

rangevec=AccumDetList2{i}.DetList2.Range m;

if (isempty(rangevec)==false) % if it is not empty

len=length(rangevec);

index=1:len;

plot(time-plot trix,rangevec(index),'bo','linewidth',2);

hold on

end

%% plots the nearest

time=AccumDetList2{i}.Time+1; % It starts at 0

if (isempty(Nearest{1,i})==false) % if its not empty

plot(time-plot trix,Nearest{1,i},'go','linewidth',2)
end

hold on

%% Plots the filtered

plot(time-plot trix,X upd(1,i),'r+','linewidth',2);

hold on

end

a=axis;

axis([0 a(2) a(3) a(4)])

h=legend('Radar measurements','Nearest radar measurements','Filtered measurement');

%h=legend('Radar measurements','Nearest radar measurement');

set(h,'Position',[0.4044 0.1317 0.3787 0.1517])

set(h,'Fontsize',20)

xlabel('Time [s]','Fontsize',20)

ylabel('Distance [m]','Fontsize',20)

set(gca,'Fontsize',20);

%end
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B.2 Main Code, 2 Radars

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% %%%%

%%% Morten Aasheim , find values from two radars %%%

%%% Used with : Radar gate GNN filter.m %%%

%%% Radar gate and GNN.m %%%

%%% extended Kalman pseudo radar.m %%%

%%%% %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close all

clear all

%% Load radars , gate, GNN and Filter

%% R1

%load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2twoRadarsR1.mat')

load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2straight2R1.mat');

Ndet1=length(AccumDetList2); % decided to use detlList2

onlyHighestSNR=0; % 1-only use the value with the highest SNR, 0- use all

tempR1=AccumDetList2; % Length of R1

%% R2

%load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2twoRadarsR210sec.mat')

load('c:\Users\Morten\Documents\NoveldaRadarJRP\Morten\XtMatlab\ConceptTestPlatform2\File AccumDetListType2Storage\File AccumDetListType2straight2R2.mat');

Ndet2=length(AccumDetList2); % decided to use detlList2. Length of R2

Diff=Ndet1-Ndet2;

for i=1:Ndet2-2 % makes the sets start at the same time

AccumDetList2R2{i}=AccumDetList2{i+2};
AccumDetList2R1{i}=tempR1{i+Diff-1+1}; % remember the .time is still be off

AccumDetList2R1{i}.Time=AccumDetList2R1{i}.Time-Diff+1; % time is fixed

end

%% R1

[Nearest 1,X upd 1,X next 1]=Radar gate GNN filter(AccumDetList2R1,onlyHighestSNR);

%% R2

[Nearest 2,X upd 2,X next 2]=Radar gate GNN filter(AccumDetList2R2,onlyHighestSNR);

%% Triangulate

X upd=zeros(1,Ndet2);

Y upd=zeros(1,Ndet2);

X=zeros(1,Ndet2);

Y=zeros(1,Ndet2);

%figure();

for i=1:Ndet2-2

[x upd, y upd]=angleTriangle(X upd 1(1,i),X upd 2(1,i),0.3,-0.3); %from 2 sensors
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% to one from origo

[x, y]=angleTriangle(Nearest 1{1,i},Nearest 2{1,i},0.3,-0.3); %from 2 sensors

% to one from origo

X upd(i)=x upd;

Y upd(i)=y upd;

X(i)=x;

Y(i)=y;

% plot(x upd,y upd,'r+','linewidth',2)

% hold on

% plot(x,y,'bo','linewidth',2)

% hold on

end

B.3 Radar Gate, GNN and Kalman Filter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% %%%%

%%% Morten Aasheim,radar gate, GNN and filter with the actual radar %%%

%%%% used in: XY realRadar.m %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Nearest,X upd,X next]=Radar gate GNN filter(AccumDet2,onlyHighestSNR)

%% matrixes

T=1; % 1 seconds per measurement, THIS is different from sim

F=[1 T; 0 1]; % transition matrix, Newton

s x=0.2; % sigma r

s v=0.1; % sigma v

Q=0.1*[(Tˆ2)/3 T/2; T/2 1]; % Process noise,liten Q - lite avvik,

% stor Q - stort avvik

bUseVr=1; % 0 - dont use vr measurement, 1 -use vr measurement

Ndet2=length(AccumDet2);

X next=zeros(2,Ndet2);

X upd=zeros(2,Ndet2);

Nearest{2,Ndet2}=[]; % this is a cell array

for i=1:Ndet2

%% Find the values to be gated

speedvec=AccumDet2{i}.DetList2.Speed m s;

rangevec=AccumDet2{i}.DetList2.Range m;

SNRvec=AccumDet2{i}.DetList2.SNR dB;

if (isempty(rangevec)==false) % go in if there are values here

[~,predIndex]=max(SNRvec); % used to predict the first x upd

if (onlyHighestSNR)

[~,indexvec]=max(SNRvec);
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else

indexvec=1:length(rangevec);

end

non gated=[rangevec(indexvec); -speedvec(indexvec)]; % speed negative because

% they were the wrong way

else

non gated=[rangevec; -speedvec]; % these are supposed to be empty

end

%% predict the first P next

if (i==1) % only go in here the first iteration

P upd=0.1*[0.1 0; 0 0.1];

if (isempty(rangevec)==false) % enter if it has values

x upd=[rangevec(predIndex) ; -speedvec(predIndex)]; % minus because they were the wrong way

nearest=x upd; % set nearest for first iteration

else

x upd=[1.9; 0.1]; % supposed to be empty, if not set reasonable values

nearest=non gated; % its empty

end

end

%% Gate and GNN

if (i~=1) % dont go in the first iteration

nearest=Radar gate and GNN... % gives empty or 1 value(x;vx)

(P upd,H1,H2,F,Q,s x,s v,non gated,x pred); % find the nearest neighbour

end

%% Kalman filter

[x upd,P upd,x pred,H1,H2]= ...

extended Kalman pseudo radar(nearest,x upd,P upd,F,Q,s x,s v,bUseVr);

X next(:,i)=x pred;

X upd(:,i)=x upd;

if (isempty(nearest)) % if there is no values here

Nearest{1,i}=nearest; % this is now a cell, because some values are empty

Nearest{2,i}=nearest;
else

Nearest{1,i}=nearest(1,1);
Nearest{2,i}=nearest(2,1);

end

end %for

end %function
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B.4 Radar Gate and GNN

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% %%%%

%%% Morten Aasheim, gate and Global nearest neighbour, with the actual radar %%%

%%%% used in: Radar gate GNN filter.m %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function nearest=Radar gate and GNN(P upd,H1,H2,F,Q,s r,s v,non gated,x pred)

%% Empty

[~,len]=size(non gated); %mulig feil her !!!!!!!!!!!!!!!%!%!%!%%!

if (isempty(non gated)) % go in if its empty

nearest=non gated; % if there are no values, then just pass that on

return;

end

%% Gate the position

bound=1e20; % set so high it will pass no matter what the first time

for i=1:len

P pred=F*P upd*transpose(F)+Q;

%% Range gate

S r=H1*P pred*transpose(H1)+ s r; % predict S

z r=non gated(1,i)-x pred(1,1); % the current residual in x

dr2=z r'*inv(S r)*z r; % use predicted S

Gr=4*s r*inv(S r); % Gate for distance

% Gr=1.0e20; % infinite gate

%% velocity gate

S v=H2*P pred*transpose(H2);

z v=non gated(2,i)-x pred(2,1);

dv2=z v'*inv(S v)*z v;

Gv=4*s v*inv(S v); % Gate for velocity

% Gv=1.0e20; % infinite gate

if(dr2<Gr && dv2<Gv) % keep value if d2 is within the gates

gated=non gated(:,i);

else % outside gate

gated=[];

end

%% GNN

if (dr2<bound) % the nearest point is found

nearest=gated;

bound=dr2;

end

end

end
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B.5 Radar Kalman filter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% %%%%

%%% Morten Aasheim, extended kalman filter w/radial velocity, with the actual radar %%%

%%%% used in: Radar gate GNN filter.m %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [x upd, P upd, x pred, H1, Hk4]=...

extended Kalman pseudo radar(z,x prev,P prev,F,Q,sigma r,sigma vr,bUseVr)

%% Predict

x pred=F*x prev; %2x1 %State pred

P est=F*P prev*transpose(F)+Q; %2x2 %State pred. cov.

%% Calculations

h= x pred; %2x1

H1=[1 0];

%% Check if its empty

if (isempty(z))

x upd=x pred;

P upd=P est;

Hk4=H1; % So velocity gate can be used even if the value is empty

return;

end %1x2

%% Update

z upd=z(1,1) -h(1,1); %1x1

S=H1*P est*transpose(H1)+ sigma r; %1x1 % Innovation cov.

K=P est*transpose(H1)*inv(S);%2x1 % Kalman gain

x upd=x pred+ K*z upd;%2x1 % Updated state estimate

P upd=P est-K*S*K'; %2x2 JRP % Updated state covariance

if (bUseVr==0) %if we only want to use x, not Vr

x pred=F*x upd; % not pseudo % State prediction to next time

Hk4=H1;

%P pred=F*P upd*transpose(F)+Q; % not pseudo % State pred. cov. to next time

return;

end

%% Radial velocity update

xk3=x upd; %temporal storage

Pk3=P upd; %temporal
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Yk k=xk3(1,1); % x values

Ypk k=xk3(2,1); % vr values

DirCosk k=(Yk k'*Yk k)ˆ(-0.5)*Yk k'; % Directional cosine, eq 11

I=eye(1); % identity matrix

Ak=(Yk k'*Yk k)ˆ(-0.5)*(I-DirCosk k'*DirCosk k); % text after eq 14

Bk=[zeros(1,1) 0.5*Ak;0.5*Ak zeros(1,1)]; % 2x2, eq 15

Ck=Bk*Pk3; %2x2

Hck2=[(Ak*Ypk k)' DirCosk k]; % text after eq 17

Hk4=Hck2;

l=length((diag(Ck))); %length of diagonal

sum cij=0.0;

for i1=1:l %2 atm

for j1=1:l

sum cij=sum cij+Ck(i1,j1)ˆ2; % text after eq 17

end

end

Rck2=sigma vrˆ2+2*sum cij; % eq 18

sigma2 4=Rck2;

Sk4=(Hk4*Pk3*Hk4'+sigma2 4); %eq 30, innovation cov

Kk4=Pk3*Hk4'/Sk4; %eq 30, kalman gain

trace Ck=trace(Ck); % the diagonal vector of Ck

Zck=z(2)-trace Ck; % text after eq 17

xk4=xk3+Kk4*(Zck-Hck2*xk3); %eq 28, updated state estimate

Pk4=Pk3-Kk4*Sk4*Kk4'; %eq 29, updated cov,Pk4=Pk3-Kk4*Hck2*Pk3;?

x upd=xk4; % new x with radial velocity included

P upd=Pk4; % new P with radial velocity included

x pred=F*x upd; % State prediction to next time

end

B.6 Triangulation

% find the angles of the triangle given the side lengths

% d1 and d2 are lengths of the "legs", s1 and s2 are the koorrdinates of the sensors

function [x,y]=angleTriangle(d1,d2,s1,s2)

d0=abs(s1)+abs(s2); %s1 and s2 are the koordinates of the two sensors on the x axis

d=d0/2; % distance to origo

% %use the cosine rule
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% a1=real(acos((d1ˆ2 + d0ˆ2 -(d2ˆ2))/(2*d1*d0))); % in radians, only real values

% a2=real(acos((d2ˆ2 + d0ˆ2 -(d1ˆ2))/(2*d2*d0))); % in radians

%% fix1, if value d2 is empty

if(isempty(d2))

d2=NaN;

end

if(isempty(d1))

d1=NaN;

end

%% Main

%x= (1/2)*(d2ˆ2+d0ˆ2-d1ˆ2)/d0-d0/2;

%y= (1/2)*sqrt(4*(d2ˆ2)-(d2ˆ2+d0ˆ2-d1ˆ2)ˆ2/(d0ˆ2));

x=real(((d1ˆ2)-(d2ˆ2))/(4*d));

y=real(sqrt((d2ˆ2)-(dˆ2)+ 2*(((d1ˆ2) - (d2ˆ2))/4) - ((((d1ˆ2) - (d2ˆ2))/(4*d))ˆ2)));

% if (d1 > d2)

% x=abs(x);

% else

% x=-abs(x);

% end

% y=abs(y);

%% Main

%% fix2, if x and y is empty

if(isempty(x))

x=NaN;

end

if(isempty(y))

y=NaN;

end

end
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Matlab Triangulation Error

This function was provided by the supervisor at Novelda AS, but few minor tweeks has

been done.

C.1 Triangulation Concept

d=1.0; % distance between radar 0 and 1. Assumed placed at (0,0) and (0,d)

pulse length ns=1;

SNR dB=10;

xt=0;

yt=4;

% xt=1;

% yt=0;

Nsigma=3;

%%%%%%%%%%%%%%%%%%%%%

dR=3e8*pulse length ns*1e-9/2; % range resolution

SNR=10ˆ(SNR dB/10);

sigma r=dR/sqrt(2*SNR);

R0=sqrt((xt-(-d/2))ˆ2+ytˆ2);

R1=sqrt((xt-d/2)ˆ2+ytˆ2);

xt= (1/2)*(R1ˆ2+dˆ2-R0ˆ2)/d-d/2;

yt= (1/2)*sqrt(4*R1ˆ2-(R1ˆ2+dˆ2-R0ˆ2)ˆ2/dˆ2);

78
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if (R0 > R1)

xt=abs(xt);

else

xt=-abs(xt);

end

yt=abs(yt);

xt

yt

xvec0n=[];

yvec0n=[];

xvec0=[];

yvec0=[];

xvec0p=[];

yvec0p=[];

xvec1n=[];

yvec1n=[];

xvec1=[];

yvec1=[];

xvec1p=[];

yvec1p=[];

for (theta deg=0:0.01:180)

theta=theta deg*pi/180;

xvec0n=[xvec0n abs(R0-Nsigma*sigma r)*cos(theta)-d/2];

yvec0n=[yvec0n abs(R0-Nsigma*sigma r)*sin(theta)];

xvec0=[xvec0 R0*cos(theta)-d/2];

yvec0=[yvec0 R0*sin(theta)];

xvec0p=[xvec0p abs(R0+Nsigma*sigma r)*cos(theta)-d/2];

yvec0p=[yvec0p abs(R0+Nsigma*sigma r)*sin(theta)];

xvec1n=[xvec1n abs(R1-Nsigma*sigma r)*cos(theta)+d/2];

yvec1n=[yvec1n abs(R1-Nsigma*sigma r)*sin(theta)];

xvec1=[xvec1 R1*cos(theta)+d/2];

yvec1=[yvec1 R1*sin(theta)];

xvec1p=[xvec1p abs(R1+Nsigma*sigma r)*cos(theta)+d/2];

yvec1p=[yvec1p abs(R1+Nsigma*sigma r)*sin(theta)];

end

figure(1);

plot(xvec0n,yvec0n,'b--',xvec0,yvec0,'b',xvec0p,yvec0p,'b--',xvec1n,yvec1n,'r--',xvec1,yvec1,'r',xvec1p,yvec1p,'r--',xt,yt,'g*','MarkerSize',30);

grid on;

axis([-2 2 0 5]);

figure(2);
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plot(xvec0n,yvec0n,'b',xvec0p,yvec0p,'b',xvec1n,yvec1n,'r',xvec1p,yvec1p,'r',xt,yt,'g*','MarkerSize',30);

grid on;

axis([-4 4 0 7]);

title('Triangulation uncertainty area for 2 radars');

xlabel('x [m]','fontsize',20);

ylabel('y [m]','fontsize',20);

set(gca,'fontsize', 20);



Bibliography

[1] Heinrich Hertz. http://www.famousscientists.org/heinrich-hertz/. [Online;

accessed Feb-2015].

[2] Guglielmo Marconi. http://www.history.com/topics/inventions/

guglielmo-marconi. [Online; accessed Feb-2015].

[3] Christian Huelsmeyer. http://www.radarworld.org/huelsmeyer.html. [Online;

accessed Feb-2015].

[4] Chain Home Defense. http://www.radarpages.co.uk/mob/ch/chainhome.htm.

[Online; accessed Feb-2015].

[5] S. Blackman and R. Popoli. Design and analysis of modern tracking systems. pages

157–167, 1999.

[6] J. Elfring, R. Janssen, and R. Molengraft. Data association and tracking: A litter-

ature study. RoboEarth, pages 6–17, April 2010.

[7] X. R. Li and V. P. Jilkov. A survey of maneuvering target tracking: Dynamic mod-

els. SPIE CONFERENCE ON SIGNAL AND DATA PROCESSING OF SMALL

TARGETS, pages 1–7, April 2000.

[8] P. H. Olsen. Multisensor tracking of two flying targets in formation. pages 1–130,

2010.

[9] X. R. Li and V. P. Jilkov. A survey of maneuvering target tracking: Measure-

ment models. SPIE CONFERENCE ON SIGNAL AND DATA PROCESSING OF

SMALL TARGETS, pages 1–6, July-August 2001.

[10] J. Wang, P. He, and T. Long. Use of radial velocity measurement in target tracking.

IEEE TRANSACTIONON AEROSPACE AND ELECTRONIC SYSTEMS, 39(2):

401–413, April 2003.

[11] Supervisor at Novelda AS. [Conversation with supervisor Jan Roar Pleym].

81

http://www.famousscientists.org/heinrich-hertz/
http://www.history.com/topics/inventions/guglielmo-marconi
http://www.history.com/topics/inventions/guglielmo-marconi
http://www.radarworld.org/huelsmeyer.html
http://www.radarpages.co.uk/mob/ch/chainhome.htm

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 History
	1.3 Thesis Structure

	2 Problem Description
	2.1 General Task
	2.2 Description of Radar System

	3 Tracking Filter
	3.1 Model
	3.2 Kalman Filter
	3.3 Standard Kalman filter
	3.3.1 Time Update (Prediction)
	3.3.2 Measurement Update (Correction)

	3.4 Extended Kalman filter
	3.5 Include Radial Velocity
	3.5.1 Pseudoradial Velocity Measurement Update


	4 Methods for Data Association
	4.1 Gating
	4.2 Global Nearest Neighbour 

	5 Simulations
	5.1 Track Simulation
	5.2 Noise
	5.3 Simulated Radar Setup
	5.4 Triangulation Expected Error
	5.5 Simulation Results and Discussion
	5.5.1 Settings
	5.5.2 Gate, GNN and Kalman Filter
	5.5.3 Triangulation


	6 True Radar Tracking
	6.1 Radar Results and Discussion
	6.1.1 Gating, GNN and Kalman Filter for One Radar
	6.1.2 Two Radars and Triangulation
	6.1.3 Comparison to Simulations


	7 Further Work
	8 Conclusive Remarks
	A Matlab Simulation Code
	A.1 Main code
	A.2 Track simulation
	A.3 Two Radars Track simulation
	A.4 Generate Noise
	A.5 Gate, GNN and Kalman Filter
	A.6 Gate and GNN
	A.7 Kalman Filter w/Radial Velocity
	A.8 Triangulation

	B Matlab Real Radar Measurement Code
	B.1 Main Code, 1 Radar
	B.2 Main Code, 2 Radars
	B.3 Radar Gate, GNN and Kalman Filter
	B.4 Radar Gate and GNN
	B.5 Radar Kalman filter
	B.6 Triangulation

	C Matlab Triangulation Error
	C.1 Triangulation Concept

	Bibliography

