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Summary 
Tracking is the technique of following an object in motion. We use tracking technology on an 

everyday basis through Navigation GPS in cars or smart phones. Many of these units also 

feature touch displays, which allow interaction using a finger or touch stylus. This master 

thesis focuses on with tracking fingers on touch displays, which appear as objects on a low-

resolution image. Touch displays often use a low resolution sensor grid, which requires 

subpixel estimation prior to tracking. The coordinates produced by the tracking system is used 

by an application level not included in this project, which analyzes the input location and 

motion. With higher accuracy of the position and tracking, the smaller symbols can be utilized 

on the display, and the more sophisticated motions are possible to interpret for the application 

level. The tracker system is designed to work in real time for any touch display and tracks up 

to two fingers of any size. 

High tracking accuracy was achieved using digital signal processing techniques. A signal 

processing model was created initially to define the system. The tracker system created 

consists of two modules: A scanner and a tracker.  The scanner analyzes the data sets 

individually, and produces a high-resolution two-dimensional coordinate for each input. The 

tracker analyzes these observations collectively, validates that these are not caused by noise, 

and filters the positions through a (Kalman) tracking filter. Evaluation of the system was 

performed using data sets from a real touch display as well as simulated data sets. 

Some assumptions and limitations had to be made to successfully handle all situations found 

in the data sets. Pressing hard on the touch displays creates large objects, and a size estimation 

algorithm was made. This was based on a sensor value threshold, but this makes the program 

non-ideal for displays with low signal to noise ratio. Two close objects might also be falsely 

identified as one large object, but this was solved in this project using previous knowledge 

and adjusting the sensor values to force the scanner to produce two outputs. Lastly, the 

tracking filter smoothed the trajectory of the objects, but it did not always provide better 

accuracy. A tracking filter should be considered based on the application intended.  

All situations in the real data sets were handled, albeit with reduced accuracy for large objects 

and for two close objects. Further research involves handling three or more inputs, performing 

a running cost analysis of the algorithm and implementing this on a real tablet.  

Implementation will require an adjustment of the different thresholds and settings to match 

the touch display with regards to node resolution, sampling rate and sensor noise. This can be 

solved by the application level or further development of the tracker system. 
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Sammendrag 
Målfølgelse er et begrep som brukes for å beskrive følging av et mål i bevegelse. Alle som 

bruker GPS i bil eller smarttelefoner bruker målfølgingsteknologi. Mange av disse enhetene 

benytter også berøringsskjermer, som tillater interaksjon med å bruke en finger eller stylus. 

Denne masteroppgaven handler om målfølgelse av fingre på en berøringsskjerm, og disse 

fremstår som objekter på en lavoppløst bilde. Berøringsskjermer benytter ofte slike sensor-

system, noe som medfører at man må estimere en underpiksel-posisjon, før man kan målfølge 

objektene. Koordinatene som produseres av målfølgingssystemet analyseres av et 

applikasjonsnivå, som er utenfor omfanget av dette prosjektet. Jo høyere nøyaktighet på 

posisjonene som produseres, jo mindre symboler kan benyttes på en berøringsskjerm, og jo 

mer avanserte bevegelser kan applikasjonsnivået tolke. Målfølgingssystemet fungerer i 

sanntid og for en generell, og ikke spesifikk, berøringsskjerm. Den er designet for å tolke 

inntil to objekt på samme tid. 

Høy presisjon ble oppnådd med å bruke digital signalbehandling. En signalbehandlingsmodell 

ble laget initielt for å definere systemet. Målfølgingssystemet som ble laget består av to 

moduler: En skanner og en målfølger. Skanneren analyserer alle datasett fra sensoren til 

berøringsskjermen, og produserer en to-dimensjonalt og høy-oppløst posisjon for inntil to 

objekt. Målfølgeren analyserer alle observasjonene kollektivt, validerer at det ikke er støy, og 

sender posisjonene gjennom et (Kalman) målfølgingsfilter. Utvikling og vurdering av hele 

systemet ble gjort ved å benytte ekte datasett fra en berøringsskjerm i tillegg til simulerte 

datasett. 

Noen begrensninger ble valgt for å få en vellykket håndtering av alle situasjonene som dukket 

opp i de ekte datasettene. Harde trykk på berøringsskjermer skaper store gjenstander i 

datasettene, og en algoritme for størrelsesestimering ble implementert. Denne algoritmen for 

størrelse baseres på en terskel for sensorverdi, men det medfører at målfølgingssystemet ikke 

er ideelt for skjermer med lavt signal til støyforhold. To nære objekter kan også feilaktig 

identifiseres som ett stort objekt, men dette ble løst ved hjelp av informasjon fra tidligere 

datasett og ved å justere sensorverdiene, slik at skanneren tvinges til å produsere to 

posisjoner. Målfølgingsfilteret glattet banen av objektene, men filteret gav ikke alltid en bedre 

nøyaktighet. Om et målfølgingsfilter skal benyttes må dette vurderes opp mot hvilken 

applikasjon som skal brukes. 

Alle situasjoner i de virkelige datasettene ble håndtert, riktignok med noe redusert nøyaktighet 

for store objekter og to nære objekter. Videre forskning bør innebære håndtering av tre eller 

flere objekter, en løpende kostnadsanalyse av algoritmen samt å implementere dette på en 

ekte berøringsskjerm. Implementering krever justering av de forskjellige terskler og 

innstillinger for å matche den spesifikke berøringsskjermen med hensyn til node-oppløsning, 

samplingsfrekvens og målfølgingsfilteret, noe som kan løses av applikasjonsnivået eller en 

videreutvikling av målfølgingssystemet. 
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Preface 
This thesis is submitted to fulfill the formal requirements for the Master of Science in 

Electronics Engineering (MSc), at the Department of Electronics and Telecommunications, 

Norwegian University of Science and Technology (NTNU). The Master program is a 

continuation of my Bachelor in Military Leadership, with specialization in electronics 

engineering, completed at the Royal Norwegian Air Force Academy in 2008-2009 and the 

University of Agder in 2009-2011. 

A working algorithm for touch displays already exists, but for educational development and 

professional reasons this task was chosen. 
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1 Introduction 

1.1 Background 

The term tracking is used to describe the observation of an object in motion. A basic tracker 

overview is presented on figure 1.1. For human beings the act of tracking is performed 

unconsciously by the brain, by first sorting out relevant information collected from our 

sensory organs, such as the eyes or ears. The brain analyzes this information and calculates 

valuable information, like where an object is heading or how fast it is travelling. Tracking 

used by electrical systems like a Navigation GPS or a smartphone uses the same principles as 

our brain. The tracking begins with gathering physical measurements from a sensor like an 

antenna or lens. This analogue data is made digital and then filtered, using signal processing 

to calculate the object parameters. The information finally ends up as our personal location on 

your Navigation GPS or smartphone. 

 

Figure 1.1: Simple tracking overview 

 

Creating a good tracker is a challenge in the same way as designing an aircraft, car or 

smartphone; there is no ultimate tracker. It is dependent on both software and hardware and is 

a compromise of specification requirements. Hardware is limited by physical size, battery and 

processing power. Software is limited by development time and processing time. 

Development time is dependent on level of complexity, like how many sensors there are, and 

the quality of that information. Processing time is critical in cases where the program works in 

real time and where we want minimum delay, and it is limited by the processing power of the 

device. In addition, the selection of software and hardware comes with a cost. The 

engineering process therefore starts with defining minimum criteria of the performance 

parameters and the development of software and hardware starts from this point. 

The tracking object in this thesis is a finger, and the sensor is a touch display known from 

tablets and smartphones. A higher tracking accuracy allows interaction with smaller objects 

on the screen, and also allows more sophisticated gestures for the application level to 

interpret. 
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1.2 Touch display technology 

A touch display is an interface which allows interaction with a computer, by either pushing 

the display surface at a specific position or by making a specific motion [1]. There are many 

different touch technologies, both related to software and hardware. Some technologies might 

require a special pen or stylus to be used, and some support only a single press at a time. More 

advanced touch displays support multiple inputs and advanced motions [2]. 

The first article describing a touch screen was presented in 1968, in the application of air 

traffic control [2]. In the 1990’s, this technology became portable enough to be used on small 

electronic devices [2], but it was not until the release of the iphone in 2007 that this became 

the new standard [3]. The most common touch technology used today on smartphones and 

tablets is projected capacitance with mutual capacitance[4]. It is preferred because it is both 

optically clear and durable, due to no moving parts. It is also compatible with multiple inputs 

and can understand a wide array of fingers and styluses [2]. 

The mutual capacitance screen is made of several layers, as illustrated by figure 1.2. At the 

bottom we find the LCD display, followed by clear isolating and protective layer. Above this 

we find the driving lines and sensing lines, forming a hash pattern that is usually diamond or 

square. The lines are made of a conductive and nearly invisible metal alloy called indium tin 

oxide (ITO) [2]. 

 

 

Figure 1.2: Different layers of a general mutual capacitance screen [5] 
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When a touch display is activated, the LCD display is powered on.  In addition, a small 

voltage is applied to the driving lines, which creates a capacitive effect between each junction 

of the driving lines and sensing lines. This results in a unison electro-static field across the 

entire touch display surface. Every junction is termed a node, and these nodes constitutes the 

sensors of the touch display. The number of nodes can vary based on the size of the screen, 

the space between the nodes and the node layout pattern. In this thesis, a side-by-side pattern 

was assumed, illustrated by figure 1.3.  

 

 

Figure 1.3: Touch screen node layout  

 

The capacitive intensity value of each junction is sampled, at a fixed sampling rate, and stored 

in data sets. If a finger connects physically with the screen, it will reduce the capacitive effect 

of the closest nodes, because the finger works as natural ground and leads current away from 

the sensing lines, as illustrated by figure 1.4. These data sets are analyzed to determine the 

location of the finger on the screen. 
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Figure 1.4: Capacitive screen behaviour [6] 

 

In general, the more a node is covered, the higher the intensity value is measured and stored in 

the data sets. However, these are passive components and the intensity measurements do not 

scale linearly, which makes estimation harder. Figure 1.5 shows the touch display of four 

different smart phones with similar hardware, where a medium pressure is applied by a finger 

to draw straight lines. The results are varying from mildly sloped to curvy, which underlines 

the importance of signal processing.  

 

 

Figure 1.5: Comparison of signal processing capabilities on mutual capacitance touch screens [7] 
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1.3 Problem description 

In this thesis, a tracking algorithm for a non-specific touch display is to be developed. This 

will be termed the tracking system from this point on. The tracking system will receive 

previously sampled and digitalized data sets from a mutual capacitance sensor, where the 

accuracy of tracking is limited by the node resolution and node value resolution from the 

sensor. Figure 1.6 shows a single data set, where the space between each node is 5 mm in both 

directions and the display has 22x37 nodes. The node value resolution in this data set goes 

from 0 to 1700. An index finger, or touch input, pressing on the display creates a small area 

with brighter colors, referred to as an object.  

 

 

Figure 1.6: Visual representation of index finger from the touch display sensor point of view 

 

A two-dimensional coordinate, or position, is to be produced for all present objects in each 

data set. The position of each object must be estimated with significantly greater accuracy 

than the current node resolution. This means that a high-resolution position must be estimated 

prior to tracking. This high-resolution position will be referred to as the subpixel position. The 

recipient of these coordinates is an application level, which is not in the scope of this thesis. 

The size of the node value resolution is important, but not discussed further in this thesis. 

The algorithm should work for any screen size, node resolution and sampling rate. It should 

work for up to two objects, and for both fingers and styluses. In addition, the positions should 

have low jitter in the presence of noise. Jitter is here used to describe the natural variation of 

the estimated position, caused by hardware and software imperfections. The computational 

cost of the tracker system is not prioritized in this thesis. 
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A literature survey performed in the TTT-4511: Digital Signal Processing specialization 

project[8], showed that there were a scarce number of articles and little information available 

on the topic of object tracking in a low-resolution environment. It has not been possible to 

compare this thesis to other projects or systems and, for this reason, this master thesis is a 

continuation of the previous project mentioned, based on independent work. For testing and 

evaluation, both simulated data sets and real data sets are used. The real data sets are sampled 

from a real touch display, delivered by Atmel[9]. 

The author assumes that the reader has basic knowledge of estimation theory and signal 

processing.  

A final note: While the title describes low-resolution on a grey-scale image, colors have been 

to better illustrate the intensity differences. 

 

Thesis outline 

Chapter 2. Signal processing model: Model concepts, definitions and terminology used in 

this thesis is presented. 

Chapter 3. The tracker system: The Tracker system is introduced. 

Chapter 4. The Scanner unit: The main algorithms of the scanner unit are presented, 

demonstrated and discussed. 

Chapter 5. The Tracker unit: The main algorithms of the tracker unit are presented, 

demonstrated and discussed. 

Chapter 6. Results: The complete tracker system is demonstrated and discussed. 

Chapter 7. Topics for further research: This chapter presents a natural way forward, and 

the Tracker system is viewed in a big picture. 
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2 Signal processing model  
In this chapter, the parameters and terminology used for detection and position estimation is 

explained. It will also investigate the challenge of defining the true position, how simulated 

objects are created and how simulated objects compare to real objects. 

 

2.1 Single touch: 1 object 

Each complete set of measurements for the nodes is defined to be 

 

 𝐹𝑖(𝑚, 𝑛) (2.1) 

 

where i is the sequence number of the data set. The nodes are an ordered pair (𝑚, 𝑛), where m 

represents the node sequence number in x-direction and n represents the sequence number in 

y-direction. They are defined as natural numbers and the distance between two nodes in either 

x-direction or y-direction is defined to be one. The nodes are placed on a display with two 

axes, x and y, illustrated by figure 2.1. 

 

𝑚, 𝑛 ∈ [1, ∞) 

 

 

Figure 2.1: Node layout 
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The object has any size and is modeled with any shape and size, with a center in origo: 

 

 𝑓(𝑥, 𝑦). (2.2) 

 

The true position, (𝑥0, 𝑦0), is modeled by equation (2.2).  

 

 𝑓(𝑥 − 𝑥0, 𝑦 − 𝑦0) (2.3) 

 

This position will consist of two parts, for both the x-dimension and y-dimension. The first 

part is the position of the closest node, denoted (𝑚, 𝑛). The second part of the position is the 

displacement, (δx, δy), defined by equation (2.4). This is the displacement of the true position 

relative to (𝑚, 𝑛), and it serves to increase the resolution of the nodes. 

 

 δx, δy ∈ ℝ (2.4) 

 

The true position is now described by equation (2.5) and (2.6). 

 

 𝑥0 = 𝑚 + 𝛿𝑥 (2.5) 

   

 𝑦0 = 𝑛 + 𝛿𝑦 (2.6) 

 

The estimated position of the object is consequently defined by equation (2.7) and (2.8). 

 

 𝑥̂0 = 𝑚̂ + δ̂𝑥 (2.7) 

   

 𝑦̂0 = 𝑛̂ + δ̂𝑦 (2.8) 

 

The estimation will lead to an inaccuracy, or error distance 𝜀, which is caused by algorithm 

inaccuracy and hardware imperfections. For simplicity this error distance is combined, shown 

by formula (2.9) and illustrated by figure 2.2. 

 

 𝜀 = √(𝑥0 − 𝑥̂0)2 + (𝑦0 − 𝑦̂0)2 (2.9) 
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Figure 2.2: True position (blue circle with cross) and estimated position (black circle with cross) of object 

 

Noise caused by hardware imperfections is part of model and, in this thesis, it is assumed that 

it is additive white Gaussian noise with general characteristics, given by equation (2.10). 

 

 𝑤 ~𝒩(𝜇𝑤, 𝜎𝑤
2 ) (2.10) 

 

The complete model for a single touch input will therefore be 

 

𝐹(𝑚, 𝑛) = 𝑓(𝑚 − 𝑥𝑜 , 𝑛 − 𝑦𝑜) + 𝑤(𝑚, 𝑛). 
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2.2 Multi touch: 2+ objects 

Multi touch displays are compatible with analyzing more than for each data set 𝐹𝑖(𝑚, 𝑛). For 

L number of touch inputs, the position for each object is: 

 

𝑥𝑙 = 𝑚𝑙 + δ𝑥𝑙 

𝑦𝑙 = 𝑛𝑙 + δ𝑦𝑙 . 

 

This leads to the final model for our touch display inputs: 

 

𝐹(𝑚, 𝑛) = ∑ 𝑓𝑙(𝑚 − 𝑥𝑙 , 𝑛 − 𝑦𝑙) + 𝑤(𝑚, 𝑛)

𝐿

𝑙=1

 

 

In this thesis, the number of objects to be detected is up to two, or 𝐿 = 2.  
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2.3 True position of object 

The true position of an object was denoted (𝑥𝑜 , 𝑦𝑜) in formula (2.5) and (2.6), but it is not 

obvious what this position is, even if an object has a symmetric form. Figure 2.2 illustrates 

this challenge using a non-symmetric one-dimensional figure, with the node intensity values 

from figure 1.6, from y-row 11. A fictional function, 𝑓(𝑥), is added, and the nodes 𝑚 = 8 to 

𝑚 = 12 are used for this function. 

 

Figure 2.3: The challenge of the true position 

 

Two definitions for the true position are used in this thesis. The first is the peak value, which 

views the discrete measured values as a continuous function 𝑓(𝑥), and is mathematically 

defined by formula (2.11). 

 

 𝑥𝑜 = 𝑎𝑟𝑔 max
𝑥

𝑓(𝑥) (2.11) 

 

The second definition is center of mass, defined mathematically by equation 2.12. 

 

 

𝑥𝑜 = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

 

 

(2.12) 

 

The practical consequence of these two definitions is shown on the next page, beginning with 

the peak value. 



12 

 

In the specialization project, peak estimation techniques were compared [8]. All techniques 

assumed that nine nodes, shaped in a quadratic area of 3x3, contained all information needed 

to get a good subpixel estimate of an object. This is illustrated by figure 2.4 (page 14), and 

objects of this approximate size will be referred to as small objects. The best peak estimation 

technique overall was Least Squares. This technique seeks to find the peak, by minimizing the 

intensity difference, or Least Squares Error (LSE), using equation (2.13). The complete 

derivation can be found in the appendix [B]. 

 

 

𝐿𝑆𝐸 = ∑ ∑ ( 𝐹(𝑚, 𝑛) − 𝐹̂(𝑚, 𝑛) )2

1

𝑛=−1

 

1

𝑚=−1

 

 

(2.13) 

 

The second method is center of mass. This method was chosen because it complements peak 

value estimation, by being applicable for any size. The estimated true position was found 

using equation (2.14) and (2.15), where the size of the rectangular area is:  

 

𝑀1 < 𝑚 < 𝑀2 

𝑁1 < 𝑛 < 𝑁2. 

 

 

 𝑥0 =
∑ 𝑚 ∑ 𝐹𝑖(𝑚, 𝑛)

𝑁2
𝑛=𝑁1

𝑀2
𝑚=𝑀1

∑ ∑ 𝐹𝑖(𝑚, 𝑛)
𝑁2
𝑛=𝑁1

𝑀2
𝑚=𝑀1

 

 

(2.14) 

  

 

𝑦̂0 =
∑ 𝑛 ∑ 𝐹𝑖(𝑚, 𝑛)

𝑀2
𝑛=𝑀1

𝑁2
𝑚=𝑁1

∑ ∑ 𝐹𝑖(𝑚, 𝑛)
𝑁2
𝑛=𝑁1

𝑀2
𝑚=𝑀1

 

 

(2.15) 
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2.4 Real and simulated objects 

Real objects are hard to simulate because they come in different sizes and shapes, and are 

often non-symmetrical. Simulating objects cannot replace real data sets, but allows for testing 

if different algorithms work as intended in a controlled environment. It also allows 

quantifying algorithm accuracy because the true position is known. For this reason the 

practical testing of the algorithms includes simulating objects on a simulated touch display 

model. A display was simulated initially by creating a 22x38 matrix, equal to the size of the 

data sets from Atmel. A Gaussian distributed object was then created on the display, with an 

intensity I, created by formula (2.16). 

 

 
𝑓(𝑥, 𝑦) = 𝐼𝑒

−
(𝑥−𝑥0)2+(𝑦−𝑦0)2

𝜎2  
(2.16) 

 

This leads to a true position located at (𝑥 − 𝑥0, 𝑦 − 𝑦0). Since the object is symmetric and 

unimodal the peak and center of mass are theoretically equal. Additive white Gaussian noise 

is added to each node after creating the object. The added noise was created and scaled with 

formula (2.17). 

 

 
𝑆𝑁𝑅 =

𝐼

𝜎𝑤
2

 

 

(2.17) 

 

I is the magnitude of the generated touch input, found in formula (2.12), and 𝜎𝑤
2  is the 

magnitude of the hardware noise, defined in formula (2.9). The chapter is ended with a 

comparison of a real data set and a simulated data set, shown by figure 2.4. The real data set 

contains a data set where two index fingers are pressing near the middle of the screen 

 

(𝑥1, 𝑦1) = (12,6) 

(𝑥2, 𝑦2) = (17,12) 

 

The simulated data set aims to imitate the real data set in a 30dB SNR environment. The 

simulated objects are arbitrarily placed at:  

 

(𝑥1, 𝑦1) = (14,10) 

(𝑥2, 𝑦2) = (19,16) 
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Values were chosen to resemble a real object, both in size and intensity. The parameters used 

for testing in this thesis, in formula 2.12 and 2.13, are: 

𝐼 = 900 

𝜎2 = 1.28 

𝜎𝑤
2 = 0.9. 

 

Figure 2.4: Comparison of real data set and simulated data set 

 

The size and shape of the objects in the data sets are similar, while the intensity is slightly 

lower for the simulated data set. This might affect the accuracy results shown later, both 

positively and negatively, but the limit was chosen based on the real data sets from the 

specialization project [8 ]such that SNR levels could be calculated. Both data sets have two 

nodes that stands out, with higher intensity value, shown with dark brown or red color. Both 

objects, for both data sets, are small objects, defined in chapter 2.3.  

We observe that the real data set and the simulated data set appear slightly different with 

regard to noise. The real data set has increased noise in the same columns as the present 

objects, while the simulated data has noise on the entire touch display. This because values 

are sampled column-wise for the real data sets, and noise is added to all nodes for the 

simulated display. 

Overall, the simulated conditions are considered satisfactory for testing and evaluation of the 

algorithms in the tracker system.  
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3 Tracker system overview 
A tracker system has to filter and analyze measurements from all nodes in each data set. Even 

if processing time is not prioritized, this should be performed in an effective manner, to 

ensure that the time consumed is minimized. 

A two-module system was chosen, illustrated by figure 3.1. This system consists of a scanner 

unit and a tracker unit, which performs different tasks and communicates with each other in 

the process.  

The scanner unit scans and analyzes each dataset, 𝐹𝑖(𝑚, 𝑛), individually and independently, 

and estimates the subpixel position, (𝑥̂0, 𝑦̂0), of the objects. The tracker unit does not receive 

the data set, but instead receives these estimated positions. The task of this unit is to validate 

the objects, label them, and filter the positions through a tracking filter. The result is the 

updated and confirmed position of each object, (𝑥̂̂0, 𝑦̂̂0), which is sent to the application level. 

The tracker unit can also send parameters to the scanner, which is described further in chapter 

4.4. 

 

 

Figure 3.1: 2-module tracker system 
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4 Scanner unit 
This unit has one objective; to analyze the incoming data sets and produce a two-dimensional 

coordinate, (𝑥̂0, 𝑦̂0), for two objects. Figure 4.1 illustrates a simplified model of the scanner 

unit. 

 

 

Figure 4.1: Scanner unit box 

 

The scanner unit has no memory. For each data set, 𝐹𝑖(𝑚, 𝑛), it performs a scan based on 

preset parameters, and three different situations can occur. Observe that the scanner reports 

the position (0,0) for non-existing objects. 

 

Situation 1: No objects found 

(𝑥̂1[𝑖], 𝑦̂1[𝑖]) = (0,0) 

(𝑥̂2[𝑖], 𝑦̂2[𝑖]) = (0,0) 

 

Situation 2: One object found:  

(𝑥̂1[𝑖], 𝑦̂1[𝑖]) = (𝑚̂1 + δ̂𝑥1
 , 𝑛̂1 + δ̂𝑦1

) 

(𝑥̂2[𝑖], 𝑦̂2[𝑖]) = (0,0) 

 

Situation 3: Two objects found 

(𝑥̂1[𝑖], 𝑦̂1[𝑖]) = (𝑚̂1 + 𝛿𝑥1
, 𝑛̂1 + 𝛿𝑦1

) 

(𝑥̂2[𝑖], 𝑦̂2[𝑖]) = (𝑚̂2 + 𝛿𝑥2
, 𝑛̂2 + 𝛿𝑦2

) 

 

A simple flow chart for the scanner unit is shown by figure 4.2.  
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Figure 4.2: Find 1-algorithm flow chart 

 

The rest of this chapter is dedicated to provide insight and understanding to the processes that 

are running in the scanner, shown on the flow chart above. 
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4.1 No objects  

When there is conductive pressure on the touch display, the measured node intensity values 

increase in the local area where it is pressed, as shown in chapter 1.2. The quality of the 

sensor hardware, combined with the physical environment where the touch display is used, 

creates a SNR, defined in chapter 2.4. Identifying the presence of a single object can be the 

simplest task of the touch display algorithm, if the SNR is sufficient. In this project it is 

assumed that it is not, and a test was developed to stop the process of fine-positioning if this 

happens. 

A minimum threshold, 𝐼𝑡ℎ𝑟𝑒𝑠ℎ, is introduced, to represent the limit for activating the fine 

positioning algorithm. We compare this to the highest intensity value measured in a data set, 

denoted 𝐹𝑚𝑎𝑥, defined by equation 4.1. 

 

 𝐹𝑚𝑎𝑥 = max
𝑚,𝑛

𝐹𝑖(𝑚, 𝑛) (4.1) 

 

If 𝐹𝑚𝑎𝑥 exceeds 𝐼𝑡ℎ𝑟𝑒𝑠ℎ the algorithm will continue to calculate a subpixel position. If the limit 

is not exceeded, the data set 𝐹𝑖(𝑚, 𝑛) is discarded, and 𝐹𝑖+1(𝑚, 𝑛) is loaded. The process is 

explained using the pseudo-code below, and this is also shown on the flow chart on figure 4.2. 

 

Pseudo code: Activate subpixel estimation 

 

𝑖𝑓 𝐹𝑚𝑎𝑥 > 𝐼𝑡ℎ𝑟𝑒𝑠ℎ 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑠𝑢𝑏𝑝𝑖𝑥𝑒𝑙_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛; 

𝑒𝑙𝑠𝑒 

(𝑥̂1, 𝑦̂1) = (0,0); 

(𝑥̂2, 𝑦̂2) = (0,0); 

𝑒𝑛𝑑 

 

It is assumed that even if no object is present, the intensity of the noise might exceed 𝐼𝑡ℎ𝑟𝑒𝑠ℎ, 

and this results in the subpixel estimation of false objects. The challenge of identifying false 

targets is solved by the tracker unit, presented in chapter 5. For now, it is assumed that all 

identified objects are real. 
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4.2 Find one object 

The process of finding one object is demonstrated in this section. Assuming 𝐹𝑚𝑎𝑥 > 𝐼𝑡ℎ𝑟𝑒𝑠ℎ, 

the scanner will continue to find the estimated position of object 1, (𝑥̂1, 𝑦̂1). In the 

specialization project [8] this was done in a two-step process: Coarse positioning and fine 

positioning. Situation 1 is shown on figure 4.3 and it illustrates a real data set, where an index 

finger touches bottom half of the screen. 

 

Figure 4.3: Index finger 

 

The coarse positioning is performed initially by finding the most activated node, which is the 

same node that has the registered 𝐹𝑚𝑎𝑥. The result produced is (𝑚̂1, 𝑛̂1) = (9 , 24), and is 

illustrated by figure 4.4. 
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Figure 4.4: Coarse positioning completed 

 

The fine positioning-algorithm estimates the subpixel position, using the Least Squares 

method shown in chapter 2.3. The final result for Situation 1 is shown by figure 4.5, with the 

positions calculated below. 

 

𝑥̂1 = 𝑚̂1 + δ̂𝑥1
= 9 + (−0.17) = 8.83 

𝑦̂1 = 𝑛̂1 + δ̂𝑦1
= 24 + 0.40 =  24.40 

 

 

Figure 4.5: Fine positioning completed 
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The specialization project [8] was limited in scope by only dealing with small objects. The 

term large objects is introduced, defined as all objects larger than the small object. A large 

object from a real data set does not necessarily have 𝐹𝑚𝑎𝑥, at or around its center, and the next 

section will show how the small object approach is insufficient. 

In general, the harder a display is pressed, the larger an area will be covered by the finger and 

the more nodes get increased intensity values. Figure 4.6 shows a real data set with a 

stationary thumb, which results in a large object. The node values are the average 

measurements of 100 data sets. 

 

Figur 4.6: Average node values caused by a thumb 

 

A visual inspection might suggest that the nodes covered by the thumb are: 

 

   9 < 𝑚̂1 < 16 

14 < 𝑛̂1 < 19. 

 

In the data set sequence this was taken from, all red and orange pixels marked with a black 

dot on figure 4.6 contain 𝐹𝑚𝑎𝑥 in different data sets. It is desirable to be able to interpret large 

objects, and consequently introduce two additional algorithms: A data association algorithm 

and a fine positioning algorithm for large objects. 
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Region of interest 

The task of the data association algorithm is to register all nodes that contain information 

about a specific object. These nodes constitute an area called the region of interest (RoI). 

Since there is no ideal way of separating nodes that contain object information from the nodes 

that do not contain object information a design choice has to be made; potentially missing 

valuable nodes, or potentially assigning nodes with no valuable information.  

The RoI algorithm is designed such that the latter happens more often than the former. It 

assumes that the entire object is mapped by drawing straight and diagonal lines from the node 

with 𝐹𝑚𝑎𝑥. It sets the object lower area-limit to be 3x3, and finds the upper limit by expanding 

outwards in all directions, as illustrated on figure 4.7. The RoI algorithm compares the next 

node outwards to 𝐼𝑡ℎ𝑟𝑒𝑠ℎ from chapter 4.1. 

 

 

Figure 4.7: Touch input size estimation 

 

When the algorithm is finished, it will report quadratic or rectangular area, with a minimum 

and maximum x- and y-node, which is the region of interest: 

 

(𝑚̂𝑚𝑖𝑛, 𝑚̂𝑚𝑎𝑥, 𝑛̂𝑚𝑖𝑛, 𝑛̂𝑚𝑎𝑥) 

 

However, the algorithm is not without disadvantages. It is assumed that all nodes above a 

certain threshold contains valuable information about the object in question. For low SNR 

displays this will lead to poor performance because the algorithm includes too many nodes. 

One solution is limiting the maximum size of the object, or create a noise-detector which 

adaptively adjusts the 𝐼𝑡ℎ𝑟𝑒𝑠ℎ, or a combination. Due to the limited time span of this project, 

this was not prioritized or followed further. 
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Additional fine-positioning algorithm 

The last part of the find 1 object algorithm can now be performed. The center of mass 

technique, shown in chapter 2.4, is used as the second fine positioning algorithm. If the RoI 

algorithm reports a large object, a center of mass calculation is performed to estimate the 

center. If the RoI algorithm reports a small object, the least squares peak estimation is 

performed, as shown before.  

Figure 4.8 illustrates a single data set from the data set sequence shown on figure 4.6, to show 

the result. To the left is the unfiltered and unaltered data set, while the right data set shows the 

parameters extracted by the scanner unit. The RoI nodes are copied and the node with 𝐹𝑚𝑎𝑥, 

(𝑚̂, 𝑛̂) = (15 , 15) is marked with a black square. The estimated position, based on center of 

mass, is shown by the circle with cross. All nodes marked with a black dot is found by the RoI 

algorithm. 

 

Figure 4.8: Algorithm demonstrated on a large object 

 

Even though thumbs are commonly used on touch displays, it is assumed that they are not 

used in applications where accuracy is critical. For this reason, the rest of the thesis revolves 

around achieving maximum accuracy using small objects. 
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4.3 Find two objects 

Finding two objects requires a slightly different approach than finding one object. This 

requires separation of between object one, noise and a potential second object. This is 

illustrated by using a new data set from a real display, shown on figure 4.9. 

 

 

Figure 4.9: Successful separation and position estimation of objects 

 

For many cases the second object can be found by using the algorithms already introduced. 

The process of finding two objects starts in the identical way as finding one object. When the 

RoI algorithm is completed, all these nodes are set to zero and a new threshold search is 

executed. If 𝐼𝑡ℎ𝑟𝑒𝑠ℎ is reached again, another execution of the coarse positioning- and RoI 

algorithm is performed. Finally, both inputs will run the fine-positioning algorithm, based on 

whether it is a large object or small object, as described in chapter 4.2. The result from the 

scanner for the data set in this section is shown by figure 4.10. 
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Figure 4.10: Find two objects result(fiks colorbar) 

 

The coarse positioning and fine positioning result for this data set is: 

 

(𝑥̂1, 𝑦̂1) = (8.21 , 6.02) 

 

(𝑥̂2, 𝑦̂2) = (15.266 , 8.731). 

 

The flow chart for the Find 2 algorithm is presented on figure 4.11. 
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Figure 4.11: Find 2-algorithm flow chart 
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4.4 Find two close objects 

If the objects do not come too close to each other, and SNR is sufficient, successfully 

separating two objects is simple. However, if the distance is reduced enough, as illustrated by 

figure 4.12, the RoI algorithm is unable to separate the objects. When zooming in and out of a 

touch display, a common technique is to pinch the screen, and must be expected that this 

happens frequently. The solution to this problem is presented in this chapter. 

 

 

Figure 4.12: Two close objects 

 

On figure 4.12, two objects have approached each other, and are assumed to be somewhere 

inside their respective orange pixel, such that (𝑚̂1, 𝑛̂1) = (13,19) and (𝑚̂2, 𝑛̂2) = (14,20). 

Two unfavorable situations may arise in this scenario. The first is that nodes are not assigned 

optimally to the objects. The result is that one object will lose important information, while 

the other over-estimates the subpixel position. This results in degraded accuracy for both 

objects and is shown by figure 4.13a.  

The second situation that might occur is that the RoI-algorithm assigns all nodes above 𝐼𝑡ℎ𝑟𝑒𝑠ℎ 

to a single object. The objects “melt together” and are seen as one, and this result is shown by 

figure 4.13b. Both results are critical failures for a multi touch algorithm. 
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Figure 4.13: Below minimum distance: Failed situations 

 

To quantify this inaccuracy a simulation is performed, as illustrated by figure 4.14. Here, two 

small objects are simulated, where object A is stationary and object B is moving object. The 

moving object passes the stationary object twice. 

 

 

Figur 4.14: Simulated moving object and stationary object(skriv 1 og 2 istedenfor A/B) 
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The error distance ε, defined in formula (2.8), is measured as a function of distance. The 

intensity 𝐼 is equal for both objects, and the simulation is performed in a 30dB SNR 

environment. 

Object 1 is stationary at (𝑥1, 𝑦1) = (10 , 17).  

Object 2 is moving, starting from (𝑥2[1], 𝑦2[1]) = (11 , 7). 

Object 2 moves upwards and then downwards. It moves 0.1 nodes each data set,  and turns 

after 200 simulations, at (𝑥2[200], 𝑦2[200]) = (11 , 27). 

The closest distance is found at the 100th and 300th simulation. In this position, we have 

(𝑥2[100], 𝑦2[100]) = (𝑥2[300], 𝑦2[300]) = (11 , 17). Object 1 and object 2 are now both on 

the same y-position, and the distance between the objects is 𝑑 = 1. 

A Monte Carl Simulation [10] with 1000 simulations is performed. The result is illustrated by 

figure 4.15, and ε is averaged for each position of the simulations. 

 

 

Figur 4.15: Accuracy of simulated objects 
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At around the 55th step of the simulation, the error distance 𝜀 increases for both objects. The 

stationary object A is now assigned nodes belonging to object B. Object B eventually 

disappears and is set by default to (𝑥̂2, 𝑦̂2) = (0,0). At the 55th step of the simulation, the 

distance between the objects is  

 

 𝑑 ≈ √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ≈ √4.52 + 12 ≈ 4.6. (4.2) 

 

This means that the scanner system, is unable to handle two inputs with the center closer than 

𝑑 ≈ 4.6. This problem enforces the development of a new algorithm to separate close objects, 

which is presented next.  
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Close search algorithm 

To be able to separate one large object from two close objects, the Close search algorithm is 

introduced. Note that this algorithm is executed by the scanner unit, but requested by the 

tracker unit, described in chapter 5.  

The close search algorithm is activated if the distance 𝑑 is reduced enough. This limit is set by 

the minimum distance, 𝑑𝑚𝑖𝑛. This is the distance between the estimated center of the objects 

where the RoI algorithm breaks down, by either assigning nodes incorrectly or falsely 

reporting one single object instead of two. Based on the result from equation (4.2), this 

distance should be set to above 4.6.  𝑑𝑚𝑖𝑛 could also be a function of RoI, where one 

compares the closest node and not just the estimated center. This would require a more 

sophisticated algorithm and was not prioritized in this project. 

Some assumptions was made in order to create a solution. The first is that the objects will 

never truly merge, shown by equation (4.3). 

 

 (𝑥1, 𝑦1) ≠ (𝑥2, 𝑦2) (4.3) 

 

However, they can both share the same closest node, shown by equation (4.4) and (4.5). 

 

 (𝑚1, 𝑛1) = (𝑚2, 𝑛2) (4.4) 

   

 (𝑚̂1, 𝑛̂1) = (𝑚̂2, 𝑛̂2) (4.5) 

 

 

The second assumption is that the objects are separable by the scanner, using the Find two 

algorithm, before they get closer to each other. In other words, we assume the RoI algorithm 

will successfully assign the nodes for each object, before the RoI algorithm fails. The third 

assumption is that the movement of two close objects is slow, such that the previously 

estimated position is useful for coarse positioning. Finally, it is assumed that objects below 

minimum distance are small objects. 

Based on these assumptions a technical solution is developed. This involves changes to both 

the coarse-positioning algorithm and RoI algorithm. Instead of finding the node with 𝐹𝑚𝑎𝑥, 

the coarse positioning is replaced with receiving (𝑚̂1, 𝑛̂1) and (𝑚̂2, 𝑛̂2) from the tracker unit, 

based on the previous estimated position. The pseudo code is presented on the next page. 
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Pre-set main node pseudo code: 

𝑓𝑜𝑟 𝐹𝑖(𝑚, 𝑛) 

𝑖𝑓 𝑑 < 𝑑𝑚𝑖𝑛 

𝑚̂1[𝑖] = 𝑟𝑜𝑢𝑛𝑑(𝑥̂1[𝑖 − 1]) 

𝑛̂1[𝑖] = 𝑟𝑜𝑢𝑛𝑑(𝑦̂1[𝑖 − 1]) 

𝑚̂2[𝑖] = 𝑟𝑜𝑢𝑛𝑑(𝑥̂2[𝑖 − 1]) 

𝑛̂2[𝑖] = 𝑟𝑜𝑢𝑛𝑑(𝑦̂2[𝑖 − 1]) 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

 

This will occasionally result in an equal closest node for object 1 and object 2, as described by 

equation (4.5). A solution for separating them in this situation was not found in this project. 

Instead, this was solved by minimizing the likelihood of this scenario happening. The process 

starts by identifying the mutual nodes. Figure 4.16 shows the same data set as figure 4.12, 

where area of each of the two small objects are highlighted with a black frame respectively. 

Some of the nodes are mutual, highlighted by the hatched area. 

 

 

Figure 4.16: Mutual nodes on two objects 
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The two small objects are copied into their own 3x3 matrix, where the intensity value of the 

mutual nodes, except main node, is halved. Figure 4.17 illustrates the node values before and 

after adjustment, and this is also described by the pseudo code below. 

 

Adjust node values pseudo code: 

𝑖𝑓 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 1 (𝑒𝑥𝑐𝑒𝑝𝑡 𝑚𝑎𝑖𝑛 𝑛𝑜𝑑𝑒) = 𝑜𝑏𝑗𝑒𝑐𝑡 2 𝑛𝑜𝑑𝑒 

 𝑛𝑜𝑑𝑒 𝑖𝑠 ℎ𝑎𝑙𝑓𝑒𝑑 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 

𝑒𝑛𝑑 

 

𝑖𝑓 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 2 (𝑒𝑥𝑐𝑒𝑝𝑡 𝑚𝑎𝑖𝑛 𝑛𝑜𝑑𝑒) = 𝑜𝑏𝑗𝑒𝑐𝑡 1 𝑛𝑜𝑑𝑒 

 𝑛𝑜𝑑𝑒 𝑖𝑠 ℎ𝑎𝑙𝑓𝑒𝑑 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 

𝑒𝑛𝑑 

 

 

Figure 4.17: Object 1 and object 2 
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This algorithm removed occurrence of both objects getting same main node in all the real data 

sets. The scanner unit eventually performs the fine positioning for both objects, as small 

objects. Figure 4.18 demonstrates the new result on the previous data set. Both objects are 

successfully separated and identified with increased accuracy. Object 1, located at (𝑚̂1, 𝑛̂1) =

(13,19), is arguably estimated too far down. This is likely a result of the blunt technique of 

halving the nodes. 

 

 

Figure 4.18: Successful separation of two close objects 

 

A new simulation is performed to quantify the improvement of the close search-algorithm. 

Another Monte Carlo Simulation with the equal parameters is executed, and figure 4.19 

illustrates the new results. 
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Figure 4.18: Accuracy of close search(y2 på begge x-akser, fiks [e]) 

 

Both objects are now successfully identified, with subpixel accuracy for the whole simulation, 

by controlling the distance between objects and looking at the previously estimated position. 

The error distance 𝜀 still increases as the objects get closer, but this error is significantly 

reduced. The increased inaccuracy is, like in the real data set, likely caused by manipulating 

the node values. Halving the node values does not fairly distribute the values between the 

objects and this reduces the quality of the information in the fine-positioning estimation. A 

sophisticated algorithm that more fairly distributes the values might improve the accuracy. 

The chapter is ended with the flow chart for the close search-algorithm (figure 4.19).  
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Figure: Find two close objects-algorithm flow chart 
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5 Tracker unit 
The data sets have been filtered into the positions of two objects, by the scanner unit. These 

positions are now sent to the tracker unit, not to be confused with the Tracker system, which 

is the complete system.  

Before the object positions are sent to the application level, they must be viewed collectively 

instead of individually. Figure 5.1 shows a simplified model of the tracker unit. 

 

 

Figure 5.1: Tracker unit flow chart(fiks tekst) 

 

The tracker unit of this project is the final module before the application level and it has three 

main objectives: The first is a two-step process called Identification, consisting of labelling 

and validation. Here, the current reported positions, (𝑥̂1[𝑖], 𝑦̂1[𝑖]) and (𝑥̂2[𝑖], 𝑦̂2[𝑖]), are 

connected to the previous positions, (𝑥̂1[𝑖 − 1], 𝑦̂1[𝑖 − 1]) and (𝑥̂2[𝑖 − 1], 𝑦̂2[𝑖 − 1]). In 

addition they are verified that they are not false objects caused by noise. The tracker unit 

memory has size one, meaning it only remembers the previous positions. 

The second task is sending the validated positions through a tracking filter, to achieve 

increased accuracy and smoothen the trajectory through the tracking filter.  

Lastly, the distance between the objects are calculated and, if 𝑑 < 𝑑𝑚𝑖𝑛, the tracker unit 

requests the scanner unit is to execute the close search-algorithm.  
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5.1 Identification 

The tracker unit begins by identifying the inputs in a two-step process called Identification. 

Figure 5.2 shows the identification process, which consists of labelling and validation. Both 

of these processes will be presented in this chapter, starting with labelling.  

 

 

Figure 5.2: Identification process 

 

This is where the tracker system has its memory, which is of length one, meaning that the 

current positions are only compared to the previous positions. A consequence of this is that if 

a sequence of data sets contains a corrupted data set, the identification will not be able to 

connect observations from previous observations. This is a feature that could be added later, 

or handled by the application level. 
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Labelling 

The tracker unit receives two positions for each data set, but it does not automatically 

recognize which new position belongs to previously used positions. This happens because the 

scanner unit always labels the object with 𝐹𝑚𝑎𝑥 as object 1, and since object 1 and object 2 

vary in intensity the objects numbers might switch. For this reason an effective way to keep 

track of the identity of the reported objects is needed. This is shown using the fictional 

situation on figure 5.3. 

 

 

Figure 5.3: Current positions (green) and previous positions (blue) recieved from scanner 

 

The labelling process starts by calculating the distance between the current estimated 

positions and the previous positions. Four distances are produced, illustrated by figure 5.4, 

using the formula below. 

 

Formula: Label objects, part 1 

 

𝑎 = √(𝑥̂1[𝑖] − 𝑥̂1[𝑖 − 1])2 +  (𝑦̂1[𝑖] − 𝑦̂1[𝑖 − 1])2 

𝑏 = √(𝑥̂2[𝑖] − 𝑥̂2[𝑖 − 1])2 +  (𝑦̂2[𝑖] − 𝑦̂2[𝑖 − 1])2  

𝑐 = √(𝑥̂1[𝑖] − 𝑥̂1[𝑖 − 1])2 + (𝑦̂2[𝑖] − 𝑦̂2[𝑖 − 1])2 

𝑑 = √(𝑥̂2[𝑖] − 𝑥̂2[𝑖 − 1])2 +  (𝑦̂1[𝑖] − 𝑦̂1[𝑖 − 1])2 

 

The distances that a and b represent, assumes that the previously reported object 1 and object 

2 is the same as the current reported object 1 and object 2. The distance c and d, assumes that 

the previously reported object 1 is now reported as object 2, and vice versa. 
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Figure 5.4: Labelling distances calculated 

 

Next, distance a and b are added together, and distance c and d are added together. The total 

length of these combined are compared, and the current objects are labelled according to the 

formula below. 

 

Formula: Label objects, part 2 

 

𝑥̂1[𝑖] = {
𝑥̂1[𝑖] 𝑓𝑜𝑟 𝑎 + 𝑏 < 𝑐 + 𝑑

𝑥̂2[𝑖] 𝑓𝑜𝑟 𝑎 + 𝑏 > 𝑐 + 𝑑
 

𝑦̂1[𝑖] = {
𝑦̂1[𝑖] 𝑓𝑜𝑟 𝑎 + 𝑏 < 𝑐 + 𝑑

𝑦̂2[𝑖] 𝑓𝑜𝑟 𝑎 + 𝑏 > 𝑐 + 𝑑
 

𝑥̂2[𝑖] = {
𝑥̂2[𝑖] 𝑓𝑜𝑟 𝑎 + 𝑏 < 𝑐 + 𝑑

𝑥̂1[𝑖] 𝑓𝑜𝑟 𝑎 + 𝑏 > 𝑐 + 𝑑
 

𝑦̂2[𝑖] = {
𝑦̂2[𝑖] 𝑓𝑜𝑟 𝑎 + 𝑏 < 𝑐 + 𝑑

𝑦̂1[𝑖] 𝑓𝑜𝑟 𝑎 + 𝑏 > 𝑐 + 𝑑
 

 

Figure 5.4 shows that the initial labelling was correct, where clearly (𝑎 + 𝑏 < 𝑐 + 𝑑). The 

labelling is now complete, and the next process is validation. 
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Validation 

Chapter 4.1 showed that false objects can occur, depending on the size of the SNR. For this 

reason the reported objects must be validated to be true objects, and this is also done by 

comparing the positions to the previous reported position.  

The false objects are assumed to be caused by random noise, evenly distributed on the entire 

touch display. By defining an area around each previously estimated positions, and comparing 

this to the current estimated positions, false objects  can be separated from true objects. The 

validation distance, 𝑑𝑣𝑎𝑙, is introduced. This distance defines a circle around each object 

reported position, illustrated on figure 5.4. The estimated position is marked with x, and the 

grey area defines the area. 

 

Figure 5.4: Validation distance 

 

If the current estimated positions are assigned to a previous observation outside of this circle, 

it is dropped assumed to be a false objects. The length of 𝑑𝑣𝑎𝑙 will depend on the sampling 

rate of the screen and assumed speed of object. For fast movement on low sampling rate 𝑑𝑣𝑎𝑙 

must be larger than for faster sampling rates.  
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Depending on the number of consecutive observations, the status of an object has three stages: 

Potential, tentative and confirmed. The first time an object of a non-zero position is reported, 

it is set as potential. If it is reported a second consecutive time within the circle area it is set as 

tentative. Finally, the object is confirmed if it is observed three consecutive times. If it is not 

reported three consecutive times, the process is reset. If a data set is corrupted, the process 

also restarts. This is described below with pseudo-code and in table 5.1. The counter used for 

this purpose is denoted H. 

 

Target validation for object 1 pseudo code: 

𝑖𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑛𝑑 𝑐𝑢𝑟𝑟𝑟𝑒𝑛𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 < 𝑑𝑣𝑎𝑙 

𝐻𝑜𝑏𝑗𝑒𝑐𝑡 1 = 𝐻𝑜𝑏𝑗𝑒𝑐𝑡 1 + 1; 

𝑒𝑙𝑠𝑒 

𝑜𝑏𝑗𝑒𝑐𝑡_1 = 𝑓𝑎𝑙𝑠𝑒; 

𝐻𝑜𝑏𝑗𝑒𝑐𝑡 1 =  0; 

𝑒𝑛𝑑 

 

𝑖𝑓 𝐻𝑜𝑏𝑗𝑒𝑐𝑡 1 == 3 

𝑜𝑏𝑗𝑒𝑐𝑡_1 = 𝑡𝑟𝑢𝑒; 

𝑒𝑛𝑑 

 

 

Table 5.1: Object validation 
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5.3 Tracking filter 

The tracking filter is the last chance to adjust the validated positions (figure 5.4). The 

positions must be sent to the application level in real time, but it is possible to implement a 

tracking filter and still be within the real-time requirement regarding output delay. This is 

done to further increase the accuracy, or at least provide a smoother trajectory. 

 

 

Figure 5.5: Tracking filter 

 

The chosen filter is for this purpose is the Kalman filter, which is named after Rudolf E. 

Kálmán and developed in the 1950’s. It is a recurseive state estimator that finds the 

statistically optimal estimate of noisy Gaussian input data if the noise model is exact[10]. It 

uses a combination of both current measurements, (𝑥̂0, 𝑦̂0), and a prediction, (𝑥̅0, 𝑦̅0), to turn 

the position into a better estimate, (𝑥̂̂0, 𝑦̂̂0), shown by figure 5.4. 

 

 

Figure 5.6: Principal behavior of the Kalman filter, with prediction (green), estimated position (yellow) and the 

resulting updated position(white) 
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The data stream has a fixed sampling rate, which allows the Standard Kalman Filter [10] to be 

used. A flow chart of this filter is presented below on figure 5.5. The reader may observe that 

the only input is the estimated x-coordinate, and that the only output is a filtered x-coordinate.  

 

 

Figure 5.7: Kalman filter model 

 

The filter is described for the x-component of the object 1 position. An equal filter is applied 

for the y-component of object 1, as well as the x- and y-component of object 2. The result is 

still the same as for a filter using two components. 

The Kalman filter is based on estimating a state, denoted 𝒔[𝑛|𝑛]. This is a two-dimensional 

vector that contains the object parameters. We assume acceleration is close to zero, and model 

the state using only the position and velocity. The state is defined as: 

 

𝒔[𝑛|𝑛] = [
𝑥[𝑛]
𝑣𝑥[𝑛]

]. 

 

Where 𝑥[𝑛] is the current updated position that we want to estimate, and 𝑣𝑥[𝑛] is the velocity. 

When this filter is applied to the tracker system x-component, the following state estimate is 

produced: 

 

𝒔̂[𝑛|𝑛] = [
𝑥̂̂[𝑛]
𝑣𝑥[𝑛]

]. 
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The state vector, and the rest of the Kalman filter, evolves in time according to the following 

formulas [10]: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛: 𝒔̂[𝑛|𝑛 − 1] = 𝑨𝒔̂[𝑛 − 1|𝑛 − 1] 

Minimum Prediction MSE matrix: 𝑴[𝑛|𝑛 − 1] = 𝑨𝑴[𝑛 − 1|𝑛 − 1]𝑨𝑇 + 𝑸 

𝐾𝑎𝑙𝑚𝑎𝑛 𝐺𝑎𝑖𝑛: 𝑲[𝑛] = 𝑴[𝑛|𝑛 − 1]𝑯𝑇(𝑯𝑴[𝑛|𝑛 − 1]𝑯𝑇 + 𝐶)−1 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 𝒔̂[𝑛|𝑛] = 𝒔̂[𝑛|𝑛 − 1] + 𝑲[𝑛](𝑥̂[𝑛] − 𝑯𝒔̂[𝑛|𝑛 − 1]) 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑀𝑆𝐸 𝑚𝑎𝑡𝑟𝑖𝑥: 𝑴[𝑛|𝑛] = (𝑰 − 𝑲[𝑛]𝑯)𝑴[𝑛|𝑛 − 1]  

Next sample/repeat… 

 

It starts with the Prediction of the estimated next state, given by 

 

𝒔̂[𝑛|𝑛 − 1] = 𝑨𝒔̂[𝑛 − 1|𝑛 − 1], 

 

where A is a transition matrix, and 𝒔̂[𝑛|𝑛 − 1] estimates (predicts) the next position 𝑥̅[𝑛], 

using the previous estimated position and velocity. 

 

𝑨 = [
1 ∆𝑇

0 1
] 

 

𝒔̂[𝑛|𝑛 − 1] = [
𝑥̅[𝑛]

𝑣̂𝑥[𝑛 − 1]
] = [

𝑥̂̂[𝑛 − 1] + ∆𝑇𝑣̂𝑥[𝑛 − 1]

𝑣̂𝑥[𝑛 − 1]
] 

 

The matrix calculated next is the error covariance matrix of the state estimate M[𝑛|𝑛 − 1], 
named the Minimum Prediction MSE, defined: 

 

𝑴[𝑛|𝑛 − 1] = 𝐸[(𝒔[𝑛] − 𝒔̂[𝑛|𝑛 − 1])(𝒔[𝑛] − 𝒔̂[𝑛|𝑛 − 1])𝑇] 
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It is calculated by the formula: 

 

 𝑴[𝑛|𝑛 − 1] = 𝑨𝑴[𝑛 − 1|𝑛 − 1]𝑨𝑇 + 𝑸 (5.1) 

 

= [
1 ∆𝑇

0 1
] [

𝑚11 𝑚12

𝑚21 𝑚22
] [

1 0

∆𝑇 1
] + [

𝜎
𝑥̂̂
2 0

0 𝜎𝑣̂𝑥

2 ]. 

 

Q represents the process noise of both the predicted speed and position. It can be constant or 

adaptive, but in this case it is fixed.  

Next is the Kalman Gain, which is a factor that determines whether the filter relies more on 

the estimate, 𝑥̂[𝑛], or the prediction, 𝑥̅[𝑛]. It is defined: 

 

𝑲[𝑛] = [
𝐾𝑥[𝑛]

𝐾𝑣𝑥
[𝑛]

]. 

 

High values of K equals trusting the estimation more than the prediction, where: 

 

0 ≤ 𝐾𝑥[𝑛] ≤ 1 

0 ≤ 𝐾𝑣𝑥
[𝑛] ≤ 1. 

 

It is calculated by the formula: 

 

 𝑲[𝑛] = 𝑴[𝑛|𝑛 − 1]𝑯𝑇(𝑯𝑴[𝑛|𝑛 − 1]𝑯𝑇 + 𝐶[𝑛])−1. 
 

(5.2) 

 

Where H is an observation matrix and the scalar C is the estimation variance, or the quality of 

the estimation received from the Scanner unit. This is based on both hardware and algorithm 

inaccuracy and is connected to the error distance ε. 

 

𝑯 = [1 0] 

 

𝐶 = 𝜎𝑥𝑒𝑠𝑡
2  
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Finally, the current state is calculated in the Correction, where we find current updated 

estimate, 𝑥̂̂[𝑛], and the velocity 𝑣𝑥[𝑛]:  

  

𝒔̂[𝑛|𝑛] = 𝒔̂[𝑛|𝑛 − 1] + 𝑲[𝑛](𝑥̂[𝑛] − 𝑯𝒔̂[𝑛|𝑛 − 1]) 

 

𝒔̂[𝑛|𝑛] = [
𝑥̂̂[𝑛]
𝑣𝑥[𝑛]

]. 

 

The current state is vital for the estimation of the next state. The filter ends the loop by 

calculating a second covariance matrix 𝑴[𝑛|𝑛].the minimum MSE matrix, defined:  

 

𝑴[𝑛|𝑛] = 𝐸[(𝒔[𝑛] − 𝒔̂[𝑛|𝑛])(𝒔[𝑛] − 𝒔̂[𝑛|𝑛])𝑇], 

 

using the formula: 

  

𝑴[𝑛|𝑛] = (𝑰 − 𝑲[𝑛]𝑯)𝑴[𝑛|𝑛 − 1]. 

 

Initial values 

Before the filter is activated it needs some initial values. The initial state vector is preset with 

zero velocity and the first validated estimate, as this is the most accurate position available: 

 

𝒔̂[0|0] = [𝑥̂[1]
0

]. 

 

The minimum MSE matrix is set to zero, such that the first updated position mainly leans 

towards the estimate, 𝑥̂[1]. 

 

𝑴[0|0] = [
0 0
0 0

] 

  



50 

 

 

 

 

 

 

 

 

 

 

 

 

 

[This page is intentionally left blank]  



51 

 

6 Results 
The previous chapter have shown how the main algorithms of the scanner unit and tracker 

unit works, and the results it has provided. In this chapter, the result of the complete Tracker 

system is presented. The results contains performance graphs of the labelled and validated 

positions of one or two objects. All of the results compare the estimate positions, (𝑥̂0, 𝑦̂0), 

from the scanner unit, with the filtered estimate, (𝑥̂̂0, 𝑦̂̂0), from the tracker unit. Four situations 

will be presented to highlight the performance, where three are simulations. The four 

situations are: 

 

1. Real data set: Tracking one object from a real data set 

2. Simulation: Tracking a stationary small object 

3. Simulation: Tracking a small object that moves along the y-axis 

4. Simulation: Tracking two close objects 

 

Prior to testing, the Kalman filter was fine tuned to provide the best results on the real data 

sets. The parameters were then fixed, to better highlight the strengths and weaknesses of the 

Tracker system. 

A note on accuracy may be added: While accuracy is imperative, it is important to remember 

that touch displays are operated by humans. For some applications, like typing, accuracy 

might be more important than smoothness. For other applications, like drawing, it could be 

more important that the motion is smooth. The human perception is not the scope of this 

project, but it is important to keep in mind. 
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6.1 Real data set: Subpixel resolution 

The first situation shows the resulted tracking of a real object, using the tracking values of the 

x-component, shown by figure 6.1. While not quantifiable, the intention of this result is to 

show how much the resolution of the sensor is improved. The display used has a 50Hz data 

set sampling rate, which makes this simulation approximately 1.7 seconds.  

 

 

Figure 6.1: Tracker system accuracy of real object, x-component 

 

The reader may observe the new resolution of the display is significantly greater than one 

pixel. Also, the Kalman filter provides a lot smoother trajectory for the object, but note that 

this does not equal to more accurate. One could argue that the tracking filter is more 

inaccurate, especially between sample 240-260 and 380-390. The filter parameters are 

adjustable for quicker reaction, but this will lead to a less smooth trajectory.  

The application level can choose to smoothen the path further, but this might cause a time 

delay. For displays with high SNR it is hard to evaluate the effect, but the computational cost 

of the Kalman filter might not scale to the improvement of accuracy, when compared to the 

unfiltered estimation. 
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6.2 Simulation: Single stationary object 

The first simulation is a single stationary small object. Six different positions was simulated, 

shown by figure 6.2.  

 

 

Figure 6.2: Test positions(red X’s) and nodes (circles) 

 

The six positions are located at: 

𝐹1(𝑥1, 𝑦1) = (5.00 , 5.00) 

𝐹2(𝑥2, 𝑦2) = (5.00 , 5.25) 

𝐹3(𝑥3, 𝑦3) = (5.00 , 5.50) 

𝐹4(𝑥4, 𝑦4) = (5.25 , 5.25) 

𝐹5(𝑥5, 𝑦5) = (5.25 , 5.50) 

𝐹6(𝑥6, 𝑦6) = (5.50 , 5.50) 

 

This is because the accuracy varies slightly depending on the node position relative to the 

object position, which was shown in the specialization project [8]. The positions are on the 

top left corner of the simulated touch display. The accuracy of the Tracker system is tested by 

averaging the combined error distance of the six positions. Monte Carlo Simulations were 

performed with 1000 simulations per dB-level, with 1 dB steps, and the result is shown by 

figure 6.3.  
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Figure 6.3: Tracker system accuracy of single stationary object 

 

The filtered and unfiltered estimated position has approximately equal accuracy below 14dB 

and above 40dB. Below 14dB, the accuracy is not improved by the filter. However, the 

smoothening effect that it has might still make this a valuable addition. Above 40dB, the 

lower limit of performance seems to be reached, at 𝜀 ≈ 0.04. For a touch display with 5mm 

space between each node, this transfers to 0.2mm, for the x-dimension. Note that these are 

simulated situations with symmetric objects, and that the result is likely better than what could 

be achieved on a real data set. 

At approximately 14dB, when 𝜀 = 100, the Tracker system achieves subpixel accuracy for 

both filtered and unfiltered estimation. The filtered estimation is visibly better than the 

unfiltered graph from this point up to 40dB, but the gain varies. This is likely the result of the 

Kalman filter not being tuned for each SNR-level, which is done by adjusting C and Q in 

equation (5.1) and (5.2).  

At around 30dB SNR, the tracking filter has the biggest gain compared to the unfiltered 

estimated position, highlighted by the grey horizontal line at 𝜀 ≈ 0.55. The tracking filter gain 

is now equal to improving the display SNR in the order of 10dB. 
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6.3 Simulation: Single moving object 

The second simulation is an object moving along the y-axis, identical to the situation from 

chapter 4.4. This time SNR-level is fixed at 30dB, where the tracking filter is shown to be the 

most effective, to more clearly highlight the strength and weakness of an optimal situation. 

Monte Carlo Simulations with 1000 simulations were performed (figure 6.4). The object 

moves 0.1 nodes per data set, and 𝜀 is averaged for each position.  

 

 

Figure 6.4: Tracker system accuracy of single moving object 

 

Both the unfiltered and filtered estimation achieve subpixel accuracy for the entire simulation, 

but we observe that the filtered estimation has difficulties handling the start and middle of the 

simulation. This is the same effect visible on figure 6.1, for sample 380-390. There is a 

sudden change in velocity, and the tracking filter cannot keep up. Its initial velocity is set to 

zero, and the filter is not stabilized until around the 70th data set. At this point, performance is 

increased, and the filtered estimation is better than the unfiltered estimation. At the 200th 

simulation the object turns, which results in another 70 data sets before the filter stabilizes 

again. 

Pre-setting the initial velocity to a more optimal estimate would likely reduce the inaccuracy 

at the beginning of the simulation, but not the inaccuracy at the middle. This would likely 

require a more advanced tracking filter, like the Extended Kalman Filter [10]. 
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6.4 Simulation: Two close objects 

This simulation compares the successful close search result from chapter 4.4, with and 

without the tracking filter. The result is shown by figure 6.5, where object 1 is once again 

stationary and object 2 is moving. 

 

Figure 6.5: Tracker system accuracy of close search simulation 

 

Subpixel accuracy was achieved again, for both objects and for the entire simulation. The 

stationary object achieves, overall, a more accurate tracking using the filtered position. The 

moving object still has two intervals with much higher inaccuracy, like in the previous 

simulation. 

If the object is stationary for a short duration prior to pinching, or moving slower, the tracking 

filter might perform better. If an object often and quickly changes direction, it is not yielding 

better accuracy at this point. As mentioned earlier earlier in this chapter, smoothness might be 

valued higher than accuracy, depending on the application used.  
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7 Topics for further research 
The Tracker system works as intended and it is ready to be implemented on a real display. 

However, there are still unanswered questions regarding performance. The most prominent 

topic for further research should be how the accuracy of the Tracker system changes with 

regard to different sizes and shapes of an object. The tested object in this thesis was a small 

object, and figure 6.3 (page 54) shows the accuracy of the Tracker system on this object. 

Testing how much the lower limit and the breakpoint for subpixel accuracy changes, for 

different sizes and shapes of objects, calls for further research. 

Another topic for further research may be the tracking filter. Figure 6.4 (page 55) and 6.5 

(page 56) showed that the Standard Kalman Filter was unable to effectively handle a rapid 

change of direction by the moving objects. Implementing a more advanced filter would likely 

improve the accuracy. Alternatively, since the estimated position is already highly accurate, a 

solution could be to find a smart way of toggling the tracking filter on and off. 

If the Tracker system is implemented on a real touch display, it is important to remember that 

it was not designed for a specific display. No displays are alike, as shown in chapter 1.2, and 

it is advisable to tailor the Tracker system to the specific device. Tweaks of the parameters 

should include 𝐼𝑡ℎ𝑟𝑒𝑠ℎ, 𝑑𝑚𝑖𝑛, 𝑑𝑣𝑎𝑙, and Kalman filter settings: C, Q and possibly the initial 

conditions. This can be controlled by further development of the Tracker system, or the 

parameters could be sent downwards in the system from the application level, shown by the 

new stapled line on figure 6.6. 

 

 

Figure 6.6: New Tracker system flow chart 
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Even though it was out of the scope of this project, the overall assessment of the Tracker 

system is not complete without a comprehensive analysis of the computational cost. This is 

particularly interesting for portable units, since these have limited battery life and limited 

computational power, which affects real-time requirements. Implementing the Tracker system 

on a real touch display would also make it possible to compare computational cost to the 

humans perceptive of this performance. 

Some of the assumptions made in this thesis can be reduced by limiting the compatible touch 

inputs, even though this was a self-imposed requirement set in the problem description. 

Matching the touch display with a special touch stylus, with optimal size and conductive 

properties for the nodes, would likely make tracking easier. 

Lastly, implementing the ability to track three or more objects creates new possibilities for the 

application level. This allows large groups to interact with the touch display at the same time, 

or for advanced touch motions. 
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8 Conclusion 
This thesis set out to describe a program that tracks multiple objects in a low resolution 

environment. A subpixel, or high-resolution, position was estimated prior to tracking the 

objects. This was solved by developing a two-module solution named the Tracker system. The 

first module is the scanner unit that receives the data sets from the touch display sensor, and 

produces a two-dimensional coordinate for up to two objects. The second unit is the tracker 

unit, that first labels the objects and validates that the objects are not noise. Then, it sends the 

positions through a tracking filter, and these are now ready to be sent to an applications level.  

Different scenarios for the scanner unit have been presented, and a solution for each scenario 

has been proposed and demonstrated. It has been shown that handling all situations requires 

some assumptions and limitations to be made, prior to developing a solution. These choices 

had to be made even with no self-imposed limit to computational cost. A big challenge was 

developing a good method of estimating the size of an object, combined with tracking two 

objects that are close to each other. These situations were eventually handled successful, 

albeit with reduced accuracy. 

In a simulated 30dB SNR touch display environment, the tracking filter increased the 

accuracy equal to increasing the display SNR in the order of 10dB. The tracking filter did not 

always improve accuracy, but it might still be valuable as it smoothens the trajectory of the 

objects. Overall, the usage of the tracking filter depends on the application being used. 

This thesis can serve as the foundation for further development, and there are two topics that 

stand out. The first topic is how the accuracy of the Tracker system changes for different sizes 

and shapes of the objects. The second topic is how the Tracker system performs on a real 

touch display, as the human perceptual performance does not necessarily correspond to the 

theoretical performance. If the implemented performance does not match the results presented 

in this thesis, this also points toward further emphasis on the first topic. 
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9 Appendix 
 

[A] Matlab code of Tracker system 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        %% TRACKING SYSTEM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

% Initiations for testing 
clear all; 

  
minimum_distance_mode = 0; 
counter = 0; 
sim_length = 0; 
reverse = 1; 

  
object_1 = 0; 
object_2 = 0; 
validation_object_1 = 0; 
validation_object_2 = 0; 
 

**load data_set_Fi here**  
 

 

 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        %% SCANNER UNIT %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% This is the first module of the program, which scans each data set Fi 
% It scans the data ests based on parameters received from the tracker unit 
% and performs the search based on these parameters. 

  
% 2 main functions: Find 2, and Find 2 close objects 

                     

  
%% Find 2, input(data_set_Fi), output(x0y0/x1y1) 
if minimum_distance_mode == 0 
    object_positions = find_2(data_set_Fi); 
    obj_1_pos = [object_positions(1) object_positions(2)]; 
    obj_2_pos = [object_positions(3) object_positions(4)]; 

  
%% Fine positioning, below minimum distance, either LS 
elseif minimum_distance_mode == 1 
    close_object_positions = find_2_close(data_set_Fi, prev_obj1_node(1), 

prev_obj1_node(2), prev_obj2_node(1), prev_obj2_node(2)); 
    obj_1_pos(1) = close_object_positions(1); obj_1_pos(2) = 

close_object_positions(2); 
    obj_2_pos(1) = close_object_positions(3); obj_2_pos(2) = 

close_object_positions(4); 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        %% TRACKER UNIT %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This is the second and final module of the tracker system 
% First, it labels and validates the positions received from the scanner 
% Then, it sends this through a tracking filter (Kalman) 
% The distance between the positions are calculated, and the scanner unit 
% is requested to perfom a close search if this d < d_min 

  
%% Labelling - Connect to closest 
if obj_1_pos > 0 && sim_length > 1 
    connect_objects = labelling( obj_1_pos(1), obj_1_pos(2), obj_2_pos(1), 

obj_2_pos(2), prev_obj_1_x(sim_length-1) , prev_obj_1_y(sim_length-1) , 

prev_obj_2_x(sim_length-1) , prev_obj_2_y(sim_length-1) ) ; 
    obj_1_pos(1) = connect_objects(1); 
    obj_1_pos(2) = connect_objects(2); 
    obj_2_pos(1) = connect_objects(3); 
    obj_2_pos(2) = connect_objects(4); 
end 
 

%% Validate 
if obj_1_pos(1) == 0 
    object_1 = 0; 
else 
    object_1 = 1; 
end 

  
if obj_2_pos(1) == 0 
    object_2 = 0; 
else 
    object_2 = 1; 
end 

  
% Track 1 
if object_1 == 0 
    validation_object_1 = 0; 
elseif object_1 == 1 && validation_object_1 < 3 
    validation_object_1 = validation_object_1 + 1; 
    object_1 = 0; 
end 

  
% Track 2 
if object_2 == 0 
    validation_object_2 = 0; 
elseif object_2 == 1 && validation_object_2 < 3 
    validation_object_2 = validation_object_2 + 1; 
    object_2 = 0; 
end 

  

  
%%  Check minimum distance 
if min_dist_mode == 1 && sqrt((track_1(1)-track_2(1)).^2 + (track_1(2)-

track_2(2)).^2) > 6 
    min_dist_mode = 0; 
elseif object_1 == 1 && object_2 == 1 && sqrt((track_1(1)-track_2(1)).^2 + 

(track_1(2)-track_2(2)).^2) < 5; 
    min_dist_mode = 1; 
else 
    min_dist_mode = 0; 
end 
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%% Log current position 

  
prev_obj_1_x(sim_length) = obj_1_pos(1);prev_obj_1_y(sim_length) = 

obj_1_pos(2); 
prev_obj_2_x(sim_length) = obj_2_pos(1);prev_obj_2_y(sim_length) = 

obj_2_pos(2); 

  
% Make sure they do not have the same main node 
if round(obj_2_pos(1))==round(obj_1_pos(1)) && 

round(obj_2_pos(2))==round(obj_1_pos(2)) 
    prev_obj1_node = [round(obj_1_pos(1)) round(obj_1_pos(2))]; 
    prev_obj2_node = [round(prev_obj2_x) round(prev_obj2_y)];  
else 
    prev_obj1_node = [round(obj_1_pos(1)) round(obj_1_pos(2))]; 
    prev_obj2_node = [round(obj_2_pos(1)) round(obj_2_pos(2))]; 
end 

  

  
% Object and estimation decomposed into x- and y-values 
x1_sim(sim_length) = sim1(1); 
x1_est(sim_length) = obj_1_pos(1); 
y1_sim(sim_length) = sim1(2); 
y1_est(sim_length) = obj_1_pos(2); 
x2_sim(sim_length) = sim2(1); 
x2_est(sim_length) = obj_2_pos(1); 
y2_sim(sim_length) = sim2(2); 
y2_est(sim_length) = obj_2_pos(2); 

  

  
                            %% PLOT %% 
% Print active nodes + object positions on display 
data_set_Fi_result = zeros(matrix_size(1), matrix_size(2)); 
RoI_nodes = 0; 

  
% Find RoI for object 1 
if object_1 == 1 
RoI_nodes = size_estimation(data_set_Fi, round(obj_1_pos(1)), 

round(obj_1_pos(2))); 
data_set_Fi_result(RoI_nodes(3):RoI_nodes(4),RoI_nodes(1):RoI_nodes(2))= 

data_set_Fi(RoI_nodes(3):RoI_nodes(4),RoI_nodes(1):RoI_nodes(2)) ; 
end 

  
% Find RoI for object 2 
if object_2 == 1 
RoI_nodes = size_estimation(data_set_Fi, round(obj_2_pos(1)), 

round(obj_2_pos(2))); 
data_set_Fi_result(RoI_nodes(3):RoI_nodes(4),RoI_nodes(1):RoI_nodes(2)) = 

data_set_Fi(RoI_nodes(3):RoI_nodes(4),RoI_nodes(1):RoI_nodes(2)); 
end 

  
figure(1); 
show_tracking(data_set_Fi, sim1(1), sim1(2), sim2(1), sim2(2), 

data_set_Fi_result, object_1, obj_1_pos(1),obj_1_pos(2), object_2, 

obj_2_pos(1),obj_2_pos(2)); 

 
% end of tracker system * 
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[B] Least Squares formula derivation 

Least squares (LS) is a very popular method from the classical approach of estimation theory. 

This method seeks to minimize the energy difference of the data and the assumed signal, and 

is applicable even for non-linear data. The least squares (LSE) error model for a single touch 

input is defined here as: 

𝐿𝑆𝐸 = ∑ ∑ ( 𝐹(𝑥, 𝑦) − 𝐹̂(𝑥, 𝑦) )2

1

𝑁=−1

 .

1

𝑀=−1

 

 

This method assumes the object is a 3x3 matrix, where the node with the highest intensity is 

the center node, (2,2). The model creates a parabola and by using all nine values it seeks to 

create an accurate estimation. To fit this into the two-dimensional matrix, a two dimensional 

polynomial is used. 

 

First, the approximation is defined, where x and y is used for familiarity: 

 

𝐹̂(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑥 + 𝑑 + 𝑒𝑦2 + 𝑓𝑦 

 

Next, the sum of squared differences is defined within the 3x3 matrix: 

 

∑ 𝑆𝑞. 𝐷𝑖𝑓𝑓 = ∑ ∑ ( 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑥 + 𝑑 + 𝑒𝑦2 + 𝑓𝑦 − 𝐹(𝑥, 𝑦) )2 

𝑁+1

𝑦=𝑁−1

𝑀+1

𝑥=𝑀−1

. 

 

This sum is differentiated with regards to a-f: 

 

𝜕 ∑ 𝑆𝑞. 𝐷𝑖𝑓𝑓

𝜕𝑎
,
𝜕 ∑ 𝑆𝑞. 𝐷𝑖𝑓𝑓

𝜕𝑏
,
𝜕 ∑ 𝑆𝑞. 𝐷𝑖𝑓𝑓

𝜕𝑐
,
𝜕 ∑ 𝑆𝑞. 𝐷𝑖𝑓𝑓

𝜕𝑑
,
𝜕 ∑ 𝑆𝑞. 𝐷𝑖𝑓𝑓

𝜕𝑒
,
𝜕 ∑ 𝑆𝑞. 𝐷𝑖𝑓𝑓

𝜕𝑓
. 
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This creates six equations with six unknown variables a-f, which then can be solved. The 

result is:  

 

a = F(m-1,n-1) + F(m,n-1) + F(m+1,n-1) – 2F(m-1,n) – 2F(m,n) – 2F(m+1,n) + F(m-
1,n+1) + F(m,n+1) + F(M+1,N+1) 

b = -F(n-1,n-1) + F(m+1,n-1) + F(m-1,n+1) - F(m+1,n+1) 

c = -F(m-1,n-1) + F(m+1,n-1) - F(m-1,n) + F(m+1,n) - F(m-1,n+1) + F(m+1,n+1) 

d = -F(m-1,n-1) + 2F(M,N-1) - F(m+1,n-1) + 2F(m-1,n) + 5F(m,n) + 2F(m+1,n) - F(m-
1,n+1) + 2F(m,n+1) - F(m+1,n+1) 

e = F(m-1,n-1) + F(m,n-1) + F(m+1,n-1) – 2F(m-1,n) – 2F(m,n) – 2F(m+1,n) + F(m-
1,n+1) + F(m,n+1) + F(m+1,n+1) 

f = F(m-1,n-1) + F(m,n-1) + F(m+1,n-1) - F(m-1,n+1) - F(m,n+1) - F(m+1,n+1). 

 

Next, the approximation is differentiated twice, with regards to x and y respectively. When 

solved for zero this yields: 

 

𝜕𝐹̂(𝑥, 𝑦)

𝜕𝑥
= 2𝑥𝑎 + 𝑏𝑦 + 𝑐 = 0 

𝜕𝐹̂(𝑥, 𝑦)

𝜕𝑦
= 2𝑒𝑦 + 𝑏𝑥 + 𝑓 = 0. 

 

Again we have two formulas with two unknowns. Solving for x and y respectively results in: 

 

𝑥̂ =
𝑏𝑓 − 2𝑐𝑒

4𝑎𝑒 − 𝑏2
 

𝑦̂ =
𝑏𝑐 − 2𝑎𝑓

4𝑎𝑒 − 𝑏2
. 

 

Where x and y is the displacement relative to the center node, (2,2). 


