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Problem Description

NTNU is in the process of developing a system for bird classification. The system
involves several steps. In the first step the incoming acoustic signal is decoded
into a sequence of segments. The segments may belong to all legal classes rep-
resented by the system. The system finds/decodes the sequence of segments that
provides the greatest score (likelihood). In the next step the sequence is analysed
with respect to which classes occurs most frequently. This information is stored
in a histogram representing the different classes. Based on the histogram one can
find the classes which occurs most frequently, i.e. n-best classification. In a final
step the histogram is normalized to eliminate the influence of the duration of the
recording. The normalized histogram is applied as input to a static post-classifier
that provides a probability for each class. A similar n-best ranking of the probabil-
ities has proven to give a better performance than using the histogram directly.

The sequence of segments is generated by a program called Hidden Markov Model
Toolkit (HTK) which is free to download. But the remaining steps are imple-
mented in Matlab code. In this thesis, these steps are going to be implemented
using free software.

The parameters in models and post-classifier has to be trained by a manually la-
beled training database. The quality of the identification, and hence the error rate
is dependent on the database being "large enough". This is a relative term, but
the current amount of available data is clearly too small. One possible strategy is
therefore to disclose the current system, i.e. getting users to submit recordings. In
addition to providing the user with the name of the class, it is possible to use the
recordings with labeling to improve the system. It is then two possible approaches
to this problem:

1. Perform the labeling manually.

2. Perform the labeling automatically by using the results from the classifier.

The first method can then be regarded as an upper limit for the second method,
especially if it does not occur misclassifications in the manual labeling. However,
the second method is fully automated, and is therefore preferable if a reasonable
improvement is achieved. In this thesis it will be performed a comparison between
these two methods with respect to error rate and the degree of dependency on the




size of the database and user submitted recordings. This comparison will tell if it
is possible to implement this adaptation of data automatically in a sufficient way.
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Summary

The background for this master thesis is a collaboration between Able Magic and
NTNU. At the request of Able Magic there has been conducted a feasibility study
by NTNU, which has led to the development of a bird classification system. This
system is based on identification of bird song and are aimed at 21 different Norwe-
gian bird species. Able Magic wants to create a commercial version of this system
implemented as an application for the smart phone market.

The system is based on model based segmentation, modeling each bird as a Gaus-
sian Mixture Model (GMM). These models are trained with the Expectation Max-
imization algorithm on labeled training data. Furthermore, these models are used
in the identification of the bird song. Hence, one can say that the system is divided
into two parts, namely training and identification.

This thesis is divided into two main tasks. The first task is to convert the ba-
sis system created by NTNU into a production model ready for commercial use.
The initial system is designed using three different development tools, respectively,
Hidden Markov Model Toolkit, Praat and Matlab. Matlab is not free and the scripts
developed in Matlab therefore needed to be converted to another language which is
free. After converting the different scripts and restructuring them, the production
model was created by combining the scripts to a complete system. Now the sys-
tem consists of three scripts, where one is handling the training process and another
one is handling the identification process. In addition there is one script training a
linear classifier used in the identification. All three scripts are implemented in Perl.

The second task of the thesis is aimed at improving the system performance by
looking at the possibility of doing adaptation of training data. This is an effort of
trying to improve the existing models. With this adaptation experiment the pos-
sibility of adapting data automatically without any manual labeling of the data is
going to be investigated. The adaptation experiment has been performed by train-
ing GMMs with a given amount of training data, and then introducing more data
used to train new GMMs. The new training data can either be labeled by the sys-
tem output when doing identification with the initial models (automatically), or
using the manual labeling which is known to be correct. By comparing the results
obtained by these two methods it is possible to tell if the automatic adaptation pro-
vides sufficient results.




From the adaptation experiments it is seen that the number of misclassified birds is
increasing when using the new adaptation models generated by automatic labeling
of the adaptation data. There is an increase of about 2.5% in the error rate when
using these models compared to when using the initial models trained with less
data. This shows that there is difficult to perform the adaptation of data automati-
cally with the current system performance and amount of available data.
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Sammendrag

Bakgrunnen for dette prosjektet er et sammarbeid mellom Able Magic og NTNU.
Etter gnske fra Able Magic har det blitt foretatt en mulighetstudie av NTNU, som
har ledet til utviklingen av et system for klassifisering av fuglearter basert pa iden-
tifikasjon av fuglesang. Systemet er rettet mot 21 forskjellige norske fuglearter.

Systemet modellerer hver fugleart i tillegg til "pause" som en Gaussian Mixture
Model (GMM). Disse modellene er trent med Expectation Maximization (EM)
algoritmen. I denne treningen brukes merket treningsdata. Videre blir disse mod-
ellene brukt til identifikasjon av fuglesang. Man kan derfor si at systemet er delt
opp 1 to hoveddeler, henholdsvis trening og identifikasjon.

Dette prosjektet er delt inn i to hovedoppgaver. Den fgrste oppgaven gar ut pa

a lage en produksjonsmodell av systemet utviklet av NTNU, som er klar for kom-
mersiell bruk. Det opprinnelige systemet er utviklet ved hjelp av tre ulike utviklingsverk-
tdy, henholdsvis Hidden Markov Model Toolkit (HTK), Praat og Matlab. Matlab

er ikke gratis og scriptene skrevet i Matlab er derfor konvertert til Perl som er
gratis. Etter at dette er gjort settes scriptene sammen til et komplett system. Sys-
temet bestar na av tre script, der et tar seg av treningen av modellene og et annet

tar seg av identifikasjonen. I tilegg er det et script som tar seg av treningen av en
lineer klassifiserer som brukes under identifikasjonen.

Den andre oppgaven gar ut pa a forbedre ytelsen til systemet ved a se pa muligheten
for & adaptere ytterligere treningsdata. Dette er et forsgk pa a forbedre eksisterende
modeller ved & trene nye adapsjonsmodeller med et gkt treningsgrunnlag. Det skal
undersgkes om denne adapsjonen kan gjgres automatisk. Denne adapsjonen kan
enten gjgres ved 4 merke filene som skal adapteres ved hjelp av resultatene fra klas-
sifiseringen (automatisk), eller man kan bruke merking som er foretatt manuelt og
som man vet er korrekt. Ved a foreta en sammenligning av disse to metodene kan
man si om det er mulig & foreta denne adapsjonen automatisk med tilfredsstillende
resultater.

Det viser seg at ytelsen til systemet er darligere med de nye adapsjonsmodel-
lene generert ved automatisk adapsjon, sammenlignet med de initielle modelle.
Feilraten har gkt med 2.5%. Dette viser at systemets ytelse i kombinasjon med
begrenset tilgang pa data er for darlig til & gjennomfgre adapsjonen automatisk.
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Chapter

Introduction

This chapter is an introduction to this report. It will be given a brief overview of the
motivation and background for the thesis in section 1.1. The work and the chosen
approach will be presented in section 1.2. Finally there is given an overview of the
structure in this report in section 1.3.

1.1 Motivation and Background

The background for this master thesis is a collaboration between Able Magic and
NTNU. At the request of Able Magic there has been conducted a feasibility analy-
sis by NTNU, which has led to the development of a system for bird classification
based on identification of bird song. Able Magic wants to create a commercial
system in the form of an application for the smart phone market. Therefore, it is
desired that the system is developed using free software. The system developed
by NTNU is designed using three different development tools, respectively Praat,
Hidden Markov Model Toolkit (HTK) and Matlab. Matlab is not free, and the pro-
grams developed in Matlab has therefore been converted to Perl code. The system
is initially aimed at 21 different birds.

The desired behaviour of the system is to get an audio recording as input and
then be able to identify which bird the recording contains and return a label rep-
resenting this bird as output. If one should recognize speech, distinction is often
made between classification and recognition. Classification is about recognizing
individual words, while recognition is about determining the number of words, the
word sequence and sometimes the time boundaries between words. When it comes
to bird song this can generally be placed between classification and recognition.

1



Chapter 1. Introduction

Since the goal of this particular system is to recognize a file as one bird, and not
look at different stanzas this can be looked at as a classification problem. In order
to implement this, one is dependent of representing the bird song mathematically.

There is no mathematical formula for bird song, therefore it is necessary to find
a mathematical approximation often called models, good enough to represent the
signal in a sufficient way. Speech and most time signals have information in tempo-
rary form. This means that the order of the signals content is crucial to understand
the meaning. Turning to bird song it is fairly certain that each stanza has temporary
information, while repeating stanzas probably do not provide additional informa-
tion.

This thesis is based on the assumption that the time signal is stochastic. With
regards to stochastic signals a distinction is made between stationary and non-
stationary signals. Bird song is non-stationary because the frequency content
varies with time. Because the "production” of any physical signal has certain iner-
tia because of mass, it is possible to assume that all physical signals are short-time
stationary, i.e. stationary over a "short" time frame. Consequently there is possi-
ble to analyse the input recording segmentally. This assumption is of great use in
signal processing and is also used in this thesis.

Because there is a closed set of birds represented by the system it is convenient to
use model based segmentation. In this thesis there is created one Gaussian Mixture
Model (GMM) for each of the bird species in addition to one model for "pause".
Each of the classes are created with 32/16/8/4/2/1 mixtures. The objective of the
models is to approximate the statistical properties of the birds, such that the system
can distinguish between the different birds. First, the models have to be trained on
labeled training data. Then these models are used in the identification on test data.

1.2 Work

The work performed in this thesis can be divided into two main tasks. As men-
tioned above the system created by NTNU is going to be implemented using free
software. All scripts will be implemented in Perl. Next, the different parts of the
system are going to be implemented in a straightforward and intuitive way. The
goal is to integrate all the different scripts into a complete system leading up to
a system which is ready for commercial use. The work related to this part of the
thesis is presented as the basis system.

In addition to this, the possibility of adapting new training data is going to be

2



1.3 Outline of the Report

explored. This is of great interest since it could potentially help to improve the
system performance because of the ability to create better models. If there is found
a good method to do this automatically, user data can be used directly as new train-
ing data, thus it is possible to improve the models continuously. This part of the
thesis is presented as the adaptation system.

One can say that the basis system is divided into two main parts, namely train-
ing and identification. Common for both parts is a feature extraction where the
acoustic input signal is being parametrized to a feature vector, in this case contain-
ing Mel Frequency Cepstral Coefficients (MFCC). This feature vector is used in
the training of the different GMMs, as well as in the identification. In the identifi-
cation these features are used to find the model which is the best fit to the incoming
acoustic signal. After this process the input file is often identified as more than one
bird because of the segmentally processing of the file. It is therefore necessary
with some post-processing and classification to determine which bird one should
choose. It is the scripts doing the post-processing and classification that needs to
be converted to Perl code.

HTK is used to perform all training and testing in this thesis, and is a develop-
ing toolkit for building and manipulating Hidden Markov Models (HMMs). The
most common application area is speech recognition. It was originally developed
at the Machine Learning Laboratory of the Cambridge University.

1.3 Outline of the Report

Chapter 2 presents the theory that this thesis is based on.
Chapter 3 consists of an explanation of the database used during the thesis.

Chapter 4 consists of a presentation of the basis system. There will be given
an explanation of how the system works along with the system performance. In
addition the initial system structure and the structure of the commercialized pro-
duction model will be presented.

Chapter S consists of a presentation of the adaptation system. There will be given
an overview of a typical adaptation experiment as well as the approach chosen in
this thesis. The results and the following discussion from the adaptation experi-
ments will also be presented in this chapter.




Chapter 1. Introduction

Chapter 6 summarizes the most important results and observations from the work
performed in this thesis.




Chapter

Theory

This chapter provides an explanation of the theory that this thesis is based on.
Frequency analysis of short-time stationary signals and the features used, mel-
frequency cepstral coefficients, are covered in section 2.1. Section 2.2 covers
Gaussian Mixture Models. Next the Maximum Likelihood function used as train-
ing criteria is presented in section 2.3. Section 2.4 presents the EM-algorithm used
for maximum likelihood parameter estimation in the training process. Finally the
Viterbi algorithm used in the identification process is presented in section 2.5.

2.1 Frequency Analysis of Short-Time Stationary Signals

With the assumption of short-time stationary signal over K msec it is common to
use a window of same length to extract a segment of the signal with equal length.
A common choice of such a window is the Hamming Window, also used in this
thesis. The frequency analysis usually ends up in a vector of features, x, represent-
ing the segment. The same analysis is performed again by moving the window L
msec. Each time the analysis is performed, a new vector x is generated forming
a sequence of vectors X representing the whole signal. It is common to choose
L < K, resulting in a overlap between segments [1].

Desirable characteristics for features used in speech processing does occur fre-
quently, are simple to measure, does not change over time and is not dependent on
the speakers health condition. They should also be robust against noise and be of
high order. Mel-frequency cepstral coefficients (MFCCs) are very often used as
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Chapter 2. Theory

features in speech and speaker recognition systems and are also recommended for
bird song [2].
2.1.1 Mel- Frequency Cepstral Coefficients

In speech processing, or more generally, sound processing, it is common to repre-
sent the short-time power spectrum with the Mel-frequency cepstrum (MFC), and
the MFCCs are coefficients that make up an MFC. In order to approximate the hu-
man auditory system’s response, the MFC is used instead of the normal cepstrum.
This is because the MFC have frequency bands equally spaced on the mel scale.
This gives a better approximation compared to the normal cepstrum where the fre-
quency bands are linearly spaced.

Conversion from Hertz (f) to Mel (m) is done by the following formula:

_ S
m(f) = 259510g;o(1+ =) 2.1)

A plot of this relationship is shown in the figure 2.1 below.

The MFCCs are commonly derived as follows:
1. Use a window to extract a segment of the signal.
2. Take the Fourier transform the segment.

3. Take the powers of the spectrum and map them onto the mel scale. This is
done using triangular overlapping windows also known as triangular filter
bank.

4. Take the logs of the powers at each of the mel frequencies.

5. Take the discrete cosine transform (DCT) of the list of mel log powers, as if
it were a signal.

6. The output after applying DCT is MFCC.

This procedure is illustrated in figure 2.2.




2.2 Gaussian Mixture Models

Mel scale versus Hertz scale
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Figure 2.2: Calculation of MFCC

This section is motivated by [3].

2.2 Gaussian Mixture Models
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"A Gaussian Mixture Model (GMM) is a parametric probability density function
represented as a weighted sum of Gaussian component densities. GMMs are com-
monly used as a parametric model of the probability distribution of continuous
measurements or features in a biometric system, such as vocal-tract related spec-
tral features in a speaker recognition system. GMM parameters are estimated
from training data using the iterative Expectation-Maximization (EM) algorithm

or Maximum a Posteriori (MAP) estimation from a well-trained prior model.




Chapter 2. Theory

A Gaussian mixture model is a weighted sum of M component Gaussian densi-
ties as given by the equation,

M

pxIA) =) wiglxlp, %) (2.2)
i=1 -

where x is a D-dimensional continous-valued data vector (MFCCs from the feature
extraction in this case), w;, i =1,..., M are the mixture weights, g(ygi,z,-), i=
1,..., M are the component Gaussian densities. Each component density is a D-
variate Gaussian function of the form,

1
glxlp,, ;) expl=5(x—p)'T (x—p)} (2.3)

= (27‘[)D/2|Zi|1/2

with mean vector K, and covariance matrix X;. The mixture weights satisfies the

constraint Zﬁvf w; = 1. The complete Gaussian mixture model is parametrized by
the mean vectors, covariance matrices and mixture weights from all component
densities. These parameters are collectively represented by the notation,

/l:{w,-,ﬁi,z,-},i: 1,...,M (2.4)

GMMs are often used in biometric systems, most notably in speaker recognition
systems, due to their capability of representing a large class of sample distribu-
tions. One of the powerful attributes of the GMM is its ability to form smooth
approximations to arbitrarily shaped densities"[4].

2.3 Maximum Likelihood

Given training vectors and a GMM configuration, it is desired to estimate the pa-
rameters of the GMM, A, which in some sense best matches the distribution of
the training feature vectors. There are several techniques available for estimating
the parameters of a GMM. By far the most popular and well-established method
is maximum likelihood (ML) estimation. The goal of ML estimation is to find the
model parameters which maximize the likelihood of the GMM given the training
data. For a sequence of T training vectors X = {x,..., X}, the GMM likelihood,
assuming independence between the vectors, can be written as,

N
p(XIA) =[] p(x;1A) = LAAIX) (2.5)
i=1

This function is called the likelihood function. The likelihood is thought of as a
function of the parameters A where the data X is fixed. The maximum likelihood

8



2.4 Expectation-Maximization Algorithm

problem is about finding the parameters A that maximizes the likelihood function
L described in equation 2.5. The goal is to find A* where

A* = argmaxL(A|X) (2.6)
A

Often the log likelihood function is chosen instead because it is analytically easier.
However, it is difficult to solve this maximization problem directly. Hence it is
often necessary to use an iteratively algorithm to solve this problem, namely the
Expectation-Maximization algorithm. This section is motivated by [4] and [5].

2.4 Expectation-Maximization Algorithm

"The Expectation-Maximization algorithm is is a general method of finding the
maximum-likelihood estimate of the parameters of an underlying distribution from
a given data set when the data is incomplete or has missing values" [5].

The basic idea of the EM algorithm is, beginning with an initial model A, to
estimate a new model /1/, such that p(X IA’) = p(X]A). This new model A’ then
becomes the initial model for the next iteration and this process is repeated until
some convergence threshold is reached.

"We assume that data X is observed and is generated by some distribution. We
call X the incomplete data. We assume that a complete data set exists Z = (X;Y)
and also assume (or specify) a joint density function:

p(zlA) = p(x, yIA) = p(ylx, M) p(x|A) 2.7)

Where does this joint density come from? Often it “arises” from the marginal
density function p(x|A) and the assumption of hidden variables and parameter
value guesses (e.g., our two examples, Mixture-densities and Baum-Welch). In
other cases (e.g., missing data values in samples of a distribution), we must as-
sume a joint relationship between the missing and observed values. With this new
density function, we can define a new likelihood function, L(A|Z) = L(A|X,Y) =
p(X,Y|A), called the complete-data likelihood. Note that this function is in fact
a random variable since the missing information Y is unknown, random, and
presumably governed by an underlying distribution. That is, we can think of
L(A) = hx 2 (Y) for some function hx () where X and A are constant and Y is a
random variable. The original likelihood L(A1X) is referred to as the incomplete-
data likelihood function.




Chapter 2. Theory

The EM algorithm first finds the expected value of the complete-data log-likelihood
log p(X, Y|A) with respect to the unknown data Y given the observed data X and
the current parameter estimates. That is, we define:

QLAY = Ellogp(X, YIA)| X, A7) (2.8)

Where A=D1 are the current parameters estimates that we used to evaluate the ex-
pectation and A are the new parameters that we optimize to increase Q. The evalu-
ation of this expectation is called the E-step of the algorithm. Notice the meaning
of the two arguments in the function Q(A, 1) The first argument A corresponds
to the parameters that ultimately will be optimized in an attempt to maximize the
likelihood. The second argument A corresponds to the parameters that we use to
evaluate the expectation.

The second step (the M-step) of the EM algorithm is to maximize the expecta-
tion we computed in the first step. That is, we find:

A0 = argmaxQ(/l,JL(i_l)) (2.9)
A

These two steps are repeated as necessary. Each iteration is guaranteed to increase
the loglikelihood and the algorithm is guaranteed to converge to a local maximum
of the likelihood function"[5].

2.5 Viterbi Algorithm

Given a sequence of observations, the goal of the Viterbi Algorithm is to find the
state-sequence that generated it. There are many possible combinations of state-
sequences, that leads to many possible paths. Figure 2.1 shows an illustration of
such a state-sequence network, where the green dashed lines shows possible paths
between states. The Viterbi algorithm seeks fo find the path that maximizes the
probability, i.e. the connection between states that is most probable that generated
the observation sequence. This most probable sequence is illustrated by the blue
path in figure 2.1. For a more detailed review of the theory behind the Viterbi-
algorithm, see [6].
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0

Figure 2.3: Illustration of possible paths
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Chapter

Database

This chapter contains an explanation of the database used in this thesis. How the
database is structured with respect to the number of files, length of files and the
difference between training and testing data will be presented here.

The database is divided into five different data sets, which is put together to form
both training and test sets. In total, the database consists of recordings from 21
different bird species. Not all birds are represented equally good, actually some of
the birds have a very poor foundation of data. Able Magic who holds the rights to
these recordings. All of the recordings are gathered by Able Magic from different
sources. All recordings were converted to mono, decimated to a sampling fre-
quency of 16 kHz and stored in wav-format. The length of each recording varies,
and in table 3.3, it is information about the duration of the files corresponding to
each of the bird species.

The training data is labeled by a program called Praat. This was done by NTNU
and Able Magic. Praat is a program developed for analysis and manipulation of
speech, but is also suitable for other audio recordings, in this case bird song. The
labeling was done such that segments including song from the given specie were
labeled as "song" and the remaining segments were labeled as "pause". Conse-
quently, the pause segments are a collection of actual pauses, background noise
and song from other birds among other things.

The labeling for a file containing Bjgrkefink song is illustrated in figure 3.1. From
this figure, it is seen that the pause segments do include some acoustic activity, and
from listening to the file it becomes clear that the pause segment also includes bird
song, but is of much lower energy. This proves that the pause class does include

13



Chapter 3. Database

other content than just pauses. This is a limitation of the database and it would
have been desirable with a more detailed labeling.

10178000 10991260
0.5226 | 3

-0.5221

pajsa sa Sd Sa P silences
2] pause pause pause a
us ng ng| ng n 5 (6/9)
10.178000 4884740
0 Visible part 15.876000 seconds 15.876000

Total duration 15.876000 seconds

Figure 3.1: Waveform and labeling of Bjgrkefink file

The label files were stored in a so called Master Label File (MLF), which can be
used directly by HTK in the training of the recognition models. This file includes
start and stop time and the corresponding label for each segment.

As mentioned before the amount of available recordings associated with the differ-
ent species are very different. To carry out reasonable experiments it is important
to have no overlap between the training and test data. Besides, it is of great im-
portance to have enough data to train good statistical models, in addition to have a
sufficient amount of test recordings to achieve reliable results. With limited access
of data, this becomes a problem. As an attempt to deal with this situation and in-
crease the confidence of the results, the database is divided into five different sets.
Each of the five sets represents about 20% of the total amount of recordings, and
the sum of the five sets accounts for all the recordings. This way it is possible to
use four of the sets as training data and one as test data. Consequently, it is made
five different combinations of data with a 4:1 ratio between training and testing,
and no overlap between training and testing. Because of this, one can take the
average of the results from all sets. This partitioning of the data is illustrated in
figure 3.2.
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Training

Data Set 3

Data Set 4
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Figure 3.2: Example of partitioning of the database

Table 3.1 illustrates the distribution of files between training and test set 1. From
this table it is possible to see how many files there are available for both training
and testing, and the sum is the total amount of available files. Svarthvit fluesnap-
per is represented with 76 files while Dompap has only 14 files. This illustrates
how large deviation it is between the different birds with respect to the number
of recordings. One reason that Svarthvit fluesnapper has so many files is the fact
that some recordings have been cut into shorter recordings. The average duration,
standard deviation, minimum and maximum duration related to each of the bird
species can be found in table 3.3, in addition to the total duration of all recordings
corresponding to each bird.
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Number of files
Bird Train | Test | Total
Bjgrkefink 15 4 19
Blameis 24 6 30
Bokfink 14 4 18
Dompap 11 3 14
Granmeis 17 4 21
Gransanger 24 6 30
Grgnnfink 22 5 27
Gulspurv 18 5 23
Hagesanger 19 5 24
Jernspurv 22 6 28
Lovsanger 26 7 33
Mialtrost 27 7 34
Munk 33 8 41
Rgdstjert 17 4 21
Rodstrupe 26 6 32
Sivspurv 20 5 25
Svarthvit fluesnapper | 61 15 76
Svartmeis 25 6 31
Svattrost 40 10 50
Toppmeis 17 4 21
Trekryper 25 6 31
Total | 503 | 126 | 629 |

Table 3.1: Information about the content of a training and test set
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Bird Mean | Stddev | Min | Max | Total | #files
Bjgrkefink 334 14.0 29 | 61.7 | 6338 19
Blameis 28.8 13.7 29 | 55.8 | 864.1 30
Bokfink 38.2 164 | 14.6 | 759 | 686.9 18
Dompap 41.6 142 | 192 | 70.3 | 582.7 14
Granmeis 44.1 15.2 | 28.7 | 754 | 9255 21
Gransanger 33.9 12.6 59 | 60.1 | 1015.8 | 30
Grgnnfink 39.9 9.6 274 | 63.8 | 1077.7 | 27
Gulspurv 332 13.8 29 | 614 | 762.8 23
Hagesanger 38.2 12.5 5.8 | 68.9 | 916.4 24
Jernspurv 30.8 12.6 59 | 494 | 863.1 28
Lgvsanger 31.7 9.4 3.0 | 543 | 1045.1 33
Maltrost 36.6 11.6 59 | 660 | 12448 | 34
Munk 36.8 13.3 5.8 | 71.5 | 1509.1 | 41
Rgdstjert 30.1 14.2 29 | 61.1 | 6326 21
Rgdstrupe 37.0 11.5 20.8 | 60.8 | 1183.6 32
Sivspurv 38.8 10.2 | 26.0 | 57.3 | 971.0 25
Svarthvit fluesnapper | 34.2 8.9 29 | 62.2 | 26004 | 76
Svartmeis 33.8 12.7 29 | 59.8 | 1049.1 31
Svarttrost 353 12.3 29 | 853 17639 | 50
Toppmeis 27.9 10.3 2.9 | 48.1 | 585.2 21
Trekryper 31.9 12.8 29 | 54.8 | 988.8 31

Table 3.2: Statistics on recording duration corresponding to each bird. Total duration

approximately 20400s, i.e approximately 5,7 hours.
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Chapter

Basis System

This chapter contains a description of the basis bird classification system used
in this project. Section 4.1 will focus on explaining the overall behaviour of the
system, from input to output. Furthermore, the training and identification process
will be presented in section 4.2 and 4.3. This is the two main tasks of the system,
where models are trained on labeled training data so that these models can be used
to classify birds in recordings without any prior knowledge. The resulting system
performance is presented in section 4.4. Section 4.5 presents the initial system
structure and the commercialized production model. The different methods and
algorithms applied will be presented here, as well as the different scripts and the
various HTK commands used.

! - s " Iy "
. Bird Classification /
,-J my* — System —>| Labels )

S

Ao

Figure 4.1: Overview of the system with input and output
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Chapter 4. Basis System

4.1 Overview

Figure 4.1 illustrates the system with input and output. When applying a recording
of bird song from one of the "legal" bird species, the desired output is a label cor-
responding to the given bird. The goal is to classify each input file as a single bird.
Often there are several labels associated with each recording and it is therefore
necessary with some sort of post-processing to decide the correct label.

As mentioned in the introduction chapter there is chosen a model based segmenta-
tion approach in this system were a GMM is assigned to each class, i.e. one model
for each of the birds in addition to one model for "pause". In a realistic recording,
there will naturally be other sounds present. The "pause” class will be the repre-
sentation for all sounds not belonging to one of the "legal" bird classes, due to the
lack of labeling of the database.

The system is divided into two main parts, namely training and identification. Both
parts will be discussed in the following sections. Because the database is divided
into five different sets the training and identification is performed five times each.

Figure 4.2 is a block scheme describing the system where the top branch represents
the training process and the bottom branch represents the identification process.

7 ™
_“*”*_b Feature _»{ Features =i

Extraction . MFCCs J

Audio

o =

( eMms )

Had Feature { Features e L 5 e
“‘N”* ™ E o —> = —»| Identification [—»{ REC-File }—>| PDSt, —>{ Labels )
W xtraction \\M FCCs \ J Processing \ /

Audio

- ~

.

Figure 4.2: Overall description of the system
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4.2 Training

4.2 Training

Figure 4.3 shows a block scheme of the training process. As seen from the figure
the training is divided into several sub tasks, briefly summarized this is the process
were GMMs are created to model each of the classes.

/TGMM
'\\Prototype/J

, ) 4
| _// ™ P ——
“‘M’M_’ Feature |/ Features \ 5 Training —»( GMMs )
i Extraction \_ MFCCs / e
Audio /#“\
( Labels to
|
\qut DaE;a/

Figure 4.3: Description of the training process.

Firstly, the system is given an audio recording of bird song as input. This input
is then processed segmentally because of the short-time stationary properties of
bird song. There is performed a feature extraction were the signal gets represented
by MFCCs. These features form a vector x for each segment, which leads to a
sequence of vectors X = {x,, X,,..., X5} representing the entire audio file. In the
process of extracting these features there are used a Hamming Window of 30 msec
with a step size of 20 msec resulting in an overlap between the segments. This
process is described in section 2.1.

Now, the actual training process starts. Each class is now going to be modeled as
a GMM. One could also have used HMMs which is dominant within the speech
classification/recognition field. In this case the objective is to classify the whole
recording as one single bird. The problem can be looked at as a static problem
i.e. different length of the recordings are not supposed to influence the decision
process. Consequently GMMs, which can be looked at as a simplified HMM were
chosen to model each class. Because of simplicity reasons the GMMs were imple-
mented in HTK as HMMs with one emitting state, but are referred to as GMMs
in this thesis. Since HMMs are not used in this thesis there will not be given a
detailed explanation here, but more information about the theory and its use in
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speech recognition can be found in [7].

The input parameters needed to perform the training is the aforementioned fea-
tures as well as a prototype GMM and labels that matches the training data. The
prototype GMM contains the structure of the GMM and initial model parame-
ters, which is mean and variance. The labeling is stored in a MLF-file which is
described in chapter 3, and tells which bird is active at a given time during the
recording.

The training is done by the Expectation-Maximization algorithm. This is an it-
erative method for finding maximum likelihood or maximum a posteriori (MAP)
estimates of parameters in statistical models, where the model depends on unob-
served latent variables. The EM iteration alternates between performing an expec-
tation (E) step, which creates a function for the expectation of the log-likelihood
evaluated using the current estimate for the parameters, and maximization (M)
step, which computes parameters maximizing the expected log-likelihood found
in the E step. These parameter-estimates are then used to determine the distribu-
tion of the latent variables in the next E step. A more detailed explanation of this
process is presented in section 2.4 and 2.5.

After the training the output is a set of models. One model for each "legal" bird
represented in the training data, in addition to one model for "pause”.

4.3 Identification

Figure 4.4 shows a block scheme of the identification process. This part is also
referred to as testing. Similar to the training process the identification is done seg-
mentally. The identification step is where we compare the models from the training
with the features from the data we want to label, i.e. the audio we want to do the
identification on.

In the same way as for the training an audio recording are input to the system,
and the same feature extraction is performed here. It is important to ensure that the
input recordings during the identification process are different from those used for
training.
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4.3 Identification
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Figure 4.4: Description of the identification process.

The actual decoding is done by a Viterbi-decoder based on the Viterbi-algorithm
described in section 2.6. The decoder finds the most likely sequence of birds and
pause that produced the input audio. This is equivalent to finding the most likely
path through the identification network shown in figure 4.5. For each detected
segment the decoder provides all the classes with a log-likelihood score and the
chosen bird is the one with the highest score. This decoder provides an oppor-
tunity to give a punishment for moving from one class to another in the given
recognition network. A good choice of this value will result in a reasonable num-
ber of detected segments. A poor choice of this value will result in either a lot of
insertions or deletions.

Output from the decoder is a REC-file corresponding to each input file, contain-
ing a series of labeled time intervals with corresponding log-likelihood score. A
section from such a REC-file is displayed in table 4.1. Typically each input file is
identified as several birds. Since the objective is to classify each file as one bird
it is not interesting to look at p(x jlwi), but rather p(X|w;). Where w; represents
the different classes. Therefore it is necessary with some kind of post-processing
in order to classify the whole file as one bird.

Each line in table 4.1 represents an identified section of the file, and can consist
of several segments. The two first columns are respectively start and stop time in
msec for the classified class. Furthermore, the last two columns are chosen class
and log-likelihood score averaged over number of segments of length 20 msec.
In this case there is five sections identified as Bjgrkefink and two sections identi-
fied as Munk. To decide which bird the file should be classified as it is therefore
necessary with some kind of post processing. In this case it is sufficient to count
the number of occurrences, but if the number of labels corresponding to Bjgrkefink
and Munk were equal it would be unclear which of the the birds one should choose.
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"features/Bjorkefink_22.rec"
0 9600000 pause -75.62
9600000 18000000  Bjorkefink  -61.97
18000000 28400000 pause -101.52
28400000 45600000 Munk -101.52
45600000 62400000 pause -78.87
62400000 71000000  Bjorkefink  -70.08
71000000 90400000 pause -100.89
90400000 102600000 Munk -100.89
102600000 109600000 Bjorkefink  -66.52

109600000 145400000 pause -72.24
145400000 153400000 Bjorkefink  -62.61
153400000 158600000 pause -69.89

Table 4.1: Example of REC-file after identification.

Because of this a more robust way of classifying is to count the number of seg-
ments recognized as each bird and pick the bird that occurs most frequent. This
information is then stored in a histogram including all C classes. As a result, this
method of classification enables the possibility of representing the N > 1 most
likely classes that matches the given file, i.e. most frequent occurring classes. This
can be implemented as an N-best list as output instead of just one single bird.

The system has also the possibility of using another classifier in addition to using
the results from the histogram directly. In this case, the histogram is normalized
such that the length of each file does not affect the result. Furthermore the his-
togram is applied as an input vector to a linear post-classifier with soft max output
nodes. The vector works as estimates of the posteriori probabilities

P, ={Py(w1|X),..., Pc(wc|X)}, where C is the number of classes, w is the models
and X is the sequence of MFCC vectors representing a input recording. This way
the output values from the classifier will represent another estimate of the a poste-
riori probabilities P, (w;|X) for each class. It follows that the chosen class is the
one with highest probability, eventually a ranked list of the N classes with highest
probability. This strategy resulted in a slightly better performance compared to
using the results from the histogram directly.
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4.3 Identification

Mathematically this classifier is described as:

2=QP, @.1)
ez(i) )
Bz(wi|§) = W, i=1,.,C 4.2)

Where z is an internal vector with dimension C, k is the number of segments
corresponding to a detected class and Q is a matrix with dimension C x C. This
matrix Q has to be trained [1]. More information about linear classifiers can be
found in [8].

I .(f
[ Start of file 4 _» Endoffile |

Figure 4.5: Identification network.
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4.4 Results and Discussion

Table 4.2 is a representation of the system performance for the basis system. The
result are presented as an 3-best list with the corresponding error rate for each case.
This enables the possibility of checking if the correct bird is among the three birds
with the highest likelihood after the identification. The results from using only the
histogram classifier and from using the linear post-classifier in combination with
the histogram are presented in this table. There is an improvement in the error
rate of about 1% when looking at the 1-best case, for the 2-best case there is an
improvement of about 1% and 3.5% for the 3-best case. These results will not be
discussed further, since the goal of this part of the thesis was to create a production
model and not focus on the system performance. The results presented in table 4.2
are the results obtained by the production model, but are identical to the results
from the initial system developed by NTNU.

80% Models 80% Models
Histogram Clasifer | Post-Clasifier
1 Best 24.603 23.810
Test Set 1 | 2 Best 15.079 15.079
3 Best 7.937 8.730
1 Best 24.409 22.835
Test Set 2 | 2 Best 18.898 11.811
3 Best 17.323 7.087
1 Best 23.387 18.548
Test Set 3 | 2 Best 16.129 12.098
3 Best 14.516 7.258
1 Best 11.628 9.302
Test Set 4 | 2 Best 6.202 6.202
3 Best 3.876 3.876
1 Best 15.447 17.886
Test Set 5 | 2 Best 8.943 10.569
3 Best 7.317 7.317
1 Best 19.895 18.476
Average | 2 Best 13.050 11.152
3 Best 10.194 6.854

Table 4.2: Error rates for the different test sets and average error rate, when using his-
togram classifier and linear post-classifier.
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4.5 System Structure

In this section the system structure will be presented. All the different scripts used
to build the system will be presented and the different HTK functions used in the
implementation will be explained. The process of commercializing the system into
a production model will also be part of this section.

Figure 4.6 represents the system structure, with the different scripts and the re-
lationship between them. The input and output from each script is also illustrated
by this figure.
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Figure 4.6: System structure.

Initially there was five separate scripts which together formed the whole system:

1. Script 1

This is the script performing the training of the models. It has been used
two different training scripts during this project. The first one had very poor
performance, consequently another script was provided by NTNU. This new
script had the same structure and applied the same HTK functions as the first
script. The reason why this script performed better is not clear at this point.

In the feature extraction the function HCopy were used. This function con-
verts the input, in this case, the waveform to MFCCs. To initialize identical
prototype GMMs by setting mean and variance equal to the global mean
and variance HCompV is used. In the re-estimation of the GMM models
HRest has been used. This is where the actual training of the models is
performed. This function re-estimates the initial/previous values using the
EM-algorithm. HHed is a function used to manipulate the GMMSs. This is
used to update the number of mixtures. The usual process is to modify a set
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of GMMs in stages using HHed and then re-estimating the parameters of
the modified set using HRest after each stage. In this script it is possible to
adjust the number of mixtures used and also the number of iterations in the
EM-algorithm for each number of mixtures.

Input to the script is a file list containing all the names and locations of
the audio files used for training, a MLF-file containing information about
the labeling of each audio file, a list of all classes (Bjorkefink, Blaameis, ... ,
pause), the files containing the model-parameters and their initial values and
a configuration file where the sourceformat, target, segment length, window
size, window type and number of coefficients is set.

2. Script 2

This is the script performing the Viterbi-decoding. This script takes the
identification network, a file list including the names and locations of all the
files included in the test set, a dictionary, the trained models from program
1, a list of all legal classes and a configuration file as input. To build the
identification network the function HParse is used. To perform the actual
decoding the HVite function was used. HVite matches the input audio file
against the identification network and produces a transcription. In this case
the output is a REC-file.

. Script 3

This script generates the histogram mentioned in section 4.3. This was ini-
tial written in Matlab, and has been converted to a Perl script. This script
takes the REC-file obtained by program 2 as input and creates the mentioned
histogram. A normalized version of this histogram is the output if it is cho-
sen to use the linear classifier. The histogram can also be used as a classifier
directly, in this case the output will be a N-best list representing the most
frequent occurring classes.

This script is used to calculate a normalized histogram for REC-files cor-
responding to both training sets and test sets. The histograms calculated
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for training sets are used in the training for the post classifier, and the his-
togram calculated for test sets can either be used as labels or input to the
post-classifier.

Figure 4.7 and 4.8 illustrates how the histogram script works. Figure 4.7(a)
is the REC-file associated with a file containing song from a Gransanger.
From this REC-file it is seen that this file has been recognized as tree dif-
ferent birds, namely Gransanger(6), Lovsanger(11) and Munk(13). Figure
4.7(b) represents the corresponding histogram which displays the duration
of each recognized bird in msec. The number on the x-axis corresponds to
what place the affected birds have in the class list. In the same way figure
4.8(a) and 4.8(b) represents a REC-file with the corresponding histogram. In
this REC-file there is only one bird recognized, consequently there is only
one bar in the histogram plot. For cases like this there is no need for addi-
tional processing.

4. Script 4

This is the training script of the linear post-classifier. The script was ini-
tially written in Matlab, and has been converted to a Perl script. The input
to this classifier is the normalized histogram from program 3. The output is
the matrix Q mentioned in equation 4.1.

5. Secript 5

This script is the post-classifier, and has also been converted from Matlab
to Perl. The normalized histogram and the trained Q matrix from script 4
are input. The output is a vector of probabilities, one value for each of the
classes. These probabilities tells which bird most likely was represented in
the given audio file.

More information about the different HTK commands and HTK in general can be
found in [9].
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In the initial system developed by NTNU these five scripts were implemented in-
dividually. To begin with the focus was on getting a functioning system. This was
naturally since the system started out as a feasibility study. When it became clear
that the system worked well enough to proceed with the project, the focus shifted
to commercializing the system and improving the system performance. A part of
this process and the focus of this part of the thesis was to convert all scripts to Perl
code, and restructuring them.

After converting all the scripts to Perl code and put them together as a complete
system, this resulted in three scripts compared to the initial five. The goal was to
create a simple and straightforward structure. This resulted in one script taking
care of the training process consisting of script 1. Another script is handling the
whole identification process. This script combines script 2,3 and 5. The last script
is the training script for the post-classifier and combines script 2,3 and 4. All the
three scripts can be found in appendix A,B and C (also included as attachments).

The reason why there is one separate script performing the training of the lin-
ear post-classifier, is because the script is dependent on doing an identification
with the training data. As seen in figure 4.6 the input to this script is the normal-
ized histogram from the mentioned identification. To perform the identification in
the first place the training script has to create the models going to be used in the
identification.
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“features/Gransanger_8.rec"
@ 22000000 pause -74.423302
22000000 38400000 Gransanger -96.915222
38400000 43400000 Lovsanger -105.328690
43400000 60000000 Gransanger -97.242882
60000000 65200000 Lovsanger -104.869881
65200000 77800000 Gransanger -94.947716

77800000 113000000 pause -64.549911
Gransanger -95.
Lovsanger -1@6.
Gransanger -94.
Lovsanger -103.
Gransanger -92.
Lovsanger -101.
Gransanger -96.
Lovsanger -104.
Gransanger -97.

113000000 131600000
131600000 136400000
136400000 150600000
150600000 162400000
162400000 170200000
170200000 183200000
183200000 198000000
198000000 203000000
203000000 208800000
208800000 262600000
262000000 273200000
273200000 306800000
306800000 312800000
312800000 357400000
357400000 375800000
375800000 393600000
393600000 407000000

877617
995148
426048
516815
576035
383636
794891
247551
692528

pause -71.315475

Gransanger -94.

728294

Lovsanger -99.348923

Gransanger -93.

838799

pause -71.366447

Gransanger -96.

892570

Munk -106.170471
pause -75.914391

(a) Rec-file
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Figure 4.7: Rec-file and corresponding histogram for a Gransanger file.
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"teatures/Bjorketink_5.rec”

@ 21200000 pause -56.481956

21200000 30000000 Bjorkefink -66.939262
30000000 96200000 pause -57.100235
96200000 105000000 Bjorkefink -61.741383

105000000
182000000
150600000
263200000
272000000
322800000
331800000
388400000
397000000

300

182000000
190600000
263200000
272600000
322800000
331800000
388400000
397000000
427400000

pause -55.012318
Bjorkefink -62.302761
pause -54.472038
Bjorkefink -61.761753
pause -67.229744
Bjorkefink -64.6206370
pause -61.584763
Bjorkefink -69.598885
pause -63.503448

(a) Rec-file

250

200

150

Duration

100

50

(b) Histogram

Figure 4.8: Rec-file and corresponding histogram for a Bjgrkefink file.
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Adaptation System

This chapter is a presentation of the experiments performed with regards to adapt-
ing more training data. This is done to improve the already existing models
achieved by the basis system. Section 5.1 gives a general description of the adap-
tation process and typical usage of this technique. Further section 5.2 describes
the approach chosen in this thesis and the difference from a typical adaptation ex-
periment. Finally the results from the experiments are presented and discussed in
section 5.3.

5.1 Adaption Overview

Because of the similarities in the treatment of bird song and speech, the adaptation
process is described by looking at speech recognition. Within speech recognition
speaker adaptation is widely used. The goal of this process is to modify a speakers
acoustic model given the speakers acoustics characteristics by introducing new
training data specific to this speaker. This is an approach that tries to deal with
speaker specific variations as speaking styles and accents. The goal of the speaker
adaptation is to reduce the mismatch between the models and the test data. It
is normal to distinguish between supervised and unsupervised adaptation. For
supervised adaptation the labeling of the adaptation data is known. This is not
the case for the unsupervised case were the labeling of the adaptation data has
to be estimated, i.e. using the recognition output. There exist several methods
for speaker adaptation. Some of the most common methods are MAP, MLLR
and VTLN. These methods will not be discussed further in this thesis, but more
information about them and the adaptation process in general can be found in [10]
and [11].
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5.2 Adaptation Experiment

This part is related to the adaptation approach chosen in this thesis. The goal is to
improve already existing models by adapting additional data to the initial training
sets. This is different from what is seen as a typical adaptation situation described
in 5.1 were the goal is to adapt the models to the different birds/speakers. The goal
of this experiment is to improve the overall system performance by adapting more
data. This data is not directed against any birds in particular, but representing all
birds. This is an effort of trying to improve the system performance by increasing
the amount of training data and hence get better models. The goal of this experi-
ment is to find out if this process can be done automatically, by using the output
from the system to label the data. This represents an unsupervised adaptation pro-
cess mentioned in section 5.1.

As mentioned in chapter 3 the database is divided into 5 different sets which is
put together to form training and test sets. The adaptation experiment where the
adaptation data is going to be labeled automatically is implemented by using 60%
of the total database for training instead of 80%. This way 20% of the database
is set aside for testing and another 20% for the actual adaptation. The automatic
labeling is performed by the histogram classifier. Still, there are five different par-
titions. The only difference from the original setting is that a part of what used to
form the training set is now used as data going to be adapted. Consequently, the
adaptation and the test sets are the same, but for each training set it is used adap-
tation and test sets that are different from each other. Figure 5.1 represents one
partition of the data used in this experiment. By doing the adaptation experiment
with the manually labeled data the results will be the same as in section 4.4 and
represented in table 4.2.
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5.2 Adaptation Experiment

Data Set 1

Training Data Set 2

Data Set 3

Figure 5.1: Example of partitioning of the database used in the adaptation experiment.

Adaptation

Testing
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The adaptation experiment when the adaptation data is labeled automatically is
conducted this way:

1. Train models with the 60% data sets.

2. Run the identification procedure on the generated models from step 1 with

the adaptation sets, and use the histogram classifier to label each file.

. Use the resulting REC-files from the identification in step 2 together with the

results from the histogram classifier to form new MLF-files. This is done by
setting the segments in the REC-file which is identified as something else
than the classifier says to "unknown". This way these segments will not be
a part of the data that will be adapted to the existing training data. Labels
which are not in the class list given to HTK will simply be ignored.

. Form new training sets consisting of the 60% training sets combined with the

20% adaptation sets, except the segments that are discarded. These training
sets will contain between 60% - 80% of the total database dependent on how
much of the adaptation sets that will be set to "unknown". The new training
sets needs a new MLF-file and list-file. The MLF are formed by joining the
MLF from step 3 with the MLF corresponding to the initial 60% training
sets. The list is formed by joining the list used for the 60% training sets with
the list for the adaptation sets.

. Train models with the new data sets from step 4.

. Run the identification procedure on the new models with the test sets, and

use the histogram classifier to label each file.

. Finally compare the results when doing the identification on the 80% mod-

els, the 60% models and the (60+20)% (adaptation) models.
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5.3 Results and Discussion

This section is a presentation of the results obtained by the different experiments
performed with regards to adaptation. The resulting discussion related to the out-
come of these experiments are also presented here.

80% 60% (60 +20)%

Models Models Models

1 Best | 24.603 | 24.603 | 28.571

Test Set 1 | 2 Best | 15.079 | 16.667 18.254
3Best | 7.937 | 14.286 12.698

1 Best | 24.409 | 24.409 | 23.622

Test Set 2 | 2 Best | 18.898 | 16.535 17.322
3 Best | 17.323 | 15.748 15.748

1 Best | 23.387 | 30.645 37.903

Test Set 3 | 2 Best | 16.129 | 23.387 | 27.419
3 Best | 14.516 | 20.968 | 23.387

1 Best | 11.628 | 23.256 | 22.480

Test Set4 | 2 Best | 6.202 | 12.403 13.178
3 Best | 3.876 | 9.302 10.078

1 Best | 15.447 | 20.325 | 22.764

Test Set5 | 2 Best | 8.943 | 13.821 13.008
3 Best | 7.317 | 10.569 10.569

1 best | 19.895 | 24.648 | 27.068

Average | 2 Best | 13.050 | 16.563 17.837
3 Best | 10.194 | 14.175 14.496

Table 5.1: Error rates for the different test sets and average error rate.
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60%
Models
1 Best | 24.194
Adaptation Set 1 | 2 Best | 16.935
3 Best | 13.710
1 Best | 21.429
Adaptation Set 2 | 2 Best | 15.873
3 Best | 8.730
1 Best | 15.504
Adaptation Set 3 | 2 Best | 7.752
3 Best | 5.426
1 Best | 27.642
Adaptation Set 4 | 2 Best | 15.447
3 Best | 12.195
1 Best | 25.197
Adaptation Set 5 | 2 Best | 19.685
3 Best | 16.535

1 Best | 22.793
Average 2 Best | 15.139
3 Best | 11.319

Table 5.2: Error rates for the different adaptation sets and average error rate.

Table 5.1 is a comparison of the results obtained by doing identification with the
same test sets with different models. Were the 80% models refers to models trained
with 80% of the available data, while the 60% models refers to the models trained
with 60% of the available data and the (60 + 20)% models refers to the models
trained with the 60% training sets in addition to data from the adaptation sets auto-
matically labeled by the system. These models are the adaptation models obtained
by following the steps on the previous page. What can be seen from this table
is that the results from the 80% models serves as an upper bound on the system
performance. The average error rate is about 7% higher for the adaptation models
compared to the 80% models when looking at the 1-best case. The difference is
about 5% for the 2-best case and 4.5% for the 3-best case. The adaptation models
also achieve a worse performance than the 60% models with an increase in the
error rate of about 2.5% for the 1-best case.

Table 5.2 shows the results from the identification performed with the adaptation
sets on the 60% models, in other words this is a measure of how well the labeling
of the new training data has been done. The reason why these results are different

38
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from the results from the test sets on the 60% models is that the different sets are
recognized on different models. From this table it seen that approximately 23% of
the data going to be adapted gets misclassified.

Another observation is that the performance varies widely for the different test
sets in table 5.1 and adaptation sets in table 5.2. By looking at the adaptation
models in table 5.1 it is over 15% higher error rate for test set 3 compared to test
set 4 when looking at the 1-best case. In the same way there is a 12% difference
between adaptation set 3 and 4. This implies that the variation in the bird song and
the quality of the recordings has very great influence on the system performance.
This shows that it is very important to have good recordings, and indicates that the
process of adapting more data automatically can be difficult to implement without
a quality control of the adapted data. This will be especially important for user
submitted recordings, which may be of very bad quality dependent on surround-
ings and recording device among other things. There is reason to believe that this
sensitivity will decrease with increasing amount of training data, since the models
will be better when the data covers a greater area of the birds characteristics. With
the current system and available data it seems like being "lucky" with the input
recordings plays an important role in the performance. Based on this, one should
be careful about drawing firm conclusion from the results.

The goal of the adaptation experiment was to find a way of improving already ex-
isting models. In other words, the desired performance from the adaptation models
should have been between the performance of the 80% models which serves as an
upper measure of how well the system can perform, and the 60% models. For both
the 80% models and the 60% models all training data is labeled correctly. This is
not the case for the adaptation models, but with an error of labeling a file wrong in
the adaptation sets at approximately 23%, it is somewhat surprising that the per-
formance has not improved. This is an indication that the mistakes being made are
very damaging and that the system is sensitive to misclassifications. It looks like
the system performance is not good enough to do this adaptation automatically.
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Figure 5.2 shows how the new MLF-file has been manipulated after the adaptation
experiment. In this figure there is two different MLF-files corresponding to two
different input files. One of the files has been correctly classified as Bjgrkefink
and the other one has been misclassified as Rgdstrupe, while the correct bird is
Blameis. This figure is a good illustration on one of the issues related to this au-
tomatic adaptation of data. From the file which has been classified correctly, it
is seen that three segments are still set as unknown. This is reducing the poten-
tial amount of adaptation data. For the other file most segments has been set as
unknown, while three segments are set as Rgdstrupe. These three segments are
further included in the training of a new Rgdstrupe model instead of a Blameis
model. This is affecting the Rgdstrupe model by including Blameis attributes, and
it is affecting the Blameis model by making the Rgdstrupe model more alike the
Blameis model.

Another reason that may contribute to the bad performance is a mismatch between
the labeling of the input file and the recognized segment borders in the REC-file.
This will potentially have an impact on the training of the new models. After the
identification the resulting REC-file list all recognized segments with start and stop
time. If the identification has been done badly it is possible to have overlapping
segments compared to the actual recording. The result of such a mismatch can for
example be inclusion of pause data in the class of an arbitrary bird class. Poten-
tially this can lower the quality of the models. The pause model can be affected
by including bird song in the training of a new adapted model. The different bird
models can be affected by including data, initially labeled as pause in the same
process.
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"features/Bjorkefink_2_0.rec"

@ 9400000 pause -81.614708

9400000 19800000 Bjorkefink -73.652580
19800000 33000000 Maltrost -76.248642
33000000 54200000 pause -80.392395
54200000 60400000 Bjorkefink -76.197441
60400000 79600000 pause -75.257057
79600000 88200000 SvarthvitFluesnapper -94.751534
88200000 118600000 Munk -86.548225
118600000 127800000 Bjorkefink -79.250839
127800000 176400000 pause -76.212547
176400000 184400000 Bjorkefink -85.429817
184400000 228400000 pause -77.513878
228400000 243400000 Bjorkefink -76.090454

"features/Blaameis_3.rec"

@ 9800000 pause -81.912834

9800000 16000000 Rodstjert -112.091080
16000000 20400000 Granmeis -80.575623
20400000 29800000 pause -80.136269
29300000 39200000 Blaameis -98.042816
39200000 45400000 Rodstrupe -93.013847
45400000 59200000 pause -71.895691
59200000 60800000 Trekryper -109.509796
60800000 66800000 Blaameis -101.070763
66300000 76800000 Rodstrupe -96.106300
76800000 84200000 Lovsanger -98.736397
84200000 96200000 pause -86.098885
96200000 98200000 Trekryper -107.750565
98200000 101600000 Lovsanger -113.198914
101600000 104400000 Granmeis -82.842827
104400000 118800000 pause -85.256821
118800000 121400000 Rodstjert -115.725449
121400000 123400000 Lovsanger -111.515770
123400000 130800000 Rodstrupe -90.018791
130800000 149000000 pause -75.267456

"features/Bjorkefink_2_0.lab"

@ 9400000 pause -81.614708

9400000 19800000 Bjorkefink -73.652580
19800000 33000000 unknown -76.248642
33000000 54200000 pause -80.392395
54200000 60400000 Bjorkefink -76.197441
60400000 79600000 pause -75.257057
79600000 88200000 unknown -94.751534
88200000 118600000 unknown -86.548225
118600000 127800000 Bjorkefink -79.250839
127800000 176400000 pause -76.212547
176400000 184400000 Bjorkefink -85.429817
184400000 228400000 pause -77.513878
228400000 243400000 Bjorkefink -76.090454
“features/Blaameis_3.lab"

0 9800000 pause -81.912834

9800000 16000000 unknown -112.091080
16000000 20400000 unknown -80.575623
20400000 29800000 pause -80.136269
29800000 39200000 unknown -98.042816
39200000 45400000 Rodstrupe -93.013847
45400000 59200000 pause -71.895691
59200000 60800000 unknown -1089.509796
60800000 66800000 unknown -101.070763
66800000 76800000 Rodstrupe -96.106300
76800000 84200000 unknown -98.736397
84200000 96200000 pause -86.098885
96200000 98200000 unknown -107.750565
98200000 101600000 unknown -113.198914
101600000 104400000 unknown -82.842827
104400000 118800000 pause -85.256821
118800000 121400000 unknown -115.725449
121400000 123400000 unknown -111.515770
123400000 130800000 Rodstrupe -90.018791
130800000 149000000 pause -75.267456

Figure 5.2: Manipulation of MLF-files
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As an effort to investigate why the adaptation do not achieve the desired improve-
ment, it is conducted a more thorough analysis of the individual performance of
the different birds, trying to find a trend in which species performs good and bad.
Table 5.3 represents the number of misclassifications for each bird summed up
over all five test sets, and table 5.4 represents the corresponding error rate. What
is seen from these tables is the same trend as for the overall performance shown in
table 5.1. Table 5.5 represents both number of misclassifications and error rate for
the adaptation sets on the 60% models.

It would then be of interest to look at the results obtained by the adaptation sets
on the 60% models and compare these results against the ones obtained by the test
sets on the 60% and (60+20)% models. What is expected from this comparison is
that species performing good for the adaptation sets will have the greatest increase
in performance when comparing the result from the 60% and (60+20)% models.
Species performing badly for the adaptation set are expected to come badly out of
this comparison. This is because the good classes will have more correct labeled
training data and the poor classes have more misclassifications resulting in wrong
labeling. Despite this, it is difficult to see a clear trend substantiating this theory.
An explanatory reason for this is that the database is too small, and the amount of
adaptation data is too small to achieve the desired improvement.
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Bird Number of Files Misclassifications
80% 60% (60+20)%
Models | Models Models
Bjgrkefink 19 5 5 8
Blameis 30 6 9 11
Bokfink 18 2 2 3
Dompap 14 6 7 8
Granmeis 21 6 9 9
Gransanger 30 1 3 1
Grgnnfink 27 0 0 1
Gulspurv 23 7 13 14
Hagesanger 24 0 4 2
Jernspurv 28 2 2 2
Lgvsanger 33 12 9 16
Maltrost 34 11 11 11
Munk 41 5 7 6
Rgdstjert 21 3 4 6
Rgdstrupe 32 3 4 6
Sivspurv 25 7 11 9
Svarthvit Fluesnapper 76 26 28 28
Svartmeis 31 12 12 15
Svarttrost 50 4 3 0
Toppmeis 21 7 10 9
Trekryper 31 2 2 5

Table 5.3: Number of misclassification related to each bird for the test sets.
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Bird Number of Files Error Rate
80% 60% | (60+20)%
Models | Models Models
Bjgrkefink 19 26.3 26.3 42.1
Blameis 30 20.0 30 36.7
Bokfink 18 11.1 11.1 16.7
Dompap 14 42.9 50.0 57.1
Granmeis 21 28.6 429 429
Gransanger 30 33 10.0 3.3
Grgnnfink 27 0.0 0.0 3.7
Gulspurv 23 30.4 56.5 60.9
Hagesanger 24 0 16.7 8.3
Jernspurv 28 7.1 7.1 7.1
Lgvsanger 33 36.4 27.3 48.5
Maltrost 34 32.4 32.4 324
Munk 41 12.2 17.1 14.6
Rgdstjert 21 14.3 19.0 28.6
Rgdstrupe 32 94 12.5 18.8
Sivspurv 25 28.0 44.0 36.0
Svarthvit Fluesnapper 76 34.2 36.8 36.8
Svartmeis 31 38.7 38.7 48.4
Svarttrost 50 4.0 6.0 0.0
Toppmeis 21 333 47.6 42.9
Trekryper 31 6.5 6.5 16.1

Table 5.4: Error rate related to each bird for the test sets.
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60% Models
Bird Number of Files | Misclassifications | Error Rate
Bjgrkefink 19 6 31.6
Blameis 30 8 26.7
Bokfink 18 2 11.1
Dompap 14 8 57.1
Granmeis 21 5 23.8
Gransanger 30 6 20.0
Grgnnfink 27 1 3.7
Gulspurv 23 9 39.1
Hagesanger 24 3 12.5
Jernspurv 28 2 7.1
Lgvsanger 33 14 42.2
Maltrost 34 12 353
Munk 41 3 7.3
Radstjert 21 4 19.0
Rgdstrupe 32 2 6.3
Sivspurv 25 10 40.0
Svarthvit Fluesnapper 76 24 31.6
Svartmeis 31 11 35.5
Svarttrost 50 3 6.0
Toppmeis 21 9 42.9
Trekryper 31 1 32

Table 5.5: Number of misclassifications and corresponding error rate to each bird for the

adaptation sets.
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To illustrate this it is chosen to look at the five birds with the best results from
the adaptation sets shown in table 5.5, and compare them against the same birds
from table 5.3 and 5.4. This comparison is summarized in table 5.6 with error
rates and number of misclassifications in parenthesis. The most important in this
table is to compare column three and four. Since the table illustrates the birds with
the best performance there are initially few misclassifications done, and not that
much room for improvements. This means that it is difficult to draw definitive
conclusions from these results. Still the number of misclassification for Trekryper,
Grgnnfink and Rgdstrupe has increased and this is surprising with regards to how
well the results from the adaptation sets are. This means that most of the files
corresponding to these birds have been labeled correctly. The result is particularly
surprising for Trekryper and R@dstrupe where the number of misclassifications are
relatively high with error rates of respectively 16.1% and 18.8% for the adaptation
models. For Grgnnfink the number of misclassifications has gone from zero to
one. One should not read too much into that, since it is naturally that the models
change when introducing new data and the error rate is still low with 3.7%.

In the same way table 5.7 illustrates the five birds with the poorest performance
from the adaptation sets. The expected outcome for these birds is a smaller im-
provement when comparing column 3 and 4 than for the birds with higher perfor-
mance. Since the overall improvement is negative for the adaptation models, it
is expected that the birds having the fewest correct classifications for the adapta-
tion sets are the ones that performs worst. From the table it is seen that Dompap,
Lgvsanger and Sivspurv gets a decline in performance. For Lgvsanger the number
of misclassifications has increased from 9 to 16, which is an increase in the error
rate of almost 44%. However, both Toppmeis and Sivspurv gets a decrease in the
number of misclassifications. It is therefore difficult to draw a conclusion between
which birds have the most correct labeled adaptation data, and the birds with the
greatest improvement after the adaptation experiment. When Sivspurv with just
40% of its adaptation data correct labeled gets an increase of 8% it becomes evi-
dent that the system is very unreliable and that it is very important to be "lucky"
with the adapted data. In general we can see that the changes in performance be-
tween the 60% models and the (60+20)% models are greater in table 5.7 compared
to table 5.6. This can probably be explained by the fact that there was a lot more
misclassifications for the 60% models in this case.
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Bird Adaptation Test Test
60% Models | 60% Models | (60+20)% Models
Trekryper 3.2 (1) 6.5 (2) 16.1 (5)
Grgnnfink 3.7(1) 0.0 (0) 3.7 (1)
Svarttrost 6.0 (3) 6.0 (3) 0 (0)
Rgdstrupe 6.3(2) 12.5 (@) 18.8 (6)
Jernspurv 7.112) 7.1(2) 7.1(2)

Bird Adaptation Test Test
60% Models | 60% Models | (60+20)% Models
Dompap 57.1 (8) 50.0 (7) 57.1 (8)
Toppmeis 42.9 (9) 47.6 (10) 42.9 (9)
Lgvsanger | 42.2 (14) 27.3(9) 48.5 (16)
Sivspurv 40.0 (10) | 44.0(11) 36.0 (9)
Gulspurv 39.1 (9) 56.5 (13) 60.9 (14)

Table 5.6: Error rate and number of misclassification for the five birds performing best for
the adaptation sets.

Table 5.7: Error rate and number of misclassification for the five birds performing worst
for the adaptation sets.
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As an attempt to remove some of the segments that has been misclassified in the
REC-file corresponding to the adaptation sets, each bird class are given a log-
likelihood threshold shown in table 5.8. In the REC-files there is a corresponding
log-likelihood value to each identified class as described in chapter 4. If this value
is below the given birds threshold, this segment is set to unknown and will not be
a part of the adapted data when training the adaptation models. The reason why
this is done is to remove the most severe mistakes, which is believed to corrupt the
models the most. The corresponding log-likelihood to each class in the REC-file
is an indication on how reliable the identification of this class has been done. This
is the reasoning behind setting these thresholds.

These thresholds were found by plotting the log-likelihood values associated with
both the adaptation sets from running the identification on the 60% models and
running the identification with the same training sets used to train these 60% mod-
els. It is only the log-likelihoods with the lowest scores that is included in the
histograms, since these are the most likely to have been misclassified. Since the
training data is labeled it is possible to plot only the correct classifications from
these sets. This is not the case for the adaptation sets where the histogram classi-
fier has to be trusted. A histogram plot is generated for each bird specie with data
from each of the five training and adaptation sets displayed in the same figure. As
a result of this it is possible to set a threshold if the log-likelihoods corresponding
to the adaptation sets is different from the ones corresponding to the training sets
which is known to be correct classifications.
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Bird Threshold
Bjgrkefink Keep all
Blameis -95
Bokfink -103
Dompap Remove all
Granmeis Keep all
Gransanger -100
Grgnnfink -100
Gulspurv -110
Hagesanger Keep all
Jernspurv -110
Lgvsanger -113
Maltrost -105
Munk -108
Rgdstjert -108
Rgdstrupe -105
Sivspurv Keep all
Svathvit Fluesnapper -108
Svartmeis -107
Svarttrost -105
Toppmeis -98
Trekryper -96

Table 5.8: Log-likelihood thresholds corresponding to each of the birds.
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Figure 5.3 is an example of such a histogram plot for the Gransanger class. All five
test sets are plotted in the same figure making it easier to see an overall trend. It is
desired to set a threshold which is applicable for all sets. The goal is to set a thresh-
old excluding the segments from the adaptation sets with the lowest score, but also
falling outside of the region the log-likelihoods from the training sets span over
since the segments included in the histograms for the training sets are all correct
classifications. These values are therefore an indication on what log-likelihood
values represents good classifications. In this particular case for the Gransanger
the threshold is set to -100. This choice is illustrated well by looking at set 2 in
figure 5.3, where some segments from the adaptation set are excluded while keep-
ing all of the training segments.

By comparing the results from the identification done with and without the thresh-
olds as shown in table 5.9, it is possible to see that the system performance has
slightly improved when using the thresholds. The goal of the thresholds was to
eliminate the recognized segments with the lowest log-likelihood scores and hence
the most unreliable segments. There is an improvement of about 1.5% for the av-
erage error rate for the 1-best case and an improvement of about 1% for the 2-best
and 3-best case. With these thresholds applied there has not been removed many
segments, so that the improvement is small is not surprising. Despite this, the im-
provement shows that the misclassifications in the adaptation data is one of the
reasons why this adaptation experiments provides such bad results.

It seems like the combination of too little available data and not good enough sys-
tem performance makes the process of automatically adapting data very difficult
to perform in a satisfactory manner. In fact the adaptation experiments have led
to poorer results compared to the results obtained by the 60% models. This is
mainly a result of the limited access to data. As a result of this the system is very
sensitive to misclassified adaptation data. This is illustrated well by the threshold
experiment. There is reason to believe that this adaptation process will achieve
better results with a larger database. This is supported by the fact that the results
obtained by the 80% models are that much better. This proves that an increase
in correct labeled training data results in better models and better system perfor-
mance. This indicates that the adaptation process should be performed manually
with the current system performance and access to data. It has not been done any
experimenting with the partition of data with respect to training/testing/adaptation.
It is possible that another relationship here could have gotten better results, but the
main problem is the small database.
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(60+20)% Models | (60+20)% Models
No Thresholds Thresholds
1 Best 28.571 28.571
Test Set 1 | 2 Best 18.254 16.666
3 Best 12.698 12.698
1 Best 23.622 23.622
Test Set 2 | 2 Best 17.322 17.322
3 Best 15.748 16.535
1 Best 37.903 31.451
Test Set 3 | 2 Best 27.419 25.806
3 Best 23.387 20.967
1 Best 22.480 25.581
Test Set 4 | 2 Best 13.178 13.178
3 Best 10.078 9.302
1 Best 22.764 18.699
Test Set 5 | 2 Best 13.008 12.195
3 Best 10.569 8.130
1 Best 27.068 25.585
Average | 2 Best 17.837 17.034
3 Best 14.496 13.527

Table 5.9: Error rates for the different test sets and average error rate, when comparing
identification performed with and without log-likelihood thresholds.
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Chapter

Conclusion

6.1 Basis System

The initial system has been adapted to a commercial setting by converting all
scripts to Perl code and put them together to a complete system. In this process
the system has been changed from consisting of five different individual scripts,
to a more straightforward and intuitive system consisting of three different scripts.
In this new structure one script is aimed at the training process, another one for
the identification process and a third one dealing with the training of the linear
post-classifier.

6.2 Adaptation System

By performing the identification with the adaptation models there are an 2.5% in-
crease in the error rate compared to when using the 60% models. Compared to
the 80% models there are an 7% increase in the error rate. The desired outcome
of adapting data was to get models lying between the 60% and 80% models with
regards to performance. This is not the case, and shows that the system is very
sensitive to misclassifications in the adapted data. With the current performance
the amount of misclassified segments in the adaptation data lies around 23%. With
this accuracy on the labeling of the new training data it is somewhat surprising that
the the adaptation models performs this bad. It is an indication on that the database
is too small.

Another thing shown by the identification results is that the different test sets gets
very different results. This is common for the results obtained by all the models.
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Chapter 6. Conclusion

It seems like the quality of the recordings are very crucial for the system perfor-
mance, and it indicates that it is important to be "lucky" with the input recordings
to achieve the best results.

If adaptation is going to be carried out in a way that helps improve the system
performance this has to be done manually, by going through the adaptation data
making sure that it is labeled correctly. In a commercial setting where this sys-
tem is implemented as an application for smart phones the adaptation data can be
recordings from the users of the applications. This data can be taken in different
environments and be of bad quality. This quality control will be very important
with regards to the systems sensitivity to different recordings. After collecting
enough data and labeled it manually, the adaptation process can most likely be
done automatically because of a more robust system. When the database gets
larger the system will not be as sensitive to misclassifications. This is proven by
the fact that the 80% models gets better results than the 60% models. This also
substantiates the approach of making better models by adding more training data,
and shows that a major problem is related to the misclassifications.

The threshold experiment also substantiated the fact that the system is sensitive
to misclassifications. The goal of this experiment was to eliminate some of the
most severe misclassifications from the adaptation data. When introducing the
thresholds the system performance increased slightly. The thresholds did not ex-
clude very many segments corresponding to each bird and therefore it was not
expected with a great improvement, but the purpose was rather to prove that the
automatic labeling was not done sufficiently well, and that the most sever mistakes
were critical for the result.

All the experiments performed with regards to adaptation are showing that the
current system with regards to performance and the amount of data which is cur-
rently available is not suited for automatically adaptation of training data. It is
possible that there could have been a better partition of the data with regards to
training/test/adaptation, but the bottom line is that the database is too small to per-
form this adaptation in a sufficient way.
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6.3 Further Work

6.3 Further Work

Based on this report and the work performed in this thesis it is apparent that there
are several improvements that can be done to improve the system. The most im-
portant thing will be to collect more data. This data should cover all the different
species and different recording conditions. Ideally, the recordings should come
from different sources and situations. All this to make sure that the recordings
capture a lot of different aspects of the birds characteristics, in contrast to having a
lot of data which is almost similar. This will make the corresponding models more
robust.

The collected data then has to be labeled in order to be used in training of the
models. Based on the results achieved by the adaptation experiments in this report
it is evident that this has to be done manually. After a large enough amount of data
has been collected the system performance will increase and the need of manually
labeling will diminish. It is difficult to give an exact number of how much more
data is needed before the labeling can be done automatically. In the process of
labeling there is also room for improvements in splitting up the "pause" class into
background noise and other noise sources when this is present.
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Appendix

A: TrainingProcess.pl

#!/usr/bin/perl

use Getopt::Std;

# Directory structure for training

$d="./config"; # input data files , part of
installation
$w="./work_60_20_threshold_"; # directory for

generated index files ,
# edit scripts, etc.

$t="./tools"; # sub—scripts , part of installation

$m="./models_60_20_threshold_"; # output HVM root
directory

$f="features"; # feature file root directory

# Various files needed
#$PhoneMIf="1ists /Kvirrevitt_new .mlf"; # Phone level MLF from initial

segm .

$PhoneMIf="MLF/ train5adaption5_threshold . mlf";

$list="1lists/train5.scp"; # database information file

#$Proto="1lists /proto_sl_ml_dc.pcf"; # Specifications for the HVM
prototype

$Proto="lists /proto.pcf"; # Specifications for the HMM prototype
# $Hcomp_conf="$d/hcompv_mfc.cfg";

# $Hrest_conf="$d/herest_mfc.cfg";
$Hcomp_conf="$d/hcompv_mfc.cfg";

$Hrest_conf="8$d/herest_mfc.cfg";

# Parameters for training

$nmix=1; # Number of mix components for
initialization

$maxmix=32; # Max number of mixture components

$moniterl =20; # Iterations of HInit and HRest (1
mix )

$moniter2=40; # Iterations of HRest (> 1 Gaussian
mix )

# Read initial MLF and directory to put models (optional)
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getopts ('p:’);
$partition=2;
if ($opt_p){S$partition=Sopt_p;}

# Check/create subdirectories ...

foreach $tmp ($t,$d) {die "Directory $tmp not found\n" unless (—-d S$tmp);}

$ENV{’PATH’} = "./$t".":".$SENV{ PATH’ }; # put tools directory
first in path

require (" $t/MMF_subs. pl"); # load common subroutine
libraries

require (" $t/common. pl");

$list="1lists/train"." $partition".".scp";

$m="$m"." $partition";

$Sw="$w"." $partition";

$Dict="$w/ Kvirrevitt.dict"; # Dictionary

$Phones="$w/ Kvirrevitt.lis "; # Class inventory
$Trainset="$w/trainset.scp"; # List of training files

# Then we are ready to start processing...

print "Trainmodels_Bootstrap started ", ‘date *,"\n";
goto skip; # restart the script by moving the skip label to the
# point where it stopped

skip: # start processing again here
foreach $tmp ($m,$w){&makedir($tmp) };

$cmd="cp $list $Trainset";
&run ("$cmd") ;

open (PHL," $PhoneMIf") |l die "Could not open $PhoneMIf\n";
Jophlist=();
while (<PHL>) {
chomp;
if ($_ =~ /A[\"\.\#]/) {next;}
($start ,$end, $phone)=split(’ ’);
$phone=~ s/M\s+//;
$phone=~ s/\s+$//;
$phlist {$phone}=$phlist {$phone}+1;
1
close (PHL) ;

open (PHN," >$Phones") |l die "Could not open $Phones\n";
open(DIC,">$Dict") Il die "Could not open $Dict\n";
foreach $phone (sort keys %phlist) {

if ($phone eq "sil"){next;}

print PHN "$phone\n";

print DIC "$phone $phone\n";
}
close (PHN) ;
close (DIC) ;
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$startDir=0;

print "HInit/HCompV based on initial segmentation\n";
H.

#

$srcdir="$m/statel_$startDir";
$tgtdir="$m/statel_$nmix";
&makedir ( $srcdir);
&makedir ($tgtdir);
open (PRTIN," $Proto") |l die "Could not open HVMM prototype spec file ,
$Proto for reading\n";
open (PRTOUT," >$w/ proto.pcf") Il die "Could not open HUM prototype spec
file , $Proto for writing\n";
while (<PRTIN>) {
chomp;
if ($_ =~ /"outDir/){
print PRTOUT "outDir: $srcdir\n";
} else {
print PRTOUT "$_\n";
}

}

close (PRTIN) ;

close (PRTOUT) ;

#$cmd="cat $Proto | sed ’s/proto\/ $srcdir2\/’ > $w/proto.pcf";
#print "$cmd\n";

#&run ("$cmd") ;

$cmd="$t/MakeProtoHMMSet $w/proto.pcf";

&run ("$cmd") ;

#&MkMacro ($ProtoMMF ," $srcdir /$Macro ") ;

# Initialize with a) global variance, b) <20 iterations of HInit
# For all phones in $Phones:

open (PHONES, " $Phones ") |l die "Could not open $Phones\n";
while (<PHONES>) {
chomp;
$Ph=$_;
$cmd="HCompV -A —C $Hcomp_conf -M $srcdir -S $Trainset $srcdir/$Ph
>> dump";

&run ("$cmd") ;

1
close (PHONES) ;

print "Baum-Welch reestimation using HRest\n";

#H.
#

$tgtdir="$m/statel_$nmix";
&makedir ($tgtdir);

# For all phones in $Phones:
open (PHONES, " $Phones") |l die "Could not open $Phones\n";
while (<PHONES>) {

chomp;

&run ("HRest —A =T 1 -w 2.0 —i $moniterl -1 $PhoneMIf -1 $_ -t "
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"—C $Hrest_conf -H $srcdir/$_ M $tgtdir -S $Trainset "
"$tgtdir/$_ >> dump");

1

close (PHONES) ;

$tgthmm="$tgtdir .mmf";

S&MKMMR2( $tgthmm , $Phones , $tgtdir ,A);

print "Training mixture monophones ".‘date ‘;
H.

#

sub monomixup {
local ($nmix , $sourcehmm , $targethmm , $phone) = @_;
&printfile ("$w/mix${nmix }.hed", "MU $nmix {x*.state[2-4].mix}");
# print " ...updating to $nmix mixtures in $targethmm\n";
&run ("HHEd -A -H $sourcehmm -w $targethmm $w/mix${nmix }.hed
"Modelnames/$phone ") ;
# print " ... finished ".‘date ‘;

"

}

$mmix=$nmix ;
$sourcedir="$m/statel_$ {nmix }";

while ($mmix < $maxmix) {

$newmix=2+$mmix ;
$targetdir="$m/statel_$ {newmix }";
&makedir( $targetdir);
$mmix=$newmix ;
print "training $targethmm for $newmix mixtures\n";
open (PHONES, " $Phones ") |l die "Could not open $Phones\n";
while (<PHONES>) {
chomp;
$targethmm="$targetdir/$_";
$sourcehmm="$sourcedir/$_";

# &run ("echo $_ > $w/temp");
&monomixup ($newmix , $sourcehmm , $targethmm , $_) ;
# &run ("rm —f $w/temp");

&run ("HRest —A -T 1 —i $moniter2 -1 $PhoneMIf -1 $_ -t
"—-C $Hrest_conf -H $targethmm -S $Trainset "
"-M $targetdir $targethmm >> dump");
}
close (PHONES) ;
$tgthmm="$targetdir .mmf";
S&MKMMR2( $tgthmm , $Phones , $targetdir ,"A");
$sourcedir=$targetdir;

}

print "TrainModels finished ", ‘date ‘;
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B: IdentificationProcess.pl

#!/usr/bin/perl
use strict;
use warnings;

use POSIX;

HEHHHHHHHHHHRHHHHHH R R H R AR R R R R R R

#—— Viterbi —decoding HTK:

HEFHHHHH AR R R R R R R R

# Choose number of mixtures and penalty for jumping between class models
my $mix = 32; my $wmix = "32";
my $wordpen = —-80; my $wp = "pm_80";

# Assuming gmm models are trained and placed in :
my @modeldirs = ("modelsl", "models2", "models3", "models4", "models5");

# Using the following configure file
my $cnfg = "mhj_20_mfc.cfg";

# and the following test sets
my @datasets= ("lists/testl.scp", "lists/test2.scp", "lists/test3.scp",
lists/testd .scp", "lists/test5.scp" );

# Class_list, dictionary and network must exist

my $cl_list = "class_pause_ny.list";
my $dict = "birds_ny.dict";

my $network = "birds_ny.net";

my $labmlf = "Kvirrevitt_ny.mlf";

# Establish folder to put rec—files

my $resultDir = "Results_hmm";
unless(—d "$resultDir") {system (" mkdir $resultDir");}
my $resultfile = $resultDir."/dummy.res";

system "rm $resultfile ";
system "touch $resultfile";

# Loop over the five training/test—set partitions of the data.
my $set = —1;
foreach my $modeldir ( @modeldirs) {

$set = $set +1;

my $setind = $set +1;
my $testset = $datasets[$set];
$modeldir = $modeldirs[ $set];

my $mmf = "$modeldir/statel_$mix .mmf";

print "speakerlist : $testset\n";

# printf "Results are placed in $recmlf and S$resultfile\n";
my $recmlf = $resultDir."/test". $setind."_".$wmix."_".$wp.".rec";

63




system "HVite —o N -C $cnfg -A -t 0.0 —s 0 —p $wordpen —-H $mmf -y
rec =S $testset —i $recmlf —w $network $dict $cl_list >>
$resultfile";

system "HResults —p -A -1 $labmlf $cl_list $recmlf >> $resultfile"”;

HEFHHHHH AR AR R R R R R AR AR AR

o Histogram program

HAHAHHHHHHHHHHHHHHHH R R R R R R R R

my $pm = 80;
my $mix = 32;
my $set = 4;
my S$type = ’test ’;
my $modelName;
my @modelList = ();
my $Nclass = 0;

my $classfile = ’class_pause_ny.list ’; # list of all legal classes
open(LIST," $classfile") Il die "Could not open $classfile for reading\n";
while (<LIST>) {

chomp;

$modelName = $_;
push (@modelList,$modelName) ;
$Nclass = $Nclass + 1;

}
close (LIST) ;

my $Nclass_birds = $Nclass — 1; # pause is not a valid class
my $Best_1 = 0;

my $Best_2 0;
my $Best_3 0;

for ($set = 1; $set <= 5; $set++){ #all five sets
my $recfile = "Results_hmm/test$set\_$mix\_pm\_S$pm.rec";
open (REC," $recfile") Il die "Could not open $recfile";

my $linel = <REC>; # first line, MLF line
my $linelen;

my $seglen;

my @sent = ();

my $start;

my $end;

my $label;

my $counter2 =
my $counterl
#$counterl = -1;

[
(.
—
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my
my
my
my
my
my
my
my
my
my
my

$tars?2 ;

$sind?2 ;

$sind_old2;

$title ;

@trec;

$scale = (20 * (10x%4));
@ frame_distr;
@file_class;

@num_hit = @file_class;
$length_trec = 0;
$jnum ;

while ($linel = <REC>){

chomp($linel);
$linelen = length($linel);
if ($linel =~ /\.rec\"/)
{
$sind_old2 = 0;
@trec = ();
$length_trec = 0;
$title = $linel;
$counterl = $counterl + 1; # count number of files
for (my $i = 0; $i < $Nclass; $i++){
$frame_distr[$i ][ $counterl] = 0;
my $str = S$title;
my $substr = $modelList[$i];
if (index($str, $substr) != —-1) {
$counter2 = $counter2 + 1;
$file_class[$counterl] = $i;
$num_hit[ $counterl] += 1;

}
}
elsif ($linelen > 4)
{

chomp ($linel);
($start , $end, S$label, ) = split(/ /,$linel); #
extracting info from rec—file
for (my $i = 0; $i < $Nclass; $i++){
if ($label eq $modelList[$i]){
$tars2 = $i; #comparing against list of
birds

1
$sind2 = floor($end / $scale); # end of file
$seglen = $sind2 — $sind_old2; #length of each recognized
bird
#$sind_old2 = $sind2;
my @ones = (1) x $seglen;
foreach (@ones) {
$ =% = $tars2;
$length_trec = $length_trec + 1;
1
push (@trec, @ones);
for (my $j = 0; $j < $Nclass_birds; $j++){
my S$counter_trec = 0;
for (my $i = $sind_old2; $i < $length_trec; Si++){
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if (S$Strec[$i] == $j){
$counter_trec = $counter_trec + 1;
1
}

$frame_distr[$j][ $counterl ] += S$Scounter_trec;

}
$sind_old2 = $sind2;

}

close (REC);

#

#——— Normalized Histogram -—————————————
H.

my @frame_distr_sum;
my @frame_distr_norm;

for (my $i = 0; $i <= S$counterl; S$i++){
$frame_distr_sum|[$i] = O;
for (my $j = 0; $j < $Nclass_birds; $j++){
$frame_distr_sum[$i] = $frame_distr_sum[$i] + $frame_distr
[$j108i]:
1
my $sum;
for (my $i = 0; $i <= $counterl; S$i++){
$sum = O0;
for (my $j = 0; $j < $Nclass_birds; $j++){
$frame_distr_norm [$j][$i] = $frame_distr[$j1[$i] /

$frame_distr_sum[$i];
$sum = $sum + $frame_distr_norm[$j][$i];

}

HEFHHHHHHHHHHHHHHHH AR R R R R B H AR R

o Classification

HEFHHEHHHHHH B R H R R R R R R R

3k

Importing relevant data ———————————

3+

for (my $i = 0; $i <= $counterl; S$i++){
$frame_distr_norm [ $Nclass_birds ][ $i] = 1;
}

my @Ttest = ();

for (my $i = 0; $i <= $counterl; S$i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
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$Ttest[$j1[$i] = O;
if ($file_class[$i] == $j){
$Ttest[$j1[$i] = $Ttest[$j1[$i] + 1;

}
}
}
#
#-————Subroutine matrix multiplication ————
H.

#

sub matrix_multiply {
my ($r_matl ,$r_mat2)=@_;
my ($r_product);
my ($rl,$cl)=matrix_count_rows_cols($r_matl);
my ($r2,$c2)=matrix_count_rows_cols($r_mat2);

die "matrix 1 has $cl columns and matrix 2 has $r2 rows>"
. " Cannot multiply\n" unless ($cl==$r2);
for (my $i=0;8i<$rl;$i++) {
for (my $j=0;$j<$c2;8j++) {
my $sum=0;
for (my $k=0;%k<$cl;Sk++) {
$sum+=$r_matl —>[$i ][ $k]=$r_mat2 —>[$k][$j];

}
$r_product —>[$i ][ $j]=%sum;
}
}
$r_product;

sub matrix_count_rows_cols {
my ($r_mat)=@_;
my $num_rows=@$r_mat;
my $num_cols=@{$r_mat —>[0]};
($num_rows , $num_cols) ;

my @w;
my $line;
my $i = 0;

my $textfile = "classificationMatrix$set.txt";

open (TEXT," $textfile") Il die "Could not open $textfile";

while ($line = <TEXT>)({
chomp($line);

(my $classl, my $class2, my $class3 , my $class4, my $class5, my
$class6 , my $class7 , my $class8, my $class9, my$classlO0, my
$classll, my $classl2, my $classl3, my $classl4, my $classl5,
my $classl6, my $classl7, my $class18, my $classl9, my
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$class20, my $class21, my $class22 ) = split(/ /,$line);

#print "\n";

$Sw[$i][0] = $classl;
Swl$i][1] = $class2;
Sw[$i][2] = $class3;
Sw[$i][3] = $class4;
$Sw[$il[4] = $class5;
Sw[$i][5] = $class6;
$Sw[$i][6] = $class7;
Sw[$i][7] = $class8;
$Sw[$i][8] = $class9;
$Sw[$i][9] = $classlO;
$Sw[$i][10] = $classll;
$w[$i][11] = $classl2;
Sw[$i][12] = $classl3;
Sw[$i][13] = $classl4;
Sw[$i][14] = $classl5;
Sw[$i][15] = $classl6;
Sw[$i][16] = $classl7;
$Sw[$i][17] = $classl8;
Sw[$i][18] = $classl9;
Sw[$i][19] = $class20;
Sw[$i][20] = $class21;
Sw[$i][21] = $class22;
$i = $i +1;

}

close (TEXT) ;

#

H#———— Initializing misclassification matrix —————

H.

my @ctestl;

my @ctest2;

my @ctest3;

for (my $i = 0; $i < $Nclass_birds; $i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$ctestl1 [$i][$j] = O;
$ctest2[$i][$j] = O;
$ctest3[$i][$j] = 0;
}
}
e Forward calculations
my @zt;




my @bt;
@zt = @ matrix_multiply (\@w, \ @frame_distr_norm) };

for (my $i = 0; $i <= S$counterl; $i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$btl$j108i] = exp($zt[$j1[8i]);
}
1

my @bt_sum;

for (my $i = 0; $i <= S$counterl; $i++){
$bt_sum[$i] = O;
for (my $j = 0; $j < $Nclass_birds; $j++){
$bt_sum[$i] = $bt_sum[$i] + $bt[$j1[$i];
}
}

my @sum;
my @bt_norm;

for (my $i = 0; $i <= S$counterl; S$i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$bt_norm [$j1[$i] = $bt[$j1[$i] / $bt_sum[$i];

}
}
#
H#—— Calculating misclassification matrices —————
#.

##### Sorting bd matrix
my @bt_norm_sorted;
my @bt_norm_sorted_temp;

for (my $i = 0; $i <= S$counterl; $i++){
@bt_norm_sorted_temp = sort {$b—>[$i] <=> $a->[$i]} @bt_norm;
for (my $j = 0; $j < $Nclass_birds; $j++){
$bt_norm_sorted[$j][$i] = $bt_norm_sorted_temp[$j][$i];
}
1

###### Finding indexes of the sorted matrix
my @file_rec;

for (my $i = 0; $i <= S$counterl; $i++){

$file_rec [0][$i] = —1;
$file_rec[1]1[$i] = -1;
$file_rec [2][$i] = -1;

for (my $j = 0; $j < éNclass_birds; $j++){
if ($bt_norm_sorted [0][$i] == $bt_norm[$j][$i] &&

$bt_norm_sorted [O][$i] > 0.01){ #1f the score is low

, do not show all 3best
$file_rec [0][$i] = $j;
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}
if ($bt_norm_sorted[1][$i] == $bt_norm[$j][$i] &&
$bt_norm_sorted [1][$i] > 0.01){
$file_rec[1]1[$i] = $j;
}
if ($bt_norm_sorted [2][$i] == $bt_norm[$j][$i] &&
$bt_norm_sorted [2][ $i] > 0.01){
$file_rec [2][$i] = $j;

}

####### Display wich bird is recognized
my @recognized;

for (my $i = 0; $i <= S$counterl; $i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
for (my $k = 0; $k < 3; $k++){
$recognized [$k][$i] = $file_rec[Sk][$i];
if ($recognized[$k][S$i] == —-1){
$recognized [$k][$i] = "No bird recognized

>

}
else {
$recognized [$k ][ $i] = "$modelList[
$recognized [$k][$i]]";
}

}

########### Calculating misclassification matices
my @classtest;
my @cdev;

for (my $i = 0; $i <= S$counterl; S$i++){
$classtest [0][ $i] $file_rec[0][ $i];
$classtest [1][ $i] $file_rec [1][$i];
$classtest [2][ $i] $file_rec [2][$i];

}

my $count_file_classl = 0;
my $count_file_class2 = 0;
my $count_file_class3 = 0;

##Mis matrix

for (my $i = 0; $i <= S$counterl; $i++){
$count_file_classl = 0;
for (my $j = 0; $j < $Nclass_birds; $j++){
for (my $k = 0; $k < $Nclass_birds; $k++){
if ($file_class[$i] == $j && $file_rec [0][$i] ==
$k) {

$count_file_classl +=1;
$ctest1 [$j1[$k] = Sctestl [$j][$k] +

$count_file_classl;
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####Number of correct classifications

$count_file_classl = 0;
$count_file_class2 = 0;
$count_file_class3 = 0;

for (my $i = 0; $i <= S$counterl; $i++){

my
my
my

my
my
my
my

if ($file_rec[0][$i] == $file_class[$i]){
$count_file_classl +=1;

}
if ($file_rec[1][$i] == $file_class[$i]){
$count_file_class2 +=1;

}
if ($file_rec[2][$i] == $file_class[$i]){
$count_file_class3 +=1;

}

$numcorrld = $count_file_classl ;
$numcorr2d = $count_file_classl + $count_file_class2;
$numcorr3dd = $count_file_classl + $count_file_class2 +

$count_file_class3;

@perrl ;
@perr2;
@perr3;
@dzd ;

for (my $i = 0; $i < 3; Si++){

}

if ($count_file_classl != 0){
my $scorel = 100 = (1 — ($numcorrld / ($counterl + 1)));
$perrl [$set] = "$scorel";

}

if ($count_file_class2 != 0){
my $score2 = 100 % (1 — ($numcorr2d / ($counterl + 1)));
$perr2[$set] = "$score2";

}

if ($count_file_class3 != 0){
my $score3 = 100 % (1 — ($numcorr3d / ($counterl + 1)));
$perr3[$set] = "$scored”;

print "\n";
print "\n";

print "$perrl[$set], $perr2[$set], $perr3[$set]\n \n";

$Best_1 = $Best_1 + S$perrl[$set]/5;

$Best_2

$Best_2 + $perr2[$set]/5;
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$Best_3 = $Best_3 + $perr3[$set]/5;

print
print

open(my $fh,

"\n":
"\n":

R}

>’, ’adap_recognized.list ’);

for (my $i = 0; $i <= $counterl; S$i++){

}
}

print
print

print $fh $recognized [0][ $i];
print $fh "\n";

"Average error rate: \n";
"$Best_1 $Best_2 $Best_3 \n"; #average

error
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C: TrainingClassifier.pl

#!/usr/bin/perl
use strict;
use warnings;

use POSIX;

HEFH R AR R

#H.

#—— Histogram program

#H.

HIH R R
my $pm = 80;

my $mix = 32;

my $set = 2;

my $type = ’train ’;
my $modelName;

my @modelList = ();
my $Nclass = 0;

my $classfile = ’class_pause_ny.list ’; # list of all legal classes
open(LIST," $classfile") |l die "Could not open $classfile for reading\n"
while (<LIST>) {

chomp;

$modelName = $_;
push (@modelList,$modelName) ;
$Nclass = $Nclass + 1;

}

close (LIST) ;

my $Nclass_birds = $Nclass — 1; # pause is not a valid class
my $Best_1 = 0;

my $Best_2 = 0;

my $Best_3 = 0;

my @perrl ;

my @perr2;

my @perr3;

for ($set = 1; $set <= 5; $set++){ #all five sets
my $recfile = "Results_hmm/train$set\_$mix\_pm\_$pm.rec";
my $linelen;

my $seglen;
my @sent = ();

my $start;

my $end;

my $label;

my $counter2 = -1;
my $counterl = -1;

5
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my $tars2;

my $sind2;

my $sind_old2;

my $title;

my @trec;

my $scale = (20 = (10%%4));
my @frame_distr;

my @file_class;

my @num_hit = @file_class;
my $length_trec = 0;

my $jnum;

# Reading MLF file

H.

open (REC," $recfile") Il die "Could not open $recfile"”;

my $linel = <REC>; # first line, MLF line

while ($linel = <REC>){
chomp( $linel);
$linelen = length($linel);
if ($linel =~ /\.rec\"/) #New file
{
$sind_old2 = 0;
@trec = ();
$length_trec = 0;
$title = $linel;
$counterl = $counterl + 1; # count number of files
for (my $i = 0; $i < $Nclass; S$i++){
$frame_distr[$i][ $counterl] = 0;
my $str = $title;
my $substr = $modelList[$i];

if (index($str, $substr) !'= —-1) {
$counter2 = $counter2 + 1;
$file_class[$counterl] = $i;
$num_hit[ $counterl] += 1;
}
}
}
elsif ($linelen > 4)
{

chomp ($linel);
($start, $end, S$label, ) = split(/ /,$linel); #
extracting info from rec—file
for (my $i = 0; $i < $Nclass; $i++){
if ($label eq $modelList[$i]){
$tars2 = $i; #comparing against list of
birds

}

$sind2 = floor($end / $scale); # end of file

$seglen = $sind2 — $sind_old2; #length of each recognized
bird

#$sind_old2 = $sind2;
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my @ones = (1) x $seglen;

foreach (@ones) {
$_ = $_ x S$tars2;
$length_trec = $length_trec + 1;

1

push (@trec, @ones);

for (my $j = 0; $j < $Nclass_birds; $j++){
my S$counter_trec = 0;

for (my $i = $sind_old2; $i < $length_trec; Si++){

if ($trec[$i] == $j){

$counter_trec = $counter_trec + 1;

}
}
$frame_distr[$j ][ $counterl ] += S$counter_trec;

}
$sind_old2 = $sind2;
}

close (REC);

Normalized Histogram

3k

my @frame_distr_sum;
my @frame_distr_norm;

for (my $i = 0; $i <= S$counterl; $i++){
$frame_distr_sum|[$i] = 0;
for (my $j = 0; $j < $Nclass_birds; $j++){

$frame_distr_sum[$i] = $frame_distr_sum[$i] + $frame_distr

[$108i1;
}
my $sum;
for (my $i = 0; $i <= S$counterl; $i++){
$sum = 0;
for (my $j = 0; $j < $Nclass_birds; $j++){
$frame_distr_norm [$j1[$i] = $frame_distr[$j1[$i] /

$frame_distr_sum [ $i];
$sum = $sum + $frame_distr_norm[$j][$i];

}

HEHHHHHHHHHHHHHH R R R R R R R R R

e

Classification

3k

HEFHHHHH AR R R R R

Importing relevant data

3 3
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for (my $i = 0; $i <= $counterl; $i++){
$frame_distr_norm [ $Nclass_birds ][ $i] = 1;
}

my @Ttrain O
for (my $i = 0; $i <= $counterl; S$i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$Ttrain[$j1[8i] = O;
if ($file_class[$i] == $j){
$Ttrain[$j1[$i] = $Ttrain[$jI1[$i] + I
}

—

Subroutine matrix multiplication

I+ I H

sub matrix_multiply {
my ($r_matl ,$r_mat2)=@_;
my ($r_product);
my ($rl,$cl)=matrix_count_rows_cols($r_matl);
my ($r2,$c2)=matrix_count_rows_cols ($r_mat2);

die "matrix 1 has $cl columns and matrix 2 has $r2 rows>"
. " Cannot multiply\n" unless ($cl==8r2);
for (my $i=0;8i<$rl;$i++) {
for (my $j=0;%$j<$c2;8$j++) {
my $sum=0;
for (my $k=0;$k<$cl;Sk++) {
$sum+=$r_matl —>[$i ][ $k]=$r_mat2 ->[$k][$j ];
}
$r_product —>[$i ][ $j]=%sum;
}

1
$r_product;

sub matrix_count_rows_cols {
my ($r_mat)=@_;
my $num_rows=@$r_mat;
my $num_cols=@{ $r_mat —>[0]};
($num_rows , $num_cols) ;

#——— Subroutine transpose matrix ————————————

sub pivot {
my @src = @_;

my $max_col = 0;
$max_col < $#$_ and $max_col = $#$_ for @src;
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my @dest;
for my $col (0..$max_col) {
my @new_row ;
for my $row (0..$#src) {
push @new_row, $src[$row][S$col] // °7;

}

push @dest, \@new_row;

}
return @dest;
}
#
- Subroutine sign
H.

sub sign {
if ($_[0]=$_[1] > 0){
return 1;

}
elsif ($_[0]=$_[1] < 0){
return -1;

}
else {
return O0;

}
}s
#
H#om—— Training starts ————————————
H.

my $totiter = 1000;

#

#——— Defining w matrix -——————————
#H.
#

my @w;

my $line;

my $i = 0;

my $textfile = "w.txt"; #Initially using the same w matrix

open (TEXT," $textfile") |l die "Could not open $textfile";
while ($line = <TEXT>){
chomp($line);

(my $classl, my $class2, my $class3 , my $class4, my $class5, my
$class6 , my $class7, my $class8, my $class9, my$class10, my
$classll, my $classl2, my $classl3, my $classl4, my $classl5,
my $classl6, my $classl7, my $class18, my $classl9, my
$class20, my $class21, my $class22 ) = split(/ /,$line);

$w[$i][0] = $classl;
Swl$il[1] $class2;
Swl$i][2] $class3;
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Sw[l$il[3]
Sw[$il[4]
$w[$i][5]
Sw[$il[6]
Swi$il[7]
Sw[$il[8]
Sw[$il[9]
Sw[$il[10]
Swl$il[11]
Swl$il[12]
Sw$il[13]
Sw[$il[14]
Swl$i][15]
Sw[$il[16]
Swl$il[17]
Sw[$il[18]
Sw[$i][19]
Sw[$i][20]
Swl$il[21]

$1 = $i +1;

}

close (TEXT) ;

$class4;
$class5;
$class6;
$class7 ;
$class8;
$class9;
$class10;
$classll;
$class12;
$class13;
$classl4;
$classl5;
$class16;
$classl7;
$class18;
$class19;
$class20;
$class21 ;
$class22;

#my @w;
my @wo;
my @dw;
my @dwo;
my @sw;
my $sinit

10;

for (my $i 0;
#Sw[$j 113811
$dw[$j118i]
$dwo [ $j1[ $i
Swol$j1[$i]
$swl$j108i]

$i <= $Nclass_birds;
for (my $j = 0; $j < $Nclass_birds;

]

0.01
0

= 0;
03
1 % $sinit;

$i++){

$j++){

% (rand () — 0.5);

H.
#
Hom
H
#

my $ud = 0.15;

my $alpha = 0.5 / ($counterl + 1);
my $Ed_old = -1000;
#H.

#
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——————————— Totiter itrations ——————————————

my
my

$iter = 0;
$rd_old = -1;
@cdevl ;
@cdev2;
@cdev3;

@zd;

@bd;

@bd_sum;

while ($iter <= S$totiter){

######### Initializing misclassification matrix
for (my $i = 0; $i < $Nclass_birds; $i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$cdevl[$i][$j] = O;
$cdev2[$il[$j] 0;
$cdev3[$i][$]] 0;

}

#####reseting derivatives

for (my $i = 0; $i <= $Nclass_birds; S$i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$dw[$j1[8i] = 0

$dwo[$j1[$i] = 0;
#$wo[$j1[$i] = 0;
}
}
$iter = $iter + 1; #increasing counter

######## Forward calculations
@zd = @ matrix_multiply (\@w, \@frame_distr_norm) };

my @sum;
my @bd_norm;

for (my $i = 0; $i <= S$counterl; $i++){
$bd_sum[$i] = O;
for (my $j = 0; $j < $Nclass_birds; $j++){
$bd[$j1[8i] = exp($zd[$j1[$i]);
$bd_sum[$i] = $bd_sum[$i] + $bd[$jI[$il;

}

for (my $i = 0; $i <= $counterl; S$i++){
for (my $j = 0; $j < $Nclass_birds; $j++){

$bd_norm[$j1[$i] = $bA[$j1[$i] / $bd_sum[$i];

}
}
##### Training criteria
my @tb;
my $Ed = 0;
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for (my $i = 0; $i <= S$counterl; $i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$tb[$j1[$i] = $Ttrain[$j]1[$i] = log($bd_norm[$j][
$il);
$Ed = $Ed + $tb[$j1[$i];

}

$Ed = (100 = $Ed) / (S$counterl + 1);
#print "$Ed, ";

##### Sorting bd matrix
my @bd_norm_sorted;
my @bd_norm_sorted_temp;

for (my $i = 0; $i <= $counterl; S$i++){
@bd_norm_sorted_temp = sort {$b—->[$i] <=> $a->[$i]}
@bd_norm;
for (my $j = 0; $j < $Nclass_birds; $j++){
$bd_norm_sorted[$j ][ $i] = $bd_norm_sorted_temp [ $j
108$i1;

}

###### Finding indexes of the sorted matrix
my @file_rec;

for (my $i = 0; $i <= S$counterl; $i++){

$file_rec [0][$i] = O;
$file_rec[1][$i] = O;
$file_rec [2][$i] = O;

for (my $j = 0; $j <’$Nclass7birds; $j++){

if ($bd_norm_sorted [0][$i] == $bd_norm[$j][$i]){
$file_rec [0][$i] = $j;

}

if ($bd_norm_sorted [1][$i] == $bd_norm[$j ][ $i]){
$file_rec [1][$i] = $j;

}

if ($bd_norm_sorted [2][$i] == $bd_norm[$j]1[$i]) {
$file_rec [2][$i] = $j;

}

########### Calculating misclassification matrices

my @classdev;
my @cdev;

for (my $i = 0; $i <= $counterl; S$i++){
$classdev [0][ $i] $file_rec [0][$i];
$classdev [1][ $i] $file_rec [1][$i];
$classdev [2][ $i] $file_rec [2][$i];
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my $count_file_classl = 0;
my $count_file_class2 = 0;
my $count_file_class3 = 0;

##Initializing
for (my $j = 0; $j < $Nclass_birds; $j++){
for (my $k = 0; $k < $Nclass_birds; $k++){
$cdev[$j1[$k] = 0;
}
}

##Mis matrix

for (my $i = 0; $i <= S$counterl; $i++){
$count_file_classl = 0;
for (my $j = 0; $j < $Nclass_birds; $j++){
for (my $k = 0; $k < $Nclass_birds; $k++){
if ($file_class[$i] == $j && $file_rec [0][
$i] == $k){
$count_file_classl +=1;
Scdev[$j1[$k] = $cdev[$jI[$k] +
$count_file_classl ;
#print $cdev[$j1[$k];
}
#print "\n";

}

####Number of correct classifications lbest, 2best and 3best

$count_file_classl = 0;
$count_file_class2 = 0;
$count_file_class3 = 0;

for (my $i = 0; $i <= $counterl; S$i++){
if ($file_rec[0][$i] == $file_class[$i]){
$count_file_classl +=1;
}
if ($file_rec[1][$i] == $file_class[$i]){
$count_file_class2 +=1;
}
if ($file_rec[2][$i] == $file_class[$i]){
$count_file_class3 +=1;

1
}
my $numcorrld = $count_file_classl;
my $numcorr2d = $count_file_classl + S$count_file_class2;
my $numcorrdd = $count_file_classl + $count_file_class2 +

$count_file_class3;
my @dzd;

$perrl [ $set]
$perr2[$set]

100 = (1 — ($numcorrld / ($counterl + 1)));
100 % (1 — ($numcorr2d / ($counterl + 1)));
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$perr3[$set] = 100 = (1 — ($numcorr3dd / ($counterl + 1)));
print "$perrl[$set], $perr2[$set], $perr3[$set]\n";
if ($Ed_old == $Ed_old){

##Hide the old parameters
@wo = @w;

@dwo = @dw;

$Ed_old = $Ed;

##Bakward loop of error and calculation of delta-
parameters and updating step factor
for (my $i = 0; $i <= S$counterl; S$i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$dzd[$j1[$i] = —($bd_norm[$j][$i] -
$Ttrain[$j ][ $i]); ###skal kanskje
bruke bd_sorted
$dzd [$j1[$i] = $dzd[$j1[$i] = S$alpha;

1
my @frame_distr_norm_trans = pivot(@frame_distr_norm);

@dw = @{ matrix_multiply (\@dzd, \ @frame_distr_norm_trans)

}:

for (my $i = 0; $i <= $Nclass_birds; $i++){
for (my $j = 0; $j < $Nclass_birds; $j++){
$Adw[$j118i] = SAwW[SjI[$i] = $swlS$jI[8il;
$swSjI[8i] = SswS$jI[8i] + (Sud = ($sw[$]j
J[$i] = sign($dwo[$j1[S$i], $dw[$j1[$i

D))
Swl$j1[$i] = (0.999 = Sw[S$j1[$i]) + $dw[$j
1[8$i];
}
1
}
1
$Best_1 = $Best_1 + $perrl[$set]/5;
$Best_2 = $Best_2 + $perr2[$set]/5;
$Best_3 = $Best_3 + S$perr3[$set]/5;

PR}

open(my $fh, °>’, "classificationMatrix$set.txt");
for (my $i = 0; $i < $Nclass_birds; $i++){
for (my $j = 0; $j <= $Nclass_birds; $j++){
print $fh Sw[S$i][$j];
print $fh " ",

print $fh "\n";

1
close $fh;
print "done\n";

}
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print

"$Best_1

$Best_2

$Best_3 \n";
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