
Design and test of an active memory 
interface module for an H.264 encoder

Olja Pehilj

Electronics System Design and Innovation

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Milica Orlandic, IET

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology



 





Design and Test of an Active Memory Interface
Module for an H.264 Encoder

˜
OLJA PEHILJ

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

June 19, 2014





Problem Description

An active memory interface module shall be designed and tested that will connect a DDR3
memory block to an existing H.264 video stream encoder. The module shall be able to
support full speed operation of the encoder in two modes, for 8x8 and 16x16 macroblocks
organized with resp. 8 and 16 pixel values on the input at each system clock tick.

The design will be in VHDL as the existing design is. It should be designed and tested
for FPGA implementation and shown to work together with the specific encoder module.
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Abstract

In this thesis, the author describes a propositional design for a DDR3 memory interface, for
an existing H.264/AVC video transcoder. The design uses the Memory Interface Generator
(MIG), a Xilinx IP, as an overlying memory controller interface. The different interfaces
offered by the MIG are evaluated before the most fitting is chosen.

The interface is designed for use on the KC705 Kintex-7 development kit, with a
XC7K325T FPGA. Initial tests show promising results for the design, which is able to
both write and read data to and from an external DDR3 SDRAM memory. The design
has only been tested through simulation, and more extensive verification is needed before
it can be completely evaluated as an alternative. The simulations use a memory model to
produce realistic behavior of the memory.

The interface uses two submodules, dedicated to writing and reading respectively. Both
modules use data buffers, and the reading module has the ability of transferring data in
different modes.

Some room for improvement has been discovered, and the proposed design is thor-
oughly discussed. It has been successfully implemented, reporting an area utilization of
8,123 slices, with a maximum clock frequency of 308 MHz.

Keywords: Memory Interface, DDR3 SDRAM, Xilinx, Memory Interface Generator,
MIG.





Sammendrag

I denne rapporten presenter forfatteren er designforslag for et minnegrensesnitt for DDR3,
som skal benyttes av en eksisterende H.264/AVC videotranskoder. Designet benytter seg
av Xilinx sin Memory Interface Generator (MIG) IP, som et lag over DDR3-minnegrensesnittet.
De forskjellige grensesnittene som tilbys av MIG-en er vurdert, før det mest passende ble
valgt.

Grensesnittet er designet for bruk på KC705 Kintex-7-utviklingssettet, som har en
XC7K325T FPGA. Innledende undersøkelser av designet viser lovende resultater. Grense-
snittet kan både skrive og lese til og fra det eksterne DDR3 SDRAM-minnet. Desig-
net har kun blitt testet gjennom simulering, så større og mer omfattende undersøkelser
er nødvendig før det kan vurderes som et alternativ til transkoderens nåværende minne-
grensesnitt. Simuleringene bruker en minnemodell utviklet av Micron Technology, for å
skape realistisk minneoppførsel under simulering.

Grensesnittet har to undermoduler, som er dedikerte til henholdsvis skriving og lesing.
Begge modulene har databuffere, og lesemodulen kan sende data i henhold til transkode-
rens modus.

Designet er møysommelig diskutert og evaluert, og noe forbedringspotensial er oppda-
get. Implementering av designet har blitt gjennomført, noe som rapporterer et arealforbruk
på 8.312 skiver, med en maksimal klokkefrekvens på 308 MHz.
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Chapter 1
Introduction

1.1 Motivation

These days, most embedded designs need external storage. Avnet estimated in 2012 that
80 % of Field Programmable Gate Array (FPGA) designers use memory in their designs.
[3] The transcoder for which this memory interface is proposed, is currently using the
MicroBlaze soft-core processor to handle the communication to the external Double Data
Rate type 3 (DDR3) Synchronous Dynamic Random Access Memory (SDRAM) memory
chip. It is desired to lighten the load of the processor, so its resources can be used on other
tasks. The proposed memory interface design is developed to relieve it of some tasks, and
at the same time improve the performance of the communication with the memory.

1.2 Problem Interpretation and Contributions

The focus of this thesis has been on developing a working memory interface module,
which can become a part of an existing H.264/Advanced Video Coding (AVC) video
transcoder design. The problem description for the thesis was fairly open with regards
to how the memory interface should be designed. A memory controller Intellectual Prop-
erty (IP) (the MIG) developed by Xilinx, is used as a basis to design a propositional DDR3
memory interface. A dedicated reading module is designed as well, to support transferring
data according to the transcoder’s selected mode. Through dialog with the co-supervisor,
it was decided that the most pressing requirement would be to support the 8× 8 and 4× 4
modes. A goal to achieve a running frequency above 100 MHz was also added.

For simplicity in the design process, all signals are assumed to be factors of eight.
Furthermore, it is assumed that a single pixel contains eight bits. This was done because
the IPs used only had support for data lengths in factors of eight.
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Chapter 1. Introduction

1.3 Thesis Organization
The chapters and appendices forming this thesis report, contain the following:

• Chapter 1 presents the motivation behind designing the proposed interface, and ex-
plains how the task was interpreted.

• Chapter 2 presents the necessary background information and the tools that have
been used. It also describes how to set up the test environment, and configure the
tools.

• Chapter 3 describes the architecture of the proposed design. First the Xilinx MIG
IP, and the possibilities offered by it, are presented. It then goes on to describing the
proposed architecture, and the modules forming the designed interface.

• Chapter 4 presents the results and verification obtained for the proposed interface.

• Chapter 5 discusses the main properties of the design, and points out some limita-
tions. It also proposes some ideas for improving the design.

• Chapter 6 summarizes the most important results and contributions presented in the
previous chapters.

• Appendix A shows the selected properties for the generated memory interface IP.

• Appendix B shows the selected properties for the generated FIFO IP.

• Appendix C presents the extensive reports from implementation of the different parts
of the proposed interface.

• Appendix D shows the top level block diagram for the interface, after implementa-
tion.

2



Chapter 2
Background and Methodology

This chapter presents the relevant background theory for the proposed design. It then
presents the used hardware and tools, as well as the possibilities offered by the Memory
Interface Generator (MIG) tool. In the last part of this section, the set up and configuration
of the test environment is described, before the validation and verification strategies used
while developing the design are explained.

2.1 The MPEG-2 to H.264/AVC Transcoder

The design proposed in this thesis is intended to be used as a memory interface for an ex-
isting design of an MPEG-2 to H.264/AVC intra-frame transcoder, which is described in
detail in [4]. In this context, transcoding means the process of converting video data from
one encoding (MPEG-2) to another (H.264). MPEG-2 and H.264/AVC are two different
video coding standards, where MPEG-2 is defined by the International Telecommunica-
tions Union - Telecommunication Standardization (ITU-T), and H.264/AVC is defined by
the Joint Video Team (JVT). The H.264/AVC standard is more efficient and flexible than
MPEG-2, but consequently requires more complex computations in the video processing.
An illustration of the top level block diagram for the module, consisting of an MPEG-2
decoder and a H.264/AVC encoder, can be seen in Figure 2.1.

The demand for such a transcoder arises with the extensive desire of viewing video
on several platforms. TV broadcasting widely uses MPEG-2, as opposed to mobile and
networking platforms, who have scarcer bandwidth availability.

Figure 2.1: Block diagram of the existing transcoder. [4]

3



Chapter 2. Background and Methodology

The encoding part of the transcoder supports processing of a 16×16 pixel macroblock
with different granularities, depending on the currently used prediction mode. Granularity,
in this context, means the further partitioning of a macroblock. The three types of intra
prediction modes are Intra 4 × 4, 16 × 16 luminance and Intra 8 × 8 chrominance, in
different profiles.

The memory interface proposed in this thesis should support data transferring in 4× 4
and 8 × 8 mode. Because the intra prediction process introduces a dependency chain
between blocks, the transcoder is fitted for using specific scanning order rearrangements.
The transcoder supports reconfiguration, to accommodate different scenarios, depending
on video requirements, among other properties. This is described further in [4, 5].

Extensive details about the H.264/AVC standard are beyond the scope of this thesis,
and can be found in [6].

2.2 DDR3 SDRAM
Double Data Rate type 3 (DDR3) SDRAM is the memory standard following DDR2, and is
described by JEDEC. It is a standard for external memory components, commonly chosen
for many hardware designs. This is because it has the lowest cost per memory bit and
largest density per chip. [3] The word “double” in the component name, comes from the
fact that data is transferred on both rising and falling clock edges. A consequence of the
dense dynamic nature of SDRAM memory, is that it needs to re-write data after reading, as
well as performing periodic refreshes, to avoid data corruption and loss. [7] More detailed
information about the DDR3 standard is available in [8].

As DDR3 is one generation after DDR2, it comes with some advantages over its pre-
decessor. One is the higher bandwidth performance due to the eight bit prefetch buffer,
instead of the four bit used by DDR2. This means that higher performance can be achieved
through DDR3’s support for Burst Length 8 (BL8) in addition to the previous Burst Length
4 (Burst Chop) (BC4). DDR3 can also run at higher clock frequencies, as well as perform
better at low power (1.5 V instead of 1.8 or 2.5 V). More information about the benefits of
DDR3 is available in [9].

DRAMs are organized in a series of elements. They can contain one or more banks,
and each of them consists of a series of rows. [10] The most significant signals used to
interface with DDR3 SDRAM are listed below.

• Row Address Strobe (RAS) – Active low strobe for latching the row address

• Column Address Strobe (CAS) – Active low strobe for latching the column address

• Data Queue (DQ) – Bidirectional Input/Output (IO) data signal

• Data Queue Strobe (DQS) – Data strobe

• Write Enable (WE) – Low value: Write. High value: Read

An illustration of how writing is performed is shown in Figure 2.2. First a row is
selected, by setting the ras n signal low, while the corresponding address is set. This
is denoted in the figure as ‘4’. If the memory has several banks, the ba signal is used to

4



2.2 DDR3 SDRAM

select the appropriate one. Then, the desired column address is set and the cas n signal is
set low, as denoted in the figure as ‘6’. Because this is a write command, the we n signal
is also set low, alongside the column address strobe. For a read operation, illustrated in
Figure 2.3, the write enable signal is high throughout the interaction. At last, the data is
transferred from and to the memory, respectively. It should be noted that, in addition to
the illustrated signals, the figures do not include precharge commands. Such commands
have to be issued when changing to a different row.

Figure 2.2: Timing diagram illustrating a single DDR3 writing command operation. [11]

Figure 2.3: Timing diagram illustrating a single DDR3 reading command operation. [11]

Because a Xilinx IP is used as an abstraction layer, all the interaction with the DDR3
SDRAM is done by the generated memory controller. It also handles all calibration and
refreshing operations. For this reason, only the necessary basic information has been pre-
sented.

5



Chapter 2. Background and Methodology

2.3 Hardware - the KC705 Development Board
The development board, for which this design is targeted, is the KC705. The H.264/AVC
transcoder is already implemented on the board, and thus the proposed memory interface
is to be added. Some of the board’s key features, as listed on Xilinx’ website [12], are the
following:

• The XC7K325T-2FFG900C FPGA

• 1GB DDR3 SODIMM 800MHz / 1600Mbps

• 128MB (1024Mb) Linear BPI Flash for PCIe Configuration

• 16MB (128Mb) Quad SPI Flash

• 8Kb IIC EEPROM

• SD Card Slot

• Fixed Oscillator with differential 200MHz output

• 5X Push Buttons

• 7 I/O pins available through LCD header

Figure 2.4: The KC705 Development Board. [12]

In their product brief, Xilinx state that the kit provides a flexible framework, for design-
ing higher-level systems requiring DDR3 amongst other things. [13] With its fairly large
sized FPGA, and on-board DDR3 memory, this board covers the needs for this design.

6
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2.3.1 Kintex 7 FPGA
The KC705 is an evaluation board for the Kintex 7 FPGA (XC7K325T-2FFG900C). A
sample from the feature summary [14] for this FPGA is

• 326,080 logic cells

• 50,950 slices (containing four LUTs and eight flip-flops)

• 4,000 Kb max distributed RAM

• 10 I/O banks in total

2.3.2 DDR3 Memory on the KC705 Board
The Xilinx KC705 board comes with on-board DDR3 memory, as listed in the previous
section. The memory part is a Micron Technology MT8JTF12864HZ-1G6G1 [15, p. 10]
It is a 1 GB 204-Pin Small Outline Dual In-line Memory Module (SODIMM) memory.
The specified value for the module’s bandwidth is 12.8 GB/s, meaning a transfer rate of
1600 MT/s on the eight bit wide channel. [16]

Because the correct memory part number was not found until late in the design pro-
cess, a different memory part has been used. The default DDR3 SDRAM component,
MT41J256M8XX-107 (also by Micron Technology) has been used during this design.

2.4 Tools
This section describes the tools used in this thesis, as well as some of their key functions.
Below is a short list of all the tools, with corresponding version numbers.

• Xilinx Integrated Software Environment (ISE) Design Suite 14.7

– Memory Interface Generator (MIG) 1.9

– FIFO Generator 9.3

– ISim 14.7 (P20131013)

• ModelTech ModelSim 10.2 (64 bit)

• Active-HDL Student Edition 9.3 (9.3.0.1)

2.4.1 Xilinx ISE Design Suite 14.7
The tool, in which the design for this thesis has been developed, is the System Edition
of the XILINX ISE DESIGN SUITE, version 14.7. In addition to the hardware design
tool with synthesis possibilities, the suite also contains a simulation tool, ISIM. Through
the CHIPSCOPE software, debugging on the final result on the FPGA is also possible,
by testing and capturing of the internal signals. This has not been done throughout this
development process, due to time constraints.
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The tool also contains the CORE GENERATOR Intellectual Property (IP) catalog, mak-
ing it possible to use pre-developed IPs tailored for Xilinx FPGAs. The catalog contains
several IPs readily available, ranging from First In, First Out modules (FIFOs) and the
Memory Interface Generator (MIG) tool, to filters and more complex functions. [17] As
Xilinx has made these freely available for use, it simplifies the process of designing a com-
plete memory interface. Some of the possibilities offered are described in the following
subsections.

Do note that the WebPack edition of the design suite does not support the Kintex 7
FPGA included on the KC705 board, as it only supports the XC7K70T and XC7K160T of
the Kintex 7 series. [18]

2.4.2 Memory Interface Generator 1.9
The aforementioned CORE Generator contains several IPs, and one of these is the MIG.
The MIG is an IP for generating a memory controller and physical layer (PHY) for inter-
facing with different types of memory, such as DDR2/DDR3 SDRAM, High performance
Quad Data Rate SRAM (QDRII+) and Reduced-Latency Dynamic Random Access Mem-
ory (RLDRAM) II. Through the tool’s Graphical User Interface (GUI) several features of
the memory controller can be modified, and it can be customized according to ones needs.
More information about the available features can be found in the core’s user guide. [19]

Selection of hardware memory models is available, in addition to several options about
the interface and target memory. The generated Verilog/VHDL files are not encrypted, and
thus open for further modification, if it is desired. [20] An overview of all the selected
properties for the MIG used in this thesis is included in Appendix A.

Differential clocks are selected as both system clock and reference clock, as a means to
avoid potential clock skew and achieve more precise timing. [21] It might not be necessary
for the low frequencies used, but this can be modified if it is no longer desired. The MIG
and the designed interface use a single-ended clock, running at a quarter of the system
clock frequency.

The generated files contain an example design, useful as a reference for developing a
new design for interfacing with the MIG. The MIG also offers a simulation framework,
which can be run in the ISIM tool1, useful for seeing and verifying the behavior in simu-
lations. The example design is synthesizable as well, as described in Section 2.6.4. The
MIG offers the possibility of including signals for debugging of the memory controller,
making it easily possible to verify the behavior on-chip, using the CHIPSCOPE tool.

The example design contains a traffic generator for generating read and write traffic
to the memory. This is useful for initially verifying that the memory, and the interface,
works correctly. Several properties of the traffic generator can be modified, to test different
behavior.

2.4.3 Interfacing with the Memory Controller
There are three different interfaces that are supported by the generated memory controller.
These are the Advanced eXtensible Interface 4 (AXI4) Slave Interface, the User Interface

1If the selected HDL is VHDL, ISIM does not work and MODELSIM must be used.
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(UI) and the native interface. Some of the different properties of these are described in the
following paragraphs, ending with the reasoning behind the chosen alternative.

Native Interface

The native interface is the most complex option, of the available interfaces. By using
it, the designer has more control of a larger part of the interface itself. The data might
be transferred out of order, and thus a design for handling such a behavior is needed.
This interface is one level below the UI, meaning that it is necessary to design a complete
interface to handle all communication to the PHY. According to Xilinx, the native interface
offers higher performance in some situations. [19, p. 125]

User Interface

The UI is a more comprehensible memory interface, lying on top of the native interface.
For one, it aggregates the address fields of the external DDR3 memory and presents a flat
address space to interface with, as well as the ability of buffering both read and write data.
[19, p. 64] This means that the data is returned in order, using a structure much like a
FIFO, so extensive reordering control is not necessary.

AXI4 Slave Interface

AXI is a part of the ARM AMBA family of micro controller buses. AXI4 is the latest
version of AXI, for AMBA 4.0. The MIG tool accommodates support for the AXI4 Slave
Interface. It offers the possibility of having several masters and slave communicating over
the same bus, and the interface is an attempt of making it easy to use. There are three types
of AXI - the regular AXI4 for high-performance memory-mapped requirements, the AXI4-
Lite for low-throughput applications, and the AXI4-Stream for high speed streaming data.
[1] Xilinx also recommends AXI4 interface, over the other options, for communication
between hardware and software partitions in co-design systems.

Please do note that the AXI4 slave interface for the MIG only is available in Verilog,
and not VHSIC HDL (VHDL), at the time of writing. Additional information about the
AXI standard for development with the Xilinx environment is available at [1].

Choosing an Interface

Of the three available interfaces, the UI has been chosen. The native interface could have
been better, but would require continuous a more complex framework, as well as reorder-
ing of data during both reading and writing. The AXI4 interface also seemed fitting, with
its possibility of using the AXI4-Stream type to meet the high data rates required by the
transcoder. However, due to the restriction regarding the chosen hardware descriptive lan-
guage being VHDL, it was discarded. The selected interface, the UI, is described in more
detail in Section 3.1.

9
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2.5 Verification Design

Among the files generated through the MIG tool, are two useful framework examples for
verification - both for simulation and for synthesis. They both consist of several blocks,
as is illustrated in Figure 2.5. The simulation design is the outer layer, containing the ex-
ample design for synthesis. The simulation file has been used as a basis for verifying the
behavior of the designed interface, as it instantiates a DDR3 memory model, developed by
Micron Technology. The proposed interface has been implemented and tested by replac-
ing the traffic generator (traffic gen top) module. Changes have been made in the
example design (example top.vhd), which is instantiated in the generated simulation
file (sim tb top.vhd), as may be seen by the figure.

Figure 2.5: Example Design Block Diagram from the MIG. [22, p. 61]

Because the generated testbench only is available in Verilog, the top level test was
made by extending this in its original Hardware Description Language (HDL). The be-
havior of the transcoder was simulated by applying different sequences and values to the
interface signals.

Before the submodules were combined into one complete interface, they were tested
and verified separately. The tests for the submodules were written in VHDL, and an at-
tempt was made to simulate the behavior of the MIG’s interface. For the reading module
this was fairly simple, but due to the stochastic behavior of the memory, the test for the
writing module was limited. Initial test were done on the submodule alone, but more
extensive verification was conducted after it was combined and tested together with the
communication top module.

The simulation and verification results are presented and described further in Sec-
tion 4.1.

10



2.6 Test Environment Setup

2.6 Test Environment Setup
This section contains descriptions of how the simulation environment is set up. Due to
limitations in Xilinx’ simulation tool, Mentor Graphics’ MODELSIM has been used. The
section explains how to set up MODELSIM and how to simulate Xilinx’ IPs in simulators
other than their own, as well as how to use ISIM. ISIM is mentioned as it has been used
for testing of the submodules, before everything was combined into one complete system.

2.6.1 ModelSim Simulation Setup
To run simulations on the example design for the generated MIG, in VHDL, one has to use
MODELSIM. This is because Xilinx’ own simulator, ISIM, is not able to run the example
design, unless Verilog is the chosen HDL. To be able to use Xilinx IPs, Xilinx’ simulation
libraries need to be compiled, as described in Section 2.6.2.

After this process is done, the report states where the libraries are compiled to. Then,
one has to add the locations of these libraries in the generated sim.do file in the sim
subdirectory, at the vmap lines, and uncomment these by removing the # characters. If
one uses other design files than the ones in the example, these have to be added as well.
Now the simulation design is ready to be run in MODELSIM. To set up MODELSIM to use
a license located on a server, is done in Windows by adding the following two environment
variables at “Start”→ “Control Panel”→ “System”→ “Advanced” tab→ “Environment
Variables”→ “User Variable”.

Variable name: MGLS_LICENSE_FILE = <port>@<server>
Variable value: LM_LICENCE_FILE = <port>@<server>

Figure 2.6: Environment variable settings in Windows.

Do note that the example design for the MIG cannot be run in the Student Edition
of MODELSIM PE due to the restriction on single-language designs. In addition, the
student edition is unable to use encrypted files for simulation, making it impossible to use
encrypted Xilinx modules.

2.6.2 Compiling Xilinx Libraries
To be able to simulate designs using Xilinx’ IPs using other simulation software than
ISIM, one has to compile the Xilinx’ libraries for the chosen simulator tool. This is done
using the XILINX SIMULATION LIBRARY COMPILATION WIZARD. It looks like shown
in Figure 2.7, and is started by running the compxlib command in the XILINX ISE
COMMAND PROMPT. One needs to select the simulator tool one has available, point to
the executable’s location and choose the desired HDLs.

2.6.3 Running simulation in ModelSim SE
To run the example design simulation in MODELSIM, one first needs to compile Xilinx’
simulation libraries, as described in Section 2.6.2. To simulate the generated MIG example
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Figure 2.7: Xilinx Simulation Library Compilation Tool window.

design, first, start the MODELSIM software from the ISE COMMAND PROMPT, to set the
$Xilinx environment. In MICROSOFT WINDOWS, one can also add the path to the
install location, i.e. C:/Xilinx/14.7/ISE DS/ISE as the XILINX Environment
Variable, as explained in Section 2.6.1. This way, MODELSIM is always able to find the
Xilinx libraries.

After navigating to the ipcore lib subdirectory of the design, the generated do-
file can be run through the command do sim.do. This runs the simulation with the
preferences specified in the do-file.

The simulated waveforms are stored in the vsim.wlf file after simulating. This file
can be reopened in MODELSIM to view the static simulation data, equivalent to the one
described in Section 2.6.5.

2.6.4 Synthesizable Example Design
Amongst the many files generated with the MIG, is a design which can be synthesized, and
a design which can be simulated. These are located in the two subdirectories user design
and example design, respectively. The design for simulation is useful for getting familiar
with the behavior of the generated memory interface block. The synthesizable example
design is a practical basis for developing a design for synthesis. To make a project with
the synthesizable example design, the generated files contain a script file which should be
executed, located in the DESIGN NAME/example design/par folder2. Run the ISE
COMMAND PROMPT, move to the mentioned directory, and run the create ise.bat

2For instance, C:/<Project name>/ipcore dir/<MIG component name>/example-
design/par
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script. This runs the set ise prop.tcl command, which is a script file that gen-
erates a project called test.xise. [19, p. 35] The generated project instantiates the
example top.vhd file, so any changes to the example design are maintained. The gen-
erated project also contains the pin locations in UCF format, but if new IOs have been
added they have to be place manually. The project can be both synthesized, implemented
(translation and Place and Route (PAR)) and a programming (bit) file can be generated,
to be placed on the targeted FPGA.

2.6.5 Viewing Static Simulations in ISim
Simulating the behavior of communication has been found to be a time consuming process.
It is often interesting to view a simulation which has been run (called static), either for
comparison or for controlling behavior at a previous time. This section describes how this
is achieved, using Xilinx’ own simulator, ISIM. [23]

After a simulation has been run, the waveform configuration can be saved as a wcfg
file. The simulation data is stored automatically while the simulation is run, in a waveform
database (wdb) file. with the name being the same as the testbench module.

Assuming the files are available, start the ISE DESIGN SUITE 32/64 BIT COMMAND
PROMPT, and run ISimgui.exe. This opens the ISIM GUI, and now one just needs to
open the desired wcfg file. This shows the static simulation, based on the data in the wdb
file. If no configuration file has been made, loading the wdb file alone is also possible.
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Chapter 3
Architecture and Implementation

This chapter presents and describes the modules which form the memory interface. First
the Xilinx IP, the MIG, is described, before the selected interface is explained. It then
describes the the communication module itself, including detailed descriptions about the
interface and signals, as well as the Finite State Machines (FSMs) for all modules forming
the interface.

3.1 The MIG and its User Interface
As previously stated, Xilinx offers an IP overlay for interfacing with memory modules.
Because the DDR3 interface standard is fairly complex and rigid when it comes to timings,
among other properties, it has been decided to use the available IP.

Figure 3.1 shows the overview of the design generated by the MIG1. The module
generated by the MIG is the one labeled 7 Series FPGAs Memory Interface Solution, and
the module called User FPGA Logic is where the communication interface to the UI is
located, in combination with the transcoder module. The signals the UI consists of, and
whom are illustrated in Figure 3.1, are listed and described in Table 3.1. For the proposed
design, the values for APP DATA WIDTH and ADDR WIDTH are 128 bits and 29 bits,
respectively.

The MIG also offers the possibility of issuing additional refresh and calibration com-
mands, through the User Refresh option. This has not been done, as the memory controller
handles this in a fashion that complies with the JEDEC standards. At startup of the system,
memory initialization and calibration is performed, and the init calib complete
signal is asserted when this is completed.

Another option is the physical layer (PHY) to memory controller clock ratio. This
feature states the ratio of the memory clock frequency to the user interface clock frequency.
Xilinx state that the 2:1 ratio has lower latency, while the 4:1 ratio is needed for achieving

1System clock (sys clk p and sys clk n/sys clk i), reference clock (clk ref p and
clk ref n/clk ref i), and system reset (sys rst n) port connections are not shown in the overview. [22]
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the highest data rates. [19, p. 22] Because high data rates are necessary for this design, the
4:1 mode is selected, with a PHY frequency of 400 MHz. The all clocks are made through
a clock generator which uses a reference clock, running at 200 MHz.

Figure 3.1: Block Overview for the 7 series MIG, with the UI. [22, p. 82] Illustration from [22] is
used because the figure in [19] is inconsistent with the code generated, with regards to the direction
of the rst and clk signals.

The User Interface (UI) aggregates the address fields of the external DDR3 memory
and presents a flat address space to interface with, as well as the ability of buffering both
read and write data. [19, p. 64] The relation between the UI address space and the physical
memory row, bank and column is illustrated in Figure 3.2. Furthermore, unlike the native
interface, the User Interface (UI) returns the data in order, much like a FIFO.

The interaction to the UI is divided in three paths - the Command Path, the Write Path
and the Read Path. These are described in the following sections.

3.1.1 The UI Command Path

The command path is the path for sending write or read commands, together with the as-
sociated address and enable signal. The outgoing command values are 000 for writing
and 001 for reading. As illustrated in Figure 3.3, a command is accepted by the memory
controller when the app rdy signal is high. If the signal is low when the app cmd signal
is transmitted, the signal has to wait until the signal is high. This means that the corre-
sponding app addr and app wdf data signals must be maintained until the app rdy
signal is asserted.
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Table 3.1: Signal Names and Descriptions, for the UI. [19, p. 65]

Signal Name Width Description
app en 1 bit Strobe for submitting a request, con-

taining address and command.
app addr ADDR WIDTH Target address in the UI flat address

space. Sent alongside app en, ac-
cepted when app rdy is asserted.

app cmd 3 bits Command signal, “001” for reading
and “000” for writing.

app rdy 1 bit Signal indicating that the UI is ready
to accept commands.

app wdf data APP DATA WIDTH Data to be transferred.
app wdf wren 1 bit High strobe for app wdf data
app wdf end 1 bit Indicating the last cycle of

app wdf data. The same as
app wdf wren when in 4:1 mode.

app rd data APP DATA WIDTH Data returned from the requested ad-
dress, after a read command has been
issued.

app rd data valid 1 bit Data is valid when this is asserted.

Figure 3.2: Memory address mapping for Bank-Row-Column and Row-Bank-Column mode in the
UI. Slightly modified from [19, pp. 127-128].
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Figure 3.3: Timing Diagram for the UI command path. [19]

3.1.2 The UI Write Path
As previously stated, the UI has a FIFO-like way of handling data. This is utilized by
the write path. The written data is stored in the FIFO when the app wdf rdy signal
is high, and app wdf wren is asserted at the same time. Just like the command and
address signals for the command path, the app wdf wren signal must be held high until
app wdf rdy is asserted.

The app wdf end signal is used to indicate the last cycle of data on app wdf-
data. For the 4:1 mode, this means that the signals app wdf wren and app wdf end

are equal.
Figure 3.4 shows three non-back-to-back write scenarios, as described below:

1. Write ata is transferred and accepted at the same time as the corresponding write
command is accepted.

2. Write data is transferred and accepted one clock cycle before the corresponding
write command is accepted.

3. Write data is transferred and accepted at most two clock cycles after the correspond-
ing write command is accepted.

The MIG also supports back-to-back writing. An example of a back-to-back data
transfer is illustrated in Figure 3.5. While the app wdf rdy signal is high, data can be
written back-to-back. The figure also indicates that it is possible to keep writing data after
the command path goes low. The documentation states that there is no maximum time
delay between the write data and its associated write command, when issuing back-to-
back write commands. [19, p. 130]
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Figure 3.4: Timing diagram for the UI write path. [19, p. 129]
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Figure 3.5: Timing diagram for back-to-back writing, in 4:1 mode. [19, p. 130]
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3.1.3 The UI Read Path
The communication for the read path is initiated over the command path, through the
command, enable and address signals. After some time delay, data is received from the
DDR3 memory, through the signals app rd data and app rd data valid. The first
is the data itself, while the last one indicates that the data currently on the bus is valid. In
addition, there is a signal called app rd data end, which indicates the end of a read
command burst. Because the MIG user guide states that this is not needed, it is left unused.
[19, p. 132]

Figure 3.6: Timing Diagram for UI Read Path. [19, p. 132]

The timing diagram for the read path is shown in Figure 3.6. The upper part shows
the issuing of reading from a single address. The lower part shows the issuing of to back-
to-back read commands from two addresses, and how they are received in the correct,
requested order. It can be seen in both illustrations that the time it takes from the read
command is accepted, until the data is returned, can vary. This is denoted by the break in
the timing diagram, seen after the read command is successfully issued.
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3.2 Communication Interface Architecture
This section described the proposed interface, as well as the interface between the inner
submdules. The designs can serve as a bridge between the H.264 transcoder and the exter-
nal DDR3 SDRAM memory.

Some of the significant design decisions are described first, before the top level in-
terface is presented. It then goes on to the architecture of the design, and describing all
modules from the top to the bottom.

3.2.1 Design Decisions
The design of the proposed interface assumes that a pixel is eight bits long. This has been
done to easily match a whole number of pixels on the data buses, as both the FIFO and
MIG offer data widths in factors of eight. A data width of 128 bits has been chosen, and
the generated FIFO has room for 512 elements. If it is necessary to modify the data width
at a later time, this can be done by oversizing the data buses to exceed the size from the
transcoder, and pad the rest. The MIG also offers the possibility of masking data, which
can also be used if necessary.

3.2.2 The Communication Interface and Top Level Architecture
Interfacing to DDR3 is fairly complex, as it requires very precise timing of many signals.
This is why the offered memory interface IP by Xilinx has been used. The MIG IP is used
as an overlay, and controls the interface to the memory. The proposed communication
interface is connected to the MIG as illustrated in Figure 3.7. The proposed interface is
connected to the MIG and the DDR3 SDRAM memory model by replacing the traffic
generator module in the example design (example top.vhd), as shown in Figure 2.5,
on page 10, with the communication top module. Figure 3.7 also shows the signals forming
the interface for the transcoder, which are listed and described in the following.

Because the transcoder can request data in different modes, a dedicated reading module
has been designed. It currently supports the. 4× 4 and 8× 8 modes.

• mod dataIn en – Active high input strobe for the mod dataIn signal.

• mod dataIn – The input data to be written to the external memory.

• mod dataOut – Data output read from the memory, sent to the transcoder. This
signal should eventually be removed, and replaced by the last three in this list.

• mod readReq – Active high input for requesting a read from the memory. This
signal should eventually be removed, and replaced by a request signal from the
reading module.

• mod read4x4 req – Active high input, from the transcoder, for requesting data
in 4× 4 mode.

• mod read8x8 req – Active high input, from the transcoder, for requesting data
in 8× 8 mode.
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Figure 3.7: Design Overview

• mod 4x4 dout – Output data, to the transcoder, when in 4 × 4 mode. A 128 bit
long vector.

• mod 8x8 dout – Output data, to the transcoder, when in 8 × 8 mode. A 64 bit
long vector.

• mod dout en – Active high signal, for the mod NxN dout signals.

The last five signals listed have been partly implemented, but the reading module is
yet to be fully connected to the communication top module. The goal is to eventually
remove the mod readReq and mod dataOut signals completely, and replace the read
requesting with a signal from the reading module.

Theoretical Use-Case

A theoretical use-case scenario would be that a complete video frame has been loaded
to the external DDR3 SDRAM memory. The reading module is notified that a frame is
available2, and loads one macroblock to the local storage. According to the request signals
from the transcoder, the module transfers parts of the macroblock, divided in the fashion
desired by the transcoder. Processed data can be transferred to the interface using the
mod dataIn en and mod dataIn signals, at any point. When a complete macroblock
has been received by the transcoder, a new can be constructed and is then ready to be
transferred.

2This has not been implemented, at this time.
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3.2.3 Communication Top Module

The top module, to which the transcoder is to be connected, is called the communication
top. This is the module that handles the command path part of the UI. It contains a dedi-
cated writing module, which handles the data which is to be written to the SDRAM. The
module also contains a reading module, but this has not been completed. This is because
further modification of the design is needed, to handle the first loading of a macroblock,
from the memory.For this reason, the communication top module also handles the reading
from memory, based on commands issued by the simulated transcoder.

The current design issues writes to consecutive addresses, starting from address num-
ber eight (8), and continues in increments of eight. The same is the case when reading
from the memory. This can be modified to use a register, with a predefined address order
for reading or writing, if it is necessary. All data widths are set to 128 bits, meaning that
both data buses in and out, as well as the data bus to the MIG.

The mediating between the read and write address is handled by a separate process
within the communication top. This simply depends on the writing and reading sig-
nals, with priority on the reading. This is because the state machine also prioritizes in the
same manner. The writing address is received from the writing module, while the reading
address is incremented within a state machine. All internal signals are clock synchronous,
in the submodules as well, by using current (c ) and next (n ) signals. The current
signals obtain the next value at a positive clock edge, or are reset when a reset signal is
received. It should also be noted that all the presented FSMs, for all the modules, return to
the IDLE state at reset.

Communication Top State Machine

As the communication top module contains a submodule for writing to the memory, as
well as issues read request to the memory, a state machine is used. The State Transition
Diagram (STD) for the communication top module is illustrated in Figure 3.8. Please note
that the STDs presented throughout this section are not extensive, in the sense that only
the general assignments in each state are shown, while several other are done depending
other signals in addition to the current state.

The FSM starts in the IDLE state, where it waits for either a read request (mod-
readReq) from the transcoder or a write request (write req) from the writing sub-

module. Reading is given priority over writing, because a transition to the reading (S READ-
WAIT) state only is performed when a read request is received. It counts the number of

received read requests from the transcoder, as well as the number of read requests issued
to the MIG, but these are do not regarded in the IDLE state.

If a reading request is received, a transition is made to the S READ WAIT state. If
the MIG is ready to receive commands, meaning that app rdy is high, it goes on to
controlling the number of issued and received commands. It compares the number of read
commands issued (readCount) with the number of received requests (readCommand-
count). At the same time, to avoid read requests past the addresses which have had

data written to them, it compares the number of issued read requests to the number of
data blocks written (acceptedWrite count). If the amount of issued requests is less
than both of the other two counters and the app rdy signal is asserted, it issues a read

24



3.2 Communication Interface Architecture

Figure 3.8: State Transition Diagram for the communication top module.
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1 i f a p p r d y = ’1 ’ and c r e a d C o u n t < c readCommand count and c r e a d C o u n t <
c a c c e p t e d W r i t e c o u n t then

2 app cmd <= ” 001 ” ;
3 app en <= ’ 1 ’ ;
4 n s t a t e <= S READ WAIT ;
5 n r e a d i n g a d d r <= c r e a d i n g a d d r + 8 ;
6 n r e a d C o u n t <= c r e a d C o u n t + 1 ;
7 e l s i f a p p r d y = ’1 ’ and ( c r e a d C o u n t = c readCommand count or c r e a d C o u n t

>= c a c c e p t e d W r i t e c o u n t ) then
8 app cmd <= ” 000 ” ;
9 app en <= ’ 0 ’ ;

10 n s t a t e <= IDLE ;
11 n r e a d i n g a d d r <= c r e a d i n g a d d r ;
12 n r e a d C o u n t <= c r e a d C o u n t ;

Listing 3.1: How the counters are used when read requests are issued.

request to the MIG, and increments the reading address (reading addr) by eight. If
the app rdy signal is low, and the comparison yields for more requests, it stays in the
S READ WAIT state until enough requests are issued to the MIG. When an adequate
amount of read requests are successfully issued to the MIG, the state machine returns to
the IDLE state. A part of the implementation of this control can be seen in Listing 3.1.

If a writing request (write req=‘1’) is received, while the FSM is in IDLE and the
mod readReq is low, the FSM goes to the S WRITE state. As stated previously, reading
has priority over writing, as the written data is stored within the writing module, and this
is the case in this state as well. If no read request is received, it issues a write request to the
MIG over the command path. The address is received from the writing module, and set as
the output through a separate process. It stays in the writing state until no more requests
are received, when it goes back to the IDLE state. If a read request is received, it is issued,
and the FSM goes to the S READ WAIT state.

3.2.4 Writing Module

From the simulations of the example design, it was clear that the memory was not neces-
sarily ready to receive data at each clock cycle, as were the specifications for this design.
To deal with this, an internal write buffer is used, realized through the Xilinx FIFO genera-
tor IP. Some of the possibilities offered by this IP are described in a separate paragraph, at
the end of this section. The overview of the signals between the write and communication
top module, as well as with the inner FIFO module, are illustrated in Figure 3.9.

As shown in the figure, data received from the transcoder is buffered directly to the
FIFO. The mod dataIn en signal serves as the write enable (wr en) and the data is
connected to the incoming data port (din). The FIFO has full and empty signals, which
notify the writing module of its status. While the FIFO has data stored, shown by a low
empty assignment, the writing module requests write access to the MIG. This is done
by asserting the top wr req signal, as well as transmitting the current writing address
through the write app addr signal. At the same time, the first element of the FIFO
is requested, and made available on the next clock cycle. The behavior of the module is

26



3.2 Communication Interface Architecture

Figure 3.9: Overview of the writing module.

described further in the following, by explaining the state machine controlling it.

Writing Module State Machine

Because the writing requests have to be acknowledged by the MIG, the writing module has
a state machine with behavior designed to handle this. The STD for the writing module’s
state machine is illustrated in Figure 3.10. The IDLE state is the initial starting point. It
stays in IDLE until some data is written to the FIFO.

When the FIFO is no longer empty (wfifo empty=‘0’), it goes to the S WAIT
state. At this point, it requests permission to write from the communication top mod-
ule, by setting the top wr req signal high. It stays there until the write request has
been accepted. In this context, acceptance means that the issued write command has
been registered by the MIG, as illustrated in Figure 3.4 on page 19. This is detected
by the writing module through the signal called MIG rdy, which is handled by a pro-
cess within the communication top module. The code for this is shown in Listing 3.2,
and the writing signal is equivalent to the issuing of a write command (app cmd =
‘‘000’’ and app en=‘1’). If the MIG rdy signal is high, it means that a write com-
mand is successfully issued and accepted by the MIG. When it is accepted, there are three
different possible transitions, as listed in the following.

1. If the app wdf rdy signal is high while there still are elements in the FIFO, it goes
to S WRITE. This means that the current data write is accepted, and thus it goes on
to writing more data.
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Figure 3.10: State Transition Diagram for the writing module.

1 w r i t e p r o c e s s : p r o c e s s ( w r i t i n g , a p p r d y )
2 begin
3 i f w r i t i n g = ’1 ’ and a p p r d y = ’1 ’ then
4 MIG rdy <= ’ 1 ’ ;
5 e l s e
6 MIG rdy <= ’ 0 ’ ;
7 end i f ;
8 end p r o c e s s ; −− w r i t e p r o c e s s

Listing 3.2: The process for the MIG rdy signal, in the communication top module.
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2. If the app wdf rdy signal is high and the FIFO is empty, it means that there is no
more data left to send. It will then return the IDLE state until more data is received.

3. If app wdf rdy is low when the write command is accepted, it goes to S APP-
WAIT.

Otherwise, while the write request is not accepted, it keeps waiting in the S WAIT
state. To utilize the MIG’s ability for delayed writes, the S APP WAIT state serves as a
second waiting state. If the MIG rdy signal has gone low during the transition, it starts
counting. It stays here for at most two clock cycles, waiting for the app wdf rdy signal
to be asserted. This is as the last case specified in Figure 3.4 on page 19. If the signal is
asserted, it goes on to the S WRITE. Otherwise, it returns to the S WAIT state, to wait for
a new acceptance of the write command.

In the S WRITE state, the system stays until either the FIFO is empty, or app wdf rdy
is deserted. If the FIFO is empty, it goes back to the IDLE state. If data has been loaded
from the FIFO but has not been successfully written, it goes back to the S WAIT while
keeping the current data.

In all situations where the initial write command is accepted, the signals app wdf-
wren and app wdf end are kept high, and the data on app wdf data is kept constant

until it is successfully written.

The FIFO

Due to the possibility of the MIG not being ready to receive data, a FIFO is instantiated
within the writing module. The FIFO is another Xilinx IP, made using the FIFO genera-
tor. The FIFO has several design options and specifications, which define how it should
be used. One option offered is the First-Word-Fall-Through (FWFT), meaning that the
read en signal is an acknowledgment signal, rather than a read request. This means
that data on the output port is replaced by the next element, when the read enable is as-
serted. [24, p. 13] This has been evaluated as possibly useful, by adding the ability to
pop the next element when the data is transmitted, without having to wait for one clock
cycle. For the proposed interface, this has been evaluated as not necessary, so it uses the
regular read en interpretation. This means that data is available on the FIFO output one
clock cycle after a read request. It also has the possibility of using handshake operations
for reading and writing, but these are also not used. This is because it would add some
complexity to the writing module.

The FIFO used within the writing module is 128 bits wide, and can hold up to 512
elements. The built-in FIFO has been selected, as the Xilinx 7 series FPGAs contain
dedicated logic in the block RAM This means that no additional Configurable Logic Block
(CLB) logic is used for implementing it. [25, p. 45] An extensive list of the selected
properties for the generated FIFO can be found in Appendix B.

3.2.5 Reading Module
The reading module only partially implemented with the rest of the design. This is because
some reconstruction of the communication top module is needed, to request the initial
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1 type h a l f 1 x 8 e l e m i s array (0 to 3) of STD LOGIC VECTOR(7 downto 0) ;
2 type FourXfourElem i s array (0 to 3) of h a l f 1 x 8 e l e m ;
3 type m a c r o b l o c k t y p e i s array (0 to 15) of FourXfourElem ;
4 s i g n a l c macroBlock , n macroBlock : m a c r o b l o c k t y p e ;

Listing 3.3: VHDL implementation of the macroblock type.

macroblock from the memory. However, it has been designed to interact with the rest of
the system, and is described in the following.

The design assumes that each complete macroblock is read in either 4 × 4 mode, or
8× 8, before a new macroblock is loaded. This is due to the way the amount of read data
and requesting of new data is handled, as described in a separate paragraph.

The macroblock type is defined in hardware as shown in Listing 3.3 and the composi-
tion of a macroblock is also illustrated in Figure 3.11. The figure also shows the assumed
order of data, in both transcoder read modes. The large numbers indicate the ordering of
the 4× 4 blocks, while the smaller indicate 1× 8 vectors in 8× 8 mode.

As may be seen by the VHDL implementation, each macroblock consists of 16 4 × 4
elements. Each one of these elements contains a quarter of a 8 × 8 block, or eight halves
of 1× 8 blocks. At last, every 1× 8 block contains eight pixels.

Figure 3.11: Macroblock composition.

By using such a composition to store a macroblock, a design has been made for the
reading module which is able to send either 4 × 4 or 1 × 8 (in 8 × 8 read mode) when
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requested by the transcoder. The outputs to the transcoder are thus either a 128 bit or a 64
bit vector, respectively.

The building of a macroblock is done in a process within the reading module, sensitive
to the app rd data and app rd data valid signals. When the valid data is returned,
it is stored in the appropriate place within the macroblock. Read requests are issued from
within the state machine, as described in the following subsection.

Because the system, with the current MIG and FIFO configuration, reads 128 bits of
data each clock cycle, 16 transfers from the memory are needed to construct one complete
macroblock. This is handled by a separate process, as described in its own paragraph.

Reading Module State Machine

The state machine controlling the reading module is fairly simple. It reacts on read requests
from the transcoder, and transits to the appropriate state. It sends data to the transcoder
while the read request signal is high, for each mode. If the request is stopped, it returns to
the IDLE state, waiting for a new request.

Figure 3.12: State Transition Diagram for the reading module.

When a 8 × 8 mode read-request is issued, the STD transfers to the appropriate state.
As requested, the data is sent as illustrated in Figure 3.13, with eight pixels (64 bits) each
clock cycle, when the mod read8x8 req signal is asserted. The large numbers in gray
denote the ordering of the 8 × 8 blocks. The same is the case, however with different
ordering and data sizes, for the 4 × 4 mode. It should be noted that there is a delay of
one clock cycle from a request is issued until the data is transferred. This means that one
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extra clock cycle is needed, when each read-request is issued, which has to be taken into
account by the transcoder.

Figure 3.13: Illustration of the order in which data is sent, when in 8× 8 mode.

Process for Constructing a Macroblock

Every 128 bits read from the memory are divided into two 1 × 8 blocks. The current
implementation constructs the macroblock by going from the top to the bottom, 128 bits
at a time. This means that the data which is stored first are 1× 8 data blocks one and nine.
Then two and ten, and so on. For a complete list of the receiving order, see Table 3.2.

Because of the specific way the macroblock is constructed within the reading module,
it is required that each transfer of a macroblock is followed through in either 4×4 or 8×8
mode. As 64 bits are read each clock cycle when in 8 × 8 mode, and 128 bits when in
4 × 4 mode, the amount of data that can be fetched from the memory differs between the
two. How this is handled, is described in the next paragraph.

Requesting New Data from the Memory

When appropriate amounts of data are read, the next macroblock needs to be constructed.
This is handled by a separate process, sensitive on the reading mode the state machine
is in. A latch has been used to store what type of reading mode was requested last. If
4×4 reading is requested, it starts issuing request for new data after the fourth 4×4 block
is transferred to the transcoder. It continues requesting until the complete macroblock is
transferred, and then continues for four more clock cycles.

If the mode is 8×8, it issues requests to the memory after data block number 15 is sent
to the transcoder. It then keeps requesting until the complete macroblock is read, before
it issues eight more requests. At this point, the next macroblock is fully constructed, and

32



3.2 Communication Interface Architecture

Table 3.2: Order of received (128 bit) blocks.

Order of received data
1. First and Ninth
2. Second and Tenth
3. Third and Eleventh
4. Fourth and Twelfth
5. Fifth and Thirteenth
6. Sixth and Fourteenth
7. Seventh and Fifteenth
8. Eighth and Sixteenth
9. Seventeenth and Twenty-fifth

10. Eighteenth and Twenty-sixth
11. Nineteenth and Twenty-seventh
12. Twentieth and Twenty-eighth
13. Twenty-first and Twenty-ninth
14. Twenty-second and Thirtieth
15. Twenty-third and Thirty-first
16. Twenty-fourth and Thirty-second

ready to be read. In both cases, 16 requests are issued to the memory, making sure that a
complete macroblock is loaded from the memory.
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Chapter 4
Results

This section presents simulation results for the designed modules, from top to bottom, as
well as the combined communication interface design. As the design is yet to be verified
on the development board, only simulation results are presented. The design has been
successfully implemented using the Xilinx ISE PROJECT NAVIGATOR, and the results
from the implementation reports are presented as well.

4.1 Simulation Results and Verification
All tests of the designed interface are only performed using simulations, as it is yet to be
placed on the FPGA. This section presents several simulation results for all the designed
submodules, as described in Section 2.5. The presented results for the communication top
and writing modules are from complete system tests, while the presented results for the
reading module are from a separate test.

Do note that a curved line (similar to the ‘o’ character) is seen in some figures, as for
instance in Figure 4.2. This is used when no significant changes occur in the simulated
signals over time, to make the presentation of the results clearer.

4.1.1 Communication Top Module
The top level testbench is simple, in the sense that the data values are equal to the ad-
dresses. This is done to make it easy to confirm whether or not the read data is valid, and
if it is retrieved in the correct order. Do note that the simulation values for the address and
data are in base 16, also known as hexadecimal.

Figure 4.1 shows the behavior of the communication top module when it receives the
first data to write to memory. This is accepted and acknowledged through the writing
signal going high. It now sets the address through app addr and asserts app en. When
this is accepted by the MIG, the MIG rdy signal is set high to notify the writing module
that writing is accepted. This means that the subsequent data can be written, continuing
until the app wdf rdy signal is set to zero.
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The figure also shows that the writing address is kept constant after the app rdy goes
low, until it is high. At the same time, several data elements are transferred to the writing
FIFO, as the app wdf rdy signal is high.

Figure 4.1: Simulation results for the communication top module receiving the first data to write,
and corresponding write command, and transferring it to the MIG.

Further confirmation of the write success can be seen in Figure 4.2. It shows the
transfer of the second value written, 128’h0010. It can also be seen that the rank and
bank selection is conducted, through the ddr3 addr, ddr3 ras n and ddr3 cas n
signals, as well as writing through the ddr3 we n signal. In addition, as opposed to the
erroneous results presented in Section 4.1.4, one can also see that the address the data is
written to is different.

As the current implementation of the communication top module also handles reading
from the memory, this behavior has also been tested. Figure 4.3 shows how the commu-
nication top receives a high reading request through the mod readReq signal, and goes
on the requesting reading from the memory. One can see that every request is held until
its accepted, before the address is incremented. At a later time, the data is successfully
received from the memory. This is shown in Figure 4.4. It is possible to see that the
counting of the received data, with the read rec count has a change at the end of each
received block. This is because the app rd data and app rd data valid signals
are not completely synchronized with the clock, and are set low a short period after the
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Figure 4.2: The DDR3 signals from the MIG, confirming that data from the MIG’s writing FIFO is
successfully written to the DDR3 memory.
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positive clock edge. The counting is still correct, as the increment is discarded as soon as
the app rd data valid signal is set to low.

Figure 4.3: Simulation results showing the how the communication top module successfully issues
read request, based on the received mod readReq signal.

Reading and Writing Latency

A noteworthy observation has been made with regards to the latency between the time a
read or write request is issued, and the time the data is received from or written to the
memory. Table 4.1 lists the different latency values for reading, from one of the tests run.
The clocks running the UI and proposed design clocks were set to 100 MHz. Because the
MIG is not necessarily ready to receive commands, the values have an additional difference
between different blocks of data. The mean values for the measured reading latencies are
307 ns from a request is accepted, and 317.5 ns from a request is issued.

It should be noted that this is not an extensive test, as only twenty measurements are
used. The values presented in the table are from a test with a long initial writing request
sequence, followed by several reading requests. To examine if the latency changed when
a sequential combination of reading and writing requests was issued, this was also tested.
These results indicated that the latency was slightly lower, but this was probably coinci-
dental. Even though the presented figures might change for a more extensive work load on
the memory, they are useful as an indication of the reading latency.

For the case of writing, the latency between time a command was accepted until the
data was transferred to the memory was longer. In most cases it was close to the reading
latency, at about 300 ns, while it could also be as high as 600 ns. These results are,
however, also depending on that data has been transferred to the MIG’s writing FIFO.
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Figure 4.4: Simulation results showing the data being received from the memory, and sent further
on to the transcoder, through the mod dataOut signal.
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Table 4.1: Latency from issuing read requests to the time of data read-back.

Reading
Address

Time after
request was
accepted [ns]

Time after re-
quest was first
issued [ns]

128’h0008 240 240
128’h0010 240 240
128’h0018 240 240
128’h0020 310 310
128’h0028 310 310
128’h0030 310 310
128’h0038 300 310
128’h0040 370 370
128’h0048 330 370
128’h0050 300 330
128’h0058 240 240
128’h0060 310 310
128’h0068 310 310
128’h0070 310 310
128’h0078 310 310
128’h0080 380 380
128’h0088 330 380
128’h0090 330 380
128’h0098 300 330
128’h00A0 370 370
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4.1.2 Writing Module

Due to the stochastic behavior within the SDRAM model, the initial test for the writing
module was not exhausting. By this, it is meant that the behavior of the app wdf rdy and
app rdy and the timing between them was not perfectly replicated in the testbench. It
still did serve as an indication of whether or not the designed module behaved as expected,
and reacted to the inputs as it should. The results presented in this subsection are from the
complete system test, as in the previous section.

As can be seen from the figure, the mod dataIn en signal goes high, when the
data on the mod dataIn is valid. When this is successfully stored in the FIFO, the
wfifo empty goes low and a write request is issued from the writing module to the top,
through the top wr req signal.

Figure 4.5: Simulation results for the writing module receiving the first data to write, and transfer-
ring them through the communication top module, further on to the MIG.

As stated in Section 3.2.4, the writing module handles the case when waiting at most
two clock cycles after the app rdy signal goes low. Results showing this are presented in
Figure 4.6, and it is clear from the figure that the implementation works. Two cursors are
used to emphasize that the time between app rdy going low and app wdf rdy going
high is two clock cycles, as they are not synchronized with the clock.

4.1.3 Reading Module

The reading module has mostly been tested individually, and the results presented here
are from these tests. It has also been tested with the complete system, but because some
functionality still needs to be added, it has not been completely validated with the complete
system. It has been tested to correctly receive data from the memory, but the reading
requests are still done through an input signal.
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Figure 4.6: Simulation results confirming how the writing module handles the two clock cycle delay
of app wdf rdy after an accepted write request.

The testbench simulates the behavior of the read path of the MIG, with readData and
read valid corresponding to the MIG’s app rd data and app rd data valid.
The macroblock used in the test is consistent with the data shown in Table 4.2. Each
square in the table represent one 4× 4 block.

Data is received in the order specified in Section 3.2.5, from top to bottom, 16 pixels
at a time. The receiving order is also is illustrated in Table 4.3, for clarity.

The successful construction of the macroblock is shown in Figure 4.7. Each color
corresponds with one 128 bit block of data received, and shows where it is stored. It is
clear that the counters are working properly, and that all data is stored correctly.

The macroblock structure can also be seen, by looking at each vector within the
n macroBlock signal. After four clock cycles, the two first 4 × 4 blocks are filled
with data, corresponding with the values shown in Table 4.2.

Figure 4.8 shows how the module successfully sends data eight pixels at a time. The
figure only shows the first and last six, but the others are also successfully transferred. A
read request in 4× 4 mode is presented in Figure 4.9, showing the transfer of the first two
4× 4 vectors.
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Table 4.2: Value assignments (hexadecimal) in the macroblock used for testing the reading module.

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30
31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40

41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50
51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70
71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80

80 7F 7E 7D 7C 7B 7A 79 78 77 76 75 74 73 72 71
70 6F 6E 6D 6C 6B 6A 69 68 67 66 65 64 63 62 61
60 5F 5E 5D 5C 5B 5A 59 58 57 56 55 54 53 52 51
50 4F 4E 4D 4C 4B 4A 49 48 47 46 45 44 43 42 41

40 3F 3E 3D 3C 3B 3A 39 38 37 36 35 34 33 32 31
30 2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21
20 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11
10 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01

Table 4.3: Order of the data written used in the testbench for the reading module.

128 Bit Hexadecimal Value
1. 128’h0102030405060708090A0B0C0D0E0F10
2. 128’h1112131415161718191A1B1C1D1E1F20
3. 128’h2122232425262728292A2B2C2D2E2F30
4. 128’h3132333435363738393A3B3C3D3E3F40
5. 128’h4142434445464748494A4B4C4D4E4F50
6. 128’h5152535455565758595A5B5C5D5E5F60
7. 128’h6162636465666768696A6B6C6D6E6F70
8. 128’h7172737475767778797A7B7C7D7E7F80
9. 128’h807F7E7D7C7B7A797877767574737271

10. 128’h706F6E6D6C6B6A696867666564636261
11. 128’h605F5E5D5C5B5A595857565554535251
12. 128’h504F4E4D4C4B4A494847464544434241
13. 128’h403F3E3D3C3B3A393837363534333231
14. 128’h302F2E2D2C2B2A292827262524232221
15. 128’h201F1E1D1C1B1A191817161514131211
16. 128’h100F0E0D0C0B0A090807060504030201
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Figure 4.7: Reading module receiving six blocks of 128 bit data.

Figure 4.8: Reading module transferring 1× 8 pixel data, in 8× 8 mode.
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Figure 4.9: Reading module transferring data 4× 4 pixel data, in 4× 4 mode.
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4.1.4 Overwriting Data and Erroneous Reads
An issue arose early in the design process, with erroneous data being read from the mem-
ory. Late in the design process, it was discovered that erroneous data read from the memory
was due to write requests not being issued correctly. In addition, the way they were issued
lead to overwriting of data, on the rare occasions they were accepted. The result from this
can be seen in Figure 4.12. Here, one can see how the selected column address is the same
for both 128’h28, 128’h30 and 128’h38, in the same rank. This means that the first
two data values are written, but replaced by the last one. The figure also shows that the
value 128’h40 is successfully written.

Figure 4.10: Erroneous issuing of write commands - part one.

Figure 4.10 shows the issuing of write commands, leading to the described erroneous
behavior. As shown in the figure, first address 29’h8 is accepted, before 29’h20,
29’h28 and 29’h30 are registered. In the meantime, data 128’h10 and 128’h18
are accepted by the MIG’s FIFO, while the addresses are not accepted. This is the area in
red in the figure. After this, app rdy is low until the scenario shown in Figure 4.11, where
address 29’h90 is accepted three times. Two of the three are emphasized in red in the
figure. This is the reason for the two overwrites seen in the DDR3 signals in Figure 4.12.

After the presumed writes, read requests are issued for the addresses from 29’h8 to
29’h98. 19 values are returned with the app rd data valid set high. However, only
six of these return written data, while the rest is just initial values in the different parts of
the SDRAM. Figure 4.13 shows the read data, and Table 4.4 lists all the returned values,
and the corresponding address they are read from.
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Figure 4.11: Erroneous issuing of write commands - part two.

Table 4.4: Data read from memory when the writes were incorrectly issued, with their corresponding
addresses.

Address Data

29’h0008 128’h0008
29’h0020 128’h0010
29’h0028 128’h0018
29’h0030 128’h0020
29’h0090 128’h0038
29’h0098 128’h0040

Others Initial value
(erroneous)
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Figure 4.12: Overwrites seen on the DDR3 signals.

Figure 4.13: Erroneous data received from the memory.
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4.2 Implementation Results
Further verification of the design was conducted by successfully running the implementa-
tion process on the different modules. The design has been successfully synthesized and
implemented using ISE PROJECT NAVIGATOR, without any errors. Implementing reports
issues with the design, as well as the utilization of the targeted FPGA. Excerpts from the
utilization reports can be seen in Tables 4.5 and 4.6, and the complete reports can be found
in Appendix C.

The communication top module has not been implemented separately, as the great
amount of Input Output Blocks (IOBs), made the implementation process fail. Extensive
modification was needed to reduce this, as opposed to the example top design, where the
mod dataOut and mod 4x4 dout were simply disconnected.

From the reported values, it is clear that the design does not require a large part of the
FPGA. The most utilized blocks are the IOBs, which will be reduced as the design will
be a part of a larger system. Table 4.5 shows an increase in the design with the interface,
compared to original example, where the traffic generator is used. The increase is not of
great significance, as it is small in comparison.

The greatest part of the available slice registers and Look-up-tables (LUTs) are utilized
by the reading module. This is because of the way the macroblock is constructed and
stored, which requires a lot of area.

Table 4.5: Slice logic utilization reported after implementation, for example top with and without
the proposed interface.

Slice Logic Utilization Available Original example top Modified example top

Slice Registers 407,600 5,165 1 % 7,164 1 %

Slice LUTs 203,800 6,132 3 % 8,123 3 %

Occupied Slices 50,950 2,537 4 % 3,283 6 %

Bonded IOBs 500 54 10 % 251 50 %

RAMB36E1/FIFO36E1s 445 0 0 % 2 1 %

Table 4.6: Slice logic utilization reported after implementation, for the writing and reading modules.

Slice Logic Utilization Available Writing module Reading module

Slice Registers 407,600 43 1 % 2,077 1 %

Slice LUTs 203,800 108 1 % 3,240 1 %

Occupied Slices 50,950 62 1 % 1,073 2 %

Bonded IOBs 500 322 64 % 327 65 %

RAMB36E1/FIFO36E1s 445 2 1 % 0 0 %

As may be seen in the complete reports, in Appendix C, some warnings are reported.
For the writing module, these are caused by two unused bits in the address signal, caused
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by incrementing by eight, in addition to unconstrained location mapping of its IOBs.
Many of them are the same for the reading module, being caused by unconstrained

locations for IOB and incrementing counters by four and eight. The last ones are because
of a latch, which has been intentionally used to keep track of the last requested read mode.
It does report that the latch is both set and reset asynchronously, as it gets its value from
the combinatorial state machine. The synthesis report states that this might work, but
recommends that an alternative solution is used.

For the proposed interface, which is part of the modified example top, many warnings
are issued. The majority of these are for parts generated through the MIG, which are
present in the implementation of the original version as well. The only additional warnings
are the same as specified above.

The synthesis part of the process also reported maximum frequencies for the different
modules. These are listed in Table 4.7. Initially, the implementation of the reading mod-
ule reported a failing time constraint, when no constraints were defined. When a timing
constraint for the clock was added, at 100 MHz, it was reported that all constraints were
met. The modified example top design also meets all the timing constraints, which were
automatically made when the MIG was generated.

Table 4.7: Maximum frequencies reported after synthesis.

Module Maximum frequency

Modified example top 308.414 MHz

Writing module 353.851 MHz

Reading module 591.226 MHz

4.3 Simulation Difficulties
Throughout the development process, there have been several difficulties with running the
example design simulation, generated by the MIG. The main issue has been the inability of
simulating the design files, when VHDL was the chosen language. When simulation was
run in ISIM, an error regarding assignment of the phy dout signal, reporting that it is out
of bound, causing the simulation initialization to fail. Because of this, different alternatives
have been tried. Before a working edition of MODELSIM was obtained, simulation using
ACTIVE-HDL 9.3 STUDENT EDITION was attempted.

It was found viable because of its support for mixed language designs, as well as
the including of pre-compiled Xilinx libraries. Xilinx libraries can also be compiled as
mentioned in Section 2.6.2, as described in [26].

ISE DESIGN SUITE was set up according to the specifications at [27], and simula-
tion was initiated. However, the simulation of the VHDL version stopped after a while,
reporting the error shown in Figure 4.14.

When the Verilog version was run, the error did not stop the simulation. However, it
still stopped due to the size restriction of the AHDL Student Edition, as seen in Figure 4.15.
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# ELAB2: Fatal Error: ELAB2_0031 ...
mig_7series_v1_9_iodelay_ctrl.v (167):
Value ’A’ out of range (false to true).

Figure 4.14: Error in Active-HDL for VHDL version of the MIG.

# ELAB2: Elaboration final pass complete - time: 45.5 [s].
# KERNEL: SLP loading done - time: 0.2 [s].
# KERNEL: Error: The size of your design has exceeded the

maximum capacity of the Student Edition.
# KERNEL: Error: For upgrade options please visit our

University Program page at www.aldec.com.
# KERNEL: stopped at time: 0 ps
# Error: Fatal error occurred during simulation

initialization.

Figure 4.15: Error message in Active-HDL during simulation of Verilog version of MIG.
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Chapter 5
Discussion

This section discusses the developed interface, and different aspects of it. The achieved
performance and results are evaluated, and the quality of the tests performed is also ad-
dressed. Because some difficulties and misbehaving occurred during the design process,
the reasons for this are also discussed. Assessment of the most significant choices leading
to the presented design are also assessed. In the end, the possible future improvements to
the current design are presented.

5.1 System Architecture
The proposed interface consists of the communication top module, which is connected
to the MIG. The communication top is used to mediate between read and write access,
with priority on reading. The reason for this has been that the only way to transition
to the reading state is by a read request signal. This should be modified, for instance
by comparing the number of received and issued reading and writing commands. If no
more write commands are received, it should go to the READ state and issue read requests
if more commands are received from the transcoder than commands issued to the MIG.
The command path is working as specified in the documentation, and successfully serves
as an interface for the transcoder. The following sections discuss the two submodules
instantiated within it, as well some other aspects of the proposed design.

5.1.1 Writing Module
As previously stated, the proposed design uses the memory interface IP, the MIG, as an
abstraction level above the low level DDR3 SDRAM signaling and control. A long time
was spent on understanding the interface specifications as they were described in [19],
analyzing the generated simulation testbench, and comparing the two.

The most important challenge was interpreting the specifications presented in Sec-
tion 3.1. More specifically, how to handle writing as described in the scenario illustrated
in Figure 3.4 on page 19. Because both the address and data are labeled as ‘0’, it could be

53



Chapter 5. Discussion

interpreted as that a write command and data write transfer should occur with at most two
clock cycles delay. It is also stated in the guide that the maximum delay between the write
data and its associated write command is two clock cycles. [19, p. 130] In combination
with the ability of writing data back-to-back, after an initial write command is accepted
(as depicted in Figure 3.5, on page page 20), this was misconceived as an ability of writ-
ing successfully, regardless of the command path’s app rdy signal going low. This was
the reason for the faulty design behavior, which produced the faulty results presented in
Section 4.1.4. Fortunately, this was discovered and the behavior was corrected.

It is not explicitly specified in the documentation what should be done in the event
that the command path is no longer accepting commands while the MIG’s writing FIFO
still is ready. In the proposed design, a choice is made to continue transferring data until
the app wdf rdy signal is set low. In addition, the write path’s app wdf end and
app wdf wren signals are set high as soon as data has been stored in the module’s FIFO,
while loading data on the app wdf data bus. These decisions were made because they
were evaluated as a better utilization of the available time and bandwidth. The described
choices do introduce two possible issues, due to the way the writing module has been
designed.

The first issue is the possibility of the second scenario depicted in Figure 3.4, where
the app rdy signal goes high, and a write command is accepted, one clock cycle after
app wdf rdy has gone low. The reason for this possible weakness is that a control
checking for that particular situation has not been implemented. The scenario does rarely
occur in the simulations, but when it does, data is written to two constitutive addresses.

The second issue is caused by the way the write commands are issued to the MIG. The
presented design issues write commands only while the write data FIFO within the writing
module is not empty. In the simulations that have been run, the MIG’s write data FIFO is
ready more often than the commands are accepted. After some time, this leads to the data
preceding its corresponding write command, and associated address. Because of this, the
data transfer is done before an adequate amount of write commands are issued, and the
module falsely believes that it has successfully finished the data transfer.

One solution to the first issue could be introducing a new state for waiting for the
app rdy signal for one clock cycle, analogous to the solution for the opposite scenario
with the two cycle delay of app wdf rdy. Alternatively, by only transferring data after
a command is accepted, the issue would be avoided completely, at the possible expense of
a decrease in the utilization of the available bandwidth.

The second problem could possibly be solved by extracting the issuing of write com-
mands from the writing modules Finite State Machine (FSM). It should still be initiated
by a control signal from the state machine, to keep the relation between the issuing of
the two. Alternatively, the FSM could be modified to issue write commands in a differ-
ent manner. The last option could be leaving the issuing of write commands completely
to the communication top module, as is the case for the reading requests. In any of the
three cases, a control should be introduced to verify that the amount of write commands
and transferred data blocks are equal at some intervals. Issuing enough write commands
is more important, as data transferred at a later time still would align with the addressing
order.
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Overwriting Issue

At an early point of the development process, an issue with receiving erroneous data from
the SDRAM arose. Analysis of the DDR3 signals indicated that data was successfully
written to the memory, but was erroneous when read back. This lead to a misguided
conclusion about the issuing of the read commands being faulty, and a great amount of
time was spent trying to find the reason for this issue.

It was later discovered that the issue was caused by an erroneous interpretation of
the relation between the write and command paths. It was seen that data was written
to the memory, but it took a long time before it was discovered that the rank, bank and
address selection for different data was the same, when it was transferred to the DDR3.
Fortunately, this issue was resolved, by modifying the writing module.

5.1.2 Reading Module

As stated in Section 3.2.5, the proposed reading module is not completely developed.
A solution for constructing macroblocks and reacting to requests from the transcoder is
completed, but some challenges are still left. The main challenge is handling the requesting
of data from the external DDR3 memory, while avoiding the possibility of overwriting the
current data. One preliminary solution has been developed, but as stated in Section 4.2,
it introduces an asynchronous latch. This is because it uses a latch to keep track of what
type of mode was requested last by the transcoder - either 4 × 4 or 8 × 8 mode, using
asynchronous setting and resetting. This would have to be examined further, and possibly
modified.

One solution could be using a FIFO as a buffer. This way, one could issue read requests
to the memory as soon as one macroblock is constructed, without the need of the more
complex read request issuing. By buffering the data to the FIFO first, the possibility of
overwriting data in the current macroblock would be avoided, and data could be read in a
more regular fashion, controlled by the FSM.

Another possible issue is with the current used ordering. For consistency and sim-
plicity during the propositional design process, it has been assumed that the order the
transcoder would read the data is as described in Figure 3.11 on page 30. This way, the
further relation between 4 × 4 and 8 × 8 blocks has been utilized, during macroblock
construction and read-back to the transcoder. If this is not the case, as other orders are
presented in [5], this will have to be modified.

5.1.3 Using a FIFO Write Buffer

By using the Xilinx FIFO, several limitations are introduced. As implied by the the name,
data transferred through a FIFO is forwarded to the memory in the received order. If this is
not the case, as some of the suggested reading orders for 4× 4 blocks in [5], the data must
be reordered. One way would be reordering data before the transcoder transmits it, but
this would introduce some undesirable delay. An alternative solution would be modifying
the address order in such a way that data is read back from the SDRAM memory in the
desired order.
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It should also be noted that the proposed design does not respect the FIFO’s full
signal. This is because the current FIFO size of 512 elements of 128 bits has been more
than enough for testing purposes, and it has not been filled up completely. Furthermore,
this size can be expanded, which could make it possible to avoid the FIFO ever becoming
full. Additional information about the frequency and relation between writing and read-
ing from the transcoder would be needed to select an adequate FIFO size. Initial testing
indicates that if the amount of reading and writing commands is similar, the FIFO would
never be filled up completely.

5.1.4 Keeping Track of Reads and Writes
Both the communication top and the writing module are using unconstrained counters to
keep track of the number of received data packets, the number of reads issued and the
number of received read commands. These are of type natural, and are currently only
reset at reset. This means that they are vulnerable for reaching overflow if the number of
read or write commands exceed (232−1). This would certainly cause unexpected behavior.

An attempt has been made to make a counter which adds one when a data block is
transferred, and subtracts when a read command has been issued. This was unsuccessful,
which is why the current implementation uses separate counters for each action. This
should be modified to avoid the possibility of overflow. Furthermore, the control within
the communication top module, for not issuing more read requests than successful writes,
could be faulty. Because the proposed design counts accepted data transfers, instead of
accepted write commands, the possibility of requesting data from an empty address is
possible. It is unclear if this would be an issue in a system with the transcoder, as data
addressing could be arranged in a different order, but should be modified. Although the
error did not present itself in the simulations that have been run, it should be modified to
comparing the number of read requests to the number of accepted write commands and
associated data transfers. There would still be a chance of error, due to the write latency
from the MIG to the memory, as mentioned in Section 4.1.1. This is difficult to account
for, apart from introducing an adequate delay between the writing and reading to and from
the same address.

5.2 Verification Results
The proposed communication interface has only been verified through simulation test-
benches. This is because a framework for testing design on hardware has not been de-
veloped. Although simulation might be limited, it can be used to indicate correctness in
certain scenarios. In addition, using the DDR3 memory model supplied by Micron Tech-
nology, was it possible to simulate realistic behavior for the external memory.

All test of the communication top module verified that the proposed interface is able
to both write and read data to and from the simulated memory. The design has been tested
with both a long initial sequence of write requests, followed by a number of read requests,
as well as a combinations of reading and write request sequences. It is possible that the
real scenario, when connected to the transcoder would be different. To be able to test this,
it would be necessary with more information about the behavior of the transcoder.

56



5.3 Implementation Results

The reading module has been successfully tested as a part of the communication top,
but also separately. Simulating it alone verified that it reacted correctly to the different
modes from the transcoder, by transferring correct data in the requested format.

There are two possible scenarios that have not been tested. Both have to do with
immense amounts of data transfers. Because the proposed design only increments both the
reading and writing addresses, as well as many of the counters used, unexpected behavior
could occur. From the documentation, it is uncertain how the MIG would handle addresses
out of its range. The other case is when the unconstrained counters reach overflow. These
two scenarios should be verified, and precautions made as necessary.

To make an absolute assessment of the design’s correctness, more extensive verifica-
tion must be conducted. One option could also be using formal verification techniques
and tools, which would be useful to verify the correctness of the designed modules fur-
ther. Unfortunately, only initial testing has been done, due to time constraints. However,
the obtained results from the performed tests do indicate that the design is promising as a
memory interface.

5.3 Implementation Results
The design has been successfully implemented, without any errors. Some warning are
issued, as described in Section 4.2, but only the one about the asynchronous set and reset
latch is of importance. The latch was intentionally used, but the asynchronous behavior
should be avoided. One solution is suggested in Section 5.1.2.

The utilization report shows that the proposed design does not utilize a large part of
the targeted Kintex-7 XC7K325T FPGA. By occupying only 8,123 of the FPGA’s LUTs,
and small amount of registers, a great amount of area is left for the transcoder. This means
that is should be possible to implement it aside the existing design.

5.4 Further Work
Throughout this thesis, a design has been developed which might serve as a memory inter-
face for the H.264/AVC transcoder. There are, however, still some aspects of it that need
addressing.

The most pressing improvement would be modifying the design to accommodate for
use with the DDR3 SDRAM controller available on the FPGA. As stated earlier, the mem-
ory part number was not found until late, causing the selection of a different memory part.
Because the available part is different and has a wider data width than the one selected,
this would require some reconstruction of the design.

The next thing would be, as stated previously, to rearrange the order of transferred
blocks, if it is different than the current implementation. If the pixel size is different from
eight bits, this would also require some modifications.

In addition to the possible vulnerabilities mentioned in the previous sections, the sys-
tem must also wait for the init calib complete signal from the MIG to be asserted,
before transferring data. This is important as this signal indicates that the initialization and
calibration of the memory is complete, and that the interface is ready.
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Chapter 6
Conclusion

The main goal for this thesis has been to develop a working interface to an external DDR3
memory. A working communication interface has been developed, which contains sepa-
rate modules for handling reading and writing operations. The proposed design utilizes the
MIG IP supplied by Xilinx, as a memory interface controller. The proposed design also
has the ability to transfer data to the transcoder in either 4 × 4 or 8 × 8 mode, according
the request issued by the transcoder.

Before the proposed interface can replace the current implementation using the Mi-
croBlaze for memory handling, more extensive testing is needed. The design has only
been verified through testbench simulations, at this point, by running different combina-
tions of read and write requests. It has also been implemented using Xilinx’ ISE PROJECT
NAVIGATOR, to verify that the design has no possible errors. The reported area utilization
for the complete system was 8,123 slices, of which 3,283 are occupied.

The interface runs at 100 MHz, and is according to specifications. Synthesis reports
have indicated that 308 MHz is the maximum frequency for the complete system, which
suggests that it would support the running frequency of the transcoder.

From the obtained results, it seems like the proposed design could be a viable alter-
native memory interface for the existing H.264/AVC transcoder. Although initial results
seem promising, more extensive testing must be conducted to assure complete correctness.
Some improvements are also needed, as described in the previous chapter. The most press-
ing would be to use the available memory part, as well as conduct more extensive tests of
it. It must also be tested on the targeted FPGA, and be verified to work with the transcoder.
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Appendix A
Settings Selection for the MIG

The MIG can be modified to fit the designer’s purpose. The selected MIG settings for this
design are listed in Table A.1. More information about each property is available in [19].

Table A.1: Selected MIG Properties

Property Selected Option

Number of Controllers 1
Pin Compatible FPGAs None selected
Controller Type DDR3 SDRAM
Clock Period 2500 ps/400 MHz
PHY to Controller Clock Ratio 4:1
Memory Part MT41J256M8XX-107
Data Width 16
ECC Unavailable, available for Data Width =

72
Data Mask Disabled
Ordering Normal
Input Clock Period 2500 ps (400 MHz) [10000 ps (100 MHz

is also available)]
Read Burst Type and Length Sequential (or Interleaved)
Output Driver Impedance Control RZQ/7
Controller Chip Select Pin Enable
RTT (nominal) - On Die Termination
(ODT)

RZQ/4

Memory Address Mapping Selection Bank Row Column
System Clock Differential
Reference Clock Differential
System Reset Polarity Active Low
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Debug Signals Control OFF (for ChipScope debugging)
Internal Vref Disabled
IO Power Reduction ON
XADC Instantiation Enabled
Internal Termination Impedance 50 Ohms
Digitally Controlled Impedance (DCI)
Cascade

Disabled
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Appendix B
Settings Selection for the FIFO

The FIFO properties can be modified to achieve different behavior. The selected FIFO
properties used in this design are listed in Table B.1. Figure B.1 shows the final summary
displayed by the generator. More information about the FIFO IP can be found in [24].

Table B.1: Selected FIFO Properties

Property Selected Option

Interface Type Native

Read/Write Clock Domain Common Clock

Memory Type Built-in FIFO

Read Mode Standard FIFO

Write Width 128

Write Depth 512

Enable ECC Disabled

Use Embedded Registers in BRAM or
FIFO

Disabled

Handshaking Options Disabled

Programmable Flags Disabled
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Figure B.1: FIFO Generator Summary
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Appendix C
Xilinx Design Summaries

This part of the appendix includes the design summaries after running successful synthesis
and implementations of the different modules.
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Appendix C. Xilinx Design Summaries

C.1 Summary for the Writing Module

writeModule Project Status

Project File: test.xise Parser Errors: No Errors 

Module Name: writeModule Implementation State: Placed and Routed

Target Device: xc7k325t-2ffg900 Errors: No Errors

Product Version: ISE 14.7 Warnings: 327 Warnings (324 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 

Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)

Number of Slice Registers 43 407,600 1%  

    Number used as Flip Flops 43    

    Number used as Latches 0    

    Number used as Latch-thrus 0    

    Number used as AND/OR logics 0    

Number of Slice LUTs 108 203,800 1%  

    Number used as logic 105 203,800 1%  

        Number using O6 output only 12    

        Number using O5 output only 25    

        Number using O5 and O6 68    

        Number used as ROM 0    

    Number used as Memory 0 64,000 0%  

    Number used exclusively as route-thrus 3    

        Number with same-slice register load 2    

        Number with same-slice carry load 1    

        Number with other load 0    

Number of occupied Slices 62 50,950 1%  

Number of LUT Flip Flop pairs used 113    

    Number with an unused Flip Flop 73 113 64%  

    Number with an unused LUT 5 113 4%  

    Number of fully used LUT-FF pairs 35 113 30%  

    Number of unique control sets 3    

    Number of slice register sites lost

        to control set restrictions

13 407,600 1%  

Number of bonded IOBs 322 500 64%  

Number of RAMB36E1/FIFO36E1s 2 445 1%  

    Number using RAMB36E1 only 0    

    Number using FIFO36E1 only 2    

Number of RAMB18E1/FIFO18E1s 0 890 0%  

Number of BUFG/BUFGCTRLs 1 32 3%  

    Number used as BUFGs 1    

    Number used as BUFGCTRLs 0    

Number of IDELAYE2/IDELAYE2_FINEDELAYs 0 500 0%  

Number of ILOGICE2/ILOGICE3/ISERDESE2s 0 500 0%  

Number of ODELAYE2/ODELAYE2_FINEDELAYs 0 150 0%  

Number of OLOGICE2/OLOGICE3/OSERDESE2s 0 500 0%  

Number of PHASER_IN/PHASER_IN_PHYs 0 40 0%  
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Number of PHASER_OUT/PHASER_OUT_PHYs 0 40 0%  

Number of BSCANs 0 4 0%  

Number of BUFHCEs 0 168 0%  

Number of BUFRs 0 40 0%  

Number of CAPTUREs 0 1 0%  

Number of DNA_PORTs 0 1 0%  

Number of DSP48E1s 0 840 0%  

Number of EFUSE_USRs 0 1 0%  

Number of FRAME_ECCs 0 1 0%  

Number of GTXE2_CHANNELs 0 16 0%  

Number of GTXE2_COMMONs 0 4 0%  

Number of IBUFDS_GTE2s 0 8 0%  

Number of ICAPs 0 2 0%  

Number of IDELAYCTRLs 0 10 0%  

Number of IN_FIFOs 0 40 0%  

Number of MMCME2_ADVs 0 10 0%  

Number of OUT_FIFOs 0 40 0%  

Number of PCIE_2_1s 0 1 0%  

Number of PHASER_REFs 0 10 0%  

Number of PHY_CONTROLs 0 10 0%  

Number of PLLE2_ADVs 0 10 0%  

Number of STARTUPs 0 1 0%  

Number of XADCs 0 1 0%  

Average Fanout of Non-Clock Nets 1.64    

 

Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0) Pinout Data: Pinout Report

Routing Results: All Signals Completely Routed Clock Data: Clock Report

Timing Constraints: All Constraints Met   

 

Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current ti 17. jun 16:38:23 2014 0 3 Warnings (0 new) 1 Info (0 new)

Translation Report Current ti 17. jun 16:38:34 2014 0 0 0

Map Report Current ti 17. jun 16:43:19 2014 0 324 Warnings (324 new) 6 Infos (3 new)

Place and Route Report Current ti 17. jun 16:44:25 2014 0 0 3 Infos (3 new)

Power Report      

Post-PAR Static Timing Report Current ti 17. jun 16:44:52 2014 0 0 4 Infos (4 new)

Bitgen Report      

 

Secondary Reports [-]

Report Name Status Generated

ISIM Simulator Log Out of Date sø 8. jun 22:13:19 2014

Date Generated: 06/17/2014 - 16:53:43
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Appendix C. Xilinx Design Summaries

C.2 Summary for the Reading Module

writeModule Project Status (06/17/2014 - 17:13:40)

Project File: test.xise Parser Errors: No Errors 

Module Name: readModule Implementation State: Placed and Routed

Target Device: xc7k325t-2ffg900 Errors: No Errors

Product Version: ISE 14.7 Warnings: 338 Warnings (338 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: X 1 Failing Constraint

Environment: System Settings Final Timing Score: 1331  (Timing Report)

 

Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)

Number of Slice Registers 2,077 407,600 1%  

    Number used as Flip Flops 2,075    

    Number used as Latches 2    

    Number used as Latch-thrus 0    

    Number used as AND/OR logics 0    

Number of Slice LUTs 3,240 203,800 1%  

    Number used as logic 3,222 203,800 1%  

        Number using O6 output only 3,070    

        Number using O5 output only 0    

        Number using O5 and O6 152    

        Number used as ROM 0    

    Number used as Memory 0 64,000 0%  

    Number used exclusively as route-thrus 18    

        Number with same-slice register load 18    

        Number with same-slice carry load 0    

        Number with other load 0    

Number of occupied Slices 1,073 50,950 2%  

Number of LUT Flip Flop pairs used 3,484    

    Number with an unused Flip Flop 1,425 3,484 40%  

    Number with an unused LUT 244 3,484 7%  

    Number of fully used LUT-FF pairs 1,815 3,484 52%  

    Number of unique control sets 39    

    Number of slice register sites lost

        to control set restrictions

35 407,600 1%  

Number of bonded IOBs 327 500 65%  

Number of RAMB36E1/FIFO36E1s 0 445 0%  

Number of RAMB18E1/FIFO18E1s 0 890 0%  

Number of BUFG/BUFGCTRLs 1 32 3%  

    Number used as BUFGs 1    

    Number used as BUFGCTRLs 0    

Number of IDELAYE2/IDELAYE2_FINEDELAYs 0 500 0%  

Number of ILOGICE2/ILOGICE3/ISERDESE2s 0 500 0%  

Number of ODELAYE2/ODELAYE2_FINEDELAYs 0 150 0%  

Number of OLOGICE2/OLOGICE3/OSERDESE2s 0 500 0%  

Number of PHASER_IN/PHASER_IN_PHYs 0 40 0%  

Number of PHASER_OUT/PHASER_OUT_PHYs 0 40 0%  

Number of BSCANs 0 4 0%  
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Number of BUFHCEs 0 168 0%  

Number of BUFRs 0 40 0%  

Number of CAPTUREs 0 1 0%  

Number of DNA_PORTs 0 1 0%  

Number of DSP48E1s 0 840 0%  

Number of EFUSE_USRs 0 1 0%  

Number of FRAME_ECCs 0 1 0%  

Number of GTXE2_CHANNELs 0 16 0%  

Number of GTXE2_COMMONs 0 4 0%  

Number of IBUFDS_GTE2s 0 8 0%  

Number of ICAPs 0 2 0%  

Number of IDELAYCTRLs 0 10 0%  

Number of IN_FIFOs 0 40 0%  

Number of MMCME2_ADVs 0 10 0%  

Number of OUT_FIFOs 0 40 0%  

Number of PCIE_2_1s 0 1 0%  

Number of PHASER_REFs 0 10 0%  

Number of PHY_CONTROLs 0 10 0%  

Number of PLLE2_ADVs 0 10 0%  

Number of STARTUPs 0 1 0%  

Number of XADCs 0 1 0%  

Average Fanout of Non-Clock Nets 5.81    

 

Performance Summary [-]

Final Timing Score: 1331 (Setup: 1331, Hold: 0) Pinout Data: Pinout Report

Routing Results: All Signals Completely Routed Clock Data: Clock Report

Timing Constraints: X 1 Failing Constraint   

 

Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current ti 17. jun 17:08:20 2014 0 8 Warnings (8 new) 1 Info (1 new)

Translation Report Current ti 17. jun 17:08:37 2014 0 0 0

Map Report Current ti 17. jun 17:11:27 2014 0 330 Warnings (330 new) 5 Infos (0 new)

Place and Route Report Current ti 17. jun 17:13:08 2014 0 0 3 Infos (0 new)

Power Report      

Post-PAR Static Timing Report Current ti 17. jun 17:13:38 2014 0 0 4 Infos (0 new)

Bitgen Report      

 

Secondary Reports [-]

Report Name Status Generated

ISIM Simulator Log Out of Date sø 8. jun 22:13:19 2014

Date Generated: 06/17/2014 - 17:13:40

2
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C.3 Summary for the Reading Module without Read Re-
quest

writeModule Project Status (06/17/2014 - 17:23:07)

Project File: test.xise Parser Errors: No Errors 

Module Name: readModule Implementation State: Placed and Routed

Target Device: xc7k325t-2ffg900 Errors: No Errors

Product Version: ISE 14.7 Warnings: 333 Warnings (1 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: X 1 Failing Constraint

Environment: System Settings Final Timing Score: 9720  (Timing Report)

 

Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)

Number of Slice Registers 2,072 407,600 1%  

    Number used as Flip Flops 2,072    

    Number used as Latches 0    

    Number used as Latch-thrus 0    

    Number used as AND/OR logics 0    

Number of Slice LUTs 3,643 203,800 1%  

    Number used as logic 3,643 203,800 1%  

        Number using O6 output only 3,492    

        Number using O5 output only 0    

        Number using O5 and O6 151    

        Number used as ROM 0    

    Number used as Memory 0 64,000 0%  

    Number used exclusively as route-thrus 0    

Number of occupied Slices 1,221 50,950 2%  

Number of LUT Flip Flop pairs used 3,644    

    Number with an unused Flip Flop 1,576 3,644 43%  

    Number with an unused LUT 1 3,644 1%  

    Number of fully used LUT-FF pairs 2,067 3,644 56%  

    Number of unique control sets 29    

    Number of slice register sites lost

        to control set restrictions

16 407,600 1%  

Number of bonded IOBs 326 500 65%  

Number of RAMB36E1/FIFO36E1s 0 445 0%  

Number of RAMB18E1/FIFO18E1s 0 890 0%  

Number of BUFG/BUFGCTRLs 1 32 3%  

    Number used as BUFGs 1    

    Number used as BUFGCTRLs 0    

Number of IDELAYE2/IDELAYE2_FINEDELAYs 0 500 0%  

Number of ILOGICE2/ILOGICE3/ISERDESE2s 0 500 0%  

Number of ODELAYE2/ODELAYE2_FINEDELAYs 0 150 0%  

Number of OLOGICE2/OLOGICE3/OSERDESE2s 0 500 0%  

Number of PHASER_IN/PHASER_IN_PHYs 0 40 0%  

Number of PHASER_OUT/PHASER_OUT_PHYs 0 40 0%  

Number of BSCANs 0 4 0%  

Number of BUFHCEs 0 168 0%  

Number of BUFRs 0 40 0%  

Number of CAPTUREs 0 1 0%  
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Number of DNA_PORTs 0 1 0%  

Number of DSP48E1s 0 840 0%  

Number of EFUSE_USRs 0 1 0%  

Number of FRAME_ECCs 0 1 0%  

Number of GTXE2_CHANNELs 0 16 0%  

Number of GTXE2_COMMONs 0 4 0%  

Number of IBUFDS_GTE2s 0 8 0%  

Number of ICAPs 0 2 0%  

Number of IDELAYCTRLs 0 10 0%  

Number of IN_FIFOs 0 40 0%  

Number of MMCME2_ADVs 0 10 0%  

Number of OUT_FIFOs 0 40 0%  

Number of PCIE_2_1s 0 1 0%  

Number of PHASER_REFs 0 10 0%  

Number of PHY_CONTROLs 0 10 0%  

Number of PLLE2_ADVs 0 10 0%  

Number of STARTUPs 0 1 0%  

Number of XADCs 0 1 0%  

Average Fanout of Non-Clock Nets 6.98    

 

Performance Summary [-]

Final Timing Score: 9720 (Setup: 9720, Hold: 0) Pinout Data: Pinout Report

Routing Results: All Signals Completely Routed Clock Data: Clock Report

Timing Constraints: X 1 Failing Constraint   

 

Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current ti 17. jun 17:17:54 2014 0 5 Warnings (1 new) 0

Translation Report Current ti 17. jun 17:18:11 2014 0 0 0

Map Report Current ti 17. jun 17:20:53 2014 0 328 Warnings (0 new) 6 Infos (1 new)

Place and Route Report Current ti 17. jun 17:22:32 2014 0 0 3 Infos (0 new)

Power Report      

Post-PAR Static Timing Report Current ti 17. jun 17:23:03 2014 0 0 4 Infos (0 new)

Bitgen Report      

 

Secondary Reports [-]

Report Name Status Generated

ISIM Simulator Log Out of Date sø 8. jun 22:13:19 2014

Date Generated: 06/17/2014 - 17:23:07

2
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C.4 Summary for the Example Top module
To be able to map the example top.vhd file, which contains both the MIG and the
proposed design, several signals had to be removed. This is because the design used too
many IOBs. The temporarily removed signals were mod dataOut and mod 4x4 dout.

writeModule Project Status (06/17/2014 - 18:05:01)

Project File: test.xise Parser Errors: No Errors 

Module Name: example_top Implementation State: Placed and Routed

Target Device: xc7k325t-2ffg900 Errors: No Errors

Product Version: ISE 14.7 Warnings: 2305 Warnings (514 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints:  

Environment: System Settings Final Timing Score: 0  (Timing Report)

 

Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)

Number of Slice Registers 7,164 407,600 1%  

    Number used as Flip Flops 7,163    

    Number used as Latches 1    

    Number used as Latch-thrus 0    

    Number used as AND/OR logics 0    

Number of Slice LUTs 8,111 203,800 3%  

    Number used as logic 7,294 203,800 3%  

        Number using O6 output only 6,195    

        Number using O5 output only 219    

        Number using O5 and O6 880    

        Number used as ROM 0    

    Number used as Memory 599 64,000 1%  

        Number used as Dual Port RAM 572    

            Number using O6 output only 28    

            Number using O5 output only 14    

            Number using O5 and O6 530    

        Number used as Single Port RAM 0    

        Number used as Shift Register 27    

            Number using O6 output only 27    

            Number using O5 output only 0    

            Number using O5 and O6 0    

    Number used exclusively as route-thrus 218    

        Number with same-slice register load 187    

        Number with same-slice carry load 31    

        Number with other load 0    

Number of occupied Slices 3,276 50,950 6%  

Number of LUT Flip Flop pairs used 9,751    

    Number with an unused Flip Flop 3,134 9,751 32%  

    Number with an unused LUT 1,640 9,751 16%  

    Number of fully used LUT-FF pairs 4,977 9,751 51%  

    Number of unique control sets 606    

    Number of slice register sites lost

        to control set restrictions

2,691 407,600 1%  

Number of bonded IOBs 251 500 50%  

    Number of LOCed IOBs 54 251 21%  

    IOB Flip Flops 5    

    IOB Master Pads 3    
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    IOB Slave Pads 3    

Number of RAMB36E1/FIFO36E1s 2 445 1%  

    Number using RAMB36E1 only 0    

    Number using FIFO36E1 only 2    

Number of RAMB18E1/FIFO18E1s 0 890 0%  

Number of BUFG/BUFGCTRLs 2 32 6%  

    Number used as BUFGs 2    

    Number used as BUFGCTRLs 0    

Number of IDELAYE2/IDELAYE2_FINEDELAYs 16 500 3%  

    Number used as IDELAYE2s 16    

    Number used as IDELAYE2_FINEDELAYs 0    

Number of ILOGICE2/ILOGICE3/ISERDESE2s 16 500 3%  

    Number used as ILOGICE2s 0    

Number used as    ILOGICE3s 0    

    Number used as ISERDESE2s 16    

Number of ODELAYE2/ODELAYE2_FINEDELAYs 0 150 0%  

Number of OLOGICE2/OLOGICE3/OSERDESE2s 45 500 9%  

    Number used as OLOGICE2s 3    

    Number used as OLOGICE3s 0    

    Number used as OSERDESE2s 42    

Number of PHASER_IN/PHASER_IN_PHYs 2 40 5%  

    Number used as PHASER_INs 0    

    Number used as PHASER_IN_PHYs 2    

        Number of LOCed PHASER_IN_PHYs 2 2 100%  

Number of PHASER_OUT/PHASER_OUT_PHYs 5 40 12%  

    Number used as PHASER_OUTs 0    

    Number used as PHASER_OUT_PHYs 5    

        Number of LOCed PHASER_OUT_PHYs 5 5 100%  

Number of BSCANs 0 4 0%  

Number of BUFHCEs 0 168 0%  

Number of BUFRs 0 40 0%  

Number of CAPTUREs 0 1 0%  

Number of DNA_PORTs 0 1 0%  

Number of DSP48E1s 0 840 0%  

Number of EFUSE_USRs 0 1 0%  

Number of FRAME_ECCs 0 1 0%  

Number of GTXE2_CHANNELs 0 16 0%  

Number of GTXE2_COMMONs 0 4 0%  

Number of IBUFDS_GTE2s 0 8 0%  

Number of ICAPs 0 2 0%  

Number of IDELAYCTRLs 2 10 20%  

Number of IN_FIFOs 2 40 5%  

    Number of LOCed IN_FIFOs 2 2 100%  

Number of MMCME2_ADVs 1 10 10%  

    Number of LOCed MMCME2_ADVs 1 1 100%  

Number of OUT_FIFOs 5 40 12%  

    Number of LOCed OUT_FIFOs 5 5 100%  

Number of PCIE_2_1s 0 1 0%  
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Number of PHASER_REFs 2 10 20%  

    Number of LOCed PHASER_REFs 2 2 100%  

Number of PHY_CONTROLs 2 10 20%  

    Number of LOCed PHY_CONTROLs 2 2 100%  

Number of PLLE2_ADVs 1 10 10%  

    Number of LOCed PLLE2_ADVs 1 1 100%  

Number of STARTUPs 0 1 0%  

Number of XADCs 1 1 100%  

Average Fanout of Non-Clock Nets 3.91    

 

Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout Report

Routing Results: All Signals Completely Routed Clock Data: Clock Report

Timing Constraints:    

 

Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current ti 17. jun 17:54:33 2014 0 1773 Warnings (4 new) 341 Infos (1 new)

Translation Report Current ti 17. jun 17:55:14 2014 0 20 Warnings (0 new) 19 Infos (0 new)

Map Report Current ti 17. jun 18:01:52 2014 0 355 Warnings (353 new) 7 Infos (3 new)

Place and Route Report Current ti 17. jun 18:04:16 2014 0 157 Warnings (157 new) 0

Power Report      

Post-PAR Static Timing Report Current ti 17. jun 18:04:56 2014 0 0 3 Infos (0 new)

Bitgen Report      

 

Secondary Reports [-]

Report Name Status Generated

ISIM Simulator Log Out of Date sø 8. jun 22:13:19 2014

Date Generated: 06/17/2014 - 18:05:02

3

78
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C.5 Summary for the Original Example Top module

example_top Project Status (06/18/2014 - 00:16:46)

Project File: test.xise Parser Errors: No Errors 

Module Name: example_top Implementation State: Placed and Routed

Target Device: xc7k325t-2ffg900 Errors:  

Product Version: ISE 14.7 Warnings:  

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 

Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)

Number of Slice Registers 5,165 407,600 1%  

    Number used as Flip Flops 5,165    

    Number used as Latches 0    

    Number used as Latch-thrus 0    

    Number used as AND/OR logics 0    

Number of Slice LUTs 6,132 203,800 3%  

    Number used as logic 5,150 203,800 2%  

        Number using O6 output only 3,942    

        Number using O5 output only 248    

        Number using O5 and O6 960    

        Number used as ROM 0    

    Number used as Memory 688 64,000 1%  

        Number used as Dual Port RAM 660    

            Number using O6 output only 48    

            Number using O5 output only 18    

            Number using O5 and O6 594    

        Number used as Single Port RAM 0    

        Number used as Shift Register 28    

            Number using O6 output only 28    

            Number using O5 output only 0    

            Number using O5 and O6 0    

    Number used exclusively as route-thrus 294    

        Number with same-slice register load 248    

        Number with same-slice carry load 46    

        Number with other load 0    

Number of occupied Slices 2,537 50,950 4%  

Number of LUT Flip Flop pairs used 7,171    

    Number with an unused Flip Flop 2,655 7,171 37%  

    Number with an unused LUT 1,039 7,171 14%  

    Number of fully used LUT-FF pairs 3,477 7,171 48%  

    Number of unique control sets 717    

    Number of slice register sites lost

        to control set restrictions

3,953 407,600 1%  

Number of bonded IOBs 54 500 10%  

    Number of LOCed IOBs 54 54 100%  

    IOB Flip Flops 5    

    IOB Master Pads 3    
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    IOB Slave Pads 3    

Number of RAMB36E1/FIFO36E1s 0 445 0%  

Number of RAMB18E1/FIFO18E1s 0 890 0%  

Number of BUFG/BUFGCTRLs 2 32 6%  

    Number used as BUFGs 2    

    Number used as BUFGCTRLs 0    

Number of IDELAYE2/IDELAYE2_FINEDELAYs 16 500 3%  

    Number used as IDELAYE2s 16    

    Number used as IDELAYE2_FINEDELAYs 0    

Number of ILOGICE2/ILOGICE3/ISERDESE2s 16 500 3%  

    Number used as ILOGICE2s 0    

Number used as    ILOGICE3s 0    

    Number used as ISERDESE2s 16    

Number of ODELAYE2/ODELAYE2_FINEDELAYs 0 150 0%  

Number of OLOGICE2/OLOGICE3/OSERDESE2s 45 500 9%  

    Number used as OLOGICE2s 3    

    Number used as OLOGICE3s 0    

    Number used as OSERDESE2s 42    

Number of PHASER_IN/PHASER_IN_PHYs 2 40 5%  

    Number used as PHASER_INs 0    

    Number used as PHASER_IN_PHYs 2    

        Number of LOCed PHASER_IN_PHYs 2 2 100%  

Number of PHASER_OUT/PHASER_OUT_PHYs 5 40 12%  

    Number used as PHASER_OUTs 0    

    Number used as PHASER_OUT_PHYs 5    

        Number of LOCed PHASER_OUT_PHYs 5 5 100%  

Number of BSCANs 0 4 0%  

Number of BUFHCEs 0 168 0%  

Number of BUFRs 0 40 0%  

Number of CAPTUREs 0 1 0%  

Number of DNA_PORTs 0 1 0%  

Number of DSP48E1s 0 840 0%  

Number of EFUSE_USRs 0 1 0%  

Number of FRAME_ECCs 0 1 0%  

Number of GTXE2_CHANNELs 0 16 0%  

Number of GTXE2_COMMONs 0 4 0%  

Number of IBUFDS_GTE2s 0 8 0%  

Number of ICAPs 0 2 0%  

Number of IDELAYCTRLs 2 10 20%  

Number of IN_FIFOs 2 40 5%  

    Number of LOCed IN_FIFOs 2 2 100%  

Number of MMCME2_ADVs 1 10 10%  

    Number of LOCed MMCME2_ADVs 1 1 100%  

Number of OUT_FIFOs 5 40 12%  

    Number of LOCed OUT_FIFOs 5 5 100%  

Number of PCIE_2_1s 0 1 0%  

Number of PHASER_REFs 2 10 20%  

    Number of LOCed PHASER_REFs 2 2 100%  
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Number of PHY_CONTROLs 2 10 20%  

    Number of LOCed PHY_CONTROLs 2 2 100%  

Number of PLLE2_ADVs 1 10 10%  

    Number of LOCed PLLE2_ADVs 1 1 100%  

Number of STARTUPs 0 1 0%  

Number of XADCs 1 1 100%  

Average Fanout of Non-Clock Nets 3.32    

 

Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout Report

Routing Results: All Signals Completely Routed Clock Data: Clock Report

Timing Constraints: All Constraints Met   

 

Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current on 18. jun 00:10:35 2014 0 4272 Warnings (2543 new) 762 Infos (431 

new)

Translation Report Current on 18. jun 00:11:06 2014 0 20 Warnings (20 new) 19 Infos (0 new)

Map Report Current on 18. jun 00:14:30 2014    

Place and Route Report Current on 18. jun 00:16:04 2014 0 172 Warnings (17 new) 0

Power Report      

Post-PAR Static Timing Report Current on 18. jun 00:16:41 2014 0 0 3 Infos (0 new)

Bitgen Report      

 

Secondary Reports [-]

Report Name Status Generated

ISIM Simulator Log Out of Date sø 8. jun 22:13:19 2014

Date Generated: 06/18/2014 - 00:16:46

3
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Appendix D
Top Level Design Overview

Design overview of the top module (modified example top.vhd) as shown in Xilinx
RTL Schematic.
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communicationTop

u_communicationTop

app_rd_data(127:0)

mod_dataIn(127:0)

app_clk

app_rdy

app_rd_data_end

app_rd_data_valid

app_ref_ack
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