
UVM Verification Framework

Mads Bergan Roligheten

Electronics System Design and Innovation

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Vitaly Marchuk, Atmel Norway AS

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology

i

Problem description

Atmel has a wide range of IP designs and a good, reusable and efficient verification
framework is extremely important to have short time to market. UVM (Universal
Verification Methodology) is a methodology for functional verification using Sys-
temVerilog, which is a set of standardized libraries of SystemVerilog. The student
will investigate how UVM can be used to build a reusable verification framework.
He has to take decisions on the following tasks:

- Synchronization between transaction level and RTL design;
- Packing and unpacking transactions and driving them to the design under test;
- Configuration database and reusability;
- Constrained randomization;
- Functional coverage and test execution control;

The verification framework can be used on any open source RTL. This is interesting
and challenging work on top edge of industry verification. It requires knowledge
of SystemVerilog, object-oriented programming and digital systems.

Assignment given: January 2014

Supervisor: Kjetil Svarstad, IET

Assignment proposer / Co-supervisor: Vitaly Marchuk, Atmel Norway AS

ii

Abstract iii

Abstract

The importance of verification is increasing with the size of hardware designs,
and reducing the effort required for is necessary to increase productivity. This

thesis covers the creation of a reusable verification framework for processor
verification using the Universal Verification Methodology (UVM). The framework
is used to verify three simple processor designs to evaluate its potential for reuse.

The three processors include a synchronous, asynchronous and a stack based
processor. A pure UVM implementation is evaluated against the use of external

checking by Assertion Based Verification (ABV), which is found to provide a
better overview. The framework is shown to be highly reusable, especially for

input generation, and can be used for both synchronous and asynchronous
design. The high reusability is a key part of increasing productivity gained by
removal of redundant work. This framework is intended as a proof of concept,

and is does not provide a complete verification for each of the designs.

Abstract iv

Abstract v

Sammendrag

Behovet for verifisering øker med størrelsen p̊a hardware design, og det å
redusere innsatsen som kreves, er nødvendig for å øke produktiviteten. Denne

oppgaven dekker oppsett av et gjenbrukbart rammeverk for prosessor verifisering
ved hjelp av Universal Verification Methodology (UVM). Rammeverket blir
brukt til å verifisere tre enkle prosessor design for å evaluere potensialet for

gjenbruk. De tre prosessorene inkluderer en synkron, asynkron og en stack basert
prosessor. En ren UVM implementasjon blir vurdert opp mot bruken av ekstern
sjekking ved hjelp av Assertion Based Verification (ABV), som viser seg å gi en
større grad av oversikt. Rammeverket blir vist til å være svært gjenbrukbart,

spesielt for generering av inngangssignaler, og kan brukes med b̊ade synkrone og
asynkrone design. Den økte graden av gjenbruk er et nøkkelelement mot økt

produktivitet, som oppn̊as ved å fjerne øverflødig arbeid. Rammeverket er ment
som et proof of concept, og inkluderer ikke en fullstendig verifisering av de

enkelte prosessor implementasjonenen.

Abstract vi

Preface vii

Preface

This thesis concludes a 5-year Master programme at the Norwegian University of
Science and Technology (NTNU), under the department of Electronics and
Telecommunication (IET). The work was carried out at Atmel Norway AS,

under supervision of Vitaly Marchuk, who proposed the topic.

I would like to thank my supervisor at NTNU, Professor Kjetil Svarstad for his
guidance, and I would like to give special thanks to Vitaly for his great support

and motivation throughout the project period.

Contents

Abstract iii

Sammendrag v

Preface vii

Contents viii

1 Introduction 1

2 Background information and theory 5
2.1 Verification . 5

2.1.1 Directed test . 6
2.1.2 Hardware Verification Languages 6
2.1.3 SystemVerilog . 6
2.1.4 Methodologies . 8
2.1.5 UVM . 8
2.1.6 Assertion based verification 10

2.2 Designs under verification . 10
2.2.1 Synchronous processor . 10
2.2.2 Asynchronous processor . 11
2.2.3 Stack processor . 11

3 Building a framework 13
3.1 Verification parts . 13
3.2 UVM structure . 15

3.2.1 Macros . 15
3.3 Input generation in UVM . 17

3.3.1 Transaction object . 17
3.3.2 Sequence . 19
3.3.3 Sequencer . 21
3.3.4 Driver and Monitor . 22
3.3.5 Interface . 23
3.3.6 Instruction agent . 23
3.3.7 RAM agent . 24
3.3.8 Environment . 24
3.3.9 Tests . 25

ix

Contents x

3.3.10 Testbench . 26
3.4 Functional checking in UVM . 26
3.5 Functional coverage collection in UVM 27
3.6 Reusability . 28

4 Alternatives and improvements 31
4.1 ABV vs UVM checkers . 31
4.2 ABV reusability . 33
4.3 Functional Coverage collection . 35
4.4 Complete framework . 36

5 Reusability: Adapting to new designs 37
5.1 Asynchronous processor . 37
5.2 Stack processor . 39

6 Evaluation 41
6.1 Reusability . 41
6.2 Productivity . 42
6.3 Coverage . 42
6.4 Bugs . 43

7 Conclusion and future work 45
7.1 Future work . 46

Chapter 1

Introduction

The development of integrated circuits is prone to include some errors in the design,
especially considering the increased complexity of newer generation technology.
Verification is an important part of the hardware development process, seeking to
uncover as many bugs as possible before the design is sent to production. With the
increase of design productivity the verification constitutes an increasing amound
of the effort spent on each project. The Wilson Research Group study of 2012
show that time spent on verification had increased by 15 the five previous years,
and averaged at 56% [5]. It also shows that the average number of verification
engineers vs design engineers has increased 75% in the same period, peaking at a
one-to-one ratio, and that design engineers actually spend a significant amount of
time doing verification as well [5]. This shows that despite advances in verification
methods, there is still a need to focus on improving and reducing the time spent
on this.

One of the reasons for increase in design productivity is the increased amount
of reusable model libraries that simplifies the most common tasks. A key focus
for improving verification would be to enable significant reuse of the verification
methods. Not only the reuse of common modules, but complete verification en-
vironments as well, could significantly reduce the effort required for each design
cycle. This motivates the creation of an efficient and reusable framework for veri-
fication.

The process of testing a design has evolved from simple directed testing, to elab-
orate verification methodologies alongside the increase in design productivity.
Though simple directed tests are fast and easy to write for small designs, satisfac-
tory verification requires significantly more elaborate systems. Several languages

1

Chapter 1. Introduction 2

emerged in response to this need, providing extensive libraries to aid in this work.
Two of the most known are e[2] and SystemVerilog[4], spawning several different
methodologies in different circles. The Universal Verification Methodology (UVM)
[12] is the result of an attempt to combine the different methodologies and create
a best practice to ease interoperability between engineers.

For this thesis three different RISC processor designs have been chosen to provide
similar but challengingly different systems to verify. These are the synchronous [6],
asynchronous [17] and stack [16] processors. The synchronous design has a rather
generic implementation providing a good starting point to build a framework.
The asynchronous version adds the complications of removing the system clock,
and finally the stack processor features a different processing concept. Creating a
framework able to verify these different designs with minimal effort will be able to
show the benefit and potential of such a system.

It is necessary to specify that the focus of this thesis is IP level designs, making
some of the UVM features less efficient as it largely intended for System on Chip
implementations with focus on transaction level communication between modules.
The thesis will show that the UVM can be just as useful for single IP designs as
well by utilizing the features that promote reusability.

The UVM will be utilized for building the verification framework, while at the
same time addressing what features of the methodology might not be as useful, or
even inefficient. This discussion is brought up in [10], where the authors analyze
the cost-benefit of the UVM macros. Furthermore a discussion can be made of
whether the framework should be restricted to only UVM components or if some
tasks are best handled by independent modules. An alternative to the use of
UVM checkers and registry models is by means of assertions. Assertion Based
Verification (ABV)[13] provide a direct way of specifying functional behavior and
will be evaluated as well as looking into ways that this can be made more reusable.

The thesis will feature a qualitative study of a UVM framework and focus on
showing the potential of a reusable framework as well as highlighting the strengths
and weaknesses of the methodology. It might also aid in further encouraging the
adaption of this standard, or as stated in [7] “Selling UVM to hesitant clients.
Bring them kicking and screaming into the 21st century”

Chapter 1. Introduction 3

The rest of the thesis is partitioned as follows:

• Chapter 2 will provide some background on the topic of verification and some
more information on the languages and methodologies.

• Chapter 3 covers the creation of a pure UVM framework with a detailed
description of the various parts.

• Chapter 4 will discuss alternatives and potential improvements.

• Chapter 5 describes the changes required to adapt the framework to the other
processor designs.

• Chapter 6 evaluates the performance of the framework.

• Chapter 7 concludes the thesis and suggests possible future work.

Chapter 2

Background information and
theory

To understand the need for building a verification framework we need to look into
how the methods for testing have developed over time. Before looking at the devel-
opment of different methodologies, let’s first examine the concept of verification.

2.1 Verification

What do we mean when we talk about verification?

Verification is simply the process of making sure the design does what it is supposed
to do according to a specification. It has essentially two tasks; providing input
stimulus that is able to control the design into all possible states, and be able to
observe how the design responds.

Verification is not just testing, but testing to the extent that you can be confident
of the correctness of a design. However, there is no way to completely verify a
design, except for really small designs, because of the increasingly large number
of possibilities. Thus we require methods that can provide as good as possible
confidence that the verification is satisfactory. Verification is commonly done
through simulation where you either create a model that behaves according to the
specification for comparison, or specify directly the expected states/values at a
given time.

5

Chapter 2. Background information and theory 6

2.1.1 Directed test

Directed testing is a quick and easy way to write simple tests for new designs and
is often used during the initial stages to test specific cases. It requires little to no
overhead and allows for direct targeting of expected signal transitions. For small
designs this is an efficient way to write basic tests for early checking of correctness,
but with increasing complexity and the need for exhaustive testing to confidently
verify a design, this method requires significantly more effort to write and quickly
becomes a tedious task. While it is still possible to create a solid set of tests this
way, it usually requires significant effort to setup and maintain the code. It is
also hard to reuse any part of a test being written for a specific design. Another
major limitation is the human factor, meaning that we are only able to test the
limited set of cases that is conceivable. Though clever minds can think of the most
likely problems and take special conditions into account, there may still be a huge
set of unknown combinations potentially creating bugs that would be difficult to
imagine.

Together with the rapid increase in design efficiency it soon became necessary to
find better methods for testing and verification. This is what led to the creation
of dedicated verification languages and more structured methodologies. It also
became necessary with dedicated verification engineers to handle this part of the
process.

2.1.2 Hardware Verification Languages

To meet the needs of verification engineers several HVLs was created, the most
widely known of these being e [2], Vera/OpenVera [15], SystemC [3] and Sys-
temVerilog [4]. Domain-specific languages like e and Vera provided several efficient
verification features later improved with OpenVera and assertion based verifica-
tion.

SystemC using the C++ library provide an all domain language and is a general-
purpose programming approach to hardware description and verification, and
serves as a contrast to SystemVerilog that is based on a HVL [11].

2.1.3 SystemVerilog

SystemVerilog is one of Accelleras efforts to combine all the domains of both
hardware description and verification into a single language. The domains being

Chapter 2. Background information and theory 7

Netlist, Register transfer, General programming, Testbench, Temporal properties
and Functional coverage[11] had previously been separated by domain specific lan-
guages, limiting the interoperability between engineers. In 2005 SystemVerilog was
adopted as an IEEE Standard [4], extending the design features of Verilog[1], and
adding advanced verification features based on OpenVera.

The following is a description of the most important advantages SystemVerilog
features for verification.

Classes
The ability to separate and organize functionality in classes enables increased
reusability and control of the verification environment.

Constraint-random
A good verification language provides the possibility of randomizing variables as a
way to remove the human factor. Randomized inputs can reach unthinkable states
in the design, and together with constraints excluding illegal values, more of the
design can be explored in a shorter amount of time. Randomization can also be
used without constraints to check proper error handling of faulty input.

Communication
Efficient methods for communication between classes and the RTL net-list are
necessary, and are enabled through interfaces and modports. The interface bun-
dles the I/O connections and allow direct access through different levels of the
hierarchy, reducing the common issue of spaghetti code. Interfaces can also imple-
ment the necessary functionality for bus transfer protocols, enabling efficient bus
communication. Efficient communication is also the basis for Transaction level
Modeling.

Synchronization
To be able to use TLM together with RTL code, it requires methods for synchro-
nization between the threaded transaction level description and the RTL signals.
This is added by the use of mailboxes for messaging and semaphores to control
execution order and access to resources.

Assertions
Assertions provide methods for checking temporal and functional properties and
can be added several places in the code for immediate or delayed checking of
properties. More on assertions in chapter 2.1.6

Functional coverage
With the use of coverpoints and covergroups it is easier to track the progress

Chapter 2. Background information and theory 8

and monitor exactly what has been tested, and it is especially necessary when
randomizing the test variables.

Along with several improved features to the design part of the language, Sys-
temVerilog looked to be not only the most complete HDL, but was shown to
perform better in terms of execution speed for hardware simulation compared to
VHDL and SystemC [9]. However, the use of the many features was not necessarily
easy, and many struggled to use these efficiently. The lack of a shared understand-
ing of best practice and with no standardized environments, it was hard to share
work between engineers, limiting cooperation and reuse [8].

2.1.4 Methodologies

Even before SystemVerilog, with multiple languages in use, different vendors cre-
ated their own methodologies to help increase productivity in verifying designs.
The methodologies were class-based, leaving the user with only small portions of
code to modify, and had a high focus on reusability.

The first focus on reuse was the e Reuse Methodology (eRM) from Verisity De-
sign. Cadence Design Systems later combined this with SystemVerilog to create
the Unified Reuse Methodology (URM). From Synopsis came the Reference Verifi-
cation Methodology (RVM) based on OpenVera, which with OpenVera being used
as a base for SystemVerilog verification, later became the Verification Methodology
Manual (VMM). Mentor created the Advanced Verification Methodology (AVM)
based on a combination of SV and SystemC, and this was used together with URM
in the creation of the Open Verification Methodology (OVM).

In 2011 Accellera approved version 1.0 of UVM as the result of an effort to unify
the different methodologies. The idea was to create a best practice that relies
on strong, proven industry standards. Figure 2.1 show the relations between the
different methodologies and how they have led to UVM.

The most recent implementation is UVM 1.1d [12], and is the one used in this
thesis.

2.1.5 UVM

Building upon the already extensive library of SystemVerilog, UVM adds a com-
prehensive library of classes to help increase standardization and interoperability.

Chapter 2. Background information and theory 9

Figure 2.1: Development of methodologies

The library is coded entirely in SystemVerilog source code[8], enabling not only a
highly standardized structure, but also provides the freedom to choose the most
appropriate tools for the given task. This makes the UVM a powerful toolkit for
verification.

Some of the most important advantages of using UVM are described below.

Constraint random
UVM makes efficient use of the constrain-random functionality enabled by Sys-
temVerilog, and builds its transactions based on this.

Single class hierarchy
The classes in UVM are all expanded from a single root class, ‘uvm object’, en-
abling key functionality to be available throughout all the components.

Object factory
The factory is the central mechanism for creating objects or components. By
registering objects with the factory, we enable a fully configurable hierarchy that
can be modified with specialized implementations at run-time.

Configuration/resource database
One of the most important facilities of UVM is a resource database that makes

Chapter 2. Background information and theory 10

configurations globally accessible. This allows test specific configurations to be
added to the testbench independently.

Phases
The different class threads running in a UVM environment are coordinated using
a phase based execution, ensuring proper ordering of events.

Prewritten code
As all the classes used in a UVM environment are predefined with significant
functionality, there is less work left to the user for each implementation.

This is just a brief overview of the advantages, as more detailed information will
be discussed when implementing the different classes in Chapter 3

2.1.6 Assertion based verification

Assertions is a verification method that provide a good way of targeting specific
behavior. This is done by separately describing expected transitions or results
for each property we want to verify. System Verilog Assertions (SVA)[4] is a
standardized assertion language as a part of SystemVerilog and provide a well
defined system for assertions.

Assertions are used to describe temporal and functional properties of the design,
stating when and whether this should hold true. These properties are monitored
during simulation and provide valuable feedback when verifying a design.

There are several ways to utilize assertions, both for monitoring that the simulation
is executed properly and that the design responds properly. Assertions can also
be added both at RTL-level and TLM-level [14].

2.2 Designs under verification

The following is a short description of each of the three designs that are targeted
for verification.

2.2.1 Synchronous processor

The synchronous processor used here is a simple 16-bit RISC CPU featuring a
limited instruction set [6]. The processor design has not been thoroughly tested

Chapter 2. Background information and theory 11

and may contain some bugs, making this a good starting point for both developing
and testing the framework.

2.2.2 Asynchronous processor

The synchronous processor is also being used as the base for another thesis, which
set out to convert this simple processor to asynchronous logic [17]. Verification of
asynchronous logic may generate difficulty regarding timing and synchronization,
but as it is based on the same instruction set, the transition should be less difficult.
The main issue this version presents, is the timing of when to drive input data,
and knowing when the results can be checked. The work on this adaptation is
being carried out simultaneously, thus providing a real-world approach for the
verification process.

2.2.3 Stack processor

Another concurrent thesis aims to implement a stack based processor for energy
harvesting systems [16]. This provides another processor design for verification,
with added challenges due to the completely different design principle. It features
an even more limited instruction set, but the new instructions together with the
different structure should provide additional challenge when adapting the frame-
work to this design.

Chapter 3

Building a framework

To be able to verify three different designs efficiently, we need a solid framework
that ensures minimal effort when changing the Design Under Verification (DUV).
For this to be possible, it requires identification of reusable parts and making these
as generic as possible. The process can be divided into three steps as we have three
different designs to work with.

- The synchronous processor features a fairly simple instruction set and common
architecture, making it a good starting point for building a generic framework.

- The next step is then to adapt this to the asynchronous version of the processor.
Because it uses the same instruction set this transition should not be too difficult.

- Lastly, by adapting to the stack processor, featuring a completely different in-
struction set as well as completely different architecture, it will be possible to
show the full potential of the framework and whether or not this is a feasible
system.

3.1 Verification parts

Before discussing the details of the implementation, let’s take a look at what is
necessary to create a constrained-random verification scheme.

1. Input has to be generated in a randomized fashion.

2. Behavior of the design must be checked for functional correctness.

3. Monitoring the process to keep track of what has actually been tested.

13

Chapter 3. Building a framework 14

Figure 3.1: The 3 parts of verification

1. Input generation

Planning the test inputs is a big part of the effort invested when writing directed
tests as you have to specify every situation you want to check, and it also contains
only a check of predicted bugs. How the input is generated greatly affect both
the effort required and the range of situations we are able to check. Constrained-
random generation is the key feature that not only reduces the amount of time
spent on this part of the process, but also enables the finding of unpredicted bugs.
This reduces the tedious work of planning input data to only having to specify the
variables and add some constraints removing illegal values or limiting the range
of the test.

2. Functional checking

After generating proper input, the next step is to confirm that the design behaves
as intended. Functional checking can be done in several ways, but is essentially
a case of comparing the designs response with the expected result based on the
specifications. How this expected result is determined depends on the design
description and what tools are in place. Two methods for functional checking
will be explored later debating whether to use a pure transaction level UVM
implementation or add independent parts to the system.

3. Coverage collection

Verification is a never ending race to test as much as possible is as little time as
possible, but it is near impossible to completely verify a design of considerable
size. With the use of random input generation it is essential to collect information
of what is actually verified. Coverage is a measure of how thoroughly a design has
been tested based on predefined goals of what is considered sufficient.

Chapter 3. Building a framework 15

Here we have to make a distinction between code coverage and functional coverage.
Code coverage is a feature provided by simulation tools that keeps track of the
lines of code that has been visited during simulation. This provides information
on whether all states are reachable or if the test is thorough enough to reach all
states.

Functional coverage is specified directly using coverpoints and covergroups, allow-
ing engineers to create a boundary of what is the minimum acceptable coverage.
Covergroups are categories of events that are sampled when the specific event oc-
curs. Coverpoints decides what parameters of the event should be counted toward
total coverage. An example of this is shown in Section 3.5

3.2 UVM structure

From the previous chapter, we know that UVM was aimed at creating a new stan-
dard by combining the best practices from the previous generations. Throughout
this chapter the advantages will not only be shown in use, but also evaluated in
terms of their actual value for reusability and increased productivity.

In order to determine the full potential of the UVM this chapter will cover the
implementation of a pure transaction level UVM environment. This will involve
an in-depth description as each of the components will be evaluated in terms of
efficiency, reusability and their overall benefit to the system.

An illustration of the framework implementation is shown in Figure 3.2 giving
a picture of how the structure is set up, and providing a reference to relate the
different components described later on.

The advantage of the single-class hierarchy is that each of these components re-
quires very little effort to set up. Because of the standardized structure all com-
ponents are created in a strict fashion for registration with the object factory to
enable proper timing and communication.

3.2.1 Macros

Before going into details of the implementation, there are some features that re-
quire special attention. These features are made available through macros, and
range from essential utility macros to optional functionality like copy, compare and
pack. Though the use of macros usually simplifies code writing and is necessary

Chapter 3. Building a framework 16

Figure 3.2: Implemented framework in UVM

to increase reusability, a concern voiced in [10] indicate that some of these may be
inefficient. A cost-benefit analysis is performed to show the real benefit and the
recommendations for the relevant macros are repeated here.

’uvm object|component utils is the essential macro that registers the class
with UVM factory and should always be used to ensure proper type registration.

’uvm info|warning|error|fatal provides a reporting mechanism that enables
messages like error reporting and debug information to be filtered based on the
verbosity. These macros are highly efficient and should be the primary choice for
this purpose.

’uvm field * macros are used to manipulate the transactions throughout the
environment with functions like copy, compare and pack/unpack. Though these
macros have been significantly improved from OVM to UVM, it is still suggested
to avoid these and instead replace with custom implementations for the necessary
functionality [10]. The need for these in the framework implementation will be
discussed in Section 3.3.1.

’uvm do * is a simplification of the execution of sequences and is not recom-
mended to use [10], as it essentially adds a large set of additional execution phases.
These macros are intended to hide some execution steps, but do this at the cost of
significant code bloat. The same functionality can be rather simply added directly,
as shown in Section 3.3.2, providing better control of the process.

Other macros are evaluated in the paper, but are not used in this implementation.

Chapter 3. Building a framework 17

The main reason to avoid the inefficient macros become clear when considering
reusability, as inefficient code does not provide a good base for reuse.

3.3 Input generation in UVM

The necessary classes for input generation are the ones contained in the instruction
agent, specifically transaction, sequence and driver.

3.3.1 Transaction object

The core component of a UVM environment is the transaction object. This is the
foundation of data transfer within the UVM environment as it defines the data
types used for communication. It serves as a container for the set of variables re-
quired for a specific type of transaction. For a bus transaction this would typically
be data, address and request/grant variables, while other transactions can have
more or fewer variables depending on its purpose.

In the case of a processor design the transaction will contain variables required
to create instruction vectors, as the main control inputs are the instruction word
and the clock. The key of constraint random testing is to efficiently randomize
the input instructions while being able to limit or control the types or ranges of
instructions during runtime. This is done by extracting all the variables specified
in the instruction set documentation [6] as shown in Figure 3.3.

Figure 3.3: Extracting variables for randomization

An advantage that can be utilized here is the enumeration of these variables to
increase both readability and reusability. By naming all the valid values for each

Chapter 3. Building a framework 18

of these variables it is possible to put together random instructions that are more
easily monitored and managed in the test. The benefit of this is best shown in
Figure 3.5 in Section 3.3.2 where it is much easier to keep track of and know what
instruction was executed. Also, as with any variables that may be referenced more
than once, this helps limit the places to edit when making changes.

rand instruction_type iType; // Enumerated instruction types

rand opcode1 opc1; // Enumerated opcodes

{...}

// Register field macros

‘uvm_object_utils_begin(utran_inst)

‘uvm_field_enum(instruction_type, iType, UVM_ALL_ON)

‘uvm_field_enum(opcode1, opc1, UVM_ALL_ON)

{...}

‘uvm_object_utils_end

constraint idist{ iType dist { Type_I := 3, Type_II := 4, {...}

}

constraint isnttype{ iType == Type_I -> opc1 inside {ori4_op1, add2_op1, sub2_op1};

iType == Type_II -> opc1 inside {lw_op1, lb_op1, sw_op1, sb_op1};

{...}

}

The code snippet above shows an example of the transaction object for instruc-
tions. The constraints are essential to ensure generation of valid instructions and
are accompanied by a priority list to ensure equal distribution of instructions.
The values can later be overwritten either in a sequence or using the configuration
database enabling active adjustment of the input generation.

We notice here that ’uvm field * is enabled for each of the variables, going against
the recommendation discussed earlier. The reason for this is that the field regis-
tration not only enables the macros, but also enables the variables to be visible
outside the transaction. Without this enabled they would not be listed in Fig-
ure 3.5.

The predefined macro functions are not utilized here, but should they be necessary,
then the recommendation should be followed by overwriting with custom functions.
This does require some additional effort when creating the transaction, but is of
benefit in the big picture considering reusability.

Chapter 3. Building a framework 19

3.3.2 Sequence

A sequence takes care of the creation, randomization and finalization of transaction
objects making them ready to be used as simulation inputs. The sequence uses a
transaction object and creates multiple iterations of the object to form a stream of
input data. This can create complex sequences that simulate operations like bus
read/write protocols, and is another step up in abstraction as we no longer have
to deal with the details of each transaction.

It is also possible to create virtual sequences contain several of the normal se-
quences. This enables even better control of the execution in an environment that
deals with several verification components. The feature has not been implemented
in this framework due to lack of necessity, but is mentioned as a possible future
improvement

task body;

// Create a transaction of the given type

m_utran_inst = utran_inst ::type_id::create("m_utran_inst", null);

forever

begin

start_item(m_utran_inst); // Synchronize with sequencer / wait for request

assert(m_utran_inst.randomize()); // Randomize transaction variables

else ’uvm_error(...);

finish_item(m_utran_inst); // Give completed item to sequencer

end

endtask

An example of a standard sequence implementation that was used to verify the
three CPUs is shown above. The four lines executed in the body task, replace the
’uvm do macro described earlier with the essential functions for sequence opera-
tion. Though the macro adds this to a single function call, the additional func-
tionality provided by the macro are rarely necessary and add a set of execution
phases that only slow down the simulation.

The assert statement added before randomization is used to ensure that proper
randomized values are generated. The randomization may fail if there are con-
flicting constraints, and should be checked to prevent unexpected values in the
simulation. An error can then be reported using the reporting mechanism.

Even though we could generate complex sequences, this is not necessary for general
simulation of the CPUs as it only requires the creation of single random instruction
for each clock cycle, and thus requires no special implementation.

Chapter 3. Building a framework 20

However, should you require some special functionality this can easily be added,
and as an example, another sequence was created to initialize the processor’s
register. The initialization sequence simply forces the variables in the transaction
to have a specific value so that we control which instruction is generated. This is
done using “.randomize() with” allowing direct control over the randomized values.
The code snippet below shows what little change is required to create more specific
sequences. These changes can range from limiting one variable to being able to
directly control all the fields.

The same technique can also be utilized to reach corner cases in the simulation by
creating specialized sequences.

task body;

m_utran_inst = utran_inst ::type_id::create("m_utran_inst", null);

start_item(m_utran_inst);

assert(m_utran_inst.randomize()

with {m_utran_inst.opc1 == ldir1_op1 && // Set variable value and exclude it

m_utran_inst.K12 == 12’hfff;}); // from randomization

finish_item(m_utran_inst);

for (int i=1;i<15;i++)

begin

start_item(m_utran_inst);

assert(m_utran_inst.randomize()

with {m_utran_inst.opc1 == alur1_op1 && // Specify all the

m_utran_inst.opc3r == orr1_op3 && // variables to choose

m_utran_inst.Rd == RegD’(i) && // a specific instruction

m_utran_inst.Uk4 == 4’hf ;}); //

finish_item(m_utran_inst);

end

endtask

In this example the load immediate instruction ldir is used to fill the upper part
of register R1 with the hexadecimal value “fff”. Then by iterating over all register
addresses, the alu instruction orr1 uses the R1 value together with “UK4 = f”
to fill each slot with the value “ffff”. “f” is used due to the nature of the unknown
values in simulation forcing the value to “1”.

Figure 3.4 and 3.5 shows how the sequences also improve readability for debugging
by displaying how and when they are executed as well as providing detailed in-
formation about each transaction generated. The readability is further improved
with the enumeration of variables, providing quick and easy understanding of the
current state. It might not seem all that necessary with only a few sequences,

Chapter 3. Building a framework 21

Figure 3.4: Simulation with multiple sequences

Figure 3.5: Sequences provide detailed transaction information

but imagine having several sequences running at different times in the simulation,
then this would surely make it easier to keep track of everything.

For this framework, it is not only important to reduce verification effort, but also
promote any feature that can aid in the debugging process as well.

3.3.3 Sequencer

The sequencer implements the handshaking methods used by the sequence and
driver, acting like an interagent between production and use of transactions. All
the necessary functionality is present in the inherited class requiring no additional
implementation, and the sequencer is usually defined with an inline typedef. The
only specification is the type of transaction used.

Chapter 3. Building a framework 22

typedef uvm_sequencer #(utran_inst) usequencer_inst;

// Define a sequencer for given transaction

3.3.4 Driver and Monitor

Now that we have the input generated it needs to be sent to the DUV for simula-
tion. For the transaction level data to be used as input it needs to be translated
down to RTL-level, and it is in the driver and monitor we place the border between
TLM and RTL.

The driver is the active part of the verification component and uses the clock input
to time the events. It pulls new transactions from the sequencer, then translates
this to a bit string, before sending it to the interface. Depending on the type of
transaction, it can involve simple single transmissions like in for instruction input,
or be more complicated multi-cycle transfers in the case of a bus transmission.
In the last case, the driver simply calls a function and leaves the specifics to the
interface as described in Section 3.3.5.

{}

bit[15:0] inst;

{}

task run_phase(uvm_phase phase);

forever

begin

@(posedge si.clk);

begin

seq_item_port.get(m_inst);

case(m_inst.iType)

Type_I: inst = {m_inst.opc1,m_inst.Rd,m_inst.Rs1,m_inst.Uk4};

{...}

endcase

si.inst = inst;

end

end

endtask: run_phase

The code above shows the run phase of the instruction driver. At each new
clockcycle a new instruction is pulled from the sequencer and translated to a 16-bit
instruction word that is sent to the interface. The case is used to put together the
correct variables for the given instruction type.

Chapter 3. Building a framework 23

For the RTL-level values of the DUV to be handled by the UVM environment the
previous process must be done in reverse. The monitor reads the values from the
DUV through the interface and translates this RTL level data into transactions of
the required type. This data can then be broadcast to any subscriber listening to
the monitor for processing.

The use of broadcasting and subscribers is another feature that increases structure
and reuse of code. By assigning a subscription port, the monitor need not worry
about who is listening, but rather broadcast data that can be subscribed to by
any other component in the environment.

Since the driver is where RTL-level data gets forwarded to the interface, this is
also a good place to add support for direct programming of the CPU. The idea
is that the design engineers and the verification engineers could work in the same
environment, so by adding support for direct programming of the CPU, it allows
design engineers to run simple tests using the same framework. This further
increases interoperability and can increase productivity with immediate feedback,
as the same monitoring and checking can be utilized.

3.3.5 Interface

The interface is the connection between the UVM environment and the DUV. It
provides specific implementations for communication with the current version of
the design. For bus transactions, it can implement a bus functional model that
executes the proper transmission protocol with the received data. This provides a
buffer between the test and the DUV, reducing the requirement of specific knowl-
edge of the current implementation.

3.3.6 Instruction agent

The agent is a container construct used to isolate the set of components referred to
as verification components. The sequencer, driver and monitor are the dedicated
components dealing with a single type of transaction and interface, and combining
these into a single object is another key for reusability. The idea is that they should
not need to be aware of anything outside the agent and only deal with the ports
provided by the agent. This allows the creation of verification IPs that can be
used again in any environment featuring the same protocol.

Chapter 3. Building a framework 24

As the driver and monitor rely on the agent for interaction with the outside, the
configuration database is invoked here to provide the interface required.

assert(uvm_config_db #(virtual instructionIF)::get(this, "*", "instructionIF", inst_if))

In this case the main agent is highly specific and can only be used to drive a CPU
using the same instruction set. Other connectors on the CPU, however, have more
common data sets like for the RAM interaction.

3.3.7 RAM agent

This is an additional agent that was added in order to have better control of the
RAM interactions by the CPU. It is used to monitor the data output and provide
randomized or specified input data, enabling proper verification of the store/load
instructions. This is only used for four of the instructions, and could be added
to the instruction agent, but to avoid mixing code and promote reusability it is
better to separate it.

3.3.8 Environment

The environment is the top level UVM class and acts as a container for all UVM
components. It is used to instantiate the different components and handles con-
necting different parts as well as enabling custom configuration provided by the
test. It works like a customizable block description, making it easy to build differ-
ent environments using premade verification IPs. Specific configurations provided
by the test can be loaded from the configuration database.

function void build_phase(uvm_phase phase);

super.build_phase(phase);

m_agent_inst = uagent_inst::type_id::create ("m_agent_inst", this);

m_agent_ram = uagent_ram::type_id::create ("m_agent_ram", this);

endfunction: build_phase

The important phase for the environment is the build phase where it instantiates
the different components that is used. Other specifications and configurations can
also be added here.

Chapter 3. Building a framework 25

3.3.9 Tests

With the environment in place, we can then write tests that use it. Each test is
written with a specific goal in mind and can configure the environment to meet
certain requirements. The test is where the environment is initialized with the
possibility of adding configurations that can modify any part of the system. This
is also where you chose which sequences to run, and in what order.

Only simple lines of code are needed to initialize the environment and start the
sequences as shown below.

{...}

cfg_class.assembly = 0; // Edit custom configuration class

uvm_resource_db#(test_cfg)::write_by_name("test","config",cfg_class,this); // Add

configuration class to resource database

{...}

phase.raise_objection(this); // Signal start of test

e.initialize(); // Initialize the environment

seqi.start(e.agent_inst.sequencer) // Starts the init sequence on the given sequencer

fork

seq.start(e.agent_inst.sequencer) // Starts random generation sequence

seqr.start(e.agent_ram.sequencer) // Starts ram sequence

join

phase.drop_objection(this); // Signal end of test

{...}

Objections are used as a test execution mechanism as each class in the environment
runs independently. A raised objection signalizes that there is still work to be done,
and testing is not finished until all objections have been dropped. The original idea
is to put objections in each class to ensure the test is not terminated prematurely,
but the recommendation is to reduce the number objections to avoid confusion.
Keeping this in the test file only, gives full control to each test.

Due to the level of abstraction each test only needs to specify the environment and
which sequences to run, and through the configuration database, it is also possible
to specify additional details for specialized tests.

The distinction between the test and the environment that is used is the type of
separation that promotes reuse and sharing of work. The engineer writing the test

Chapter 3. Building a framework 26

needs no knowledge of how the inner workings of the environment operate or how
the sequences are implemented. This allows a higher abstraction-level approach
and is unaffected by any modifications done at the lower levels.

3.3.10 Testbench

The testbench is the top layer of a test setup and is where the DUV is connected
to the test environment. As described previously the testbench can be used to
execute any number of tests that use the same UVM environment.

The configuration database is used here to store references to the required inter-
faces.

uvm_config_db #(virtual instructionIF)::set(null, "*", "instructionIF", inst_if);

uvm_config_db #(virtual ramIF)::set(null, "*", "ramIF", ram_if);

3.4 Functional checking in UVM

When it comes to the checking of functionality, this can be implemented in different
ways. If we want to keep everything at a higher abstraction level, this is certainly
possible. UVM features several classes that aid in the creation of a transaction
level verification environment. Especially for designs containing registers there
are well defined methods for creating a register model that can mirror the DUV
for easy comparison. For a CPU to be properly verified this way it also requires
the creation of an Instruction Set Simulator (ISS) to predict the register values
and other data like load/store. This was attempted implemented as shown in
Figure 3.2 with a scoreboard and checker to compare the predicted values with
the actual results.

The advantages of a transaction level checking mechanism is that all of the check-
ing can be done at transaction level, reducing the simulation time when running
exhaustive tests. Another advantage is that coverage data can be fed directly to
a coverage collector to monitor the progress.

For even more control, the register model can utilize a backdoor connection to the
register in the DUV. This allows for direct interaction both for monitoring and
even editing of values. However, this takes a toll on the simulation speed as it
operates on RTL-level.

Chapter 3. Building a framework 27

The downside of this method is that can be difficult and time consuming to create
such models, especially for register models which is often handled by special tools.
The creation of an ISS requires an accurate representative model based on the
description.

The attempt to implement this checking method was abandoned in favor of ABV,
because of complexity and time concerns.

3.5 Functional coverage collection in UVM

To gather data about functional coverage, the coverage collector need only keep
track of what stimuli have been placed on the input of the design. This is easily ob-
tained by subscribing to the broadcast port of the monitor to get each transaction
that is passed.

covergroup inst_cg_type_I; // Create covergroup

option.at_least = 1; // Specify coverage goal

op_opc1: coverpoint opc1 // Create coverpoint

{

bins ori4 = { ori4_op1 }; // Create bins for

bins add2 = { add2_op1 }; // the relevant

bins sub2 = { sub2_op1 }; // variables

}

cp_rd: coverpoint Rd;

cp_rs1: coverpoint Rs1;

cp_uk4: coverpoint Uk4;

cross cp_opc1, cp_rd; // Check cross coverage

cross cp_opc1, cp_rs1; // for all possible

cross cp_rd, cp_rs1; // combinations

endgroup

An example of a covergroup with its coverpoints for one type of instructions is
shown in the code above. The covergroup is sampled each time its instruction
is detected by the monitor, gathering data on value ranges and combinations.
This covergroup will be able to show, if the goal is reached, that each instruction
of type I have been tested with every possible combination of variables at least
once. It becomes near impossible to complete this kind of cross coverage when
the size of variables increase, but in this case the ranges are limited making a
complete coverage possible as is shown in Chapter 6.3. For larger cases it is more
important to make sure corner cases are reached and that a significant selection
of combinations is visited.

Chapter 3. Building a framework 28

The ability to monitor coverage data during runtime also enables this to be fed
back into the input generator. Generation can then be actively adjusted during
the simulation to increase coverage in important areas while avoiding overexposure
of less significant parts. This was not prioritized for the framework as it was not
hard to get coverage of the small designs, but it is a necessary feature that should
be added.

3.6 Reusability

The advantage of writing reusable code is well known, especially with object ori-
ented languages, but it may be even more essential to think reusability when
working with verification.

As UVM was developed with reuse in mind it is natural to assume that all of the
components are highly reusable. But considering the target for this framework,
let’s examine exactly how these components can be used again for different CPU
designs.

For input generation the instruction set is the main variable, and we would need
an easy way to swap this out. Functional checking depends on how the TLM
models are implemented, and these are highly dependent on the design. Func-
tional coverage collection is also heavily design dependent, but the component
implementations can be more generic.

If we look at the core component, the transaction object, which is where we specify
the variables to be randomized as well as their constraints, it would be possible
to make a generic object featuring a generic instruction set structure and import
a configuration class containing the instructions and constraints. But this seems
rather pointless as the transaction already is an inherited class and contains no
other information than what is specific to the current design. Instead the transac-
tion object should be the interchangeable part and contain all information relevant
to the specific instruction set.

Both the sequence and the sequencer are specified by the transaction that they
use, but other than that contain no other design specific information. The generic
implementations need only minor modification to be reused, which could possibly
be made a configuration option. Additional custom sequences can easily be added
if needed.

Chapter 3. Building a framework 29

The driver is also fairly generic, but depending on how the translations are handled,
it requires som editing. The main mechanics of the driver can be used for any
design, and the support for assembly input is also design independent.

The monitor would also be rather generic depending on where the translation for
transactions is implemented. Its only function is to read the instruction from the
interface, then unpack it into a transaction object, and then forward the data to
the ISS, register model and coverage collector. The change required lies in the
type of transaction used, and how this is decoded, while the the mechanics stay
the same.

The ISS may have some reusability in the way it interacts with the other com-
ponents, but is essentially a unique model for the given design. For the register
model, reusability depends on the tools used to create it, and is for this reason
highly reusable with the proper tool in place.

The coverage collector is partly reusable in its communication, but requires rewrit-
ing of coverage classes relevant to the instruction set.

Chapter 4

Alternatives and improvements

A pure UVM implementation seems like a natural choice for the framework con-
sidering the many advantages in terms of reusability. However, some of the parts
require significant effort to implement may not be sufficiently reusable. Here we
take a look at an alternative, which is to move the functional checking outside the
environment and instead handle this with assertions.

4.1 ABV vs UVM checkers

Instead of the TLM checking described in the last chapter it is possible to use
a separate set of assertions for this purpose. Using the bind functionality from
SystemVerilog to connect to the design at RTL-level enables direct monitoring of
any signals, and assertions can be written to trigger on any value change.

It might seem like we take a step back when we don’t use a higher abstraction level
for the checking as well, but instead resort to directly targeting RTL level behavior.
One argument for this step back is the control you gain when writing RTL level
assertions. When you write a model that emulates the design you might be left
with the same problem as before; how do you know that your model is correct?
You would need some way to verify this. The assertions allow this to be done with
a separate set of eyes. You look at the problem from a slightly different angle and
target specific areas directly. This makes it easier to confirm that the checking is
done correctly.

One of the advantages gained from using ABV is the direct feedback during simu-
lation making it easy to instantly see how well the design works. Figure 4.1 shows
an example of the assertion response during simulation where each upward green

31

Chapter 4. Alternatives and improvements 32

Figure 4.1: Example of assertions

arrow indicate an assertion that passed. This effectively makes the debugging pro-
cess easier as you can more easily pinpoint any errors. Figure 4.2 show how the
failed assertions in red give detailed information on where the error is and what
went wrong.

Figure 4.2: Example of failed assertion

Another advantage is the overview gained during the verification process. Each
assertion deals with one specific event and can be treated independently. This
enables work to be more easily shared between verification engineers.

A significant downside is the decrease in simulation speeds. Doing all the checking
at RTL-level takes a toll on the simulation, as well as the large amount of assertions
that has to be evaluated actively. Because of this it is important to consider what
method is best depending on the size and type of design that is being verified.
For small designs like the ones used with this framework, the use of ABV gives

Chapter 4. Alternatives and improvements 33

an advantage for overview and control of the checking, and the simulation time is
not as relevant. But for larger scale and different design types it might be more
productive to keep the abstraction level raised.

There is however potential to improve the ABV, not necessarily for simulation
speed, but reduced effort when writing assertions. The next section will look at
possible improvements in terms of reduced code size and increased reusability.

4.2 ABV reusability

Writing assertions tend to generate a significant amount of repeated code as the
properties do a lot of the same work, with some variations. Though assertions
seems to be highly independent there is also potential for enabling a fair amount
of reusability as well. There are two types of reusability considered here: internal
reuse, reducing repeating of design specific code, and external reuse, parts of the
framework that can be used for different designs.

One method for internal reuse is the use of an assertion interface in the same way
as the interface for the inputs, providing a relative reference to the signals that
are monitored. This is useful when the design is under development as signals and
registers may be subject to change. As there are several assertions monitoring the
signals, the lack of a relative reference would lead to unnecessary editing in several
files. This interface is implemented in the block labeled ’common assertions’ in
Figure 4.3.

Property p_add_result();

(v_ca.opc1==add_op1, // Detect ’add’ opcode

Rs1 = v_ca.Rs1; //

Rd = v_ca.Rd; // Store input values

Uk4 = v_ca.Uk4;) //

##1 // Wait one clock cycle

(1,rf = v_ca.rf;) // Store current register values

|-> ##1 // Wait for results to be ready

v_ca.rf[Rd] == rf[Rd] + (rf[Rs1] | Uk4); // Check result

endproperty

If we take a look at the assertion properties for the generic arithmetic operation
add, we notice that it consist of two parts. One part is the functional check,
where we have two values that should be added. The other part is the temporal
information. This covers when the values should be read, and when the result is

Chapter 4. Alternatives and improvements 34

ready for comparison. It would seem it should be possible to separate these two
properties, and since many operations like arithmetic operations share the same
sequential timing, this could be extracted for reuse. This leads to three potential
improvements;

First, when dealing with processor designs there are several basic operations that
are essential to have. Additionally there are many other common operations as
well. Instead of having to specify the details of these operations each time you
write such assertions it would be easier to create a package containing predefined
functionality for common operations.

function automatic regsize alu_and (regsize a, b, hbyte_p c);

alu_and = a & (b | c);

endfunction

function automatic regsize add (regsize a, b, hbyte_p c, bit carry);

add = a + (b | c) + carry;

endfunction

The functions shown above are examples of generic operations that you would find
in most processor designs. Generic here means that these can be configured to any
parameter sizes as well as having optional inputs. A complete set of such functions
could reduce effort when writing assertions, and also enable automatic generation
of assertions, which is described later. This does not only provide internal reuse,
but as these are common functions this can be used for other designs as well.

Secondly, we have sequences, not to be confused with the UVM sequences. This
is a much used feature of ABV that allow complex sequential statements to be
compacted into sequence variables. An example of this is shown below. This is
a constructed example, as no complex timings are required for the implemented
instructions, but it also shows use of the package function shown above. The
sequence ‘s1’ can represent any normal or contitional delay, and may be subject
to change during design development.

sequence s1;

first_match(A ##[1:3] B);

endsequence

property add;

(v_ca.opc1==add_op1) // Detect ’add’ opcode

{...} // Store input values

s1 // Wait for s1

{...} // Store current register values

Chapter 4. Alternatives and improvements 35

|-> s2 // Some other possible delay

v_ca.rf[Rd] == add(rf[Rd],rf[Rs1],Uk4,0); // Use package function to check result

Though the use of sequences is a common practice, in terms of reusability it is
another method for internal reuse and can be utilized to great benefit. When you
have a sequence like this repeated in several assertions and for some reason the
timing of this needs to be changed, then you would have to modify every instance.
For this reason it makes sense that any sequence used more than once, can and
should be extracted into a package to allow ease of editing as well as reduction of
code size.

This may not have a significant impact for the targeted processor designs, as there
are no complicated timings to take care of, but bigger systems with more intricate
sequential conditions can have a larger benefit from this.

Thirdly, we have the possibility of creating a script to generate the assertions. The
functional part of each assertion describes an expected result in either a register or
output after a certain event has been detected. It may be a result of an arithmetic
operation, a comparison when moving or loading data, or just the toggling of
a signal like a chip enable. If we don’t consider the timing of these events, it
should be possible to generate these functional assertions based on a functional
description. Having a proper library of CPU functions could allow new assertions
to be generated quickly for new designs.

This was considered to be created along with the framework, but lack of time
prevented this.

4.3 Functional Coverage collection

Functional Coverage collection is made even easier when using assertions instead
of higher level models. The reason is that instead of having to create a system for
detecting and triggering the coverpoints, this has already been taken care of by
the assertion. The coverage can be collected each time an assertion is triggered
with very little added code.

Another advantage here is that it is possible to collect coverage information of
more that what is available on I/O interfaces. Since the assertions monitor the
design directly on RTL-level, coverage can also be checked for internal signals.

Chapter 4. Alternatives and improvements 36

4.4 Complete framework

Based on this and the previous chapter, the final framework has been built us-
ing UVM for input generation, timing and synchronization, and added functional
checking and coverage as a separate part. The resulting structure is illustrated in
Figure 3.2.

Figure 4.3: Complete framework

Chapter 5

Reusability: Adapting to new
designs

Now that we have a complete functional framework for the synchronous processor
design we can look at how this can be reused for different processor designs. From
the discussion on reusability in the Chapter 3.6 it is clear that most of the UVM
environment is fairly generic and can be reused with only minor modifications.
The assertions, being inherently design specific, will naturally need to be rewritten,
but the effort can be reduced by the use of standardized packages. The coverage
collection, being strongly linked to the assertions, will also need rewriting, but
following a simple template effort can be reduced. First the framework will be
adapted to work with the asynchronous design, and then the stack processor will
be considered.

5.1 Asynchronous processor

The goal of [17] was to convert the synchronous processor used previously to
asynchronous logic. The intention is to have a design that performs the same
operations as the synchronous version, meaning that seen from the I/O perspective
it is identical. Because the asynchronous design uses the same instruction set
and is essentially the same seen externally, the only modification required is in
components that are affected by the clock. Removal of the clock warrants a new
trigger for timing of new instructions as well as knowing when the results are ready
in the registers.

37

Chapter 5. Reusability: Adapting to new designs 38

It is easy to think that removing the clock will complicate the verification process
because of the lack of synchronization making it hard to time events. However, the
instruction generation in the UVM environment operates on a request basis, similar
to asynchronous, meaning that the input can easily be generated asynchronously.
The only place the clock is used in the environment is in the driver, where the
requesting is done. Replacing the clock with the signal that the processor uses to
request new instructions allows most of the system to remain the same.

There are minor adjustments that must be made to accompany the added I/O
signals, but these can be easily handled by the instruction and ram drivers. These
involve request/grant communication with the memories for instructions and data
and can simply be responded to with optional delays.

The previous consideration also holds true for the instruction assertions checking
register values. Evaluating the assertion at the request of a new instruction is the
same as using a clock, and the design ensures that results are ready by the time
it requests a new instruction. Figure 5.1 show how the signal timing is unaffected
by the change, and that triggering the next instruction on the ram clk produced
by the DUV is essentially the same as using a clock with varying clock cycle.
Assertions written for other signals and events may require some extra attention,
but for the most part there are internal request/acknowledge signals that can be
used as triggers replacing the clock.

Figure 5.1: Timing

The assertions used for the synchronous version could be completely reused as
these were mostly register related. Adding extra assertions to fully verify the
asynchronous version was not prioritized as the focus was aimed more at proof of
concept. The same considerations hold true for coverage that can also be reused
here.

Chapter 5. Reusability: Adapting to new designs 39

5.2 Stack processor

Featuring a completely different instruction set as well as a conceptually different
internal operation, the stack processor challenges the reusability of the framework.
A new instruction set means changes to the way instructions are generated, thus
the transaction object needs to be rewritten. This again leads to the rewriting of
assertions as the instructions operate differently, and also to monitor coverage we
need to incorporate the new instructions.

Due to the way the new instruction set is built it is not as easy to extract variables
for randomization as it was for the previous set. As shown in Figure 5.2 the
instructions are not as easily enumerated, but the limited number of instructions
currently implemented, allow these to be easily specified individually. It is still
possible to isolate instruction types from data and randomize the inputs properly.

Figure 5.2: Instruction set for the stack processor

Other than swapping out the transaction and specifying this in the sequence and
sequencer, no further changes are required for the input generation unless an init
sequence is needed.

Functional checking and coverage require a bit more work. None of the previous
assertions or covergroups can be used for this. But if we make use of the reusable
package for assertions, the amount of work can be reduced. Together with a tem-
plate that includes coverage for the given assertion, only the temporal information
is required for the most common instructions.

Chapter 5. Reusability: Adapting to new designs 40

There were not many assertions added for this design as the focus was primarily
to enable input generation and show the potential for future verification.

Chapter 6

Evaluation

This chapter will evaluate the resulting framework, summing up the advantages
gained from using its use and look at how it performs.

In the previous chapter, the framework was shown to be highly reusable and able
to handle both synchronous and asynchronous logic. To evaluate the potential
of the framework we have to look at its reusability and ability to increase pro-
ductivity. We should also look at the metrics that can be extracted from the
simulations, which typically include coverage count, and the increased amount of
bugs uncovered.

6.1 Reusability

As shown in the previous chapter, large amounts of the framework can effectively
be used for multiple designs. The highly standardized structure of the UVM is
the primary reason for a high degree of reuse for input generation. It can be
argued that creating random instructions is a rather simple task, but from what
has been shown, any type of complex sequence can easily be created. The other
parts of the verification process, however, are more specialized towards the DUV
and cannot just be duplicated. But as discussed in Chapter 4.2 it is possible to
extract similarities that can be used again.

41

Chapter 6. Evaluation 42

6.2 Productivity

Reusability is one of the keys for increasing productivity as it reduces the amount
of redundant work. The structure of the UVM again removes much of the te-
dious housekeeping, and with a framework implemented, focus can be kept on
the important tasks. The constraint random generation further promotes this by
simplifying the generation process, allowing the main attention to be directed at
checking for errors. The productivity for assertion writing will also be increased if
most of the standard assertions could be generated automatically.

6.3 Coverage

The coverage metric shows how thoroughly a design has been verified and is divided
into two parts: The code coverage, showing that all lines of the design has been
run at least once indicating whether all states are reachable and if the test was
thorough enough to reach all states. The functional coverage shows how many
times each assertion is triggered and how the covergroups are sampled.

As assertions and covergroups are only added to show the concept, they are not
complete enough to show the functional coverage of the designs. But an example
can be used to help illustrate the potential reach of contstraint-random verifica-
tion. Figure 6.1 show two simulations where the coverage for instruction type I
of the synchronous CPU was measured. The first test was run for a short time
sdf all instructions several times, but not that many combinations of input values
was tested. The second simulation was allowed to run until all the specified com-
binations was reached, showing that the only limiting factor for a more complete
verification is time.

Figure 6.1: Coverage results for one covergroup

The code coverage is a more descriptive result as it shows if we are able to generate
inputs that exite all of the design. Figure 6.2 shows that all the designs were

Chapter 6. Evaluation 43

stimulated to reach over 90% of the code. The remaining percentage is mostly due
to several default states that are never executed when all states are implemented.

Figure 6.2: Coverage

6.4 Bugs

Uncovering bugs or proving the lack of these is the naturally main goal of veri-
fication. However, as the checking is not fully implemented, the amount of bugs
uncovered is of no real value. But some of the special cases are worth mentioning.

One case where the real value of constraint random testing became obvious was
one of the instructions that would produce correct results most of the time, but
sometimes it would fail. Figure 6.3 show how the assertions trigger pass and fail
for this specific instruction.

Figure 6.3: Example of bug

The reason for this bug was certain residue input on the alu from previous instruc-
tions that would be added to the calculation. A bug like this would not be easy
to spot without randomized testing.

Chapter 7

Conclusion and future work

A highly reusable verification framework has been made in order to verify three dif-
ferent processor designs. The framework was shown to be relatively easily adapted
to the different designs with minor adjustments. It was created using a combi-
nation of the Universal Verification Methodology and System Verilog Assertions.
UVM was shown to have significant advantages for handling input generation at
the transaction level with methods in place for timing and synchronization. The
use of UVM for functional checking, however, was considered to be less efficient
in terms of interoperability and reusability. For functional checking ABV was
considered to provide a better overview as well as ease work division.

The framework was built based on a simple synchronous processor design. An
asynchronous version was used to see how the lack of clock would affect the veri-
fication process. This did not have a huge impact on input generation due to the
way the UVM communicates. The assertions and coverage needed new triggers for
timing events, but being directly connected to the DUV, this was easily extracted.
Lastly a stack processor was targeted featuring a different instruction set. Again,
the input generation was rather easily implemented after adding the new instruc-
tions. Assertions and coverage was only briefly explored as significant knowledge
is required to verify fully.

The framework was able to stimulate each of the designs with over 90% code
coverage, with the remainder being mainly default states. The functional coverage
was inconclusive as not a complete set of assertions was implemented, but rather
a subset included to show a proof of concept.

UVM has been shown to be an efficient methodology for verification, but there
are some inefficient macros that should be avoided for best performance.

45

Bibliography 46

To increase the potential for reuse of the assertions, the temporal and functional
parts were separated and extracted into a package that can be used again to write
or generate assertions for common CPU functions.

7.1 Future work

• The implementation of assertions and coverage need to be expanded for the
designs to be verified properly.

• Other UVM classes can be explored to increase the frameworks potential.

• Specifically the addition of virtual sequences for increased simulation control.

• Complete implementation of both TLM and ABV checking for simulation
speed evaluation.

• Create script for automatic generation of assertions.

• Use the framework for a larger scale design to see the full potential.

Bibliography

[1] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-
2005 (Revision of IEEE Std 1364-2001), pages 1–560, 2006.

[2] IEEE Standard for the Functional Verification Language E. IEEE STD 1647-
2008, pages c1–464, Aug 2008.

[3] IEEE Standard for Standard SystemC Language Reference Manual. IEEE
Std 1666-2011 (Revision of IEEE Std 1666-2005), pages 1–638, Jan 2012.

[4] IEEE Standard for SystemVerilog–Unified Hardware Design, Specification,
and Verification Language. IEEE Std 1800-2012 (Revision of IEEE Std 1800-
2009), pages 1–1315, Feb 2013.

[5] Harry Foster. ”Wilson Research Group Functional Verification Study 2012”.
http://blogs.mentor.com/verificationhorizons/blog/author/hfoster.

[6] Ronan Barsic. CTM16 instruction set. Atmel, 2013.

[7] Milos Becvar and Greg Tumbush. Design and Verification of an Image Pro-
cessing CPU using UVM. In DVCon, 2013.

[8] Jonathan Bromley. If SystemVerilog is so good, why do we need the UVM?
Sharing responsibilities between libraries and the core language. In Specifica-
tion Design Languages (FDL), 2013 Forum on, pages 1–7, Sept 2013.

[9] W. Ecker, V. Esen, L. Schonberg, T. Steininger, M. Velten, and M. Hull. Im-
pact of Description Language, Abstraction Layer, and Value Representation
on Simulation Performance. In Design, Automation Test in Europe Confer-
ence Exhibition, 2007. DATE ’07, pages 1–6, April 2007.

[10] Adam Erickson. Are ovm & uvm macros evil? a cost-benefit analysis. In
Proceeding of Design and Verification Conference (DVCON), March 2011.

[11] Peter Flake. Why SystemVerilog? In Specification Design Languages (FDL),
2013 Forum on, pages 1–6, Sept 2013.

47

Bibliography 48

[12] Accellera Systems Initiative. ”UVM (Universal Verification Methodology)”,
[Online]. Available: http://www.accellera.org/downloads/ standards/uvm.

[13] Yangyang Li, Wuchen Wu, Ligang Hou, and Hao Cheng. A Study on the
Assertion-Based Verification of Digital IC. In Information and Computing
Science, 2009. ICIC ’09. Second International Conference on, volume 2, pages
25–28, May 2009.

[14] N. Sudhish, B.R. Raghavendra, and H. Yagain. An Efficient Method for Using
Transaction Level Assertions in a Class Based Verification Environment. In
Electronic System Design (ISED), 2011 International Symposium on, pages
72–76, Dec 2011.

[15] Synopsys, Inc. OpenVeraTM. http://www.open-vera.com.

[16] Allan Green Vargas. Ultra-low Power Stack Based Processor for Energy Har-
vesting Systems. (unpublished master’s thesis) NTNU, 2014.

[17] Bjørn Thomas Søreng Vee. Conversion of a Simple Processor to Asynchronous
Logic. (unpublished master’s thesis) NTNU, 2014.

	Abstract
	Sammendrag
	Preface
	Contents
	1 Introduction
	2 Background information and theory
	2.1 Verification
	2.1.1 Directed test
	2.1.2 Hardware Verification Languages
	2.1.3 SystemVerilog
	2.1.4 Methodologies
	2.1.5 UVM
	2.1.6 Assertion based verification

	2.2 Designs under verification
	2.2.1 Synchronous processor
	2.2.2 Asynchronous processor
	2.2.3 Stack processor

	3 Building a framework
	3.1 Verification parts
	3.2 UVM structure
	3.2.1 Macros

	3.3 Input generation in UVM
	3.3.1 Transaction object
	3.3.2 Sequence
	3.3.3 Sequencer
	3.3.4 Driver and Monitor
	3.3.5 Interface
	3.3.6 Instruction agent
	3.3.7 RAM agent
	3.3.8 Environment
	3.3.9 Tests
	3.3.10 Testbench

	3.4 Functional checking in UVM
	3.5 Functional coverage collection in UVM
	3.6 Reusability

	4 Alternatives and improvements
	4.1 ABV vs UVM checkers
	4.2 ABV reusability
	4.3 Functional Coverage collection
	4.4 Complete framework

	5 Reusability: Adapting to new designs
	5.1 Asynchronous processor
	5.2 Stack processor

	6 Evaluation
	6.1 Reusability
	6.2 Productivity
	6.3 Coverage
	6.4 Bugs

	7 Conclusion and future work
	7.1 Future work

