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Problem Description

This thesis is based on the paper “Naturally Rehearsing Passwords” by J. Blocki,
M. Blum and A. Datta [1], proposing a mathematical model for password man-
agement called Shared Cues.

The overall research problem of this thesis is to determine whether the Shared Cues
model can be designed and implemented in software in a manner that is both us-
able and secure. The thesis should address the main challenges with password
management in terms of usability and security, and further present the Shared
Cues password management model. The work should include the design, imple-
mentation and evaluation of a password management system based on Shared
Cues. The following should be addressed:

• How can the Shared Cues password management model be designed and
implemented in software?

• Evaluate the implemented password management system in terms of usabil-
ity, security and utilized hardware resources.

• Can the implemented password management system be used when logging
in to a system?
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Abstract

Managing passwords is a significant problem for most people in the modern
world. In this thesis, a password management system has been designed
and implemented as an iOS application called PassCue. PassCue is based
on the Shared Cues password management model, proposed by J. Blocki, M.
Blum and A. Datta in “Naturally Rehearsing Passwords”. The design and
implementation choices, as well as parameter evaluation, were important
in order to create a usable and secure system. PassCue uses cues to share
secrets across multiple accounts in order to achieve the competing usability
and security goals.

PassCue provides higher security than many of the popular password man-
agement schemes without significant reduction in usability. The proba-
bility that an attacker will compromise an account in an online attack is
1.47656 × 10−16 for PassCue (9,4,3) and (43,4,1), and 3.69140 × 10−21 for
PassCue (60,5,1). In an offline attack with no previous plaintext leaks,
cracking the PassCue (9,4,3) and (43,4,1) password will take over 38 years
and cost over $700, 000. Cracking the PassCue (60,5,1) password would take
over 1.5 million days and cost $2.84442×1010 using technology known today.
PassCue (9,4,3) does not require the user to invest additional time in order
to maintain the passwords in memory, but in PassCue (43,4,1) and PassCue
(60,5,1) the user must perform 11 and 20 extra rehearsals respectively.

The PassCue design and implementation can easily be customized to sup-
port different usability and security needs. The PassCue application utilizes
a low percentage of the CPU and memory of an iPhone 5, and uses less then
1% of the CPU and 5.9MB of memory in idle state.
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Sammendrag

Håndtering av passord er et betydelig problem i den digitale hverdagen. I
dette arbeidet har et håndteringssystem for passord blitt designet og im-
plementert som en iOS applikasjon kalt PassCue. PassCue er basert på en
passordhåndteringsmodell kalt “Shared Cues”, utarbeidet av J. Blocki, M.
Blum and A. Datta i “Naturally Rehearsing Passwords”. Design- og imple-
menteringsvalg, i tillegg til evaluering av parametere, har vært viktig for å
utvikle et system som både er brukervennlig og sikkert. PassCue bruker hint
til å dele hemmeligheter på tvers av kontoer for å oppnå de motarbeidende
målene om sikkerhet og brukervennlighet.

PassCue gir høyere sikkerhet enn mange av de mest populære håndterings-
systemene uten å redusere brukervennligheten. Sannsynligheten for at en
angriper klarer å bryte seg inn på en konto ved hjelp av et online angrep er
1.47656 × 10−16 for PassCue (9,4,3) og (43,4,1), mens 3.69140 × 10−21 for
PassCue (60,5,1). Det vil ta over 38 år og koste over $700, 000 for å knek-
ke et PassCue (9,4,3) eller et PassCue (43,4,1) passord i et offline angrep.
Et offline angrep for å knekke et PassCue (60,5,1) passord vil ta over 1.5
millioner år og koste $2.84442×1010 med dagens teknologi. PassCue (9,4,3)
krever ingen ekstra øvinger, men for PassCue (43,4,1) og PassCue (60,5,1)
må brukeren utføre henholdsvis 11 og 20 ekstra øvinger for å opprettholde
passordene i minnet.

PassCue er utviklet for å enkelt kunne tilpasses til forskjellig sikkerhets- og
brukervennlighetsbehov. PassCue er svært ressursgjerrig, og bruker mindre
enn 1% av prosessorkraften til en iPhone 5 i idle tilstand, og kun 5.9 MB
minne.
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Chapter 1

Introduction

The average user logs on to several systems each day by using passwords. Pass-
words are used to secure valuable data. Online services including banking, voting,
mail, social networks, commerce and enterprise resources depend on passwords in
order to maintain secure. The typical user has multiple password protected ac-
counts and needs to manage each password. As the number of accounts increases,
the management of passwords gets complicated. As a consequence, many users
tend to adapt weak password management schemes which can significantly reduce
the security of the system.

This thesis is based on the paper “Naturally Rehearsing Passwords” by J. Blocki
et al. [1] which proposes a mathematical model for password management called
Share Cues. Shared Cues is a password management model which incorporates
issues concerning both security and usability.

1.1 Problem Description

The overall research problem of this thesis is to determine whether the Shared Cues
model can be designed and implemented in software in a manner that is both us-
able and secure. The thesis should address the main challenges with password
management in terms of usability and security, and further present the Shared
Cues password management model. The work should include the design, imple-
mentation and evaluation of a password management system based on Shared
Cues. The following should be addressed:

• How can the Shared Cues password management model be designed and
implemented in software?
• Evaluate the implemented password management system in terms of usabil-

ity, security and utilized hardware resources.
• Can the implemented password management system be used when logging

in to a system?

1



2 CHAPTER 1. INTRODUCTION

1.2 Outcome

The main object of this thesis is to determine how Shared Cues can be designed
and implemented in software in a manner that is both usable and secure. The
overall outcome consist of different parts which can be given as:

• Design of a password management system based on Shared Cues. The system
design include selection and evaluation of parameters such as sharing set,
association size, rehearsal schedule, public cues and evaluating how to cope
with password composition policies. The database architecture is a major
part of the overall system design.

• Implementation of the designed password management system as an iOS ap-
plication and a presentation of its use. The application development is based
on the system design and specific implementation choices. The presentation
of the application include the initialization and how to use the application
to log on to a system.

• Usability, security and implementation analysis of the implemented system.
The usability analysis measure the effort the user must invest in order to
use the system. The security analysis measure password entropy and resis-
tance against common attacks. The implementation analysis covers the CPU
utilization and memory consumption of the implemented iOS application.

1.3 Outline

A brief overview:

• Chapter 2 presents the theory including the security and usability challenges
with password management.

• Chapter 3 presents the Shared Cues password management model.

• Chapter 4 covers the design of a password management system based on
Shared Cues.

• Chapter 5 presents the implementation of the designed system.

• Chapter 6 contains the analysis and evaluation of the implemented system.

• Chapter 7 concludes the thesis and presents suggestions for future work.



Chapter 2

Theory

Password is one of the most widely used authentication techniques today. The
average internet user has many online accounts and needs to manage multiple
passwords on a daily basis. Password breaches [7, 8, 9, 10, 11] have shown that
people tend to choose poor passwords and adopt weak password management
techniques, caused by the inherent trade-off between security and usability.

This chapter presents the theory and the central principles that this thesis and
the Shared Cue password management model is built upon. The first part of this
chapter covers password authentication in general, password composition policies
and five password management schemes. Password management tools and methods
will also be briefly introduced in the first part. The second part of the chapter
presents the security aspect of password management, including possible attacks,
vulnerabilities and how to measure security. The last part of the chapter covers
usability by presenting the psychological aspect of the human memory and different
mnemonic techniques.

2.1 Password Authentication

The password is one of the most used authentication techniques [12] in computer
systems. New technology facilitates for the use of biometrics and tokens in au-
thentication, but the password is still a frequently used authentication method.
Passwords do not require additional hardware, can easily be implemented and are
simple to use. Millions of people use password as a method to protect their data,
and the method dates back to the Roman empire [13].

Most internet users have many password protected online accounts and need to use
a password management scheme. A password management scheme or password
scheme is any method for creating and retrieving passwords. In 2007, it was
estimated that the average user has approximately 25 password protected accounts
[14]. Password composition policies, presented in Section 2.1.1, can complicate

3



4 CHAPTER 2. THEORY

the process of managing all the passwords. As a result, many users tend to adopt
insecure password management schemes to increase usability. Writing down the
passwords and selecting weak passwords are typical insecure password schemes.
Password reuse tend to grown in popularity as the number of online accounts
increases [12].

In December 2009, a major password breach led to the release of 32 million pass-
words from the rockyou.com user database [7]. The password analysis showed
that about 30% of the passwords had a length equal to or below six characters [15]
and 70% equal to or below eight characters. Nearly 50% of these passwords were
names, slang words or dictionary words and the most popular passwords included
“123456”, “12345”, “password”, “iloveyou”, “princess” and “abc123”. The Sony
Playstation privacy breach in April 2011 [8] exposed 77 million customer accounts
showed similar results; the password length was between six and ten characters,
less then 1% had a non-alphanumeric character [16] and approximately 30% were
dictionary words. The same analysis showed that users tend to select passwords
inspired by words of personal importance or memorable patterns and that truly
random passwords were almost non-existent. In attempts to strengthen a pass-
word, users tend to follow predictable patterns such as deriving passwords from
person’s names (15%), place names (8%) and dictionary words (25%) [16].

2.1.1 Password Composition Policy

Password composition policies (PCPs) are used by system administrators in or-
der to prevent the user from selecting weak passwords that can easily be guessed.
Rockyou.com, introduced in Section 2.1, were enforcing a weak password compo-
sition policy [17] by restricting the use of special characters, no requirement for
mixed-case, numbers or punctuation and a minimum length of only five characters.

It is commonly understood that password composition policies make the passwords
harder to guess, but that is not always the case [12, 18]. This is because a pass-
word composition policy does not only affect the resulting password, but also the
user behaviour. A password composition policy that ensures a complex password
could also lead users to write down the password, adapt insecure management
schemes [18] or be adverse to password changes. Websites differ in their password
composition policies, but common guidelines are presented in Table 2.1.

The password composition policy varies from website to website and in some cases
it is not possible to follow the guidelines stated in Table 2.1. The German bank
Berliner Sparkasse and the financial services cooperation Fidelity are examples
of websites that only allow alphanumerical characters. The Bank of Brazil does
only allow numbers, and in Virgin Atlantic the passwords are not case-sensitive
[19]. Websites can also put restrictions on which type of special characters that
can be used and restrictions on maximum length. The banking company Charles
Schwab has a password length limit of eight characters [20] and Outlook.com
has a maximum password length of 16. Google allow for 200 characters [21] in
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Table 2.1: Guidelines for a password composition policy [2, 3, 4, 5]

Password Composition Policy Guidelines
Use both lowercase and capital letters
Use a combination of letters, numbers and special characters
Use passwords with minimum length of 12 characters
Use randomly generated passwords if possible
Never use dictionary words, names or biographical information
Never use passwords based on repetition, letter or number sequence or usernames
Never use personal information
Never reuse passwords

the account password. Evernote do not allow spaces in the middle of passwords
because, as CTO Dave Engberg says, “Adding support for spaces only in the
middle of the password would make the regular expression defining them three
times longer” [20].

2.1.2 Password Schemes

A password scheme or password management scheme, is any method for creating
and retrieving a password. Strong passwords are hard for attackers to guess, but
they are also hard for users to remember. This results in the inherent trade-off
between usability and security [22]. Richard Smith notes, “the password must be
impossible to remember and never written down” [23]. There are multiple schemes
for creating and retrieving passwords. Many of the password management schemes
are vague and unclear [24] in their description which may lead the user to select
a weak password. It has been illustrated that security schemes can break down
when humans behave in unexpected ways due to vague instructions [25].

Multiple password schemes exist and the password scheme is only restricted ac-
cording to the users imagination. Wilderhain et al. [24] describe 15 different
schemes and compare them in terms of usability and security. This thesis will fo-
cus on five password management schemes; Reuse Weak, Reuse Strong, Lifehacker,
Strong and Independent and Randomly Generated. The five password schemes are
presented in Table 2.2.

In the Reuse Weak scheme the user selects a dictionary word and reuse this pass-
word on all accounts. The full algorithm for the scheme is given in Algorithm 5 in
Appendix B. Reuse Strong is when the user selects a strong password, e.g. com-
bining four independent words, and reuses this password on all sites. The Reuse
Strong scheme is given in Algorithm 6 in Appendix B.

In the password scheme Lifehacker the user selects a base password of three words
and uses a derivation rule to derive a string from the account name. The resulting
password is the base password with the derived account name appended. The full
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Table 2.2: Password Schemes

Scheme Create Use Example
Reuse Weak Select a word w randomly Password=w Password=horse

from a dictionary containing for all accounts
20000 unique words

Reuse Strong Select four words w1w2w3w4 Password=w1w2w3w4 Password=apledoghorseblue
randomly from a dictionary for all accounts
containing 20000 unique words

Lifehacker Select three words w1w2w3 Password=w1w2w3d(Aname) Aname=facebook
randomly from a dictionary unique for each account Password=apledoghorsefak
containing 20000 unique words
as base. Use a derivation rule
d() to derive a string from
account name

Strong Rand. & Ind. Select four words w1w2w3w4 Password=w1w2w3w4 Password=apledoghorseblue
randomly from a dictionary unique for each accounts
containing 20000 unique words

Randomly Generated Generate a random password Password = random Password=bcxtabf2owale89n
using a password generator unique for all accounts

algorithm is shown in Algorithm 8 in Appendix B. A detailed example for the
Lifehacker scheme is given below.

Example - Lifehacker Password Scheme: The three random words are;
w1 =aple, w2=tower and w3=cup. The derivation rule d is in this case
the first two characters and the last character in the account name,
which means that d(Ai) returns the first two characters and the last
character of the account name Ai. The resulting password of the ac-
count A1= facebook is p1=apletowercupfak. For account A2=amazon
the password is p2=apletowercupamn.

Strong Random and Independent password management scheme is when the user
selects four random dictionary words and combine them to a password. Four
random words are selected for each account. Algorithm 7 in Appendix B illustrates
the Strong Random and Independent password scheme.

In the Randomly Generated scheme the password is randomly generated using a
computer. Multiple password management tools offer a random password genera-
tor, which will be further discussed in Section 2.1.3. In the Randomly Generated
scheme the computer randomly composes a 16-character string with lower-case
letters and numbers.

2.1.3 Password Management

This section covers a range of different password management methods and tools.
We saw in section 2.1.2 that password management scheme is any method for
creating and retrieving passwords. This section presents management tools which
can help the user with the task of creating and using password. The section
also presents management tools which utilizes graphical, geographical or visual
information to help the user manage passwords. The wide research in this field
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and the numerous amount of tools reflect the difficulty for the user to remember
an increasing amount of secure passwords. This proves that there is clearly a need
for tools to help humans cope with password-based authentication.

Password Management Tools

A password management tool is a program that stores the passwords for the user.
With a password manager, the user does not need to memorize all the different
complex passwords. The passwords are safely stored in the password manager
database. The password manager is protected with a master password and the
master password is the only password the user needs to remember. The master
password restrict the access to the password manager, hence it must be a strong
password. Compromise of the master password would reveal all the stored pass-
words. The password database is securely encrypted, normally with 256-bit AES,
which is considered safe by National Institute of Standards and Technology (NIST)
[26]. Bruce Schneier notes, “In fact, we cannot even imagine a world where 256-bit
brute force searches are possible. It requires some fundamental breakthroughs in
physics and our understanding of the universe” [27]. Some password management
tools also support biometrics such as fingerprint reader, or hardware two-factor
authentication tokens to increase the security of the password database. Most
password managers offer secure cloud storage of the password database, random
password generator [28] and cross-platform compatibility.

Graphical Password Management

The inherent trade-off between usability and security in password based authen-
tication has motivated the research on graphical password schemes. Graphical
passwords schemes are assumed to give a higher usability, because of the memora-
bility, while providing sufficient security. Graphical password schemes leverage the
human capability of visualizing information, in order to share a secrets to be used
as evidence of identity. There is multiple graphical password schemes, but few
are able to address the known problems related to text-based passwords. Much of
the published research lacks consistency [29], which makes it hard to compare and
reproduce results.

Geographical Password Management

A recent paper proposes a new way of managing passwords with the use of geo-
graphical data. The author states, “A GeoGraphical password is a password that
has been constructed based on GeoGraphical information” [30]. The user selects a
geographical area, for example, by drawing a circle around a pyramid or drawing
a polygon around a lake, and the geographical information is used to form the
geographical password. The scheme uses information such as longitude, latitude,
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altitude, areas, perimeters, sides, angles, radius for the geographical area to con-
struct the password. The scheme enables the use of multiple geographical areas
and the use of memorable or randomly generated stings to increase the security.

Diceware

Diceware is a method for selecting passphrases which consists of multiple words
combined in a string [31]. The words are selected from a Diceware Word List
using a dice. Each of the words in the Diceware Word List is assigned a unique
five-digit number, where the digits range from one to six. The user must roll the
dice five times and select the word that corresponds to the obtained sequence.
The Diceware Word List consists of 65 = 7776 different words. The number of
words that is combined to a passphrase string depends on the security. Diceware
recommends using five to nine words depending on the level of security needed.
Five words can be cracked for approximately $1000 [32], while six words can be
broken by organizations with large budgets. Seven words and above are considered
unbreakable with known technology.

Pixelock

Pixelock is a system for password management that enables the creation of secure
and effective passwords [33]. The user selects specific points on an image and
a unique algorithm generates a password. A password typically consists of four
clicks, but increasing the number of clicks increases the password space and the
password security. The user only needs to remember the selected points on the
image and the order they were selected.

2.2 Usability

The Principle of Psychological Acceptability: “It is essential that the
human interface be designed for ease of use, so that users routinely
and automatically apply the protection mechanisms correctly. Also, to
the extent that the user’s mental image of his protection goals matches
the mechanisms he must use, mistakes will be minimized. If he must
translate his image of his protection needs into a radically different
specification language, he will make errors.”

(Jerome Saltzer and Michael Schroeder [34])

The Principle of Psychological Acceptability states that accessing a system should
not be more difficult with a security mechanism then if the mechanism was not
present. This raises a crucial problem concerning usability; difficult for whom?
Usability applies differently to different types of users. A computer engineer may
find a password management scheme easy and highly usable, but an infrequent
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home user could disagree. Security mechanisms are often implemented using the
developers own impression of the system [35] and without taking into account the
users of the system. This could be a reason why password composition policies in
some cases result in a weaker password [12, 18], namely that users include personal
words when trying to fulfill the password requirements.

Usability is an important factor when people adopt a password scheme. In order
to have a working password authentication protocol the user must create and
maintain the memory of the created password. The usability can be measured as
the effort the user must invest in order to remember his passwords. Users tend
to prioritize usability over security [14] when creating a password. As Bensinger
notes, “Humans, in general, do not prefer to memorize characters and if they
had to, they do it in the least possible effort” [36]. This can be related to the
restrictions in the human memory, as Jeff Yen notes “Many of the deficiencies of
password authentication systems arise form human memory limitations” [37]. A
typical user has approximately 25 account that require passwords [14], and logs
on to about eight systems on a daily basis. Password composition policies forces
the use to select a strong password, but does not take into account the usability
aspect. The effect of composition policies is also debatable [18].

There is a trade-off between security and usability. In an ideal system, the security
and usability would both increase simultaneously. The challenge is to balance the
the ability of a human to remember a password that is hard or impossible for an
attacker to guess or crack [35]. A major reason why users select weak passwords
is that different users have different ideas of what makes a password strong and
secure [38]. A user received feedback from a password checker that names could
not be used as password, and subsequently changed the password to “Barbara1”
[35]. Another user had the Japanese word for security as password, and he was very
surprised that his password could be guessed so quickly. He had never expected an
attacker to use Japanese words. A developer, system administrator or a computer
engineer has a reasonable idea of how resourceful an attacker can be and how to
securely choose passwords, but that is not the case for an infrequent home user.

2.2.1 Human Memory

There are also physical restrictions on remembering different passwords. The hu-
man memory is temporally limited in remembering sequences of items [39]. The
human memory has a short-term capacity of approximately seven plus minus two
items [40]. It has also been shown that humans remember when the sequence
of items is familiar chunks as words or familiar symbols. The human memory is
semantic [1], so in order to facilitate for usability the number of chunks should
be minimized. The human memory can be characterised as associative, which
means that memories are associated with other memories. We are more capable
at remembering information we can encode in multiple, redundant ways [37].
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Baker-baker Paradox

If a person is asked to remember the two sentences; “My name is Baker” and “I am
a baker”, several studies have shown that most people remember the occupation
baker rather then the name, even if the word is the same. This is known as
the Baker-baker paradox [41]. A likely reason for the Baker-baker paradox is
that the occupation baker is automatically associated with different memories and
connected to different concepts tied to the profession. The name Baker, in the
opposite, is much likely to stand alone without any associations or connections
resulting in a weak memory. The strength of a specific memory may be measured
according to the number of associations it triggers in the brain.

2.2.2 Mnemonic Techniques

Mnemonic techniques are methods to help retaining memories, and many mnemonic
techniques exist. The effectiveness of a mnemonic technique is individual, and
common mnemonic devices include music, names, pictures, expressions, words and
models. It has been shown that users can exploit mnemonic strategies in order
to remember passwords [42]. Blocki notes, “Competitors in memory competitions
routinely use mnemonic techniques which exploit associative memory”[1].

There is multiple mathematical models for the human memory [43, 44, 45]. These
models differ in some details, but all of them model an associative memory [1] with
cue-association pair. Cues are the context in which a memory is created. The cue
can be a sound, surrounding environment, a person, an object or anything that
is associated with a specific memory. For the user to remember the password p
he associates the password memory with a cue. The human memory is lossy, so
the cue strength is often reduced as time passes. If a memory is not refreshed or
a password rehearsed, it will be forgotten. To prevent the user from forgetting
the cue-association pair, it is essential to create strong associations and maintain
them over time through rehearsal. The rehearsal process should be as natural
as possible, and as a part of the users normal activities so the usability is not
decreased.

Person-Action-Object

Person-Action-Object (PAO) Story is a mnemonic technique that consist of a pic-
ture of a person, an action and an object. The person could, for example, be Elvis
Presley with the action shooting and the object banana. The resulting PAO story
would be; “Elvis Presley is shooting a banana”. The PAO pattern is very simple
and with randomly generated persons, actions and objects, the story can be quite
surprising [1]. It has been shown that memorable sentences use strange combina-
tion of words in a common pattern [46]. A modified version of the PAO mnemonic
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technique is used in the Shared Cues password management model. The modified
version also includes a picture of a place or a background type image.

Memory Palace

Memory Palace, also known as the Method of loci [47], is a mnemonic technique
that is presented in ancient Roman and Greek literature. In this technique the
person must memorize and visualize the layout of a building, e.g. the subjects
home, the arrangement of several houses in a street or any geographical location
that includes a number of different places. This is known as the memory palace.
In order to memorize items, the person need to visualize that he walks through
his memory palace while imaginary placing the items in different places in the
memory palace. Placing items is done by connecting a feature of the particular
place in the memory palace to an image of the item. The more strange and funny
story the person creates, the easier is it to recall the memory. In order to retrieve
the items, the person visually walks through his memory palace and the different
places will activate the memory of the corresponding item [48]. This method has
shown to be quite effective and is used by many memory athletes today [49].

2.3 Security

The main goal of password-based authentication is to protect important assets. It
is necessary to be familiar with the security threats in order to be able to defend
against them. There are different threats that could compromise the security of a
system, and there are numerous real-world examples of passwords breaches [1, 7, 8].

2.3.1 User Knowledge and Behavior

The users knowledge and behavior is a possible threat to the security of a system.
An attacker can capture a password simply by watching the user input the pass-
word. This is called shoulder surfing and the user should be aware of this threat
when using a system in public. Most internet sites display the password as asterisk
when the user is typing the password, but a trained attacker can get the password
by monitoring the keystrokes.

Passwords can also be monitored by the use of a keylogger. A keylogger is a type
of malware [50], which monitors every key the user presses and reports it to an
attacker. To mitigate this threat it is important to update software regularly, use
anti malware tools, prevent software from running in root-mode and have caution
when using public computers to ensure that passwords are not stored.
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Social Engineering

A user can reveal his password as a result of social engineering. An attacker
could call a user, pretending to be customer service, and ask the user to provide
the password in order to fix a problem. Phishing attack is a social engineering
technique. In a phishing attack the attacker masquerades as a trustworthy entity
such as banking sites, government sites or social web sites. The user is tricked to
enter personal information on fake websites or fake programs as they are seemingly
identical to the real website or program. Phishing emails can redirect the user
to a malicious site [50] or deceive the user to provide personal information and
credit card numbers. A phishing attack could result in an economic loss and a
compromise of the privacy.

2.3.2 Password Storage

Figure 2.1: Sign up for an account

When a user signs up for an account, the online service saves the user credentials
in a database on an external server. How the user credentials are kept on the
server is out of control for the user, but it highly affects the security. Figure 2.1
shows the three most common ways of saving user information. The first method
is to store the user password in plaintext. This should never be performed, but
as we saw with rockyou.com in Section 2.1 and LinkedIn [11], this is not always
the case. Saving the password in plaintext increases the probability for a plaintext
leak attack, which will be further presented in Section 2.3.3.

Hashing the password before storing is the second method for saving user creden-
tials. There are multiple hash functions available and among them popular used
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MD5 and SHA. A hash function is a one-way function which takes a message of
arbitrary length and produces a hash with fixed length. If the password hash
is leaked, a potential attacker can perform an offline attack. Offline attack is a
guessing, or cracking, technique. Offline attacks are not as trivial as plaintext leak
attacks and will be further discussed in Section 2.3.3.

As presented in Figure 2.1, salting and hashing is the third way of storing the user
password. When the user sign up for an account, a salt is randomly created and
appended/prepended the password before hashing. A salt is a random value, which
is concatenated with the password. A new and random salt must be generated for
each password, which ensures that two identical passwords will have different hash.
The salt should also be of equal length as the password hash. If the salt is too short,
a potential attacker can compute a lookup table for every salt. Salting the password
before hashing makes it more difficult to perform an offline attack if the password
hash is leaked. This is because the attacker cannot use a cracking technique known
as rainbow tables. This is further presented in Section 2.3.3. The salt must also
be stored in order to successfully perform the user authentication. How the user
is authenticated using the three password storage methods is presented in Figure
2.2.

Figure 2.2: Log in to existing account

Salting and hashing the password before storing is considered safe password stor-
ing, but it is still possible to perform an offline attack. Encrypting the hash with
a cipher such as AES [51] or using a keyed hash function such as HMAC before
storing would create an impossible to crack hash. In order to do so, the user and
the online service must share a secret key.
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2.3.3 Attacks

There are multiple attacks that can be performed on a system which does not
directly relate to the user. The users choice of password is highly relevant for the
success of these attacks.

Online Attack

Online attack is a type of guessing attack. If the attacker has access to the au-
thentication interface, the attacker can simply try as many guesses as the site
permits. Online attack can be performed as a brute force, dictionary or hybrid
attack. Brute force attack is when the attacker tries all possible combinations of
characters assuming a fixed password length [50]. The brute force attack is re-
source demanding and will most likely require a large amount of time. Dictionary
attack is when the attacker tries to guess the password using a list of possible
passwords and not an exhaustive list of all possible combinations. Hybrid attack
is a combination of dictionary and brute force attack. The attacker uses a list of
possible passwords and then adds variations to the possible passwords in a brute
force way in order to create new possibilities.

The attacker could also try to retrieve background information about the victim
because words, dates and names of personal importance are often used to derive
passwords [16]. Many internet sites have implemented a k-strike policy [52, 1]
which limits the amount of password guesses to k guesses. The account will be
locked for a period of time after k wrong guesses.

Plaintext Leak Attack

Plaintext leak attack is when the password is leaked in plaintext and can be directly
used by the attacker. Plaintext leak attack can occur as a result of a phishing
attack [1] or misconfiguration of the online server. Online services should never
save the password in plaintext, only the salt and the computed hash of the password
as we saw in Figure 2.1. This is not always the case as some services do not use
salt [11] and some do not use hashing at all[7, 53]. If the password management
scheme Reuse weak or Reuse strong is used, a plaintext leak attack can result in
serious consequences.

Offline Attack

Offline attack is a type of cracking attack and requires the attacker to be in pos-
session of the cryptographic hash of the victims password. Many online services
have experienced that their database have been hacked [9, 10, 11] and the users
password hash has been revealed. The attacker can compute the hash of a com-
bination of characters till he finds a hash that matches the leaked password hash.
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The offline attack can be performed as a brute force, dictionary or a hybrid attack.
Offline attacks can be used together with rainbow tables [54]. Rainbow tables are
lookup tables that contains pre-computed password hashes. With rainbow tables
the attacker does not need to generate the hash, but simply iterate through the
rainbow table and look for a hash that matches the leaked password hash [50]. As
a consequence, rainbow tables can be used to speed up the offline cracking time.
Rainbow tables are available online [55] and can easily be downloaded.

As we saw in Section 2.3.2, salting is the method of adding a random value to the
password before generating the hash. Salting makes it impossible to use rainbow
tables as every passwords needs to be added a random value before being hashed.
Even though salting prevents the use of rainbow tables, it does not prevent dic-
tionaries attacks and brute-force attacks. Salting the password can slow down
brute-force and dictionary attacks, but modern cracking tools have optimization
techniques [56], which can diminish the effect of salting. Advances in computing
power and General-Purpose Computing on Graphics Processing Units (GPGPU)
has exponentially increased the number of hash computations per second. It is in
many cases less resource demanding to brute-force the password [57] rather then
comparing the password hash with terabytes of precomputed hashes in a rainbow
table.

Hashcat is the “worlds fastest password cracker” and the “worlds first and only
GPGPU based rule engine” [58]. Hashcat is a free tool for advanced password
recovery and is able to run millions of hash calculation every second due to its
utilization of GPUs. Hashcat supports over 100 algorithms and different attack
modes, such as dictionary attack, brute-force, hybrid or combination attack. Hash-
cat enables the user to specify rules in order to optimize the cracking.

As cracking tools get more sophisticated and computing hardware follows Moore’s
law, the online services must carefully select which hashing algorithm to use when
storing user passwords. The hashing algorithm should be slow, in the sense that
it requires time to generate the hash. A slow hash algorithm will dramatically
decrease the number of guesses per second for cracking software. A typical slow
hash algorithm uses a technique called key stretching, which is a CPU-intensive
hash function. Commonly used slow algorithms are bcrypt, scrypt and PBKDF2,
while commonly used MD5 and SHA-1,2 and 3 is quite fast [59, 60, 61, 58, 57].
The bcrypt algorithm allows the user to specifically select the computation to be
slower [57], hence increasing the security. The cost of password cracking will be
presented in Section 2.3.4.

2.3.4 Measuring Security

Users have a very different understanding of security. A computer engineer or a
system administrator might have a clear picture on how to create a strong password
compared to the infrequent home user who uses a computer a couple of times a
week. It is necessary to measure the password security in order to educate the user
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and give proper feedback upon account creation. Password strength represents how
effective a password is against guessing and brute-forcing attacks. The password
strength is related with the length, complexity and unpredictability of the password
[3]. A secure password can lower the risk for a security breach in a system, but the
overall security is also dependent on the implementation of the system in terms
of authentication, communication and storage [22]. As we saw in Section 2.3.3,
numerous attacks can occur which can compromise the system. The password
strength is a measure on how difficult it is for these attacks to succeed.

Password Strength Meters

Proactive password checking or password strength meters (PSM) is a method that
forces the user to choose a complex password. A PSM takes a password, a string,
as input over an alphabet, and outputs a score [62] on how secure the string is
as password. The score is usually a real number, which indicates the effort for
an attacker to guess the password. The PSM can be used to advise the user or
to enforce a password composition policy. The PSM uses certain rules, similar
to the guidelines in Table 2.1, to exclude weak passwords. The effect PSM has
on the password strength is debatable [63] and it could encourage people to use
non-dictionary words of personal origin [22], such as person names and dates.
Traditional PSMs base their score on simple metrics such as password length, non-
alphabetic and capitalization, and does not take into account advanced cracking
techniques [22, 64, 65].

NIST proposed a PSM [66, 62] that became quite influential. The NIST PSM
calculates the entropy of a password based on the password length and gives special
bonuses if a password matches special conditions, such as contains numbers or
capitalization. The Microsoft PSM [5] gives out an integer between zero and four.
Four is the strongest and it is given if the password pass a dictionary test, is
longer then 14 characters and contains three types of characters. The Google
PSM is implemented on the server-side [62], but it outputs an integer between
zero and four. The Microsoft and Google PSM will be further discussed in Section
6.2.

A PSM can provide useful feedback when the user selects a weak password, but
can also give the user a false sense of security. The PSM does not know if the
user has used the password on other sites or if the password is based on personal
information.

Adaptive password strength meters (APSM) works as regular PSM, but it also
bases the score according to the specific site. The APSM takes the password and
the password file of the site as inputs, and estimates the password score. The
password file is a noisy model of the password file in order to preserve the secrecy
of the password database. The APSM can be more effective than PSM as password
distribution tend to be different for different sites [62].



2.3. SECURITY 17

Password Entropy

In 1948 Claude Shannon specified the use of the term entropy in information theory
[67], and applied the term to express the amount of actual information in English
text [66]. Shannon said, “The entropy is a statistical parameter which measures in
a certain sense, how much information is produced on the average for each letter of
a text in the language. If the language is translated into binary digits (0 or 1) in the
most efficient way, the entropy H is the average number of binary digits required
per letter of the original language.” [68]. Entropy is commonly used together
with guessing entropy and min-entropy to estimate the password strength. The
guessing entropy is an estimate on the amount of work that is required to guess
the password of a specific user, and the min-entropy measures the difficulty of
guessing the easiest single password to guess in a population [66]. The entropy,
guessing entropy and min-entropy is equal for randomly created passwords. For
truly random passwords, the entropy H in bits is given i equation 2.1 were l denotes
the password length and b the number of possible characters.

H = log 2(bl) (2.1)

Example: Assume that the password p1 = bcxtabf2owale89n has been
created using the Randomly Generated scheme from Section 2.1.2. l =
16 and b = (26 + 10) = 36, assuming 26 lower case letters and 10 (0-9)
numbers. By applying the equation above the entropy of the password
p1 = bcxtabf2owale89n is H = log 2(3616) = 82.71880 bits.

Cost of Cracking

As we saw in Section 2.3.3 password guessing and cracking can be very resource
demanding for an attacker. Expressing the security in economic terms could make
people more aware of the actual security associated with their password. The
attacker needs to compute a lot of hashes to be able to crack the password. In order
to put this in an economic context it is necessary to include cost in electricity and
equipment. The cost per computed hash, Cg, can be estimated by assuming that
the attacker rents computing time on Amazons cloud EC2 [69]. It is assumed that
the attacker rents the cg1.4xlarge GPU instance [70]. Cg is given in equation 2.2,
where Ccg1 denotes the cost of renting the cg1.4xlarge GPU instance on Amazons
EC2 and FH denotes the number of guesses per hour.

Cg = Ccg1

FH
(2.2)

Renting the cg1.4xlarge GPU instance on EC2 costs $2.1 per hour. Hashcat,
presented in Section 2.3.3, in one of the most advanced password recovery tool.
Multiple studies of Hashcat on EC2 have revealed that Hashcat can run 2100
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million MD5 computations per second which gives FH = 2100×106×3600[71, 72].
We saw in Section 2.3.3 that MD5 is one of the fastest hashing algorithms, so
the cost per guess, Cg, in USD ($) given below is the minimum cost per guess.
Equation 2.2 gives the following;

Cg = 2.1
2100× 106 × 3600 = 2.77778× 10−13

2.3.5 Randomness

Random numbers are applied in different fields, ranging from cryptography and
gambling, to art. The methods of generating random numbers are many and some
of them are well know, such as rolling dice, flipping a coin or shuffling cards. The
increased need of random numbers led to new ways of generating randomness using
computers. Computers follows pre-set instructions, which make it challenging to
make a computer produce something random. This challenge resulted in two
different methods of generating random numbers using a computer [73]; Pseudo-
Random Number Generators (PRNGs) and True Random Number Generators
(TRNGs).

PRNGs uses mathematical formulas, cryptographic methods or predetermined ta-
bles to create numbers that appear random, but is not truly random. PRNGs are
efficient, deterministic and periodic [73], but the periodicity can be negligible.

TRNGs use randomness from physical phenomena as input to generate random
numbers. The physical source could be background noise, strokes on keyboard,
radio active source and atmospheric noise. TRNGs are not very effective, aperi-
odic and nondeterministic. Humans tend to have problems with selecting random
characters when creating a password [1] because they are afraid of forgetting. It
has been shown that humans have difficulties generating random numbers even if
it is not a memorable sequence. Even though humans may generate poorly random
numbers, it could provide a weak source of entropy that can be used by a TRNG
[1].

2.4 Summary

In this chapter we saw that people tend to adopt weak password practices as the
number of accounts increases. Several password breaches have revealed very poor
password selection. We saw that password composition policies are used to force
the user to select a good password and we were introduced to five different pass-
word management schemes. Knowing how people tend to select passwords and
prioritize usability and security is essential for designing and implementing a pass-
word management system. We now know that password composition policies must
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be considered when designing a password management system. We learned that
typical password attacks include plaintext leak attacks, online attacks and offline
attacks, and the attacks must be taken into account when designing and evaluating
a password management system. We also saw that there is a trade-off between us-
ability and security and that people tend to prioritize usability over security. The
human memory was briefly presented alongside with different mnemonic techniques
such as PAO-stories. Knowing how people understand and store memories is cru-
cial when designing a usable password management system. In the next chapter
we will be introduced to the Shared Cues password management model and see
how Shared Cues cope with known attacks, and how it uses PAO-stories to create
secrets.
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Chapter 3

Shared Cues

Empirical studies on password selection and studies on password habits have re-
vealed significant security issues resulting from poor password selection [14, 15,
16, 1]. Studies have shown that users tend to prioritize usability over security
and often adapt weak password management schemes. Shared Cues is a password
management scheme that tries to balance the usability and security factors. The
goal with the scheme is to provide a usable way of managing multiple passwords
while keeping the passwords strong and preventing password reuse.

The scheme Shared Cues is proposed by J. Blocki, M. Blum and A. Datta at the
Carnegie Mellon University in the paper “Naturally Rehearsing Passwords”. The
paper has been published in two versions; short version [1] and full version [6]. This
chapter presents the Shared Cues password management model. The first part of
the chapter covers issues on usability and security followed by model definitions
and notation. The second and third part of the chapter presents the usability and
security model, respectively. The chapter is concluded by a technical presentation
of the scheme and a usability and security analysis.

3.1 Usability and Security

The average user has normally two types of memory available; his own human
memory and persistent memory. The human memory, presented in Section 2.2.1,
is associative and private, but also lossy. The persistent memory, such as a note or
a file, is reliable, but not private. Shared cues makes use of cue-association pairs.
Cue-association pairs, as showed in Section 2.2.2, can strengthen the memory of a
password by creating a strong context, a cue, to the password. Since the human
memory is lossy the cue-association pairs must be regularly rehearsed otherwise
the password is lost. The password is only stored in the user associative memory
and never written down.

The scheme provides a level of protection against online attacks, offline attacks and
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plaintext leak attacks. This will be further elaborated in Section 3.6. As presented
in Section 2.3, keyloggers, social engineering techniques and shoulder surfing, are
all threats the user must be aware off, but they are not directly connected to
the security of the password management scheme. Hence, Shared Cues along
with other available password management schemes does not protect against these
threats.

Shared Cues is based on a usability assumption. The usability assumption is an
assumption about the human memory. The assumption is that a user who follows
a specific rehearsal schedule will maintain the corresponding memory. This as-
sumption has been proven successful in different studies by using various rehearsal
schedules [74, 42, 1].

In Shared Cues, a predefined visitation schedule and a given rehearsal requirement
is used to approximate the total number of extra rehearsals required to maintain
the memory. The total amount of extra rehearsals is used as a measure of the
usability of the scheme. To measure the security of the scheme, Shared cues uses
a model of a resource bound attacker which performs online, offline and plaintext
attacks.

3.2 Definitions

The human memory is associative and Shared Cues uses cue-associations pairs
to provide a context, a cue, for the association. We saw in Section 2.2.2, that
Cue-association pairs are often used a mnemonic technique because its effective-
ness. Table 3.1 shows the Shared Cues notation as defined in [1]. As presented in
Table 3.1, ĉ ∈ C is used to denote a cue and â ∈ AS is used to denote the corre-
sponding association in a cue-association pair (ĉ, â). The password management
scheme stores m sets of cues c1, . . . , cm ⊂ C in persistent memory to help the user
remember the corresponding password.

The rehearsal schedule is necessary for keeping the cue-association pair (ĉ, â) in
associative memory. A rehearsal schedule is sufficient if the user maintain the
cue-association (ĉ, â) by following the rehearsal schedule [1]. It was shown in
Section 2.2.2 that the time interval [tĉi , tĉi+1) used to rehearse the cue-association
pair (ĉ, â) could depend on the mnemonic technique as well as prior rehearsals, i.
The function R : C×N→ R specifies the rehearsal requirements and R is used to
denote a set of rehearsal functions.

Definition 1 ([1]) A rehearsal schedule for a cue-association pair (ĉ, â) is a se-
quence of times tĉ0 < tĉ1 < . . . For each i ≥ 0 we have a rehearsal requirement. The
cue-association pair (ĉ, â) must be rehearsed at least once during the time window
[tĉi , tĉi+1) = {x ∈ R |tĉi ≤ tĉi+1}.
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Table 3.1: Shared Cues Notation

Symbol Denotes
P Space of possible passwords
p1, . . . , pm ∈ P Set of all m passwords
ĉ ∈ C One cue
c ⊂ C One set of cues
C = ⋃m

i=0 ci The set of all cues
n = |C| Number of cue-association pairs the user must remember
â ∈ AS One association
(ĉ, â) One cue-association pair
R : C× N→ R Rehearsal requirements
R ∈ R One rehearsal schedule
Ai Account i
Gm Password generator
k ∈ K Users knowledge
b ∈ {0, 1}∗ Random bits
τ i0 < τ i1 < . . . Visitation schedule
Xt,ĉ Number of extra rehearsals for a (ĉ, â)-pair in time interval [tĉi , tĉi+1)∑
ĉ∈C Xt,ĉ Total number of rehearsals for all (ĉ, â)-pairs in time interval [0,t]

σ Association strength
λ̂ Visitation schedule
U User
OS,q guess-limited oracle
(n, l, γ) n=total number of cues

l=number or cues for each account
γ=maxium number of cues shared between accounts

h Offline attack
s Online attack
r Plaintext leak attack
A Attacker
q Number of guesses
δ Probability that the attacker wins

Example: A rehearsal schedule with exponentially decreasing rehearsal
frequency could be given as the following time-interval[day 1, day 2),
[day 2, day 4), [day 4, day 8), [day 8, day 16). The cue-association
pair (ĉ, â) must be rehearsed during each of these intervals in order to
maintain the association.

Visitation schedule for the account Ai is a sequence of numbers τ i0 < τ i1 < . . . which
represents the times account Ai was visited by the user. The visitation schedule
is modelled using a random process with a known parameter, λi, based on the
average time between visits to account Ai, E[τ ij+1 − τ ij ].
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Definition 2 ([1]) The rehearsal requirement [tĉi , tĉi+1) is naturally satisfied by a
visitation schedule τ i0 < τ i1 < . . . if ∃j ∈ [m], k ∈ Ns.t.ĉ ∈ cj and τ jk ∈ [tĉi , tĉi+1).

Xt,ĉ = |{i|tĉi+1 ≤ t ∧ ∀ j, k, (ĉ 6∈ cj ∨ τ jk 6∈ [tĉi , tĉi+1))}|

Xt,ĉ denote the number of rehearsal requirements that are not naturally satisfied by
the visitation schedule during the time interval [0, t].

Example: Considering the following rehearsal requirement for a cue-
association pair (ĉ, â) ; [day 1, day 2), [day 2, day 4), [day 4, day 8),
[day 8, day 16). If the visitation schedule states that the user will log
into account Ai which include the cue-association pair (ĉ, â) one time or
more in all the four time intervals, Xt,ĉ = 0. If the visitation schedule
assumes a log in to account Ai in two of the four intervals, Xt,ĉ = 2.

A rehearsal requirement [tĉi , tĉi+1) can be satisfied naturally if the user visits account
Ai. If the cue-association pair (ĉ, â) is not naturally rehearsed during the interval
[tĉi , tĉi+1), the user must perform an extra rehearsal. Shared Cues uses rehearsal
requirements and visitation schedules to quantify the usability of the password
management scheme by measuring the number of extra rehearsals the user need
to perform. Xt,ĉ is used to denote the total number of extra rehearsals required
to maintain the cue-association pair (ĉ, â) during the interval [tĉi , tĉi+1). Xt =∑
ĉ∈C Xt,ĉ is used to denote the total number of extra rehearsal during the time

interval [0, t] to maintain all cue-association pairs.

Shared Cues password management scheme includes a generator Gm and a re-
hearsal schedule R ∈ R. The generator Gm(k, b, ~λ,R) utilizes the users knowledge
k ∈ K, random bits b ∈ {0, 1}∗ to generate passwords p1, . . . , pm and public cues
c1, . . . , cm ⊆ C. The rehearsal schedule R ∈ R is at initial start-up equal for
all cues, but the rehearsal schedule will adapt for each cue according to the ac-
count logins. Gm may take use of the rehearsal schedule R and visitation schedule
~λ = (λ1, . . . , λm) of each site to minimize E[Xt]. The code for the generator Gm

and the cues c1, . . . , cm are public and stored in persistent memory. The passwords
p1, . . . , pm are private and must be memorized and rehearsed using rehearsal sched-
ule R in order to maintain the cue-association pair (ĉ, â) in the associative memory
of the user.

Definition 3 ([1]) A password management scheme is a tuple (Gm,R), where
Gm is a function Gm : K × {0, 1} × Rm × R → (P × 2C)m and a R ∈ R is a
rehearsal schedule which the user must follow for each cue.

3.3 Usability Model

Users tend to prioritize usability over security [14] when choosing a password man-
agement scheme. Share Cues measures the additional effort the user must invest
in rehearsing the passwords. The usability depend on the rehearsal requirement
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for each cue, visitation schedule for each site and the number of cues the user
need to maintain. The usability of the password scheme is measured in numbers
of extra rehearsals, Xt,ĉ, the user needs to perform to maintain the associations in
memory. Shared Cues consider three rehearsal assumptions; Constant Rehearsal
Assumption (CR), Expanding Rehearsal Assumption (ER) and Squared Rehearsal
Assumption (SQ). CR, ER and SQ are defined in definition 4, 5 and 6 respectively.
The constant, σ, is used to denote the strength of the mnemonic technique used
to memorize the cue-association pair (ĉ, â).

Definition 4 ([1]) Constant Rehearsal Assumption (CR): The rehearsal schedule
is given by R(ĉ, i) = iσ

day

rehearse

1

R

2

R

3

R

4

R

5

R

6

R

7

R

8

R

9

R

10

R

11

R

12

R

365

R

Definition 5 ([1]) Expanding Rehearsal Assumption (ER): The rehearsal sched-
ule is given by R(ĉ, i) = 2iσ

day

rehearse

2

R

4

R

8

R

16

R

32

R

64

R

128

R

256

R

Definition 6 ([6]) Squared Rehearsal Assumption (SQ): The rehearsal schedule
is given by R(ĉ, i) = i2σ

day

rehearse

1

R

4

R

9

R

16

R

25

R

36

R

49

R

64

R

The CR assumes that memories are not strengthen every time the user rehearses,
hence the user must rehearse every σ days. The ER and SQ in contrast, assume
that memories are strengthen every time the user rehearses and therefore the
number of rehearsals decreases over time. Studies have shown that the availability
of a memory is dependent on recency [75] and the pattern of previous rehearsals.
The difference between SQ and ER is not significant, but ER is consistent with
known memory studies [74, 76]. For ER this means that a password which has
been rehearsed i times does not need to be rehearsed again for 2iσ to satisfy
the requirement [2iσ, 2iσ+σ). In SQ the password must be rehearsed with an i2σ-
interval. Table 3.2 and Table 3.3 shows the ER and CR with various association
strength, σ, and natural rehearsal rate, λ.

Table 3.2: Expanding Rehearsal Assumption: X365,c, λc, σ [6]

λ (visits
days

) 2 1 1
3

1
7

1
31

σ = 0.1 0.686669 2.42166 5.7746 7.43555 8.61931
σ = 0.5 0.216598 0.827594 2.75627 4.73269 7.54973
σ = 1 0.153986 0.521866 1.56788 2.61413 4.65353
σ = 2 0.135671 0.386195 0.984956 1.5334 2.57117
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Table 3.3: Constant Rehearsal Assumption: X365,c, λc, σ [6]

λ (visits
days

) 2 1 1
3

1
7

1
31

σ = 1 49.5327 134.644 262.25 317.277 354.382
σ = 3 0.3024 6.074 44.8813 79.4756 110.747
σ = 7 0.0000 0.0483297 5.13951 19.4976 42.2872
σ = 31 0.0000 0.0000 0.0004 0.1432 4.4146

The visitation schedule for a site is dependent on the user. Shared Cues uses
a Poisson process with parameter λi to model the visitation schedule for a site.
Shared Cues defines four types of users and λi is used to denote how often a site
is visited. The visitation schedule is illustrated in Table 3.4 and it presents the
number of sites visited with frequency λ for different user types.

Table 3.4: Visitation Schedules [1]

Schedule - λ(visits
days

) 1
1

1
3

1
7

1
31

1
365

Very Active 10 10 10 10 35
Typical 5 10 10 10 40
Occasional 2 10 20 20 23
Infrequent 0 2 5 10 58

Shared Cues uses the number of extra rehearsals as a measure of usability of the
scheme. This can be computed for other password management scheme in order
to compare the usability based on the usability assumptions defined. Theorem
1 define the expected value of extra rehearsals needed to maintain all the cue-
association pairs and it follows the linearity of expectations as stated in Lemma
1. Proof of Theorem 1 and Lemma 1 can be found in Appendix A in [6].

Theorem 1 ([1]) Let iĉ? = (argmaxxtĉx < t)− 1 then

E[Xt] = ∑̂
c∈C

iĉ?∑
i=0

exp(−( ∑
j:ĉ∈Cj

λj)(tĉi+1 − tĉi))

Lemma 1 ([1]) Let Sĉ = {i|ĉ ∈ ci} and λĉ = ∑
i∈Sĉ λi then the probability that

the cue ĉ is not naturally rehearsed during time interval [a, b] is exp(−λĉ(b− a))).

Table 3.5 presents the number of expected extra rehearsals over the first year for
both CR and ER. L represents the Lifehacker password management scheme and
SRI represents Strong Random and Independent, which were presented in Section
2.1.2.
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Table 3.5: E[X365]: Expected extra rehearsals over the first year [1]

Assumption CR (σ = 1) ER (σ = 1) SQ (σ = 1)
Scheme L SRI L SRI L SRI
Very Active ≈ 0 23.396 0.023 420 ≈ 0 794.7
Typical 0.014 24.545 0.084 456.6 ≈ 0 882.8
Occasional 0.05 24.652 0.12 502.7 ≈ 0 719.02
Infrequent 56.7 26.751 1.2 564 0.188 1176.4

3.4 Security Model

The values Gm, k and C = ⋃m
i=0 ci are assumed to be available for a potential

attacker. Many breaches occur because users choose to put personal information in
their password, such as hobbies and birth dates, assuming that this information is
private. Shared Cues assume that the adversary has background information, k ∈
K, about the user. The public cues C = ⋃m

i=0 ci are stored in persistent memory
and the password management scheme Gm is assumed known to the attacker. The
secrecy of the scheme lies in the random string b used by Gm to generate p1, . . . , pm.

Measuring the security and password strength can be performed in different ways.
We saw in Section 2.3.4 that min-entropy and password meters, which is often
used to measure password strength, have in several studies been proven to be a
weak measure of password security [1, 62]. Shared Cues measure the security of
the password scheme by estimating the cost of guessing, cracking, the password
by a potential attacker. Shared Cues model three types of attacks; online attack,
offline attack and plaintext leak attack, presented in Section 2.3.3. Shared Cues
model online and offline attacks by using a guess-limited oracle. Let S ⊆ [m] be
a set of indexes which represent each account. It is assumed that an attacker can
perform an offline attack for accounts {Ai|i ∈ S} if he is able to steal the password
hashes. The guess-limited oracle OS,q is a black-box with the following behaviour;
• OS,q stops answering queries after q queries.
• ∀i 6∈ S, OS,q(i, p) = ⊥3
• ∀i ∈ S, OS,q(i, pi) = 1
• ∀i ∈ S, p 6= pi, OS,q(i, p) = 0

Shared Cues presents a game based definition of security. The user U starts with
knowledge k ∈ K, visitation schedule λ̂ ∈ Rm, random sequence of bits b ∈ {0, 1}?
and a rehearsal schedule R ∈ R. The user runsGm(k, b, λ̂,R) to obtainm passwords
p1 . . . pm and public cues c1 . . . cm for accounts A1 . . . Am. The attacker is given
k,Gm, λ̂ and the public cues c1 . . . cm. Online attack is when the attacker is given
black-box access to the guess-limited oracle O{i},s for each i ∈ [m] − S. Offline
attack is when the attacker adaptively selects a set S’ ⊆ [m]s.t.|S’| ≤ h and
is given black-box access to the guess-limited offline oracle OS′,q. Plaintext leak
attack is when the attacker selects a set S ⊆ [m]s.t|S| ≤ r and receives pi for each
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i ∈ S. The attacker wins if he is able to obtain (j, p) where j ∈ [m]−S and p = pj.
AttWins(k, b, λ̂, Gm, A) is used to denote the event that the attacker wins. It
was illustrated in Section 2.3.4 that the security can be measured by putting an
economic upper bound on q, which limits the computational resources available
for an attacker. Shared Cues use q$106 in the security analysis, which defines the
number of possible guesses an attacker can try if he invest $1, 000, 000 in cracking
the password.

Definition 7 ([1]) A password management scheme Gm is (q, δ,m, s, r, h)−secure
if for every k ∈ K and attacker A we have Prb[AttWins(k, b, λ̂, Gm, A)] ≤ δ.

We saw in Section 3.3, supported by Theorem 2, that sharing cues across accounts
improves the usability because the number of cue-associations is reduced and the
rate of natural rehearsals increases. Theorem 2 shows that public cues can be
securely shared across accounts if the public cues {c1, . . . cm} are a (n, l, γ) sharing
set family. Proof of Theorem 2 can be found in appendix A in [6].

Definition 8 ([1]) A set family S = {S1 . . .Sm} is a (n, l, γ) sharing set family if
|⋃mi=1 Si| = n, |Si| = l for each Si ∈ S and |Si∩Sj| ≤ γ for each pair Si 6= Sj ∈ S.

Theorem 2 ([1]) Let {c1, . . . , cm} be a (n, l, γ) sharing set of m public cues pro-
duced by Gm. If each ai ∈ AS is chosen uniformly at random then Gm satisfies
(q, δ,m, s, r, h)-security for δ ≤ q

|AS|l−γr and any h.

3.5 The Scheme

Shared Cues uses the Chinese Remainder Theorem (CRT) to construct (n, l, γ)
sharing set families. As lemma 2 states, the input n1, . . . , nl to Algorithm 1 must
be co-prime in order to use the CRT.

Algorithm 1 CRT (m,n1, . . . , nl) [1]
1: Input: m and n1, . . . , nl . n1, . . . , nl must be pairwise co-prime
2: for i = 1→ m do . m is the number of passwords
3: Si ← ∅
4: for j = 1→ l do
5: Nj ←

∑j−1
i=1 nj

6: Si ← Si ∪ {(imod nj) + Nj}
7: Return: {S1, . . . ,Sm}

Lemma 2 ([1]) If the numbers n1 < . . . < nl are pairwise co-prime and m ≤∏γ+1
i=0 ni then Algorithm 1 returns a (∑l

i=1 ni, l, γ)-sharing set of public cues.

Algorithm 2 divide each PAO story in two parts. Each cue ĉ consists of two pictures
and the corresponding two persons with the a label (action or object). In this way
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Algorithm 2 CreatePAOStories [1]
1: Input: n, random bits b, images I1, . . . , In, names P1, . . . ,Pn

2: for i = 1→ n do
3: ai ← ACT . Using random bits
4: oi ← OBJ
5: for i = 1→ n do . Split PAO stories to optimize usability
6: ĉi ← ((Ii,Pi, ’ACT’), (Ii+1modn,Pi+1modn, ’OBJ’)
7: âi ← (ai, oi+1modn)
8: Return: {ĉ1, . . . , ĉn}, {â1, . . . , ĉa}

the user will rehearse both the i’th and the i+ 1’th PAO story, but does only need
to input either the action or the object associated with the picture-person pair.

3.6 Security and Usability Analysis

Shared Cues is analysed with three different configurations. SharedCues-0 uses a
(9,4,3)-sharing set family of public cues, with m = (9

4) = 126 subsets of size 4.
SharedCues-1 uses a (43,4,1)-sharing set family of public cues, where m = 90
computed by Algorithm 1 using (n1, n2, n3, n4) = (9, 10, 11, 13). SharedCues-
2 uses a (60,5,1)-sharing set constructed by Algorithm 1 using m = 90 and
(n1, n2, n3, n4) = (9, 10, 11, 13, 17). The security results in Table 3.7 assume 140
actions and 140 objects, |AS| = 1402, and that the attacker would invest $1000000
in cracking the password. In the case of no offline attacks, h = 0, the security is
computed using m ≤ 100.

The security results assume that the bcrypt hashing algorithm is used and the
guessing cost and number of computed hash calculations as given in Table 3.8 and
Table 3.9 respectively. As we saw in Section 2.3.3 bcrypt is one of the slowest hash
functions, hence the results are a best-case evaluation. Unfortunately, MD5 and
SHA is more often used as hash function [59, 60, 61, 57]. Table 3.6 illustrate the
number of extra rehearsals the first year for the three different configurations of
Shared Cues.

Table 3.6: E[X365]: Expected extra rehearsals over the first year for Shared Cues
[1]

Assumption CR (σ = 1) ER (σ = 1) SQ (σ = 1)
Scheme SC-0 SC-1 SC-2 SC-0 SC-1 SC-2 SC-0 SC-1 SC-2
Very Active ≈ 0 1,309 2,436 ≈ 0 3.93 7.54 ≈ 0 2.77 5.88
Typical ≈ 0.42 3,225 5,491 ≈ 0 10.89 19.89 ≈ 0 7.086 12.74
Occasional ≈ 1.28 9,488 6,734 ≈ 0 22.07 34.23 ≈ 0 8.86 16.03
Infrequent ≈ 723 13,214 18,764 ≈ 2.44 199.77 173.92 2.08 71.42 125.24



30 CHAPTER 3. SHARED CUES

Table 3.7: Shared Cues (q$106 , δ,m, s, r, h)-security [1]

Offline Attack h = 0 h > 0
(n, l, γ)-sharing r = 0 r = 1 r = 2 r = 0 r = 1 r = 2
(n, 4, 3) - SC-0 2× 10−15 0.011 1 3.5× 10−7 1 1
(n, 4, 1) - SC-1 2× 10−15 4× 10−11 8× 10−7 3.5× 10−7 0.007 1
(n, 5, 1) - SC-2 1× 10−19 2× 10−15 4× 10−11 1.8× 10−11 3.5× 10−7 0.007

Table 3.8: Computed hash given $1000000 [6]

Hash Function $1000000
SHA1 1016

MD5 9.1× 1015

BCRYPT (L12) 5.2× 1010

Table 3.9: Guessing costs [6]

Hash Function FH(guesses/hour) Cg($)
SHA1 ≈ 576×106 1× 10−10

MD5 ≈ 561×106 1.1× 10−10

BCRYPT (L12) ≈ 31×103 1.94× 10−5

Moore’s law and modern cracking techniques have outdated the numbers in Table
3.8 and Table 3.9. The table is included in order to understand the security results
and analysis of Shared Cues given Table 3.7. As presented in Section 2.3.4, Hashcat
can run 2100 million MD5 guesses per second. This will be further discusses in
Section 6.2.

3.7 Summary

In this chapter we were introduced to the Shared Cues password management
model proposed by J.Blocki et al. in the paper “Naturally Rehearsing Passwords”.
Shared Cues is built on the usability assumption that a user who follows a specific
rehearsal schedule will successfully maintain the corresponding memory. Shared
Cues uses this usability assumption to create rehearsal schedules, which balances
usability and security. We now know that the Chinese Remainder Theorem can be
used to securely share cues across multiple accounts to improve usability. We saw
that Shared Cues uses PAO-stories in order to create secrets which will be saved
in associative memory and used to derive passwords. In the next chapter we will
see that the designed password management system is built on many of the same
principles and assumptions as Shared Cues, and that it uses rehearsal schedules,
PAO-stories and sharing sets to balance the usability security trade-off.



Chapter 4

Design

PassCue is a password management system that is based on the Shared Cues
password management model. This chapter presents the PassCue design including
design choices, design specification and parameter evaluation. The first part of
this chapter presents the PassCue functionality and how PassCue can be used to
create passwords. The second part covers the design choices, which forms the basis
for the PassCue design requirements. The PassCue design including system flow
and underlying database structure is presented in the third part of the chapter.

4.1 Functionality

This section presents the functionality of PassCue and how PassCue works. Im-
portant parameters will be introduced in order to highlight the factors which affect
the security and usability of PassCue.

Figure 4.1: Creating a PAO-story

The PassCue system consist of n public cues supplied by the user. Each of the
public cues include a picture of a known person and a picture of a known place/lo-
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cation/background. One action and one object are randomly selected from a large
set and assigned to the public cue. The example in Figure 4.1 illustrates how a
public cue is assigned an association. In the example, the user selected a public
cue that consists of a trampoline and his grandmother. The randomly selected
action is surfing and the object is banana. The action and object represents the
association of the cue. The user should imagine his grandmother surfing a banana
on the trampoline in his garden. The association is private and only displayed the
first time a public cue is used. After initialization, the association is deleted and
non-retrievable. The user must keep the association in his associative memory.
The next time this particular cue is used, only the public cue with a picture of a
trampoline and his grandmother will be visible. The user must remember what
his grandmother did on the trampoline.

Figure 4.2: Sharing Set Distribution

The distribution of the public cues to each account is performed using (n, l, γ)-
sharing sets. n is the total number of public cues, l is how many cues used for each
account, and γ is the maximum number of cues that can be shared between two
accounts. A sharing set is selected for each new account. The sharing set defines
which cues the account should use and the number of cues, l. Figure 4.2 shows that
the account Gmail uses the four cues; cue 1, cue 2, cue 3 and cue 4. The account
PayPal uses cue 1, cue 2, cue 3 and cue 5, while NTNU uses cue 1, cue 3, cue 5
and cue 7. Gmail and PayPal share cue 1, 2 and 3, which means that a sharing set
with γ = 3 is used. NTNU share cue 1 and cue 3 with the two accounts. Assuming
that account Gmail was the first account to use cue 1, 2, 3 and 4, the association
for all the public cues will be displayed. For account Paypal, the association for
cue 1, 2 and 3 will not be displayed as they were displayed earlier for the Gmail
account.

When a cue is used for the first time, a rehearsal schedule is created. The objective
of the rehearsal schedule is to assure that the association assigned to the public
cue is kept in the associative memory of the user, and not forgotten. The user is
notified according to the rehearsal schedule when he needs to rehearse a specific
cue-association in order to maintain the memory of the association.

Figure 4.3 shows how the private associations can be used to derive a password.
The associations for each of the public cues are only stored in associative memory
and are not available for a potential attacker. Account Gmail uses cue 1, 2, 3
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Figure 4.3: Deriving password from actions and objects

and 4. All the cues consist of two public pictures and a private association of two
pictures. In cue 1, the user selected a picture of a trampoline and his grandmother
as public pictures. For cue 2, he selected a picture of a toilet and his mother. In
cue 3, a picture of his garden was selected as background picture and his father
as person picture. Cue 4 uses a picture of a hallway and his sister. The user has
chosen to use the first three letters of each action and object to create a password
for account Gmail.

The associations are only displayed when a cue is initialized and the user must use
the public pictures to retrieve the associations from memory. For the first part of
the Gmail password the user must imagine his grandmother on the trampoline,
and retrieve the memory surfing and banana. The second part is his mother on the
toilet presenting a dog. The third cue is his father in the garden drawing a bunny.
For the last part of the Gmail password, cue 4 displays a picture of the user’s sister
and a hallway. The user must ask himself; “What did my sister do in the hallway?”.
The answer from associative memory is inspecting a gift. By combining the three
first letters in the action and object for each of the four cues, the Gmail password
is derived as “Surbanpredogdrabuninsgif”. Since account Gmail and PayPal share
cue 1, 2 and 3, the 18 first letters are the same and the last six differ. For account
NTNU, the first six is similar, but the 13th to the 18th letter in Gmail is letter
seven to twelve in the NTNU password.

The password is created using the first three letters of the action and object for
each of the associations. The first character should be capitalized in order to cope
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with common password composition policies, as we saw in Section 2.1.1. This will
be further discussed in Section 4.2.5. The whole action/object word could have
been used and resulted in the same entropy, see the security analysis in Section
6.2. The reason why this is not recommended is that the password can be rejected
because many PCPs restrict the use of dictionary words. If the online service has
a restriction on maximum password length, the user might need to choose two
instead of three letters for each action/object. How maximum password length
affects the password security is discussed in Section 6.2.

4.2 Design Choices

This section covers the design choices and the resulting parameters when designing
the PassCue application. In order to design a system with the functionality as
defined in the previous section, several design choices had to be made. It was
necessary to explore the following:

1. How should the public cues be created?

2. What type of sharing set should be used?

3. Which rehearsal schedule should be used?

4. What is the targeted platform for the design?

5. How can the password management system be designed to cope with PCPs?

6. How to determine the association set size?

4.2.1 Public Cues

The Shared Cues model is based on public cues, which trigger specific associations
saved in the associative memory of the user. As illustrated in Section 2.2.1, the
information saved in associative memory is only available for the user, hence not
accessible for an attacker. A public cue consists of an image of a known person
(e.g. your grandmother) and a background type of image (e.g. your trampoline).
A background picture is included in each public cue for the purpose of creating a
setting or an arena for the PAO-story. Each of the public cues are to be connected
to a private picture of an action (e.g. surfing) and an object (e.g. a banana),
together referred to as the association. This is a mnemonic technique that is
based on the PAO technique presented in Section 2.2.2.

The resulting story for this specific cue will be “Your grandmother is surfing a
banana on the trampoline”. An attacker will only have access to the public cue
which is the picture of your grandmother and the trampoline in your garden. The
attacker has no way of finding the secret association (surfing and banana), which
is stored in the user’s associative memory.
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Since the association is only stored in the associative memory of the user, it is im-
portant that the associations are strong in order to prevent the user from forgetting
the association. We saw in Section 2.2.1 that the human memory is temporally
limited in remembering sequences of items, hence it is important to create strong
associations. Studies have shown that people tend to create stronger associations
when they see pictures of people they know and a place they can imagine an ac-
tion taking place at [49]. As a consequence, it is essential that the pictures that
represent the public cues are known to the user. In the PassCue application it
is important that the user supply pictures from his phone when initializing the
public cues. In order to create strong association the user is forced to use private
pictures from the photo library.

The mnemonic technique called memory palace was presented in Section 2.2.2. By
allowing the user to input personal images, PassCue can be used together with the
memory palace technique. The use of memory palace can increase the usability
further and help to create strong associations. When the user initializes PassCue,
the user takes pictures of places/locations inside his house. PassCue will generate
absurd stories based on the association set, the person picture and the picture of
a location inside the house. The absurd stories will be used to derive password to
different accounts.

4.2.2 Sharing Set

We learned in Section 3.5 that the Shared Cues model uses sharing sets of public
cues in order to share cues between accounts. The security and usability is depen-
dent on how the sharing sets are constructed. As presented in Section 4.2.1, the
public cues should be supplied by the user in order to create strong associations.
A (n, l, γ)-sharing set consists of n public cues, l public cues are used to create a
password for each account, and maximum γ public cues can be shared between
two accounts. The Shared Cues security results in Section 3.6 and Theorem 2,
illustrate that the security is dependent on the choice of l and γ.

The PassCue strive to provide a usable and secure way to manage passwords.
There is a clear usability-security trade-off when defining l and γ. l defines the
number of cues used to derive a password for each account. A large l require the
user to invest a lot of effort every time he is deriving a password and logging in to
a system. As the usability decreases, the security increases, and a large l provides
higher security. Minimizing l would also affect the usability and security, as well
as the number of possible passwords generated by PassCue. PassCue is designed
with l = 4 because it provides reasonable security and usability as we saw in Table
3.6 and Table 3.7.

The sharing of the public cues between the accounts is essential in order to maintain
the required associations without forcing the user to invest additional time. γ
should be close to l in order to utilize the sharing property and increase usability.
We saw in Section 3.3 that the usability can be measured in calculating the number
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of extra rehearsals using Theorem 1. In order to minimize the number of extra
rehearsals, the PassCue application is designed with γ = 3. In order to preserve
the security, the number of cues must be larger than the maximum number of cues
two accounts can share. This is to avoid two accounts having identical passwords.
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Figure 4.4: m assuming l = 4 and γ = 3

The number of public cues, n, does not affect the security, but it determines the
number of accounts/passwords that can be generated with PassCue. Considering
l = 4 and γ = 3, the number of unique passwords PassCue can generate is given
in Figure 4.4. Choosing n = 7, enables PassCue to generate 35 passwords. n = 8
enables the generation of 70 different passwords. This may be sufficient for the
everyday user, but as the technology develops the need for new accounts increases.
By increasing the number of cues with one, n = 9, increases the account potential
with over 50 accounts. Choosing n = 9 enables PassCue to generate 126 unique
passwords, which should be enough even for the most active user. PassCue is
designed with a (9, 4, 3)-sharing set, where n = 9, l = 4 and γ = 3.

In the usability and security results in Section 3.6 we saw that the (9,4,3)-sharing
set have proved sufficient security and high usability. It is reasonable to assume
that the user has nine pictures of a person and nine pictures of a background on
his phone, or that it is obtainable using the phone’s camera. The (9,4,3)-sharing
set is incrementally designed. This means that the first six accounts all share cue
1, 2 and 3. After creating six accounts in PassCue, the user already knows all the
cue-association pairs. The next 120 passwords generated by PassCue uses cues the
user already knows. This makes it easier for the user to start using PassCue and it
significantly increases the usability. This is further discussed in Section 6.1. The
full (9,4,3)-sharing set given in Appendix A.

We saw in Section 3.5 that the sharing set must be generated with Algorithm 1 in
order to invoke the Chinese Remainder Theorem. In the case where l− γ = 1, the
sharing set can be generated by taking the (nl ) subsets using Algorithm 3. This
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will be further discussed in Section 4.4.

4.2.3 Rehearsal Schedule

We saw in Section 3.3 that Shared Cues is built on a usability assumption. Pass-
Cue is built on the same usability assumption. The usability assumption is that
memory is strengthen by rehearsal and a person who follows a specific rehearsal
schedule will successfully maintain the corresponding memory. Section 3.3 de-
fines three different rehearsal schedules; Constant Rehearsal Assumption (CR),
Expanding Rehearsal Assumption (ER) and Squared Rehearsal Assumption (SQ).
CR does not assume that memories are strengthen for each rehearsal.

Designing PassCue with the CR rehearsal schedule would force the user to practice
all the cue-association pairs every day, and significantly reduce the usability of the
system. We saw in Section 2.2.1 that the memory is strengthened by the number
of associations triggered in the brain, and that the availability of a memory is
dependent on recency and the pattern of previous rehearsals. The Baker-baker
paradox from Section 2.2.1 confirms that memory strength can be measured by
number of associations it triggers. If PassCue creates strong cue-association pairs,
it is reasonable to assume that daily rehearsal is not required in order to maintain
the association. The difference between SQ and ER is not significant, but ER is
consistent with known memory studies [74, 76] and was therefore chosen as the
rehearsal schedule for PassCue.

4.2.4 Platform

The PassCue application will be used multiple times a day, hence should always be
available to the user. The most available platform is arguably the mobile phone.
The average user carries his phone close at any time during the day. The mobile
platform is therefore the natural choice when selecting target platform for the
PassCue application. Implementing PassCue as a smartphone application makes
the application easy to install, available and highly distributable.

The mobile platform is primarily dominated by Google’s Android, Microsoft’s
Windows Phone and Apple’s iOS. According to NetMarketShare [77] iOS is the
dominant operating system in first quarter of 2014 for mobile and tablet. iOS 7 was
selected as the target platform because of its popularity and because the proper
development tools and testing device was available for the developer/author. In
order for the application to be available for the user at any time regardless of
gsm reception and Internet connection, the application should be a standalone
application with no external connections.



38 CHAPTER 4. DESIGN

4.2.5 Password Composition Policies

We saw in Section 2.1.1 that administrators often use password composition poli-
cies to force the user to select strong passwords. Table 2.1 of common password
guidelines presented eight criteria a password should fulfill. Studies have shown
that PCPs are often different from website to website. Some sites require the user
to select numbers and symbols in combination with lower-case and capital letters,
while other sites restrict the use of symbols. Embedding numbers and special
characters in the PassCue application could in some cases make the passwords
generated by PassCue unusable.

As a consequence of the differences in PCP, PassCue is designed to have an account
note field where the user can specify numbers, special characters and other infor-
mation in order to fulfil the PCP of a specific site. This information is displayed
in plaintext and is considered accessible by a potential attacker. How this affects
the security is presented in Section 6.2, including how the security is affected by
maximum password length.

4.2.6 Association Set Size

Section 3.4 and Theorem 2 clearly state that the security of Shared Cues model is
dependent on the association set size. Larger set size means larger password space
and higher security. The association size is also bound to the password creation
strategy. The security calculations of PassCue assume that each of the actions
and objects is uniquely encoded and that each of the actions and objects, given
a password creation strategy, produce a unique string. If the user selects the two
first letters from each action and object in the association, the maximum size is
limited to 262 = 676. If the user selects three letters from each action and object,
the maximum size is 263 = 17576. The realistic association size is much less then
the maximum size as the English language lacks actions and object with certain
letter combinations such as “xs” or “zk”.

All the actions and objects must be supplied with the application and each rep-
resented by an image. In order to provide reasonable security while not demand
to much storage and system resources, the action and object size in PassCue is
200. How the association set size affect the security is presented in Section 6.2 and
Figure 6.1. The association set size can easily be extended in cases where higher
security is required, or lowered to save system resources.
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4.3 Specification

The PassCue specification is based on the PassCue functionality from Section 4.1
and the design choices presented in Section 4.2. The design and implementation
of PassCue should fulfil the specification given in Table 4.1.

Table 4.1: PassCue Specification

System
iOS application
Application data must be stored in persistent memory
A set of action and object with image must be included
Stand alone application with no external connection
Usability
(9,4,3)-sharing set
9 person images and 9 background images must be supplied by the user
4 cues is used to each account
Maximum 3 cues can be shared between two accounts
Support up to m = 126 accounts
Possible to remove accounts
The user must be notified when to rehearse according to the rehearsal schedule
Account notes to cope with password composition policies
Possible to reset a cue-association pair if association is forgotten
Natural rehearsing effects the rehearsal schedule
Use the ER rehearsal schedule
Security
Random numbers must be cryptographically secure
No cue-associations pairs are possible to retrieve after initialization
Action-Object set size must be 200

4.4 System Design

This section covers the system design of the PassCue application. The design is
based on elements from the Shared Cues password management model presented
in Chapter 3. The design is to cope with the specification given in Table 4.1, which
is derived according to specific design choices presented in Section 4.2. The first
part of this section covers the system overview and the second part presents the
database architecture used for storing the application data.

4.4.1 System Overview

Figure 4.5 gives an overview of the system and the application flow. When the ap-
plication starts, the application version is checked to see if the application has been
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Figure 4.5: System Flowchart

launched before. If the application is launched for the first time, then initialization
is performed. The application database is created with all the necessary tables as
defined in Figure 4.6, and stored locally. A (9,4,3)-sharing set is generated using
Algorithm 3 which returns all the

(
9
4

)
subsets. The complete (9,4,3)-sharing set

can be found in Appendix A. In cases where l− γ 6= 1, Algorithm 1 must be used
in order to invoke the Chinese Remainder Theorem.

The system includes a set of action and object pictures which is inserted into
the database with proper name and path. The rehearsal schedule for each cue
is initialized by setting the number of prior rehearsals i to zero. The user is
asked to supply a background image and a person image for each of the nine cues.
The PAO-stories are created using Algorithm 4, derived from Algorithm 2, where
random numbers are used to select an action and an object for each of the cues.

When the initialization is complete, the system makes a transition to idle state. In
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Algorithm 3 Sharing Set Generation for (9,4,3)-Sharing Set
1: n = 9 . n=number of public cues
2: i = 1 . i=sharing set number
3: for j = 1→ n− 3 do
4: for k = 1→ n− 2 do
5: for l = 1→ n− 1 do
6: for m = 1→ n do
7: SharingSeti = (j, k, l,m)
8: i+ +

Algorithm 4 Generate PAO-stories
1: Input: n, random number r1 and r2, background images B1, . . . ,Bn, person

images P1, . . . ,Pn

2: for i = 1→ n do
3: ci ← (Bi, Pi)
4: ai ← ACT . Select action from database using r1
5: oi ← OBJ . Select object from database using r2
6: assi ← (ai, oi)
7: Return: {c1, . . . , cn}, {ass1, . . . , assn}

idle state the system responds to different user inputs. If the user selects the new
account button, the system creates a new account according to the user inputs, and
displays the associated cues. If a cue is not initialized, the private associations are
displayed and a rehearsal schedule for the cue is created. The rehearsal schedule
for the cues are updated according to the current date and time before the system
returns to idle state. The design uses the expanding rehearsal assumption we saw
in Section 3.3. The rehearsal schedule is given by R(ĉ, i) = 2iσ.

If the user selects one of the accounts, the cues and the account notes are displayed
in a view account screen. The public cues are used to retrieve the associations from
associative memory for each of the cues, and subsequently derive the password for
the selected account. Once pressed the LogedIn button, the rehearsal schedule for
the involved cues is updated. If the user selects the edit button, the application
change to editing state, and the user is able to delete accounts. If an account is
deleted, it is removed from the database and the system will not use the same
sharing set for other accounts.

If the user selects the Cues button, a list of all the cues is presented. Each of the
cues is presented with both the background and the person image, and information
on how many accounts that use the cue. If the user selects one of the cues, a cue
detail screen is displayed. The cue detail screen shows the two public images, next
rehearsal time, the accounts that use the cue and an option for cue resetting. If
one of the accounts is selected, the application makes a transition to the view
account screen. If the cue is reset, all accounts that use the cue is deleted and the
application returns to idle state.
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Information text boxes can interrupt the application at any time to inform the
user of a required rehearsal. If the application is not running, then the message
will be displayed as a typical notification. This ensures that the user is always
notified when a rehearsal is required.

4.4.2 Database Architecture

Figure 4.6: Database Architecture

Figure 4.6 presents the database architecture for the PassCue application. The
database consists of seven tables. The Accounts table contains information of each
account. For each account the account name, account notes and sharingSet_id,
a foreign key to the Sharing Sets table, are stored. The sharingSet_id is used
to retrieve the sharing set from the Sharing Sets table. The Sharing Sets table
includes a foreign key, cue_id, to each of the four cues and a boolean value which
indicates if the sharing set is available for use. Cue_id is used as primary key in
the Cues table and it is used to retrieve information for a specific cue.
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In the Cues table, the path to the background and person picture, a foreign key
the Rehearsal Schedules and a foreign key to the Associations table is stored. The
Rehearsal Schedules table stores information on number of prior rehearsals, i, the
rehearse time and a date string. The Associations table consist of a foreign key
to the Actions table and the Objects table. The Action/Object table stores name
and image path information.

4.5 Summary

This chapter presented the design of the PassCue password management system
based on Shared Cues. We were presented the PassCue functionality and how
PassCue can be used to derive a password. PassCue uses a (9,4,3)-sharing set
and the public cues are created using pictures supplied by the user. The ER
rehearsal schedule is used by PassCue to ensure that the user maintains the cue-
associations in memory. We saw that PassCue is designed with account notes in
order to cope with modern PCPs. PassCue is designed for the iOS platform and
has an associations size of 200. The chapter presented the full system design with
system flow and underlying database structure. The design specification forms
the basis for the implementation choices and specification in the next chapter. We
will in the next chapter see how the PassCue design can be implemented for the
iOS 7 platform and which implementation choices that must be made in order to
implement PassCue as given in the design specification.
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Chapter 5

Implementation

This chapter presents the PassCue implementation based on the design presented
in the previous chapter. PassCue is implemented for the iOS platform using the
Xcode IDE and Objective-C as implementation language. The first part of the
chapter covers the implementation choices made in order to cope with the design
requirements defined in previous chapter. The second part of the chapter presents
the implementation specification followed by the application structure. In the
fourth part, the navigation and interaction space of the application is presented.
The chapter is concluded with a section presenting the application and illustrating
how it can be used to log on to a system.

5.1 Implementation Choices

The PassCue design requirements defined in Table 4.1 is the basis for the iOS
implementation. In order to cope with the defined requirement, several implemen-
tation choices had to be made. It was necessary to explore the following:

1. How should the application data be stored?

2. How can the actions and objects be randomly assigned to the public cues?

3. How should the associations be managed and displayed?

4. In what way should the cues be displayed to the user?

5. How can the application notify the user when rehearsal is required?

6. What happens if the user forgets one of the cues?

45
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5.1.1 Data Storage

Data can be stored in numerous ways in iOS. The common practice of data man-
agement is using CoreData, SQLite or XML files [78]. CoreData is a powerful,
full-feature data modeling framework. CoreData provides infrastructure to sup-
port basic activities such as save, edit and restore, and a large set of advanced
activities. CoreData lets the developer define the application data in a graphical
way, and uses a built-in SQLite data library with no need for additional database
installation.

SQLite is a software library which implements an SQL database engine [79], and
it is the most deployed SQL engine in the world. SQLite is a lightweight and
powerful database engine which manipulates the database tables directly.

iOS provides a built in database based on XML files. Simple data structures such
as user preference and application settings can easily be saved in XML files in the
User Defaults database. The built in database is limited to simple data structures
and provides only basic functionality.

The CoreData is a framework with much more functionality then what is needed
for the PassCue application, and it can be time-consuming to configure. The
database architecture given in Figure 4.6 illustrates the data structures that need
to be saved in persistent memory. SQLite is a lightweight database engine, which
supports all the needed functionality for PassCue. SQLite was chosen as the main
data storage method because it is lightweight, has low setup time and provides all
functionality needed for PassCue. The built in Users Database with XML files is
used to store application settings, but it is not suited to be the main storage as it
lacks functionality.

5.1.2 Random Numbers in iOS

There are multiple ways of generating random numbers in iOS. Rand(3) includes
the following four functions; rand, rand_r, srand, sranddev. These functions re-
quire an initial seed. If seed is not specified, the number 1 is used as seed. If
the seed is known, it is possible to retrieve the generated number. The functions
defined in Rand(3) are considered to be bad random number generators [80] and
should not be used for cryptographic use.

Random(3) includes the following functions; initstate, random, setstate, srandom,
srandomdev. The functions in Random(3) creates random numbers of higher qual-
ity then Rand(3). The Random(3) functions are considered to be better random
number generators [81], but the generated random numbers are not of crypto-
graphic quality.

Arc4random() includes the following functions; arc4random, arc4random_buf,
arc4random_uniform. These functions generate random numbers with higher
quality than Rand(3) and Random(3). The original arc4random() function used
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the RC4 cipher [82], but it was replaced with the ChaCha20 cipher to increase the
quality.

All the functions can be used to generate random numbers in iOS, but in order to
be of cryptographic quality, Apple recommend to use the Randomization Services
Application Programming Interface (API). The developer reference states; “Ran-
domization Services is an API that generates cryptographically secure random
numbers” [83]. The function SecRandomCopyBytes in Randomization Services
generates an array of cryptographically secure random bytes by reading from the
/dev/random number generator.

The /dev/random number generator collects environmental noise from device drivers
and other sources into an entropy pool. Typical sources are disk and network ac-
tivity or clock device interrupts. As stated in the Linux Programmer’s Manual;
“When read, the /dev/random device will only return random bytes within the
estimated number of bits of noise in the entropy pool. /dev/random should be
suitable for uses that need very high quality randomness such as one-time pad or
key generation. When the entropy pool is empty, reads from /dev/random will
block until additional environmental noise is gathered” [84].

The Randomization Services API and the SecRandomCopyBytes function was used
as PRNG because the generated random numbers are considered to be of high
cryptographic quality. The random numbers determine the selection of action and
object for each of the public cues. If an attacker can retrieve the random numbers,
he can retrieve all cue-association pairs and decoding the password would be trivial.

We concluded in Section 2.3.5 that PRNGs are pseudo random and not truly ran-
dom. Random.org is a service that offers a TRNG. Truly random numbers are
accessible by using the Random.org API. Random.org uses atmospheric noise in
order to create truly random numbers. The specification in Table 4.1 states that
PassCue should be stand alone with no external connection, hence random.org
was not used as TRNG. The Randomization Services API and the SecRandom-
CopyBytes is recommended by Apple as a cryptographically safe PRNG, and is
sufficient for this design.

5.1.3 Associations

The random numbers, as presented in Section 5.1.2, are used to select an action
and an object which constitutes the association for each of the public cues. It is
important that the user easily understand the action and object in order to create
strong associations. To facilitate for easy understanding, the action and object is
illustrated with both image and text. The action and object elements must be
carefully selected in order to give meaning to the user. The actions and objects
should be commonly used words in order to be properly understood by the user.

As passwords are derived from the associations, the secrecy of the associations is
crucial for the secrecy of the passwords. It is assumed that a potential attacker has
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access to the users phone, hence have access to the PassCue database. In order to
preserve the secrecy of the passwords, no associations must be possible to retrieve
after initialization. The association database, illustrated in Figure 4.6, is initially
populated with random actions and objects picked from the actions and objects
database. After a cue has been initialized, the connection to the association and
the association itself is deleted and non-retrievable. A new association with a
random action and object is created if a cue is reset, and the association will only
be available for the initialization of the cue.

5.1.4 Cues Overview

It is important that the user has access to his cues in order to preserve the cue-
associations in memory. The PassCue implementation has a cues overview screen
which displays the public cues with their meta data. The cues overview shows all
the cues with their respective person and background image, and the number of
accounts that use the cue. If the user selects one of the cues, additional information
such as which accounts that use the cue, and next rehearsal time is displayed.

The purpose with the cue overview is to facilitate for the rehearsal of the cues
according to the rehearsal schedule. If the user is told to practice cue 3, the user
must be able to easily see which accounts that are using cue 3, and subsequent
log in to the account to practice cue 3. The application shows next rehearsal time
for each of the cues. Knowing the next rehearsal makes it possible for the user to
rehearse earlier if he unable to rehearse at the scheduled time.

5.1.5 Notifications

The rehearsal schedule is created in order to ensure that the cue-association pairs
are maintained in the associative memory of the user. PassCue must notify the user
according to the rehearsal schedule when a cue-association rehearse is required.
The PassCue application creates notifications according to the rehearsal schedule
and notifies the user with sound, banner and alert. This ensures that the user is
always informed of a rehearsal.

5.1.6 Cue Resetting

If a user does not follow the rehearsal schedule, he might forget the cue-association
pair. The user is able to reset a cue if a cue-association pair is forgotten. This
functionality is added because the number of possible accounts is significantly
affected if a cue is unusable. We learned in Section 4.2.2 that the (9,4,3)-sharing
set can generate 126 passwords when all the nine cues are used. With eight cues
the number is 70, 35 with seven cues and 15 with six cues. All accounts that use
the cue will be deleted if a cue is reset.
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5.2 Specification

The PassCue implementation specification is based on the implementation choices
from Section 5.1 and the design specification in Table 4.1. The implementation
specification for PassCue is given in Table 5.1.

Table 5.1: PassCue Implementation Specifications

System
Implemented for iOS 7 on iPhone 5
SQLite database as main data storage
The User Defaults database is used for application settings
A set of action and object with image must be included
No external communication
Usability
(9,4,3)-sharing set implemented using Algorithm 3
The user selects pictures from photo library using an image picker
The public cues are assigned associations using Algorithm 4
Text under each association to clarify picture
A screen with overview of all the cues
A screen with cue overview, accounts and restore function
Possible to see the next rehearsal time for each cue
Notifications are used to alert the user of a rehearse with sound, banner and message
All accounts that use the cue is deleted if the cue is reset
Account notes is a text field specific for each account
Security
Use the arch4random as PRNG
Associations are deleted from database after cue initialization
The included action and object set size is 200
The sharing set is unique for each account
The sharing set for a deleted account cannot be reused

5.3 Application Structure

The PassCue application was developed using the Model-View-Controller (MVC)
design pattern. The MVC is a high-level pattern, which classifies objects according
to the roles they play in the application. Applications developed using the MVC
design pattern tends to be more adaptable to changing requirements [85]. This is
because the objects in a MVC application are more reusable and the interface is
better defined.

The design pattern comprise of the following three modules; the model, the view
and the controller. The MVC pattern defines the roles of these modules and the
communication flow between them. Figure 5.1 describes the relationship between
the modules. The model communicates directly with the controller, while the
controller-view communication is done through the outlet-action protocol [85].
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• Model: The model contains the application data and the logic that manip-
ulates the data. The data is stored in model objects and the model objects
contains information and functions tied to a specific problem domain, mak-
ing them reusable. The model objects do not consider how the data they
represent is displayed and presented to the user. The presentation of the
data is done by the view, hence the model never communicates with the
view.
• View: The view is responsible for presenting and displaying the information

to the user. The view does not consider the storing of information, only how
the application data/model should be displayed. The view may also allow
the user to edit the application data.
• Controller: The controller acts as a communication barrier between the

model and the view. The controller ensures that the view has access to
the model objects it needs to display and that changes to view objects are
updated in the models.

Figure 5.1: MVC Design Pattern

Table 5.2 presents the application structure. The views and controllers are in the
same implementation, hence called view controllers, which is the standard way of
implementing a MVC application. The view controllers include the functionality
of both the view and the controller as presented in the previous list.
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Table 5.2: PassCue Application Structure

Name Functionality
Model
Account Object for account information
Action Object for action information
Association Object for association information
Cue Object for cue information
DBManager A global object for all communication with the database
Object Object for object information
RehearsalSchedule Object for rehearsal schedule information
SharingSet Object for sharing set information
View Controller
CueViewController Retrieving and displaying cue information
CuesViewController Retrieving and displaying information for all cues
ImagePickerViewController Responsible for obtaining cue images
InitAccountController Initializes and creates new accounts
InitPAOController Generates PAO-stories and displays associations if required
MainViewController Displaying all accounts and root view controller
PassCueAppDelegate Head of all view controllers
ViewAccountController Retrieves and displays account information

5.4 Navigation Space

Figure 5.2 illustrates the navigation space for the PassCue application, and which
interactions that trigger navigation. The mainVC can perform navigation to
cuesVC, initAccount or viewAccount, depending on the interaction performed.
The edit button in mainVC does not trigger navigation, but it puts mainVC
in edit mode, and the user can remove accounts. If the user selects one account
in mainVC, the application makes a transition to viewAccount. If the user selects
the cues button, it triggers navigation to the cuesVC. In the cuesVC screen the
user is able to select a cue in order to get more information in the cueVC. The +
button trigger navigation to initAccount where a new account is created, followed
by the PAO-stories in initPAO.

As shown in Figure 5.2 all the view controllers have a back button, which trig-
gers navigation to the previous screen, or a cancel button which navigates to the
mainVC. The initialization process, where the user supply public cue images, is
not included in the navigation space, but will be presented in Section 5.5.
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Figure 5.2: Navigation Space

5.5 PassCue

PassCue is designed and implemented based on the Shared Cues password man-
agement model. This section presents the application, implementation details and
how PassCue can be used when logging on to a system. Appendix C provides an
overview of the PassCue source files. The public pictures in the following example
figures is taken by the author and used with persons’ permission. The private
action and objects pictures are used with permission from morguefile.com.

The PassCue implementation reflects the implementation specification in Table
5.1. Figure 5.3 shows the application screens for the initialization process. The
initialization process is only required the first time the application is launched.
The user is told to select a background image and select a person image for the
nine required cues. The user is able to select pictures from the photo library or
downloaded images. When the user push the Select Background Image button, an
image picker screen is displayed and the user can select the appropriate picture.
The user can quit the application in order to obtain the images or take the images
with the camera on the phone.

The cue pictures are saved within the document directory in the application, and
the path is saved in the database. If the images where to be deleted from the
photo library, it will not affect the application. In this example the user selects a
picture of the trampoline in his garden and a picture of his grandmother as the
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Figure 5.3: Select Cue Images

first cue. Once pressed the Next-button, the user can select images for cue number
two. The user must continue the process until cue nine is initialized.

When the user has selected images for all nine cues the top left screen in Figure 5.4
is displayed. The user can add an account by pushing the + button. The user must
select an account name and write account notes if desired. As we saw in Section
2.1.1, many sites puts restrictions on the password selection in order to force the
user to select a strong password. In this case, for the Gmail account, Google
recommends using a mix of letters, numbers and symbols in the password [86].
The user inputs “23&.” in the account notes field, and will use this when deriving
the password. The account notes are displayed in plaintext and are assumed to
be accessible to an attacker. How this affects the security is detailed explained in
the security analysis in Section 6.2.

When the Next button is pushed, the first cue and the randomly selected associa-
tion is displayed. In the example in Figure 5.4 the user must imagine the following
setting; “My grandmother is surfing a banana on the trampoline”. Surfing and
banana is the private part of the cue and will never be displayed after the cue
initialization. Surfing and banana will be used to create the password. The public
picture of the user’s grandmother and his trampoline will later be used to trigger
the association of surfing and banana from the users associative memory. In cue
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Figure 5.4: Create New Account

two the user must reflect over the following story; “My mother is presenting a dog
on the toilet”. Cue three gives the following story; “My father is drawing a bunny
in the garden”. In cue four the user must imagine the following; “My sister is
inspecting a gift in the hallway”.

Once the user presses the Done button in part 4, a warning message alerts the
user that the associations are non-retrievable after this step. A rehearsal schedule
is created for cue 1, 2, 3 and 4 using the calculation from Section 4.4.1. This is
performed to ensure that the user does not forget the actions and objects associated
with the cues.

Figure 5.5 shows how PassCue can be used to log in to a system. In this example,
PassCue holds two accounts, Gmail and PayPal. If the user is to log in to the
Gmail account, he selects the Gmail account and the account cues and notes are
displayed. The user will use the cues in order to retrieve the associations from
associative memory. The user must ask himself; “What did my grandmother on
the trampoline?” and should remember that she was indeed “surfing a banana!”.
The next cue retrieves the association presenting and dog. Cue three reveals that
“My father was drawing a bunny in the garden”. The last cue was “My sister is
inspecting a gift in the hallway”.
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Figure 5.5: Log in to Gmail and PayPal

In this example the user always uses the account notes as the first part of the
password, and uses the three first letters from each action and object with capital
first letter for all the action derived letters. The password for Gmail will be
“23&.SurbanPredogDrabunInsgif”. The user must press the LogedIn button for the
rehearsal schedule to be updated. Once pressed LogedIn the application calculates
a new rehearsal time for the involved cues according to the rehearsal schedule. The
LogedIn button is not connected to the Gmail online interface or any other online
interface. The Logedin button is solely for use in the PassCue application in order
to manage the rehearsal schedules. Pressing the Logedin button does not provide
automatic login to the specified account. The user must derive the password using
the cues, and press LogedIn for the application to update the rehearsal schedule.
Cue five in Figure 5.5 gives the following setting; “My grandfather is kicking an
elephant in the bed”. Since Gmail and PayPal share the first three cues, parts
of the password is identical. By using the same derive method as for the Gmail
account, the password for PayPal is “2@!65SurbanPredogDrabunKicele”.

If the user selects the Cues button from the main screen, he is able to see informa-
tion about the cues. The first screen in Figure 5.6 shows the overview of the cues
with pictures, and number or accounts. The user is able to choose one of the cues
for more information. The cue information shows the next time for cue rehearsal,
which accounts the cue is used in, and an option to reset the cue. The user can
select one of the displayed accounts and the application will make a transition to
the log in screen for the account, as shown in Figure 5.5. This is illustrated in
Figure 5.5. In the event that the user forgets the action and object associated to
a cue, the user can reset the cue. If the cue is reset, all accounts that use the
particular cue is deleted, and a new association and rehearsal schedule is created
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Figure 5.6: Cue information

for the cue.

Figure 5.7: Rehearsal notification

The main objective with the rehearsal schedule is to ensure that the user does not
forget the action and object associated with each of the cues. This is done by
notifying the user to rehearse the cue-association according to specific intervals.
Figure 5.7 shows how PassCue notifies the user when rehearsal is required. The first
screen shows that the application icon reflects a notification, and the next screen
shows the notification in the notification center. If the user has the application
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open, or opens the application after a notification has been fired, the message is
displayed in the application. In this example, the user must practice the cue-
association for cue 1 in order to not forget the association.

The user rehearses the cue-association by logging in to one of the accounts that
use the cue. The cue overview, shown in Figure 5.6, can be used to help the user
see which account he must log in to for rehearse. In this example, both Gmail and
PayPal are using cue 1, so the user can choose which account to log in to. If the
user logs in to Gmail the rehearse schedule for not only cue 1, but cue 2, 3 and 4
is updated.

5.6 Summary

This chapter presented the PassCue implementation for the iOS platform. Pass-
Cue uses an SQLite database to store all application data, while the User Defaults
database is used to save application settings. We saw that the SecRandomCopy-
Bytes function in the Randomization Services API is used as PRNG and ensures
that the actions and objects are randomly selected. The associations are only
displayed when initializing the cue, and are not possible to retrieve after account
creation. We learned that the cue overview shows information for each cue, and
that it is possible to reset a cue if the user forgets the cue-association. PassCue is
developed using the popular MVC pattern, which makes it reusable and flexible.
The chapter presented the PassCue iOS application and how it is initialized and
used. We saw how the user can use personal pictures, create new accounts and
log in to existing accounts. We were presented to notifications and how it imple-
ments the rehearsal schedule and helps the user to maintain the cue-association in
associative memory. In the next chapter we will evaluate the PassCue application
in terms of usability and security using the concepts we discussed in chapter 2.
We will also evaluate how the PassCue application utilizes the CPU and memory
resources on an iPhone 5.
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Chapter 6

Evaluation

This chapter covers the evaluation of the PassCue implementation. The first part
of the chapter is an analysis of the usability of PassCue. The usability is evaluated
by calculating the additional time the user must invest in rehearsing the cues. The
second part of the chapter covers the security analysis of PassCue. In this part the
password entropy is calculated and the resistance against plaintext leak attacks,
online attacks and offline attacks is evaluated. The last part of the chapter presents
the implementation analysis including how the PassCue application utilizes CPU
and memory resources on an iPhone 5.

6.1 Usability Analysis

The most important part of the usability of PassCue is the additional time the
user must invest in order to maintain all the cue-association pairs. We learned
in Section 3.3 that PassCue is based on a usability assumption. The assumption
states that users who follow a specific rehearsal schedule will successfully main-
tain the corresponding memory. As presented in Section 4.2.3, PassCue uses the
Expanding Rehearsal Assumption as rehearsal schedule. A rehearsal schedule is
created for each cue-association pair and updated every time the cue is used for log
in. Given the ER rehearsal schedule from Definition 5, a cue-association pair must
be rehearsed at least eight times per year in order maintain the cue-association
pair in the user’s associative memory. In Section 4.2.2 we saw that sharing sets
are used to share cues between accounts to improve the usability and reduce the
number of rehearsals. PassCue uses a (9,4,3)-sharing set, where maximum three
cues can be shared between two accounts. This property significantly improves the
usability, and reduces the extra amount of time the user must invest in rehearsing
the cue-association pairs.

59
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Table 6.1: Sharing set for the first 10 accounts

Part 1 Part 2 Part 3 Part 4
Account Cue Cue Cue Cue

1 1 2 3 4
2 1 2 3 5
3 1 2 3 6
4 1 2 3 7
5 1 2 3 8
6 1 2 3 9
7 1 2 4 5
8 1 2 4 6
9 1 2 4 7
10 1 2 4 8

Table 6.1 shows the cue distribution for the first ten accounts in PassCue (9,4,3).
The full (9,4,3)-sharing set can be found in appendix A. The sharing set has been
incrementally designed in order to make it easy for the user to start using PassCue.
As given in Table 6.1, the first six accounts use cue 1, cue 2 and cue 3. After the
first account is created, the user only needs to remember one new cue each time
a new account is created. After creating the sixth account, the user knows all the
nine cue-association pairs. The next 126 − 6 = 120 accounts use cues which the
user already knows. This makes PassCue very usable and easy to extend as the
number of accounts increases.

In Section 2.1 we saw that a normal user has at least 25 different accounts. In
PassCue, creating a new account forces the user to rehearse some of the cues
used in other accounts. Creating passwords for 25 accounts in PassCue would
be sufficient yearly rehearsal for all the nine cues. It follows from the rehearsal
schedule and sharing set in Section 4.2.3 and Section 4.2.2, when creating 25
accounts in PassCue, the cues will be rehearsed multiple times. Table 6.2 shows
how many times each of the cue-association pairs are rehearsed when creating 25
accounts in PassCue. The number of extra rehearsals, additional time invested
in PassCue, for a normal user is close to zero. This proves that PassCue (9,4,3)
provides high usability.

PassCue (9,4,3) is implemented with a (9,4,3)-sharing set, but the sharing set can
be easily changed and other sharing sets can be used. We concluded in Section
4.2.2 that (9,4,3)-sharing set was chosen because it provided high usability and is
easy to initialize with user photos. The usability of PassCue with another sharing
set can be evaluated using Theorem 1. The usability result for PassCue (9,4,3)
is given in Table 6.3 together with the usability of PassCue (43,4,1) and PassCue
(60,5,1), as defined in Shared Cues Table 3.6. The usability results for the five
password management schemes, presented in Section 2.1.2, are also presented in
Table 6.3. The usability results show the number of extra rehearsals the user must
perform the first year in order to maintain all the cue-association pairs in memory.
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Table 6.2: Number of cue rehearsals performed when creating 25 accounts

Cue Times Rehearsed
1 25
2 21
3 10
4 10
5 7
6 7
7 7
8 7
9 6

An extra rehearsal is when the user must rehearse the password, e.g. log on to
a system, without having a purpose of logging on to the system. The log on is
primary for rehearsing the cue-association pair.

Table 6.3: Usability Results

Scheme Extra Rehearsals
PassCue (9,4,3) ≈ 0
PassCue (43,4,1) 10.89
PassCue (60,5,1) 19.89

Reuse Weak ≈ 0
Reuse Strong ≈ 0
Lifehacker ≈ 0

Strong Random and Independent 456.6
Randomly Generated -

The PassCue usability results in Table 6.3 show that PassCue (9,4,3) requires
approximately zero extra rehearsal the first year. This result corresponds to what
was shown in Table 6.2 and by evaluating the structure of the sharing set in Table
6.1 with the ER rehearsal schedule. PassCue provides high usability and should
be easy to start using. The results show that PassCue provides the same usability
as the reuse weak, reuse strong and lifehacker scheme.

For PassCue (43,4,1) a normal user would invest 12 extra rehearsals the first year
in order to maintain all the cue-association pairs in associative memory, given the
ER rehearsal schedule. PassCue (60,5,1) require 20 extra rehearsals the first year.
The normal user is defined in Section 3.3 and Table 3.4. The strong random and
independent requires 456.6 extra rehearsals the first year. This scheme provides
extremely high security, but requires the user to invest a huge amount of time for
rehearsal. The security results for these schemes are presented in Section 6.2.

The usability result in Table 6.3 for the lifehacker scheme and the strong random
and independent scheme assume 75 accounts, m = 75. The usability of randomly
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generated is not defined as it can not be measured in number of extra rehearsals by
Theorem 1. The randomly generated scheme require that a password management
tool is used to store all the passwords. The usability for the randomly generated
scheme is the additional time the individual user invests in using the management
tool.

6.2 Security Analysis

The main goal of PassCue is to provide a user-friendly way of creating and man-
aging secure passwords. As we discussed in Section 2.3, there are different threats
that must be taken into account in order to evaluate the security of PassCue. This
section evaluates the PassCue resistance against these threats.

6.2.1 Password Entropy

We learned in Section 2.3.4 that the password entropy H can be used as a measure
of password strength. A password with entropyH means that there are 2H possible
values of the password. We can calculate the entropy of a PassCue password using
Equation 2.1 for entropy defined in Section 2.3.4. The calculation assumes a
(9,4,3)-sharing set and an action and object set size of 200. It is assumed that the
attacker knows all the 200 actions and 200 objects in the association set.

H = log2 ((|Actions| × |Objects|)l) = log2 ((2002)4) = 61.15085 (6.1)

Using Equation 6.1, the Gmail password “23&.SurbanPredogDrabunInsgif” de-
rived in Section 5.5 has 61.15085 bits of entropy. The PayPal password
“2@!65SurbanPredogDrabunKicele” has 61.15085 bits of entropy, since the pass-
word is generated using the same association set size and number of cues.

Table 6.4: Password Entropy

Entropy (bits)
Scheme m r=0 r=1 r=2

PassCue (9,4,3) 126 61.15085 15.28771 0
PassCue (43,4,1) 90 61.15085 45.86313 30.57542
PassCue (60,5,1) 90 76.43856 61.15085 45.86313

Reuse Weak ∞ 14.28771 0 0
Reuse Strong ∞ 57.15084 0 0
Lifehacker ∞ 56.96445 0 0

Strong Random and Independent ∞ 57.15084 57.15084 57.15084
Randomly Generated ∞ 82.71880 82.71880 82.71880
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Table 6.4 shows the password entropy for PassCue (9,4,3), (43,4,1), (60,5,1) and
the five password schemes presented in 2.1.2. r is used to denote a plaintext leak
attack. The entropy of PassCue (9,4,3) when r = 0 is 61.15085. The entropy
of PassCue is dramatically lowered if one of the passwords is leaked in plaintext,
r = 1. PassCue (43,4,1) maintain acceptable security when one password is leaked
and PassCue (60,5,1) maintain high security for r = 1 and acceptable security
for r = 2. We discussed in Section 2.2 that there is a trade-off between usability
and security. The usability results from Table 6.3 show that (43,4,1) and (60,5,1)
require that the user invests additional time to rehearse the cue-association pairs
compared to (9,4,3).

In the reuse weak scheme, Algorithm 5 is used to create a password. Assuming that
the string “password” is selected randomly from a dictionary of 20000 words, the
entropy is H = log2 (20000) = 14.28771 bits. As we saw in Section 2.1,“password”
was one of the most popular passwords in the rockyou.com password breach in
2009.

The reuse weak provides a very low level of security even before one plaintext
password is leaked. The reuse strong scheme assumes that Algorithm 6 returns the
string “horsecakepaperdog”, composed of four randomly chosen dictionary words.
The password entropy when r = 0 is H = log2 (200004) = 57.15084 bits. The
reuse strong provides high entropy when r = 0, but as the password is reused
across multiple sites, the entropy is zero when a plaintext password leak occur.

The lifehacker scheme assumes the password derived in Section 2.1.2; “apletow-
ercupfa11”. The entropy is given as H = log2 (200003) + log2 (263) = 56.96445
bits, assuming that the derivation rule produces a three character string of lower
case letters. The lifehacker scheme provides high entropy for r = 0, but when
a plaintext password leak attack occur, the base password and derivation rule is
revealed and the security breaks down.

The Strong Random and Independent scheme assumes that the password is created
using Algorithm 7. The scheme creates a password string of four words selected
randomly from a dictionary of 20000 words, and a new password is created for
each account. The password entropy for r = 0 is the same as for the reuse strong,
but the strong random and independent scheme maintains the entropy even after
multiple passwords are leaked in plaintext.

The randomly generated scheme creates passwords similar to the password
“bcxtabf2owale89n” from Section 2.3.4 with entropy H = log2 3616 = 82.71880
bits. As the password is randomly generated for each account, the randomly
generated scheme ensures high entropy regardless of plaintext password leaks. How
the entropy can be compared to cracking time and cost is explained later in this
section.

As given in Equation 6.1, the entropy of the PassCue generated passwords are
depended on the association size and number of cues, l, used for each account.
PassCue uses a (9,4,3)-sharing set and association set size of 200. Figure 6.1
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Figure 6.1: The PassCue password entropy with l = 4

presents how the association set size affects the entropy when assuming l = 4.

The association size entropy in Figure 6.1 shows that the largest increase in entropy
is when the association set size is between 100 and 400. This is a result of the
entropy being calculated with log2, as shown in Equation 6.1. The results show
that entropy gained by increasing the association set size is not proportional with
the increase in set size. Increasing the set size with 100 means adding 100 new
actions and 100 new objects with pictures. There is a trade-off between entropy
gain and resources needed to extend the association set. Extending the association
set after 400 may not be defended with entropy gain.

As discussed in Section 4.2.6 the association set size is limited by the password
creation strategy of the user. If the user selects the two first letters from the action
and the two letters from the object in each of the associations, the association set
size is limited to 262 = 676. This is the maximum set size, but as the English
language lacks actions and objects which begins with “xs” and “zk”, a realistic
set size is much less then 676. The entropy calculations assumes that each of
the actions and objects in the association set is unique encoded and derived as
presented in Section 4.1. If 50 actions and objects in a set of 200 all starts with “sa”,
the entropy is reduced with H = 61.15085−log2 ((1502)4) = 61.15085−57.83055 =
3.3203 bits.

Figure 6.2 shows how l, the number of cues, affects the entropy assuming an
association size of 200. The l is part of the sharing set and must be changed
according to the rules for creating sharing sets. We learned in Section 3.5 and
Section 4.2.2 that the sharing set must be created using Algorithm 1 if l − γ 6= 1.
If l − γ = 1 it is sufficient to calculate the (nl ) subsets using Algorithm 3. The
entropy results in Figure 6.2 show that the password entropy increases with 15.3
bits for each additional cue.
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Figure 6.2: The PassCue password entropy with association size of 200

6.2.2 Password Strength Meters

Section 2.3.4 introduced password strength meters as another tool to measure
the password strength. Figure 6.3 shows the evaluation of the ‘Gmail’ password
“23&.SurbanPredogDrabunInsgif”, and ‘PayPal’ password
“2@!65SurbanPredogDrabunKicele”, using both the Google [87] and Microsoft [88]
PSM. The Google PSM ranks the Gmail password as strong, which is the highest
rating. Using only the first eight characters of the password, “surbanpr”, is suffi-
cient for the password to be ranked as strong. This shows that Google does not
check for symbols, numbers or capital letters when evaluating. A random eight-
character string of lower-case letters will be ranked as strong. The entropy of a
random eight character string of lower-case letters is H = log2 (268) = 37.60351
bits. We will see in Section 6.2.5 and Table 6.7 that a password with this entropy
can be cracked in maximum 8.7 minutes with modern cracking tools. This em-
phasizes that the Google password meter cannot guarantee security, and is only
meant as a reference. Entropy calculation is a more accurate measure.

As shown in Figure 6.3 the Microsoft PSM ranks both the Gmail and PayPal pass-
word as strong, which is the second highest ranking. As we saw in Section 2.3.4,
the password must be at least 14 characters, contains both lower-case and upper-
case letters, symbols and numbers, to receive the highest ranking. A password with
theoretical unlimited entropy will still be ranked as strong, and not ranked as best.
The password “kdjeuhfnsldmekrjfndjahtulemska” is a 30-character string with ran-
domly chosen lower-case letters. The entropy is H = log2 (2630) = 141.01319 bits,
but is still not ranked as best in the Microsoft PSM, even though cracking the
password would take over 4.24789× 1025 years.
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Figure 6.3: Google and Microsoft PSM

6.2.3 Maximum Length Restrictions

We learned in Section 2.1.1 that some online services include a restriction on
maximum password length in the password composition policy. From a security
point of view, there is no reason to put limitations on the password length. Some
sites have a maximum password length in order to support legacy systems, because
of ignorance, prevention of dos-attacks, reduce customer service issues or simply
because “we have always done it that way”.

If the online service enforces a PCP with maximum length, and the password
must contain numbers and symbols, it can reduce the password entropy. This is
because the numbers and symbols included in the password, to cope with the PCP,
is displayed in plaintext in the account notes in PassCue. This is illustrated in
Figure 5.5. We concluded in Section 5.5 that the user should always choose the
three first letters of each action and object unless there is a restriction on maximum
password length. Equation 6.2 must hold in order for the security calculations in
Section 6.2 to be valid.

|chars password|+ |chars PCP | ≤ max password length (6.2)

Equation 6.2 states that the number of characters in the derived PassCue password,
added with the numbers of characters used to satisfy a PCP, must be lower or equal
to the maximum password length. We know from Section 4.1 that the number
of characters in the derived PassCue password is dependent of the number of
characters from each action and object, and the number of cues l for each account.
This gives |chars password| = |chars each act/obj| × (2× l), as each cue contains
one action and one object, assuming that number of characters used is equal for
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actions and objects. Inserting this property in Equation 6.2 gives Equation 6.3
which defines the upper limit for the number of characters from each action and
object. The lower limit is |chars each act/obj| = 2, assuming that each of the
actions and objects in the set in uniquely encoded.

|chars each act/obj| = (|max password length| − |chars PCP |)
2× l (6.3)

The security calculations in Section 6.2 are invalid if only one character from each
action and object is used. The PassCue password entropy, assuming no plaintext
leaks, would be H = log2(268) = 37.60351 bits. This is not a recommended
password derive method and will not be further discussed.

Assuming that the online service has a PCP that requires a mix of letters, numbers
and symbols, and has a maximum password length of 20, one character will be
used for the number and one for the symbol. As the number and the symbol
will be displayed in plaintext in the account notes, presented in Section 5.5, only
18 characters are available for the rest of the password. If the user selects three
characters from each action and object, only the first three cue-association pairs
will fit inside the 18-character limit. This will result in an entropy reduction of
log2(2008)− log2(2006) = 61.15085− 45.86314 = 15.28771 bits. If the user selects
two characters from each action object, there will be no entropy reduction. As a
result, the user should use two letters from each action and object if the maximum
password length is < 26.

6.2.4 User Knowledge and Behavior

In Section 2.3.1 we discussed that user behavior can be a possible threat to the se-
curity of a system. The lack of knowledge can make the user vulnerable to shoulder
surfing, keyloggers and social engineering. Like other password-based authentica-
tion methods PassCue is vulnerable to shoulder surfing and social engineering. If
the user is logging on to one of his accounts in a public place using PassCue, the
attacker could watch over the user’s shoulder and see the password. The only way
to mitigate this threat is to educate the user of this problem, and to avoid logging
in to accounts in crowded or public places.

We learned in Section 2.3.1 that the attacker can utilize social engineering tech-
niques in order to deceive the user to reveal his password. PassCue is, as any
password based system, vulnerable to this threat. The only way to mitigate this
threat is to inform and educate the user to never reveal his password, and to verify
the identity of a website or a program before entering sensitive information.

PassCue is also vulnerable to keyloggers. A keylogger is similar to shoulder surfing,
but the attacker infects the users computer with a malware that is monitoring the
keyboard and input from the user. By using a keylogger, the attacker can easily
obtain passwords when the user logs on to different accounts. To protect against
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keyloggers and malware in general, it is necessary to regularly update the software,
use anti malware tools and to prevent software to run in root mode.

6.2.5 Attacks

We discussed in Section 2.3.3 that it is necessary to understand the threats in order
to defend against them. This section evaluates the PassCue system by analyzing
how resistant PassCue is against plaintext leak attacks, online attacks and offline
attacks.

Plaintext Leak Attack

Plaintext leak attack is an attack where the user password is leaked in plaintext and
can be directly used by the attacker. Plaintext leak attacks can occur as a result
of a phishing attack or a misconfiguration of the online server. All password-based
authentication methods, including PassCue, is vulnerable to plaintext leak attack.
In order to mitigate this threat, the user must be educated, and be suspicious to
emails regarding password request and strange links. As we discussed in Section
2.3.2, the user has no control of how the online service stores his password. The user
he must have trust in the online service he signs up for. The rockyou.com password
breach in 2009 led to the release of 32 million user passwords, and it revealed that
rockyou.com saved all the passwords in plaintext [17]. In order minimize the risk of
a plaintext attack the user must be sure that the online service manages password
properly.

Online Attack

Online attack is an attack method where the attacker has access to the authen-
tication interface of the online service and simply guesses the login details. We
discussed online attack in Section 2.3.3 and we saw that most online services have
a k-strike policy where the user is locked out after trying k wrong passwords. The
number of guesses the attacker can perform is limited to k×m, where m is the total
number of passwords, accounts, in PassCue. Modifying Theorem 2 in Section 3.4,
the probability that the attacker can successfully retrieve the password is given in
Theorem 3. Proof of Theorem 3 and Theorem 2 can be found in Appendix A in
[6].

Theorem 3 Let {c1, . . . , cm} be a (n, l, γ) sharing set of m public cues produced by
PassCue. If each action and object is chosen uniformly at random, the probability
that the attacker retrieves the password using online attack is;

Pr = km

(|Actions| × |Objects|)l−γr ,
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where r is the number of plaintext password leaks and k is the number of guesses
permitted.

As given in Theorem 3 the PassCue resistance against online attacks is highly
dependent on previous plaintext password leaks. That is because cues are shared
between accounts, as discussed in Section 4.2.2. PassCue uses a (9,4,3)-sharing
set. Assuming k = 3, r = 0 and m = 126 gives P(Attacker retrieves password) =

3×126
(200×200)4−3×0 = 1.47656× 10−16. The probability that the attacker is able to guess
the Gmail or PayPal password from Section 5.5, assuming no previous password
leaks r = 0, is 1.47656 × 10−16. For the other password management schemes,
P(Attacker retrieves password) is calculated using Equation 6.4, where H is the
password entropy calculated in Table 6.4, k = 3 and m = 126:

Pr = km

2H (6.4)

Table 6.5: Online Security Results

Scheme m r=0 r=1 r=2
PassCue (9,4,3) 126 1.47656× 10−16 0.00945 1
PassCue (43,4,1) 90 1.47656× 10−16 5.90625× 10−12 2.36250× 10−7

PassCue (60,5,1) 90 3.69140× 10−21 1.47656× 10−16 5.90625× 10−12

Reuse Weak 126 0.01890 1 1
Reuse Strong 126 2.36251× 10−15 1 1
Lifehacker 126 2.68833× 10−15 1 1

Strong Random and Independent 126 2.36251× 10−15 2.36251× 10−15 2.36251× 10−15

Random Generated 126 4.74954× 10−23 4.74954× 10−23 4.74954× 10−23

Table 6.5 presents the probability that an account is compromised as a result of
an online attack for various password management schemes. The online security
of PassCue (9,4,3), (43,4,1) and (60,5,1) is calculated using Theorem 3. PassCue
(9,4,3) provides high resistance against online attacks even if one password is leaked
in plaintext. The PassCue (9,4,3) online security breaks down if two plaintext
passwords are leaked. PassCue (43,4,1) and (60,5,1) provides high security even in
the case of multiple password leaks. As we saw in Table 6.3 the two sharing sets
require the user to invest additional time in order to maintain the cue-association
pairs in memory.

The probability that an account is compromised, assuming the reuse weak pass-
word scheme is used, is 1.89% for r = 0. Since the password is reused across all
account, compromise of one account gives the attacker access to all the accounts.
For the reuse strong scheme, it is very unlikely that the attacker can compromise
an account for r = 0, but the security breaks down with the first password leak.
The lifehacker scheme provides high online security for r = 0, but the attacker
would learn both the password base and the derivation rule if one password is
leaked. Both the strong random and independent scheme and random generated
scheme provide high online security regardless of password leaks.
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Offline Attack

We learned in Section 2.3.3 that the attacker can perform an offline attack if he
can access the hash of the user’s password. There are many examples of online
services that have been hacked and the cryptographic hash released [9, 10, 11]. If
the attacker has access to the password hash, he can guess the password, compute
the hash and compare it to the leaked password hash. Modern password cracking
tools can do millions of password guesses per second and can crack a weak password
in seconds.

We saw in Section 2.3.3 that Hashcat is state of the art cracking software that
is optimized for speed using the Graphical Processing Unit (GPU). The PassCue
resistance against offline attack will be measured by estimating the time and cost
of cracking the PassCue passwords using Hashcat. MD5 is considered the fastest
of the common hash algorithms. The estimates assume that MD5 is used as hash
function in order to estimate a worst case scenario of the security of PassCue.
The estimates are based on renting computing capacity on the Amazon Elastic
Compute Cloud (EC2), as presented in Section 2.3.4. The calculations assume that
Hashcat can run 2100 million MD5 guesses per second on EC2 [71, 72]. Theorem 4
defines how to calculate the time required to crack a PassCue password. Theorem
4 is defined using Theorem 2, and proof can be found in Appendix A in [6].

Theorem 4 Let {c1, . . . , cm} be a (n, l, γ) sharing set of m public cues produced
by PassCue. If each Action and Object is chosen uniformly at random and r is
the number of plaintext leaks, the estimated guaranteed password cracking time in
seconds is given by

Pcrack time = (|actions| × |objects|)l−γr
guesses/sec

Theorem 4 defines the guaranteed cracking time which is the time required to brute
force though the whole password space. In some cases, the cracking time will be
less then the guaranteed cracking time because the password is cracked before
the whole space is searched. Guaranteed cracking time assures that the password
will be cracked within the time. The guaranteed cracking time in seconds for a
PassCue password hashed with MD5 using Hashcat with 2100 million guesses per
second, assuming (9,4,3)-sharing set, association set of 200 and r = 0 is given as;

Pcrack time = (2002)4

2100× 106 = 1219047619

Renting the cg1.4xlarge GPU instance on EC2 costs $2.1 per hour. Given this
price, the estimated cracking cost in USD ($) for a PassCue password is given as;

Pcrack cost = Pcrack time ×
2.1

3600 (6.5)
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Equation 6.5 defines how to calculate the cracking cost when renting computing
power on Amazon EC2 assuming that the cracking time is known. The cracking
cost for a PassCue (9,4,3) password if r = 0 is;

Pcrack cost = 1219047619× 2.1
3600 = 711111

In order to crack the Gmail password or PayPal from Section 5.5, given no previous
password leaks r = 0, the attacker must invest $711, 111.1 and it would take
14109 days, over 38 years, on a single GPU on Amazon EC2. The full analysis
of the PassCue configurations is given in Table 6.6. PassCue (9,4,3) provides
significantly higher offline security compared to the reuse weak scheme when r = 0.
PassCue (9,4,3) provides almost twice the offline security compared to the reuse
strong, lifehacker and strong random and independent scheme for r = 0. After
one plaintext leak occur, the offline security for PassCue (9,4,3), reuse strong and
lifehacker breaks down. PassCue (43,4,1) maintains a certain level of protection
for r = 1 and PassCue (60,5,1) maintains very secure. The security of PassCue
(43,4,1) breaks down when two plaintext leaks occur, while PassCue (60,5,1) still
maintain a level of security. The strong random and independent scheme and the
randomly generated scheme provide high security regardless of password leaks.
Even if PassCue (43,4,1) and PassCue (60,5,1) does not provide as high security
as the strong random and independent scheme, they are much more usable. For
r = 0, 1 the security is also comparable.

Table 6.6: Offline Security Results

r=0 r=1 r=2
Scheme m Time (days) Cost ($) Time (days) Cost ($) Time (days) Cost ($)

PassCue (9,4,3) 126 14109 711111.1 0.00002(sec) ≈ 0 ≈ 0 ≈ 0
PassCue (43,4,1) 90 14109 711111.1 0.35273 18 ≈ 0 ≈ 0
PassCue (60,5,1) 90 5.64373× 108 2.84442× 1010 14109 711111.1 0.35273 18

Reuse Weak ∞ 0.0000095(sec) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Reuse Strong ∞ 881.82 44444.15 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Lifehacker ∞ 774.95 39057.6 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Strong Ran. & Ind. ∞ 881.82 44444.15 881.82 44444.15 881.82 44444.15
Random Generated ∞ 4.38638× 1010 2.21073× 1010 4.38638× 1010 2.21073× 1010 4.38638× 1010 2.21073× 1010

Table 6.7: Entropy and Offline Security

Entropy (bits) Time (years) Cost($)
40 0.000016 0.3
45 0.00053 0.7
50 0.01700 312.7
55 0.54403 10007.9
60 17.40900 320255.9
65 557.08801 1.02481× 107

70 17826.81652 3.27942× 108

75 570458.12892 1.04941× 1010

80 1.82546× 107 3.35812× 1011
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The security results given in Table 6.6 and Table 6.7 assume that the on-demand
pricing model is used for Amazon EC2. In a real scenario an attacker would
probably select another subscription in order to reduce the cost. Table 6.7 shows
the relation between password entropy and cracking cost and time, assuming MD5
as hash function and Hashcat as cracking tool. The security results in Table 6.6
and 6.7 assumes guaranteed cracking time. A sophisticated attacker with a large
budget could also rent multiple GPU’s on Amazon EC2 and do the cracking in
parallel, or buy optimized GPU cracking hardware [89].

PassCue (9,4,3), (43,4,1) and (60,5,1) have proven to provide acceptable security
with no required rehearsals or a reasonable number of required rehearsals. PassCue
(43,4,1) and (60,5,1) requires 43 and 60 public cues respectively. Each of the public
cues consists of a person picture and a background picture, which must be supplied
by the user. Gathering enough pictures for the public cues may for some users
require additional time.

6.3 Implementation Analysis

This section covers the analysis of the PassCue implementation in terms of memory
consumption and utilized CPU resources. The PassCue application has been anal-
ysed and tested on an iPhone 5 with iOS 7. The size of the PassCue application is
1300 KB, excluding the public cue pictures and the association set. The associa-
tion set includes 200 actions and 200 objects. The actions and objects are 20 KB.
The size of a picture taken with the main camera of an iPhone 5 is 3400 KB. The
total size of the PassCue Application is 1300 + (400 × 20) + (18 ∗ 3400) = 70500
KB = 70.5 MB. In idle, PassCue utilizes less than 1 % of the CPU and consumes
5.9 MB of memory. The following analysis shows how PassCue utilizes CPU and
memory on an iPhone 5 for all possible application states.

Figure 6.4 shows the CPU and memory resources allocated for the initialization
process. We learned in Section 5.5 and Figure 5.3 that the user must select 18
pictures from the photo library when the application launches for the first time.
Nine person pictures and nine background pictures. The first CPU peak is the
initialization of the application as presented in Section 5.5 and Figure 5.3. The
initialization include the PassCue database creation, sharing sets generation and
creation of the Actions and Objects table, presented in Figure 4.6. The initial-
ization is followed by nine CPU peaks with a CPU utilization between 72% and
96%. This is when the user selects the required pictures. The supplied pictures
are added to the document directory of the PassCue application, and the name
and path is inserted to the Cues table in the PassCue database. Associations are
randomly selected, added to the cues and inserted to the Associations table. Iden-
tical peaks can be found in the memory consumption. Nine memory consumption
peaks of between 9.6 MB to 12.3 MB. Carefully inspection of both the CPU and
memory analysis reveals two small CPU and memory peaks of 5% and 6.5 MB
respectively, before each of the nine large peaks. This is when the image picker
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Figure 6.4: CPU utilization and memory consumption for the initialization

is loaded and enables the user to select two pictures from the photo library, as
illustrated in Figure 5.3.

Figure 6.5 shows the CPU and memory allocation when the user creates a new
account, as illustrated in Figure 5.4. The first CPU peak of 20 % is when the
application is launched. A small CPU peak of 10% is when the user inputs account
name and notes, which is inserted in the Account table. Four 30-33% CPU peaks
follow after the first small peak. This is when the cues are displayed for the user,
as seen in Figure 5.4. This is also where the rehearsal schedule is managed, and
the notifications are scheduled according to the rehearsal schedules. The memory
consumption analysis shows that approximately 10 MB is allocated for each of
the cues that is displayed for the user. When the last cue is displayed, 45.4
MB of memory is consumed by PassCue. The memory is released when the user
pushes the Done button. When the user presses the Done button, the associations
connected to cues is deleted and completely removed, and the application makes
a transition to idle state.



74 CHAPTER 6. EVALUATION

Figure 6.5: CPU utilization and memory consumption when creating a new ac-
count

Figure 6.6: CPU utilization and memory consumption when logging on to a system
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Figure 6.6 shows the CPU and memory utilization when the user logs on to a
system. Figure 6.6 shows one minor and one major CPU peak when the user logs
in to an account. The first peak of 20% is the start up process when the application
is launched. The second peak of 96% is when the four account cues are retrieved
from the database and displayed to the user, as illustrated in Figure 5.5. This is
reflected in the memory consumption in the same figure. The memory analysis
shows one major memory peak of 40.7 MB when memory is allocated to the four
cues.

Figure 6.7: CPU utilization and memory consumption for the cue overview

Figure 6.7 shows the CPU and memory allocations when cue information is dis-
played. The first CPU peak of 20% is the start up process when the application
is launched. The second peak of 133% CPU resources is when all the cues are
displayed for the user. This is illustrated in Figure 5.6. The amount of CPU
utilization is quite high. This is because the application must retrieve 18 pictures
from the database and prepare them to be displayed in a specific pattern. The
third CPU peak of 28% is when one of the cues is selected and cue information is
displayed, as seen in Figure 5.6. The memory analysis shows that more memory is
allocated for the cue information screen, 14.3 MB, compared to when all cues are
displayed, 7.8 MB, and the application uses 133% of the CPU resources available.
It is to be noted that the iPhone 5 has two CPU cores.
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6.4 Summary

In this chapter we saw that PassCue (9,4,3) provides reasonable security while
requiring no extra rehearsals. Unlike reuse weak, reuse strong and lifehacker, Pass-
Cue (9,4,3) provides high resistance against online attacks even if one plaintext
password attack has occurred. The offline security of PassCue (9,4,3) is approx-
imately twice as high as reuse strong and lifehacker for r = 0, but the offline
security breaks down if one password is leaked in plaintext. PassCue (43,4,1) pro-
vides high online security, even if multiple password leaks occur, but the normal
user must invest 11 extra rehearsals the first year.

PassCue (43,4,1) offers high offline security for r = 0, and if r = 1 the attacker
must invest 8.5 hours to crack the password in an offline attack. PassCue (60,5,1)
provides high offline security for r = 1 and acceptable security if two password
plaintext leaks occur. PassCue (60,5,1) offers high resistance against online at-
tacks, regardless of password leaks, but the user must invest approximately 20
extra rehearsals the first year.

The strong random and independent scheme provides high online and offline secu-
rity regardless of plaintext password leak attacks, but it is not very usable. The
scheme requires approximately 460 extra rehearsals the first year. Even if Pass-
Cue (43,4,1) and (60,5,1) are not as secure as strong random and independent, they
are much more usable, and for r = 0 and r = 1 the security is also comparable.
The randomly generated scheme provides very high security regardless of plaintext
password leaks, but it requires additional tools and software. The tool must be
available for the user at all time and the user is dependent on the tool in order to
use any accounts.

We saw in the chapter that the PassCue application utilizes a low percentage of
the CPU and the memory of an iPhone 5. PassCue uses less then 1% of the CPU
and only 5.9 MB of memory in idle state.
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Conclusions

Managing passwords is a significant problem for most people in the modern world.
It is challenging to use passwords that are difficult for attackers to guess. In this
thesis, the Shared Cues model has been presented, and a password management
system based on Shared Cues has been designed and implemented. The password
management system is called PassCue and it uses cues in order to share secrets
across multiple accounts. The cues are used to derive a unique password for each
of the accounts. PassCue has been implemented as an iOS application, which can
be used to log on to a system. PassCue uses a (9,4,3)-sharing set, ER as rehearsal
schedule and account notes to cope with PCPs. PassCue has an association set size
of 200, and the public cues are created using pictures supplied by the user. The
PassCue application uses an SQLite database for local data storage. Notifications
are used to ensure that the user follows the rehearsal schedules. The SecRandom-
CopyBytes in the Randomization Services API provides cryptographically secure
random numbers which ensure that the associations are randomly selected. The
PassCue application support cue resetting and provides a detailed overview of each
cue. The PassCue application utilizes a low percentage of the CPU and memory
of an iPhone 5, and uses less then 1% of the CPU and only 5.9 MB of memory in
idle state.

PassCue (9,4,3) proved to provide higher online and offline security compared to
the popular used password management schemes reuse weak, reuse strong and
lifehacker. In an offline attack, the attacker must invest over $700, 000 and it
would take over 38 years to crack a PassCue (9,4,3) password on a single GPU on
Amazon EC2, given no previous plaintext leaks. The probability that an attacker
would retrieve the password in an online attack is 1.47656×10−16, assuming r = 0.
Unlike reuse weak, reuse strong and lifehacker. PassCue (9,4,3) provides a strong
level of online security when r = 1, but the offline security of PassCue (9,4,3)
breaks down when one password plaintext leak occur. PassCue (9,4,3) requires
no extra rehearsals in order to maintain the cue-associations in the associative
memory of the user.

PassCue (43,4,1) provides high online security even if multiple plaintext leak attack
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occurs. The offline security for PassCue (43,4,1) is equal to PassCue (9,4,3) for
r = 0, but it would take the attacker 8.5 hours to crack a PassCue (43,4,1) password
after one plaintext leak. PassCue (43,4,1) requires the user to rehearse the cue-
association pairs approximately once a month the first year in order to keep them
in associative memory.

PassCue (60,5,1) provides high online security and high security if the attacker
performs an offline attack when r = 1. If no plaintext leaks have occurred, the
attacker must invest $2.84442 × 1010 in order to search through all possibilities
in an offline attack. The offline security of PassCue (60,5,1) after one plaintext
attack is the same as PassCue (9,4,3) and (43,4,1) for r = 0. The offline security
of PassCue (60,5,1) for r = 2 is equal to PassCue (43,4,1) when r = 1. PassCue
(60,5,1) requires the user to perform approximately 20 extra rehearsals the first
year to maintain the passwords in associative memory. The offline security of
PassCue (43,4,1) and (60,5,1) is not as high as the strong random and independent
scheme, but it is much more usable. The strong random and independent scheme
requires approximately 460 extra rehearsals the first year. The PassCue parameters
including sharing set, association size, rehearsal schedule and public cues can be
customized to support different security and usability needs.

Future Work

It would be useful to test the PassCue application on different types of users in
order to improve the design and application experience. User feedback can provide
valuable insight in how the application is used and it could reveal unknown needs
or user difficulties. Identifying how users with different usability and security needs
experience the PassCue application could provide valuable information. It would
be interesting to explore how PassCue can be used with high usability for accounts
of lower importance, and at the same time high security for important accounts,
such as online banking.

User feedback can be a legitimate source to verify if the ER can be used to provide
a sufficient rehearsal schedule. It could be possible to add support for multiple
rehearsal schedules, and make it possible for the user to select and specify a re-
hearsal schedule according to personal needs. With ER, most of the the rehearsals
occur close to the cue initialization and the intervals increase with time. It would
be valuable to explore if it is possible to rehearse a certain number of cues initially,
and add new cues proportional to the increase in accounts.

PassCue forces to choose pictures from the photo library or from downloaded
pictures. It could be possible to embed a picture library in the PassCue application,
and evaluate if the association strength over time is different from using personal
pictures.

Differences in PCPs are solved with account notes in PassCue. Incorporating
numbers and symbol directly in the password model would be highly valuable. As
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the PCPs differ, adding symbols and numbers in a password must be optional.
The challenge is to find innovative ways to make the numbers and symbols create
strong associations. It might be useful to explore some of the techniques used in
graphical and geographical password management models, as presented in Section
2.1.3. Diceware and Pixelock introduced in the same section could also inspire
new password management models.

PassCue is implemented for iOS and primarily iPhone. Extending the application
to support iPad would increase the availability and it would require a redesign of
the UI positioning. Implementing PassCue for other platforms, such as Android,
Windows Phone, browser plug-in or as a desktop program would significantly
increase the usability and accessibility of the application. Implementing a cloud
infrastructure would make PassCue highly available, and it would make it possible
to add synchronization and backup functionality. Synchronization functionality
enables the PassCue cues to be shared seamlessly across all devices.
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Appendix B

Password Schemes

Algorithm 5 Reuse Weak [6]
1: Random Word: w ← D20000 . Select w randomly from a dictionary of

20000 words
2: for i = 0→ m do . m is the number of passwords
3: pi ← w
4: ci ← ′cue′

5: Return: (p1, c1), ..., (pm, cm)

Algorithm 6 Reuse Strong [6]
1: for i← 4 do
2: Random Word: wi ← D20000

. Select w randomly from a dictionary of 20000 words
3: for i = 0→ m do . m is the number of passwords
4: pi ← w1w2w3w4
5: ci ← ((′cue′, j)|j ∈ [4])
6: Return: (p1, c1), . . . , (pm, cm)

Algorithm 7 Strong Random and Independent [6]
1: for i = 0→ m do . m is the number of passwords
2: for j ← 4 do
3: Random Word: wi ← D20000 . Select w randomly from a dictionary

of 20000 words
4: pi ← wi1w

i
2w

i
3w

i
4

5: ci ← ((Ai, j)|j ∈ [4])
6: Return: (p1, c1), ..., (pm, cm)
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Algorithm 8 Lifehacker [6]
1: for i← 3 do
2: Random Word: wi ← D20000

. Select w randomly from a dictionary of 20000 words
3: Derivation Rule: d← DerivRule . DerivRules is a set of derivation rules

to map the name of a site Ai to a string d(Ai)
4: for i = 0→ m do . m is the number of passwords
5: pi ← w1w2w3d(Ai)
6: ci ← ((′cue′, j)|j ∈ [4]) ∪ (′Rule′)
7: Return: (p1, c1), . . . , (pm, cm)



Appendix C

Source Code Overview

Table C.1: Overview of the PassCue source files
Name Type Functionality
Account.h C Header Source Object for account information
Account.m Objective-C Source Object for account information
Action.h C Header Source Object for action information
Action.m Objective-C Source Object for action information
actions Folder Contains 10 action images
Association.h C Header Source Object for association information
Association.m Objective-C Source Object for association information
Cue.h C Header Source Object for cue information
Cue.m Objective-C Source Object for cue information
DBManager.h C Header Source A global object for all communication with the database
DBManager.m Objective-C Source A global object for all communication with the database
Default-568h@2x.png PNG Image The PassCue start up screen
icon@2x.png PNG Image The PassCue icon
Object.h C Header Source Object for object information
Object.m Objective-C Source Object for object information
objects Folder Contains 10 object images
PassCue.xcodeproj Xcode Project The PassCue Xcode project
PassCue-Info.plist Property List PassCue property list
PassCue.Prefix.pch C Header Source Precompiled header
RehearsalSchedule.h C Header Source Object for rehearsal schedule information
RehearsalSchedule.m Objective-C Source Object for rehearsal schedule information
SharingSet.h C Header Source Object for sharing set information
SharingSet.m Objective-C Source Object for sharing set information
CueViewController.h C Header Source Retrieving and displaying cue information
CueViewController.m Objective-C Source Retrieving and displaying cue information
CuesViewController.h C Header Source Retrieving and displaying information for all cues
CuesViewController.m Objective-C Source Retrieving and displaying information for all cues
ImagePickerViewController.h C Header Source Responsible for obtaining cue images
ImagePickerViewController.m Objective-C Source Responsible for obtaining cue images
InitAccountController.h C Header Source Initializes and creates new accounts
InitAccountController.m Objective-C Source Initializes and creates new accounts
InitPAOController.h C Header Source Generates PAO-stories and displays associations if required
InitPAOController.m Objective-C Source Generates PAO-stories and displays associations if required
main.m Objective-C Source Assigning the application control to the app delegate
MainViewController.h C Header Source Displaying all accounts and root view controller
MainViewController.m Objective-C Source Displaying all accounts and root view controller
PassCueAppDelegate.h C Header Source Head of all view controllers
PassCueAppDelegate.m Objective-C Source Head of all view controllers
ViewAccountController.h C Header Source Retrieves and displays account information
ViewAccountController.m Objective-C Source Retrieves and displays account information
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