
Mini-MAM

Trine Rein

Electronics System Design and Innovation

Supervisor: Andrew Perkis, IET

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology

Problem Description

The amount of digital content outside the broadcasting industry is rapidly increasing, and the
existing professional tools are often outside the scope of this new wave of content owners. To
manage an increasing amount of content, as well as metadata, content owners require access
to Media Asset Management (MAM) systems [I]. Most MAM systems are large and costly to
implement and maintain, and are speci�cally designed for the broadcasting industry.

The task of this project is to design, implement and test a Mini-MAM system which take
the most important functionalities of a complete MAM system in order to satisfy the require-
ments of small organisations, entities and individuals. The Mini-MAM system must be fully
functional, however, the complexity and price must be signi�cantly less than existing profes-
sional systems. The starting point will be the requirements outlined in the report Media Asset
Management, Prosjektrapport [II]. The prototype is to be evaluated with a subjective usability
test, and compared to a commercial content management system.

[I] Karl Paulsen. Moving Media Storage Technologies: Applications and Work�ows for
Video and Media Server Platforms. Focal Press, 2011.

[II] Andrew Perkis and Håvard Ferstad. Media asset management, prosjektrapport.
Technical report, NTNU, June 2013. Found 28.8.2313.

i

Preface

This thesis presents my work throughout my �nal semester at the Department of Electronic
and Telecommunication at the Norwegian University of Science and Technology (NTNU).
The purpose of this thesis was to develop a prototype of a mini-media asset management
system.

I would like to thank my supervisor Professor Andrew Perkis for his good help, and patience
throughout this semester. I would also like to thank the people at Expology for providing me
with their XMS system, which has served as a benchmark for my own system. I would also
like to thank Klaus-Peter Engelbrecht at TU Berlin for his advice regarding the design of the
Graphical User Interface. And �nally I would like to thank all those who participated in the
usability study, in addition to Kristian Rygh Jerndahl for good help and support.

Trondheim 09.06.2014

Trine Rein

iii

Abstract

As the amount of digital content outside the broadcasting industry increase, the need for
Media Asset Management systems among this new wave of content owners has increased.
An e�cient, user friendly and cheap MAM system is required to satisfy their demands, a
system we will denote as "Mini-MAM". A MAM system is the core component for a content
owner in organizing their content and associated metadata. Traditionally, MAM systems are
complex and expensive systems, where most features are unnecessary for the intended users
of a Mini-MAM. The goal of this thesis, is to design, implement, and test a proposed
Mini-MAM system, that �ts the demands of these new content owners.

The thesis will explain the basics of a MAM system, and explore the importance of metadata
in terms of content management. The thesis will also indentify the primary requirements of
the Mini-MAM system in order to meet the demands of small and non traditional content
owners. This thesis highlights the important decisions made during the development of the
system, as well as the obstacles that had to be overcome. The Mini-MAM is written using
Python, relying primarily on the Tkinter library to create the interface. The Mini-MAM also
relies on the SQLite database management system to store persistent data, and the �mpeg
media framework for transcoding.

The system has also been compared to a commercial exhibition management system in
subjective assessment of the two systems. The other system to be assessed was the Expoloy
XMS system, designed to manage the content of exhibition centres and museums. The
assessment had 14 subjects perform basic tasks on the two systems, before answering a
questionnaire where the subjects rate the user friendliness and usability of each system. The
results from the subjective assessment showed that the Mini-MAM was the more user friendly
system.The participants rated the systems on a scale from 1-5, where 1 is bad, and 5 is
excellent. The participants rated their general impression of the Mini-MAM's user friendliness
a score within the 95% con�dence interval of 3.60-4.25. In comparison, the participans
rating of the XMS System that fell inside the 95% con�dence interval of 1.64-2.51. 100% of
the users also reported that, as non-experts, they preferred the Mini-MAM system.

From the results of the subjective assessment, is clear that the Mini-MAM ful�ls its role as a
user friendly and intuitive system. Despite the XMS system being a far more extensive and
powerful system, the complexity of the system confused the untrained participants. The
Mini-MAM ful�ls the basic requirements outlined in the thesis, and is easy to for new users.
Despite being a prototype, the Mini-MAM shows promise, and can with further development,
become a commercially viable system.

v

Sammendrag

Siden mengden av digitalt innhold utenfor kringkastingsindustrien øker, har det dukket opp
et behov for nye struktureringsverkøy. For disse nye innholdsaktørene, er essensielt at dette
verkøyet er brukervennlig, e�ektivt, og billig. I et MAM system har man oversikt over både
innhold, og den tilknyttete metadataen, tradisjonelle MAM systemer er ofte store og
krevende systemer, som er uegnet for mindre brukere. Målet i denne masteroppgaven er å
designe, implementere og teste et mini-MAM system som utfyller behovene til disse nye
innholdsaktørene.

Rapporten gir en innføring i hva et MAM system er, og forklarer viktigheten av metadata for
god håndtering av mediainnhold. I rapporten identi�seres hovedoppgavene til et mini-MAM
system: legge inn innhold, organisere metadata, i tillegg til å organisere og spille av medie
innholdet. I designprosessen gjennomgåes de viktige avgjørelsene som er blitt tatt under
utviklingen av systemet, i tillegg til utfordinger man har måttet løse. Mini-MAM systemet er
skrevet i Python, og brukergrensesnittet baserer seg i hovedsak på Tkinter biblioteket.
Systemet bruker også en SQLite database til lagring av data, og �mpeg media rammeverket
til transkoding.

I en subjektive test, er Mini-MAM systemet blitt sammenlignet med XMS systemet til
Expology. XMS er kommersielt media-håndteringssystem, som fokuserer på å organisere
innhold på et opplevelsessenter, I testen deltok 14 deltakere, som gjennomførte enkle
oppgaver på de 2 systemene. Etterpå besvarte deltagerne et evalueringsskjema hvor de ratet
brukervennligheten, tidsbruken og menyoppsettet til de 2 systemene. Resultatene fra testen
viste at mini-MAMen var et mer brukervennlig og e�ektivt system. På en skala fra 1-5, der 1
er dårlig, og 5 svært bra, ga brukerne deres generelle inntrykk av mini-MAMens
brukkervennligheten en score på 3.60-4.25 innenfor et 95% kon�densintervall. Til
sammenligning, falt resultatet til XMS innenfor 1,64-2,51. Ut ifra perspektivet til en ny
bruker, svarte 100% av deltagerne at de ville foretrukket å bruke Mini-MAM systemet.

Ut ifra den subjektive vurdering, kommer det klart frem at Mini-MAM prototypen er et svært
brukervennlig og intuitivt system. Til tross for at XMS er et mer omfattende og kraftigere
system, virker det som om at de mer avanserte egenskapene førte til forvirring blant
testpersonene fra en ny bruker sitt synspunkt. Mini-MAMen tilfrettstiller de krav som er
fremlagt i denne oppgaven, samtidig som den er enkel å sette seg inn i for nye brukere. Til
tross for at den er en prototyp, viser Mini-MAMen at den har potensiale, og med mer
utvikling kan bli et kommersiell produkt.

vii

Contents

1 Introduction 1

2 Theory 3

2.1 Media Asset Management . 3
2.1.1 MAM - Introduction . 3
2.1.2 Mini-MAM . 4

2.2 User Interface design . 5
2.3 Metadata . 9

2.3.1 About Metadata . 9
2.3.2 EBUCore . 9
2.3.3 Material Exchange Format . 10

2.4 Usability . 10
2.4.1 Subjective Assessments . 10

3 Method 13

3.1 Designing the Mini-MAM . 13
3.1.1 Initial Design Process . 13

3.2 Development of the Mini-MAM . 17
3.2.1 Initial Goals . 17
3.2.2 Development Process . 17

3.3 Subjective Assessment . 19
3.3.1 Equipment . 20
3.3.2 Session . 20
3.3.3 Participants . 20
3.3.4 Evaluation . 21
3.3.5 Systems . 21

3.4 Statistical Analysis of Subjective Assessment 21

4 Implementation 23

4.1 Motivation and Design philosophy . 23
4.2 Tools . 23

4.2.1 The Tkinter library . 23
4.2.2 SQLite . 24
4.2.3 FFmpeg . 25

4.3 The Prototype . 25
4.3.1 The Ingest Menu . 25
4.3.2 Transcoding Standard . 26
4.3.3 The Search Menu . 26
4.3.4 The Play Menu . 27

ix

4.3.5 The Playlist Menu . 28
4.3.6 SQLHandler . 29

5 Results 31

5.1 Subjective Assesment . 31
5.2 Time Spent . 32
5.3 Participant Survey . 33

6 Discussion 37

6.1 Developing Mini-MAM Prototype . 37
6.2 Usability Test . 38
6.3 System overview . 39

7 Conclusion 41

7.1 Future Work . 42

A I

A.1 Subjective Assessment Results . I

B V

B.1 Handout . V
B.2 Test Protocol . VI

C XIII

C.1 Content of ZIP �le . XIII
C.2 Test Material Subjective Assessment . XIII

x

xii

List of Figures

2.1 De�nition of media asset. 3
2.2 System Schematic of the Mini-MAM. 5

3.1 Ingest Screen of �rst iteration. 14
3.2 Search Screen of �rst iteration . 14
3.3 Player Screen of �rst iteration . 15
3.4 Ingest Screen from 2nd design iteration. 15
3.5 Search Screen from 2nd design iteration. 16
3.6 Playlist Screen from 2nd design iteration. 16

4.1 Tkinter grid example. 24
4.2 Tkinter grid example using columnspan. 24
4.3 Tkinter grid example. 24
4.4 Tkinter grid example using columnspan. 24
4.5 Screencap of current Ingest Page. 25
4.6 Screencap of current Search Page. 27
4.7 Screencap of current Play Page. Image Copyright Trine Rein 28

5.1 Result from user questionnaire. 33
5.2 Result from user questionnaire. 33
5.3 Result from user questionnaire. 34
5.4 Result from user questionnaire. 34
5.5 Result from user questionnaire. 35
5.6 Result from user questionnaire. 35
5.7 Result from user questionnaire. 36

xiii

List of Tables

3.1 Evaluation scale for the Subjective Assesment. 21

5.1 The average score of the Mini-Prototype, across all tasks. 31
5.2 The average score of the XMS, across all tasks. 31
5.3 Notable results the rating of tasks performed with the Mini-MAM, represented

using 95% con�dence interval. 32
5.4 Notable results the rating of tasks performed with the XMS System, represented

using 95% con�dence interval. 32
5.5 Average time spent per system for the step-by-step task. 32

A.1 Mean score for each category - Mini-MAM. I
A.2 95% con�dence interval for each category - Mini-MAM I
A.3 Mean score for each category - XMS . II
A.4 95% con�dence interval for each category - XMS II
A.5 Observer survery . II
A.6 Observer survery . II
A.7 Observer survery . II
A.8 Observer survery . II
A.9 Observer survery . III
A.10 Observer survery . III
A.11 Observer survery . III

xv

Chapter 1

Introduction

A few decades ago, multimedia content was primarily distributed through the broadcasting
industry. With today's technology, an increasing amount of multimedia content is created
and consumed by individuals, as well as smaller entities [1]. With the increasing amount of
multimedia content, comes the need to organize and manage this content. Broadcasting
companies have been using Media Asset Management (MAM) systems to manage their
multimedia content for several years, and as such, most MAM systems are catered towards
entities with large amounts of content and resources. A typical MAM system will include the
entire work-�ow for a broadcasting entity, beginning with the ingest of the raw material, and
ending with a fully edited media asset that may be published to di�erent channels [2][3]. For
private actors, as well as smaller enterprises and entities, some of the tools and functionality
of a broadcast oriented MAM system may be unnecessary. These MAM systems are generally
large systems, that require manpower as well as resources to maintain. For a smaller entity,
the cost of both acquiring and maintaining these systems may be too cost intensive.

As a non-broadcaster, the need for advanced post production, and editing tools is greatly
reduced. Entities, such as museums, schools, or private individuals primarily require a MAM
system to catalogue and store their media content [4], as well as providing a streamlined
method for providing and editing metadata to their content [5][6]. For a non-broadcaster, a
simple system that allows for easy ingest, and content retrieval, is becoming a vital
requirement. In a world of con�icting standards [7][8][9], large repositories, a MAM-system
must be able to properly store, embed [10] and maintain metadata.

Our goal for this thesis, is to investigate the most important functionality and requirements
of such a Mini-MAM, and implement them in a prototype. Starting with the requirements
outlined in [11], this report aims to further re�ne the core functionality and requirements of a
Mini-MAM. To help limit the scope of the prototype, the prototype will be limited to a single
computer, instead focusing on the metadata related aspects of a MAM system. Once the
requirements are established, a prototype of a Mini-MAM will be designed, developed and
tested. As the proposed users of the system are private individuals, small entities and
enterprises, the user interface of the Mini-MAM should be as user friendly as possible [12].

To elaborate on the implementation of the prototype we will examine, and explain the
libraries [13][14][15][16], and tools [17][18][19][20] required to implement the system as well
the challenges we face during development [21]. The system will be a traditional graphical
user interface, focused on the interaction between keyboard,mouse and screen, despite new
interesting opportunities arising in the �eld of user interface development [22][23]. To test

1

the system, we will perform a subjective assessment [24], where the Mini-MAM is compared
to a commercial content management system.

2

Chapter 2

Theory

This chapter will introduce the basic theoretical elements required to understand the needs,
and methodology behind the Mini-MAM Prototype. It will also explain a few basic concepts
related to the handling of metadata.

2.1 Media Asset Management

2.1.1 MAM - Introduction

Media Asset Management has traditionally been associated with keeping track of, and
maintaining large media storage systems. In the past, this included keeping track of actual
physical tapes, cataloguing information about the tapes, and their physical location in a
storage system. Today, a MAM system will attempt to �ll a much larger role in the media
handling chain. Instead of simply being a tool used to store media assets, a modern MAM
system will contain the entire tool-chain, from ingest to extraction [2].

Generally, a MAM system, refered to simply as a MAM can bee seen as a subset of a Digital
Asset Management (DAM) system. Where the DAM deals with generic digital assets, the
MAM deals with media assets, usually referring to images, video, or audio assets [2][3].

Figure 2.1: De�nition of media asset.

As seen in �gure 2.1, the media assets contained in a MAM contain more than the actual
content, or 'essence'. In addition to the actual content data, we have the metadata, the
information about the content. In �gure 2.1, we see that the metadata acts as a wrapper, or
second layer of information. In a MAM system, this will typically be information that aids in
the process of tracking, editing or playing the media essence. The metadata should explain
what the media essence contains, keywords to help link media items together, as well as
technical information about the essence. The handling of metadata is rapidly becoming one
of the most important aspects of a MAM, as proper usage of metadata empowers the other
stages in a typical MAM toolchain.

3

A modern MAM system, should attempt to �ll a set of basic requirements, and may also
include other functionality depending on the context of the MAM [2].

Search: A MAM should be able to perform searches of the media content. It is vital to be able
to search through both structural and descriptive metadata, to be able to �nd the right
content, in the proper format.

Organize: The MAM should also be able to automatically organize, and link relationships
between di�erent media content. This is relevant for series of videos, or various forms
of media used in a presentation or program.

Transfer: A MAM should also be facilitate the transfer of media content to other locations when
necessary. This could be moving centralized content to local servers, or sharing media
content with other platforms according to a pre-de�ned standard.

Edit: Advanced MAM systems may incorporate full-�edged editing tools when these are
required. In the basic case, allowing users to segment or join media essences should be
available. Combining two short video segments into one, or extracting a short clip from
a longer video are examples of common tasks that should be supported.

What should be noted though, is that the main purpose of a MAM is to keep track of the
media content [3]. This means that as �les are moved, edited, and relationships edited, the
MAM has to update and maintain both structural and descriptive metadata.

One of the challenges associated with metadata management in a MAM, is how to store the
metadata. Two principle philosophies exist when dealing with metadata storage: embedding,
or a separate database [2]. Embedding the metadata ensures that the link between
descriptive metadata and the media essence persists through the tool chain, assuming all
tools are able to work with the embedded format. Embedding the metadata does however
lead to a few issues with archiving. If a proper version control system is implemented, storing
a new backup every time the metadata changes, could lead to storage bloat, and hinder the
system. The alternative is to use a separate database of metadata, where the system keeps
track of the connections between metadata and media essence, updating the database
whenever the essence is edited, or new metadata is to be added. As in many cases, the best
option, seems to be the middle ground [4], and support both. This means the MAM needs
the ability to strip internal metadata during content ingestion, and add it to its internal
storage. Once a �le is selected for exporting, the updated metadata can then be
re-embedded, before checkout.

2.1.2 Mini-MAM

For the purposes of this thesis, we want to focus on the most important aspects of a
Mini-MAM. From the speci�cations outlined in [11], we see that the ingest component of the
Mini-MAM is responsible, and the basis for most operations. Therefore it is natural to choose
the ability to ingest content as one of the focus points of the prototype. The second major
focus point in our prototype, is the ability to add, and edit metadata for the media content
in the Mini-MAM. Without metadata, the Mini-MAM is nothing more than a fancy folder
with an interface. By choosing to focus on content ingestion, as well as searching metadata,
we ful�l two of the basis requirements outlined by [2], namely Organize and Search.

4

In addition to metadata, we also want to focus on displaying the content. To help limit the
scope of the prototype, we also chose to limit the Mini-MAM to a single computer. This is
primarily to avoid having to deal with network code, as the primary functionality should
remain the same.

Figure 2.2: System Schematic of the Mini-MAM.

Figure 2.2 shows the proposed system schematic of the Mini-MAM. The schematic attempts
to display the relationship between the various tasks and elements contained in the
Mini-MAM prototype.

2.2 User Interface design

In the �eld of Human Computer Interaction (HCI), user interface design is an important
subset. The user interface is the users primary method of interacting with any computer
software [12]. In the interaction between a user and a computer, the user interface is what
the users sees, hears, pushes, presses and interacts with. It handles both the input, as well
the output of the process. Traditionally, the most common implementation of a user
interface, involves a mouse and keyboard as the method of input, and a screen to handle the
output. However, with today's advances in cellphone and tablet technology, touch screens
are become and more popular. With several companies working on Virtual Reality prototypes
[22][23], new types of user interfaces will have to be developed.

The goal when designing a user interface, is to provide the user with e�cient tools to input
information to the system. An ideal interface is one that is never truly noticed by the user, it
allows the user to interact with the system without having to focus on how the interaction
occurs. The user interaction should be as natural and intuitive as possible.

5

The general principles behind a good user interface can be summarized by a few select keywords
[12].

• Aesthetically Pleasing
By being Aesthetically Pleasing, a user interface takes advantage of graphical elements
to help display or convey information to the user. By visually di�erentiating items, a
user interface can create groups of items or elements that are similar, and visualize
relationships between UI elements.

• Clarity
Every aspect of the user interface should be clearly de�ned, and intuitive. It should be
obvious to the user what an action's result is, before the action is performed.

• Compatiblity
A user interface should be compatible in many areas. It should be compatible with
di�erent users, as users come in all varieties, the interface should cater to, and be
understood by all. The interface should also be compatible with the task it controls,
providing easy transition between supported tasks.

• Comprehensibility
A system needs to be easy to learn and understand. A user should be able to discern
the function of each element simply by seeing its location, description, or icon.

• Con�gurability
By allowing con�gurability, the user gets an enhanced sense of control over the system.
It also makes it easier for the user to understand the interface, as it encourages an
active role.

• Consistency
Design consistency is the �rst cardinal rule of user interface design [12]. It helps the
user familiarize him/herself with the system, as understanding one element, will help
the user understand other elements. As a primarily rule, if an element exists in more
than one screen, it should have the same position, and functionality across screens.
Elements that perform the same task, should look the same. As a rule of thumb, the
same action should always produce the same result, and similar actions should produce
similar results. It is also important to note that consistency can draw from other user
interfaces, and standards/guidelines. Using similar elements other popular interfaces
can drastically help reduce the time it takes for a new user to familiarize himself with
the system. On the other hand inconsistency can be a major hindrance to good user
interface design. An inconsistent interface will increase user error rates, and often lead
to users spending more time with each screen. It also makes it harder to teach new
users, and requires more detailed documentation.

• Control
Users should always feel in charge of each action. Elements that change without user
input, or limitations on the users action can be very frustrating. It should also be
noted, that limiting the user, using modes should be avoided, if an element is visible, it
should be usable.

• Directness

6

The user should always know what options and alternatives are available for an
element. A user should also be able to directly see the e�ects of any actions on an
object.

• E�ciency
A user should be able to quickly transition between tasks. This applies on many levels,
in terms of both direct input, as well as visual information. Wasting hand or eye
movements should be avoided when possible. Familiar hotkeys, and other e�ciency
tools should also be available if possible.

• Familiarity
Build on existing concepts and tools. This applies to language in the interface as well
as elements.

• Flexibility
A system must cater to di�erent types of users. A �exible system responds well to the
individual di�erences in the users. Flexibility does come with a cost, by having di�erent
methods to complete tasks, it can be di�cult for inexperienced users to understand the
system. By creating di�erent methods to complete the same tasks, users can also end
up only learning one method, and choosing to stick with it.

• Forgiveness
A system has to incorporate that humans are prone to errors. Checks, prompts and
queries to the user should be in place to prevent the user from making mistakes. The
system should also be able to provide constructive error messages when an error
occurs, allowing users to understand what went wrong. An important aspect of
learning a new system, is trial and error. A good interface will facilitate the user to
learn this way, instead of preventing it, or even worse, crashing.

• Predictability
The user should be able to predict how di�erent actions unfold. Closely related to
consistency and directness, predictability is important for the learning process of a new
user, and the e�ciency of experienced users.

• Recovery
The most important aspect of recovery, is that a user should never lose information
permanently. It should always be possible to revert, or abolish an action, and return to
previous point. A good interface will make sure that all interconnected data is stored
and secure, even in the case of a critical failure.

• Responsiveness
The system should aim to quickly and consistently respond to the user's actions. This
can come in the form of a visual, a textual, or an auditory response. The user should
never be left in the dark, if anything in going on the background, updating the user is
extremely important. In essence, any action should have some sort of reactonary
feedback.

• Simplicity
A good user interface is a simple intuitive interface. Primarily, we have �ve ways to
provide simplicty: Use Progressive disclosure - present information when it becomes
required. Provide Defaults. Minimize screen alignment points. Make common actions
simple. Provide uniformity and consistency.

7

• Transparency
The user should be able to focus on the task, without having to worry about how the
mechanics behind the interface function. The focus of the interface is to facilitate the
tasks, not to focus on the underlying mechanics.

As seen on this list, there are some con�icts between certain items. A good interface design
will balance the con�icting items to suit the needs of the desired interface. Another potential
con�ict is that of technical requirements versus the needs of the users. It is then important
to remember the goal of a user interface, to help the user interact with the program. This is
described as the second cardinal rule of graphical system developmenp: Human requirements
should always take precedence over technical requirements [12].

8

2.3 Metadata

2.3.1 About Metadata

Metadata, or the 'data about the data' is an essential tool for handling media content.
Without metadata, the only information about a �le is what the operating system stores,
name, date and other minor details. To provide the foundation for a proper MAM, additional
information is necessary. Metadata is generally divided into two main categories, structural,
and descriptive metadata [2].

Structural Metadata

Structural metadata primarily deals with what the media content is, it describes format,
duration, aspect ratio, bit rate, and other technical information. This information holds the
key to how the content is played out, and changes in the structural metadata will have an
enormous e�ect on how the content is played out. Typically, this information is embedded in
the media �le, and handled by the recording and playback devices [2].

Descriptive Metadata

Descriptive metadata describes the content of the media. This will typically be genre
descriptions, track names, episode number, names of characters or actors etc. Generally the
descriptive metadata is limited to terms describing the basic properties of the content.
Certain standards also allow for the adding time-stamped metadata, allowing the tagging of
events in the content. Time stamping allows for tagging of for instance goal scoring in sports
videos, or special events in movies, or even music [2][6].

Descriptive metadata is usually the aspect of metadata that is handled, or provided by a
user, or MAM. A common method is to categorize the metadata using the Extensible
Markup Language (XML) [5], where a standard, or schema is followed. Several such
standards excist, usually catering to di�erent types of media formats.

Writing Descriptive Metadata in XML

When actually writing the metadata, most standards operate in a similar manner. Under a
base element, XML elements are added, and given appropriate values and descriptions. What
separates two standards, is the di�erent types of elements that may be used, and the
di�erent parameters that are linked to each element. This makes it di�cult for a system to
support more than one standard for metadata, as conversion from one standard to the other,
require a complete mapping of elements from one schematic to elements of the other
schematic. Such a mapping may be problematic, as an element in one standard can be either
not be implemented, or be incorporated in other elements in a di�erent schematic. Di�erent
methods on how to do this have been presented [9], and work continues on how to
collaborate between excising metadata standards.

2.3.2 EBUCore

The EBUCore metadata set is designed, and maintained by the European Broadcasting
Union [8]. It is based on the generic DublinCore [7] , and is targeted towards audio and video
content. The metadata set is designed with simplicity in mind, allowing only generic

9

metadata elements. This simplicity makes the standard very �exible, allowing it to describe a
wide range of di�erent material. Having the most generic and elementary metadata
information available in a common format, allow entities to share media content and
metadata, despite using proprietary standards for more advanced metadata entries. EBUCore
o�ers basic functionality for the descriptive tagging of content, allowing simple keywords and
descriptions, but reserves more advanced structures for information regarding rights owners,
contributors, and technical information.

Apart from simple descriptions of media content, the MPEG-7 standards also de�ne methods
for entering a massive array of di�erent metadata [7]. The standard de�nes descriptors for
di�erent shapes, colour schemes, facial recognition, and motion tracking for multimedia
content. For audio content, the MPEG-7 allows the tracking of envelope, information about
frequency components, and a broad spectre of other parameters. The MPEG-7 standard
allows for the tracking, and storing of just about every aspect of a media �le, making it an
incredibly powerful standard.

2.3.3 Material Exchange Format

The Material Exchange Format (MXF) is a �le format designed to help with the transfer,
and maintenance of metadata in audio-visual work-�ows [10]. The �le format supports the
embedding of metadata, as well as multiple ways of storing audio-visual essence data. MXF
acts as a container format, storing media essences independent on the compression coding, it
also allows for the storing multiple essences in the essence container, allowing users to store
whole play lists in a single �le. MXF also supports streaming, making it a valuable tool for
server-client systems.

By allowing the embedding of metadata, the mxf format allows for easy transferring of
metadata between entities, as well as between steps in a production chain.

2.4 Usability

The term usability is described as "the capability to be used by humans easily and
e�ectively" [12]. Assessing the usability of a system is an important aspect of the design
process, and usability should continuously be assessed throughout the development.

The most important point to remember when testing usability, is that usability is a quality
that is very di�cult to quantify. Users with di�erent levels of experience will prefer di�erent
systems, and di�erent elements in similar systems. Although usability is notoriously hard to
quantize, the two primary attributes of a usable system interface, is e�ciency and �exibility.

2.4.1 Subjective Assessments

The best way to test the usability of a system, is trough subjective assessments. By carefully
selecting a set of observers, it is possible to get a fairly accurate assessment of how your
system will perform in a true environment. By selecting non-experts that are unfamiliar with
the development of the system [24], it is possible to assess the usability and user friendliness
of a system.

10

As it can be di�cult to get a large enough set of observers to get a statistically signi�cant
result, it can be necessary to perform statistical analysis on the results to verify them. The
required analysis is presented in Chapter 3.

11

12

Chapter 3

Method

The Method chapter explains the process of designing,implementing and testing the
Mini-Mam. In this chapter we will explain the decisions that were made during the design
phase, and show how the design of the prototype evolved throughout the process. To
elaborate on the development process, we look at obstacles, and challenges that were
overcome during the implementation of the prototype. In the �nal parts of the chapter, we
also examine the process behind the subjective assessment that is used to test the user
friendliness of the Mini-MAM, and XMS systems.

3.1 Designing the Mini-MAM

3.1.1 Initial Design Process

The �rst step in the design process, was to identify the basic needs of the Mini-MAM
system. Using the ideas from [11], as well as the core functionality of a Mini-MAM outlined
in the theory chapter, three major tasks were chosen as core functions for the Mini-MAM
prototype. The chosen tasks, 'Ingest', 'Search' and 'Play' were each envision to have their
own main screen on the Mini-MAM. Using these three tasks, some very simple mock-ups
were created, displaying the desired screens. Building upon the ideas from the theory
chapter, it was natural to chose Ingest, and Search as main tasks, the ability to add content
and metadata, and the ability to organize the metadata are two of the primary tasks of a
Miin-MAM. By also choosing to add a Player, we hope to make the Mini-MAM a more user
friendly system, that �t the basic needs of a larger target audience. By having a play screen,
it is easier for smaller users to see the e�ect of a Mini-MAM, as having to open a new
window to view a located media item can be cumbersome and frustrating.

13

Figure 3.1: Ingest Screen of �rst iteration.

Figure 3.2: Search Screen of �rst iteration

14

Figure 3.3: Player Screen of �rst iteration

As we see in �gure 3.1, the initial idea for the ingest page, was a simple screen to add
metadata parameters to the selected �le. The thought behind the mockup is that each
parameter is either a metadata �eld, or other information about the �le, such as location, �le
type and name. In the Search screen mock-up in �gure 3.3, we use the same structure. This
is because it made creating the mock-up easier, but also because how important it is to
maintain consistency in a Graphical User Interface (GUI) design . [12]. We also maintain
consistency when using the same playlist view on the mock-up of the Play screen in �gure
3.2.

Figure 3.4: Ingest Screen from 2nd design iteration.

15

The next design iteration focused on re�ning the ideas from the original mock-ups. By
expanding the generic 'Param - Value' pairs into the actual values that were deemed
important, the new mock-ups look more like a �nished interface. An important di�erence
between this version, and the previous version, is that the 'Play' page is now dedicated to
playlists, as well as the media player. It is also envisioned that both the search and ingest
menu display either thumbnails, or short previews of the content that is found, to help the
viewer determine if the correct media item has been added/found.

Figure 3.5: Search Screen from 2nd design iteration.

Figure 3.6: Playlist Screen from 2nd design iteration.

Figure 3.4, 3.5 and 3.6 display the main screens of the new mock-up, we see that the new
mock-ups focus more on the interaction with the interface. These mock-ups are originally

16

from a power point presentation (found in the included MASTERZIP.zip), where the
interaction with buttons, and pop-ups are displayed. The main features highlighted in this
presentation, is the ability to add an item to playlist through a dropdown menu, as well as
adding keywords through a similar dropdown menu. The presentation also features the use of
top level noti�cation boxes to display information to the user. It should also be noted that
when these mock-ups were made, the scaling of di�erent elements were not taken into
consideration. This is quite apparent in the 'Playlist' menu in �gure 3.6, where the media
player (icon in the center of the screen), is noticably smaller than it should be. When moving
on into development of the Mini-MAM, this mock-up serves as a basis for how the elements
should line up.

3.2 Development of the Mini-MAM

3.2.1 Initial Goals

When starting development of the Mini-MAM, the initial goal was to get the main selection
menu working. This turned out to be the �rst of many small challenges that had to be
overcome during the development. As the Tkinter library primary deals with placing single
elements on the screen, having di�erent elements taking up the same space was di�cult.
The solution was to use a python dictionary to store the three main pages, and use the
buttons to set the selected frame as top-level. Technically, the act of using a dictionary to
store three di�erent objects, and call them as required is not exactly a new innovation, or
even a di�cult task. However, as this was the �rst task in creating the GUI, it took some
time to understand the process of GUI creation in the context of using python code.

After properly setting up the ability to swap between the three main screens, the job of
adding the ability to enter text began. Text is entered into Entry widgets, and by linking a
Tkinter StringVariable to each entry widget, keeping track of the entered strings becomes
easy. To make it easier to control, as well as reset the entries, and text labels between use, it
was deemed necessary to collect the StringVariables in a dictionary. This makes it easy to
clear the StringVariables by iterating over the dictionary containing them.

3.2.2 Development Process

When working with Tkinter, there are many 'best practices' to learn. One of those, is to use
custom classes for larger sections of the GUI. Not only does this make it easier to structure
your code, it also makes it more readable and easy to understand. Learning these tips and
tricks took some time, and required some re-structuring of the code.

After having a decent framework for the GUI, work began on adding functionality. The �rst
task, was to create the functions that allow a user to add a new media �le. This meant
creating a pop-up window, for the user to browse �les on his/her computer, and returning
the path of the selected �le. From the �le path, the �les name and extension can be
extracted, and by matching the extension with a list of common formats, the �le's modality
is determined. From there, the Mini-MAM has to be able to remember information stored
between sessions. This could be solved in a number of ways, data could be recorded in a
simple text �le, a storage system using XML could be implemented, or the Mini-MAM could
connect to a local database. Due to the amount of functionality provided by a SQLite

17

database, this option was chosen, allowing the development to focus on the GUI instead of
writing custom read, write and search functionality.

To connect with the database, the Mini-MAM uses the sqlite3 python library[19]. This
library makes it easy to enter and retrieve information from the database, by using python
variables. By using the library correctly, we also get input encapsulation, preventing any
issues with SQL-injections. Once the ability to reliably store the information about each
media item is available, the need to properly store the actual media item has to be
addressed. Initially, the functionality to add �les simply consisted of copying the media �le to
a subfolder of the Mini-MAM. As one of the goals of the Mini-MAM is to transcode video
and other media items, work began on investigating possibilities on how to do this using
python. Initially, a few python media library were investigated, but due to their lack of
support for certain formats, the choice was made to attempt to integrate �mpeg.

Integrating �mpeg turned out to be a quite challenging task. As the �mpeg software runs
from the command window, running a command is not that di�cult, but the Mini-MAM
should also be able to read and interpret the output from the �mpeg instance to give the
Mini-MAM feedback. This turned out to be a bit tricky, as it required �nding, and including
some rather obscure python libraries that were initially designed for Linux. Once the
winpexpect library was imported, it was also discovered that the winpexpect library does not
work with Unicode characters, and only use ASCII, causing the Mini-MAM to crash whenever
a �le uses non-ASCII characters (such as Æ, Ø, and Å). It took some time to identify the
issue, but once it was discovered that the string formatting was the issue, it was solved by
temporarily renaming the imported �le.

Once the ability to properly ingest a �le was supported, work began on the search page. The
search page follows the same layout as the ingest page, using entry widgets and
StringVariables. To complete the search page functionality, the Mini-MAM has to
communicate with the database. This is accomplished by using the sqlite3 library, and the
search functionality present in SQLite. As the searches in the database are returned as an
touple of strings contained in an array, it was desirable to arrange the returned data in a
more structured manner. This lead to the decision of adding custom classes for data sets.
The idea was already implemented in the project report, so the same class was used for the
Mini-MAM.

To complete the search page, the results have to be displayed to the user. For this task, the
Tkinter dropdown menu was chosen. This widget creates a dropdown menu displaying the
names of the media items found during the search. When selecting a menu item, the search
page updates all the internal StringVariables, using the data contained in the metadata
object with the name displayed on the menu. Internally, each item in the dropdown menu is
linked to a metadata object, and the text displayed is the name stored in the metadata
object. With the ability to �nd, and edit information about the media items, the next step is
to add the ability to store the changes made. Using SQLite commands to update information
in the database, the save function is relatively straightforward. All the data in the current
metadata object is updated in the database, using the �leid to update the correct entry in
the database.

Once the ingest and search menus were functional, work began on the ability to add and edit
playlists, as well as play media items. This turned out to be a quite time consuming task, as

18

the Tkinter Treeview widget can be a bit cumbersome. The Treeview widget relies on a
tree-like structure of nodes, where nodes are identi�ed by a unique "iid" string. As the the
'iid' is the only way to di�erentiate between di�erent nodes, some naming convention was
required to link a tree node to either a playlist, or a media item. After some attempts at a
naming convention, the eventual solution became using the unique ID of each media item, as
well as each playlist, with a leading 'i' or 'p' to indicate if the item is a playlist or media item.
However, this would cause errors when an item was added to more than one playlist at a
time. To also prevent issues from a single media item being in the same playlist more than
once, nodes indicating media items were given iids that include the item id, playlist id, as well
as the media items position in the playlist. In terms of the actual playlists, the Mini-MAM
implements a Playlist class. This class contains all the basic information about the playlist,
as well as two dictionaries that contain the subplaylists and media items in the playlist.

To manage the playlists between sessions, new functions to create, update, and read playlists
from the database also have to be created. Most of these functions are quite basic, but
require some use of recursion to fetch all subplaylists from a playlist. During use, the
Mini-MAM store the current top level playlists in a dictionary in the root Tkinter element.
This leads to an interesting dilemma, where a playlist exists in the internal dictionary, the
database, and the Treeview widget, and all three instances have to be kept up to date
whenever a playlist changes. To keep this from becoming an issue, the updating of the
Treeview widget is done by simply rebuilding the node structure from the internal dictionary
whenever a change is made. This may not be the ideal solution, but was an easy way to
make the playlist meny functional.

The next issue, was to create a media player inside the Mini-MAM. From the get-go, the
goal was to integrate the VLC media player [17], although it was not a given that this was
feasible. The main issue with integrating the media player, was to control where the video
was to be displayed. The VLC python bindings [13], provide all the tools required to control
a VLC player instance using python, so having the Mini-MAM launch an instance of VLC
would not be an issue. The goal of actually integrating the player was a bit more
challenging, as the examples provided by VLC do not use the Tkinter libraries. The solution
to the issue, was to �nd the "console window handle" (HWND)[21] of the widget where you
want the video displayed. This took quite a lot of trial and error, as well as looking through
countless examples and online forums. Once the video was integrated, focus began on
creating the buttons and menus required to control the video, fortunately this process was
made easy by the examples provided by the VLC python bindings. Using the examples, the
media player quickly took shape, and the functionality to play, pause, stop was quickyl
added. Adding the progress bar, that displays your current location in the media item was a
bit trickier, and required the use of the Tkinter timing functions.

3.3 Subjective Assessment

To determine the usability of a program, the program has to be tested. The goal of a
subjective assessment, is to get unbiased feedback from a varied population of test subjects.
The subjects are asked to rate the quality of the system-under-test, after having experienced
di�erent aspects of the system. The group of subjects should ideally be large amount of
individuals, with di�erent backgrounds and computer knowledge, and who are considered
non-experts in the study of media asset management. Generally, a subject assessment is a

19

good indicator of the usability of a system, the test itself can be di�cult to properly set up.
It is therefore recommended to follow a set of guidelines and rules on how to perform a
proper subjective assessment [24]. Despite these guidelines primarily involving testing the
quality of video content, the general ideas can be used for the usability test of the two
management systems.

3.3.1 Equipment

The tests were performed on laptop, with both systems pre-installed. The proper tools and
libraries required for the Mini-MAM prototype were installed, and a the software was set up
with a sample video already added to the system. This was done to minimize the time spent
during the test, as the transcoding of video material can be time-consuming. The laptop was
also running a virtual Ubuntu server, using VirtualBox. This Ubuntu server hosted a copy of
the XMS system, allowing the user to access it through the browser on the main computer.
The test material used during the test was provided by the KOMOPP project [11].

3.3.2 Session

The evaluations were performed at the Sense-IT lab (A362). The participants were seated in
front of the laptop, with a supervisor sitting next to them. During the tests, the room was
empty, apart from the participant and the supervisor. To prevent bias, users were randomly
selected to start with either the Mini-MAM, or the XMS system.

Each session consisted of the participant completing two series of tasks for each of the two
systems. The �rst series of tasks is designated as a "Free" task, where they are asked to
perform a set of tasks without any guidance on how to complete the tasks. The Free tasks
are time-limited, and the user is asked to move on, once 5 minutes have passed. The second
series of tasks, are a repeat of the initial tasks, this time with step by step guide on how to
complete the tasks.

3.3.3 Participants

The participants of the subjective assessment consisted of 14 individuals. Having 6 females,
and 8 males, we get a ratio of 57.14% males, and 42.86% females. The participants were all
between 23 and 27 year old, and had no prior experience with either of the two systems.
Most subjects were students at NTNU, and may have above average familiarity with
computers. However, none of the participants were familiar with the subject of Media Asset
Management, and the participants should therefore be considered non-experts. As the goal
of the assessment was to test the usability of the two systems, the participants were given a
step-by-step guide on how to complete the tasks. This was primarily done to limit the impact
of each participants general familiarity with computers, and place the focus of the test on
the systems, instead of the participants.

During the session, the time each participant spent on the 'step by step' part of the
assessment was timed using a smartphone.

Before the actual assessments were performed, a trial assessment was performed. During this
trial, it was noted that the trial subject simply followed the step-by-step guide blindly,
without re�ecting on the usability of the two systems. It was therefore decided to include a

20

time-limited 'free' task, where the users were asked to perform basic operations without any
guidance. Once the time ran out, the users moved on to the step-by-step guide. The
assessments were completed within 25-40 minutes, and upon completion the participants
were rewarded by selecting a chocolate bar from a small selection.

3.3.4 Evaluation

The evaluation of the subjective assessments were handled using a google form, this allowed
for quickly and e�ectively collecting the data in a spreadsheet for analysis. The form consists
of 4 pages, the �rst page collects basic information about the participant, as well as some
information about their general familiarity with computers and media. The 2nd and 3rd page
contain the answer forms, where the participant rate the user friendliness, menu layout, and
time consumption of each task. The 4th page asks the participants what system they
preferred to use, and what system they believe they spent the most time with.

Score Chart
1 2 3 4 5

Bad Poor Fair Good Excellent

Table 3.1: Evaluation scale for the Subjective Assesment.

Participants rate each task on a scale from 1-5, as shown in table 3.1

3.3.5 Systems

The evaluation attempts to assess the usability and user friendliness of the Expology XMS
exhibit management system, and the Mini-MAM Prototype. The XMS system is developed
by Expology, a Norwegian company based in Oslo, and is primarily designed to manage the
content and display screens of an exhibition center. Despite the di�erences between the main
focus of the two systems, it is interesting to see the di�erences between a commercial
system, and the Mini-MAM Prototype.

The tasks the participants completed were relatively similar on the two systems. The primary
task was to add a simple media �le, and provide some contextual metadata. The second task
involve linking a set of media items together, in a playlist or presentation.

3.4 Statistical Analysis of Subjective Assessment

Presenting the results from the user survey require a certain amount of statistical analysis.
As the amount of samples we have are far below the requirements for a 'true' mean score, we
can estimate the true mean value using a 95% con�dence interval [24]. We can then say
with a probablity of 95%, that the absolute value of experimental mean error is smaller than
the width of the 95% con�dence interval.

First, we need to calculate the mean score µ̄j, for each category.

µ̄j =
1

N

N∑
i=1

uij (3.4.1)

21

Where uijk is the mean score of action i, to category j.

[µ̄j − σj, µ̄j + σj] (3.4.2)

uijk is then used to calculate the 95% con�dence interval, where:

σj = 1.96
Sj√
N

(3.4.3)

And the standard deviation is given by:

Sj =

√√√√ N∑
i=1

(µ̄j − µij)2

(N − 1)
(3.4.4)

22

Chapter 4

Implementation

This chapter aims to explain the tools and libraries required for the implementation of the
Mini-MAM prototype, as well as showcase the �nal version of the system. The chapter will
explain each of the tools and main libraries used by the Mini-MAM prototype, explaining how
they function, and why they are required. The �nal sections of the chapter display the
�nalized main screens of the Mini-MAM, and explain the important functionality of the
system.

4.1 Motivation and Design philosophy

When designing the Mini-MAM, the main focus has been to create a simple and user friendly
system, that performs the basic operations required to keep track of a media collection. To
make the system as user friendly as possible, a Graphical User Interface has been developed,
using the python [14] programming language. However, it should be noted that the current
version of the system is considered to be a prototype, demonstrating that it is possible to
implement the operations required for a Mini-MAM in a simple manner.

When designing the interface, it was important to focus on the primary tasks of the
Mini-MAM, adding content, �nding content, and displaying content. Using this focus, the
three main screens of the Mini-MAM are the Ingest Page, the Search Page, as well as the
Play Page. To help the users visualise their content, it was deemed necessary to add a
Playlist Page in addition to the three other primary pages

4.2 Tools

4.2.1 The Tkinter library

To build a GUI, Python have many di�erent libraries and packages. Tkinter[15] is the
de-facto standad library, and is therefore a well documented library with many examples and
tutorials available on the internet. The availability of tutorials and examples was an
important factor in determining what library to use, and due to their abundance Tkinter was
chosen for this project.

23

Figure 4.1: Tkinter grid example.
Figure 4.2: Tkinter grid example using
columnspan.

Tkinter relies on so called 'widgets' to create a new graphical interface. Widgets refer to all
types of graphical objects: buttons, empty frames, labels with text or images and a wide
array of other specialized objects. To display the widgets on the screen, and to determine
their locations in relation to each other, Tkinter uses a geometry manager. This manager can
be called in several ways, but for this project, we use the grid manager. The grid manager
gives each widget a position on grid, de�ned by its row, and column value as shown in �gure
4.1. The manager also has options to allow widgets to take up more than one row or column,
as well de�ning how the size of each column or row should scale, as seen in �gure 4.2

To create a Tkinter window, you �rst create a Tkinter root widget. This root widget serves
as a top level window, that you place other widgets in. In this way, the root widget shares a
lot with the Frame widget. A Frame widget acts as a container for other widgets, and opens
a wide array of options, especially in terms of placement. Another basic widget is the Label
widget, this widget is the primary method for displaying information to the user. The primary
use the Label is to display text, or images, but when left empty, the Label can be used as a
simple colour display tool.

Figure 4.3: Tkinter grid example.
Figure 4.4: Tkinter grid example using
columnspan.

The examples in �gure 4.3 show how the relationship between Frames and other widgets can
be used to create more advanced graphics. We see that the main element is initially divided
into 4 Labels, each represented by a di�erent color. The �gure 4.4 shows what happens,
when one of the Labels is replaced with a Frame that contain 4 other Labels.

4.2.2 SQLite

SQLite is a database management system, managed by a set of c based libraries [20]. As the
name indicates, SQLite implements most of the SQL standard. However, in contrary to most
other database management systems, SQL is integrated into the client application. This
means that there is no SQLite process running in the background, as all calls are handled by
the client application through di�erent programming libraries. In our case, this is the sqlite3
python library[19].

24

For the Mini-MAM protoype, SQLite provides persistent storage between sessions, and
provides a great framework to make sure the underlying database �le is kept up to date and
error free. The library operates by having a custom class, called a cursor connect to the
database. The cursor can then execute SQL commands on the database, and store any
potential results in internal variables. To access these variables, the call fetchone() or
fetchall() returns either one of the entries returned by the SQL query, or all. These results
can then be iterated over to select each column in the entry.

4.2.3 FFmpeg

The FFmpeg media framework [18] is a set of free software tools that allow a user to
"decode, encode, transcode, mux, demux, stream, �lter, and play pretty much anything that
humans and machines have created.". Using a simple command line interface, the �mpeg
software makes it easy to transcode any new materials added to the Mini-MAM.

4.3 The Prototype

4.3.1 The Ingest Menu

The ingest menu is designed to allow the user to easily select, upload and add metadata to a
new �le. Upon pressing the "Select File" Button, the user can browse their computer for a
media �le. Once a �le is selected, the Mini-MAM will store the �le's path, and extract the
�le type, and �le name from the full path. This information is stored, until the user presses
the save button. Before saving the �le, the user also has the option to add metadata.The
user can either import EBUCore compliant XML �les matching the method described in my
previous project report, or manually enter a short description, as well as add keywords. If
there are any playlists currently in the system, the user can mark them, so that the media �le
is added to the marked playlists once it has been succesfully added to the Mini-MAM.

Figure 4.5: Screencap of current Ingest Page.

25

Once the user clicks the save button, a media entry is created in the database, and the �le's
name, modality and metadata is added to the database entry. This call returns with the
entry ID of the new entry, giving each �le a unique identi�er. This ID is used as the �le's
name once it is copied to the internal storage of the Mini-MAM. Currently, this internal
storage is simply a named folder, and a more e�cient method should be considered. If the
selected �le is video �les, the Mini-MAM will use �mpeg to transcode the video to the
current default format. If the �le is in any other format, the system will copy the original �le
to the internal storage folder.

Internally, all the functionality is supported by a structure of Tkinter StringVariables. These
variables automatically update the text displayed to the user, using a set of automated
callback functions.

4.3.2 Transcoding Standard

The ingest function will attempt to transcode any video material that is added to the
Mini-MAM. Using �mpeg, the imported video �le is transcoded according to the parameters
outlined below:

Resolution: 1280x720

Framerate: 50 p

Codec: h.264

Container: mp4

Audio: 320kbps AAC Stereo

In terms of ingest content, the currently supports .mp4, .avi and .mpeg video. For images,
the system supports .png, .jpg, .jpeg and .bmp. For audio, the system supports .wav and
.mp3. These formats are the ones recognized by the system as either Video, Audio or Images,
if other formats are desired, they can be added to the Import�le.py getFormat() function.

4.3.3 The Search Menu

The Search Menu builds on the same technical principles as the Ingest Menu, allowing users
to search for media items that have already been added to the database. The search string is
sent to the database, and all matching entries are built into a metadata-object, that
encapsulates all the data into a easily handled manner. These objects are put into a list, that
can be browsed by clicking the 'Browse Results' button. Upon selecting an option from the
list, the information in the metadata object is loaded to the search page, allowing the user to
edit the metadata of the selected media item, as well as add the item to any playlists. Once
the user presses the save button, all changes are saved to the database.

26

Figure 4.6: Screencap of current Search Page.

In addition to the search and browse functions, the Search Menu allows a user to export the
material from the Mini-MAM to a location on their computer. Currently, the export
functionality is rather simple, but additional options may be added later, such as the ability to
transcode material, and export metadata. The search menu also allows the user to add the
currently selected media item to be added to any playlist highlighted in the Playlist Menu.

The basics behind the search menu are very similar to the Ingest Menu, a set of
StringVariables control the text entries that display information to the user.

4.3.4 The Play Menu

The Play Menu allows the user to display the selected media item, using the VLC media
player. To fully integrate the VLC media player, the Mini-MAM uses the VLC Python
Bindings [13]. The VLC Python Bindings is a complete cover of the liblv API, generated
from the original C sources. Using the VLC Bindings, the player can play both single items,
as well as sets of items in a playlist. Technically, the VLC python bindings are used to spawn
an instance of the VLC media player that runs in the background. By linking buttons in the
interface to these commands, we are able to control the player, and extract information
about the current media item in the player. For instance, the player progress bar, relies on
continuously polling the VLC instance, and updating the Tkinter slider widget. The player
currently supports playing both single media items, as well as full playlists. In the case of
playlists, subplaylists will be ignored, and only content from the primary list is played.

27

Figure 4.7: Screencap of current Play Page. Image Copyright Trine Rein

4.3.5 The Playlist Menu

During the development of the Mini-MAM, it became apparent that having constant access
to the playlist menu was required. Therefore, the Playlist Menu was moved out of the
swappable frames list, and given its own location on screen. The Playlist Menu consists of a
Tkinter Treeview widget, that allows users to browse a tree-like structure of nodes. The
nodes in Treeview widgets are built from a python dictionary containing the current top level
playlists. These playlists in turn contain other playlists, as well as metadata objects for each
media �le in the playlist. This leads to an interesting issue, as all playlists essentially exist in
three di�erent locations, in the database, as treeview nodes, and in the internal list of
playlists. This leads to the issue of having to update all three instances every time a change
is made in any playlist. To help combat synch issues, the Treeview nodes are updated from
the main list of playlists when a change is made, this is not an ideal solution, but saved a lot
of time when writing the functions. This does however have the downside of having all
currently expanded playlists being closed when a change is made. To help structure the
media items in a playlist, icons have been made to distinguish between di�erent media types.
Currently, icons exist for audio, video, image type media items. To help users edit playlists,
the ability to move an item up, or down in the currently selected playlist is available, by using
the side buttons.

The Playlist Menu allows the user to easily create and manage playlists. Buttons associated
with the playlist page allows the user to create both root, and sub playlists, while the adding
of content happens from either the Search, or Ingest menu. The delete button is also
context dependant, and will delete the currently selected items, or playlist, depending on the
users selection. If the user wants to delete a playlist, the system will properly delete the list,
as well as any items or sub-playlists in the playlist. If the user deletes an item, the item is
simply removed from the playlist, and retained in the database.

28

4.3.6 SQLHandler

The SQLHandler.py is a set of functions that allows the GUI to communicate with the
database, providing functions to insert new media items,playlists or subplaylists into the
database. The SQLHandler.py �le also contain the de�nition for the metadata and playlist
classes.

Metadata and Playlist classes

The Metadata and Playlist classes are designed as a method to incapsulate information, and
make it easier to transfer data between functions. Whenever data is requested from the
database, the database functions usually return information in the form of one of these
classes. The Metadata class, contains the media items unique ID, the type, stored as the �le
extention, as well as the name, path, description and keywords associated with the media
item. The Playlist class contains a few identi�ers for the playlist, the unique ID of the list, its
name, and in the case of sub-playlists, the ID of the parent list. In addition to these
identi�ers, the Playlist class contains two dictionaries, one containing Playlists, and the other
containing Metadata entries. The playlists dictionary contains the playlists current
sub-playlists, and uses the sub-playlists list id as the key for each entry. The items dictionary
contain Metadata items, and uses the �les track number as the key.

SQLite Functions

These functions primarily deal with the creation and updating of entries in the SQLite
database. Using the sqlite3 [16] package, values in python variables can be written to
database entries. The most interesting functions are the init function of the SQLDatabase
class, the Search function, and the getPlaylists function.

The SQLDatabase init function checks to see if the a database exists in the '/data' folder,
and if it cannot �nd a database, it creates a new one. Essentially, this means that the
database will be re-created if it is deleted, but will remain untouched if it exists. The
database consists of two main tables, the metadata, and tPlaylist tables. The metadata table
contain all the information regarding each media item in the database, using the unique ID
as the primary key. The playlist table however, simply hold the playlist ID, the playlists name,
and a �ag that says whether the playlist is a subplaylist or not. To manage items in playlists,
we have two other tables, the tPlaylistItemMap, and the tPlaylistPlaylistMap. These Map
tables provide the link between a playlist, and the items and sublists it contains. A map entry
contain a unique Mapping ID, as well as the ID of the playlist and the ID item/subplaylist.
For the tPlaylistItemMap also holds the track number of each Item, allowing an item to be
mapped to the same playlist several times. The same principle is used in the
tPlaylistPlaylistMap, each entry has a unique ID, as well as the ID of the root playlist, and
the subplaylist.

The Search function is currently a rather large and contrived function, that will check the
metadata table, and look through each column for the search term. If the search term is
found, each entry is returned in its entirety, and a new Metadata object is created to hold
the information and added to the list of found items. If the search term is found in both
keywords, description, or �le name, duplicate Metadata objects will be created. To prevent
these duplicates from being sent back to the Mini-MAM, we do a culling of the list of
Metadata objects before the list is returned.

29

As the Mini-MAM is reliant on having an internal list of all current playlists, we need a way
to fetch the playlists from the database when the Mini-MAM is launched. The getPlaylists
function performs this role, and does so by initially fetching all playlists that are not marked
as sublists. It then uses the recursive function getSubPlaylists to �nd all subplaylists under
the top playlists. The get SubPlaylist function calls itself, to �nd any playlists contained in
the subplaylists, recursively �nding all playlists. Both getPlaylists and getSubPlaylists call the
getPlaylistItems function to �nd items within the playlists they �nd.

30

Chapter 5

Results

In this chapter, we display the most important and interesting results from the subjective
assessment of the Mini-MAM and XMS systems. Answers from the questionnaire rating the
two systems are reported in tables, sorted for each system. Finally we present the results
from the general questions regarding computer usage among our participants. The full data
from the subjective assessment, can be found in Appendix A.1

5.1 Subjective Assesment

During the subjective assessment of the two systems, the participants are asked to rate the
tasks that they perform on a scale from 1-5, where 1 is bad, and 5 is excellent, as seen in
table 3.1. As there were only fourteen participants, some statistical analysis was required
before presenting the results. This is why the results are generally reported in the form of a
95% con�dence interval.

Mini-Mam
User Friendliness Time Consumption Menu Layout

µ̄jkr 3.9592 4.0510 3.7653
Sjkr 0.4998 0.3317 0.3422
σjrk 0.3702 0.2458 0.2535
95% Conf 3.5890-4.3294 3.8052-4.2968 3.5118-4.0188

Table 5.1: The average score of the Mini-Prototype, across all tasks.

Initially, table 5.1 show that the average scores of the Mini-MAM system are quite good.
The average score for all categories are all well above the average value of 2.5, and is on
close to 4. From table 3.1 we see that a score of 4 represents 'Good'.

XMS
User Friendliness Time Consumption Menu Layout

µ̄jkr 2.4184 2.3571 2.9592
Sjkr 0.2622 0.3956 0.2137
σjrk 0.1943 0.2930 0.1583
95% Conf 2.2241-2.6126 2.0641-2.6502 2.8009-3.1175

Table 5.2: The average score of the XMS, across all tasks.

31

In table 5.2, we see that the average score of the XMS system is somewhere between 2 and
3, representing 'Poor' and 'Fair' scores. The XMS system has a noticably higher score in the
Menu Layout category, compared to User Friendliness and Time Consumption.

Notable Results - Mini-MAM
Category User Friendliness Time Consumption Menu Layout
General Impression 3.6060-4.2511 2.7905-3.9238 3.1632-4.4082
Search 2.4189-3.5811 2.8220-4.035 2.6892-3.8822
Playlists 4.1596-4.6976 3.8480-4.5806 3.6373-4.5056
Player 4.1593-4.8407 4.1593-4.8407 3.6638-4.7648
Upload 3.1632-4.4082 3.5490-4.5938 3.1543-4.2743

Table 5.3: Notable results the rating of tasks performed with the Mini-MAM, represented
using 95% con�dence interval.

In table 5.3, we see the 95% con�dence intervals of the participants' rating of di�erent tasks
performed with the Mini-MAM. We see that the Search task is rated quite poorly compared
to both the general impression, as well as the average score in table 5.1. It's interesting to
note that the average score of the Mini-MAM is quite similar to the General Impression, for
both user friendliness as well as layout, while the time consumption di�ers slightly. We also
see that the playlist and play related tasks score quite well compared to the average, as well
as general impression.

Notable Results - XMS
Category User Friendliness Time Consumption Menu Layout
General Impression 1.6373-2.5056 1.3338-2.0947 2.0060-3.2798
Search 2.0834-3.3452 2.2352-3.3362 2.5101-3.6328
Template 1.6456-2.6401 1.5406-2.4594 2.1178-3.3108
Presentations 2.2819-3.1467 2.3182-3.2533 2.6267-3.8019

Table 5.4: Notable results the rating of tasks performed with the XMS System, represented
using 95% con�dence interval.

Table 5.4 shows that the trend where the XMS scores higher in the Menu Layout category
continues.

5.2 Time Spent

Average Time Spent
XMS Mini-MAM
05m23s 09m45s

Table 5.5: Average time spent per system for the step-by-step task.

32

5.3 Participant Survey

Figure 5.1: Result from user questionnaire.

Figure 5.2: Result from user questionnaire.

33

Figure 5.3: Result from user questionnaire.

Figure 5.4: Result from user questionnaire.

34

Figure 5.5: Result from user questionnaire.

Figure 5.6: Result from user questionnaire.

35

Figure 5.7: Result from user questionnaire.

36

Chapter 6

Discussion

In this chapter, the results of the subjective assessment, and the development of the current
Mini-MAM prototype will be discussed. During the discussion, we want to highlight key
results and features, and consider their potential implications.

6.1 Developing Mini-MAM Prototype

In this report, the focus has primarily been on the design and development of the Mini-MAM,
as well as the usability test of the XMS system and Mini-MAM. The development process
has been an interesting experience, with many di�erent types challenges and rewards.

From design, through development, the Mini-MAM has been envisioned as a simple and user
friendly system, that performs the basic tasks required to manage a set of media content.
During the development, care has been taken to make sure that the primary processes of
ingesting content, and editing existing material remain as easy as possible. The current
system appears to allow users to perform the tasks outlined in previous chapters.

Despite appearing to be able to ful�l its role, the Mini-MAM does have some �aws. The
current ingest menu can be considered a bit in�exible, as the system currently only allows for
transcoding of video content. The ability to transcode, and store images and audio in a high
quality format may not seem very important, as the quality of the media resource will not
improve through transcoding. The importance of having a high quality base sample does
however become necessary if more options are added to the export functionality of the
Mini-MAM. By guaranteeing a default format, we can prevent issues when exporting the
material, as well as allow for easier organization, and potentially embedding of metadata.

In general there are a lot of features that have been thought of, but not implemented due to
time constraints. These are thoroughly explored in the Future Works chapter. It should
however be noted, that we are developing a Mini Media Asset System, with only the most
basic functionality. Too many features can increase the complexity of the system, and move
focus away from the goal of having a very user friendly system. Adding more features to the
system, would also increase the potential cost of the system, once again diverging from our
primary focus of a cheap and simple MAM.

Currently, the Mini-MAM prototype su�er from a few issues, the primary one is the
unintuitive method for browsing search results. Having to click on a slightly hidden "Browse
Results:" button is far away from what is excepted in a modern GUI. However, a quick �x is

37

not really possible, as there doesn't seem to be a way to open up a dropdown menu without
having to press the actual drop down menu button. Ideally, the entire method of presenting
search results should be re-done, and use a the Treeview widget, to display more information
that just the name of the media item.

Despite the issues and shortcomings of the Mini-MAM, the current prototype has required a
lot of work. Creating a GUI from the bottom up has been a slow process, with a lot of
bumps in the road. The learning process has been quite intense, as the concepts behind the
GUI libraries are somewhat di�erent compared to other basic programming concepts. It has
also been quite challenging to integrate other software tools, such as �mpeg and vlc into the
prototype. Although the actual integration may not be technically challenging, it is often
hard to �nd proper documentation when you run into problems, as these are open source
tools without a global technical support.

6.2 Usability Test

To screen the participants of the usability test, they were initially asked a few questions to
examine their habits with computers and multimedia. From �gure 5.1, we see that our group
of subjects are very familiar with computers, all subjects reportedly spend more than 3 hours
on their computer daily. From the initial survey, we also get some interesting results in terms
of the media habits of our participants. From �gure 5.2, we see that streaming services are
very popular with our users. Music streaming services in particular are very popular, 100% of
users report that they either use a music streaming service (spotify or wimp). During
development of the Mini-MAM, it was natural to look to commonly used services for
inspiration. The developed Playlist Menu is inspired by the layout and functionality of the
Spotify playlists. As the subjects are familiar with Spotify, and similar systems, it possible
that the elements inspired by such systems are better received than they might have been
otherwise.

Looking at the results from the usability test in table 5.1, we see that the Mini-MAM
performed fairly well. When compared to the results of the XMS system in table 5.2, the
results are even more impressive. It should also be noted, that the results of the usability test
should not be directly compared, due to the di�erent properties of the two systems.

Despite the overall good scores from table 5.3, we also see that the search functionality of
the Mini-MAM is noticably lower than the average score. This presumably because of how
the browsing of the search results happen. In addition to the numerical data from the
usability test, test participants did provide some feedback, and this was one of the issues
mentioned. We also see that the playlist menu scores higher than the average score,
indicating that the current layout of the playlist menu is a success.

In table 5.2, we see that the XMS system scores signi�cantly lower than the Mini-MAM.
Figures 5.5, 5.6 and 5.7 also show that the participants of the usability test preferred the
Mini-MAM system. This can be contributed to several reasons, the most obvious being that
the Mini-MAM is a more user friendly system. This should not come as a surprise, as the
Mini-MAM is designed with user friendliness and usability in mind. Other factors can be
attributed to the manner of the test, as well as some bias from the participants.

38

In terms of e�ciency, we see from table 5.5, that the average time to complete the
step-by-step tasks is far lower for the Mini-MAM. Despite the tasks being slightly di�erent,
the main goals are quite simple, indicating that the users are able to work more e�ciently
using the Mini-MAM. As the tasks performed during the step-by-step task work through
almost every feature of the Mini-MAM, it speaks the system's e�ciency that the users are
able to complete them in such a short time.

The XMS system has more options, and tools than the Mini-MAM, making the �rst 'free
task' the participants perform a lot harder. In addition, 'the Step-by-Step' tasks used close
to every feature in the Mini-MAM, while it barely scratched the surface of what the XMS
system can do. The XMS system is designed to be administrated by a trained individual with
experience in IT systems, and not to be picked up by non-experts with no previous
experience. The potential source of bias from the participants, stem from the fact that most
of the participants were familiar with the author of the report, and were able to discern
which system was developed by the author.

Despite the low scores from the usability assessment, the XMS system is an incredibly
powerful tool. During the step-by-step tasks, the subjects were asked to create a
presentation, this was considered by many subjects as a cumbersome process, where they
had to move through many di�erent steps and screens before being able to create an actual
presentation. What the subjective assessment did not properly display, was that once this
set-up process had been completed once, it became signi�cantly easier to create more
presentations, or add new fancy slides to already existing systems. Through a system of
screen templates, and screen types, the XMS system allows users to create, and re-use their
content in many di�erent ways, e�ectively operating as content manager, as well as editing
tool. The XMS system, apart from managing content, also manages computer screens,
presentation cycles on these screens, and is in many ways a complete control system for an
exhibition center. Compared to our prototype, the XMS system is far more advanced than
any potential Mini-MAM.

6.3 System overview

In its current state, the Mini-MAM seems to be able to perform the primary tasks it was
designed for. The current Ingest Menu should provide the user with the option to easily add
new content, as well as tag it with basic metadata. From table 5.3, the task of uploading
content is given a decet score, scoring above 4 (Good) in the User Friendliness category. The
Search Menu also appears to be decent, scoring close to 3(Fair), despite the unintuitive
method for displaying the search results. We see that the search task is the lowest scoring
task for the Mini-MAM, and it is believed that the method for displaying the search results is
the root cause for the low scores. The Play, and Playlist related tasks all score rather highly,
indicating that the decision of adding an integrated media player was worth the e�ort. The
Treeview element displaying the playlists also seems to be a well implemented, despite
lacking the ability to drag and drop elements. The Playlist view also su�ers from resetting
the widget every time a change is made, something that could become an annoyance during
extended use.

Despite some minor shortcomings, and issues, the Mini-MAM prototype should be able to
ful�l the requirements envisioned. With the ability to manage both content and metadata in

39

a user friendly manner, as well as display the content with an intuitive, embedded media
player, the requirements appear to be �lled.

40

Chapter 7

Conclusion

The goal of this theses has been to design, develop and test a simple and user friendly
Mini-MAM, that is e�ective, cheap, and easy to maintain. The developed Mini-MAM ful�ls
the requirements outlined throughout this report. It is able to manage media content,
organize and store metadata, and display the media content to the user. These tasks are
made available to the user through a graphical user interface that is both user friendly, and
e�cient. Through the development of the Mini-MAM, and the subjective assessment, this
thesis has shown that the demand for a Mini-MAM exists, and that the developed prototype
�t the outlined requirements of such a system.

From the subjective assessment, it is clear that the Mini-MAM is the more user friendly
system. Scoring higher in all measured categories, as well as being the preferred system.
With further development outlined in the Future Works section, the Mini-MAM Prototype
can become a commercially viable system that �t the requirements of many non-broadcaster
content owners.

41

7.1 Future Work

The Mini-MAM is still a prototype, and there are issues that have not yet been �xed, or
updated. The primary tasks that should be further developed are:

• Improve Search Functionality
At the moment, the search function will search through every column of every entity. It
should be possible to limit your search to only search names, keywords or descriptions.
It should also be possible to only search for a selected modality.

• Improve Search Results
The current method for browsing search results is the least user friendly menu in the
prototype. It has been suggested to create a treeview widget, similar to the playlist
menu, that is populated by the returned results.

• Ingest Status Bar When adding a new video �le, the transcoding process happens in
the background, without any feedback to the user. This lack of feedback goes against
all guides for good interface design, and should be remedied. As the �mpeg conversion
process does return some feedback, the framework for a proper progress bar is available.

• Drag-and-drop support for playlist window. It should be possible to edit the order of
items in a playlist, by simply dragging and dropping the item.

• Better Error handling, and code cleanup At the moment, there is no uniform method
for error handling in the code. A system with custom and speci�c exceptions, should be
developed.

• Bundling the Mini-MAM Some sort of bundling should be performed, to allow users to
easily install and set-up the Mini-MAM, as well as any required software tools.

42

Bibliography

[1] B.S. Manjunath Thomas Sikora, Philippe Salembier. Introduction to MPEG-7:
Multimedia Content Description Interface. Wiley, 2002.

[2] Karl Paulsen. Moving Media Storage Technologies: Applications and Work�ows for Video
and Media Server Platforms. Focal Press, 2011.

[3] Lin Shan, Li Wei, and Zeng Ling. Research on novel solutions to existing problems of
mam based on logical function framework. In Intelligent Systems and Applications (ISA),
2011 3rd International Workshop on, pages 1�4. IEEE, 2011.

[4] Elizabeth Keathley. Digital Asset Management: Content Architectures, Project
Management, and Creating Order out of Media Chaos. Apress, 2014.

[5] Fernando Pereira, Anthony Vetro, and Thomas Sikora. Multimedia retrieval and delivery:
essential metadata challenges and standards. Proceedings of the IEEE, 96(4):721�744,
2008.

[6] William Y Arms. Digital libraries. The MIT Press, 2001.

[7] John R Smith and Peter Schirling. Metadata standards roundup. Multimedia, IEEE,
13(2):84�88, 2006.

[8] EBU. Tech 3293, ebu core metadata set. Technical report, EBU, february 2013.

https://tech.ebu.ch/docs/tech/tech3293v1_4.pdf -

Found 7.10.2013

.

[9] Florian Stegmaier, Werner Bailer, Tobias Bürger, Mario Döller, Martin Hö�ernig, Wonsuk
Lee, Véronique Malaisé, Chris Poppe, Raphaël Troncy, Harald Kosch, et al. How to
align media metadata schemas? design and implementation of the media ontology.
In Proceedings of the 10th International Workshop of the Multimedia Community on
Semantic Multimedia Database Technologies (SeMuDaTe 2009), volume 539, pages 56�
69, 2009.

[10] Bruce Devlin. Mfx - the material exchange format. Technical report, EBU, July 2002.

https://tech.ebu.ch/docs/techreview/trev_291-devlin.pdf -

Found 17.12.2013

.

43

[11] Andrew Perkis and Håvard Ferstad. Media asset management, prosjektrapport. Technical
report, NTNU, June 2013. Found 28.8.2013.

[12] Wilbert O Galitz. The essential guide to user interface design: an introduction to GUI
design principles and techniques. John Wiley & Sons, 2007.

[13] VLC. Python bindings - videolan wiki, June 2014.

https://wiki.videolan.org/Python_bindings - Found

06.05.2014

.

[14] Python. Welcome to python.org, June 2014.

http://www.python.org - Found 10.04.2014

.

[15] Python. Tkinter - python wiki, June 2014.

https://wiki.python.org/moin/TkInter - Found

10.04.2014

.

[16] Python. sqlite3 documentation, June 2014.

https://docs.python.org/2/library/sqlite3.html -

Found 14.04.2014

.

[17] VLC. Videolan - o�cial page for vlc media player, the open source video framework!,
June 2014.

http://www.videolan.org/vlc/index.html - Found

06.05.2014

.

[18] FFmpeg. Ffmpeg, June 2014.

http://www.ffmpeg.org/ - Found 20.04.2014

.

[19] SQLite. Sqlite home page, June 2014.

http://www.sqlite.org/ - Found 14.04.2014

.

44

[20] Michael Owens and Grant Allen. The de�nitive guide to SQLite, volume 1. Springer,
2006.

[21] vvvv.org. Hwnd (windows), June 2014.

http://vvvv.org/documentation/hwnd-%28windows%29 -

Found 10.06.2014

.

[22] Sony. Sony announces: Project morhpeus, June 2014.

http://www.sony.com/SCA/company-news/press-releases/sony-computer-entertainment-america-inc/2014/sony-computer-entertainment-announces-project-morp.shtml

- Found 10.06.2014

.

[23] Occulus Rift. The all new occulus rift development kit 2 8dk2) virtual reality headset |
oculus rift - virtual reality headset for 3d gaming, June 2014.

http://www.oculusvr.com/dk2/ - Found 10.06.2014

.

[24] ITU-R. Methodology for the subjective assessment of the quality of television, June 2014.

Technical Report BT.500-11 , 2002.

.

45

Appendix A

A.1 Subjective Assessment Results

Results - Mini-MAM
Category User Friendliness Time Consumption Menu Layout
General Impression 3,9286 3,9286 3,3571
Upload 3,7857 4,0714 3,7143
Search 3,0000 3,4286 3,2857
Playlist, Create 4,4286 4,2143 4,0714
Playlist, Edit 3,9286 4,0000 3,8571
Metadata, Edit 4,1429 4,2143 3,7857
Play 4,5000 4,5000 4,2143

Table A.1: Mean score for each category - Mini-MAM.

Results - Mini-MAM
Category User Friendliness Time Consumption Menu Layout
General Impression 3,6060-4,2511 3,6060-4,2511 2,7905-3,9238
Upload 3,1632-4,4082 3,5490-4,5938 3,1543-4,2743
Search 2,4189-3,5811 2,8220-4,0351 2,6892-3,8822
Playlist, Create 4,1596-4,6976 3,8480-4,5806 3,6373-4,5056
Playlist, Edit 3,4483-4,4089 3,5406-4,4594 3,4043-4,3100
Metadata, Edit 3,6456-4,6401 3,7467-4,6818 3,2750-4,2964
Play 4,1593-4,8407 4,1593-4,8407 3,6638-4,7648

Table A.2: 95% con�dence interval for each category - Mini-MAM

I

Results - XMS
Category User Friendliness Time Consumption Menu Layout
General Impression 2,0714 1,7143 2,6429
Upload 2,2857 2,2857 3,0000
Search 2,7143 2,7857 3,0714
Presentation, Create 2,4286 2,4286 2,9286
Template 2,1429 2,0000 2,7143
Slide 2,5714 2,5000 3,1429
Presentation, Full Process 2,7143 2,7857 3,2143

Table A.3: Mean score for each category - XMS

Results - XMS
Category User Friendliness Time Consumption Menu Layout
General Impression 1,6373-2,5056 1,3338-2,0947 2,0060-3,2797
Upload 1,8533-2,7181 1,7648-2,8067 2,3836-3,6164
Search 2,0834-3,3452 2,2352-3,3362 2,5101-3,6328
Presentation, Create 1,9374-2,9197 1,8579-2,9992 2,2965-3,5607
Template 1,6456-2,6401 1,5406-2,4594 2,1178-3,3108
Slide 2,0390-3,1038 1,9280-3,0720 2,6048-3,6809
Presentation, Full Process 2,2819-3,1467 2,3182-3,2533 2,6267-3,8019

Table A.4: 95% con�dence interval for each category - XMS

How much time do you spend on your computer daily?
Option <1 Hour 1-2 Hours 2-3 Hours >3 Hours
Users 0 0 0 14

Table A.5: Observer survery

What Streaming service do you use?
Service Spotify Net�ix Youtube Wimp Twitch
Users 11 12 13 3 1

Table A.6: Observer survery

Do you currently have a media collections?
Option Yes No
Users 12 2

Table A.7: Observer survery

Which system did you �nd easier to use with manual?
Option XMS Mini-MAM
Users 0 14

Table A.8: Observer survery

II

Which system did you �nd easier to use without manual?
Option XMS Mini-MAM
Users 0 14

Table A.9: Observer survery

Which system do you think you spent the most time with?
Option XMS Mini-MAM
Users 14 0

Table A.10: Observer survery

Time Spent
XMS Mini-MAM

05m57s 11m15s
07m30s 08m30s
04m30s 10m05s
06m15s 10m31s
05m32s 09m03s
03m28s 07m41s
07m15s 09m08s
04m23s 09m18s
05m20s 09m56s
03m12s 07m45s
06m09s 09m40s
04m05s 08m16s
06m20s 13m02s
05m30s 12m23s

Average 05m23s 09m45s

Table A.11: Observer survery

III

IV

Appendix B

B.1 Handout

Purpose of the test
The purpose of the test is to compare the Mini-MAM system to a commercial product XMS.
The main focus will be to determine the usability of the two systems, from the viewpoint of
a new user.

Instructions
You will be given a text document with a set of tasks you will perform on both systems. First
you will try to manage the system without the step by step guide. After 5 minutes you will
continue to the step by step guide. Here it's important that you follow the instructions step
by step. There is no time limit, but your time spent on each system will be recorded.
If you experience any issues, please contact the supervisor.

After the usability-test you will be given a questionnaire with questions regarding the two
systems. You will answer with a score from 1-5 on each question.

Score Chart
1 2 3 4 5

Bad Poor Fair Good Excellent

For the purpose of the report, all personal details will be kept anonymous.

Thank you for participating.

V

B.2 Test Protocol

Mini-MAM - Free Task

• Task:Upload two �les into the Mini-MAM system from the folder �XXX�, and add some
keywords and a description

• Task:Create a new playlist. Give it a name. And add the 2 �les you have uploaded into
the system. Play the playlist.

VI

Mini-MAM - Step by Step

• Task: Upload �le
Step 1) Choose �le ��le1� from Documents/Master/�XXX�
Step 2) Fill in Keywords Y
Step 3) Description
Step 4) Save
Step 5) Upload a new �le: Choose �le ��le2� from Documents/Master/�XXX�
Step 6) Import XML metadata. Find XML �le from Documents/Master/xml
Step 7) Add �le to �Playlist 1�
Step 8) Save

• Task: Search for a �le
Step 1) Enter the word Y
Step 2) Start search
Step 3) Browse search results
Step 4) Select �le ��le1�
Step 5) Add keyword Z
Step 6) Save changes
Step 7) Export �le to Desktop
Step 8) Delete �le

• Task: New playlist
Step 1) New playlist
Step 2) Give the playlist a name �Playlist 2�

• Task: Add media to playlist
Step 1) Search with the word �Y�
Step 2) Start search
Step 3) Browse search results
Step 4) Select �le ��le1�
Step 5) Add to playlist �playlist 1� and �playlist 2�

• Task: Delete media from playlist
Step 1) Delete playlist 2
Step 2) �Are you sure?�
Step 3) Delete

• Task: Add subplaylist
Step 1) Select playlist: �playlist 1�
Step 2 Add subplaylist
Step 3) Give the playlist a name: �playlist 3�
Step 4) Save

VII

• Task: Play
Step 1) Select playlist: �playlist 1�
Step 2) Play
Step 3) Start playing

VIII

XMS - Free Task

• Task: Upload two �les into the XMS system from the folder �XXX�, and add a comment.

• Task: Create a new presentation. Give it a name. And add the 2 �les you have uploaded
into the system, using templates and slides.

IX

XMS - Step by Step

• Task: Upload File Step 1) From the Main Menu: Select Exhibit Content
Step 2) Under �Files�-�Add new �le (advanced)� upload the �le ��le1� from Documents/-
Master/�XXX�.
Step 3) Update �lename (scriptcode) to ��le1�
Step 3) Select language �Norsk�
Step 3) Add a comment
Step 4) Select �Save�
Step 5) Clear

• Task: Search Step 1) Search for �le1
Step 2) Edit the �le ��le1�, and add two words to the comment
Step 3) Save

• Task: Create Screen Type Step 1) From the Main Menu, enter the Broadcaster menu.
Step 2) Enter the Con�guration tab, and select Screen Types
Step 3) Add a new screen type with name 1920x1080, set the Width to 1920 and the
Height to 1080
Step 4) Save

• Task: Create Template Step 1) Enter the Template menu, and add a new template.
Step 2) Make sure the Template has a screen size of 1920x1080, and name it �Vertical
Splitscreen � Image�. Then add template
Step 3) Add an image to the template, with ID 'Left', label 'Left', x positition 0, y
positition 0, with a width of 960 and a height of 1080. Do not upload an image.
Step 4) Add another image to the template, with ID 'Right', label 'Right', x position
960, y position 0, with a width of 960 and height of 1080. Do not upload an image.
Step 5) Save

• Task: Create Slide Step 1) Enter the Slide menu, and add a new slide.
Step 2) Name the slide �Vertical Images #1�, with a screen type of 1920x1080
Step 3) Select the Vertical Splitscreen � Image template, and upload two images From
Documents/Master/�XXX Step 4) Save the slide

Create a new template, this time adding a video �eld to the template. Give the video
�eld an ID 'main, label 'main, x position 0, y position 0, with a width of 1920 and height
of 1080.

Create a new slide using this video template, with the �le �Havert.mp4� from Docu-
ments/Master/�XXX�.

• Task: Presentation Step 1) Enter the Presentation menu, and add a new Presentation,
choose a suitable name.
Step 2) Make sure the screen type is set to 1920x1080, other options should be kept

X

unchanged.
Step 3) Add the 2 slides to the timeline, and save the presentation.
Step 4) Delete presentation

XI

XII

Appendix C

C.1 Content of ZIP �le

'DESIGN/':
MAMPowerPoint.odp - Presentation made to showcase MAM design ideas.

'SURVEY/':
SubjectiveAssessment.ods - Contains raw results, and calculations from subjective assessment.
SubjectiveAssessmentQuestions.pdf - Contains screenshots from the online questionnaire

'SOFTWARE/': - Required python code
'data/resorces': - Required images for the Mini-MAM
import�le.py
ProsjektGUI.py
sqlhandler.py
vlc.py
wexpect.py
xmlimport.py

'README.TXT' - Contains information about the .Zip folder, as well as instructions on how
to run the Mini-MAM.

C.2 Test Material Subjective Assessment

The hard drive containing the test material from the KOMOPP project is administered by
Andrew Perkis, for access contact him.

XIII

	Introduction
	Theory
	Media Asset Management
	MAM - Introduction
	Mini-MAM

	User Interface design
	Metadata
	About Metadata
	EBUCore
	Material Exchange Format

	Usability
	Subjective Assessments

	Method
	Designing the Mini-MAM
	Initial Design Process

	Development of the Mini-MAM
	Initial Goals
	Development Process

	Subjective Assessment
	Equipment
	Session
	Participants
	Evaluation
	Systems

	Statistical Analysis of Subjective Assessment

	Implementation
	Motivation and Design philosophy
	Tools
	The Tkinter library
	SQLite
	FFmpeg

	The Prototype
	The Ingest Menu
	Transcoding Standard
	The Search Menu
	The Play Menu
	The Playlist Menu
	SQLHandler

	Results
	Subjective Assesment
	Time Spent
	Participant Survey

	Discussion
	Developing Mini-MAM Prototype
	Usability Test
	System overview

	Conclusion
	Future Work

	
	Subjective Assessment Results

	
	Handout
	Test Protocol

	
	Content of ZIP file
	Test Material Subjective Assessment

