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summary

This thesis covers the challenges of developing event-driven software applications.
It covers the analysis of the problem in order to suggest methods for architecting
software for designing and implementing a framework dealing with the challenges of
developing software. The implemented framework uses concurrent components to
divide the overall behavior of an application into contained parts, having their own
execution context. Further a message passing implementation is suggested, that uses
ports and channels to establish a decoupled messaging system between components.
Lastly a statechart engine is designed and implemented providing a way of keeping
track of abstract states in a component. The framework is implemented in Objective-
C, allowing it to be used to develop applications for the iOS platform and for the Mac
OSX platform. The prototype application shows how the framework can be used to
model an iOS application, using the abstraction introduced by the framework. The
framework has been tested as to establish the correctness of the implementation and
the performance in order to determine its usage for large complex applications. It is
concluded that the methods considered and implemented into a framework provide a
way of architecting event-driven software in ways that increases the abstraction level
and introduce new possibilities for debugging event-driven applications.
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CHAPTER -l

INnfroduction

This chapter covers the motivation and background of the thesis by looking at the
challenges of developing complex event-driven software, which leads to the problem
description in which the thesis focuses. Further the requirements for the proposed
solution are established including a specification of the developed prototype applica-
tion.

1.1 Motivation & background

Developing complex software is a challenging task that requires planning and struc-
ture in order to master. Often software systems contain many bugs that make them
unstable. When developing software there are several key elements that will improve
the quality of code. One of these is to build a system that is robust, meaning that it
behaves well in all scenarios including unexpected situations. Further the code should
be easy to maintain and get an overview of. Often software projects are developed
by teams that need to cooperate. This requires the software to be readable and well
structured in order for people to understand it. Another important aspect is how
easy it is to test the software in order to make sure that it behaves correctly and does
not contain critical bugs.

Modern software solutions for desktop and mobile devices are hard to write and
maintain. This kind of software is often event-driven with a user interface. The user
interface allows the user to create events by interacting with it. Furthermore events
can be generated by the system. It can be in the form of hardware such as sensors,
it can be from other running applications or from the operating system itself. The
complexity of even-driven applications comes from both the user interface and the
model layers of the application. A major problem is isolating all the different states
in which an application can be in and making sure it acts correctly when events are
triggered. Incoming events are asynchronous and handling those is a complex task in
graphical user interface(GUI) applications and it often results in software, which has
many edge cases that are hard to discover and code that is difficult to test. The end
result can be buggy software that has unexpected behavior. A common technique for
creating more robust software is to lower the level of complexity. Lower complexity
often results in fewer edge cases and is therefore easier to test and maintain. However,
lowering the complexity may result in a loss of functionality and it is merely a result
of not having better ways to architecting asynchronous software.



2 1 Introduction

1.1.1 Complex system

The thesis covers methods suitable in order to architect and build complex and asyn-
chronous event-driven systems. According to Booch (1993, p. 10) five attributes
should be considered in order to classify a system as complex.

e Hierarchy - A complex system contains subsystems that each contains their
own subsystem until an elementary component is reached.

e Components - The various parts of the system can be divided into components
where internal interactions in a component are stronger than the interaction
between the components.

e Usage - The user of the system determines the parts of the system that are in
use.

e Reuse - A hierarchic system is composed by a few subsystems that are reused
in various combinations and arrangements.

e Evolvement - A complex system needs to be designed so it evolves from a
simple working system. A complex system cannot be designed and implemented
from scratch.

Thus the software systems in interest are complex in the sense that they consist of
various parts whose usage is not static but determined by usage of the system. They
are structured in a hierarchical way, which allows the parts of the system to be reused
in various arrangements.

1.2 Problem description

Software developers are faced with many challenges when developing complex appli-
cations. As the code base of a software system increases, the complexity increases as
well and it becomes more challenging keep the software robust and maintainable

This thesis analyses methods for improving the architecture of software in complex
applications and proposes a framework for easily applying these methods when devel-
oping iOS applications.

1.3 Context

Developing complex software is a general problem. While the findings in this thesis
cover many common aspects of software development, the focus will be on software
development in a specific context, which is defined in the following sections.
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1.3.1 Event-driven GUI applications

The primary context in interest is event-driven programs where the events come from
a GUI. Such programs are non-deterministic as the flows are determined by the us-
age. In traditional sequential programming, it is the program that is in control of
the low. When needed the program will ask the user for input and wait until it has
been provided. This means that the program and the user are always synchronized.
However, as explained by Schmidt (2003, p. 567) the tables have turned in event-
driven programs. Instead of a user reacting to a program, the program reacts to the
user. This is because the user can provide input at any time. It makes the program
asynchronous. The user determines the usage. The asynchronous events are a key
element in the complexity of event-driven programs.

The motivation for making GUI programs asynchronous is to higher the user ex-
perience. By allowing the user to interact with different parts of the application at
the same time gives a more powerful application. Tasks performed by a program
often take an undefined amount of time. It may depend on the CPU, the network or
the hard drive. If everything were synchronous the program would only be able to do
one thing at a time. For GUI application this would mean that the user would not be
able to interact with the application while for instance the application was opening
a file on the disk. While performing a time consuming task, the application would
not responds to the user interactions, which would result in a poor user experience.
Thus an event-driven application needs to be asynchronous so, while opening a file,
the application can still receive new inputs from the user.

1.3.2 Mobile phone application

Modern mobile phones, also known as smartphones, provide a base for developing
complex applications and this will be the main context of the thesis, However, many
of the challenges addressed are also relevant for developing desktop applications. Since
the introduction of the App Store for iPhone in 2008, the need for software running
on mobile phones has exploded. Furthermore, the capabilities of the devices have
increased. Most smartphones today have performance that is similar to desktop com-
puters. However, especially memory consumption must be taken into account when
developing for mobile, as it is lower than normal desktop computers. Together with
the various sensors and an advanced operating system, smartphones provide a base
for building complex systems. One of the major operating systems for smartphones
is i0S, which is built on top of a Unix-like operating system. The environment
for building applications for iOS is object-oriented using Objective-C!, which is a
general-purpose language that is suitable for building applications consisting of a large
codebase. Apple has announced a new version of the iOS platform every years since

19nd of June 2014 Apple announced that they developed a new language called Swift as an alternative
language for developing native applications for i0S and OSX.
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the introduction, and thus it is often changing as libraries are being deprecated and
new once are being introduced.

1.3.3 User experience

Applications for iOS are driven by a user interface, which act as the layer between
the user and the device. The visual impression a user gets from an application comes
from the user interface. As presented in Klein (2013, p. 155) having an attractive
user interface is fundamental for the user experience. The contentment the users get
comes from the interactions in the application. Good interactions increase the users
understanding of how to use the application. A real challenge when developing mobile
software is to create something that is delightful to use, while solving a problem.

Further in order to increase the users understanding of how to use the software it
should be intuitive with great interactions. The application should be kept intuitive
and interactive at all times in order to provide a better user experience (Services,
2012, p. 2). The competition among mobile applications is often very high with many
competing applications offering similar functionality hence a user experience is an
important factor when developing applications for mobile.

1.3.4 Shape A/S

The project has been supervised externally by Philip Bruce, co-founder and senior
developer at Shape A/S, which is specialized in developing applications for mobile
devices. The investigated problems in this thesis are directly connected to challenges
Shape A/S meets daily when developing software for iOS. The focus has been on
applying theory and methods in order to solve problems when developing iOS appli-
cations.

1.4 Goals & requirements

The overall goal of this thesis is look into method for building complex software
for i0S. Based on the methods, the goal is provide a framework for architecting
and developing complex application for iOS. The following requirements have been
established for the proposed framework.

e Implemented in Objective-C for integration with the iOS platform.

e Support for integrating with the existing iOS SDK and third party frameworks.

Ability to adapt to platform changes as new versions of iOS are released.
e Performance suitable for use in developing large complex applications.

e Convenient to work with for the developer.
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The last requirement is weak in the sense that it is subjective whether a framework is
convenient or not, however it requires that the framework keeps the implementation
overhead required to use the framework low.

1.4.1 Prototype

In order to explain how the framework can be used to develop iOS applications and
to make a practical verification of the proposed framework, a prototype application
should be developed that uses the framework. The prototype should be comprehensive
enough to qualify as complex. As described in Andrachek et al. (2013, p. 27) the
complexity of an application comes from data types having relations. Furthermore
the attributes from Section 1.1.1 put requirements on the system in order for it to be
considered complex. Because of that the following properties have been established
for the prototype application.

e Containing several data types.

e Data types that are related to each other.

e Containing several views showing different but dependent data.
e Having views showing the same data in different ways.

e Allow manipulation of data.

Specification
Based on the requirements the following specification describes an application for

tracking expenses that should be implemented using the framework.

An expense tracker allows a user to save expenses that are shared by a group of
people. This is done by creating an expense and specifying basic information such
as category and amount. Each user can see all the expenses in the system and the
debts between the users based on the added expenses. The application contains the
following use cases:

e As a user I can login to the system.

e As a user I can add a new expense to the system by providing an amount and
a category.

e As a user I can delete an expense.
e As a user I can see a list of all the expenses.

e As a user I can see the debts between users in the system.

The specified prototype qualifies as being complex since it contains the properties
listed in Section 1.4.



6 1 Introduction

1.5 Structure of thesis

The structure for the rest of the thesis is shown in Figure 1.1, where for each section
an arrow shows the section that it built on top of. Further description of each chapter
is listed below.
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Chapter 2 analyzes the context, while taking the problem description into account in
order to established a set of challenges that should be considered further.

Chapter 3 analyses a set of method for dealing with the challenges of building complex
event-driven software and based on the analysis selects suitable methods.

Chapter 4 explains the theory of the methods selected and establishes a foundation
of knowledge about them.

Chapter 5 covers the design decisions and modeling challenges faced in the solution.

Chapter 6 explains the implementation of the implemented framework and the pro-
totype application.

Chapter 7 provides the results of the various tests performed on the proposed so-
lution.

Chapter 8 evaluates the initial goals and requirements against the proposed solu-
tion.

Chapter 9 covers the overall findings and suggestions for further work.






CHAPTER 2
Analysis

This chapter analyses the problem presented in the previous chapter. This is done
by going deeper into the software development challenges for developing event-driven
software for i0S. The findings of the analysis will in the next chapter be used as a
foundation for evaluating suitable methods for architecting event-driven software.

2.1 Programming in the large

As presented by DeRemer and Kron (1975, p. 114) two overall approaches are used
when writing software. “Programming in the small” refers to writing smaller pieces of
software, which mainly solve a single purpose. On the other hand “Programming in
the large” refers to writing more complex systems, which involves many developers and
a large codebase. Programming in the large is the kind of software in interest in this
thesis. DeRemer and Kron (1975, p. 114) introduce the “languages for programming-
in-the-small (LPS)” as typical programming languages and the concept of a module
by saying that

“the term module refer to a segment of LPS code defining one or more
named resources. FEach resource is a variable, constant, procedure, data
structure, mode, or whatever is definable in the LPS.” (DeRemer and
Kron, 1975, p. 114)

Further they state that “structuring a large collection of modules form a system”. In
other words they define modules as being separate chunks of code that together form
a system. As explained by Szyperski (1999, p. 35) the term module is weakly defined
and in the literature it is often also referred to as an object, a class or a component.
For now the term module is used. van Roy and Haridi (2003, p. 457) present several
challenges when building a system of modules.

e Module connections - As a system consist of many modules that together
form a whole, these modules are connected to each other. The connections can
either have a static or dynamic structure. The static structure is known when
the application starts and it does not change during execution. A dynamic struc-
ture however is determined during run-time and may change as the program is
being executed.

e Module communication - Certain modules depend on each other in order
for the system to work. Hence the modules need a way for communicating with
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each other. Many ways for defining the communication between modules exist.
A way of doing it is using procedures where the control is passed back and
fourth between components.

e Module implementation independency - As noted by van Roy and Haridi
(2003, p. 460) “The interface of a component (module) should be independent
of the computation model used to implement the component (module). The
interface should depend only on the externally visible functionality of the com-
ponent (module)”. In other words the interface visible to other modules should
be independent of the implementation.

e Module execution context - In some scenarios the execution context of a
module should be independent from other modules, since otherwise the work
done by one module would prevent another module from doing its work.

In short this means that a system consists of independent modules structured in
either a static or dynamic way, which communicate with each other. Each module
should, in some scenarios, execute independently of others.

2.2 Abstractions

Software development is built on abstractions.

“As far as we know, the most successful system-building principle for in-
telligent beings with finite thinking abilities, such as human beings, is the
principle of abstraction” (van Roy and Haridi, 2003, p. 418)

Abstractions are structures that reduce ideas to simple forms. Details are omitted
and thus the complexity lowered, however good abstractions capture the details as
well. In software many layers of abstractions exist. An example of, how the level of
abstraction has changed in the history of software development, is the move from as-
sembler to higher level programming languages. By raising the abstraction, to a level
closer to how humans think, the complexity is decreased. For programming in the
large, abstractions help keeping the complexity low. When building a complex piece
of software, abstractions are used to capture the idea of the system. However, going
from an abstraction to the actual implementation is not necessary an easy task. The
idea that you can simply design your abstractions and afterwards implement those ab-
stractions, capturing the exact meaning of the abstraction wishful thinking (Jackson,
2005, p. 14). This means that many challenges exists when dealing with abstractions.

2.2.1 Model-driven architecture

Model-driven architecture is an approach for developing software systems by imple-
menting a system based on models. It is a way of increasing the abstraction level of the
system. In this context the word model means a platform independent specification
of a complex system.
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Code-driven & Model-driven development

Developing complex systems require structure on the code. Models describe the design
of the system by abstracting away details and thus make it easier to understand the
system as a whole. Models can be used to specify the required functionality in the
system. The system is implemented using code, which needs to be debugged, tested
and maintained. The relation between the model and the code is often weak or non-
existing for software systems (Kelly and Tolvanen, 2008, p. 5). However, different
approached can be used as listed below.

e Code only - The code only approach is where the code is developed without
any use of models. The code is the highest level of abstraction used.

e Separate model and code - By having separate model and code, both the
models and the code are created but they are not kept automatically synchro-
nized. A change in one requires an update in the other.

e Code visualization - With the code visualization approach, the models are
created based on the code and used as documentation for more easily under-
standing how the code is structured.

As noted in Section 1.3.2, iOS is a platform continuous development. Providing
model-driven development for such is a difficult task since changes to the platform
may break the models. This is in conflict with the goal from Section 1.4 of adapting to
platform changes. A code-driven approach handles changes better since code written
explicitly by a developer is easier than debugging code generated by a code generator.
The proposed solution should be code-driven, however in order to obtain a higher
abstraction of the system code visualization should be considered.

Generic vs. Domain specific model

The generic-purpose modeling language, known as Unified Modeling Language(UML),
was designed to support creating models for all kinds of software. Using a generic
model means that in order to model a system operating within a specific domain,
the concepts from the domain have to be mapped into the generic concepts from the
generic model. As a contrast to a generic model, it is possible to use a domain spe-
cific model instead. By doing so the mapping disappears because the domain specific
model supports the constructs from the domain. A domain specific model needs to
be implemented using a domain specific language, as a general-purpose language does
not know about the domain specific elements in the model (Kelly and Tolvanen, 2008,
p. 5). The advantage of having a specific domain model is the possibility of creating
code generators that can generate code based on the models. Code generation targets
a specific platform for the model to be implemented on. The advantage of generat-
ing code is that it can save development time and create code containing fewer bugs.
However, using a domain specific model introduces limitations. This is because the
development becomes sandboxed in the sense that only structures supported by the
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domain model can be used and thus it is fragile to domain changes that requires the
model to be updated. Also creating a domain specific language supporting all the
necessary concepts for architecting iOS applications is a massive task to develop and
maintain.

As explained in Section 1.4 the solution should adapt to changes in the platform,
thus a domain specific model is unsuitable. Instead only generic models will be con-
sidered further.

2.3 Event-driven Software

As mentioned in Section 1.3.1 the iOS platform is event-driven. In an event-driven
application the control-flow is determined by events occurring during the execution
of an application. The control-flow determines the order in which statements and
methods are executed in a program. This introduces challenges, which are discussed
in the following sections.

2.3.1 Event-loop & Control-flow

In order to understand the challenges of event-driven software, it is important to look
at how the system handles events. The way it is handled in iOS is using an event-loop
that takes care of incoming events. The event-loop is managing a thread and the main
purpose of the event-loop is to keep its thread busy when there is work to be done and
otherwise allow it to sleep. The thread has work to do when events are happening in
the system. Incoming events are put on an event queue and then served one by one.
An important property of an event-loop is Run-to-completion which ensures that an
event is processed completely before the next event can be taken from the queue. An
event occurring very often may cause the event queue to increase in size and have
other events suffer from this by forcing them to wait in the queue. For this reason
event-driven programs may contain several event-loops that process different kind of
events. For an event-driven GUI application, a GUI event-loop is used to process
events concerning the GIU. This is done to keep the GUI interactive. The thread
used by the GUI event-loop is called the main thread or the GUI thread. Figure 2.1
shows the relations between the application, the event queue and the main event-loop
in an event-driven application. The event-loop is started once the application starts
and runs until it is terminated. The event-loop process events as they are added to
the event queue.

2.3.2 Events

The control flow of an event-driven application is dynamic since it is determined by
the events that occur in the system, and since the occurrence of events is determined
during run-time and depends on the environment, the user and the state of the system.
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Application
started

Event queue
Event 1
Event 2
Event-loop Event 3
Event 4
Event 5

Application
terminated

Figure 2.1: Application with event-loop

Events in the system are generated for various reasons, which are presented in more
detail below.

2.3.3 User interaction events

Events coming from user interactions are the main way for the user to control the
application. All iOS devices have a touch screen in order to allow user interaction.
The user generates user interaction events by touching the user interface. Depending
on the specific application this could result in buttons being pressed or touch gestures
being performed. These events all result in events being queued by the main event-
loop in order for the application to respond to these interactions.

2.3.4 Hardware events

Devices running iOS contain several hardware sensors that can be used to generate
various events. This could for instance be the a gyroscopic for monitoring motion,
an accelerometer for orientation changes, a magnetometer for magnetic field changes
or a GPS for location changes. All of these sensors report about changes by sending
events to the system. On iOS events from hardware components are typically only
fired if an application specifically requests it. This is done in order to save battery
and not load the application with unnecessary events.
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2.3.5 System events

The last kind of event considered is events generated by the operating system. This
could for instance be when the device is running low on battery or the application is
using too much memory.

All of the events described above define the control-flow in an event-driven appli-
cation. The fact that these events can occur at any time during the lifetime of an
application in an infinite number of combinations creates challenges when developing
event-driven software. First of all is it impossible to test exactly how the program
behaves in all scenarios. An application must be structured in a way where the order
of the events will not result in undesired behavior. However this is often difficult and
many edge cases may exist in a complex application. Edge cases are scenarios where a
certain combination of events is able to put the application into a state that requires
special handling. As mentioned in Section 1.1 a robust piece of software behaves
well even in unexpected scenarios. If the developer of an application has assumed
in which order events may occur it may be possible to force an application into an
unexpected scenario by the user simply by touching the display and thus triggering
user interaction events. When dealing with complex applications many control-flows
exist and it is difficult to make sure that none of them result in unexpected behavior
such as crashing the application.

Because of the above described challenges the proposed solution should take account
that events can occur at any time and it should handle this in a way where the state
of the application is controlled and unexpected edge cases caused by the order in
which the events occur are avoided.

2.4 Multithreading & concurrency

As mentioned in Section 1.3.3 a fundamental property when developing applications
with a user interface is to keep the application responsive at all times. A non-
responsive interface gives the impression that the application is frozen and crashed.
As explained in Section 2.3 an event-driven GUI application contains a GUI event-
loop. In order for the application to stay responsive each iteration of this event-loop
must be kept as short as possible. In fact, iterations that takes longer than 1.6
milliseconds result in lost frame with a frame rate of 60 hertz. Because of the run-
to-completion property, it is important that each event does not end up blocking
the GUI thread. A thread is blocked when it is waiting for a resource to become
available. Many operations cause the thread to be blocked. An example of this is
when communicating with a web server or reading from the hard drive. Since GUI
applications may contain blocking operations and in order to keep the user interface
interactive these operations must instead run on a different thread than the main
thread, thus multithreading is needed. Multithreading allows the program to run
several threads simultaneously. Most modern mobile phones contain several cores in
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the CPU but even smartphones with a single core in the CPU can take advantage of
multithreading. A scheduler will quickly switch between the threads and thus making
sure those events from the GUI event-loop is handled with a higher priority in order
to keep the user interface responsive.

2.4.1 Communication between threads

As mentioned in Section 2.3.1 event-driven GUI applications have a single GUI thread,
which handles all drawings. The reason for that is that often the frameworks used to
draw the user interface are not thread-safe. Because of this only a single thread can
manage the drawing and thus the need for a GUI thread. Other threads trying to
draw would trigger unexpected behavior and may crash the application.

However working with threads introduces many challenges. A major challenge when
developing in a multithreaded environment occurs when the threads need to commu-
nicate with each other, because of communication between concurrent parts should
be considered as a challenge for developing GUI applications.

2.5 Summary
Based on the analysis in this chapter, the following challenges have been established.

e Structure of applications - As an application consists of several modules,
challenges exist for how these are structured, while providing an independent
implementation and the possibility for an independent execution context.

e Communication between concurrent parts - As the applications consist of
concurrent modules, challenges exist for how the communication between these
is defined.

e Keeping track of state - As events occur the current state of the application
often determines how the reaction should be. Keeping track of this state is
challenging for large systems.

Further the following requirements have been established.

e Abstraction - The methods should provide an abstraction level for lowering
complexity of the system.

e Code visualization - In order to higher the abstraction and provide a detail
view of the system, the possibility for providing code visualization should be
considered.

e Generic model - The methods should follow a generic model in order to fit in
with existing platform and SDK.
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e Asynchronous event - The methods should allow asynchronous events coming
from various parts of the system.

These challenges will in the next chapter be used in order to evaluate suitable
methods and models for building event-driven software for iOS.



CHAPTER 3
Methodology

The analysis of the problem performed in the previous chapter resulted in several chal-
lenges and requirements concerning the development of complex event-driven software
for i0S. This chapter performs an evaluation of several state of the art software devel-
opment models and methods in order to select suitable approaches. The next chapter
then looks deeper into the theory behind these methods.

The following example of an iOS application will be used as base for showing ex-
amples of how a given method can be used to an application.

Example 1 Consider a simplified version of the prototype application as described
in Section 1.4.1, where the user is only able to see the expenses added to the system.
The expenses are loaded from a web server and the user can press a button to make
the application fetch the expenses from the server.

3.1 Structure of applications

As defined in Section 2.1 how the system is structured is an important challenge when
developing complex applications.

“One could write the program as one big monolithic whole, but this can be
confusing. A better way is to partition the program into logical units, each
of which implements a set of operations that are related in some way.”
(van Roy and Haridi, 2003, p. 223)

3.1.1 Object model

The object model and object-oriented (OO) programming captures the concept of a
module as presented in Section 2.1 into objects. This was first introduced with the
programming language Simula in 1967, but OO programming, as we know it today,
was introduced in Smalltalk in 1976. OO programming is a way of increasing the ab-
straction level compared to only having functions. The emphasis is moved to the data
instead of the algorithms. The introduction of an object that encapsulates features
lowered the complexity of software development (Buyya, 2009, p. 29). A powerful
property of OO programming is the introduction of inheritance, where as noted in van
Roy and Haridi (2003, p.421) “It is possible to build the system in incremental fashion,
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as a small extension or modification of another system.”. This can be seen as a way
of defining the connections between objects and it gives the opportunity to make the
implementation less redundant. However this also introduces a strong dependency
in the system, as an object depend on the object they inherit from. Because of this
van Roy and Haridi (2003, p.421) states that “We recommend to use it whenever
possible and to use inheritance only when composition is insufficient”. Using object
composition the system is structured into relations between objects, which gives a
more decoupled design.

As noted in Section 2.1 a challenge for modelling modules is having an indepen-
dent implementation. This can be achieved in OO programming by defining a public
interface for other objects to call, which does not reveal the implementation of the
object. However, as further discussed in Section 2.1 having an independent execution
is not supported by the object model as objects have a dependency to each other if
they are executing on the same thread as discussed in Section 2.4.

3.1.2 Model-View-Controller

A way of providing a structure of a GUI application is to apply the Model-View-
Controller pattern. This abstraction divides responsibilities and structure of an ap-
plication into three overall interconnected layers. The idea of the abstraction is to
separate code that is independent of each other in order to make a more decoupled
and reusable codebase. Each layer communicate through an interface and the idea
is that a layer can be changed without having an effect on other layers, as long as
the interfaces are kept intact. Decoupling the layers from each other gives flexibility.
The cleaner the interfaces are between the layers, the easier it is to change or modify
a layer without affecting other layers.

The model layer keeps the state and all the logic of the application. The model
provides an interface so other layers can use the data and services provided by the
model. The view layer represents what is visible for the user. The view is independent
of the exact data that it needs to show and it provides an interface for specifying the
data. Further the view generates events interactions from the user. This could for
instance by a view acting as a button and generating events when the user clicks the
view. The last layer is called the controller. It is responsible for connecting the model
and the view layer by making sure that data from the model is shown in the view
and events in the view triggers updates to the model. An example of the interaction
between these three layers is shown in Figure 3.1

Example 1 could be modeled using Model-View-Controller as illustrated in Figure 3.2.
The view layer contains a button and a list, which is populated with the expenses.
The model layer is responsible of fetching the expenses from the web server and the
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| »| Controller —— Update
Events
Update
View - Notify —— Model

Figure 3.1: Component interaction in Model-View-Controller

controller layer is in charge of responding to the touch event when the button is
clicked and asks the model to update the data from the server. Further it is in charge
of updating the view once the model has fetched the expenses.
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Figure 3.2: Modeling example 1 using Model-View-Controller

While the Model-View-Controller pattern separates the responsibility of the code
into three overall layers, the codebase can still end up being monolithic for a complex
application. As each layer increases its complexity the interfaces between the layers
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becomes floated with connections. This means that there is a big interface between
each layer as illustrated in Figure 3.3. A property of the Model- View-Controller pat-
tern is that the view and model never interface directly with each other, however as
the complexity grows the dependencies between the view and the controller grow as
well as the dependencies between the model and the controller.

Controller View

Interface

Interface

Model

Figure 3.3: Using Model-View-Controller for complex applications.

Example 1 contains a blocking operating for fetching expenses from a web server,
however the Model-View-Controller pattern does not define how this should be han-
dled in a way that keeps the view layers interactive. As with the object model,
defining a unique execution context for different layers is not built in. This means
that a model for composing the system into smaller parts is needed.

3.1.3 Component-based

An abstraction on top of object-oriented programming is the use of components. As
defined by Szyperski (1999, p. 36) a component has the following properties.

e A component is independent of its deployments.

e A component is self-contained.
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e A component does not contain externally observable state.

This definition shares many ideas from the object-model. According to Szyperski
(1999, p. 38) “a component is likely to act through objects”. However, instead of being
bound to a single class, a component can consist of a collection of classes. Further this
gives the possibility of defining a unique execution context for certain components.
Consider Figure 3.4 that uses the Model- View-Controller pattern together with com-
ponents. The controller and view part is combined in the GUI component. Further
the model consists of two components, namely Expense Model Component and Web-
service component. Since the Webservice component contains a blocking operation,
it is running in its own context. In the example this is archived by having a dedicated
execution thread.

: GUI Thread | | Worker Thread i
: : : [
| I !
I I : :
| Expense model | | '| Webservice |
, | GUI component ] I
" component P component I
I P! I
: | l

Figure 3.4: Using components for Example 1

Component-based programming provides a flexible model for structuring an appli-
cation, and used together with the Model- View-Controller pattern a good separation
of the responsibilities of the code is obtained.

3.2 Communication between concurrent parts

As explained in Section 2.4 communication between threads is needed. Methods for
doing so are considered below.

3.2.1 Invoking methods

A simple way of communicating between threads is simply for one thread to cause the
invocation of a method on another thread. A way of giving a thread the possibility
to communicate back is using a callback (Scheifler and Gettys, 1987). When invoking
a method on another thread a callback is provided. The callback represents what
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will happen once the task has been completed. This is illustrated in Figure 3.5 for
Example 1 where the blocking operation of fetching the expenses from the web service
is running on a separate thread and the GUI thread is kept responsive. A callback is
provided once the expenses has been fetched in order to update the view, as it must
be done from the GUI thread as explained in Section 2.4.

GUI thread Expense model

thread
Fetch button
pressed Fetch expenses
g \ Blocked waiting
2 / for response from server
2
0
[0
o Callback
Update list
of expenses

Figure 3.5: Using multithreading and callback

Using simple method invocation and callbacks provide a simple mechanism for com-
municating between threads, however the simple nature brings limitations. When a
thread invokes a method on another thread, this method is invoked as soon as possi-
ble without taking the current state into account. If the resources needed to perform
the task were unavailable at the time of the invocation the system might end up in a
unexpected situation. The problem comes from the fact that, the time the message
is delivered, is not managed by the receiver by instead the sender.

3.2.2 Message passing

A more general solution to communication between concurrent parts is using message
passing. Instead of directly invoking behavior a message is being sent. It is the job of
the receiver to act on the message. This can either be by performing a task or simple
by ignoring the message. The sender can decide to whom a message should be sent to,
and the receivers are not necessarily treated equally. The sender can also decide to
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broadcast a message to all receivers in the system. The communication can either be
synchronous where the caller blocks until a reply is received or asynchronous where the
caller continues execution and the reply comes in a callback from the callee. Message
passing can even be used together with the concept of callbacks, where information
about how to reply is included in the message. This is done in order for the sender to
determine the conversation when receiving replies. The use of message passing allows
for a much more flexible system. Messages send can be queued up by the receiver
and handled one by one, when ready.

3.3 Keeping track of state

In order to determine the behavior of an application, the current state must be taken
into account. However keeping track of this state for a complex application is a
difficult challenge. Methods for doing so will be investigated further below.

3.3.1 Program state

This context is known as the state of the system. The state can be defined as:

“A state is a sequence of values in time that contains the intermediate
results of a desired computation.” van Roy and Haridi (2003, p. 416)

Having a state allows to keep a history of what has happened so far in the system. For
an application the state is given by the memory or more precisely the current objects
and their values. The state space of a system defines the number of different states
it can be in. As noted by van Roy and Haridi (2003, p. 413) “State adds a potentially
infinite branch to a finitely running program” This means that most applications
have an infinite large state space. As events occur in the system the state changes.
Handling state changes is not an easy task and thus several techniques exist.

3.3.2 Global state

A simple way of keeping the state of a program is by defining it globally. A global
state is achieved by having variables that are accessible from all parts of the program.
Since it is global there is no need to propagate changes around in the system. This
is because each part always has access to the current state directly. A way of doing
so is using the Singleton pattern as presented in Gamme et al. (1994). The pattern
allows creating one instance of an object that is accessible by all parts of the source
code. In Figure 3.6 it is illustrated how a global state can be used for Example 1 to
store new expenses.

The use of global state makes it easy to share state across a system. Parts of the
system that have no direct connection can influence each other by changing the global
state. However, the program state quickly becomes unpredictable, since the state of
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Expense model
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Figure 3.6: Using global state to store expenses.

the application can be changed by any part of the code base, which introduces hidden
dependencies. Further the system becomes very tightly coupled as parts of the pro-
gram rely on a global state. Changes to one part of the system might have influence
on other parts, which makes refactoring and testing difficult. Generally global states
should be avoided when building complex system.

3.3.3 Observer pattern

Instead of having a shared state across the system as with global state, the state can
to be communicated across the application. More specifically the change of state can
be communicated. A common pattern for notifying objects in an application about
state changes is the observer pattern. An object, known as the subject, has a list
of objects, known as observers. The observers are notified automatically when the
subject changes state. This usually happens by a method being called in each of the
observers to notify about the state change. Applied on Example 1 and as illustrated
in Figure 3.7 the controller can observe the model for changes to the expenses, and
get notified if they change.

With the observer pattern objects get less tightly coupled as the subject does not
need to know anything about its observers. The only thing the subject knows about
its observers is how to notify them upon changes. The observer pattern is suitable
for being used in object-oriented languages. A property of the observer pattern is
that all observers should be treated equally. Trying to put priority on the observers
would introduce a tight coupling between the subject and its observers. This limi-
tation makes it very difficult to use the observer pattern in certain scenarios. For
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Figure 3.7: Observer pattern between model and controller.

instance to implement an order in which observers are notified or conditions for when
a specific observer should be notified. Trying to use the observer pattern as a way of
communicating state changes in a complex event-driven application with many events
resulting in state changes can result in unintended behavior or even memory leaks
as discussed in Eales (2005, p. 165). Another challenge with the observer pattern is
the possibility of creating an infinite recursion. This is illustrated in Figure 3.8. The
change of the subject causes a notification to the observer. The observer reacts on
the notification by making a state change in the application, which again results in
a change of the subject. Since observers are added and removed during run-time it
can be difficult to test all cases of the application in order to ensure no recursions exist.
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Figure 3.8: Infinite recursion with observer pattern.

3.3.4 Bindings

A pattern related to the observer pattern is bindings. Instead of an object simply no-
tifying a list of objects as it is done with the observer pattern, the objects are bound
together. The bindings ensure that once an object changes state it will automatically
result in a state change in another object. A binding between two objects can either
one way or two-ways. For instance bindings can be used in a GUI application to auto-
matically update the view when data in the model changes. The use of bindings does
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not require extensive work in order to be achieved in an object-oriented environment
as it can be implemented using the observer pattern.

Using bindings provides a way for easily propagating changes from one object to
another by simply changing the value of a variable. However when having many
bindings in the system it becomes unclear what side effects a change to one object
might have on other objects. This means that the same disadvantages as with the
observer pattern exist.

3.3.5 Reactive programming model

Instead of trying to keep track of the state of an application, another approach is
to try avoiding it. This is one of the features of the reactive programming model.
The reactive programming model uses dataflow constraints as a way of propagating
change in a system using reactive behavior. A simple spreadsheet is an example of
reactive model, where each cell is a part of the system and a change to the value in
one cell can cause a reaction in the system with the result of changing other cells.

The idea behind the reactive programming model is to create functions for the behav-
ior of the system. For instance consider the function y = f(x1, ..., ) where the value
of y is reevaluated every time one of the parameters z; to x,, changes. As explained
in Demetrescu et al. (2011, p. 1) the use of dataflow constrains make the execution
of a program data-driven rather than control-driven in contrast to more imperative
approaches. Since the reactions happen automatically upon change of data instead.
This means that a change can cause a chain of reactions across the system. A single
change can cause many reactions in different parts of the system. This is done by trans-
mitting signals around. Using the reactive programming model in an object-oriented
environment makes it possible to send signals between objects. An object can then
decide to react on the signal. The reactive programming model is most often used
in functional languages it is also possible to model it in an imperative environment
by having reactive data structures that can propagate change automatically. A key
element of the reactive programming model is how the focus is on what is happening
and how to react on it. The idea is to avoid keeping track of state in the program and
instead let the system automatically react on events occurring. For instance when
data becomes available the change can be signaled automatically to the interested
parts of the system by setting up functions as a reaction to the change. For instance
consider Example 1 a reaction can be set to update the expense model once the fetch
button has been pressed. Similarly the list of expenses can react on the fact that new
expenses have been become available. This is illustrated in Figure 3.9. The reactions
can be written as functions. For instance fetchExpenses(refreshClicked), where
fetching new expenses is a function of the refresh button being clicked. The reactive
programming model makes it possible to let data flow from one part of the system to
another as events occur.
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Figure 3.9: Using reactive programming to model Example 1.

The Reactive programming model provides a powerful way of defining the dataflow in
system having asynchronous events. The model fulfills many of the requirements set
in Section 2.5. The introduction of signals and reactive behavior introduces new ab-
stractions. Further it provides a mechanism for having control of the events occurring
in an application by setting up reactions as functions. It works in a multithreaded
environment as signals can flow from different threads in the system. It tries to avoid
the problem of keeping track of state in the application by avoiding state and instead
use reactive behavior. Applying a reactive programming model in an imperative con-
text requires reactive data structures and introduces many challenges. As noted in
Demetrescu et al. (2011, p. 2) “A natural question is whether the [reactive] dataflow
model can be made to work with gemeral-purpose, imperative languages, such as C,
without adding syntactic extensions and ad hoc data types”.

3.3.6 Finite-state machine

The methods considered so far for dealing with state changes has been of a very
dynamic nature. Another approach would be to have a more static setup where the
system has a structure at compile time that determines which effect a change of the
state may have. In order to introduce such structure a more controlled way of handing
state and state changes is needed. A finite-state machine gives such a structure by
defining a machine that captures the current state of a system.

Abstract state

A challenge of trying to enforce a structure on states is the fact that the state space
of a program is often infinitely high. This is due to the unlimited number of values
the memory of the program can take. By instead defining the states of a program
in an abstract manner it is possible to limit it. This can be done by encapsulating
the state in a state variable. The possible values for a state variable are defined by
dividing the system into chunks of behavior, each represented by their own abstract
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state. In the context of a state machine the word state refers to a predefined abstract
state. As the states are predefined they have a finite number.

State machine engine

The state machine changes the state variable during execution. This happens as a
reaction to events. The state machine engine determines how a program should react
on event by identifying the type of the event and looking at the current state vari-
able of the system. If the current state responds to the event, the reaction can lead
to a state transition. During a state transition the current state of the system changes.

Example 1 can be modeled as a finite-state machine. This is illustrated in Figure 3.10
where the circles are states, the lines between them are state transitions and the text
above the lines is the events that trigger transitions. The No expenses state is the
starting state as indicated with arrow pointing to the state. Once the Fetch ex-
penses event is fired, a state transition will be performed from state No expenses
to state Fetching expenses, and similarly when the Fetched expenses event is
triggered a transition to state showing expenses is performed.

Fetch
expenses

No
expenses

Fetching
expenses

Fetched
expenses

Showing
expenses

Figure 3.10: Example 1 as finite-state machine.

Actions & events

As the state machine responds to events by performing state transitions, actions can
be performed as well. For instance these actions could be used in Example 1 to exe-
cute code that would change the user interface of the application reflecting the state
of the state machine.

When talking about events in a state machine it is important to distinguish between
the type of an event and an instance of an event. For instance the events illustrated in
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Figure 3.10 represents different types of event. During execution instances of events
would occur. In order to limit the number of events, an event may contain informa-
tion about the event. For instance the Fetched expenses event could contain the
array of expenses, that had been fetched.

A great feature of the finite-state machine is its graphical notation as it provides
a way of doing code visualization as presented in Section 2.2.1. By drawing a
system a better understanding of how it is structured can be obtained since code
details can be neglected.

Even though finite-state machines provide a great way of introducing a structure
for the state of a program they have limitations. A problem with the finite-state
machine, is that even simple systems might end up suffering from state explosion.
Consider the following extension to Example 1.

Example 2 When the expenses have been fetched, the number of expenses should be
shown in a label, according to the following rule. If more than 10 expenses exists then
the label should say >10°, otherwise it should contain the number of expenses.

With the extension in Example 2 the number of states required to store this
information would be 12, since it would require one for every number from 0 to 10
and one for more than 10. Imagine as more requirements are put on the system, how
the number of states quickly increases. Thus for complex systems the finite-state
machine is not feasible.

3.3.7 Extended finite-state machine

In order to deal with the problem of state explosion in the finite-state machine the
possibility of adding variables to a state is included in the extended finite-state ma-
chine. Each state is supplemented with the possibility to use variables. A variable
can contain information about the state. This allows the number of states to can be
lowered dramatically. A state having variables is known as an eztended state. For in-
stance consider Example 2. The number of states could simple be stored in a variable
as extended state. This would result in the same number of states as in Figure 3.10.

The extended finite-state machine makes it possible to model larger applications,
however it still has some fundamental limitations. For instance it does not support
reusability. There is no way for states to share common behavior. As explained
in Section 1.1.1 complex application consists of components that have subsystems,
however the extended finite-state machine is not suitable for modeling this. Further
consider the following extension to Example 2
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Example 3 The application is extended with a debts section, where the user can see
the debts. While fetching expenses it is possible for the user to navigate to the debts
section and fetch debts.

With the extension in Example 3 the application all of a sudden has become much
more complex. While fetching expenses, the system can also perform other actions,
such as fetching debts. Since a finite-state machine does not allow the system to be
in more than one state at a time, it is necessary to create states for all possible scenar-
ios. This is partially illustrated in Figure 3.11. However as the figure shows the state
machine becomes much more complex and unreadable. This is because the extended
finite-state machines it is not suitable for modeling different parts of a system that
are active at the same time. Thus a more complex model is needed.

Fetch Fetched

No expenses Fetching
Expenses Expenses . Expenses
- No debts - No debts - No debts

Figure 3.11: Example 3 partially shown as finite-state machine.

3.3.8 Petri net

A more complex way of modeling a system is using Petri nets. Petri net is a modeling
language that can be used to describe a state transition system, similarly to the ex-
tended finite-state machine, but with much more expressive and flexible possibilities,
which allow modeling much more complex applications. It is often used for specifying
distributed systems or for modeling workflows because of the support for parallelism.

Petri nets can be made into a directed bipartite graph consisting of two kinds of
nodes, the places and the transitions. Directed arcs connect the nodes in the graph.
Petri nets can be used to capture the state of a system by defining the places as states.
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When petri nets are used to model an event-driven system it can be referred to as
an events net (Bobbio, 2010). Tokens are used to mark the currently active states.
Opposite the finite-state machine, a petri net can be in several states at once, giving
the possibility to model orthogonality.

Consider for instance Example 3 as illustrated in Figure 3.12. The circles repre-
sent the states of the application and the black bars are the transitions. The black
token represents the currently active states. In the figure two states are active.

Fetch
expenses

Fetch ; f
expenses Fetching Showing
€Xpenses  expenses Fetched expenses
expenses
Ista n Fetch
debts
Fetch f ;
No debts Fetching Showing
debts debts Fetched debts
debts

Figure 3.12: Example 3 modeled using Petri net

Petri nets support many advanced modeling features that makes it possible to model
a complex application and keep track of the state in an application. Further the visual
notation provides a good abstraction for understanding of the internal behavior of an
application.

3.3.9 Statecharts

Another model that extends the traditional finite state machine as explained in Sec-
tion 3.3.6 is statecharts. It extends the finite-state machine with many capabilities,
however the two most fundamental ones are hierarchically nested states and orthog-
onal regions. These constructs allow capturing the state for much more complex
applications. For instance Example 3 is being modeled as a statechart in Figure 3.13.
Using orthogonal regions it is possible model having many active states at once.

As explained by Horrocks (1999, p. 204) “Statecharts are easier to understand than
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Figure 3.13: Example 3 modeled using a statechart

code alone”. The graphical notation provides a great way for understanding how
an application is structured. The graphical notation of statechart provides a really
powerful way of making code virtualization. The notation and feature set offered
by statechart are very much similar to Petri nets. According to Eshuis (2009) a
statechart can in most cased be translated directly to a petri net and vice versa.

3.4 Summary

Several methods for dealing with the overall challenges of developing complex event-
driven software have now been evaluated and analyzed. The suitable method for
further investigation should therefore be selected.

e Structure of applications - To deal with the challenges of structuring an
application, the use of component-based programming, gives much flexibility
and provides a strong foundation. The theory behind this is further explained
in Section 4.1.

¢ Communication between concurrent parts - Message passing provides a
flexible model, which fits well into the component-based way of structuring an
application. The theory behind this is further explained in Section 4.2.

o Keeping track of state - Keeping track of the state in an application is a
general problem which many methods try to make easier. Most solutions are
only dealing with a part of the problem. For instance the Observer pattern for
sending state changes around. However, Petri nets and statecharts delivers a
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complete method for managing state by introducing the concept of an abstract
state. These concepts give the flexibility and expressiveness to model a complex
applications. While both approach introduce powerful concepts, statechart has
been selected as the solution for keeping track of the overall state in a application
because of its intuitive graphical notation, and because the notation contains
constructs useable for modeling GUI applications. The theory behind this is
further explained in Section 4.3.
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CHAPTER 4
Theory

The previous chapter concluded with a set of methods suitable for dealing with the
problem of developing complex event-driven software for iOS. It was analyzed that
components could solve the problem of dividing behavior in the application, pass
messages for communication between the components and use statecharts to keep
track of the state in a component. This chapter covers the theory behind these
methods, before the next chapter uses them to design models for developing software.

4.1 Concurrent components

Operating in a multithreaded environment as explained in Section 2.4 enables the use
of concurrency, where tasks can be executed simultaneously.

“In practice, if two, or more, tasks are concurrent, then they can run in
parallel. This implies that there are no data dependencies among them.”
(Vasileios, 2011, p. 1)

In other words, concurrent tasks cannot share any data between them directly. Com-
bining the concept of concurrent tasks with the concepts of components as presented
in Section 3.1.3, introduces the concept of a concurrent component.

“[A] concurrent component is a procedure with inputs and outputs. When
invoked, the procedure creates a component instance.” (van Roy and
Haridi, 2003, p. 371)

The concept of a concurrent component defines behavior running independently of
other components. A concurrent component can be defined as a component having
its own context to execute within. Data can flow into the component, using its input
and flow out of the component, using its output. This forms the interface of the com-
ponent. The interface is the public visible set of features offered by the component.
This means that a component represents a part of a system that has an inside and
an outside. Only the outside is visible to other components.

The concept of concurrent components is implemented in the language Erlang in
the form of Erlang processes. As explained by van Roy and Haridi (2003, p. 395) a
process in Erlang can run on the same machine or a different one. Each process in
Erlang is given a unique thread in which execution takes place. This means that the
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processes can run independently of each other.

Defining a system of concurrent components, executing independently of each other
requires each component to have its own context to execute within.

4.2 Message passing

Message passing allows parties to communicate with each other by sending messages.
When using message passing it is possible to model a message system. A message
system allows for such communication as illustrated in Figure 4.1.

Message
System

Component 1 Component 2

Component 3

Figure 4.1: Messaging system

4.2.1 Synchronous

A synchronous message blocks the context of the caller until the message delivery has
been completed. The definition of when delivery has been completed depends on the
message system. It could refer to the fact that the message has been given to the
receiver and it has been processed, resulting in a possible return value being provided.
Note that a synchronous message implies that the sender is blocked until the message
has been delivered.

Advantages Synchronous messaging provides a natural way of communication in
the sense that the receiver is getting the messages as they are being sent, just
like with a face-to-face conversation. This makes it simpler to provide error
handling and having return values, since the receiver can reply to a message
synchronously.
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Disadvantages Sending synchronous messages is not flexible, since both the sender
and the receiver need to be ready before the communication can begin.

4.2.2 Asynchronous

A messaging system can be asynchronous. In such a system the caller continues to
run after sending the message without waiting for it to be delivered. This means that
the sender of messages can still precede execution while the receiver has not processed
the message yet.

Advantages As the sender does not need to wait for a message to be delivered, it is
possible to overlap computation and communication. This lowers the latency in
the communication, since the sender is not being blocked and thus other senders
do not have to wait for it to become ready before sending messages to it.

Disadvantages A main disadvantage with asynchronous programming is that the
programming model becomes more complex. This is especially the case when
the sender expects a reply from the receiver, and the two parts end up having a
conversation. This introduces the problem of keeping track of the conversations
in order to understand incoming messages.

4.2.3 Actors

The actors of a message system are the parts that can send messages to each other.
When using message passing as presented in Section 3.2.2, the actors do not share
state, which means that there is no global memory in the system that can be accessed
by the actors. When no memory is shared, the actors need another way of communi-
cating with each other. A way of doing so is using the actor model as explained below.
For the rest of this chapter the words actor and component are used interchangeable.

Actor model

The actor model was proposed in 1973 as a way of dealing with asynchronous messag-
ing, using message passing. The idea is that an actor creates a message in response to
an event occurred or some data that became available. Information is bundled into
an object that is sent to another actor in the system. Each actor has a queue called a
mailbox where messages are queued until the receiving actor is ready to process them.
On top of the messaging system in the actor model, an actor also has the possibility
of spawning new actors, as they are needed. When an actor wants to send a message
to another actor in the system, it will address the actor directly, which means that
an actor must know the address of any actor it wants to communicate with. This
construct of the actor model is illustrated in Figure 4.2.
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Actor 1 Actor 2

Actor 3

Figure 4.2: Actor model.

The main properties of the actor model are listed below.
Sending messages - An actor can send messages to the mailbox of another actor.

Receiving messages - An actor incapsulates behavior, which it executes when it
receives a message.

Creating new actors - An actor can create new actors.

Asynchronous - Since all communication is asynchronous, an actor is never blocked
waiting for a reply.

No order guarantee - The order in which messages are delivered is not guaranteed.

Delivery guarantee - A message is guaranteed delivery if the recipient actor exists.
The message will be discarded if the actor does not exist.

No shared memory - The actors are not allowed to communicate using other
mechanisms than using messages. This means no shared memory between the
actors.

The actor model is in the foundation of languages like Scala and Erlang, which are
languages optimized for highly concurrent programs.

Advantages The actors in the system have no shared memory. Concurrency chal-
lenges such as race-conditions and deadlocks are non-existing.

Disadvantages As discussed in Mackay (1997) a fundamental challenge with the
actor model is the possible state changes caused because of actors spawning
other actors. The behavior of a system becomes harder to analyze statically as
much of the behavior in the system will be determined during runtime. This
also means that it can be more difficult at compile time to determine the mem-
ory usage of the application statically, which for an system relying on the object
model and method invocation often can be determined quite accurately at com-
pile time. (Mackay, 1997).
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4.2.4 Channel system

A way of building a message system is using channels. Instead of actors in the system
communicating directly to each other, they are connected to a channel. The purpose
of the channel is to move messages that are received in one end and deliver them to
the other end. A bidirectional channel allows messages to be sent from both ends
and a unidirectional only allows messages from one end. While it is technically pos-
sible to establish a bidirectional channel it is often not desirable, since it increases
the complexity and in many cases communication between two actors should only
be one-way. The components do not connect themselves to other components in the
system. Instead the channel system relies on a higher level of abstraction that acts
as a plumber and connects the components in the system with channels.

Component 1 —| Channel |— Component 2

Component 3

Figure 4.3: Channel system

An important aspect of the channel system is how the channels are set up between
the components and what types of the channels are used. As explained in Hohpe and
Woolf (2004) two basic types of channels exist as explained below.

Point-to-point channel

The point-to-point channel is used to send messages where there will be exactly one
receiver. This means, that even though several receivers are connected to the chan-
nel, only one of them will receive the message. Further it means that messages are
buffered in the channel if no components are ready to receive it yet. As illustrated
in Figure 4.4 a component sends the messages M1, M2 and M3. Because the channel is
point-to-point each of the three receivers only get one of the messages.
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Receiver
Sender Channel Receiver
Receiver

Figure 4.4: Point to point channel

A point-to-point channel is very similar to remote procedure call as seen in some
languages, where a call should be executed exactly one time. Further it is useful
for load balancing between several components and the channel will only deliver a
message to a component that is ready to receive it.

Publish-subscribe channel

A publish-subscribe channel broadcasts an incoming message to all receivers. Further
if the channel has no receiver the message will be discarded without being delivered
to anybody. This is much like the Observer pattern as discussed in Section 3.3.3. The
concept of a publish-subscribe channel is illustrated in Figure 4.5. All messages sent
out on the channel are delivered to each receiver.

Receiver

Sender Receiver

Receiver

Figure 4.5: Publish subscribe channel

A publish-subscribe channel has many use cases. For instance is it useful for in-
specting the communication on a channel as it only requires to add a component as a
receiver on the channel, and all messages will be delivered to that component as well.

Advantages The channel system provides a very loosely coupled and flexible model.
Components are running in their own context with no shared memory, which
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lowers the complexity for modeling concurrency. As components do not spawn
other components the effect of a single message is limited. Further the model
provides the possibility for inspecting and debugging the message system.

Disadvantages It is not defined by the model to make the system very dynamic
with components that are added during the execution of the system, this should
be handled by other mechanisms.

4.2.5 Ports

Instead of connecting channels directly to the component, ports can be used. A port
represents an opening between a component and the surrounding environment. Both
the actor model and the Channel System can use the concept of ports. Figure 4.6
shows how ports can be used with the Channel System, where a port is put on the
edge of a component and a channel is connected to the port instead of directly to the
component. For the actor model an actor can act as the port of another actor.

P —{ Chamai }—7

Sender Receiver

Figure 4.6: Ports

A port can contain the interface for the communication and thus act in a way for
showing the surroundings which messages can be sent to a component. UML2 dis-
tinguishes between two kinds of ports. A service port, which is visible to the outside
of a component and a non-service port which is only visible to the component itself.
The non-service port allows the component to send messages to itself.

Advantages Using ports has the benefit that it is possible to define an interface
visible to the outside. This makes it easier to correctly connect components
that know how to communicate with each other.

Disadvantages Adding the need to specify ports on each component in order to use
the Channel System introduces a bit of overhead compared to simply connecting
the channels directly to the components.

4.2.6 Router

Communication between components can be modeled to go through a single actor in
the system, called a router. The router is in charge of delivering messages to the right
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receivers. The concept of a router in the Channel System is illustrated in Figure 4.7.
It could also be used with the actor model where a special actor is the router in the

system.

Component 1 Component 2

Router

|jpuuey)

Component 3

Figure 4.7: Message router

It is essential that the router is always ready to receive messages and thus it should
queue incoming messages before routing them one by one.

Advantages The advantage of routing all messages through a single point is that
inspections of the messaging system become easier. For instance, if the router
can be set to log all messages passing through, which could be useful for debug-
ging the system. The serial queue in the router brings a total ordering to the
flow of messages in the system.

Disadvantages On the down side routing all messages through one point introduces
a bottleneck for the communication system. It is essential for the system to work
in practice with a high throughput, so that the messages queue in the router
does not explode with messages that are waiting to be routed.
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4.3 Statechart

As briefly presented in Section 3.3.9 a way of capturing the state is by using statecharts
as presented by David Harel in 1986 (Harel, 1986). This section goes into the theory
behind statecharts and its notation.

4.3.1 Transitions

In order for the statechart to change state a transition must occur. The concept is
similar to the transitions as explained for the finite state machine in Section 3.3.6. A
transition may occur as a reaction to an event. As illustrated in Figure 4.8, where a
transition is performed from State 1 to State 2 when event eventl occurs.

(state machine SimpleTransition [ %, SimpleTransitionU h
event1
State 1 > State 2
event2
\§ J

Figure 4.8: Simple transition

Self-transition

The possibility for a state to perform a transition to itself exists in the form of self-
transitions as illustrated in Figure 4.9 where event1 triggers a self-transition of State
1.

(state machine Self Transition [ %, Self Transitionu h

State 1

event1

Figure 4.9: Self-transition

With self-transitions both the exit and later the enter action is called on the state.
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Internal transition

The next type of transition is an internal transition. An internal transition is similar
to a self-transition in the sense that it does not trigger a change of the active state
configuration, however only the transition action is called when an internal transition
occurs. The graphical notation of an internal transition is shown in Figure 4.10.

(state machine Internal Transition [ %, Internal Transitionu h
State 1
eventl
\§ J

Figure 4.10: Internal transition

Initial transition

The state in which the statechart starts is determined by the initial transition, which
is identified by a transition going from a solid circle to a state. This transition will be
performed when the statechart is being started. In Figure 4.11 the initial transition
takes the statechart into State 1.

(state machine Initial state [ %, Initial stateu h
State 1
State 2

\_ J

Figure 4.11: Initial transition
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4.3.2 OR state

A statechart consists of states. An OR state is a type of state, which is similar to the
states in the finite state machine as presented in Section 3.3.6, however the OR state
introduces the concept of a hierarchy of states. An OR state that contains substates
is known as a composite state. An OR state that does not contain substates is known
as a leaf state. This is illustrated in Figure 4.12, where State A is a composite state
with two substates State Al and State A2. When State A is active it can either be
in State Al or State A2, but never both at the same time.

(state machine OR state [ %, OR stateu h

State A

H State A1

| ]

State A2

Figure 4.12: OR state

Notice how the concept of initial transition is used inside a composite state to specify
the default state when entering the composite state.

4.3.3 AND state

Another kind of state is the AND state. An AND state contains one or more regions.
Each region may consist of an AND state or an OR state. When an AND state is
active all of the regions are active. Because of this property an AND state is also
known as a orthogonal state. Figure 4.13 shows an AND state called State A with two
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regions separated by a dotted line. Each region contains an OR state called State
A1 and State A2, that both contains substates. In the initial state configuration the
states State A, State A1, State A2, State Al 1 and State A2 1 are all active. If
eventl occurs it will trigger two transitions. A transition from State A1l 1 to State
A1 2 and a transition from State A2 1 to State A2 2. Performing a transition out
of a region as done with event4 results in leaving all of the regions.

(‘state machine AND state [ % AND stateu

. State A
. State A1

event2
State A11 « | State A12

—> event4

event1 ﬁ
State B
. State A2

event3
State A21 « | State A22

event1

Figure 4.13: AND state

4.3.4 History connector

The initial transition as explained in Section 4.3.1 defines which substate of an OR
state should be entered. However, sometimes the state has been entered previously
and the last active substate should be entered instead. This can be done using the
history connector. For instance consider Figure 4.14 with the active state being State
B. Receiving event3 makes a transition to the history connector of State A, which
will automatically go to the last active substate instead of the initial transition. If no
history exists, the initial transition will be performed instead.

4.3.5 Fork connector

The AND state as explained in Section 4.3.3 allows several regions to be active at
the same time. A transition to a state in a region results in all of the regions becom-
ing active. The default behavior is that the initial transition is used for each of the
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(‘state machine History [ [Z History U )
State A State B
H State A1
\L event1l
State A2 event3
{ event2
- J
Figure 4.14: History connector
e : = N
state machine Fork connector [ =5 Fork connectoru
State B
State B11 State B12 H
State A j\
event1
State B21 State B22 2 .
N J

Figure 4.15: Fork connector

regions, except the one that caused the transition, however this is not always the de-
sired behavior. The concept of a fork connector as defined by Harel and Kuger (2004,
p. 15) makes it possible to define a transition from a single source state to multiple
target states as shown in Figure 4.15, where a transition is made from State A to
both State B11 and State B21 when eventl occurs.

It is only supported when states are located in different regions. Using it to make a
transition to two states in the same region is not supported.
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state machine Join connector [ % Join connectoru
State A
State A12 State A11
t1
en State B
State A22 State A21

Figure 4.16: Join connector

4.3.6 Join connector

In a certain situation when making a transition from a state inside a region to a
state outside of the region, the transition should only be made if a certain state is
active in another region inside the same AND state. This can be modeled using a
join connector as illustrated in Figure 4.16. If both State A1l and State A21 are
active when eventl occurs, then a transition to State B is performed.

As well as with the Fork connector, the Join connector should be used with caution
in order not to model an invalid statechart.

4.3.7 Transition guards

So far a transition has been defined as a reaction to an event triggering a state change.
Using guarded transitions it is possible to only perform the transition if a condition
evaluates to be true.

“Guard conditions affect the behavior of a state machine by enabling ac-
tions or transitions only when they evaluate to TRUE and disabling them
when they evaluate to FALSE.” (Samek, 2008, p. 64)

Moreover, it makes it possible to define transitions that automatically trigger a state
transition when their conditions becomes true, without having an event defined on
them. Figure 4.17 shows two transitions, each with only with a guard. Once the
condition of the guard becomes true, the transition is performed. In the example
State2 is entered once the extended state variable i becomes larger than 2, and
Statel is entered when it comes less or equal to 2.
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(‘state machine GuardedTransition [ % GuardedTransitionU )
State1 when (i>2) State2
i i++ | EEE— -
increment / i when (i <=2) decrement / i

Figure 4.17: Guarded transition

4.3.8 Timeouts

Behavior that is determined by time can be modeled using timeouts(Horrocks, 1999,
p. 73). By a timeout a transition can automatically be triggered once the timer runs
out. This can be useful when modeling a user interface, where changes to the Ul are
being performed according to time. Figure 4.18 illustrates how a timeout can be put
on a transition. In the example a transition from Statel to State2 is automatically
performed after 10 seconds.

(‘state machine Timeout [ % Timeouty )
State 1 after (10 sec) State 2
—_—>
N J

Figure 4.18: Timeout

Deferred event

Modeling a statechart that is ready to handle any incoming event at any time is
a difficult task. For this reason UML has defined the concept of event deferral. As
explained by Samek (2008, p. 220) “The solution is to defer the new request and
handle it at a more convenient time”. The mechanism makes it possible for a state
to have a list of events that it defers. Whenever a transition occurs in the statechart,
all deferred events are reposted to the statechart engine, in order to determine if the
new state configuration is able to handle the event. The concept is illustrated in
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Figure 4.19, where state Working defers the event work. When a transition is made
to state Waiting, the event is recalled and a transition to state Working is performed.

(‘state machine EventDeferral [ BE} EventDeferraIU h
work Working
LRl « | work/defer
done
N J

Figure 4.19: Event deferral

Submachines

In order to support reusability within a statechart UML extends the original statechart
notation with the concept of submachines. As explained by Arlow and Neustadt
(2002, p. 343) “Submachine states are a way of simplifying statecharts by allowing
you to refer to a submachine that has been fully defined on a different diagram”. In
other words, submachines make it possible to embed a statechart as a part of another
statechart. This makes it possible to define reusable statecharts that can be embedded
as submachines inside other statecharts. The concept is illustrated in Figure 4.20,
where the statechart on the right is used as a submachine inside the statechart on the
left. The execution of the statechart is identical whenever submachines are used or
not.

(state machine Submachine [ g‘r Submachineu 0
state machine Over t[ % [o] .y
State B
State 1 H
® @ > statear |eventt State A2 . State B1
event3 event2

: Submachine State B2

- J

Figure 4.20: Example of a submachine (right) embedded inside a statechart (left).
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4.3.9 Transition execution

A traditional finite state machine with a flat structure has a simple execution, how-
ever having a hierarchy of states and orthogonality introduces a much more complex
execution.

State configuration

An important concept of a statechart is the state configuration which represents the
currently active states. In a flat structure as presented with the finite state machine
only a single state can be active at a time, however with composite and orthogonal
states, the statechart consists of a configuration of states that are active.

Responding to events

('state machine Event order [ BE_‘( Event ordery )
State A State B
event1
. State A1
State A11
% State C
event1
Cd
-
= \ N
£ ~
- \ ~
First responder to Second responder Third responder to
events to events events
N J

Figure 4.21: The responding order for events.

As explained in Section 4.3.1 states have transitions that respond to events. Several
states in the statechart may respond to the same event. Having a hierarchy of OR
states introduces the possibility that several states, currently a part of the active
state configuration, respond to the same event. This is shown in Figure 4.21. For
this reason an order, for how active states respond to an event, must be defined. The
rule is that the lowest composite state that is a part of the current state configuration
is the first responder. If the state does not respond to the event the superstate will
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(‘state machine StateExecution [ g‘r StateExecutionU )

State A
T State A1 State A2

event2

State A11 Svent] .| state A21 State B
7 AN
va \
4 \
4 \
va
A
, 1
/ 4 N
" Least common .
;’-\ctlvﬁl state before g - f\ctlvi state after
ransition State A11 and State ransition
A12
- J

Figure 4.22: Finding lowest common ancestor before transition.

have a chance to respond. This continues until the root state is reached. If no state
responds to an event it is discarded. For Figure 4.21, where the system is in the initial
state configuration it is State A11 which is the first responder for all events. Then
State Al and finally State A. Consider the case where eventl is being triggered.
Since State A11 does not respond to eventl it will be forward to State A1l and a
transition to State C will be performed.

Actions

When performing a transition certain actions are performed. All states that are being
exited get the chance to fire an action, further the transition can fire an action and
finally all the states that are being entered can fire an action. The order of the actions
is the following:

1. Exit actions
2. Transition actions

3. Enter actions

Lowest common ancestor

In order to determine which states that should be exited and which that should be
entered it is necessary to find the lowest common ancestor(LCA) of the source and
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target state of the transition. The LCA is defined as the lowest composite state that
is superstate of both the source and target of the transition. For instance consider Fig-
ure 4.22 with a transition from State A1l to State A21. The LCA is State A since
it is the lowest composite state that is a superstate of both State A11 and State A21.

During a transition all the states from the source state up to and not including
the LCA need to be exited and all the states from and not including the LCA to the
target state need to be entered. For Figure 4.22 this would result in State A1l and
State Al being exited and then State A2 and State A21 being entered.

A special case exists where a composite state causes a transition to a substate as
illustrated in Figure 4.23, where State A contains a transition to State A1l on
eventl. The rule is that all the states up to but not including the composite state
that handles the event must be exited, before entering down again to a leaf state
again. If State A1l is active, both State A1l and State A1l are exited. Then the
action of the transition is called before State Al and State A1l are entered again.

(‘state machine Superstate transition [ %/ Superstate transitionu )
State A
I event1
State A1
@ - state At
- J

Figure 4.23: Transition from composite state to substate.

4.4 Summary

The theory behind the methods has been covered by looking at concurrent compo-
nents, message passing and the statechart notation. Based on this knowledge the
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next chapter is going to design a solution for modeling applications.



CHAPTER 5
Design

Based on top of the theory presented in the previous chapter, this chapter covers the
design decisions taken for the framework to be implemented. This includes designing
the concept of a component and in particular choosing the right execution context
for a component. Further the messaging system is designed to make communication
between components possible. The design of the statechart engine is covered, which
provides the ability to keep track of the state in a component. Lastly based on the
designed system, debugging and inspection functionalities offered are discussed.

5.1 System of components

As analyzed in Section 3.1 dividing an application into separate components allows
for separation of behavior in an application. This is illustrated in Figure 5.1. The
introduction of components gives a higher level of abstraction compared to seeing an
application as a collection of objects and because of that it allows for more control
over the flow in the system. This includes both the flow inside of a component as
discussed further in Section 5.3 and the flow between components as discussed in
Section 5.2. The requirements for the component system are first established before
defining the context of execution for a component.

1 Application !
| |
1 1
i | Component 1 Component 2 Component3 | !
| |
1 1
! |
1 1
1 | Component 4 Component 5 Component6 | |
| |
1 1
1 1
1 1
i | Component 7 Component 8 Component9 | |
1 1
1 1

Figure 5.1: Application constructed of components
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5.1.1 Requirements for component system

In order to evaluate approaches and make design decisions for the component system,
the following requirements have been established.

e Low memory footprint - As the component is going to be a substantial part
of an application, the components should not put a heavy memory footprint on
the system.

e Independency between components - The execution of each component in
the system should be independent of other components. The load and activity
of one component should not influence other components.

5.1.2 Component execution context

An important property of components is that they run independently of each other.
Having this property eases the challenges of modeling concurrency, since a single
component can safely perform tasks, without having to worry about other parts of
an application. For instance this means that if the execution of one component is
blocked, other components will not suffer from this. Two overall approaches have
been considered in order to establish this property and they are discussed below.

Unique thread per component

Thread 1 Thread 2 Thread 3

Component 1 Component 2 Component 3

Figure 5.2: Using a thread for each component in the system.

One solution to allow each component to have its own context is to instantiate a
thread for each component in the system. By allowing each component to manage its
own unique thread, the components run independently of each other, since blocking
one thread does not affect other threads in the system. This idea is illustrated in
Figure 5.2.

Using this approach the number of threads in the system becomes equal to the number
of components. Since one of the requirements is to maintain a low memory footprint,
the memory usage of having many threads is investigated further in order to validate
the solution. Apple (2014b) approximates that it requires around 512 KB of memory
on the stack to store a running thread. Depending on the number of components
running in an application this could lead to high memory usage. For instance using
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this approximation to run 100 components would take up 50 mb. It is important to
notice that this memory is only for keeping the threads alive. However, as stated by
Apple (2014b) “the actual pages associated with that memory are not created until
they are needed”. This means that when a thread is allocated, the stack size is low and
increases, as more memory is needed on the stack by that thread. In other words, the
actual memory consumption depends on the application it is used in. As the amount
of memory is limited when running on a mobile device as discussed in Section 1.3.2, a
complex application with many components may end up using too much memory and
thus getting terminated by the operating system. The documentation for iOS does
not state the amount of memory an application may use before being terminated. For
this reason a test has been performed as presented in Example 4.

Example 4 In order to determine how the operating system reacts on 10S when
applications consume much memory a test has been performed on several generation
of devices. The test has been performed in a setup using many threads in order
to simulate the situation of having a thread for each component. In order to have
a realistic stack size for each thread, the example allocates around 512 KB on the
stack for each thread created. In the example project instances of the class Thread is
created. This is a subclass of NSThread, which when instantiated creates a thread from
the perspective of the operating system. The ThreadMemoryTest project is included
in the resource as explained further in Appendixz A.

Profiling the project as explained in Example 4 with 100 instances of Thread results
in a memory usage of around 54 MB, which corresponds to 558 KB for every compo-
nent. As also explained further in Section 7.2.1 the operating system sends a memory
warning when an application is using too much memory in order to ask it to release
memory. When the operating system needs memory for other applications it will
automatically terminate the applications currently consuming the most memory. Be-
cause of that it is desirable to use as little memory as possible. In Table 5.3 different
iOS devices have been tested with a variant number of instances of Thread objects.
For each test, the memory consumption has been recorded together with a status,
as shown in Table 5.3. The status indicates whenever the memory usage is so high
that the application crashed received a warning or ran normally. The status Warning
means that the application received one or more memory warnings from the operat-
ing system, The status Crashed means that the application was terminated during
execution because of high memory usage and finally the status Normal means that
the application kept memory usage within the limits and execution were normal.
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’ # Threads Model Memory usage Memory status ‘
100 iPhone 5S 55 MB of 1024 MB Normal
100 iPhone 5 54 MB of 1024 MB Normal
100 iPhone 4 54 MB of 512 MB Normal
100 iPod Touch 4 gen. 58 MB of 256 MB Normal
250 iPhone 5S 132 MB of 1024 MB Normal
250 iPhone 5 132 MB of 1024 MB Normal
250 iPhone 4 132 MB of 512 MB Normal

250 iPod Touch 4 gen. 140 MB of 256 MB
500 iPhone 5S 262 MB of 1024 MB Normal
500 iPhone 5 263 MB of 1024 MB Normal
500 iPhone 4 262 MB of 512 MB
500 iPod Touch 4 gen. Out of memory Crashed
750 iPhone 5S 394 MB of 1024 MB Normal
750 iPhone 5 393 MB of 1024 MB Normal
750 iPhone 4 Out of memory Crashed
750 iPod Touch 4 gen. Out of memory Crashed
1000 iPhone 58 521 MB of 1024 MB
1000 iPhone 5 523 MB of 1024 MB
1000 iPhone 4 Out of memory Crashed
1000 iPod Touch 4 gen. Out of memory Crashed

Table 5.3: Threads memory usage on different devices.

As shown in Table 5.3 it seems that a memory warning is issued if around half of the
memory available on the device is used by an application. An older device such as
iPod Touch 4. gen. with only 256 MB of ram receives memory warnings with 250
threads running. It crashes if this amount is increased to 500. Running on some of
the newer models such as iPhone 5(S) allows to more than 750 threads before running
into memory issues.

It is important to note that the memory usage from Table 5.3 only includes the
memory needed to have the threads running. Using a thread for each component
would require way more memory as the data and state of the application would take
up much memory too. As a low memory usage is crucial for keeping the application
alive using many threads should be avoided and thus the solution with a thread for
each component is not recommended.

Shared thread pool

Instead of allocating a dedicated thread for each component as discussed in the pre-
vious section another approach is to have a pool of threads. This pool is shared by
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all components in the system. A way of modeling this is by having a serial queue,
which a component has to go through in order to get access to a thread from the
pool. The use of a serial queue where components wait for a queue to be available is
illustrated in Figure 5.4. Once a component is done using the thread it is automati-
cally released for other components to use. As also explained by Haller and Odersky
(2007, p. 11), the size of the thread pool needs to be flexible. As more components
need to use a thread, more threads are created. Further as threads are left unused
in the pool, they are deallocated again. The number of threads running does not
need to be equal to the number of components in the system. A component only
acquires a thread when it has a task that needs to be executed, and as soon as it
finishes, the thread is released again. If the number of available threads in the pool
is zero and a new component needs to use a thread, a new thread will be instanti-
ated, in order for a component not to wait for another component to release its thread.

With the shared thread pool the threads are only taking up memory when they are
needed. Since a system can consist of many components that only execute code when
certain events occur, this calls for a much more efficient memory usage. Further, since
new threads are spawned when needed, the components are still independent of each
other. For these reasons it has been decided that the components execution context
should be based on a shared pool of threads instead of a unique thread per component.

Component 1

T

Component 2 —> Thread pool

Component 3

Figure 5.4: Using a pool of threads to share between components.

5.2 Communication system

So far a way of structuring an application into components has been defined. However,
this introduces the requirement to allow communication between components. Such a
communication system defines the way the components communicate with each other.

5.2.1 Requirements for communication system

The following requirements have been established for the communication system.
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e Loosely coupled - By designing the system to be loosely coupled, components
can easily be exchanged. For instance during testing where certain components
can be exchanged with mocks? to make it easier to test the behavior of specific
components.

e Deterministic - In order to understand and debug the system an important
property is determinism. In the sense of the messaging system this means that
the order in which the messages are delivered is deterministic. This creates an
order in which the messages have been delivered. Having such an order helps
understanding the behavior of the system.

e Inspection - Designing the message system so it can be monitored and in-
spected live enables many features such as seeing the messages that are being
sent in the system at a given time.

e Integration - The message system should fit in with existing frameworks and
system events.

5.2.2 Message

As discussed in Section 3.2.2, a message passing system is built around the idea of
messages. A message is used to communicate between components. Each message
should have the following properties.

Identifier - Unique identifier that can be used to identify the message.

Timestamp - Date for when the message was sent.

Body - The content included in the message.

Message Type - Statically defined type that can be used by the receiver to
identify the kind of message that was received.

Defining a type for a message is important, since otherwise the receiver would not be
able to determine how to react to the message.

5.2.3 Synchronous vs. Asynchronous

As presented in Section 4.2.1 and Section 4.2.2, an essential design decision for the
messaging system is if the communication should be synchronous or asynchronous.
Both of which have advantages and disadvantages.

2A mock is an implementation of a class that can be setup to have a specific behavior, which is useful
during situations where the class is expected to act in a specific manner.
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As mentioned in Section 1.1 one of the challenges when developing i0S applications
is to keep the user interface interactive at all time. Traditional method-invocation
in Objective-C uses a synchronous method passing system. While this makes sense
for most cases, certain operations need to be handled asynchronously in order not to
block the main thread as discussed in Section 2.4. As presented in Section 5.1.2, a
component is running in its own context. Sending a synchronous message to another
component would, as presented in Section 4.2.1, require the sending component to
wait until the receiving component is ready to receive the message. However, this
would violate the requirement of having independent components, since the execu-
tion of the sending component depends on the execution of the receiving component.
This dependency can be removed by simply designing the whole messaging system
between components to be asynchronous. Further with all communication being
asynchronous, handling events from the system becomes much easier, since they are
also asynchronous. In fact, in order to integrate the components in the event-driven
environment, events can be captured and send as asynchronous messages to the com-
ponents for them to react upon.

In order to meet the requirements it has been decided that communication between
components in the system should be asynchronous only, and the designed communi-
cation system should therefore be built around this decision.

5.2.4 Actor model vs. Channel System

As presented in Section 4.2.3, the actor model is one way of doing an asynchronous
messaging model and as presented in Section 4.2.4 the channel system is another way.
The two solutions will be evaluated according to the requirements established in Sec-
tion 5.2.1.

The actor model divides an application into independent parts, which share no mem-
ory. This maps directly to the components used in the design. While the actors are
running independently of each other, the actors still have a coupling to each other.
This comes from the fact that in order to send a message a sending actor needs to
know the address of the receiving actor. Hence the actors have a close relation to each
other, as they know exactly whom they are sending messages to. Because of this the
actor model does not allow actors to be exchanged easily. The channel system takes
a different approach. By the introduction of a channel concept, the components do
not know each other. Instead they share a channel, which they can send messages
on and retrieve messages from. This allows for a much more loosely coupled system.
Since each component only knows a channel it can send messages on and not other
components that are connected to the same channel. This means that a component
can easier be exchanged without affecting other components.

The actor model defines how actors can spawn other actors in the system. This
means that the actors themselves take part in creating the components in the sys-
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tem. With the channel system in order to archieve a more decoupled system, the job
of creating and connecting the components can be done outside of the components.
This allows the individual components to operate unaware of structural changes in
the system.

Based on the fact that the channel system provides a very loosely coupled and flexible
model it has been decided to use that as the foundation for the messaging system to
be implemented instead of the more tightly coupled actor model.

5.2.5 Routing vs. direct communication

Having a system of components that can communicate with each other using chan-
nels introduces the problem of how these channels should be connected between the
components and where the responsibility for delivering messages should be put. One
way of doing it is to let the channels be in charge of delivering the messages to the
receiving components. This gives a direct communication between the components.
Another approach it to use a router that handles this as explained in Section 4.2.6.
Using a router the messages are sent to a router, which directs them to the correct
receivers.

An advantage of having all traffic going through a single point is that a complete
ordering of the delivery of the messages can be recorded, by having all messages go
through a queue in the router and timestamp them as they are being processed. This
means that the order in which the messages have been delivered can be logged and
used for debugging. It gives a very deterministic messaging system. Direct commu-
nication between components only allows making partial order, since some messages
may be delivered concurrently. This can be done using algorithms such as Lamport
timestamps(Krzyzanowski, 2006). Applying such algorithms into the messaging sys-
tem increases the complexity, but on the other hand having a central router where
all traffic passes introduces a bottleneck that may influence the performance of the
system. If the router is unable to process the messages, as they are added to the
queue, larger latency is being put on each message.

It was at first decided to design the system around a direct communication model,
because of the simplicity of the model, however as discussed further in the implemen-
tation in Section 6.2.2 it was decided to extend with a central router, changing the
design to a routing approach, where a router took over the responsibility of delivering
messages. This design change allows better debugging and inspection capabilities.

5.2.6 Communication protocol

As explained in Section 5.2.4 each component contains channels as a way of sending
and receiving messages. However, since a component does not know to whom it is
sending messages, it is also unaware about which kinds of messages it can send. Sim-
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ilarly since a component does not know who is sending messages to it, it is unaware
of which kinds of messages it might receive. For this reason the interfaces going into
a component must define the messages a component can receive and similarly the in-
terfaces going out of a component should define the messages a component can send.
This can be done by having a protocol, which defines the messages a component un-
derstands. One way of doing this is to have a protocol on each channel as illustrated
in Figure 5.5, where a message of each of the types M1, M2 and M3 is sent on the chan-
nel by the sender. The protocol defined on the channel defines these three kinds of
messages, and hence they are all valid to be sent on the channel and since the channel
is a publish-subscribe channel as explained in Section 4.2.4 they are all delivered to the
receiver. However consider the case where only Receiver 1 understands the message
of type M1, and only Receiver 2 understands the message of type M2 and finally only
Receiver 3 understands the message of type M3. This cannot be modeled using a
single channel and instead it is required to have a unique channel between the sender
and each of the three receivers. However, having to create a unique channel between
every component in the system that needs to communicate makes the system less
flexible.

M1 Receiver 1
Channel

M1 M2 M3 M1 M2 M3 Receiver 2

Sender - - - <M1, M2, M3> eceiver

M1 Receiver 3

Figure 5.5: Protocol defined on channel.

Alternatively, in order to deal with this problem, the concept of ports can be used
as introduced in Section 4.2.5. By placing a port in front of a component and defin-
ing the protocol on the port instead of the shared channel, it is possible to share a
channel between several components, while each component only receives messages it
understands. This is illustrated in Figure 5.6, where each port defines a protocol. The
output port of the sending component includes all three message-types in its protocol,
while the input port of each component only specifies the kind of message that the
component understands. This guarantees that a component only receives messages
defined on one of its input ports and only sends messages defined on one of its output
ports.

Three basic kinds of ports are defined having different responsibilities. An input
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port is used for receiving messages, an output port is used for sending messages and
finally an event port is used for internal messages inside a component. Additional two
special kinds exist called input proxy port and output proxy port. A input proxy port
is used to receive messages from a channel on behalf of another port. As messages
are received they are forwarded to another port. Similarly a proxy output port can
be used to send messages to a channel on behalf of another port. Messages received
by another port are forwarded and sent out of the proxy port.

Port .
I!MI![]IiHHHHHIHI!HHII
Receiver 2 | M2

Receiver 3

Port
<M1,M2,M3>

Sender

Figure 5.6: Protocol defined on ports.

5.2.7 Network bridging messages

The loosely coupled messaging system allows for designing very flexible applications.
While the main purpose of the messaging system is to be used for sending messages
between components running in the application, it is also often useful to communicate
with other devices on the local network or over the internet. Since a component is
unaware of how the channels in the application have been connected, and since all
communication is happening asynchronously, it is possible to create a network bridge
where each message is packed, then sent over the network and afterwards unpacked,
before being delivered to a component running on another device than the sending
component. This process is illustrated in Figure 5.7, where a component running in
application on Device A sends a message on one of its output ports. The port is con-
nected to a channel where a Bridge Component is a receiver. The Bridge Component
is a component that can pack and unpack messages sent over the network. When the
Bridge Component on Device A receives a message on its input port it will pack the
message in a suitable format and send it over the network. As messages are received
by Device B, they are unpacked and sent on the output channel. The receiving com-
ponent gets a message, it is unaware that it actually originated on another device.
It works as if the two components were connected using a channel on the same device.
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Figure 5.7: Network bridge

In order to send messages over the network a simple protocol for the endpoints to
use has been defined that allows sending objects over a socket connection. An object
can be seen as a chunk of data that needs to be transmitted. The protocol makes the
separation between a header and a body as illustrated in Figure 5.8. This is similar
to other communication protocols like Hypertext Transfer Protocol(HTTP). The
header part is of a fixed size. It contains information about the type of data being
transmitted and the length of the body. The length of the body depends on the
objects that need to be transmitted.

Header Body

| Fixed length | Length of data '

Figure 5.8: Header and body for transmitting messages over network.

By considering a stream of objects being sent as illustrated in Figure 5.9, the re-
ceiver can retrieve the body part of each message and decode it into an object again,
since the header contains the number of bytes needed to be read to retrieve the whole
body and the size of the header is fixed and known by the receiver.

Header Body Header Body Header | Body | Header Body

Figure 5.9: Stream of messages send.
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In Section 5.4 it is discussed further, how the capabilities of the message network
bridge can be used in designing tools essential for building asynchronous software.

5.3 Capturing state in components

In order to capture the state in each component, statecharts are used as analyzed in
Section 3.3.9 and with the notation as presented in Section 4.3.

5.3.1 Requirements for statecharts

In order to take the definition of statecharts and apply them in a practical setup
for developing iOS applications, many design decisions need to be considered. The
requirements that the model of a statechart must satisfy are listed below.

e Hierarchy - The model must support modeling a hierarchy using OR states.

e Orthogonality - The model must include the power of orthogonality offered
by AND states.

e Extendible - The model should be easily extendible with functionality from
the statechart notation such as deferred events, merge and forking connecters
as described in Section 4.3.

e Reuse of logic - The design should allow logic from a statechart to be reused
in another statechart.

5.3.2 Modeling statecharts

An important part of the design of statecharts is how they are modeled. The model
is two folded. On one hand it covers the application specific statechart that is being
designed by the developer of an application. On the other hand it is the statechart
engine that is able to execute these statecharts. Both the model of the engine and
the statecharts should take the requirements of the statechart model into account.

First a solution for modeling statecharts will be considered before designing a model
for a statechart engine that can execute statecharts according to the rules specified
in Section 4.3.9. Three models for constructing a statechart are considered in the
following sections.

Event-action table

A way of modeling a simple statechart is using one big table. The simple finite-state
machines discussed in Section 3.3.6 can be modeled by a state transition table (Wag-
ner, 2006, p. 4) where for each state a mapping is made to the next state for each
event the state responds to. However, because of the hierarchy of a statechart a more
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complex table is needed. As presented by Horrocks (1999, p. 82) an event-action table
can be used. This table contains information about the transitions in the statechart
and the actions performed, while taking the hierarchy into account. Consider the
simple example of a statechart allowing to first fetch and then parse data from the
internet as shown in Figure 5.10 with four states. This simple statechart does not
satisfy the requirements established in Section 5.3.1, however it is used for simplicity
in order to make an early validation for modeling the statechart.

(‘state machine Download statechart [ % Download statechartu )

DownloadData
Parsing Fetching
entry /startParsin entry /startFetchin
Idle download / prepareFetch exit y/cleanup "9 Y ng
downloaded / allDone u

fetched / didFetch

N J

Figure 5.10: Simple statechart that downloads and parses data.

The three transitions could be modeled using an event-action table as shown in Ta-
ble 5.11. The table shows for each event which current state they can be triggered
from, which action that the transition is firing and lastly the next states that the
statechart should make a transition to. For instance, when being in state Download-
Data and the substate Fetching, the event fetched would take the system to state
DownloadData and the substate Parsing and trigger the action didFetch.

Current state Event Action Next state
Root Idle Download- Fetching  Parsing Root Idle Download-  Fetching  Parsing
Data Data
Idle download prepareFetch | DownloadData  Fetching
DownloadData Fetching fetched didFetch DownloadData  Parsing
DownloadData Fetching, Parsing park selected allDone Idle

Table 5.11: Event-action table of the statechart from Figure 5.10

For a simple statechart as the one from Figure 5.10 the event-action table gives a
simple overview of the system. The number of rows in the table is equal to the
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number of transitions in the system, the columns are equal to two times the number
of states plus two columns for the event and action respectively. This means that as
the complexity of an application grows the overview in the table quickly disappears.
Further as noted in Horrocks (1999, p. 82) the table does not easily allow several
people to work on the same statechart at once, without being faced with conflicts
when merging changes in the table together. For that reason the use of a table is too
simple for modeling something complex and a better model is needed.

Single function with cases

Instead of using a table it is possible to provide a single function that is able to han-
dle an event, fire the actions and return the next active state. This code is shown in
Listing 5.1 for the statechart from Figure 5.10. In this simple approach a state and
an event are represented by an int, but any other simple data type could have been
used as well. The function expects three reversed events to be provided for being able
to handle initial, entry and exit transitions. Since all the logic is put into a single
function, the hierarchy must be included in the function. This is done by having a
switch on the event type that is provided as an argument to the function. Further,
the current state is passed as an argument to the function and for each case of event,
the current state is checked to see if it responds to the event. If so, the next state is
returned. If the current state did not respond to the event, zero is returned. Further
if the transition defines an action, it is fired just before the next state is returned.

Listing 5.1: Structuring the statechart using a switch cases.

//states

int idle = 1;

int downloadData = 2;
int fetching = 3;

int parsing = 4;

//events

int initial =
int entry = 2;
int exit = 3;
int download = 4;
int downloaded = 5;
int fetched = 6;

1

- (int)handleEvent: (Event)event forState:(int)state {
switch(event) {
case initial: // initial transition
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if (state == root) {
return idle;

} else if(state == downloadData) {
return fetching;

}

break;

case download:

if (state == idle) {
[self prepareFetch];
return downloadData;

}

break;

case fetched:

if (state == fetching) {
[self didFetch];
return parsing;

}

break;

case downloaded:

[self allDone];
return idle;
}
case entry: {
if (state == fetching) {
[self startFetching];
} else if (state == parsing) {
[self startParsing];
¥

//event was handled
return O;
}
case exit: {
if (state == parsing) {
[self cleanup];
}

//event was handled
return O;

if (state == fetching || state == parsing) {
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// No state responded to the event
return O;

While the solution suits as a correct way of modeling the statechart from Figure 5.10,
it contains some downsides. Even with a simple example the single method is becom-
ing hard to read and understand. The hierarchy of the statechart is defined by the
order of the cases in the switch statement, since substates should be able to handle an
event before its superstate, as described in Section 4.3.9. This way the model quickly
becomes difficult to maintain and understand, as the complexity of the statechart
grows. Further trying to model the requirement of orthogonal regions would dramati-
cally increase the complexity and would not be feasible for complex applications with
larger statecharts. Thus a better model is needed.

Functions for each state

The problem with having one function for handling events in the statechart can be
avoided by making a separation into several functions, as shown in Listing 5.2 for the
statechart in Figure 5.10. This approach is similar to the one suggested by Samek
(2008, p. 39-48). Instead of abstracting a state into a simple int, as in the previous
model, each state is instead modeled as its own function. Each function takes an event
as the parameter and checks if it responds to the event. If it does, the action corre-
sponding to the event is fired and the next state the engine should make a transition
to is returned using the Transition(state) macro. The macro is used instead of
simply returning the state as a way of using the return type to return different types
of values. For instance, if the state responds to the event with an internal transition
it simply performs the action and returns the Handled () macro to tell the engine
that the event was handled in this state. If the state is not responding to the pro-
vided event it returns a reference to its superstate using the Superstate (superstate)
macro. This allows the statechart engine to propagate the event up in the statechart
hierarchy using a bottom-up approach, until the root is reached. The root state of
the statechart that defines the initial transition and handles all events in order to
stop the propagation.

Listing 5.2: Structuring the statechart using methods.

//events

int initial =
int entry = 2;
int exit = 3;
int download = 4;

1
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int downloaded = 5;
int fetched = 6;

(StateResult)root: (Event)event {
if (event == initial) {
return Transition(idle);

3

return Handled();

(StateResult)idle: (Event)event {
if (event == donwload) {
[self prepareFetch];
return Transition(downloadData) ;

}

return Superstate(root);

(StateResult)downloadData: (Event)event {
if (event == initial) {
return Transition(fetching);
} else if (event == downloaded) {
[self allDone];
return Transition(idle);

}

return Superstate(root);

(StateResult)fetching: (Event)event {
if (event == entry) {
[self startFetching];
} else if (event == fetched) {
[self didFetch];
return Transition(parsing);

}

return Superstate(downloadData) ;

- (StateResult)parsing: (Event)event {
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if (event == entry) {

[self startParsing];
return Handled();

} else if (event == exit) {
[self cleanup];
return Handled();

}

return Superstate(downloadData);

This solution is a significant improvement because of the separation into several func-
tions, one for each state. It gives a much more clean and easy to read structure.
Further the hierarchy is now explicitly given by each state by having it specify its
superstate. This puts the logic of the hierarchy into the execution engine and makes
it responsible for calling the correct functions instead of given the responsibility to
the developer of the statechart. This means that this approach is suitable for mod-
eling hierarchical statecharts. Because of the bottom-up approach, trying to model
orthogonal regions introduces complexities and as explained in Samek (2008, p. 231)
“Orthogonal regions are a relatively expensive mechanism [since] [...] each orthogonal
region requires a separate state variable (RAM) and some extra effort in dispatching
events (CPU cycles)”. Instead the solutions suggest to use orthogonal components,
where orthogonality is achieved by having several statecharts executing at the same
time. However orthogonal components introduce complexity for the developer of the
statechart and do not provide the same power as orthogonal regions. This comes from
the fact that modeling dependencies between the orthogonal parts are not defined for
orthogonal components. The requirement of allowing reusability of the statechart
and include it as a part of another statechart is only partly supported. The problem
lies in the fact that both the actions and the hierarchy are defined together in each
function. In order to change a transition one would have to replicate the action logic
as well. This would result in much redundancy in the design of a complex application.
For this reason a model is needed that separates the hierarchy and action logic, and
that makes it possible to use a top-down approach in order to model orthogonality.

Object for each state

In order to higher the abstraction level and flexibility it is possible to take advantage
of the fact that the solution is to be applied in an object-oriented environment. By
modeling a state as an object the model becomes much more powerful and extendible.
By further separating the action logic from the structure of the statechart, reusability
becomes feasible. Further, object inheritance makes it easier to reuse logic across
statecharts. Listing 5.3 shows how the statechart from Figure 5.10 can be modeled
using a unique class for each state. These states are all subclasses of a generic state
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class called State. All states implement the events it is responding to as methods.
When the action of an event is being triggered, the method is simply called by the
statechart engine. A reversed method is used for defining the entry and exit actions.
The hierarchy and relation between the states is collected into a single configuration
method called setupStatechartWithRoot, which gives the root state as a parameter
in order to add substates to it. An instance of each state is instantiated and the hier-
archy is specified by setting the substates of a state. Lastly the transitions between
states are created.

Listing 5.3: Structuring the statechart using objects.

@class Idle: State {
- (void)download {
[self prepareFetch];
}
}

@class DownloadData: State {
- (void)downloaded {
[self allDone];
}
}

@class Fetching: State {
- (void)entry {
[self startFetching];
}

- (void)fetched {
[self didFetch];
}
3

@class Parsing: State {
- (void)entry {
[self startParsing];

}

- (void)exit {
[self cleanup];
}
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- (void)setupStatechartWithRoot: (State)root {
Idle *idle = [Idle new];
DownloadData *downloadData = [DownloadData new];
Fetching *fetching = [Fetching new];
Parsing *parsing = [Parsing new];

root.subStates = @[idle, downloadData];
downloadData.subStates = @[fetching, parsing];

[idle onEvent:download transitionTo:downloadDatal];
[fetching onEvent:fetched transitionTo:parsing];
[downloadData onEvent:downloaded transitionTo:idle];

Object-oriented programming has many benefits as it makes the model much more
powerful and understandable because of the separation between actions and hierarchy.
It provides the possibility of easily creating AND states. This is is simply done by
providing a new generic class, that differs from the State class by introducing the
concept of regions instead of substates. This means that the model is suitable for
implementing orthogonal regions. Further the model can be extended with more
features from the statechart notation as explained in Section 5.3.3. For this reason
the object-oriented model having an object for each state has been chosen as the
most suitable and it will be used as the foundation for the implementation in the
next chapter.

Execution model

The focus of the design so far has been on modeling the statecharts. Another aspect
is how to model the execution engine of a statechart. The execution of a basic stat-
echart supporting OR states and AND states basically comes down to the following
execution requirements.

e Finding transition for an event - When an event occur the engine first needs
to figure out if the current state configuration responds to the event. This is
done by finding a transition for the event. If no transition is found the event
can be discarded, unless the event is being deferred as discussed further in
Section 5.3.3.

e Finding the lowest common ancestor - Once a transition has been found
it is necessary to identify the LCA of the source state and target state of the
transition, as discussed in Section 4.3.9 Lowest common ancestor.
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e Exit to lowest common ancestor - Once the LCA has been identified the
statechart engine should exit from the source state up until the LCA.

e Perform transition action - As the statechart has been exited to the LCA
the transition action is fired before entering to the target state.

e Enter from lowest common ancestor - Finally the target state should be
entered from the LCA

The sections below go through each of the above requirements in order to establish
a design for how the statechart engine should fulfill them. The statechart from Fig-
ure 5.12 will be used as an example during the design of each requirement, since it
both contains OR states and an AND state with two orthogonal regions.

(‘state machine Statechart engine [ % Statechart engineu )
State 2
? State 4
State 6
State 3
event4 ?
{ event2 State 7
State 1 State5 LI — >
event3
event1

N J

Figure 5.12: Example of statechart used to design the statechart engine.

As explained above, a statechart is modeled using objects. All states contain a refer-
ence to their superstate. For OR state they have an array of substates and for AND
states, they have an array of regions. This information makes it possible to use an
alternative graphical notation to model a statechart, using a graph. The statechart
from Figure 5.12 is modeled as a graph in Figure 5.13. The graph notation is used
in the following sections to explain how the engine executes. The root of the tree is
the root state of the statechart. The root is connected to the substates using lines. A
Dashed line is used to connect an AND state with its regions.
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[States ] “[CState 7 ]

Figure 5.13: Tree of statechart.

Finding transition for an event

In order to perform a transition for an event, the statechart engine needs to search
the tree using a top-down approach. The interesting part of the tree is all of the
paths from the root to all active leaf states. This is the active state configuration.
In order to search down the paths two cases should be considered. First the case
where only OR states are involved is considered. This means that the system is in
a single active state leaf state. Consider Figure 5.14 where the active leaf state is
State 5. The traversal of the tree starts at the root. Since each OR state knows the
currently active substate, the traversal continues down the tree. However, in order
to avoid traversing all the way up again, once the leaf has been reached, each state
check whether it responds to the event and propagates that information to its active
substate. In Figure 5.14 since neither the root state or State 2 respond to event4
it will simply pass the value nil to the active superstate. However since State 3
responds to event4, it will pass the transition to State 5. If a substate responds to
the event it will overwrite the transition information. In the example State 3 was
the lowest state that responded to event4 and thus transition from State 3 to State
1 is returned to the engine.

The other case is where an AND state is included in the active path. This means
that more states are active. For instance as with State 4 in Figure 5.15, where the
search needs to be continued down in all regions. However, in order to collect all
transitions into a set, each region must return the transition to the AND state, so
it can be collected and provided to the statechart engine. This is illustrated in Fig-
ure 5.15 where event3 is being forwarded to both State 6 and State 7. Since State
7 responds to event3 it sends this information back to State 4 that can provide it
to the statechart engine.
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Statechart engine

event4

eventd4, (state 3 -> state 1) event4, nil

event4, nil
State 3 State 4

event4, (state 3 -> state 1) / \
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Figure 5.14: Finding transition with active leaf state being State 5.

Statechart engine

event3
(State 6 -> State 3)

\4

event3, nil

event3, nil

nil (State 6 -> State 3)

event3, nil
event3, nil
[ State 6 | State 7

Figure 5.15: Finding transition with active leaf states being State 6 and State 7.

The running time of finding the transitions for an event is n 4+ n x k where n is the
number of states in the statechart and % is the constant time it takes to determine
if a state responds to an event. A statechart only consisting of AND states would
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require a traversal of every state twice and for each state it should be determined
whether it responds to an event or not. In big O notation this is O(n).

Finding the lowest common ancestor

The next step is to find the LCA between the source and target of a transition. This
can be done using the following algorithm. First the path to the root state is found
for both the source and target state as illustrated in Figure 5.16. The LCA is the
state where the two paths intersect. This is State 2 in the example.

[States |7 \[State 7 |

Figure 5.16: Finding lowest common ancestor.

The time complexity for finding the LCA is 2 x h, where h is the height of the
tree. This is because a statechart where a transition is performed from two leaf states
would require a traversal of the height, twice. In big O notation this is O(h).

Exit to lowest common ancestor

Now that the LCA has been found the statechart engine should exit up to the LCA.
It can do so by simply exiting each state from the source state until the LCA is
reached. This is indicated by the blue arrows in Figure 5.17 where an exit to State
2 is performed. Notice how both State 6 and State 7 are exited since a transition
outside of the regions is performed.

The running time is A since an exit from a leaf state to the root would require to
exit a sequence of states equal to the height of the tree.
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\[State7 |

Figure 5.17: Exit to lowest common ancestor.

Perform transition action

The next thing is simply to perform the action. Since the found transition has a
reference to the action it is simply a matter of calling a method.

Enter from lowest common ancestor

Finally the engine should enter from the LCA to the target state. The way this is
done is similar to exiting, except the path from the LCA to the target is traversed
and each state is entered. It is illustrated with the blue arrow in Figure 5.18.

[State 6 ] ‘[State7 |

Figure 5.18: Enter from lowest common ancestor.
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Doing so has a running time of h since entering a leaf state from the root state would
require entering a sequence of states equal to the height of the tree. This makes a
total running time of the statechart execution engine equal to 2xn+k+2x+h+h =
2n + 4h + k = O(n + h). This means that the running time depends on the number
of states in the statechart plus the depth of hierarchy.

5.3.3 Supporting additional statechart features

Both the models for defining a statechart and the engine have been designed in order to
support the fundamental notation of statecharts to model hierarchy and orthogonality.
However, an important property of the design is to make it extendible for further
functionality. Some of these are discussed below.

History

The history mechanisms as explained in Section 4.3.4 can be achieved by having a
variable in each state that keeps track of the last active substate. This variable is
updated every time the state is being exited. A transition to the history connector of
a state results in the last active substate being entered, as it is stored in the variable.
If no history has been recorded the initial transition is performed.

Fork & join

A fork transition as described in Section 4.3.5 can be supported by the engine by
allowing a transition to have several targets. The engine as explained above would
then simply have an array of targets, which all would be entered instead of just a
single target. Similarly the join transition could be supported by having a transition
with several sources and a single target.

Guards and timeouts

Guards can be put on a transition as explained in Section 4.3.7. This can be in-
cluded in the model by simply providing a boolean expression that is validated when
determining if a state responds to an event. This means that only transitions that
have a guard that is true are propagated to the statechart engine. As explained in
Section 4.3.7, a guarded transition can be taken simply by the condition of the guard
becoming true, if no event is specified on the transition. This can be achieved by
having an extra check after each transition, where all such guarded transitions are
evaluated, to see if their condition is true. If any of them have become true a special
event is posted to the statechart, making it perform the transition immediately. Since
this might introduce another transition, it continues until no guards are true. Notice
that this potentially could cause an infinite cycle of transitions. A way of solving
this is to provide a maximum number of iterations that the statechart engine should
check for guarded transitions, triggered only by a condition. An important property
of a guard is that it contains no side effects. This means that checking the condition
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of a guard changes no outside variables or calls any methods. The statechart engine
should be allowed to check the condition of a transition at any time without triggering
any behavior as it otherwise could result in unexpected behavior.

Further, the support for timeouts as explained in Section 4.3.8 can be achieved by
starting a timer once a state has been entered. This timer is again stopped once the
state is exited. However, if the timer runs out before the state is exited an event is
posted to the statechart engine with the transition to be performed.

Deferred events

Deferred events as explained in Section 4.3.8 can be achieved. When the statechart
engine processes an event, besides checking if one of the active states triggers a tran-
sition, it also checks if any active state defers the event. If this is the case the event is
added to an array of deferred events. With each change of state, the array of deferred
events is posted back into the engine. This would result in a check for each event to
see if the new state configuration responds to the event.

Submachine

The model can be extended with submachines as explained in Section 4.3.8 by simply
allowing a statechart to be instantiated with its root state. This makes it possible
for a statechart to use another statechart as a submachine by instantiating it with
a state placed in the hierarchy, where the submachine should be placed. This state
suits as the root state of the submachine.

5.4 Debugging & inspection

The abstractions designed allow for a rich set of functionality for debugging and
inspecting the system on a higher level compared to normal debugging tools such as
a debugger. Tools for debugging and inspecting are discussed further below.

5.4.1 Overview of components

As an application is composed by components, it is possible to get an overview of
the application by seeing which components are live in the system and how they are
connected using the messaging system. It can be achieved simply by keeping track
of all the components in the system. This is useful for debugging as it is possible to
provide a graphical notation for showing the whole system, which makes it possible
to spot if channels between ports are missing or components are not set up correctly.
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Component 1 |— 1 —»| Component2 — 2 —»| Component 3 Component 4
A 2 3
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Figure 5.19: Message flow in a system of components

5.4.2 Inspecting messages

The only way for components to influence each other is through the messaging system,
since they share no state. For this reason a powerful way of tracking the behavior
in the system, is to look at the messages sent between the components. Because
of the deterministic property of the messaging system, it is possible to simulate the
communication between the components in order to debug the system. The simplest
way of tracking messages sent in an application is simply to log every time a mes-
sage is sent between two components. The information reveals which components
are communicating with each other. It is a helpful way of understanding the system.
However, even more information can be retrieved by looking at the messages flowing
between the components. As explained by Roestenburg (2012) by understanding how
messages flow in the system it is possible to obtain a better understanding of how the
system works. By tracing how messages originate and cause a chain of messages to
be send in the system gives an overview of what effect an event in the system has.

Figure 5.19 shows a flow of messages for a system consisting of 13 components. The
flow originates in Component 1, which sends the first message to Component 2. It
further creates two messages, which are sent to Component 3 and Component 6. The
flow ends with a message back to Component 1. Each message is provided with a
number indicating the order in which they are sent. In order to design such a message
tracing system the following must be known.

e Sender - From which component is a specific message sent.
e Receiver - To which components is a specific message sent.

e Trigger message - The trigger the message could either be another message,
which would then extend an existing flow, or it could be because of an event in
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the sending component, which would mean that a new flow has started.

In order to keep track of the trigger messages, an incoming message to a component
is stored temporarily. If the message results in another message being sent, the stored
message is recorded as the trigger message.

5.5 Summary

During the chapter, the framework to be implemented has been designed. The design
consists of a shared thread pool for providing a context for each component that uses
a low amount of resources. Further the messaging system has been designed, defining
how components communicate with each other using channels that are connected to
ports. Each port has a protocol defining the messages it understands. The channels
are sending messages through a router, which is in charge of delivering the messages to
the right receiving components. How to model a statechart with objects as states has
been defined, which allows for modeling hierarchy and orthogonality as well as other
features from the statechart notation. Further, the execution engine for the statechart
has been designed. Lastly debugging and inspection possibilities have been explored
that can be applied on top of the designed abstractions. The next chapter uses the
described designs in order to make an implementation of the framework that can be
used when developing iOS applications.
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CHAPTER é
Implementation

The design from the previous chapter ended with the blueprints for how a framework
which introduces the concept of a component, a message system and statecharts can
be designed. This chapter uses the design in order to make an implementation of a
framework, that allows building applications for iOS using these abstractions. Since
the implementation is done in Objective-C the framework also runs on Mac OSX and
can be used for developing desktop applications.

Notice that classes implemented as a part of the framework, are all prefixed with SHP.
For instance, the class representing a statechart is called SHPStateChart. Classes pre-
fixed with NS are part of the systems framework provided by the i0S/OSX platform.
An example of this is for instance NSInvocation.

The full implementation of the framework is available in the resources as explained
in Appendix B.

6.1 Implementing components

The concept of a component has been implemented in the class SHPComponent. The
class is supposed to be subclassed when using it to model an application. Each sub-
class should capture a behavior and provide an interface for other components to take
advantage of. Defining this interface is discussed further in Section 6.2.3. The class
SHPComponent provides the basic functionality for having a component with its own
context. The application specific behavior of the component should be implemented
as a method inside of the subclass. The power of statecharts can be used within a
component in order to keep track of the state of the component. This is done using
the subclass SHPStateChart, which can be seen in Section 6.3

As discussed in Section 5.1.2, it was decided to use a shared pool of threads for
the components in the system in order to keep the memory usage low. The i0S/OSX
platform framework provides an implementation of this, by using Dispatch Queues
as presented in Apple (2012a). More specifically the object dispatch_queue_t rep-
resents a dispatch queue, which uses an underlying shared thread pool. When a task
is dispatched to an instance of a dispatch_queue_t, it results in the task being ex-
ecuted by a thread from the underlying thread pool. The order in which tasks are
being handled by the queue is configurable, but by making it serial the tasks are exe-
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cuted one by one in first-in-first-out order. As explored in Section 5.1.2, new threads
should be allocated and deallocated according to the needs of the components. How-
ever, an undocumented property of Dispatch Queues is the number of threads, that
at maximum can be alive in the thread pool. It is stated in Apple (2012a, p. 1) “The
system can scale the number of threads dynamically based on the available resources
and current system conditions” still, it is unclear how many threads the system at
maximum allows to be spawned. In order for Dispatch Queues to be suitable for pro-
viding a unique context for a component, it is crucial that the pool increases to a high
number of threads, as components need them. Otherwise it would result in a compo-
nent having to wait in the queue for another component to release the thread, and the
independency between components would be lost. For this reason a test project has
been created to record data that can be used to determine how a dispatch_queue_t
behaves.

Example 5 In order to determine the mazimum size of the thread pool used by
Dispatch Queues the example project DispatchlueueComponentTest has been created.
It can be accessed through the resources as explained in Appendix C. In the project
a variable number of dispatch_queue_t instances are created. Fach of them is
given the task to sleep for two seconds on the thread that they have been given from
the thread pool. The mazimum time among all dispatch_queue_t instances to do
this is then recorded. Based on the results it is possible to determine how many
threads the thread pool increased to, by running the test with a various number of
dispatch_queue_t instances and for each run look at the maximum executing time.
If all dispatch_queue_t instances had been given a unique thread, the maximum
runtime would be around 2 seconds. If any of them would have to wait for a thread to
become available, the mazimum would be above 2 and no new threads can be created.

The result of Example 5 tested on an iPhone 5S is shown in Figure 6.1. Other iOS
devices had been tested as well and provided the same result. It shows that with
more than 512 dispatch_queue_t instances, the maximum execution is increased by
2 seconds. Using this information, it can be concluded that the thread pool has an
upper limit of 512 threads.

Given the fact that a single application needs more than 512 occupied threads before
a dispatch_queue_t instance would have to wait for a thread to become available, it
has been decided to use Dispatch Queues as the implementation of the shared thread
pool design. Notice as explained in Section 5.1.2, the components living in the system
only acquire a thread when they have a task that should be executed. This means
that more than 512 components can be alive in an application without the thread
pool reaching its limit.



6.1 Implementing components 87

Maximum execution
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Figure 6.1: Graph showing maximum execution time with increasing number of
dispatch_queue_t instances as explained in Example 5.

Each SHPComponent instance holds a serial dispatch_queue_t property called mes-
sageQueue. Every execution of a component must be dispatched on this dispatch_queue_t
property in order to avoid concurrency problems as analyzed in Section 2.4. Further

it is built directly into the messaging system as explained in Section 6.2.3.

6.1.1 Defining a component

In order to create a component a object subclassing SHPComponent is created as shown
in Listing 6.1.

Listing 6.1: Defining a component

@interface MyComponent : SHPComponent
@end

@implementation MyComponent

- (void)doSomething {

dispatch_async(self .messageQueue, ~{
//running in own context.

B
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@end

It is important that all tasks, that use shared variables within the component, are
dispatched on the messageQueue as shown in line 8-10 in Listing 6.1.

6.2 Implementing the messaging system

The communication between components is an essential part of the solution and thus
it is important that it is convenient to use the framework as required in Section 1.4.
Because of this a lot of work and many iterations have been required, in order to end
up with an implementation of the messaging system that satisfied this requirement.
The following sections will walk through the major iterations and explain why further
improvements were needed before ending up with a solution.

6.2.1 Message

An essential part of the messaging system is the messages floating between the com-
ponents. Below, first the job of receiving a message is being discussed and then the
job of sending a message.

Receiving a message

A key element of receiving a message is being able to pull information out of it, so it
can be understood. This means, that the sender needs to provide information about
what kind of message is being sent. The first iteration of the messaging system con-
tained several classes for representing a message. The idea was to have a class for
each kind of message. For instance the class SHPCommandMessage was used to send
commands between components. A command represented a type of message where
the sender wanted the receiver to do something and then reply with a result. Another
kind of message was the SHPEventMessage, it was used to send notifications between
components. When sending an event message, the sender did not expect a reply from
the receiver. Since having a few generic classes for representing a message were not
enough for the receiver to identify and understand a message, each message also had
a field called type, which contained additional information about the message. If a
message contained any content, it was sent in a content field that could contain any
kind of object. If more objects needed to be sent, they had to be wrapped up in an
array.

The combination of the class and the type allowed the receiver to identify the mean-
ing of an incoming message. However, it was found that as the number of messages,



6.2 Implementing the messaging system 89

a component is able to understand, increases the job of identifying incoming mes-
sages becomes complex and messy. Further, getting the content out of the message
required the receiver to cast it into the correct type. An example of how messages
were received in the first iteration is shown in Figure 6.2.

Receiving component

if (message.class == SHPEventMessage) {
if (message.type == memoryWarning) {
// release resources from memory

Channel SHPM e o | } else if (message.class == SHPCommandMessage) {
system 9 = if (message.type == uploadExpense) {
Expenses *expense = message.body;

// upload expense

|
|
|
|
|
| }
]
|
|
|
|

Figure 6.2: First iteration of receiving a message.

The solution required a lot of matching code in the receiving component. This quickly
became messy and therefore could easily introduce bugs. Further, the code was not
coherent and not satisfying the purpose of being convenient to work with for the
developer.

The goal of the second major iteration, which became the final solution, was to make
it much easier for the receiving component to identity the type of message and to
retrieve the content from the message, without having to cast in into the right type
of object. The idea was to implement a solution where messages were delivered in
the same fashion as when a method is called on an object. The receiver would then
simply implement a method for each message type, and the content of the message
could be passed in as arguments to the method.

The underlying messaging system still uses a generic class for sending a message
from component to component, however the overall message representation has been
refactored down to a single class called SHPEventMessage. Instead of containing a
generic body, it contains an invocation property, which has the type class NSInvo-
cation. A NSInvocation instance is used by the system for handling method calls.
It includes the name of the method and all the arguments and their values. Instead
of delivering the SHPEventMessage to the component, the message system invokes
the NSInvocation on the component, resulting in a simple method call. With this
solution all message types matching code disappears from the receiving component.
Further there is no need to cast the object provided by the message. The second
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iteration is illustrated in Figure 6.3, where methods are simply implemented in the
receiving component and automatically called when a message matching one of them
is received.

rr---"-"""" """ "”-""”-""""—""—"¥—¥——- ]
| Receiving component I
' |
' |
| - (void)uploadExpense: (Expense *)expense {
| //upload expenses
Iy
Channel | | Invoke ) :
system NSlInvocation | 1" | (yoid)memoryWarning { |
| // release resources from memory
| } |
' |
U -

Figure 6.3: Second iteration of receiving a message.

Using the second iteration a much cleaner way of receiving messages can be defined.

Sending a message

As the implementation for receiving a message was improved, so was the implemen-
tation of sending. The two iterations are discussed further below.

In the first iteration, the sender needed to create an instance of one of the generic mes-
sage classes and set the correct type of message. The message would then be posted
into the messaging system by giving it to an outgoing port, as examined further in
Section 6.2.3. An example of sending a message with the indention of uploading an
expense is shown in Figure 6.4.

Sending component

|
| |
| |
| SHPCommandMessage *message = [[SHPCommand |
| alloc] initWithBody:expense ! Channe
I T
| |
| |
|

\d

messageType:uploadExpense]; system
[self.outputPort postMessage:message];

Figure 6.4: First iteration of sending a message.



6.2 Implementing the messaging system 91

While the solution provided a solid way of sending a message, the extra overhead
of constantly having to instantiate objects in order to send a message seemed unnec-
essary. So the goal for the second iteration was to make it easier to send a message.
By allowing it to be done in a similar way as when invoking a method, the task for
sending a message became much simpler. The second iteration removed the need for
a component to ever create an instance of a message. Instead this logic was built into
the port system in a generic manner. A component should simply invoke a method
on the output port, in order to send a message on it. The port then converts it into
an SHPEventMessage by constructing an NSInvocation. The SHPEventMessage is
then sent into the channel system. This way sending messages became much cleaner
as illustrated in Figure 6.5.

Sending component

system

|
|
[self.outputPort uploadExpenses:expense]; | ,| Channel
|
|

Figure 6.5: Second iteration of sending a message.

6.2.2 Channel

In order to define which components communicate with each other, channels are
used between the components. Each channel is either of the type point-to-point or
publish-subscribe as explained in Section 4.2.4. The concept of a channel has been
implemented in the class SHPChannel.

The first iteration of the channel system was based on channels that directly han-
dled the communication between the components. When a message was given to a
channel it made sure that components in the other end would receive the messages
when ready. Each channel had its own dispatch_queue_t. When a message was
sent over the channel, it would result in the message being added to the queue. The
channel processed the messages in the queue one by one in a first-in-first-out order.
When the channel scheduled execution time, it would dequeue a message from the
queue and send it to the receiver of the channel. While working as expected it was
decided to introduce the concept of a central router as discussed in Section 5.2.5.
This was done in order to send all messages in the system through a central point,
for easier monitoring of the traffic between components.

The responsibility of delivering the messages was moved from the channel to the
router. The router is implemented in the class SHPMessageRouter, which uses the
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singleton pattern as presented in Section 3.3.2, for providing a single globally accessi-
ble instance. The router contains a serial dispatch_queue_t for processing messages.
The messages are dequeued from the queue one by one and delivered to the right
components.

6.2.3 Ports

As presented in Section 5.2.6 ports are used to define the protocol of a component.
This can either be for input, output or internally. The implemented port system
consists of many classes which all have the system class NSProxy as the root class
as illustrated in Figure 6.6. The NSProxy class allows invoking a method on an in-
stance of the class on behalf of another object. The use of NSProxy, is what makes
sending and receiving messages similar to the invocation method in its usage. The
subclass SHPInvocationProxy extends the NSProxy by introducing a Protocol field.
In Objective-C a Protocol is a list of methods. With the SHPInvocationProxy class
only methods specified in the protocol are being forwarded. The SHPPort subclass
defines the base class for all port types by having a port containing a reference to
the SHPChannel instance it is connected to. Further, a port has a reference to the
component it is used in.

The basic SHPPort subclasses are explained in the following sections.

Output port

The SHPOutputPort class is used for sending messages out on a channel. This is
simply done by invoking a method on an instance of a SHPOutputPort. The method
must be defined in the protocol of the output port in order for the invoked method
to result in a message being sent.

Input port

The input port is implemented using SHPInputPort. Messages received by an input
port, must be included in the specified protocol in order for them to be processed.
A SHPInputPort instance delivers incoming messages to its component by using in-
voking the method inputPortdidReceiveMessage:. The SHPComponent class imple-
ments this method and the default behavior is invoking the NSInvocation contained
in the message on the component itself. A SHPStateChart class however, processes
the received message as an event instead, as discussed in Section 6.3.5.

Event port

As treated in Section 5.2.6, an event port exists which a component can use to post
messages to itself. This is implemented in SHPEventPort, which is a subclass of
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Figure 6.6: Class hierarchy of port system.

SHPInputPort. The event port behaves as a mixture of an output and input port.
Methods invoked on it result in a call of inputPortdidReceiveMessage: on the
component. This means that internal messages are handled the same way as external
ones.

6.2.4 Proxy ports

Two special kinds of ports exist that can be used for forwarding messages to a port
as explained in Section 5.2.6. This is implemented in the classes SHPProxyInputPort
and SHPProxyOutputPort. They both inherit from the class SHPProxyPort. A SHP-
ProxyPort class includes an extra SHPChannel called proxyChannel used to connect
to the port being proxied.

6.2.5 Setting up channels between components

In order to setup channels between components and take advantages of the above-
explained classes all that needs to be done is defining ports on each component and
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connecting them. Listing 6.2 shows how a system consisting of three components,
each with an input and an output port, can be connected using the implemented
framework.

Listing 6.2: Connecting three components.

- (void)createAndConnectComponents {
Componentl *componentl = [Componentl new];
Component2 *component2 = [Component2 new];
Component3 *component3 = [Component3 new];

componentl.outputPort.channel =
component2.inputPort.channel =
[ [SHPMessageRouter sharedInstance]
publishSubscribeChannel] ;
component2.outputPort.channel =
component3d.inputPort.channel =
[ [SHPMessageRouter sharedInstance]
publishSubscribeChannel] ;
component3.outputPort.channel =
componentl.inputPort.channel =
[[SHPMessageRouter sharedInstance]
publishSubscribeChannel];

6.3 Statechart implementation

As a part of the framework the concept of a statechart has been implemented. It
has been applied in a way to integrate with the concept of a component in order to
easily keeping track of the current state configuration. It has been implemented into
the class SHPStateChart, which is a subclass of SHPComponent. This means that
a statechart takes advantage of the independent context offered by the components
implementation and further makes it possible to use the implemented messaging sys-
tem to communicate with other statecharts or components. In order to show how to
model a statechart using the implemented framework, the statechart from Figure 6.7
will be used as an example.

6.3.1 Defining the states

An essential part of the statechart implementation is the states. As explained in
Section 5.3.2 two bases exist for providing the possibility of modeling, OR states and
AND states. They are implemented in the SHPOrState class and SHPAndState class
respectively. They are both subclasses of the abstract class SHPState that contains
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Figure 6.7: Simple statechart.

the logic shared between both types. When defining the states of a statechart these
two base classes should be subclassed for each state, in the same fashion as presented
in Section 5.3.2. For instance Listing 6.3 shows how to define the four OR states and
the single AND state from Figure 6.7.

Listing 6.3: Defining four SHPOrState subclasses and one SHPAndState subclass.

@interface StateApplication : SHPAndState Qend
O@implementation StateApplication @end

@interface StatelLoggedIn : SHPOrState @end
Q@implementation StateLoggedIn Qend

@interface StateNotLoggedIn : SHPOrState @end
O@implementation StateNotLoggedIn @end

@interface StateRunning : SHPOrState @end
@implementation StateRunning Qend

@interface StateNotRunning : SHPOrState @end
Q@implementation StateNotRunning @end
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6.3.2 Defining the hierarchy

In order to take the states and put them together into a statechart a subclass of SH-
PStateChart must be created. To configure the hierarchy and instantiate the states,
the method configureWithConfiguration: must be implemented. The method is
automatically called by the superclass. Listing 6.4 shows an implementation the stat-
echart from Figure 6.7. The class MyStateChart is a SHPStateChart subclass. It
implements the configureWithConfiguration: method. Line 29-35 instantiate in-
stances of the states in the statechart. Notice how two extra SHPOrState instances
are created in line 34 and 35. These are used as the overall region states. Subclassing
one of the base classes is the recommended way of defining a state, however states
that do not need to perform logic when responding to events, can be instances of one
of the base classes directly. From line 38-44 the hierarchy of the statechart is being
setup. The provided SHPStateChartConfiguration instance has a reference to the
automatically created root state of the statechart. The StateApplication state is
added as a substate to the root state. In line 40 the two regions are added. In line 41
to 44 the substates of the regions are added. Notice how the initial state is specified
when adding a substates to a SHPOrState subclass.

Listing 6.4: Example of a configureWithConfiguration: implementation.

@interface MyStateChart : SHPStateChart

@property(nonatomic, strong) SHPInputPor
t<MyStateChartInputProtocol> *inputPort;

@property(nonatomic, strong) SHPOutputPort
<MyStateChartOutputProtocol> *outputPort;

@end
@implementation MyStateChart

- (id)init {
self = [super init];
if (self) {
_inputPort = [self
inputPortWithProtocol:@protocol (My-
StateChartInputProtocol) name:Q@"Input"];
_outputPort =
[self outputPortWithProtocol:@protocol (My-
StateChartOutputProtocol) name:@"Data input"];
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return self;

}

- (void)configureWithConfiguration: (SHPStateChartConfiguration *)
configuration {

// Init states
StateApplication *stateApplication = [StateApplication new];
StateLoggedIn *stateLoggedIn = [StatelLoggedIn new];
StateNotLoggedIn *stateNotLoggedIn = [StateNotLoggedIn new];
StateRunning *stateRunning = [StateRunning new];
StateNotRunning *stateNotRunning = [StateNotRunning new] ;
SHPOrState *regionl = [SHPOrState new];
SHPOrState *region2 = [SHPOrState new];

// Setup hierarchy

[configuration.rootState setSubStates:@[stateApplication]
initialState:stateApplication];

[stateApplication setRegions:@[regionl, region2]];

[regionl setSubStates:@[stateNotLoggedIn, statelLoggedIn]
initialState:stateNotLoggedIn];

[region2 setSubStates:@[stateNotRunning, stateRunning]
initialState:stateNotRunning] ;

// Setup transitions

[stateNotLoggedIn onEvent:@selector(loggedIn)
transitionTo:statelLoggedIn] ;

[stateLoggedIn onEvent:@selector(loggedOut)
transitionTo:stateNotLoggedIn];

[stateNotRunning transitionTo:stateRunning
guard: [ [SHPStateChartGuard alloc]
initWithCondition: ~BOOL{

return self.running;
} guardDescription:@"If running"] reverse:YES];

// Setup event protocol

configuration.eventHandlerProtocol =
@protocol (MyStateChartEventProtocol);

Q@end
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6.3.3 Defining the transitions

The transitions between states are modeled with the base class SHPStateChartTran-
sition. This class represents a transition triggered by an event. It supports mak-
ing fork, merge, internal or history transitions, which are explained in Section 5.3.3.
Further the subclass SHPStateChartGuardTransition makes it possible to create
guarded transitions. Each guarded transition uses a SHPStateChartGuard, which
contains a condition that evaluates to either true or false. Further SHPStateChart-
TimeoutTransition is used to create transitions triggered after a time period. And
lastly SHPStateChartDeferredTransition is used for creating deferred transitions.
However, the need, to instantiate an object of any of these classes has been abstracted
into SHPState. This means that a transition can be added between a source and a
target state, simply by asking the source state to add it. For instance line 47 from
Listing 6.4 shows how to add a transition from StateNotLoggedIn to StateLoggedIn
when the event loggedIn occurs. Methods for adding the other supported transi-
tions exist on all states. For example line 51 shows how to add a transition from
StateNotRunning to StateRunning that is automatically being triggered when the
provided condition becomes true. The specified reverse flag, for the transition, auto-
matically creates the reverse transition, resulting in a transition from StateRunning
to StateNotRunning, when the condition is false. Methods for defining fork, merge,
internal, history and timeout transitions are defined for a state. The header file of
SHPState should be examined in order see how they are called.

6.3.4 Defining the events

The last thing of the implementation of the statechart is to define the events. The
SHPStateChart class defines a SHPEventPort for handling events. However, the pro-
tocol for it needs to be defined and provided to the statechart. The protocol is
defined by creating an Objective-C Protocol that contains the events. As explained
in Section 6.2.3, the events in the system are implemented the same way as messages.
Listing 6.5 defines the two events used in the statechart from Figure 6.7

Listing 6.5: Example of configureWithConfiguration: implementation

@protocol MyStateChartEventProtocol
- (void)loggedIn;

- (void)loggedOut;

@end

Notice how the event names match the events from line 47 and 49 in Listing 6.4.
Further, line 58 tells the statechart to use the protocol MyStateChartEventProtocol,
when instantiating the underlying event port.
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Starting the statechart

In order to use the statechart, an instance should simply be created and the method
initialTransition should be called in order to perform the initial transition. This
is shown in Listing 6.6.

Listing 6.6: Creating instance of MyStateChart class and calling initialTransi-
tion

MyStateChart *myStateChart = [MyStateChart new];
[myStateChart initialTransition];

6.3.5 Execution engine

The way of implementing a statechart has now been presented. When using the
framework for implementing statecharts the underlying engine is abstracted away.
The implementation of the statechart engine is based on the design described in Sec-
tion 5.3.2. The main logic of the engine is implemented in the class SHPStateChart.
The method performEvent: contains the logic for handling an event. Figure 6.8
shows a flow chart for how an incoming event is handled. The various tasks such as
getting transitions, exiting to LCA and entering from LCA are defined in the SHP-
State subclasses, SHPOrState and SHPAndState, according to the model explained
in Section 5.3.2.

The transitions for the provided event are first found. If a transition is found, the
type is examined and the rules from Section 4.3.1 are followed. For instance a self
transition results in the currently active state being exited, the transition action be-
ing performed and the state being entered again. If a transition will be performed
the checkForGuardTransition flag is set to true. This makes sure that transitions
that are not being triggered by an event, but only by a condition becoming true is
checked to see if they have become true. The event has been completely handled once
the transition triggered by the event has been taken and there are no more guarded
transitions, which are a part of the active state configuration, that are true.

6.4 Overall framework structure

The overall structure of the core part of the framework is illustrated in Figure 6.9.
The figure shows the class hierarchy with the filled arrows and the associations be-
tween the classes with the not filled arrows. The figure is slightly simplified compared
to the implementation. It contains the implementation of the components, messaging
system and statecharts in one big picture.



100

6 Implementation

Perform
event
|
\/
Get transitions for < checkForGuardTransition = NO |«
eventMessage

More
transitions?

checkForGuard

Handled
Transition event
» eventMesage =
checkForGuardTransition = YES EventMessagefor
Guards
Yes +

Internal
transition?

Deferred

No
b o )
transition? Self transition? Find LCA
Perform ggtlon for Defer Exit active Exit to LCA
transition eventMessage state
Perform action Perform action
for transition for transition
Enter active Enter from LCA
state
Replay
deferred events

Figure 6.8: Flow chart of the performEvent: method.
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For instance it shows how an SHPOrState has an array of substates, where a SH-
PAndState has an array of regions.

6.5 Runtime system

Based on the implemented core framework as described above, powerful abstractions
have been implemented taking advantage of the framework. This has been put to-
gether into a runtime system that can be used when developing applications. The
runtime consists of components and features that make it more convenient and pow-
erful, to work with the framework.

6.5.1 Component register

An essential part of the runtime is the component register, which is implemented in
the class SHPComponentRegister. The main purpose of the component register, as
presented in Section 5.4.1, is to keep track of the components that are currently in
the system. It is implemented as a SHPComponent subclass. It has an input port
that follows the protocol shown in Listing 6.7. The protocol allows a component to
register itself. This functionality has been built into SHPComponent so all subclasses
automatically register themselves to the component register. Further it includes an
output port where messages are sent, whenever a component is registered or removed.

The simple component register opens up the possibility for many interesting fea-
tures when it comes to inspection and debugging of a running application. Seeing the
components currently active in an application provides a way of getting an overview
of the application.

Listing 6.7: Protocol for input port of SHPComponentRegister.

@protocol SHPComponentRegisterCommandProtocol

- (void)componentRegisterAddComponent : (SHPComponent *)component;

- (void)componentRegisterRemoveComponent : (SHPComponent *)component;
- (void) componentRegisterGetComponents;

@end
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Figure 6.9: Overall structure of the framework implementation.
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Figure 6.10: Messaging bridge.

An interesting feature allowed by the loosely coupled channel system is bridging be-
tween applications and even devices, as discussed in Section 5.2.7. This has been
implemented as a part of the runtime system. It creates the possibility of transpar-
ently creating a channel between two components, which are running on different
devices, on the same network. It has been implemented in a way that allows bridg-
ing between iOS devices, but also bridging to Mac OSX. For instance this makes it
possible to easily build useful debugging tools running on OSX, that live inspect an
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application running on iOS.

The implementation of the messaging bridge itself has been done using the core frame-
work and the third party frameworks CocoaAsyncSocket(Hanson, 2014) for creating
socket connections and AutoCoding(Lockwood, 2014) for encoding and decoding ob-
jects. The message bridge has been implemented using separated components that
communicate using the messaging system. Many of the components are implemented
as statecharts, because of their complexity. Overall the message bridge consists of two
parts, a server part and a client part. In order to use it, one application must use the
server part. Many applications can act as clients connecting to the same server. Once
a connection has been established between a server and a client, messages can be sent
both ways. The server application creates a socket server, which is broadcasted over
Bonjour®. Client applications automatically connect to the server once discovered.
The overall implementation of the system is illustrated in Figure 6.10. It shows how
a component called Component 1 located in an application acting as the server can be
connected to a component called Component 2 located in another application acting
as a client. The only requirement is that the devices, in which the two applications
are running, are connected to the same network.

It is important to emphasize that Component 1 and Component 2 are unaware and
completely independent of the fact that they are running within different applications.
Configuring the server

Listing 6.8 shows how to configure an application as the server of the message bridge.
In the example a component called component1 is being put on the sending end of
the channel, which is bridged over the network.

Listing 6.8: Configuring a message bridge server inside an application.

// Message bridge server
SHPMessageWrapperBridgeAdapter *serverAdapter =
[SHPMessageWrapperBridgeAdapter new];
SHPMessageServerBridgeComponent *messageServerBridgeComponent =
[[SHPMessageServerBridgeComponent alloc] init];
SHPMessageWrapperComponent *channelWrapper =
[ [SHPMessageWrapperComponent alloc]
initWithChannelName:@"myChannelIdentifier"];

// Channels

3 A Bonjour service is a way of broadcasting over the network that a service is available
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componentl.outputPort.channel =

channelWrapper.inputPort.channel =

[[SHPMessageRouter sharedInstance] publishSubscribeChannel];
channelWrapper.outputPort.channel =

serverAdapter.inputPort.channel =

[[SHPMessageRouter sharedInstance] publishSubscribeChannel];
serverAdapter.outputPort.channel =

messageServerBridgeComponent .messagesInputPort.channel =

[[SHPMessageRouter sharedInstance] publishSubscribeChannell];

The SHPMessageWrapperComponent is in charge of wrapping messages being sent
into SHPWrappedMessage instances. The SHPWrappedMessage simply contains the
message together with a channel identifier. The channel identifier is used to make it
possible to use the same socket connection to setup multiple channels between two
applications. In Listing 6.8 it has the value myChannelIdentifier.

Configuring a client

How to configure the client part of a messaging bridge inside an application is shown
in Listing 6.9. In this case it is connected to a component called component2, which
is put on the receiving end of the channel, bridged over the network.

Listing 6.9: Configuring a message bridge client inside an application.

SHPMessageUnwrapperComponent *unwrapper =

[ [SHPMessageUnwrapperComponent alloc]

initWithProtocol:@protocol (SHPStateChartInfoProtocol)
channelName:@"myChannelIdentifier"];

SHPMessageBridgeUnwrapperAdapter *adapter =

[SHPMessageBridgeUnwrapperAdapter new];
SHPMessageClientBridgeComponent *messageClientBridgeComponent =

[ [SHPMessageClientBridgeComponent alloc] init];

messageClientBridgeComponent .messagesOutputPort.channel =

adapter.inputPort.channel =

[[SHPMessageRouter sharedInstance] publishSubscribeChannel];
adapter.outputPort.channel =

unwrapper.inputPort.channel =

[[SHPMessageRouter sharedInstance] publishSubscribeChannell];
unwrapper.outputPort.channel =
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component2.inputPort.channel =
[[SHPMessageRouter sharedInstance] publishSubscribeChannel];

Notice how the same channel name is used as in the server application from List-
ing 6.8. This means that messages sent by componentl will be received by compo-
nent?2.

Limitations

The message bridge implementation has a few limitations that are important to notice.
First of all only bridging between iOS and OSX is possible. This comes from the fact
that the data sent over the network is serialized SHPEventMessage instances. These
can only be deserialized on iOS and OSX. Further the content of the messages sent
must be objects. Simple types are not supported by the serialization mechanism.
Objective-C contains object wrappers for all simple types, so these should be used
instead of simple types in order to take advantage of the messaging bridge.

6.5.3 Message tracing

A way of inspecting the messages being sent in an application, as explained in Sec-
tion 5.4.2, has been implemented. This has been done in the SHPMessageTracing-
Component class. The SHPMessageRouter singleton has a port called monitorPort,
where all messages processed are sent to for other components to monitor. An in-
stance of SHPMessageTracingComponent is supposed to be connected to this port.
As messages are being sent between components, the message-tracing component will
keep track of the traces.

6.5.4 Statechart event handling recording

To keep track of statechart changes and allow other components to monitor these, a
recording mechanism has been implemented and added to the statechart event han-
dling. Messages are sent to a port called stateChartInfoPort on the statechart in
order to provide information about how an incoming event was handled. Two kinds of
messages are sent on the port. First of all, an instance of SHPEventHandlingResult
is sent when an event has been handled. It provides information about which event
occurred, the transitions triggered and which states were exited and entered. Further,
an instance of SHPStateChartRepresentation is sent to the port. It contains a de-
scription of the statechart hierarchy, including the name of each state and whether
the state is part of the active state configuration or not.

This information can be used for various tools to inspect and debug a statechart.
Knowing how the statechart executes helps getting an understanding of the state-
chart and makes it easier to discover bugs.
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6.6 Prototype application

The implementation of the message bridge system explained in Section 6.5.2, uses
many aspects of the implemented framework in order to offer a bridge for sending
messages. However, it does not deal with the challenges of modeling GUI appli-
cations. For this reason a prototype application has been developed that uses the
implemented framework. The prototype is implemented according to the specifica-
tion from Section 1.4.1. The overall elements of the prototype are presented in the
following sections, using figures showing how it has been implemented. The full source
code for the prototype application is available in the included resources as explained
in Appendix D.

6.6.1 Overall structure

Application statechart

data input output
port port
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Figure 6.11: Overall structure of the implemented prototype application.
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The behavior of the application has been divided into components. The user interface
has been modeled in a single statechart component. The different parts of the model
layer of the application have been separated in its own components. The overall struc-
ture is shown in Figure 6.11.

In total the prototype consists of five components of which three are statecharts.
Each component abstracts away details and encapsulates its own behavior as dis-
cussed further below.

6.6.2 User interface

The user interface is modeled in a single statechart called ApplicationStatechart
as shown in Figure 6.12. However, because of the complexity of the user interface,
the concept of submachines is used heavily in order to separate the implementation
into smaller parts. For instance the ApplicationStatechart uses the submachines
ExpensesNavigationControllerStateChart, DebtsStateChart and TabBarState-
Chart. These are approached further down.

(‘state machine ApplicationStateChart [ %‘r ApplicationStateChartU 0
State Overall
State Tab Controller
State Expenses :
. Exp igationControllerStateChart
oy

State Debts :

H DebtsStateChart

T

State Tab Bar : TabBarStateChart
‘ o

Figure 6.12: Application statechart with submachines.

Tab bar

The main navigation in the prototype application is built around a UITabBarCon-
troller(Apple, 2013b). This is a standard way for iOS applications to provide basic
navigation between the views. The tab bar allows the user to select between two tabs,
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Figure 6.13: Screenshots of expenses tab selected(left), debts tab selected(right)

and specific expense selected and details shown using navigation con-
troller(middle).

one for expenses and one for the debts. This is illustrated in Figure 6.13. Only one tab
can be selected at a time, however when a tab is not selected, the view representing
the tab is still alive even though it is not visible. In order to keep a view active even
though it is not visible the two submachines ExpensesNavigationControllerStat-
eChart and DebtsStateChart, representing the two tabs, are added to two different
regions as shown in Figure 6.12.

In order to keep track of which tab is selected another submachine is used, namely
TabBarStateChart as shown in Figure 6.14, where the OR state called State Tab
Controller changes between State Tab Expenses and State Tab Debts according
to the selected tab events.

Navigation bar

The UINavigationController(Apple, 2013a) is another common control for provid-
ing navigation on iOS. It allows managing a stack of views, where new views can
be pushed on top of other views. In the prototype it is used to go between the
list of all expenses and details for an expense when the expenses tab is selected as
shown on Figure 6.13(left and middle). This control has been modeled in Figure 6.15,
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(‘state machine TabBarStateChart [ g‘r TabBarStateChartU R
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Figure 6.14: Tab bar statechart.

where the views are modeled using the submachines ExpensesListStateChart and
ExpenseDetailStateChart, which are added to their own regions resulting in them
always being active. Further the currently selected view is modeled in its own region
using the State Navigation Bar. Notice how the state State Root Detail Ani-
mation is used when going from State Root View Controller and State Detail
View Controller, since the change between the two views is done using an animation.
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View Controller T

didShowDetailViewController
logout

willShowRootViewController

Figure 6.15: Expenses navigation controller stateChart.
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Modal views

Modal views can be used as a way of presenting a view on top of all other views.
This is often used in situations, which require the users attention before interacting
with other views in the application(Apple, 2012b). In the prototype application this
is used to present a view on top of the tab bar and the selected view. It is done by
having a region in the TabBarStateChart submachine from Figure 6.14, which holds
a submachine for this modal representation. It is used for two views. The login view
showed when the user is not logged in, and the view for creating a new expense. The
submachine is shown in Figure 6.16, where the same pattern as with the tab bar and
navigation bar is used. One region is used to keep track of whether the login view is
selected, the create expense view or none of them. Furthermore two regions are used
one for each of the two submachines AddExpenseStateChart and LoggedInState-
Chart in order to keep them active all the time.

(state machine ModalStateChart [ % ModalStateChartU 0

State Overall

State Selected View
cancelAddExpensePressed State None createPressed
Selected <

<
addNewExpenseSelected When (LoginStateChartStatelloggedin.isActive)

State Add Expense
Selected

H State Login
Seleced

.9 State Add Expense Root :
AddExpenseStateChart

o

State Login Root :
ﬁ LoggedInStateChart
o

Figure 6.16: Modal statechart.

Logging in

The login flow as shown in Figure 6.17(right) allows the user to provide an email
address and a password in order to login. It is an example of a view that is presented
modally.
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Figure 6.17: Screenshots of creating a new expense(left) and login(right)

The login button is only enabled when the application is in a certain state. This
is the case when a valid email address has been provided, as well as a password with
at least 5 characters. The statechart is used as a submachine for keeping track of the
status, this is shown in Figure 6.18

In overall the LoginStateChart is either in the Logged in state or in the Not logged
in state. The Not logged in state consists of 3 regions. The upper most region from
Figure 6.18 represents the state of the provided email. It can either be valid or not
valid. The same goes for the provided password. A transition from valid to not valid
occurs automatically once the condition on the transition becomes true. The login
button automatically becomes active, once both the Email valid state is active as
well as the Password valid state. The event login makes a transition to the Logged
in state if the values of the email and password correspond to the hardcoded values.
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(state machine LoggedInStateChart [ g‘r LoggedlnStateChartU h

¢«
.

Not logged in

passwordFieldChanged / self.email = email
emailFieldChanged / self.password = password

Email not when (!(valid email address)) - -
. valid Email valid

when (valid email address)

Password not when (password.length>4)
valid Password valid
when (password.length<=4)

when (isIn(Email valid) and isIn(Password valid

Login button )L Login button
inactive active

when (!(isIn(Email valid) and isIn(Password valid)))

T otherwise login

IogoutT
Logged in

if password == '12345' && email == 's093263@student.dtu.dk’

Figure 6.18: Login statechart.

List of expenses & debts

One of the main features of the prototype application is to see a list of expenses
that have been added to the system as shown in Figure 6.13(left). The view consists
of a simple list showing the expenses. As illustrated in Figure 6.19 the submachine
consists of three states.

Another feature of the application is showing the debts in the system as illustrated in
Figure 6.13(right). The submachine containing the state of the view is very similar
to the one for showing the list of expenses. It is illustrated in Figure 6.20.

Notice how the logout event makes a transition from State Showing Data to State
Waiting. This is done in order to remove all visible data when the user logs out.
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(‘state machine ExpensesListStateChart [ ExpensesListStateChartU

State Overall

® 7| @—— state Waiting

refreshExpenses
State Loading
refreshExpenses

State Showing
Data

fetchedExpenses

Figure 6.19: Expense list statechart.

('state machine DebtsStateChart [ E"f’-,._i DebtsStateChartu )
State Overall
. E State Waiting
refreshDebts
logout -
State Loading
refreshDebts
—
State Showing
Data
didFetchDebts
N J

Figure 6.20: Debts list statechart.
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Adding a new expense

The view for adding a new expense is shown in Figure 6.17(left). By specifying an
amount and a category for the expense, it is possible for the user, who is logged in, to
add a new expense. As with the login view, the input fields for adding a new expense
have some requirements. As shown on the statechart in Figure 6.21 the provided
amount must be larger than zero and the category must be at least three characters
long.

(‘state machine AddExpenseStateChart [ % AddExpenseStateChartU

State Overall
when (amount>0)

T —————— =
. State Amount Invalid State Amount Valid
) S
. when (amount<=0)

when (category.length>2)

State Category Invalid State Category Valid
| ——
when (category.length<=2)
when (isIn(State Amount Valid) && isin(State Category Valid))

. State Add >  State Add
Button Disabled Button Enabled

) —
when (isNotIn(State Amount Valid) || isNotIn(State Category Valid))

Figure 6.21: Add expense statechart.

6.6.3 Model

Another part of the application is the model. This is where the data logic of the appli-
cation is placed. As shown in Figure 6.11 it consists of four components. The Model
Component is used to interface with the Application Statechart and uses proxy
ports to forward communication to the various model components. The Expense
model statechart component is in charge of managing expenses. The protocols
used for the input and the output ports are shown in Listing 6.10. The input proto-
col contains message types for fetching the expenses, deleting an expense and creating
a new expense. The output protocol simply defines the method for notifying about
new expenses.

Listing 6.10: Protocols used for the input and output port of the Expense model.

// input port protocol

@protocol ExpenseModelInputProtocol

- (void)fetchExpenses;

- (void)deleteExpense: (Expense *)expense;



© o N o o

10
11
12

116 6 Implementation

- (void)createExpenseWithAmount: (NSNumber *)amount
category: (NSString+)category;
@end

// output port protocol

@protocol ExpenseModelOutputProtocol

- (void)fetchedExpenses: (NSArray *)expenses;
@end

However as shown in Figure 6.11 the Expense model statechart has ports con-
nected with channels to the Webservice component. This is because the Webservice
component is in charge of communicating with the external web-service for deleting,
creating and fetching expenses. In the prototype the Webservice component fakes
the communication to the external web-service by maintaining data locally. This is
done in order to ensure that the prototype is able to run without depending on an
external web-service. The Debts model statechart provides the debts in the system.
Since the debts can be calculated from the expenses, the Debts model statechart
is connected to the Expense model statechart as illustrated in Figure 6.11.

6.7 Summary

The implementation of the framework has now been presented, by looking at how
the concept of components has been introduced by the SHPComponent class. Further
the messaging system has been developed by having a router implemented in the
SHPMessageRouter class which routes message sent to SHPChannel instances that
are connected to either SHPInputPort or SHPOutputPort instances. The statechart
implementation has been covered by explaining how to define a statechart using the
framework, by subclassing SHPStateChart and creating states by subclassing either
SHPOrState or SHPAndState. Several implemented components and tools for inspect-
ing the system have been presented, which together form a runtime that is usable for
developing applications. Lastly, the implemented prototype has been explained, in
order to show how the framework can be used in integration with the existing iOS
SDK in order to model an iOS application, which takes advantage of the abstractions.



CHAPTER 7

Tests & Performance

The previous chapter covered the implementation of the framework. This chapter cov-
ers the testing of correctness and performance of the implementation. First the tests
of the correctness of the statechart engine are presented. Next performance testing
of the statechart implementation, with focus on memory usage and the throughput
performance event, is processed. Finally the throughput of the messaging system is
tested and compared to similar systems.

7.1 Statechart engine

The statechart engine implementation has been tested in order to make sure that it
is executing correctly. All of these tests have been put together into a test project as
explained in Appendix E. To test if a statechart is being executed correctly when an
event occurs, the order of exit, action and enter of events is being recorded. A test is
passed if the expected exit, action and enter calls are performed on the right states in
the statechart and match the recorded ones. The expected result is found according
to the rules of statecharts as explained in Section 4.3.9. For a detailed overview of
the exact test cases, the TestProject in the Appendix E should be consulted.

e Base orthogonal regions 1 - The handling of orthogonality has been tested
using two statecharts. The first statechart is illustrated in Figure E.1. The
source code is found in the ScenariolStateChart class in the TestProject.
The purpose of the test is to verify that the AND state is entered correctly
from an OR state. It is tested that when event1 is fired, both state Statelbil
and Statelal are entered correctly. Further it is tested that a transition going
outside of a region is being performed correctly. This happens when first event1
is fired and then event2. Lastly it is tested that active regions are exited
correctly when the AND state triggers a transition. This happens when event1
and then event3 are fired.

e Base orthogonal regions 2 - The second statechart for testing orthogonal-
ity is illustrated in Figure E.2. The source code can be found in the Sce-
nario2StateChart class in the TestProject. The purpose is to test that the
transitions inside regions of an AND state occur correctly. This requires that
all regions responding to an event result in the correct transition. This is the
case when eventl1 is fired, where two transitions should be triggered.
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Merge transition - The use of merge transitions has been tested in the
statechart illustrated in Figure E.3. The source code is found in the Sce-
nario3StateChart class in the TestProject. The purpose is to test that
transitioning from two states in separate regions to another state resolves in
a correct merge transition. This is tested by performing event2, which triggers
a transition to State2. It requires both state Statelal and state Statelbl to
be exited correctly.

Fork transition - Fork transitions have been tested using the statechart illus-
trated in Figure E.4. The source code can be found in the Scenario4StateChart
class in the TestProject. The purpose is to test that transitioning to two states
in separate regions from another state resolves in a correct fork transition. This
is the case when event?2 is fired. It causes the statechart to enter Statela2 and
Statelb2.

Internal transition - Internal transitions have been tested using the statechart
illustrated in Figure E.6.

Not responding event - The purpose is to test that when an event is posted,
where no states in the state configuration respond, nothing happens. The source
code can be found in the Scenario5StateChart class in the TestProject. As
illustrated in Figure E.5 this is the case when event?2 is posted to the statechart.

Self transitions - Self transitions have been tested using the statechart illus-
trated in Figure E.6. The source code is found in the Scenario6StateChart
class. When being in the state State2al and event2 occurs, a self transition to
state State2al should be performed. Further a special kind of self transition is
being tested, where the state responding to the event is defined on a superstate
of the leaf state, and performs a transition to the current leaf state. This is the
case being in state State2al and having event1 occur.

Guarded transition - The handling of guarded transitions has been tested.
The statechart for this test is illustrated in Figure E.7. The source code is
found in the Scenario7StateChart class in the TestProject. The purpose
is to test that guarded transitions are handled correctly. It is tested that the
initial transition results in State Overall being active. Further it is tested that
when StateA2, StateB2 and StateC2 are active, a transition from StateD1 to
StateD2 is automatically performed.

History transition - The history mechanisms are tested. The statechart for
this test is illustrated in Figure E.8. The source code is found in the Sce-
nario8StateChart class in the TestProject. The purpose is to test that his-
tory transitions are handled correctly. It is tested that the last active substate
of State2 is being entered when a transition from Statel is performed.
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e Submachine - The use of submachines is tested and the statechart for this
test is illustrated in Figure E.9. The source code can be found in the Sce-
nario9StateChart class in the TestProject. The purpose is to test that sub-
machines inside a statechart are executing correctly.

7.2 Statechart performance

The implementation of the statechart engine is complex and adds an overhead to the
execution when used. A goal of the framework as explained in Section 1.4 has been
to provide performance acceptable for practical usage. The most important factors
are the memory usage and the event-processing throughput. For this reason these
two factors have been tested. The example presented in Example 6 will be used
to measure the memory usage and event processing performance of the statechart
engine.

Example 6 In order to test the statechart performance a small example of a state-
chart has been developed called TikTok. The project is available in the resources. It is
tllustrated in Figure 7.1. When the initial transition has been performed, the statechart
will enter the state Start and automatically make a transition to the state TikTok.
It will further enter the leaf state Tik. The entry action of state Tik will perform the
event performTik, which will trigger a transition to state Tok. In the entry action
of state Tok the event performTok is triggered, which causes a transition to state Ttk
again. In the action of performTok the extended state variable number0fToks will be
increased by one before. In the entry of state Tik a transition to state Tok is triggered
again. This continues until the guarded transition on state TikTok becomes true and
a transition to state Done is performed. The guard becomes true when the value of
number0fToks has become equal to a predefined goal variable.

7.2.1 Memory usage

During the execution of the statechart it is important that the memory consump-
tion is kept stable. Having spikes in memory usage in iOS causes memory warnings
and the result of this may be that the system terminates the application (Apple,
2014a). A project has been created implementing Example 6 as explained further on
Appendix F. It is used to measure the memory usage using Instruments* with the
variable goal set to 100000. The result is shown in Table 7.2.

4Instruments is a profiling tool included as a part of the i0S SDK.
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(‘state machine TikTok [ oEj' TikTokU h
TikTok
Start 3
entry /goal = <some value> Tik

entry /performTik

Done
T perfromTok / number4\ﬂ' oks++ \Lperformle

Tok

entry /performTok

[numberOfToks == goal]

G J

Figure 7.1: TikTok statechart suitable for testing statechart performance

Seconds Live bytes #Live objects Overall bytes #Overall objects

5 1.31 mb 14534 19.69 mb 542256
10 1.30 mb 14539 45.50 mb 1343524
15 1.30 mb 14472 73.08 mb 2198530

Table 7.2: Memory consumption over time.

As the statechart is being executed the number of overall created objects rises,
which also results in an increase in the overall amount of bytes allocated. However
the live bytes in the memory stays constant, as the statechart is constantly releasing
old memory. This happens because of an auto release pool that has been set up around
the event processing of the statechart. Doing so has a performance consequence as
cleaning up memory is a costly operation, however it keeps the memory usage low
and peaks are avoided.

7.2.2 Event processing

An interesting performance measure for the statechart is how fast it can process in-
coming events. The TikTok statechart explained in Example 6 is used to measure
this using the implementation in the project from Appendix F. In the entry action of
the state TikTok the current time is stored as an extended state and in state Done the
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event processing performance is the measured. The test was performed on an iPhone
5S. The results are listed in Table 7.3

Goal | Seconds | Messages per second
100 0.09 1106

1000 0.23 4192

5000 0.87 5720

10000 1.60 6234

50000 7.69 7646

100000 13.07 7648

200000 | 25.52 7834

Table 7.3: Event processing for different goals.

Further the results are plotted in Figure 7.4. As the figure illustrates the perfor-
mance stabilizes around a goal above 50000 messages, resulting in a bit more than
7500 messages per second.

The statechart clearly introduces an overhead in performance compared to trying
to capture the state using simpler methods as discussed in Section 3.3.1. Running
a profiling with Instruments on the TikTok example with the goal variable equal
to 100.000, reveals in which methods the most time is spent. The results have been
mapped to tasks and it is presented in Table 7.5.

Task Time in percent
Enter target state 19.8%
Releasing memory 17.6%
Finding lowest common ancestor 15.7%
Check transition condition 12.7%
Perform state action 11.7%
Creating message identifiers 7.4%
Other 15.3%

Table 7.5: Percent of time spent doing different tasks.

The traversal of the states in order to find the LCA is the most time consuming
task. As many objects are being created and released during the execution. Also
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Figure 7.4: Plot of messages for event processing per seconds with different values
of goal.

memory management by the system has a big impact on the performance. A sur-
prising discovery is the noticeable time spent on creating the UUIDs which are the
unique identifiers of the messages sent between the components.

7.3 Messaging system throughput

So far the focus has been on the performance of the statechart implementation. As
an application may consist of many components communicating with each other, it
is important that the messaging system delivers an acceptable performance. The
throughput between the components may be a bottleneck in the system. As pre-
sented in Section 5.2.5, the system uses a single central router where all the traffic
passes through. If the throughput is too low, messages will get queued up and eventu-
ally it could cause the application to run out of memory. It is important to notice that
performance optimization has not been a main goal for the messaging system, but
instead it is designed to give advantages for inspection and debugging, as discussed
in Section 5.4. Example 7 is used to measure the throughput of the messaging system.
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Example 7 In order to measure the throughput performance of the messaging sys-
tem, the example project PingPong has been created. The project is available in the
resources. The project consists of two components called Component! and Compo-
nent2. They are connected to each other as illustrated in Figure 7.6. When start
is called on Componentl, it will measure the current time before sending the message
ping out on its output port. This port is connected to the input port of Component?2,
using a SHPChannel going through the SHPMessageRouter singleton. When receiving
a ping message, Component2 will the send a pong message on its output port. This
port is connected to Component1s input port. Every time Component! receives a pong
message it will decrease the value of a variable called goal. The communication will
continue until the goal variable is zero and the execution time will be recorded.

output |—| input
input |—| output

Figure 7.6: Showing how Component1 and Component2 are connected in Example 7.

Component 1 Component 2

The throughput test was performed on an iPhone 5S and the results are shown in
Table 7.7 for different values of the goal variable.

Goal | Seconds | Messages per second
100 0.02 5366
1000 0.09 11467
5000 0.39 12850
10000 0.76 13055
50000 3.90 12822
100000 7.85 12733
200000 15.45 12941

Table 7.7: Throughput for channel system with different goals.

The messages sent per second stabilize around the initial goal variable having the
value of 50000, which gives a throughput of about 13000 messages, as illustrated in
Figure 7.8.

In order to compare the results, a similar test was performed with the normal method
invocation in Objective-C. Instead of having two components sending messages to each
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Plot of messages per seconds for message throughput with different val-
ues of goal.

other, two normal objects were created that called methods directly on each other.
Method invocation is highly optimized for performance. The results are shown in

Table 7.9

Goal | Seconds | Messages per second
100 0.004 22364
1000 0.02 55766
5000 0.05 104248
10000 0.09 112072
50000 0.45 109700
100000 0.83 120368
200000 1.59 121894

Table 7.9: Throughput for Objective-C method invocation with different goals.

As illustrated in Figure 7.10, method invocation is approximately 10 times faster
than the implemented messaging system with more than 100.000 messages per second
for 5000 messages. Which, as expected shows that the messaging system introduces
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much overhead compared to plain method invocation.

Figure 7.10: Plot of messages per seconds for objective-C method invocation with
different values of goal.

In order to determine whenever the performance of the messaging system is useable
in a real life application, a comparison of the performance with an existing and pop-
ular framework has been performed. The third party library ReactiveCocoa®, which
implements the use of the Reactive Programming Model as discussed in Section 3.3.5,
uses signals as a way of reacting as events occur. This can be used to model the
PingPong example described above. It is done by having two objects that each send
out a signal when they receive a signal until a goal is reached. The results of such a
program running on an iPhone 5S are shown in Table 7.11

5ReactiveCocoa is a popular Objective-C framework. https://github.com/ReactiveCocoa/ReactiveCocoa
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Goal | Seconds | Messages per second
100 0.02 3752
1000 0.11 8682
5000 0.56 8912
10000 1.03 9646
50000 4.80 10410
100000 9.65 10360
200000 19.11 10464

Table 7.11: Throughput for Reactive Cocoa with different goals.

As illustrated in Figure 7.12 the messages per second is a bit lower than using
the implemented messaging system with around 10.000 messages per second for 5000
messages.
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Goal

Figure 7.12: Plot of messages per seconds for ReactiveCocoa with different values
of goals.

The implementation of all of the above throughput tests can be found in the Com-
ponentThroughput project in the resources as explained on Appendix G
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7.4 Summary

The chapter has covered the testing of the implementation. First the correctness of
the statechart engine was tested during various test cases. Then the performance
of the statechart implementation was tested by first considering the memory usage.
This turned out to be kept constantly low over time as memory was cleaned during
the processing of events. Next the performance of the statechart event processing was
tested and it was found that for a simple statechart, the implementation is capable of
processing almost 8000 events per second. Finally the throughput of the messaging
system was tested and it was found that it could process almost 13000 messages a
second.
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CHAPTER 8

Discussion

The presentation of the implementation in Chapter 6 mostly focussed on what the
framework offers. In this chapter the original goals are evaluated by discussing how
to model large applications while keeping them convenient for the developer. Further
it is discussed how the designed system can be used in order to provide new ways of
handling errors. Lastly it will be talked about how the design and the implementation
can be ported to other platforms that face similar challenges.

8.1 Modeling large applications

One of the initial goals for the developed framework was that it could be used to
model large complex iOS applications. The prototype, which was explained in Sec-
tion 6.6, showed how to use the framework to model an iOS application. Further
it was integrated with existing frameworks and provided a very typical overall user
interface navigation. While the prototype is constrained in its functionality, it shows
that using the framework to model iOS applications is possible. Modeling larger ap-
plications is simply accomplished by creating more components for modeling the data
logic of the application and expanding the statecharts representing the user interface
with more submachines.

Moreover, the performance testing results from Chapter 7 show that the framework
allows building an application consisting of many components, while keeping the mem-
ory footprint low and providing good performance. This is both the case for when
many messages are sent in the system, as well as for when a statechart needs to process
many events. This means that the implemented framework can be used for modeling
large applications consisting of hundreds of components, and communicating with up
to 13.000 messages a second between each other.

8.1.1 Dynamic behavior

As a large application is executed, depending on the input, the parts of the appli-
cation being used might be dynamic. This can be modeled using the framework
by having components being allocated and deallocated dynamically according to the
needs. However within a single statechart, there is limited support for modeling this
kind for dynamic behavior. This is because the state and the hierarchy of the state-
chart are determined at compile time and it does not change during execution. The
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statechart notation does not define how to deal with this kind of dynamic behavior.
In many cases it can be solved by having some extended states that keep track of the
dynamic part, however this is not always a suitable solution. Allowing the states in a
statechart to be defined dynamically complicates the model dramatically. However,
a solution could be to allow the number of independent regions of a AND state to
be dynamic during execution. By allowing this, dynamic behavior can be achieved
inside of a statechart.

8.2 Implementation overhead

In order to make the framework convenient to work with, it is important that as much
implementation overhead is removed as possible. Common tasks, such as creating a
new statechart, defining the states and the hierarchy and setting up the channels
between components, should be as convenient and easy as possible. Because of this,
convenient methods have been defined to help doing common tasks. Below it is
discussed how these are used to remove implementation overhead, when using the
framework.

8.2.1 Transitions

An example of where efforts have been put in order to make it understandable and
convenient is, when defining transitions between states. Instead of having to create an
instance of SHPStateChartTransition and add it to the state, as shown in Listing 8.1,
a much more convenient way of doing it is offered by simply calling a method as shown
in Listing 8.2.

Listing 8.1: Complicated way of adding transition.

SHPStateChartTransition *transition =
[[SHPStateChartTransition alloc]
initWithEvent:@selector (someEvent)
fromStates:@[statel] toStates:@[state2]
timeout:nil internal:nil guard:nil
historyMode:HistoryModeNone] ;

[statel addEventTransition:transition];

Listing 8.2: Convenient way of adding transition.

[statel onEvent:@selector (someEvent) transitionTo:state2];
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8.2.2 State names

As explained in Section 6.3.1 defining a state for a statechart is done by creating a class.
This class must be a subclass of one of the two base state classes SHPOrState and
SHPAndState. However, this introduces a practical problem when applied in languages
that do not support namespaces. This is the case for Objective-C. Two classes cannot
be defined with the same name in Objective-C. An Application consisting of many
statecharts is likely to have two states with the same name. This means that the
classes need to be prefixed. An obvious solution is to prefix them with the name of the
statechart they are being used in as illustrated in Listing 8.3, where the StateStart
state is prefixed with MyStateChart.

Listing 8.3: Defining state with prefix

@interface MyStateChartStateStart : OrState
Q@end

@implementation MyStateChartStateStart

@end

However having to prefix all state classes is complicated and inconvenient to work
with. Luckily Objective-C supports a way of defining an alias for a class using @com-
patibility_alias <alias> <name>. The use of this is shown in Listing 8.4, where
the state StateStart is defined by making a class called MyStateChartStateStart
and making an alias from MyStateChartStateStart to StateStart. Further, in or-
der to get the short name of the state, the method name is implemented, which returns
the name of the state.

Listing 8.4: Defining a state using @compatibility_alias

@interface MyStateChartStateStart : OrState

Q@end

Q@compatibility_alias StateStart MyStateChartStateStart;
O@implementation MyStateChartStateStart

- (NSString *)name {
return Q@"StateStopped";
¥

Q@end

Defining states this way makes it possible to use the name StateStart within the
MyStateChart class. However, this solution puts overhead on the implementation.
For this reason a macro has been created for easily defining states. It is used by writing
STATE(prefix, statename). Listing 8.5 shows how to define the same StateStart
state with the macro.
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Listing 8.5: Macro used for defining state

STATE(MyStateChart, StateStart)STATE_END

A macro for defining an AND state exists as well using AND_STATE (prefix, state-
name).

8.2.3 Setting up channels

The introduction of components having ports and channels between them requires
the need to setup channels. As shown in Listing 8.6, it introduces much overhead to
first create a channel that goes through the router and then hooking that channel up
between the two ports, defined on two components.

Listing 8.6: Defining a channel between two ports.

SHPMessageRouter *router = [SHPMessageRouter sharedInstance];

SHPChannel *channel = [[SHPChannel alloc]
initWithType:SHPChannelTypePublishSubscribe
messageRouter:router] ;

[router createMessageQueueForChannel:channel];

componentl.outputPort.channel = channel;

component2.inputPort.channel = channel;

In order to make the channel system easier to setup, convenient methods have been
created for connecting two port with a channel as shown in Listing 8.7, where a
publish-subsribe channel is created between the output port of componentl and
the input port of component?2.

Listing 8.7: Convenient way of defining a channel between two ports.

[ [SHPMesageRouter sharedInstance] addPublish-
SubscribeChannelFromQutputPort:componentl.outputPort
toInputPort:component?2.inputPort];

A similar method exists for creating point-to-point channels.

8.3 Error handling

The implemented messaging system provides a way for components to asynchronously
communicate with each other by sending messages. The state of each component can
be captured using abstract states in a statechart, however out of the box, the pro-
posed solution does not specify how errors are handled. As errors occur the application
should handle these in a controlled manner.
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A common solution to handle unexpected errors is to terminate the application.
When using exceptions for handling errors, the behavior in many languages, includ-
ing Objective-C, is to terminate the application when an uncatched exception occurs.
This is usually the desired solution, since trying to recover from an unexpected error
may cause data to get corrupted or calls undesired behavior. However with an appli-
cation consisting of concurrent components, that share no memory, it is possible to
only terminate the part of the application where the error occurred. Handling the er-
ror in the component where the error occurred has the same challenges as handling an
error in an application where all parts share memory. Nonetheless, terminating only
the component and letting another healthy component handle the error, simplifies
the problem. This is known as “remote detection and handling of errors.”( Armstrong,
2013, p. 197). The error is not handled in the component where it occurs. Instead
the component is terminated and another component is notified in order to recover.
If the notified component is not able to recover, it will simply be terminated as well,
resulting in another component being notified. When a component is reached that
is able to recover from the error, it can be done by creating fresh copies of the ter-
minated components. The idea is illustrated in Figure 8.1, where the Web Service
Component receives an unexpected error. It then notifies the Expense Model com-
ponent and then terminates it. Since the Expense Model component is unable to
recover from the situation it also terminates, and notifies the Model Component. The
Model Component is able to recover from the situation and does so by creating a new
instance of Expense Model, which causes a new instance of Webservice Component
to be created.

Application

Application
Model component Statechart
2. terminatyv Wreate
Expense model Expense model TabBar Statechart

A

1. terminated 4. create
\4
Webservice Webservice
Component Component

Figure 8.1: Error handling by terminating components and creating new ones.
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By taking advantage of the fact that an application is structured into independent
components, it is possible to provide an advanced error handling system, where each
component can fail without the entire application to be terminated.

8.4 Porting to other platforms

The implemented framework introduces new concepts and ways of building applica-
tions for i0S. However, since many similar platforms exist that face the same chal-
lenges, it makes sense to look at the possibilities for porting it to other platforms.
Obvious candidates are other mobile platforms such as Android or Windows Phone,
but also other desktop platforms such as Linux and Windows.

Most of the implementation can be easily ported to another object-oriented language.
As explained in Section 6.1 the implementation uses Dispatch Queues to use the
concept of a shared thread pool to provide a context for each component. Porting
the concept of components to another platform, would require implementing a shared
thread pool system, if not already offered by existing frameworks on the platform.

The messaging system takes advantage of a special behavior for NSProxy subclasses,
which as explained in Section 6.2.3 makes it possible to forward a method invocation.
This means that any method can be called on a port, resulting in it being made into a
message that is sent to the channel. The benefit of this approach is a very lightweight
way of sending a message on a port, since it only requires a method call. Providing
content with the message is done by simple adding arguments to the method. Achiev-
ing the same might not be possible in other languages. However, the implementation
of the rest of the messaging system uses structures available in most other languages.

The implementation of the statechart engine is portable and a port to another object-
oriented language could be done quite easily.



CHAPTER 9

Conclusion & future
work

The thesis analyzed the challenges for architecting event-driven software for iOS.
Based on the analysis, a design was proposed for developing applications. The de-
sign consisted of a method for dividing the application into components, where each
component is running in its own context in order to remove dependencies between
the components. Further the communication between components is done using a
decoupled messaging system based on ports and channels. Lastly in order to keep
track of the state inside a component, it can be modeled as a statechart. The imple-
mented framework was used to implement a prototype application, in order to use it
to model a complex iOS application. For testing the performance of the framework
various tests were performed, which showed that the framework is suitable for archi-
tecting large applications. In overall the implemented solution suits as a foundation
for architecting iOS applications by introducing new concepts. These concepts make
it possible to create inspection and debugging tools in order to improve the develop-
ment phase of an application and thus build applications with few bugs consisting of
code that is maintainable.

9.1 Future work

The implemented methods used for architecting software provide a foundation, which
opens up the door for many improvements and extensions. Below are listed some
ideas for future work of the project.

e Testing of statechart - It is possible to test an application by looking at the
behavior of it in different states. Statecharts introduce the concept of abstract
states. Since the number of abstract states is fixed and for each state the
transitions to other states is known, it is possible to test an application by
forcing it into all possible states by sending events to the statechart. This can
be used to create a way of automatically testing a statechart, with the goal
of trying to force it into a particular state configuration, which should not be
allowed. It can be done by creating a helper statechart that gets the same
events as the statechart being tested. The helper statechart however, observes
the other statechart and performs a transition to a fail state if the statechart
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being tested ends up in an illegal state configuration. This is done in order to
indicate that the test failed.

e Debugging tools - As discussed in Section 6.5 the introduced concepts make
it possible to develop new tools for inspecting and easing the development of
an application. This could include many different tools. For instance a tool to
inspect the communication between components that allows pausing all commu-
nication or stepping through a trace of messages being sent, in order to debug
the behavior.

e Dynamic behavior - As mentioned in Section 8.1.1 the statechart notation
has limited support for dynamic behavior. As discussed further a solution could
extend the notation with the possibility of dynamically defining regions to an
AND state.

e Contract on communication - The messages sent between components in
the system are in the implemented framework defined by a protocol put on the
end points. However, this does not guarantee that the correct messages are sent
at the correct times. For instance, if a component sends a message to another
component and expects a message to be sent back as a reply, however the receiv-
ing component expects another kind of message first before being able to reply,
the system ends up in a stuck state. An improvement could be to introduce
the concept of a contract for the communication between components. Such a
contract could be used as a definition for how components can communicate
with each other.

e Error handling As discussed in Section 8.3 the introduction of components
provides a way of handling errors by linking the components together and crash-
ing a component once an error occurs, in order for another component to recover
the system. By adding a mechanism for easily linking components a powerful
way of handling errors can be archived.

e Platform independent network bridge - As discussed in Section 6.5.2 the
message bridge has the limitations that objects being sent are encoded into a
format that can only be decoded on either iOS or OSX. This means that it is
not possible to bridge to other platforms. But instead using a more general
format such as JSON a platform independent bridge can be archived.

e Porting to more platforms - As many platforms exist facing similar chal-
lenges, the framework can be ported as discussed in Section 8.4.

The findings in the thesis were found profitable for Shape A /S, hence the conceptual
work, for several of the above mentioned additions have already been started in order
to further improve the way software for iOS can be architected.
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APPENDIX A
Thread memory
consumption fest

In order to run the project, Xcode 5 or newer must be installed. The memory consump-
tion on iOS has been tested with the example project DispatchQueueComponentTest.

The project is included in Projects/DispatchQueueComponentTest in the resources.
The resources can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

A.1 Running the project
Simply open the ThreadMemoryTest.xcodeproj project file in Xcode or AppCode.

$ open ThreadMemoryTest.xcodeproj

In order to specify the number of threads created in the test open AppDelegate.m.
Change the value of number0fThreads

NSUInteger numberOfThreads = 250;

The memory usage is printed in the console every 10th second.

Memory used 163086.3 kb (+163086 kb), free 49139.7 kb



http://www.student.dtu.dk/~s093263/thesis2014/resources.zip

138




APPENDIX B

Framework source

The framework can run on iOS7 or higher and OSX 10.9 or higher. The implemented
sources are available in the Source folder in the resources.

The resources can be downloaded from:
http://www.student.dtu.dk/~“s093263/thesis2014/resources.zip.

A CocoaPod podspec file has been included, which makes it possible to use the code
by adding the following to the podfile.

pod 'SHPStateChart', :path => '<path to folder with SHPStateChart.podspec>'

The prototype application explained in Section 6.6 and available from Appendix D is
a great resource for understanding how to use the framework.


http://www.student.dtu.dk/~s093263/thesis2014/resources.zip
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APPENDIX C

Dispatch queue
component test

In order to run the project, Xcode 5 or newer must be installed. The maximum size
of the dispatch queues provided as a part of the iOS SDK has been tested with the
example project DispatchQueueComponentTest.

The project is included in Projects/DispatchQueueComponentTest in the resources.
The resources can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

C.1 Running the project

Simply open the DispatchQueueComponentTest.xcodeproj project file in Xcode or
AppCode.

$ open DispatchQueueComponentTest.xcodeproj

In order to specify the number of components created in the test open AppDelegate.m.
Change the value of number0fComponents

NSUInteger numberOfComponents = 513;

The result of the test is printed in the console.

max = 4.000778
min = 2.001259



http://www.student.dtu.dk/~s093263/thesis2014/resources.zip
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APPENDIX D
Profotype application

In order to run the prototype application, Xcode 5 or newer must be installed. The
source for the prototype application is available in the resources.

The project is included in the folder Projects/ExpensesPrototype in the resources.
The resources can be downloaded from:
http://www.student.dtu.dk/~“s093263/thesis2014/resources.zip.

D.1 Running the prototype

The project uses CocoaPods, which must be installed before running.

$ sudo gem install cocoapods

While in the root of the ExpenesPrototype project folder, install the depending pods.
$ pod install

Run the project by opening ExpensesPrototype.xcworkspace in Xcode or AppCode.

$ open ExpensesPrototype.xcworkspace


http://www.student.dtu.dk/~s093263/thesis2014/resources.zip
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APPENDIX E

Test statechart engine

In order to run the project with the tests, Xcode 5 or newer must be installed. The
test project is included in the project TestProject.

The project is included in Projects/TestProject in the resources. The resources
can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

E.1 Running the project

The project uses CocoaPods, which must be installed before running.

$ sudo gem install cocoapods

While in the root of the TestProject project folder, install the depending pods.
$ pod install

Simply open the TestProject.xcworkspace project file in Xcode or AppCode.
$ open TestProject.xcworkspace

The statecharts for the tests are listed below.


http://www.student.dtu.dk/~s093263/thesis2014/resources.zip
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APPENDIX F
TikTok project

In order to run the project, Xcode 5 or newer must be installed. The throughput
tests for the different solutions is included in the project TikTok.

The project is included in Projects/TikTok in the resources. The resources can
be downloaded from:
http://www.student.dtu.dk/~“s093263/thesis2014/resources.zip.

F.1 Running the project

The project uses CocoaPods, which must be installed before running.

$ sudo gem install cocoapods

While in the root of the TikTok project folder, install the depending pods.
$ pod install

Simply open the TikTok.xcworkspace project file in Xcode or AppCode.
$ open TikTok.xcworkspace

In order to specify the goal variable used for the test open AppDelegate.m. Change
the value of goal

// Spectify the value of the goal wariable
J) KRFREFKAKFRFFIARF KRR KAIF R AFTAKFFFFFA KRR KRNI

NSUInteger goal = 50000;

[ KEKKKEKEKKKKKKKKKKKKEK KK KKK KK KKK KKK KKK KKK KKK KKK

The result of the test is printed in the console.

7.69 sec / 50000 msg
7646.2 msg / sec



http://www.student.dtu.dk/~s093263/thesis2014/resources.zip
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APPENDIX G

Component
throughput test

In order to run the project, Xcode 5 or newer must be installed. The throughput
tests for the different solutions are included in the project ComponentThroughput.

The project is included in Projects/ComponentThroughput in the resources. The
resources can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

G.1 Running the project

The project uses CocoaPods, which must be installed before running.

$ sudo gem install cocoapods

While in the root of the ComponentThroughput project folder, install the depending
pods.

$ pod install

Simply open the ComponentThroughput .xcworkspace project file in Xcode or App-
Code.

$ open ComponentThroughput.xcworkspace

In order to specify the goal variable used for the test open AppDelegate.m. Change
the value of goal

NSUInteger goal = 1000;

Further in order to specify which test should run, change the value of the test
variable.


http://www.student.dtu.dk/~s093263/thesis2014/resources.zip
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156 G Component throughput fest

// Specify what should be tested

) KEEEKKKK KKK KKKKKKKK KKK KKK KK KKK KKK K

// TestComponent, TestMethodInvocation or TestReactiveCocoa
Test test = TestMethodInvocation;

[ REKKKKK KKK KKKRRKKKKK KRR KKRRRKKK KA AR KK

The result of the test is printed in the console.

0.063588 sec / 1000 msg
15726.3 msg / sec
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