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Abstract

Low-area matched filter and correlator designs are explored in this thesis, for ADC
resolutions of 1- and 2-bits. Correlators are used extensively in spread-spectrum
communication technologies, where they serve as a means of detecting a known
pseudo-random sequence (PN code). The correlator designs presented here are
intended for direct-sequence spread spectrum (DSSS) radio, where the data to be
sent is expanded using either the PN code, or the inverse of the PN code. The
correlator or matched filter will then respond with a positive or negative peak
when a data bit is detected.

To test various correlator designs a testbench is developed in MATLAB, where
a DSSS data sequence can be created and corrupted with an adjustable level of
white Gaussian noise. The data stream with noise is filtered with an automatic
gain stage, and sampled using an ADC of variable resolution and sampling
rate. The sampled signal is then fed to a mathematical model of the given
correlator design to see how it behaves. For an objective measure of performance
in the presence of noise, a novel noise immunity test bench was developed, which
subjects the correlator models to a signal with increasing levels of noise. The
SNR where the correlator is no longer able to extract the correct data bits from
the signal is considered the noise immunity level.

Several HDL matched filter designs are presented for both 1- and 2-bits of ADC
resolution. The 1-bit matched filters are tested using the Barker-11 PN code,
whereas the 2-bit correlators are tested using a 36 chip long chirp sequence.
For both the 1- and 2-bit correlators, a specific design type using a multiplexed
parallel counter was the most area efficient. A novel grouping correlator design
is also presented for 2-bit operation, however the area required by this design
is larger than that of the other designs. The results from the grouping design
indicate that a significant reduction in dynamic power is present. In terms of
power efficiency, the dual correlator designs showed promising results of half the
power consumption of the other designs. The design of parallel bit counters used
in the matched filters are also presented, along with the area per bits required
for each design.

Verification of the designs is performed using mathematical correlator models,
which are subjected to the same input as the Verilog modules. The results from
these two tests are compared, and any discrepancies are reported to the user of
the testbench. The mathematical and Verilog correlator models are fed with a
simulated real-world input signal, which is essentially random noise for purposes
of testing functionality.
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Sammendrag

Temaet for denne masteroppgaven er implementasjon av matchetfiltre og
korrelasjonsenheter med minimalt arealforbruk, og for ADC-oppløsninger p̊a
henholdsvis 1 og 2 bit. Korrelasjonsenheter brukes utbredt innen spread-
spectrum kommunikasjonsteknologi, der de har som oppgave å oppdage en p̊a
forh̊and kjent pseudotilfeldig sekvens (PN kode). Enhetene presentert her er
utviklet for ”direct-sequence spread spectrum” (DSSS) radio, der hvert enkelt
databit representeres enten med PN koden, eller den inverse av PN koden,
avhengig av verdien til databiten. Korrelasjonsenheten vil gi maksimalt eller
minimalt utslag hver gang PN koden mottas, og disse utslagene kan leses av som
de opprinnelige databitene.

For å teste støyp̊avirkning og andre faktorer p̊a korrelasjonen ble en testbenk
utviklet i MATLAB, der en DSSS datasekvens kan lages og ispes med et valgt
niv̊a av Gaussisk hvit støy. Datastrømmen med støy blir s̊a normalisert, og
deretter samplet ved hjelp av en analog til digital konverter med justerbar
oppløsning og samplingsrate. Det samplet signalet settes s̊a inn i en matematisk
modell av korrelasjonsenheten som testes for å se hvordan den oppfører seg.
For å f̊a et objektivt m̊al p̊a evnen til å motst̊a støy ble det utviklet en
støyimmunitetstestbenk, som tilfører et signal med stadig høyere støyniv̊a til
en korrelasjonsmodell. SNR-niv̊aet der dataen i signalet ikke lenger tolkes riktig
blir satt som støyimmuniteten til korrelasjonsmodellen.

Flere HDL matchetfilterdesign presenteres for b̊ade 1 og 2 bit med oppløsning.
1 bit matchetfilterene bruker Barker-11 sekvensen som PN kode, mens 2 bit
enhetene bruker en 36 chip lang chirpsekvens. For b̊ade 1 og 2 bit enhetene var
det et bestemt design som brukte en multiplexed parallellteller som var mest
arealeffektiv. En original korrelasjonsenhet som grupperer ADC samples blir
ogs̊a presentert for 2 bit ADC oppløsning, og som viser en betydelig reduksjon
i dynamisk strømforbruk. Strømforbruket til dual correlator designene viste en
halvering i strømforbruket sammenlignet med de andre enhetene. Design av
parallellbittellerne som brukes i korrelasjonsenheten blir ogs̊a presentert, sammen
med arealet per telte bit.

Designverifisering er gjort ved bruk av matematiske modeller, som utsettes for de
samme inngangssignaler som Verilog modulene. Resultatene fra disse to testene
sammenlignes, og forskjeller rapporteres til brukeren av testbenken. B̊ade de
matematiske og Verilogmodulene mates med en simulert DSSS signal, som for
testform̊al er tilfeldig støy.
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Problem description

Cross-correlation is a signal processing technique that is extremely useful in
wireless receivers, radar, image recognition, and many other scenarios in which
a pattern must be reliably detected in noise. This thesis would explore how to
implement cross-correlation in hardware to minimize gate count and/or power
consumption. Of special interest for this project are implementations in which
the signal to be correlated is obtained from a low-resolution analog-to-digital
converter with only one or two bits of output.
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Chapter 1. Introduction and Motivation

Chapter 1

Introduction and
Motivation

This report focuses on the design of a small footprint correlator, for use in direct-
sequence spread spectrum communication technologies. With recent advances
in low power electronics combined with increasingly smaller integrated circuits,
small, battery-driven smart devices are becoming ever more prevalent. Cross-
correlation is an integral part of different wireless systems such as satellite
navigation (GPS, Galileo and GLONASS), WLAN, RFID, IS-95, WCDMA,
CDMA 2000, etc. In this report the design of correlators connected to a two
level (1-bit) and three level (2-bit) ADC are explored.

1.1 Contribution

Correlators for digital cross-correlation are mature technology, with most earlier
work aimed at reducing power consumption, or on filters with special PN codes
and/or units using several bits of ADC resolution. Area minimization of a single
low ADC resolution matched filter has however not been mentioned often in
literature, and is the objective of the design effort in this thesis.

During the course of this thesis, a number of matched filter and correlator designs
were created. Of these, some proved particularly area efficient, while others
showed promising results in terms of power consumption. As minimal area
consumption was an expressed goal for these designs, this was the center of the
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Chapter 1. Introduction and Motivation

design focus. The 1-bit correlator designs were designed first in an exploratory
manner, with varying methods which sought to minimize the area. Synthesis of
these modules was not performed until they had all been designed, and as the
main purpose of the 1-bit correlators was to determine which trade-offs were
present, no further optimization was performed on these designs. The 2-bit
designs were based around the most area-efficient 2-bit correlators, along with a
few novel designs only possible with increased ADC resolution.

1.2 Report Layout

The first chapters (2 through chapter 3) of this report are aimed at exploring
how matched filters operate and behave, and deal with the basics of direct-
sequence spread spectrum radio, some of the previous work in this field, and
the MATLAB simulation of a radio link with correlator. A novel noise immunity
testbench is also presented. Once the theoretical background has been covered,
the architectural design process is presented in chapter 4, where various HDL
modules are described for 1-bit and 2-bit resolution, followed by the sub-modules
used in the correlator designs. A description of how their correct functioning
has been verified is given in chapter 5. After these chapters the results are
presented in terms of area consumption, computation speed, noise immunity and
power dissipation in chapter 6. The results are then discussed, and a conclusion
presented finally in chapters 7 and 8.
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Chapter 2. Background Material

Chapter 2

Background Material

Some material is presented here to give an insight into the applications of digital
cross-correlation and how this estimate compares to an analogue correlation.
The theoretical basis for cross-correlation is briefly mentioned, before the
fundamentals behind direct-sequence spread spectrum radio are presented.

2.1 Digital cross Correlation

Cross correlation provides a measure of similarity between two waveforms, as a
function of a time lag between them. This operation is commonly used to find
one signal within another, as not only is the degree of similarity determined, but
also the phase difference or delay between the two signals. The mathematical
definition of the discrete time cross correlation is:

f ? g[n] =

∞∑
m=−∞

f∗[m]g[m+ n] (2.1)

For all samples m, and at time lag n. In a digital system the signals
will be quantized, leading to quantization noise in the correlation signal.
The performance of a discrete correlator relative to an analog correlator is
known as the degradation factor, which is a measure of how well a discrete
correlator can estimate the correlation of two signals compared to the estimation
made by an analog correlator. It has been shown that this factor can be

3



Chapter 2. Background Material

calculated analytically, and the results for some bit sizes are presented in table
2.1.[3][6]

Bits (n) Sampling rate Degradation factor
1 2B 1.57
1 4B 1.35
2 2B 1.14
2 4B 1.06
3 2B 1.05
Infinite - 1.00

Table 2.1: Degradation factor for various sampling rates at 2n quantization levels.

2.2 Direct-Sequence Spread Spectrum Radio

In spread spectrum technologies a signal is purposely spread in the frequency
domain, in order to increase its bandwidth beyond that required just to send
the data. The benefits of spread spectrum communications are antijamming,
antiinterference, low probability of intercept, multiple user random access
communications with selective addressing capability, high resolution ranging
and accurate universal timing.[10] The act of spreading the signal is done by
injecting a higher frequency spread spectrum code into the transmitting chain.
Despreading the signal again is done at the receiver side, and is only possible with
the same spread spectrum code used to spread the orignal signal. The code used
to spread the signal needs to be as noise-like as possible, but also reproducible by
both the transmitter and receiver. For this, pseudo noise codes, or PN codes, are
used. A valid PN code must fulfill a number of criteria pertaining to its statistical
properties, and the most common codes are named. Often used PN codes are
maximal length sequences, Gold codes, Hadamard-Walsh codes, Kasami codes,
and Barker codes.[1][8]

4



Chapter 2. Background Material

Figure 2.1: Power spectral density during spread/de-spreading.

In direct-sequence spread spectrum radio, or DSSS, the PN code is mixed with
the data bit prior to transmission. E.g. a 1 may be represented by a given PN
code, whereas a zero by the inverse of the same PN code. This is the case in
the original IEEE 802.11 standard.[2] DSSS is also used in satellite navigation
systems (GPS, Galileo an GLONASS) and CDMA cellular phones. The bits in
a PN code are referred to as chips, to differentiate them from the data bits. A
single data bit after spreading will contain as many chips as the PN code length
when using a so-called ”short code”. When using a ”long code” the data bits
might be spread with different portions of the original PN code, meaning that
it will take a number of data bits before the same chip sequence is transmitted
again.[17] In this thesis only short codes are considered. To despread a received
signal coded in this way, the cross correlation between the incoming signal, and
the selected PN code is calculated with each incoming sample of radio data. A
data bit 1 corresponding to the PN code will cause a positive spike in the cor-
relation waveform, whereas a data bit 0 will cause a negative spike. Due to the
auto-correlation properties of the PN codes, noise gives a correlation score near 0
for a normalized output between [1,-1]. Reading data from a the cross correlation
waveform is a simple matter of detecting spikes, and their polarity, which can be
performed with two threshold detectors.

5
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Figure 2.2: Spreading of data using the Barker-11 PN code.

The cross correlation unit used is typically called a correlator, or matched filter.
In many implementations the PN code is constant, which reduces the complexity
of the cross correlation down to a matched filter operation, which is merely a finite
impulse response filter, with coefficients equal to the time-reversed PN code. For
an input sequence exactly equal to or exactly inverse of the filter coefficients,
the output of a matched filter will be maximal or minimal respectively. It is the
implementation of such a matched filter which is explored in this thesis.

Figure 2.3: Example of DSSS correlation waveform, for the data sequence 1011.

Multiple access can be achieved with DSSS through CDMA (code division
multiple access). Here each transmitter and receiver pair are given a unique PN
code to communicate with. The data from other transmitters is encoded with
a different PN code than that the receiver holds, and will only be interpreted
as random noise, resulting in low correlation scores. One of the properties of
a good PN code is that it has poor correlation with other PN codes. Multiple
transmitter/receiver groups using CDMA on the same frequency band is in some
ways analogous to several people in a room speaking different languages.

6
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2.3 Previous Work

Matched filters for digital cross-correlation have been in use for many years, but
the bulk of previous work done on them has been focused on low power solutions,
filters with special PN codes, area reduction of the search algorithms needed
in the PN code synchronization phase[4] [14] and/or units using several bits of
ADC resolution. Area minimization of a single low ADC resolution matched filter
seems to be a somewhat overlooked topic.

For reducing power consumption, a number of clever methods have been utilized.
In [5] the authors shift the PN code rather than the ADC register to reduce
the switching activity. The ADC samples are stored in a register file instead,
meaning the oldest sample is replaced with the newest sample on every ADC
clock cycle. Power savings are also made in the calculation of the correlation, by
using a threshold detector to monitor the result from an initial summation block,
and if it is below some threshold the second summation block is halted. Further
savings are made by switching from signed 2’s complement notation, to an offset
binary notation, which simplifies the numerous summation operations. Various
other approaches can be found in [12] [7].

In the case of a specially chosen PN code, [15] has shown that the correlator can
be organized in a manner where a repeating structure is exploited to reduce the
computational complexity. The PN code is chosen such that it consists of one
inner PN code of length L expanded by another outer PN code of length M. The
correlator can then be built with an inner matched filter using the coefficients of
the inner code, and with a delay-line of length L. The results from this filter are
fed into another matched filter using the coefficients of the outer code, with delay-
line length M. The output from the outer matched filter is the total correlation.
The first matched filter uses a unit delay, whereas the outer matched filter uses
a delay of L.

A method of grouping and segmenting the filter structure is presented in [16], in
which the length of the tapped delay line is reduced by grouping filter coefficients.
The grouped outputs are summed using a Finite-Delay Accumulator, and some
clever multiplexing to reduce the resource requirements in a FPGA. A straight-
forward approach is given in [13] where both the ADC- and PN code register can
be switched to circular buffers. By doing so, the numerous multiplication and
summation steps can be reduced to a single multiplier and counter unit.

7
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Chapter 3

Specification and System
Analysis

Prior to implementing any correlator designs in Verilog, simulations were
performed in MATLAB. To get a feel for how a correlator unit behaves in a
radio application, a simulated radio link was used to transmit data to a receiver.
The receiver quantizes the data from the radio link, and applies it to a correlator
unit. The quantization steps can be altered, as can the signal-to-noise ratio and
per-chip sampling rate.

To get an objective measure of how well a given correlator topology (sampling
rate and quantization level) performs at various levels of noise, a testbench was
created which would successively apply more noise to the radio signal, while
trying to read data bits from the correlator output. Once a single data bit is
read incorrectly, the current noise level is recorded and the test is run again.
After a number of iterations, the average noise level is presented as the noise
immunity level.
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3.1 Radio Link Simulator

This MATLAB script is intended to simulate the spread spectrum data sequence
using any PN code, and mixed with additive Gaussian white noise. The signal to
noise ratio can be adjusted using the desired snr parameter. The sampling rate is
used at this stage in simulation to ensure each chip with added noise is divisible
by the sampling rate, which is a requirement when the radio data is sampled and
quantized later on. To simulate the behavior of a real radio link, an automatic
gain control unit has also been simulated on the receiving end. The unit works
to reduce the input signal amplitude such that peaks remain close to +/− 1. All
figures presented later in the report showing a simulated radio link have been
generated using this script.

% Enter var i ous constants f o r the s imu la t i on
sample rate = 5 ; % Mult ip le o f the chip rate , depends on

c o r r e l a t o r des ign
d e s i r e d s n r = −4; % In d e c i b e l s
data = [1 1 −1 −1 −1 1 1 −1 −1 −1 −1 1 1 1 ] ; % Data sequence to

t ransmit t
n o i s e r e s o l u t i o n = 100 ; % How many samples o f no i s e f o r every

sample o f data

%% Generate sequences
PN Code = [ 1 ze ro s (1 , 7 ) −1 ze ro s (1 , 6 ) 1 z e ro s (1 , 5 ) −1 ze ro s (1 , 4 ) 1 z e ro s

(1 , 3 ) −1 ze ro s (1 , 2 ) 1 0 −1 ] ;

% Create the r e f e r e n c e code used in the c o r r e l a t o r
% Expand the data and PN code to match the sampling ra t e
pn code = reshape ( (PN Code ’ ∗ ones (1 , sample rate ) ) ’ , 1 , l ength (PN Code)∗

sample rate ) ;
tx data = reshape ( ( data ’ ∗ pn code ) ’ , 1 , l ength ( pn code ) ∗ l ength ( data ) ) ;
% Expand the tx data so add i t i ona l no i s e samples can be added
tx temp = reshape ( ( tx data ’ ∗ ones (1 , n o i s e r e s o l u t i o n ) ) ’ , 1 , l ength (

tx data )∗ n o i s e r e s o l u t i o n ) ;

% Create no i s e and s c a l e to match de s i r ed SNR
no i s e = randn (1 , l ength ( tx data )∗ n o i s e r e s o l u t i o n ) ;
no i s e = no i s e / norm( no i s e ) ∗ norm( tx temp ) / 10 . 0ˆ (0 . 05∗ d e s i r e d s n r ) ;
% Noise i s assumed to be added to the s i g n a l . The r e c e i v e r w i l l l i k e l y

have
% an Automatic−Gain−Control stage , normal i z ing the s i g n a l amplitude
r ad i o da t a no i s e = tx temp + no i s e ;
r ad io data = rad i o da t a no i s e ∗ (1− var ( abs ( r ad i o da t a no i s e ) ) ) ;
% Ver i fy that the SNR i s as d e s i r ed
r ad i o s n r = 10 ∗ l og10 (mean( tx temp . ˆ2 ) / mean( no i s e . ˆ 2 ) ) ;

% rx data i s rad io data sampled at every x sample .
rx data = rad io data ( 1 : n o i s e r e s o l u t i o n : l ength ( rad io data ) ) ;

10
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3.2 Correlator Simulator

The received radio data is sampled by a simulated ADC, of selectable resolution
and sampling rate. This is done by defining the ADC intervals first, such that
the space [−1, 1] is split into (2ADC bits) discrete values. Next a new vector is
defined in such a way that a series of comparisons can be done to check which
discrete value to fixate a given sample to. The vector used for comparison is the
interval [−1, 1], first split into 2ADC bits + 1 values, and then having the lowest
value removed from the set.

f unc t i on [ rx data ] = va r i a b l e b i t q u an t i z e ( input vec to r , ADC bits )
%VARIABLE BIT QUANTIZE Quantize vec tor in to d i s c r e t e va lues in [−1 , 1 ]

% Space between each ADC l e v e l
a d c i n t e r v a l = 2 / ((2ˆ ADC bits )−1) ;
% Vector conta in ing va l i d ADC va lues in [−1 ,1]
adc span = ( 0 : a d c i n t e r v a l : 2 ) − 1 ;
% Vector used to p lace ADC va lues
ad c i n t e r v a l = 2 / (2ˆADC bits ) ;
adc check = ( 0 : a d c i n t e r v a l : 2 ) − 1 ;
adc check = adc check ( 2 : end ) ;

% Next the data i s quant ized to a l l owab l e l e v e l s
rx data = ze ro s (1 , l ength ( i nput ve c to r ) ) ;
f o r i = 1 : l ength ( i npu t ve c to r )

% Quantize each sample
f o r j = 1 : l ength ( adc check )

i f i npu t ve c t o r ( i ) < adc check ( j )
rx data ( i ) = adc span ( j ) ;
break ;

end
end
i f j == length ( adc check )

rx data ( i ) = adc span ( end ) ;
end

end
end

The correlation itself is calculated using the MATLAB function xcorr, taken
between the sampled and quantized rx data and the PN code.

% Cross c o r r e l a t i o n o f rad io data and PN code
r1 xy = xcorr ( rx data , pn code ) ;
L = length ( rx data ) + length ( pn code ) − 1 ;
s t a r t c o r r = length ( r1 xy ) − L ;
r1 xy = r1 xy ( s t a r t c o r r : end ) ;

11
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3.3 Noise Immunity Testbench

In an attempt at creating an objective measure of the noise immunity possessed
by each correlator design, an algorithm has been developed to subject a given
mathematical correlator model to an increasingly noisy signal, while trying
to read data from it based on the correlation peaks. The correlator models
themselves will be presented in chapter 5.2 on page 49.

Data is read using a threshold detector. If a correlation peak is detected above
the upper threshold it counts as +1 (representing databit 1), and below the lower
threshold as −1 (representing databit 0). Once a data bit has been detected the
algorithm refuses to detect a new data bit until a certain timeout has passed.
This timeout is proportional to the length of the PN code, as it is known the
interval between data bits is at least the length of the PN code. Due to the
effects of noise, the actual timeout is a value slightly lower than the PN code
length.

f unc t i on [ de tec t ed data ] = d e t e c t c o r r e l a t o r p e a k s ( c o r r e l a t i o n v e c t o r ,
pn code len , upper thres , l ower th re s , sample rate )

%DETECTCORRELATOR PEAKS Detects peaks cor responding to data b i t s .

% Find peaks in the c o r r e l a t o r output above or below c e r t a i n th r e sho ld s .
% Trans late each in to a data bit , b e f o r e engaging a timeout .

% The minimun expected time between peaks , g iven in samples
TIME OUT THRES = f l o o r ( 0 .7 ∗ ( sample rate ∗ pn code l en ) ) ;
t imeout = 0 ;
% Create the data vector , w i l l at most f i nd a peak every time

po s s i b l e ,
% th i s vec to r can be shortened l a t e r by removing l e f t o v e r z e ro s
de tec t ed data = ze ro s (1 , c e i l ( l ength ( c o r r e l a t i o n v e c t o r ) /

TIME OUT THRES) ) ;
data index = 1 ;
% Run through the c o r r e l a t i o n vec tor
f o r j = 1 : l ength ( c o r r e l a t i o n v e c t o r )

% i f the timeout i s i nac t i v e , look f o r a peak
i f ( t imeout ˜= 0)

timeout = timeout − 1 ;
e l s e

% Look f o r p o s i t i v e b i t
i f ( c o r r e l a t i o n v e c t o r ( j ) >= upper thre s )

de tec t ed data ( data index ) = 1 ;
data index = data index + 1 ;
timeout = TIME OUT THRES;

% Look f o r negat ive b i t
e l s e i f ( c o r r e l a t i o n v e c t o r ( j ) <= lowe r th r e s )

de tec t ed data ( data index ) = −1;
data index = data index + 1 ;
timeout = TIME OUT THRES;

end
end

end
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% Trim ze ro s from the detected data vec tor
z e ro index = f ind ( de tec t ed data==0, 1 , ’ f i r s t ’ ) ;
i f ( z e ro index == 1)

d i sp ( ’No data detected ! ’ )
de tec t ed data = 0 ;

e l s e
de tec t ed data = detec t ed data ( 1 : ze ro index −1) ;

end
end

The algorithm runs a number of passes before averaging the final results, and
also calculating the standard deviation of these. The number of passes to run is
user selectable, and each pass is independent of the others. Because of this, it is
trivial to parallelize the computations in order to save processing time. During
a pass, the noise level is first increased from zero in rough steps until errors are
detected in the data bits read from the correlator output. Once this happens
the noise level is reduced by two rough steps, and the increment level set to fine.
The algorithm runs again closer to the solution, but at a finer resolution. Once
an error is detected during this pass the signal conditions are stored, and the
algorithm returns to complete a new pass. Once the desired number of passes
have been reached, the algorithm calcualtes the mean and standard deviation,
presenting the average noise level required before more than 1

1000 data bits are
erroneous.
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Figure 3.1: State diagram of the noise immunity algorithm.
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Chapter 4

Architectural Design

4.1 One-bit Correlator Implementation

This section contains the implementation details of the 1-bit correlator designs.
Each of these correlators is intended to be used with a simple threshold ADC,
which detects whether the input signal is above or below some midpoint,
represented by 1 or 0 respectively. All of the correlators presented have been
designed to use the 11-chip long Barker sequence as the PN code, although the
architectures presented can be used with any PN-code, with minor changes. The
Barker-11 code is as follows: [1 1 1 -1 -1 -1 1 -1 -1 1 -1].

Figure 4.1: Matched filter schematic, sampled at twice the chip rate.
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The correlator designs are all variations of a matched filter correlator, in
which the ADC samples are moved across a multiplier chain representing the
flipped/mirrored version of the pseudo random sequence used. As each chip in
the sequence is either +1 or -1, the multiplications only alter the sign of the ADC
value. In a 1-bit system, this multiplication can be performed with a buffer for
+1, and an inverter for -1. +1 is represented by 1, and -1 by 0 in the following
designs.

Once each bit in the ADC register has been multiplied with the corresponding
chip value, it is summed with the others. This total sum is the correlation
between the value currently held in the ADC register, and the PN code.
Regardless of the architecture used in the correlator designs, every design requires
a memory element to hold some of the previous ADC samples, and some means
of multiplying them with the correct portion of the PN code. Currently this is
done using a long shift register, and a number of buffers and inverters. Summing
the set bits in an efficient manner is where area savings can be made, without
sacrificing functionality. This is where each design presented below differs.

To improve noise immunity, the apparent length of the PN code can be increased
by oversampling a number of times, defined here as N , for each chip. This
increases the PN code length by a factor of N . A value of N = 1 is defined
here as meaning a sampling rate equal to the chip rate, not twice the chip rate
which would be the Nyquist frequency. The correlator shown in figure 4.1 has
N = 2, notice how pair of samples are multiplied with the same chip in the PN
code.

4.1.1 Standard Output

The correlator designs in this section provide an output signal which is can be
expressed as the sum of the Kronecker delta functions, taken on pairs of ADC
samples and PN codes. The mathematical formula for the estimated correlation
at a discrete time instant n is given by:

δi,j =

{
1, if i = j

0, otherwise
(4.1)

Corr[n] =

N ·L∑
i=0

δADC[i],PN Code[i] (4.2)

Where the ADC is the ADC sample register, and PN Code is the expanded
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Barker-11 sequence, with +1 = 1 and −1 = 0. L is the length of the PN
code used, which in this case is 11, and N is the samples per chip taken by the
ADC. The number representation used is offset binary, meaning a signal with the
greatest degree of negative correlation (−1.0) is represented by 0, and a signal
with the highest degree of correlation (+1.0) is represented by N · L.

Figure 4.2: Comparison of signed and offset binary correlator output.

An example of the output signals are shown in figure 4.2. First the data sequence
is provided, then the two correlation results, in either signed or offset mode. The
two output signals are identical in terms of information, as the offset mode is
merely the signed signal plus a constant factor of N ·L

2 . In figure 4.2 this offset
equals 33 from N = 6 and L = 11.
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Figure 4.3: Radio signals and ADC values used to create the waveforms in figure
4.2.

The radio signal used to extract ADC samples from is shown in figure 4.3, The
SNR is 0.92dB, and the sign of the sampled ADC value differs from that of the
data bit in 15.0% of the samples. From figure 4.2 it is clear that the correct data
sequence can still be retrieved error free.

Parallel Correlator, reference

The first of the correlator designs, this one has been deemed the reference
design for later comparisons. This is because it is easy to scale, intuitive in
its architecture, and provides the result expected from the definition in formula
4.2. It also provides the correlation result after a single clock pulse, assuming the
propagation delay is less than the clock period. This allows for high chip rates
as the ADC can operate at the same frequency as the global clock.
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Figure 4.4: Schematic representation of the 1-bit parallel correlator.

From the schematic in figure 4.4 the basic architecture of the correlator can be
seen. The ADC samples are shifted into a shift register, and either buffered or
inverted, depending on the Barker-11 chip at that location. The multiplication
result is summed by N 11-bit parallel counters, which simply count how many
set bits there are in a vector (i.e. the hamming weight). The result from the
N parallel counters is summed by a final N input adder stage, for the total
correlation measure. The parallel counter design is presented in chapter 4.3.2 on
page 41.

Parallel Correlator, multiplexed parallel counter

This correlator design is similar to the reference, with the exception being that
the 11-bit parallel counter is multiplexed to sections of the multiplication output
bus. The result from the eleven bit counter is integrated, by adding it to
the output register for each clock pulse. The purpose of this is to reduce the
area consumption of the circuit, at the expense of additional time (clock cycles)
required to calculate the correlation estimate. The result is ready after N + 1
clock cycles. N clock cycles to shift between segments of the multiplication result,
and one additional clock cycle for the ADC register to shift in a new sample prior
to being multiplexed.
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Figure 4.5: Schematic representation of the multiplexed 1-bit parallel correlator.

The assumption behind this design is that a number of 11-bit parallel adders will
be larger than the required multiplexer and state machine replacing them. It is
also assumed the output register needed to integrate the counter results requires
less space than the N 4-bit input adder needed in the reference design.

Dual Correlators

This design takes advantage of the linear properties of the cross-correlation
operation. The superposition principle states that for any linear system the net
response is the sum of each partial response, had they occurred individually. This
can be taken advantage of when determining the correlation estimate, by using
several correlators which operate at a reduced sampling rate. If the correlators
are given samples in an interleaving manner, then the total correlation estimate
will be equal to the sum of all sub correlator outputs. The advantage to this is
that the demands on each sub correlator are reduced, at no expense to the total
resolution of the system.

Consider a system with M correlators, where the total system samples at a speed
of N times the chip rate. Each of the M correlators will then only need to sample
at a rate of N

M . The correlators are given samples in a way that they are 360
M
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degrees out of phase. For a system with N = 4, and M = 2, this implies that
each sub correlator will sample at twice the chip rate, and 180 degrees out of
phase with each other. The correlator system presented below used M = 2, i.e.
two sub-correlator units.

Figure 4.6: Schematic representation of the dual correlator.

Implementing a multi correlator requires very little overhead, the only demands
are summing of the sub correlator outputs (and potentially holding their value
if this is not done already) and a system to distribute samples to the correct
correlator at each instant n. For a system with two sub correlators a single adder
and a pulse alternator is all that is needed. The pulse alternator will set one of
the outputs high for one clock pulse, following a high input, essentially gating the
clock to each unit one at a time. This design assumes the two sub correlators can
be implemented in less area than half of the reference design, and also that the
overhead required for the pulse alternator is negligible, otherwise area savings
will be non-existent.
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Figure 4.7: Schematic representation of the sub correlator.

The schematic in figure 4.7 shows how the sub correlators were implemented. For
testing, the system sampling rate is N = 4, so each sub correlator will operate
at N = 2. A parallel-in, serial-out shift register is used to control an up counter,
which essentially counts how many bits are set in the shift register. It takes two
clock cycles before the output is latched into the shift register. An additional 22
clock cycles are needed to shift every value out of the shift register, ending in
24 clock cycles needed for the result. The output of the counter is held by an
additional register so that the adder used in the dual correlator is able to sum
the result when needed. The same functionality can also be achieved using two
eleven bit counters and an adder if using the reference design from chapter 4.1.1
on page 18. It was later shown through synthesis that this approach was more
effective, see the table 6.2 on page 59.

4.1.2 Reduced Resolution

These correlator designs have had their output resolution reduced by voting on
the oversampled values. Ultimately, the value of a chip is what is interesting, and
not the value of each individual oversampled value. As such, a majority vote is
taken on the oversampled values to estimate what the chip value is. In a system
without noise, the vote will logically be the same as the chip value. In a system
with noise however, it is assumed that a majority of the oversampled values will
have the correct value, and hence the majority vote will yield the correct value in
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this case also. The resulting signal will swing from 0 for full negative correlation
to the length of the PN code (11 in this case) for full positive correlation. In
other words there are fewer quantization levels in the signal, and the resolution
of the result is independent of the oversampling rate. This is not to say the
oversampling rate isn’t important, as the more samples there are to vote upon,
the more accurate the vote will be.

Voted Correlator

This design operates at N = X, and places an X-bit majority voter on each group
of oversampled bits, and uses a single eleven bit counter to determine the total
correlation. In this architecture the oversampling factor must match the size of
the majority voter uses, which limits the oversampling factor to odd numbers
only. The output will have a value between 0 and 11. The correlation result
is ready in a single clock pulse, just like the reference design. Design of the
majority voters is covered in chapter 4.3.4 on page 44. This particular design
was synthesized for an oversampling-rate/voter-size of 3 and 5.

Figure 4.8: Schematic of the five bit voted correlator.

In figure 4.9 the output waveform can be seen in comparison to the standard
output. Both correlators sample at N = 5 times the chip frequency. Notice how
the voted output simply resembles a more heavily quantized version of the full
resolution output.
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Figure 4.9: Comparison of standard resolution output to the voted output.

Multiplexed Voted Correlator

This is a variation of the voter design, in which the oversampled bits to be voted
on are multiplexed to a single 3-bit majority voter. The assumption is that
multiplexing the inputs to a single 3-bit voter unit requires less area than simply
using the full number of bit voters. It is also assumed the upcounter requires less
space than the eleven bit parallel counter. The correlation output is between 0
and 11 and similar to that of the 5-bit voted correlator, i.e. a more discretized
version of the standard correlation. The correlation result is ready after 12 clock
cycles. Eleven clock cycles to shift the voter between the multiplications results,
and one additional clock cycle for the multiplication result to propagate prior to
being muxed. This design was only attempted for N = 3.
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Figure 4.10: Schematic of the three bit voted correlator.

Dual Correlators

See the first two paragraphs in chapter 4.1.1 on page 20 and figure 4.6 on
page 21 for the theoretical background on how this correlator works, and the
block diagram. The only difference between this design and the one in chapter
4.1.1 is the use of voted sub-correlators operating at N = 3. They were either
of the type presented in chapter 4.1.2, or 4.1.2. As the sub-correlators run at a
sample rate of N = 3, the total sample rate of this system is 6 times the chip
rate. The output resolution is also doubled, from 0− 11 to 0− 22.

The actual output from the correlator unit can be seen in figure 4.11 for a simu-
lated radio signal with SNR 0.94dB, and 14.0% erroneous ADC samples.
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Figure 4.11: Correlation waveform of the dual voted correlator unit.
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4.2 Two-bit Correlator Implementation

This section contains the implementation details of the 2-bit correlator designs.
Rather than a single threshold comparator, two are now used to detect whether
the signal is above a positive midpoint (+1), below a negative midpoint (−1), or
in between the two (0). If the current sample is above the positive midpoint a
1 is present on Sample pos, and a zero on Sample neg, the inverse is true for a
sample below the negative midpoint. In the case that the sample doesn’t exceed
either threshold, both inputs receive a zero. This is not true 2-bit quantization,
as rather than four discrete signal levels, only three are used.

Figure 4.12: Schematic representation of a matched filter, sampled at twice the
chip rate.

Doing so opens up for some simplification in implementing the matched filter,

27



Chapter 4. Architectural Design

as it can be split into a positive- and negative 1-bit correlator, with the total
correlation being the sum of the two. The negative ADC register is correlated
against the negated PN code, while the positive ADC register is correlated against
the unaltered PN-code. See figure 4.12. It follows from this that the same
principles introduced in chapter 4.1 on page 15 apply here as well. The output
resolution can be both full (standard as it has been called) or reduced by the use
of voting. No two-bit designs were created using voting, as simulations showed
the noise performance wasn’t comparable to that of the full resolution correlators.
See table 6.10 on page 64. The use of only three out of four quantization levels
available from 2-bits of storage allows for some compression techniques to save
register space. This is introduced in chapter 4.2.4 on page 32.

The 2-bit correlator designs presented here all use a 36-chip long chirp code: [
1 zeros(7) -1 zeros(6) 1 zeros(5) -1 zeros(4) 1 zeros(3) -1 zeros(2) 1 0 -1 ]. The
zeros in the PN code reduce the amount of counting required to determine the
correlation, as the resulting product will simply be zero regardless of the ADC
value. This leaves 8 polarity carrying chips in the PN code. Unlike in the 1-bit
case where the output resolution for this PN-code would be N ·8, it is now N ·16.
The reason for this is that the span between the number of discrete levels is now
2 (-1,0,1) rather than just 1 (0,1).

4.2.1 Reference Correlator

Like with the 1-bit correlator designs, the reference design uses no multiplexing
or other time expanding techniques, and instead computes the result in a single
clock cycle. This is achieved by using the full number of parallel bit counters
needed, and summing the outputs from these all at once. The size of the X-bit
parallel counter seen in figure 4.13 was chosen as 4, 8 and 16. The reason for this
was ease of scaling the sampling factor N, and also to see if there is an optimum
point for the bit counter size.
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Figure 4.13: Block diagram of the 2-bit reference correlator design.

4.2.2 Multiplexed Correlator

This correlator design operates much like the multiplexed 1-bit correlator. A
single X-bit parallel counter unit is used, and sections of the PN-code product
bus are multiplexed to its input for counting. When a new ADC sample is ready,
the state machine clears the output register, and waits one clock cycle for the
ADC register to shift. Then following each clock cycle thereafter, the value in
the output register is added to the result from the bit counter, and stored in the
output register. Once all sections of the product bus have been counted, the state
machine multiplexes the parallel counter input to all zeros before returning to the
idle state. In this mode the output is held constant, as it is summed with zero
for all the following clock cycles. As was the case for the reference correlator, the
unit was designed to use X-bit parallel counters of 4, 8 or 16 bits. The results
from the 1-bit synthesis seemed to indicate that the multiplexed design was the
most area efficient, so it assumed that a similar approach for two-bit correlator
would yield an area efficient design.
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Figure 4.14: Block diagram of the 2-bit multiplexed correlator design.

4.2.3 Multiplexed Sum Correlator

This design is identical to the multiplexed correlator, with the exception being
that the full number of bit counters are used instead of just one. The multiplexer
selects bit counter results which are added to the output register. The reasoning
for this was to reduce the overhead required to multiplex the product bus, as fewer
signal lines are needed to multiplex just the result bus. The trade-off here is that
the full number of parallel counters is needed, just like in the reference design.
This design would show whether the overhead of multiplexing many signal lines
cost less than requiring several counter units.
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Figure 4.15: Block diagram of the 2-bit multiplexed sum correlator design.

31



Chapter 4. Architectural Design

4.2.4 5-bit Grouping Correlator

As was mentioned in the introduction, some storage space goes to waste when
only using three of four possible discrete ADC levels. It can be shown that when
grouping together three ADC samples, the space required is reduced from 6-bits
to 5-bits. Keep in mind that (33 < 25), because 3 samples holding 3 values each
results in 27 unique states. A MATLAB script was written to test the potential
register savings at various groupings, and it was found that regardless of the
group size up to groups of 36, the savings would remain within 0.83 ±0.04. To
avoid potential complexity problems from large group sizes, it was decided to use
a group size of 3. The MATLAB code used is shown below.

f o r i =1:36
s t a t e s = 3ˆ i ;
un op t b i t s = i ∗2 ;
% Determine needed b i t s
r oo f = 0 ;
o p t b i t s = 0 ;
whi le r oo f < s t a t e s

o p t b i t s = op t b i t s + 1 ;
r oo f = 2ˆ op t b i t s ;

end
pe r c en t sav ing = op t b i t s / un op t b i t s ;
d i sp ( [ ’ S ta t e s : ’ num2str ( s t a t e s ) ’ Unopt Bi t s : ’ num2str ( un op t b i t s )

’ Opt b i t s : ’ num2str ( o p t b i t s ) ’ Savings : ’ num2str (
pe r c en t sav ing ) ] )

end

In this case, the ADC register can be reduced to 5
6 of the size required by the

other designs. This introduces a new problem however, and that is that samples
need to be encoded to a compressed format so they fit in a 5-bit register. The
encoding scheme used is presented in the chapter on the proof-of-concept design.
The exact encoding scheme used isn’t critical to the function of the design, but
does have an impact on the logical complexity needed. It was later discovered
that the size of the encoding/decoding units was negligible compared to that of
the rest of the correlator design (see table 6.9 on page 63), so no further effort
was put into finding an optimal encoding scheme.

A second problem is grouping samples together in triples before they can be
encoded. In the first two designs presented a new encoded value is calculated for
every new sample, thereby eliminating the problem of grouping samples together.
This has problems of its own however, namely that each previously encoded 5-bit
value has to be changed for every new ADC sample. It has been observed that
the information stored in the 5-bit registers repeats itself with a delay of three
clock cycles, i.e. the contents of register 1[n] are register 0[n-3], and register 2[n]
is simply register 0[n-6]. So far no clever way to exploit this has been found that
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would not require a large number of additional delay registers. In the final design
presented samples are grouped into triplets, before the correlator is allowed to
perform calculations on them. By doing this samples can simply be shifted along
a 5-bit wide shift register for each new sample. The disadvantage to this is having
to determine the correlation at n, n-1 and n-2 each time the 5-bit encoded samples
are shifted.

Proof of concept

To test the idea, a proof-of-concept correlator was designed, with no intention
of either area or power efficiency. To keep the design simple, the sampling rate
N was set equal to the group size of the encoder (3), and a new 5-bit encoded
value would be calculated for every new ADC sample. This implied that the each
5-bit register had its own encoder, and a last sample decoder which was used to
determine the last sample in time within the 5-bit encoded storage. See figure
4.16. This correlator can determine the correlation in one clock cycle. Using a
sampling rate of N = 6 would also be possible, as it would only need a doubling
of each module. However, as N = 3 is easier to implement this was chosen first
to see whether the design was promising or not for further work.

A special count decoder block is used to count the correlation of the specific 5-bit
value, depending on the polarity of the chip at that location. A count decoder
block is only present for 5-bit registers overlapping a 1 in the PN code. For the 36-
chip chirp code used here, [ 1 zeros(7) -1 zeros(6) 1 zeros(5) -1 zeros(4) 1 zeros(3)
-1 zeros(2) 1 0 -1 ], that would imply a positive count decoder on registers; 2, 9,
20, 35, and negative count decoders on registers; 0, 5, 14, 27. (Indexing starting
from the right) The remaining registers are not counted. The total correlation is
the sum of the count decoder outputs.
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Figure 4.16: Block diagram of the grouping correlator design.

There are over 2 · 1033 ways to encode 27 values using 5-bits of information, so
determining the optimal encoding isn’t a trivial task. However, it was observed
that the samples could be grouped into a positive and negative sequence, where
the MSB of the 5-bit code could be used to signify the polarity. This left 14
different sample sequences to encode into 4-bits of information, or still over 1·1013

encoding schemes. To simplify the logic required to decode the last sample, any
sample sequence ending in a 1 was given a LSB of 1, otherwise it was given a
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0. The remaining bits in the code were simply counted upwards for each new
sample sequence. This was possible for all but one of the sequences ending in a 1,
which was assigned an otherwise unused combination of the remaining bits. See
table 4.1 for the complete encoding scheme. The choice of sample sequences was
somewhat arbitrary, with the only goal being to keep as few samples negative
as possible, and also prevent any of the final samples from being negative. The
reason for this was to make the sequences more intuitive, in the sense that they
can be either positive or negative. It also simplifies the logic for the last sample
decoder block.

Sample Sequence Code Encoded Value
000 A 0000
001 B 0001
010 C 0100
100 D 0010
110 E 0110
101 F 0011
011 G 0101
111 H 0111
-101 I 1001
0-11 J 1011
-110 K 1000
1-11 L 1101
-1-11 M 1111
-111 N 1100

Unused - 1010
Unused - 1110

Table 4.1: Sample sequences and 4-bit (unsigned) encoding. Additional 5th bit
sets the sign.

The table above does not include the 5th sign bit. For a negative sequence, e.g.
10-1 (-I) the 5th bit is 1 and the total encoded value is 11001. The corresponding
positive sequence -101 (I) is encoded as 01001. From table 4.1 one can see that
the magnitude of the last sample in the sequence is easy to detect, being the LSB
or the special case of code N. The sign of the last sample is given as the 5th sign
bit in the full encoded value. The logical expressions used in the ”last sample
decoding block” for determining which ADC sample to output are:

Magnitude = (Bit[3] ∧Bit[2]) ∨Bit[0]

ADCpos = Sign ∧Magnitude

ADCneg = Sign ∧Magnitude
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More generally the expression for the Magnitude can be made independent of the
encoding scheme used, by stating the Magnitude is true for sequences; B, F, G,
H, I, J, L and N, regardless of the polarity.

The encoding block itself consists of three sub encoders, each assuming the newest
input sample is a certain value. The actual value of the newest sample is used
to select which of these sub encoders to use when generating an encoded value.
When a new sample is present, the current sample sequence is shifted right and
the rightmost sample is lost. The newest sample is appended to the beginning of
the sequence. Table 4.2 shows all possible sequences, and what the next sequence
will be depending on the newest sample received. This table is used to map the
encoding scheme from table 4.1 into actual logic for the encoder block.

New +1 New 0 New -1 Previous Sequence
D A -D A, B, -A, -B
F B I C, G, -J
E C K D, F, -I
H G N E, H, -M
-K -C -E I, -D, -F
-I -B -F J, -G, -C

-M -J -L L, -K, -N
-N -G -H M, -E, -H
L J M N, K, -L

Table 4.2: Encoded values given a new sample and previous sequence.

The count decoding block consists of two sub decoders, one for positive polarity
and one for negative polarity of the sample sequence. In the event that the chip
at the location where the encoded value is being counted is -1, the selector used
to choose and output simply reverses its choice. I.e. if the current chip in the PN
code is +1, the positive counter is used for a positive sequence (+X) and negative
counter for a negative sequence (-X). If the current chip is -1, the opposite is the
case. Counting is justified as a +1 sample being worth 2, 0 is worth 1, and -1 is
worth 0. From this the values in table 4.3 can easily be deduced.
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Sample Sequence Code Positive Count Negative Count
000 A 3 3
001 B 4 2
010 C 4 2
100 D 4 2
110 E 5 1
101 F 5 1
011 G 5 1
111 H 6 0
-101 I 3 3
0-11 J 3 3
-110 K 3 3
1-11 L 4 2
-1-11 M 2 4
-111 N 4 2

Table 4.3: Decoder truth table.

From tables 4.1, 4.2 and 4.3 it is clear that the exact 4-bit encoding scheme used
is of little consequence to the function of the correlator, as long as it is mapped
correctly to the sample sequences.

Multiplexed Grouping Correlator

Upon seeing that the proof-of-concept grouping correlator worked, an attempt
was made to minimize its area consumption. The last sample decoder and
encoding block are common components for every 5-bit storage register, and
as simple memory-less combinatorial circuits, they are the perfect candidate for
multiplexing. To share a single encoder between all of the 5-bit registers, the
input of the encoder is connected to the 5-bit storage bus via a multiplexer, and
the output connected to every one of the 5-bit registers. A multiplexer is placed
on each register input, and used to select either its own contents, or that of the
encoder block, when its contents are updated. Every 5-bit register is updated on
a rising clock pulse. An alternative method to this would be to gate the clock
to each of the 5-bit registers, thereby saving the use of a two input multiplexer.
Surprisingly, when studying the schematic from the synthesis results the tool
had actually implemented clock gating. However, the schematic is presented
using multiplexers due to the way the code was written.
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Figure 4.17: Block diagram of the multiplexed grouping correlator design.

The count decoder block is also connected to the 5-bit register bus, and can be
multiplexed to the encoded values that need counting, or to the default sequence
’-H’ in table 4.3, which is decoded as 0 by the count decoder. An integrator is
used to sum the correlation, based on the output of the count decoder. A state
machine is used to control the multiplexer feeding the encoder, count decoder,
and every 5-bit register. This correlator design takes 44 clock cycles to compute
the correlation result. 36 clock cycles are needed to update each 5-bit register
with a new encoded value, and 8 clock cycles are needed to shift the count decoder
to the required locations.

Time Delayed Grouping Correlator

This way of encoding the samples would only require a single encoder unit, and a
5-bit wide shift register. A small state machine would gather three samples into
a 6-bit register, before encoding them into a 5-bit value. Once this has been done
the new encoded data is shifted into the 5-bit wide shift register containing all
of the previously encoded samples. The correlator would then have to compute
the correlation for n, n-1 and n-2 while the next three samples are collected. A
another small state machine could multiplex the three correlation results to the
output on each ADC cycle, meaning the correlation result is effectively delayed by
three samples. The main source of complexity in this design would be decoding
the correlation count for n, n-1 and n-3. In the proof of concept design, one 5-bit
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encoded value corresponded to one chip of the PN code, making count decoding
easy. In this design the count will need to be decoded by reading the value in
two 5-bit encoded values at once, see figure 4.18. This also necessitates the use
of one additional 5-bit register to store some of the delayed samples. Some clever
encoding could make this easier. E.g simplify the detection of the first sample in
the sequence, as was done with the last sample in the sequence for the proof of
concept design. Another drawback is the additional logic used to multiplex the
three output results, although depending on how the correlation result is used
later on, this may not be required.

Figure 4.18: Time delayed correlation and samples.
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4.3 Hardware Modules

In this section the more specialized hardware units required for the correlator
designs are detailed, namely the parallel bit counters and majority voters. An
X-bit parallel counter units count how many bits in an X-bit long vector are set.
This is also known as the pop-count or hamming weight of the bit vector. For just
2 or 3 input bits, a half or full-adder serves the same function as parallel counter.
Synthesis results from previous works seem to indicate that designs utilizing only
half and full-adder cells are superior[11], however some alternatives are tried here
to test this.

4.3.1 Four bit parallel counter

The four bit parallel counter was designed in three different ways, to both test
how the synthesis tool behaved, and also determine which design method was
the most efficient in terms of area. The first implementation used a verilog case
selector for each of the sixteen input sequences, and a predetermined sum as
the output. Essentially the truth table (table 4.4) was written in verilog. This
rapidly becomes unpractical as the number of input bits increases.

A B C D S2 S1 S0

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 0 0 0 1 0
1 1 0 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 1 0 0

Table 4.4: Truth table for the four-bit parallel counter.

The second 4-bit unit was designed using a Karnaugh map based on the truth
table, and Reed-Müller logic simplification techniques. The logical functions
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corresponding to each bit are:

S2 = ABCD

S1 = (A+B + C)(A+B +D)(A+ C +D)(B + C +D)ABCD

S0 = A⊕B ⊕ C ⊕D

The final implementation of a four-bit counter was made by simply adding the
partial sum from two half-adders. The sums from the half-adders is added using a
half-adder and full-adder configured as a ripple-carry adder, see figure 4.19.

Figure 4.19: Four-bit parallel counter, using half and full-adders.

4.3.2 Eleven bit parallel counter

The reason for designing the unit to count exactly eleven bits is solely because
this is the length of the Barker-11 code used as a pseudo random sequence. This
implies the length of the ADC register will always be a multiple of 11, which
makes scaling the correlator designs easy. To create an 11 bit parallel counter, it
was decided to add the sums of a 4-bit and 7-bit parallel counter. The 7-bit unit
was made using nothing more than full adder cells, the first two serve as 3-bit
counter, and the remaining two as a 2-bit ripple-carry adder. The carry-in input
of the adder serves as the 7th input to the parallel counter, see figure 4.20.
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Figure 4.20: Schematic representation of the seven bit counter.

An alternative way to create the eleven bit unit is by solely using full adder cells,
see figure 4.21. Like in the seven bit parallel counter one full adder cell is used
to gain three more inputs, and the carry input on the 3-bit adder is used as the
eleventh input. The 3-bit adder is implemented as a ripple carry adder, where
the MSB of one input is always zero. This allows for the final full adder cell to
be replaced with a half-adder cell. Synthesis results (see table 6.1) have shown
this to be the most area efficient implementation, so it is used as the eleven bit
parallel counter in every implementation where it is needed.

Figure 4.21: Schematic representation of the eleven bit counter.
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4.3.3 Other Parallel Bit Counters

Based on the synthesis results for the eleven bit counters, the 8 and 16 bit units
used for the 2-bit correlators were constructed using only full and half-adder cells.
The 8-bit parallel counter first uses two full-adders and single half-adder to sum
to bits. The three sums from these are summed using a carry-save adder (two
more full-adder cells), and the result from the carry-save adder is summed using
a final ripple-carry adder (one half-adder and one full-adder cell).

Figure 4.22: Eight-bit parallel counter.

The 16-bit parallel counter consists of three 5-bit parallel counters, which are
partially summed using a carry-save adder. A ripple-carry adder sums the carry-
save result, and the carry-in input serves as the 16th input of the unit. The 5-bit
counters are made using two half-adders and two full-adders.
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Figure 4.23: Sixteen-bit parallel counter. U is a five-bit parallel counter.

4.3.4 Majority Voters

The majority voter is a special case of an m-out-of-n bit voter, and sets its output
equal to the most common input bit. For a system with just three inputs, it is
rather trivial to determine the output based on a truth table.

Y = AB +BC + CD

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 4.5: Truth table for the three-bit majority voter.
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However this quickly becomes tedious for larger systems, and even at the next
increment of five bits it becomes cumbersome to design the logic in this way.
Instead, it has been shown that m-out-of-n bit voters can be designed using a
divide and conquer method, which yields lower gate counts than a gate level
design.[9] For a five bit system, the majority voter may be designed as in figure
4.24.

Figure 4.24: Schematic for the 5-bit voter unit, using a multiplexer.
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Chapter 5

Logical Verification

Verifying logical correctness of the Verilog modules was done by generating a
vector containing simulated ADC values. These values were determined by
adding a variable degree of noise to a data packet, and then selecting samples
at an interval of N times the chip rate. The selected analog samples were then
discretized by either a 1-bit threshold ADC, or two-threshold ADCs in the case of
the 2-bit correlators. The simulated ADC values are written to a text file, which
is then read by a Verilog testbench. The testbench applies the ADC samples to
the correlator, reads the correlator output, and writes the output results to a new
text file. This output text file is read by a new MATLAB script, which compares
the values from the testbench against those obtained from a mathematical model
of the correlator unit in question. Discrepancies between the mathematical model
and the results from the testbench are counted, and presented to the user, along
with a plot of both waveforms. Figure 4.11 on page 26 is an example of one of
these graphs.
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Figure 5.1: Verification process, from test vector generation to logical verification.

5.1 Test vector source

Test vectors are generated as described in chapter 3.1 on page 10. The desired
sampling rate is selected, an arbitrary data packet is created, and the noise level
is set, all by the user. The only parameter of importance when testing logical
correctness is the sampling rate, as the mathematical model compared against
will suffer from the same noise, and therefore produce the exact same output if
the two models are correct. The sampling rate must be equal to that which the
correlator in question was designed for.

The test vectors are not exhaustive; that is they do not check every single possible
test vector combination or sequence thereof. The state of the correlator units is
determined largely by the values held in the ADC sampling register, which for
N = 4 is already 44 bits long for the 1-bit correlators, making an exhaustive vector
application quite time consuming. Rather, a simulated real-world input sequence
is applied to the correlator, which essentially resembles a random stimulus.
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5.2 Mathematical Correlator Models

In order to verify the results from the Verilog correlator implementations, the
correct output needs to be defined. For each correlator design, a MATLAB
function has been created which replicates their behavior.

5.2.1 1-bit Standard

The ”standard” correlator output is defined by formula 4.2 on page 16, and is
obtained by counting set bits after multiplying the ADC register with the PN
code. First the Barker-11 code is expanded with N extra ones for each 1 in the
code, and N zeros for each 0. The ADC register is simulated by shifting samples
in. Each sample is compared with each bit of the expanded Barker-11 code, and
the number of matching bits is the correlation at that sample instant.

f o r k = 1 : l ength ( rx data )
% Sh i f t in new data
input r eg ( 2 : end ) = input r eg ( 1 : end−1) ;
i nput r eg (1 ) = rx data (k ) ;

% Correct b i t counts 1 , wrong b i t counts 0
f o r l = 1 : l ength ( pn code 1b i t )

i f ( pn code 1b i t ( l ) == input r eg ( l ) )
ou tpu t co r r e c t ( k ) = output co r r e c t ( k ) + 1 ;

end
end

end

5.2.2 1-bit Voted

Like with the standard output samples are shifted into the simulated ADC
register. Then groups of N bits are voted on using the mode function in
MATLAB, which returns the most common value in a vector. The resulting
vote is compared to the Barker-11 chip, and then counted if correct.

f o r k = 1 : l ength ( rx data )
% Sh i f t in new data
input r eg ( 2 : end ) = input r eg ( 1 : end−1) ;
i nput r eg (1 ) = rx data (k ) ;

% Each chip i s oversampled by some f a c t o r . A voter i s used to determine
% whether the sample value to use f o r each chip , be f o r e i t i s
% co r r e l a t e d . In the end , the f i n a l c o r r e l a t i o n o f each chip i s
% checked . Reduces r e s o l u t i o n great ly , but should s t i l l prov ide a
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% decent c o r r e l a t i o n es t imate .

% Vote on , and check each chip
f o r l = 1 : l ength ( pn code smal l )

% Group toge the r the samples , and vote .
ch ip group = input r eg ( ( l −1)∗ s amp l e r a t e r e f + 1 : l ∗ s amp l e r a t e r e f )

;
voted ch ip = mode( ch ip group ) ;

% Sum up the sub c o r r e l a t i o n s
i f ( pn code smal l ( l ) == voted ch ip )

ou tpu t co r r e c t ( k ) = output co r r e c t ( k ) + 1 ;
end

end
end

5.2.3 1-bit Dual Voted

The intended output here is the sum of several (M) voter units, which is set
depending on the size of the sub correlator units, and also the sampling rate
N . The size of the sub correlator has been set to N = 3, but can be set to
any odd number if desired. The input ADC samples are split into M separate
vectors, each containing a downsampled version of the original radio signal, but
with different phase offsets. If the M vectors were interleaved again the resulting
vector would be the original received data vector. The M sub correlators are fed
their respective vectors of ADC data, and their output is determined as described
in chapter 5.2.2. The output created by each sub correlator is up-sampled, shifted
by the same phase offset as their input vector had, and finally summed together
trivially.

% The Barker code
ba rk e r 11 1b i t = [1 1 1 0 0 0 1 0 0 1 0 ] ;

% S tu f f f o r the mult i co r r
sample ra te min i = 3 ; % Stuck at 2 , due to c l o ck c on s t r a i n t s
m i n i c o r r un i t s = s amp l e r a t e r e f / sample ra te min i ; % How many mini

c o r r s
pn code 1b i t min i = reshape ( ( ba rke r 11 1b i t ’ ∗ ones (1 , sample ra te min i ) )

’ , 1 , l ength ( ba rk e r 11 1b i t )∗ sample ra te min i ) ;
pn code 1b i t min i = f l i p l r ( pn code 1b i t min i ) ;

% Downsample the r e c e i v ed data in to two r e g i s t e r s , each ho ld ing unique
data

sub co r r l e ng th = length ( rx data ) / m in i c o r r un i t s ;
downsampled rxdata = ze ro s ( m in i c o r r un i t s , s ub co r r l e ng th ) ;
f o r j = 1 : m i n i c o r r un i t s

downsampled rxdata ( j , 1 : end ) = rx data ( j : m i n i c o r r un i t s : end ) ;
end
% Sub c o r r e l a t i o n r e g i s t e r s
sub co r r = ze ro s ( m in i c o r r un i t s , s ub co r r l e ng th ) ;
% Input r e g i s t e r s f o r each sub c o r r e l a t o r
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i npu t r eg min i = ze ro s (2 , m in i c o r r un i t s , l ength ( pn code 1b i t min i ) ) ;

pn code smal l = f l i p l r ( ba rk e r 11 1b i t ) ;
% Run through every input sample
f o r k = 1 : s ub co r r l e ng th

% For each sub c o r r e l a t o r
f o r j = 1 : m i n i c o r r un i t s

% Sh i f t in new data
input r eg min i ( j , 2 : end ) = input r eg min i ( j , 1 : end−1) ;
i nput r eg min i ( j , 1) = downsampled rxdata ( j , k ) ;

% Vote on , and check each chip
f o r l = 1 : l ength ( pn code smal l )

% Group toge the r the samples , and vote .
ch ip group = input r eg min i ( j , ( l −1)∗ sample ra te min i + 1 : l ∗

sample ra te min i ) ;
voted ch ip = mode( ch ip group ) ;

% Sum up the sub c o r r e l a t i o n s
i f ( pn code smal l ( l ) == voted ch ip )

sub co r r ( j , k ) = sub co r r ( j , k ) + 1 ;
end

end
end

end
% Up sample each mini−co r r . . .
m in i co r r = ze ro s ( m in i c o r r un i t s , s ub co r r l e ng th ∗min i c o r r un i t s ) ;
f o r j = 1 : m i n i c o r r un i t s

m in i co r r ( j , : ) = reshape ( ( sub co r r ( j , 1 : end ) ’ ∗ ones (1 ,
m i n i c o r r un i t s ) ) ’ , 1 , s ub co r r l e ng th ∗min i c o r r un i t s ) ;

end
% . . . s h i f t them apart . . .
f o r j = 2 : m i n i c o r r un i t s

m in i co r r ( j , j : end ) = min i co r r ( j , 1 : end−(j−1) ) ;
m in i co r r ( j , 1 : ( j−1) ) = 0 ;

end
% . . . and add toge the r
ou tpu t co r r e c t = ze ro s (1 , s ub co r r l e ng th ∗min i c o r r un i t s ) ;
f o r j = 1 : m i n i c o r r un i t s

ou tpu t co r r e c t = output co r r e c t + min i co r r ( j , : ) ;
end

5.2.4 2-bit Standard

The standard 2-bit correlator output is similar to the 1-bit model, with the
exception that the ADC register holding the positive samples is correlated
against the positive PN code, and the register holding the negative samples is
correlated against the negative PN code. The sum of both of these is the total
correlation.
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f o r k = 1 : l ength ( rx data )
% Sh i f t in new data
input r eg ( : , 2 : end ) = input r eg ( : , 1 : end−1) ;
i nput r eg ( : , 1) = rx data ( : , k ) ;

% Correct b i t counts 1 , wrong b i t counts 0
f o r l = 1 : r e g i s t e r l e n

i f ( pn code expanded ( l ) ˜= 0)
i f ( pn codepos expanded ( l ) == input r eg (1 , l ) )

output (k ) = output (k ) + 1 ;
end

i f ( pn codeneg expanded ( l ) == input r eg (2 , l ) )
output (k ) = output (k ) + 1 ;

end
end

end
end

5.2.5 2-bit Voted

The two bit voted model was only used for noise simulation purposes, and as
such the output will vary from -8 to +8, depending on the current correlation.
Samples are grouped together and voted on, before being checked against the
current chip in the PN code. Voted groups equal to the positive PN code count
positive one, and groups equal to the negative PN code count minus one.

f o r k = 1 : l ength ( rx data merged )
% Sh i f t in new data
input r eg ( 2 : end ) = input r eg ( 1 : end−1) ;
i nput r eg (1 ) = rx data merged (k ) ;

% Correct b i t counts 1 , wrong b i t counts 0
f o r l = 1 : r e g i s t e r l e n

i f (PN Code( l ) ˜= 0)
% Create voted outputs
ch ip group = input r eg (1 , ( l −1)∗ s amp l e r a t e r e f + 1 : l ∗

s amp l e r a t e r e f ) ;
voted ch ip = mode( ch ip group ) ;

i f (PN Code( l ) == voted ch ip )
output (k ) = output (k ) + 1 ;

end

i f (−PN Code( l ) == voted ch ip )
output (k ) = output (k ) − 1 ;

end
end

end
end
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5.3 Verilog Testbench

The Verilog testbench is used to apply defined stimuli to the correlator units and
record the resulting output. This is done each time an ADC sample is loaded.
The same testbench is used for every correlator design, with the only changes
being how long the delay between an input is applied and the respective output
arriving. This varies from instantly to several ADC samples later, depending
on the correlator architecture. Every implementation has the same inputs
and outputs, as seen in figure 5.2. To facilitate re-usability of the testbench,
parameters sampling rate, output bits and correlator type can be set. A 50MHz
global clock is applied to the designs, and the chip rate is assumed to be 1MHz
in most cases.

Figure 5.2: Block diagram common for each of the correlator units.

The parameter sampling rate sets how many clock cycles to wait before applying
a new ADC sample, with a sampling rate of 1 this is every 50 cycles, and with
2 every 25, etc. The number of clock cycles to wait is rounded up. For some of
the correlator designs a set number of clock cycles is used between ADC samples
instead, this is typically for designs which would not otherwise be able to complete
the correlation calculations before a new sample arrives. The parameter output
bits is set to match the number of bits in the correlator output, which for most
designs depends on the sampling rate. The final parameter correlator type is
used to set which mathematical model the MATLAB script will compare the
results against later on. The choice of 50MHz global clock and 1MHz chip rate
is based on the expected real world values the correlators may be subjected to,
determined in cooperation with the external supervisor.
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5.4 Check Testbench Result script

This MATLAB script reads a text file containing input test vectors, and extracts
the sampling rate used and the ADC samples to feed into the correlator model.
Secondly this script reads the results text file created by the Verilog testbench,
where it again extracts the sampling rate used, but also the type of correlator
output to compare against, and the outputs created by the Verilog correlator
implementation. If the sample rates read from the two input files aren’t identical
it can be assumed the two files are from different tests and should not be
compared, so user is then notified of this so the results can be disregarded. Based
on the correlator type read from the results text file, one of the mathematical
correlator models is used to generate the expected output sequence. At the same
time differences between this sequence and that read from the results text file are
detected, and an error counter is incremented. Finally, both the error count and
plots of both the expected- and the results sequence are presented to the user
for visual inspection. By plotting the results a variety of errors can quickly be
identified, such as delayed output or the location of an erroneous value.
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5.5 Verification of the Parallel Bit Counters

The parallel bit counters were all verified using the same verilog testbench, which
can be adjusted to any size of bit counter by setting the bit width parameter.
The testbench applies every vector combination possible at the given bit width,
and at the same time asserts that the output of the bit counter is correct. The
correct number of set bits is found by using a for-loop to count the number of set
bits in currently applied test vector. This testbench is exhaustive in its search,
so any logical errors in the bit counter designs are uncovered.

always
#9 begin

i f ( cur rentBi tVector == 0) begin
// Fina l vec to r has been t e s t ed !
$d i sp l ay ( $time , ” << Test ing complete , %d e r r o s detec ted ! >>” ,

e r r o r s ) ;
$ f i n i s h ;

end e l s e begin
currentBi tVector = currentBi tVector − 1 ;
// Determine the c o r r e c t answer
s e t b i t sCo r r e c t = 0 ;
i = 0 ;
f o r ( i =0; i<n ; i=i +1)

begin
i f ( cur rentBi tVector [ i ] == 1) begin

s e t b i t sCo r r e c t = s e t b i t sCo r r e c t + 1 ;
end

end
// Ver i fy the adder output
#1 i f ( s e t b i t sCo r r e c t != se tb i t sCnt ) begin

$d i sp l ay ( ” Error f o r input : %b” , cur rentBi tVector ) ;
e r r o r s = e r r o r s + 1 ;

end
end

end
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Chapter 6

Results

The various properties of the hardware implementations are presented here. All
of the modules have been synthesized using Design Vision from Synopsys, E-
2010.12-SP5 Version. Scan chains were inserted where possible for testability
purposes. It is from this synthesis that numbers for area and power consumption
are taken. The results reported here do not include the interconnects required
to route the design, which will have a varying degree of impact on both the area
and power consumption.

The operating speed in clock cycles has been based on analysis of the verilog code,
and confirmed by simulations. The noise immunity numbers were acquired from
the testbench described in chapter 3.3 on page 12, applied to the mathematical
models presented in chapter 5.2 on page 49. The number of passes used was 20,
as a compromise between enough values for a meaningful average, and the run
time required to calculate a result.
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6.1 Parallel Bit Counters

The area required for the individual parallel bit counter units is presented here.
Besides the half and full adder cells, the 4-bit Karnaugh based and the 7-bit
counter have the best area per counted bit.

Size and description Chapter Area [µm2] Area/Bit
2-bit, half-adder - 16.6 2.1
3-bit, full-adder - 25.6 8.5
4-bit, selector 4.3.1 69.1 17.3
4-bit, Karnaugh 4.3.1 56.3 14.1
4-bit, HA and FA cells 4.3.1 75.5 18.9
5-bit 4.3.3 84.5 21.1
7-bit, four FA cells - 102.4 14.6
8-bit 4.3.3 152.3 19.0
8-bit, two 4-bit Karnaugh - 180.5 22.6
11-bit, with 4-bit Karnaugh 4.3.2 226.6 20.6
11-bit, HA and FA 4.3.2 195.8 17.8
16-bit 4.3.3 414.7 25.9

Table 6.1: Area consumption of the parallel counters.

6.2 1-bit Correlators

The following sub chapters contain the results and properties of the 1-bit
correlator designs. In table 6.2 below the correlator designs are presented with a
number, description and the chapter describing it. Some of the correlators may
not appear to have their own chapter, this is because their design is derivative
of the chapter referenced. Units 1 and 4 are examples of this. Unit 4 is the
reference design presented in chapter 4.1.1 with N = 2. Unit 6 and 7 are the
voted correlator with N = 5 and 3, respectively. Each correlator unit has been
synthesized using the least area-consuming internal components available. In the
case of the dual correlators, unit 9 uses design 7 as a sub correlator, and unit 5
uses design 4 as a sub correlator.

6.2.1 Area Consumption

Table 6.2 shows the sequential, combinational and total area required by the
designs. The sequential area is the area used by clocked cells.
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Number Correlator Design Chapter Total Area [µm2] Sequential Combinational
1 Parallel, reference 4.1.1 2359.0 1226.2 1132.8
2 Parallel, muxed 4.1.1 2255.4 1532.1 723.2
3 Sub corr 4.1.1 2017.3 1712.6 304.6
4 Sub corr, alt 4.1.1 1157.1 634.9 522.2
5 Dual sub corr 4.1.1 2558.7 1365.8 1193.0
6 Voted, 5-bit 4.1.2 2291.2 1520.6 770.6
7 Voted, 3-bit, alt 4.1.2 1319.7 929.3 390.4
8 Voted, 3-bit 4.1.2 1894.4 1438.7 455.7
9 Dual, voted 3-bit 4.1.2 2858.2 1954.6 903.7

Table 6.2: Area consumption of each correlator design.

6.2.2 Noise Immunity

The values in table 6.3 were determined using a rough step size of 0.1, and a fine
step size of 0.005. A data sequence length of 1000 bits was used. The noise factor
is a scaling constant using to adjust the strength of the noise, and is the parameter
which the algorithm increments to determine the noise immunity. This parameter
has a lower relative standard variance than the average SNR, and as such should
be taken as the key parameter when comparing topologies. A higher noise factor
number corresponds to greater noise immunity, which is desirable.

Type SNR [dB] Noise factor σ SNR [dB] σ Noise factor
S, N=2 6.0679 0.4998 0.7232 0.0396
S, N=3 4.2572 0.6135 0.6028 0.0418
S, N=4 2.8827 0.7190 0.5039 0.0422
S, N=5 2.2487 0.7728 0.4742 0.0411
S, N=6 1.6984 0.8233 0.3656 0.0333
V, N=3 5.6639 0.5208 0.5450 0.0319
V, N=5 3.3261 0.6825 0.3698 0.0293
DV, N=6 2.5077 0.7498 0.4325 0.0373

Table 6.3: Noise immunity testbench results. S = standard, V = voted, D =
dual.

The different correlator output types correspond to groups of correlator imple-
mentations. Standard, N=2 applies to the sub correlators used in the dual cor-
relator, chapter 4.1.1 on page 20. Standard, N=4 applies to the reference design,
the muxed reference design, and the dual voted design in chapters 4.1.1, 4.1.1
and 4.1.1. Voted, N=3 applies to the sub correlators used in the dual voted cor-
relator, chapter 4.1.2. Voted, N=5 applies only to the design in chapter 4.1.2.
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Dual voted, N=6 applies only to the design in chapter 4.1.2. Some of the output
types do not correspond to a specific implementation, but serve as a comparison
point between the voted and regular output types.

6.2.3 Operational Speed

The number of clock cycles required by each correlator design are decided by
the architecture. These figures have been determined using logical analysis of
the architecture, and confirmed by simulation results. These numbers are for
the global clock cycles needed to calculate the result once a new sample has
been loaded, i.e. the time from a new sample is loaded until the corresponding
output is present. For the dual correlators the time required depends on the sub
correlator used, which in both implementations here is a single clock cycle.

Number Correlator Design Chapter Clock cycles
1 Parallel, reference 4.1.1 1
2 Parallel, muxed 4.1.1 5
3 Sub corr 4.1.1 24
4 Sub corr, alt 4.1.1 1
5 Dual sub corr 4.1.1 1
6 Voted, 5-bit 4.1.2 1
7 Voted, 3-bit, alt 4.1.2 1
8 Voted, 3-bit 4.1.2 12
9 Dual, voted 3-bit 4.1.2 1

Table 6.4: Required clock cycles for each design.

6.2.4 Power Consumption

The estimated power consumption of the modules was determined using Synopsys
Design Vision. The global operating voltage was set to 1.08V, and the
”analysis effort” option set to ”low”. The dynamic power resulting from
switching activity in the circuit is given in micro-Watts, whereas the static power
dissipation from cell leakage current is given in nano-Watts. The most power
efficient unit is design 9, the dual voted correlator.
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Number Correlator Design Chapter Dynamic Power [µW ] Leakage Power [nW ]
1 Parallel, reference 4.1.1 16.1 25.0
2 Parallel, muxed 4.1.1 21.5 27.3
3 Sub corr 4.1.1 24.9 25.1
4 Sub corr, alt 4.1.1 8.5 12.1
5 Dual sub corr 4.1.1 8.4 26.6
6 Voted, 5-bit 4.1.2 20.6 25.0
7 Voted, 3-bit, alt 4.1.2 12.5 15.1
8 Voted, 3-bit 4.1.2 17.2 23.1
9 Dual, voted 3-bit 4.1.2 12.7 32.2

Table 6.5: Power consumption of the 1-bit correlators.

The dynamic power loss greatly dominates the total power dissipated by the
modules. This is the power lost from switching activity in the designs, and is
proportional to the well-known formula:

Pd = αfCV 2
dd (6.1)

Where f is the switching frequency, C is the total capacitance being switched,
Vdd is the supply voltage and α is a factor related to effective number of gates
switching.

6.2.5 Summary

A quick side-by-side view of each correlator with all of its key properties.

Number Correlator Design N Chapter Area [µm2] Clocks Noise Power [µW ]
1 Parallel, reference 4 4.1.1 2359.0 1 0.719 16.1
2 Parallel, muxed 4 4.1.1 2255.4 5 0.719 21.5
3 Sub corr 2 4.1.1 2017.3 24 0.500 24.9
4 Sub corr, alt 2 4.1.1 1157.1 1 0.500 8.5
5 Dual sub corr 4 4.1.1 2558.7 1 0.719 8.4
6 Voted, 5-bit 5 4.1.2 2291.2 1 0.683 20.6
7 Voted, 3-bit, alt 3 4.1.2 1319.7 1 0.521 12.5
8 Voted, 3-bit 3 4.1.2 1894.4 12 0.521 17.2
9 Dual, voted 3-bit 6 4.1.2 2858.2 1 0.750 12.7

Table 6.6: Overall comparison, same numbering as in table 6.2. N is the sampling
rate.
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6.3 2-bit Correlators

The results presented in the following sub chapters belong to the 2-bit correlator
designs. In the table 6.7 below, the numbering of the designs is presented. The
four, eight or sixteen trailing some of the design names indicates the size of the
parallel bit counter used. The difference between design 11 and 12 is whether
the 5-bit registers are implemented using asynchronous latches or synchronous
registers. The grouping designs were only implemented for a sampling rate
of N = 3, due to the nature of the designs, as described in chapter 4.2.4 on
page 32.

6.3.1 Operational Speed

The speeds listed here are the number of global clock cycles needed by the design
for every ADC clock cycle, in order to compute the result. The factor N is the
sampling rate. The operational speed was determined by analyzing the source
code and confirmed by simulation.

Number Correlator Design Chapter Clock Cycles
1 Reference, four 4.2.1 1
2 Reference, eight 4.2.1 1
3 Reference, sixteen 4.2.1 1
4 Multiplexed, four 4.2.2 1 + (N · 4)
5 Multiplexed, eight 4.2.2 1 + (N · 2)
6 Multiplexed, sixteen 4.2.2 1 +N
7 Multiplexed Counter, four 4.2.3 1 + (N · 4)
8 Multiplexed Counter, eight 4.2.3 1 + (N · 2)
9 Multiplexed Counter, sixteen 4.2.3 1 +N

10 Grouping 4.2.4 1
11 Multiplexed Grouping, latches 4.2.4 44
12 Multiplexed Grouping, clocked 4.2.4 44

Table 6.7: Number designation and calculation cycles needed.

The fastest designs are the reference designs #1-3 and the grouping design #10,
which can be clocked at the same frequency as the ADC. After this the fastest
designs are the multiplexed ones using the largest parallel counter.
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6.3.2 Area Consumption

The percentages in the column under sampling rate 3 are the sequential area
required by each design. Since this figure varies little (±1%) as the sampling rate
is changed, it has only been provided for the sampling rate N = 3 so all of the
correlator designs can be compared. As with the 1-bit designs the interconnect
area has not been calculated, so the actual implementations will require routing
before the total area can be determined.

Sampling rate
2 3 4 5 6

D
es

ig
n

1 5009.9 7494.4 (78.2%) 9977.6 12436.5 14929.9
2 4947.2 7337.0 (79.8%) 9850.9 12303.4 14702.1
3 5013.8 7420.2 (78.9%) 10068.5 12551.7 15073.3
4 4835.8 6915.8 (89.6%) 9048.3 11157.8 13249.3
5 4815.4 6909.4 (89.7%) 9038.1 11119.4 13158.4
6 5049.6 7092.5 (86.9%) 9222.4 11278.1 13304.3
7 5203.2 7522.6 (82.5%) 9849.6 12144.6 14428.2
8 5249.3 7633.9 (77.5%) 9976.3 12303.4 14603.5
9 5409.3 7960.3 (80.8%) 10398.7 12824.3 15251.2

10 - 27578.9 (22.8%) - - -
11 - 9026.6 (43.0%) - - -
12 - 12224.0 (66.0%) - - -

Table 6.8: Total area consumption at various sampling rates, given in [µm2]

From table 6.8 it can be observed that design #5 consumes the least area for
all sampling rates. All of the multiplexed counter designs (#7 through 9) are
consistently worse than the reference in terms of area. Design #11 using latches
is the smallest of the grouping designs. Table 6.9 below shows the individual area
consumption of the components used in the grouping correlator.

Component Area [µm2]
Encoder 521.0
Count Decoder 175.4
Last Sample Decoder 17.9

Table 6.9: Individual component area for the grouping correlators.
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6.3.3 Noise Immunity

The values in table 6.10 were determined using a rough step size of 0.1, and a
fine step size of 0.005. A data sequence length of 1000 bits was used. The noise
factor has the lowest relative standard deviation, and as such should be used
when comparing the noise results.

Type SNR [dB] Noise factor σ SNR [dB] σ Noise factor
S, N=2 2.9495 0.3363 0.4270 0.0163
S, N=3 2.0039 0.3750 0.4735 0.0200
S, N=4 0.6793 0.4365 0.4952 0.0254
S, N=5 0.0017 0.4718 0.4549 0.0248
S, N=6 -0.1686 0.4820 0.5747 0.0311
V, N=3 2.7462 0.3443 0.5005 0.0196
V, N=5 0.7527 0.4328 0.3464 0.0174

Table 6.10: Noise immunity testbench results for the 2-bit model. S = standard,
V = voted.

The best noise immunity is obtained when using the full resolution output, and
a sampling rate of 6. The voted designs are comparable, but still worse than
the equivalent full resolution design using a sampling rate of one less (N-1). All
of the implemented 2-bit designs utilize the full output resolution, so their noise
immunity is given by the S entries, at a given sampling rate. Designs 10, 11 and
12 (the grouping correlators) have a set sampling rate of N = 3, making their
noise immunity 2.0159dB.
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6.3.4 Power Consumption

The estimated power consumption of the modules was determined using Synopsys
Design Vision. The global operating voltage was set to 1.08V, and the
”analysis effort” option set to ”low”. Notice the significant difference in power
consumption between the regular designs and the grouping the designs.

Sampling rate
2 3 4 5 6

D
es

ig
n

1 47.8 73.3 94.3 117.5 141.0
2 47.4 71.8 94.0 117.5 140.5
3 47.7 72.2 95.1 118.5 142.2
4 54.8 79.2 104.2 128.5 152.6
5 54.3 78.9 103.9 128.4 152.6
6 53.7 78.5 103.0 120.6 151.5
7 50.2 74.8 95.1 116.9 138.5
8 49.8 74.3 95.3 117.4 139.6
9 51.4 77.2 95.8 118.5 141.0

10 - 2.6 - - -
11 - 13.5 - - -
12 - 13.7 - - -

Table 6.11: Dynamic power consumption, given in [µW ].
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Chapter 7

Discussion

Results and methodology are discussed in this chapter.

7.1 Noise Immunity Testbench

The noise immunity testbench determines a property which is statistical in
nature, and as such the final result can only be determined with a finite level
of certainty. It is for this reason the standard deviation is provided with each
result. The algorithm creates a new random sequence at each noise level, because
it is assumed transmitting a random data sequence rather than a predetermined
one should not impact the final noise level result. The reasoning behind this
assumption is that the memory in the correlator is only as long as the PN code,
which again is the length of a single data bit. Thus sending a long sequence of the
same data bit value should be no different than sending a continuously toggling
sequence, because the memory of the correlator can at most hold a single bit, or
half the value of two bits in a sequence, which is negligible compared to the 1000
bits used in the sequences.

The parameter used in the algorithm is the noise level, which is a factor multiplied
with the white noise signal, to set the SNR. Since the generated white noise
is supposed to be completely random, variations between runs will occur. For
example, it is possible that the ADC only samples when the impact from the noise
is minimal, or conversely, ever sample is taken during a noise spike. The actual
noise level will as such be more or less than the what the noise factor indicates.
The algorithm will then assume that the current noise level is acceptable, and
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move on. The effects of this can be seen from the larger standard deviation in
the SNR than that of the noise factor.

A way to seemingly remedy this would be to alter the algorithm such that it
operates on SNR rather than the relative noise factor. This was attempted,
however the standard deviation of the SNR did not behave in a predictable
manner. At some sampling rates the standard deviation would be small, and
at others large, with no discernible pattern. As such, the algorithm was left to
operate on the noise factor.

7.2 Area results

The synthesis results show that area is largely dependent on the sampling rate,
and thus indirectly the noise immunity, for all designs. See tables 6.2 on page 59
and 6.8 on page 63. Multiplexing was used successfully for both the 1-bit and 2-bit
designs, and resulted in the designs requiring the least area. It is also worth noting
that the most area efficient parallel bit counter (4-bit Karnaugh in table 6.1 on
page 58) did not result in the smallest 2-bit correlator design when multiplexed.
Instead the 8-bit counter gave the best design in terms of area, presumably due
to the reduction in multiplexer and state machine complexity.

From table 6.2 the portion of each design required for the 1-bit ADC registers
can be seen. The only sequential elements in the reference design 1 are the ADC
registers, which make up roughly half the design. Comparing this to design 4
and 6 which are also without additional sequential elements, the ADC register
area alone can be estimated using the formula N · 306µm2.

It is important to remember that the synthesis did not perform routing of the
designs, and as such the interconnect area has not been included. For the
reference designs it is assumed this wouldn’t contribute with much additional
area, as connections are only one-to-one. For the multiplexed designs this may
add some overhead, especially for those using the 4-bit parallel counters which
must be multiplexed across a potentially large register. The multiplexed grouping
correlators is where interconnect area is assumed to be the most significant,
as contrary to the other designs where samples are simply shifted along shift
registers, each 5-bit register here requires a multiplexer with a connection to the
single encoder block.
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7.3 Noise results

The results from the noise immunity test bench are more or less as expected,
where the sampling rate is the main deciding factor in the ability of each correlator
design to suppress noise. The performance of the voted designs versus those of
full resolution seems to show that to achieve the same performance as a full
resolution design working at N, a sampling factor of N+1 is needed for the voted
design.

The noise immunity results from the 1-bit and 2-bit designs aren’t directly
comparable to each-other because of the different PN code used. Whereas the
1-bit design used the 11-chip long Barker code, the 2-bit designs used a 36-chip
long chirp code. A longer PN code gives better noise immunity in itself, and the
additional ADC resolution will also improve the noise immunity. For identical
PN codes the noise immunity could be compared across both the 1- and 2-bit
designs, but only when using the SNR. The noise factor is merely a relative scalar
the algorithm works on, and as can be seen when comparing the results, does
not correspond to a given SNR. Consider for example from table 6.3 on page 59
a noise factor of 0.5 causes a SNR of 6.1dB, whereas in table 6.10 a noise factor
of 0.5 causes a SNR of −0.2dB. Why this is the case has not been determined at
the time of writing this thesis.

A factor which greatly influences the performance of the mathematical models in
the simulations is the choice of threshold level. It must be chosen high enough
to not trigger from random noise, but at the same time low enough trigger when
a weakened signal is present. Currently the thresholds have been chosen based
on some trial and error to determine roughly what level gives the highest noise
immunity. Once set, the same threshold is used for all of the correlator designs.
As the voted designs have a different output resolution, the thresholds were set to
the same relative level as the full resolution designs no matter the sampling rate.
This ensured by having the thresholds determined by a formula which is scaled by
the sampling rate. In other words, if all designs had their output normalized, the
thresholds would be the same. Some work on determining the optimal threshold
levels should be done.
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7.4 Power Results

The designs presented here have not been designed specifically for power
reduction, although this may seem to be an important factor for a lightweight
radio communication link. The reason for this is the possible power savings for
the various correlators is low, when compared to the other units required for the
radio receiver. The major source of power consumption will be the analog to
digital conversion section, and it was decided in cooperation with the external
supervisor that expending extra effort on reducing the power consumption of the
correlators was not of interest, given the low gains possible for the overall receiver
unit.

With that said, a common source of power consumption in every presented
correlator design is the ADC shift register, which causes a great deal of switching
activity for every new sample. Proposed designs[5] have demonstrated reduced
power consumption by shifting the PN code instead for each new sample, and
utilizing a special ring buffer type of ADC register. All of this requires a
significant increase in area however, which directly contrasts the desired goal
of minimal area.

From the power consumption analysis performed on the correlator designs, some
interesting observations can be made none the less. The leakage power is
proportional to the area required by each design, as each gate will leak a set
amount of current, and the area is proportional to the number of gates in a
design. See tables 6.5 on page 61 and 6.2 on page 59. The 1-bit dual correlator
designs both consume less dynamic power than the others, and only dissipate as
much dynamic power as the sub correlator they are based on. This is reasonable,
as the designs use two sub correlators, each of which are only active half of
the time, making the dynamic power equal to that of a single sub correlator.
The leakage/static power consumption of these designs is twice that of the sub
correlators, as would be expected. Prior to running the power analysis, it was
anticipated that the voted designs would be power efficient due to reduced output
resolution. The idea being that less resolution would requires less switching
activity, which the dynamic power is proportional to according to formula 6.1
on page 61. However the results show that the voted designs are not any more
efficient than those with full output resolution.

A rather surprising result from the 2-bit correlators (table 6.11 on page 65) is
the low dynamic power consumption of the grouping designs. The average for all
of the other 2-bit designs is 75µW, whereas the multiplexed grouping correlators
only require 13µW. Design 10 only dissipates 2.6µW, which is significantly less
than the others. Why this is the case is unknown. The number of registers in
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the grouping design is the same as the others (see the percentages in table 6.8
on page 63) , and like the other designs they will all switch state when a new
ADC sample is received. In addition, the large amount of combinational logic
will surely dissipate some power with each ADC sample.

As the synthesis results do not include routing, the power lost in the required
interconnects has not been factored in. For some designs, such as the grouping
correlators, it is anticipated that significant routing is required, which may
increase the dynamic power consumption greatly.

7.5 Choice of PN codes

The reasoning behind the decision to use the exact PN codes used here was
considered outside the scope of this thesis, and they were therefore provided
by the external supervisor. The PN codes used by the correlators is of little
consequence when comparing area, power or even noise immunity in relative
terms, because the same code is used by all of the 1-bit or 2-bit designs. When
comparing the 1-bit to the 2-bit designs however, the PN code is of great
importance and must be the same, which was not the case in this thesis. For this
reason the results from the 1-bit and 2-bit correlators cannot be compared, if for
example only the effects of higher ADC resolution want to be studied.
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Conclusion

Several correlator designs have been presented, for both 1 and 2-bits of ADC
resolution, and using differing methods for both storing ADC samples and
counting the correlation estimate. All of the designs have been proven to
function, using mathematical models to verify correct functionality. A novel noise
immunity testbench was developed to subject the correlator models to varying
levels of noise, in order to determine when a data transmission would begin to
show a BER of 1 in 1000. A correlator design based on majority voting was
presented, but ultimately it was not favorable over the full resolution designs in
any of the properties area, noise immunity, power dissipation or speed.

Surprisingly low power consumptions were reported for the grouping correlator
designs. The reason behind these results is not known however, and further
research is required to draw a conclusion on the power consumption.

The overall most area efficient designs for both ADC resolutions were based on
multiplexing a parallel counting unit to sections of the ADC register. Of the
multiplexed designs which were the most area efficient, it was not the design
using the smallest 4-bit counter, but the 8-bit unit which used the least area. The
power analysis revealed that the dual correlator designs are very power efficient,
requiring half the dynamic power of the other designs, while being only marginally
larger in terms of area and static power dissipation.
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8.1 Future Work

The grouping correlator designs should require less area than the others, if
some clever means of exploiting this can be found. The time delayed grouping
correlator presented in chapter 4.2.4 on page 38 was never implemented, but
combines the register savings of the grouping designs with the shift-register
simplicity of the other designs. The only hurdle to implementing this design
would be determining a clever manner to decode the encoded samples, given that
they are spread across two registers, giving a 10-bit input which needs to be
decoded efficiently.

The strange power dissipation results for the grouping correlators, and especially
2-bit design #10 need to be investigated further. In the event they are correct,
they represent significant power savings compared to the other designs presented
here.

Further work could be done to investigate how power efficient the dual correlator
designs are compared to other low power correlators. As the main design focus
in this thesis was on reducing area consumption and not power dissipation, no
designs were made purposely with the intent of low power. Several low power
designs have been presented in the literature, so finding such correlator designs
to test against should not be difficult. The dual correlator designs can be altered
to use any number of sub-correlators desirable, as shown in chapter 4.1.1 on
page 20. Using numerous sub-correlators should potentially allow for very low
power dissipation.
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