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Abstract

Non-reflecting boundary conditions (NRBCs) are of great importance
in computational fluid dynamics. Ideal NRBCs will fully absorb every
incoming wave, thereby eliminating reflections from the boundaries
which would otherwise interfere with the simulation inside the domain.

In this thesis, three different types of existing NRBCs, perfectly
matching layers (PMLs), characteristic boundary conditions (CBCs)
and sponge layers, for the lattice Boltzmann method are summa-
rized and compared against each other and an ideal case. In addition,
tweaking of performance related parameters in each NRBC is per-
formed to achieve the best performance. Simulations are done with
two types of acoustic field excitations, a Gaussian pulse and a sinu-
soidally varying single point source.

In both cases the lattice Boltzmann method with PMLs performed
slightly better than CBCs, and gave the least reflections, while the lat-
tice Boltzmann method with sponge layers gave the most reflections.





Preface

“ Easy reading is damned hard writing. ”
Nathaniel Hawthorne

In addition to the obvious goal of writing a thesis that merits a good
grade, I had a goal of a purely pedagogic nature, I wanted to write a
thesis which conveyed its contents in a simple manner, making it as
easy as possible to digest for readers who are as unfamiliar with the
lattice Boltzmann method and fluid dynamics in general, as I were
when I first started this thesis.

Many a times have I read a scientific article which not only presents
a complex topic, but does so without giving any explanation of specific
jargon1 used or providing the reader with detailed explanations. This 1 Jargon consists of words and ex-

pressions that are used in special or
technical ways by particular groups of
people.

is most likely due to the fact that restrictions, such as article length,
are often placed upon the author(s) by the publishers, and of course
the fact that most articles are aimed at an audience with pre-existing
knowledge of the field/topic. However, being a bit freer as regards
to length and style, I wanted to create something that provides the
reader with numerous explanations and details regarding the contents
of this thesis. The idea is that the reader will find explanations on
possibly unfamiliar jargon as well as details regarding procedures and
methods used herein. However, including too many details creates
the risk of obfuscating the main topics and purposes, and may end
up confusing the reader even more. Therefore, I have tried to restrict
myself in situations where I have felt that an inclusion of all the
details would have detracted from the whole. Instead I have given
concrete references to books or articles containing the details wherever
possible.

As for the style of this thesis, it has been carefully chosen to con-
form with my second goal. The style is based on the books by Edward
Tufte2 [1, 2, 3, 4]. One of the most prominent and distinctive features 2 Edward Tufte is an American professor

emeritus of political science, statistics
and computer science, he is noted for
his writings on information design and
data visualization.

of the Tufte style is the extensive use of sidenotes, as can bee seen
from the jargon example above. The sidenotes are placed in a wider
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than usual margin, this has two benefits. One: Experienced read-
ers who are familiar with the jargon and the different methods are
presented with a continuous, flowing text without, for them, unnec-
essary explanations. Two: The wide sidemargins automatically gives
us a shorter line length, approximately between 60 and 70 characters
long, which is recognized by many as the optimal line length (given a
reasonable choice of font size, e.g. 12pt font size) for legibility [5].

Lastly I would like to acknowledge, and say a big thank you to the
people who have helped me during the process of writing this thesis.
My supervisor Ulf Kristiansen who has kindly given of his time and
answered every question that was asked. Erlend Magnus Viggen whose
master and PhD thesis I have relied heavily upon. Especially his PhD
thesis have both influenced and inspired me, as well as served as a
great source of knowledge about the lattice Boltzmann method. Lastly
I would like to thank Alireza Najafi-Yazdi and Daniel Heubes who
have patiently answered all my emails and explained some of the finer
points regarding non-reflecting boundary conditions.
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1 Introduction

In this chapter we briefly mention the phenomenon sound as well as in-
troducing and explaining the microscopic, mesoscopic and macroscopic
scale. In the end, a short history of the lattice Boltzmann method is
given.

1.1 Briefly on acoustics and sound in general

Acoustics was originally the study of small pressure waves in air
which can be detected by the human ear, i.e. sound. Nowadays the
scope of acoustics is much wider and include areas like ultrasound
and infrasound which are inaudible to the human ear. Keeping with
the original definition, acoustics is a part of fluid dynamics as the
pressure waves which make up what we as humans perceive as sound,
propagates through some fluid (usually air).

When it comes to the creation of sound waves, the most common
example is a loudspeaker which produces sound waves by means
of rapidly vibrating surfaces, and indeed any surface vibrating in a
certain manner will produce sound waves. Other sources of sound
include aeroacoustic processes like turbulent flow1 and sound created 1 Turbulence, or turbulent flow, is

characterized by its chaotic properties,
among which are rapidly varying
pressure and velocity in space and time.

by aerodynamic forces, i.e. air in motion interacting with solid objects.

1.2 Scales

We will start off by introducing the three different scale levels that
we operate with in this thesis. Different equations and simulation
methods produce information/results pertaining to different scales, an
understanding of the different scale levels are therefore beneficial. A
short introduction and what one can expect to find at these scales are
presented below.
• The microscopic scale: The system is described in its entirety

through equations describing the interactions among each par-
ticle in the system. This is the most complete description of a
system, but also the least computationally feasible as the amount
of particles and phenomena affecting them are staggering. Tan-
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gible concepts like density or fluid velocity does not exist on this
level. Examples of simulation methods performed on this level are
molecular dynamic methods, among them is the LGA method later
mentioned in subsection 1.3.2.

• The mesoscopic scale: This is the scale between the microscopic
and the macroscopic scale. The system can be described statisti-
cally. Rather than describing particles, we are now using particle
distributions to describe the evolution of the system. The lattice
Boltzmann operates on this level.

• The macroscopic scale: On this level we are not using particles
at all to describe the system, rather we describe the system as a
continuum. This is the scale we are able to observe with our own
eyes. As an example, a body of water will look continuous and
smooth at this level, although actually composed of a myriad of
loosely connected, tiny particles. The concept of density will now
cease to be an abstract principle and becomes something tangible,
the same for fluid velocity, which was only an idea or abstract
principle at the microscopic level.
The term macroscopic variable (which is a term we will encounter
frequently) is often used to emphasize that the variable in question
relates to something tangible, rather than some variable found only
at microscopic or mesoscopic level with no conceptual interpreta-
tion in the macroscopic scale. The Navier-Stokes-Foureir model
mentioned in subsection 2.2.2 operates at this level.

Although these three scopes offer very different descriptions of a
system, they still describe the same system, a body of water is still
a body of water no matter if it is described by its microscopic or its
macroscopic properties. What links them together is the expectation
value2 of different characteristics found in the microscopic description. 2 The expectation value implies the use

of the expectation operator E(·) and
can in this case be be thought of as an
ideal average.

As an example we use the density. Density ρ has the dimension of
kg m−3 so it is reasonable to expect that the definition of density must
involve some mass m in some specified volume V , indeed this is the
case as we have

ρ(x, t) = lim
V→0

E

(
1
V

∑
xi∈V

mi

)
. (1.1)

This equation tells us that the macroscopic density at a given point
x in space, at a given time t is found by averaging the sum of each
particle mass mi found in an arbitrary small volume V . Thus the
tangible quantity that we perceive as density is actually the averaged
mass of every particle in an arbitrarily small volume. Equation (1.1)
can therefore be said to link the microscopic and macroscopic scales.



introduction 11

1.3 The history of the lattice Boltzmann method

1.3.1 Cellular automata

The very first step towards what would become the lattice Boltzmann
method (LBM) was taken with the cellular automata (CA), which was
proposed by Ulam and van Neumann in the late 1940s to simulate life.
Conway’s Game of Life3 is probably the most famous implementation 3 The Game of Life is one of the sim-

plest examples of what can be described
as “emergent complexity” and can
be studied to give insight into how
elaborate patterns and behaviors can
emerge from very simple rules, e.g. how
the stripes of a Zebra can arise from a
tissue of living cells growing together.

of a CA and demonstrates beautifully how, with suitable rules, a CA
can be used to simulate complex physical phenomenon in the real
world, as was shown by Wolfram in [6, 7].

1.3.2 Lattice gas automata

The next step towards the LBM was the lattice gas automata (LGA),
which is a particular class of the CA. The LGA is a discrete macro-
scopic model of a fluid where fictitious particles resides in nodes on a
regular lattice and the particles can only move in accordance with the
lattice directions. An example of lattice directions can be found in Fig-
ure 3.1 which represents the particle velocities in a D2Q9 lattice4. In 4 The term DnQm indicates that the

lattice in question is n dimensional and
m velocities are applied in the lattice.
There exists many such lattices, e.g.
D2Q9, D3Q15, D3Q27 etc.

addition, particles collide when they meet in the same node, and mass
and momentum of the system is conserved, this is a very important
feature lacking in the CA.

This led to a fully discrete model for a fluid (which is now com-
monly called the HPP model) and it was shown by Hardy, Pazzis
and Pomeau in [8] that the model simulate flow equations. However,
the model was built on the 4-speed square lattice which resulted in
anisotropic5 flow equations. This anisotropic property means that 5 Anisotropy is the property of being

directionally dependent, e.g. having
different magnitudes when measured in
different directions.

the system will not be able to behave in accordance with the Navier-
Stokes equations6. Not until ten years later was there developed a

6 The Navier-Stokes equations are some
of the most important equations in
fluid dynamics and are used to describe
the motion of fluid substances and can
therefore be used to simulate everything
from weather and ocean currents, to
water flow in a pipe and air flow around
a wing.

model which could recover the Navier-Stokes model correctly, this
model was know as the FHP model after its authors Frisch, Hasslacher
and Pomeau [9]. The FHP model was based on a 6-speed hexagonal
lattice as it was discovered that the symmetry of the lattice plays a
vital role in recovering the Navier-Stokes equations.

The LGA comprises two steps which is worth explaining as the
LBM can be called a direct descendant of the LGA, and therefore
share some similarities. These two steps are streaming and collision
which describes the streaming of the particles in the system and
collision between said particles. Streaming happens along the lattice
lines connecting the different nodes in the system, while collision
is represented by a collision operator. These two steps represents
two macroscopic phenomena, namely convection7 and diffusion8 7 Convection is actually the sum of

both the diffusion and the advection
phenomenon, but it suffices to think of
convection as the movement of particles
due to large scale motion of currents in
the fluid.
8 Diffusion is a transport phenomena
and can be described as “the spreading
out” of particles, it is important to
note that diffusion does not depend
on movement of the surrounding fluid
to spread the particles. The particles
diffuse due to the Brownian motion of
particles.

respectively. These two phenomena determine the basic features of the
LGA, and the equation for the LGA is given by
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ni(x + ci, t+ 1) = ni(x, t) + Ωi(x, t) (1.2)

Where ni(x, t) is a Boolean variable that is used to indicate the
presence (ni(x, t) = 1), or lack thereof (ni(x, t) = 0), of a particle re-
siding in node x with velocity ci, and Ωi(x, t) is the collision operator.
For an explanation of the notation used, namely x and the subscript i,
see subsection 2.1.1.

Using this we can recover the macroscopic variables density and
fluid velocity:

ρ(x, t) =
∑
i

ni(x, t), ui(x, t) = 1
ρ(x, t)

∑
i

cini(x, t). (1.3)

Unfortunately, simulations with a LGA suffer from statistical noise.
Macroscopic variables, e.g. density, recovered from the microscopic
simulation will be noisy due to the fact that the microscopic system
is subject to random fluctuations that disappear in the continuum
limit9 [10]. This problem spurred the development of the lattice 9 The continuum limit in this context

describes the transition from a discrete
system with a countable number of
particles N , into a continuous system
of N → ∞ particles. The transition
from discrete to continuous alters
some of the mathematics involved,
as an example summations signs are
converted into integrals (with and
appropriate normalizing factor).

Boltzmann method.

1.3.3 Lattice Boltzmann method

A solution to the problem inherent in the LGA was found by Mc-
Namara and Zanetti [11], where the authors replaced the Boolean
variable ni(x, t) with its ensemble average10

10 Ensemble average can be explained
thus: Time averaging concerns itself
with a single system over a given time
interval. However, noise is a stochastic
process consisting of a randomly varying
function of time and space, and as such
can only be characterized statistically.
Therefore it makes no sense to single
out specific events during a given time
interval and averaging them. This is
where the ensemble average comes in
as this is the averaged quantity of many
identical (random) systems at a certain
time.

fi(x, t) = 〈ni(x, t)〉, 0 ≤ fi(x, t) ≤ 1. (1.4)

Using this, (1.2) becomes

fi(x + ci, t+ 1) = fi(x, t) + Ωi(x, t). (1.5)

This is the lattice Boltzmann evolution equation. A more thorough
discussion surrounding this equation is given in chapter 3.



2 Theory

In this chapter we will cover specific notation and definitions used, as
well as introducing two of the most common models in fluid dynamics,
the Euler model and The Navier-Stokes-Fourier model.

2.1 Notation and useful definitions

2.1.1 Vector notation

In this thesis, every vector is presented with a boldfaced letter. An
example is position, where the vector x = [xêx, yêy] is used, here
êx and êy are unit vectors. The vector x represents a point in two
dimensional Cartesian space, which at first might be a bit confusing
since the letter x usually represents some position on the horizontal
axis in a Cartesian system, nevertheless, the use of x is commonly
found in the literature surrounding the LBM and we will use this
definition in this thesis.

2.1.2 Index notation

Index notation is a compact way of writing an equation which acts in
different spatial directions, instead of writing

F(x, y, z) = ma(x, y, z), (2.1)

or even
[Fx, Fy, Fz] = m[ax, ay, az], (2.2)

we simply write
Fα = maα. (2.3)

Equation (2.3) uses index notation, the fact that Fα and aα are vector
components are conveyed through the index α. Note that Greek
indices (α, β, γ etc.) are used for spatial components, e.g. x, y and z

in Cartesian space. Components of general non-spatial tensors1 use 1 A tensor can be seen as a generaliza-
tion of scalars, vectors and matrices, a
zeroth order tensor is a scalar, a first
order tensor is a vector, second order
represents a matrix etc.

the indices i, j, k etc. instead.
Another neat feature of index notation is that it allows us to di-

rectly address elements in a tensor, in (2.3), the single index α tells
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us that we are dealing with element α of a vector, we know it is a
vector because a vector can be uniquely addressed with only one index.
Likewise, Aαβ would indicate element α, β in matrix A.

2.1.3 Material derivative

The material derivative is a common concept used in fluid dynamics
and can be interpreted as a time derivative of a particle moving
through a fluid with velocity u. It is commonly defined as

Dλ
Dt = ∂λ

∂t
+ u · ∇λ, (2.4)

where λ(x, t) is a generic quantity. Note that the material deriva-
tive is sometimes confusingly called the convection derivative or the
advection derivative.

2.1.4 Miscellaneous

For convenience, functions of one or more variables will from time to
time appear in a shorter form, e.g. ρ(x, t) will be presented as ρ. This
is to prevent the equations from becoming too messy, however, the
proper form will still be used where it is deemed necessary for sake of
completeness or emphasis.

2.2 Fluid dynamics

As the name implies, fluid dynamics is the branch of physics that con-
cerns itself with the studies of the flow of fluids2. This is a huge topic 2 Fluids does not only comprise of

liquids, but also of gases and plasmas.which we will not delve deeply into here. However, fluid dynamics
serves as the backbone of any fluid simulation and a few key principles
and equations are therefore presented here in order to provide some
bare minimum of theoretical background.

A fundamental part of fluid dynamics is the conservation equations
which tells us that in a closed system, mass, momentum and total
energy is always conserved. There are several sets of equations, or
models as they are sometimes called, which include these conservation
laws as well as other important terms. We will now take a closer look
on the first two of these models and then briefly mention the other
models available to us.
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2.2.1 The Euler model

The Euler model for fluids consists of the following set of equations:

∂ρ

∂t
+∇ · (ρuα) = 0, (2.5a)

ρ
Duα
Dt = −∇p+ Fα, (2.5b)

ρ
De
Dt = −p∇ · uα. (2.5c)

Where Fα is the external body force density, this consists typically of
gravity forces and p is the pressure. Equations (2.5a), (2.5b) and (2.5c)
are the conservation equations for mass, momentum and energy respec-
tively.

Acoustic waves in general are subject to energy loss/damping as a
result of the viscosity of the fluid in which the sound wave propagates,
and as a result of heat transfer due to said viscosity. This level of
description is lacking from the Euler model and hence it is best suited
to model inviscid flow3. Despite this, the Euler model can sometimes 3 Inviscid flow is the flow of an ideal

fluid, it is considered ideal since it does
not have viscosity.

provide accurate enough results for fluids with low viscosity as they
behave like inviscid fluids.

2.2.2 Navier-Stokes-Fourier model

A more detailed model is the Navier-Stokes-Fourier (NSF) model
which consists of the following equations

∂ρ

∂t
+∇ · (ρuα) = 0, (2.6a)

ρ
Duα
Dt = − ∂p

∂xα
+
∂σ′αβ
∂xβ

+ Fα, (2.6b)

ρ
De
Dt =

(
−δαβp+ σ′αβ

) ∂uβ
∂xα

− ∂qα
∂xα

. (2.6c)

Equation (2.6a) is the familiar mass conservation equation also
found in the Euler model, but the conservation equation for mo-
mentum (2.6b) and energy (2.6c) are presented in a new form. Equa-
tion (2.6b) is now given as the general Cauchy momentum equation:

ρ
Duα
Dt = ∂σαβ

∂xβ
+ Fα, (2.7)

where σ is the Cauchy stress tensor4, which in (2.6b) has been split 4 The Cauchy stress tensor σ is a
second order tensor which describes the
normal and shear stress in the x, y and
z directions at any point in the fluid.

into −pI + σ′, I is the identity matrix, and the deviatoric stress tensor
σ′ for a simple fluid is given by

σ′αβ = µ

(
∂uβ
∂xα

+ ∂uα
∂xβ

− 2
3δαβ

∂uγ
∂xγ

)
+ µ′δαβ

∂uγ
∂xγ

. (2.8)

Here, δαβ is the Kroenecker delta, µ is the dynamic shear viscosity5

5 The dynamic shear viscosity µ tells
us something about a fluid’s resistance
to shearing flows. A shearing flow
can be described as adjacent fluid
layers moving in parallel with different
velocities.
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and µ′ is the bulk viscosity6. The point of this splitting is simply to 6 The bulk viscosity µ′ is important
when a fluid is rapidly expanding or
contracting (e.g. sound waves), it
reduces to zero for incompressible fluids.
Note that this parameter is also called
the volume viscosity.

divide total stress into contributions from the pressure and from the
viscosity.

The last equation in the NSF model is the energy conservation
equation, which also uses the split Cauchy stress tensor, as well as the
term qα which is the heat flux given by Fourier’s law,

qα = −κ ∂T
∂xα

, (2.9)

where κ is the thermal conductivity of a material and T is the temper-
ature.

Equation (2.6b) with the deviatoric stress tensor given in (2.8)
yields one form of the famous compressible Navier-Stokes equation,
but as it is sometimes useful to represent compressible Navier-Stokes
without the use of the material derivative, another very common
representation is:

ρ

(
∂u
∂t

+ (u · ∇)
)

+∇p− µ∆u−
(µ

3 + µ′
)

∆ · u = f , (2.10)

where ∆ is the Laplace operator and f is the external body force (if
any) given by

f = dF
dv = ρa. (2.11)

Here F is again the external body force density and a is the acceler-
ation caused by the force and V is the volume of the body the force
acts upon.

As we have seen, there is at least two ways to write the compress-
ible Navier-Stokes equation and more can be found in the literature.
As a small addendum to (2.10) and (2.6b), the dynamic shear and
bulk viscosity µ and µ′ are sometimes replaced with the kinematic
shear and bulk viscosity given as ν = µ/ρ and ν′ = µ′/ρ respectively.

The Navier-Stokes-Fourier equations are very important in fluid
dynamics as they describes the motion of a viscous, heat conducting
fluid, and in fact, it is this equation that is simulated (with some
modifications) by the lattice Boltzmann method used in this thesis.
This is most commonly proven by way of Chapman-Enskog expansion.
The main idea behind the Chapman-Enskog expansion is briefly
mentioned in section 3.4.

2.2.3 Beyond Navier-Stokes-Fourier

Using what is called a zeroth order Chapman-Enskog expansion, we
get conservation laws in accordance with the Euler model, a first or-
der Chapman-Enskog expansion produces the NSF model. Higher
order Chapman-Enskog (CE) expansions can also be calculated, which
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produce even more detailed models. None of these higher order CE
expansions are used in this thesis, but they are nevertheless inter-
esting, this subsection is therefore a short, but hopefully interesting
digression.

• The Burnett, super-Burnett and the augmented Burnett equations:
Second and third order CE expansion produces the Burnett and
super-Burnett equations. These equations, or models, are appli-
cable for flows where the Knudsen number7 lies in the continuum- 7 The Knudsen number Kn is a dimen-

sionless number and is given as the
ratio of the molecular mean free path
and a relevant characteristic length
scale. It can serve as an indicator of
whether statistical mechanics or contin-
uum mechanics should be applied to the
problem, depending on the value of Kn.

transition regime, this implies Kn ≥ 1. Typical processes where
such Knudsen numbers are encountered include high altitude flight,
shock waves and flows in micro-channels of micro-electromechanical
devices.

The reason why Burnett and super-Burnett is necessary is because
the NSF model is only valid for Kn � 1 [12]. However, despite their
increased level of detail, there is a drawback with these models as
they display some instability issues, as shown by Bobylev in [13].

To combat the stability issues in the Burnett and super-Burnett
equations, Zhong, Maccormack and Chapman [14] came up with the
augmented Burnett equations where some terms of super-Burnett
were added to Burnett to stabilize the equations. Although the
Burnett and augmented Burnett equations has shown some success
for fluid simulations [12], [15] and [16], the sheer complexity of
these equations and the fact that even the augmented Burnett show
instability issues [17] means that these models should be used with
care or altogether avoided.

• R13 equations: In addition to the CE method, the best known al-
ternative to produce models describing fluid flow, is Grad’s method
of moments. Unlike the Burnett and super-Burnett equations pro-
duced by the CE method, Grad’s equations are always stable [18].
The R13 equations are derived using a combination of CE expan-
sion and Grad’s method of moments and incorporates the benefits
from both methods while avoiding the shortcomings. The R13 equa-
tions has been shown to give accurate and meaningful results, for
example for Couette8 and Poiseuille9 flows with heat transfer, as 8 Couette flow is the flow of a viscous

fluid situated between two parallel
plates, one moving relative to the other.
An often used test scenario in CFD
simulations.
9 A Poiseuille flow is a flow which obeys
the Hagen–Poiseuille equation which
describes the pressure drop in a fluid
moving through a long cylindrical pipe,
e.g. the flow through a drinking straw
or a hypodermic needle. Poiseuille flow
is an often used test scenario in CFD
simulations.

was shown by Struchtrup and Torrilhon in [19].





3 The lattice Boltzmann method

Here we cover the lattice Boltzmann method as well as some impor-
tant elements surrounding it like boundary conditions and lattice
units.

As the topic of this thesis in not the lattice Boltzmann method
itself, importer equations, relations and quantities are presented rather
than derived, but references will be given so the curious reader can
indulge themselves in the details found therein. In addition, it is
assumed that we are using a D2Q9 model.

3.1 The lattice Boltzmann equation

We begin by introducing two very important concepts in kinetic
theory1. Firstly, the phase density, f(x, t, ξ), which when known 1 The kinetic theory of gases describes

a gas consisting of a larger number
of particles. The particles are in con-
stant, random motion and are also
constantly colliding with each other
and the walls of their container. In
addition, kinetic theory explains the
macroscopic properties of gases, such as
pressure, temperature, viscosity, thermal
conductivity and volume.

gives us an (almost) complete description of the state of the gas in
question [18, Ch. 2]. The function f(x, t, ξ) is the distribution of a
single particle at position x, with particle velocity ξ, at time t, this is
therefore often called the particle distribution function instead of the
phase density. Secondly, the continuous Boltzmann equation2 given as

2 The Boltzmann equation is the central
equation in kinetic theory of gases and
describes the time and space evolution
of the phase density f(x, t, ξ).

∂f

∂t
+ ξ · ∇f + F

ρ
· ∇f = Ω(f). (3.1)

Here, F the body force density acting on the particle and Ω(f) is the
collision operator which when applied to f gives the rate of change
due to collision between particles. A derivation of (3.1) can be found
in [20, Ch. 3].

The collision operator Ω(f) deserves some further mentioning as
this is usually a very complex term that severely complicates the solv-
ing of (3.1), as an example of its complexity, by the Stosszahlansatz3,

3 The Stosszahlansatz is also called
molecular chaos and is the assumption
that the velocities of colliding particles
are uncorrelated and independent of
position.

the collision operator Ω(f) can be written as

Ω(f) =
∫ ∫ 2π

0

∫ π/2

0
[f(x, t, c′)f(x, t, c1′)− f(x, t, c)f(x, t, c1)]gσ sin(Θ) dΘ dεdc1.

For more information on this equation and the Stosszahlansatz, see
[18, Ch. 3.1].
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To reduce complexity, an often used simplification is the BGK
collision operator ΩBGK by Bhatnagar, Gross, and Krook [21], which
when used gives us a continuous Boltzmann equation on the form

∂f

∂t
+ ξ · ∇f = ΩBGK(f) = −1

τ
(f − fM). (3.2)

Here, fM is the Maxwell-Boltzmann equilibrium distribution and τ is
the relaxation time that indicates how fast the particle distribution
function relaxes towards its equilibrium, sometimes a relaxation
frequency ω = 1/τ is used instead. Note that the force term F found
in (3.1) has been set to zero in (3.2) as it is not of importance in this
thesis.

As the continuous Boltzmann equation, even with a simplified colli-
sion operator as in (3.2), usually is too complex to solve analytically,
we have to find a way around. One way would be to find a discrete
version of this equation, which in turn can be solved numerically, and
this is exactly what the lattice Boltzmann (LB) equation is, a finite
difference form of the continuous Boltzmann equation [22].

The first step towards a fully discrete lattice Boltzmann equa-
tion from (3.2) is to discretize the velocity space4. There are several 4 To explain what velocity space is, we

first need to describe something called
phase space. Phase space is a space in
which all possible states of a system
are represented, in our case the phase
space comprises of position x, time t
and particle velocity ξ. The velocity
space is then a subset of phase space.
Generally speaking, the coordinates of
velocity space are the velocities in each
of the three spatial directions x, y and
z.

ways to do this, one is to approximate the Maxwell-Boltzmann dis-
tribution fM up to second order via a Taylor series expansion and
restricting particle velocities ξ to a finite set of velocities ci, thereby
effectively reducing f(x, t, ξ) to fi(x, t). In other words, the particle
distribution function fi can now only propagate in i directions, where
i ∈ [0, 1, . . . , 8] in the D2Q9 model.

Together with the discrete collision operator ΩBGK(fi) we now have
what is called the discrete velocity Boltzmann equation:

∂fi
∂t

+ ci · ∇fi = −1
τ

(fi − f eq
i ) , (3.3)

where the function f eq
i is the equilibrium distribution. For more

details on the derivation, see [20, Ch. 4].
Next, discretization of both time and space has to be performed.

Again there are more than one way to do this, and some ways produce
a more accurate model than others. The model, or rather, the lattice
Boltzmann equation presented here is, according to Lätt [23], second
order accurate both in time and in space for simulations of compress-
ible, isothermal5 flows at small Mach numbers. However the author 5 An isothermal flow describes a flow in

which the temperature stays constant.
Under the isothermal assumption, the
density ρ is related to pressure p via the
linear equation p = c2

s ρ, where cs is the
speed of sound in m s−1.

mentions that this has never been proven formally (as of 2007). For
details on the various discretization steps, see [20, Ch. 4], [22] or [24,
Ch. 5]. In conclusion, the lattice Boltzmann equation6 is given as

6 The lattice Boltzmann equations is
sometimes given the more specific
name BGK lattice Boltzmann equation
because of the BGK collision operator
simplification.

fi(x + ci∆t, t+ ∆t) = −1
τ

[fi(x, t)− f eq
i (x, t)] + fi(x, t), (3.4)

where ∆t and ∆x (not included in (3.4)) are the time resolution and
lattice resolution respectively. During simulation the time and lattice
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resolution are usually set equal to one for convenience, and gives us a
lattice Boltzmann equation on the form

fi(x + ci, t+ 1) = −1
τ

[fi(x, t)− f eq
i (x, t)] + fi(x, t). (3.5)

The isothermal assumption was only mentioned briefly in passing,
but deserves some more explanation. Most lattice Boltzmann sim-
ulations only simulate the continuity (2.6a) and momentum (2.6b)
equations in the Navier-Stokes-Fourier model, this is also the case
with the simulations performed in this thesis since we assume that the
gas (air) is isothermal. This means that the equilibrium distribution
function f eq

i , given in subsection 3.1.1 no longer conserves energy
and effectively acts as a thermostat [25], in other words, the energy
equation (2.6c) in the NSF model is not taken into account in the
simulations. Strictly speaking, the lattice Boltzmann method used in
this thesis should specifically be called the isothermal lattice Boltz-
mann method, but we will stick to just “lattice Boltzmann method”
for convenience.

3.1.1 The equilibrium distribution function and particle velocities

The discrete equilibrium distribution f eq
i used in (3.3), (3.4) and (3.5)

is expressed as

f eq
i = ρwi

(
1 + ci · u

c2s
− u · u

2c2s
+ (ci · u)2

2c4s

)
, (3.6)

with the weights wi given by

wi =


4/9, if i = 0
1/9, if i = 1, 2, 3, 4

1/36, if i = 5, 6, 7, 8

(3.7)

and particle velocities given by

c1 = [0, 0], c2 = [1, 0], c3 = [0, 1],
c3 = [−1, 0], c5 = [0,−1], c6 = [1, 1],
c7 = [−1, 1], c8 = [−1,−1], c9 = [1,−1].

Lastly, cs is the speed of sound in the lattice and has the value

cs = ∆x
∆t
√

3
, (3.8)

which reduces to cs = 1/
√

3, given that we set the space and time
resolution equal to one in our simulations. A graphical representation
of the ci vectors can be found in Figure 3.1. Derivations of different
equilibrium functions with according weights and particle velocities
can be found in [26].

c0 c1

c5c2c6

c3

c7 c4 c8

Figure 3.1: A graphical representa-
tion of a node and the nine different
directions in which particle distribu-
tion functions can stream in the D2Q9
model. Note that the distribution
function with velocity c0 always
remains stationary in the node.
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An interesting fact, but not really relevant to this thesis, is that the
choice of the equilibrium distribution function affects which equations
can be recovered from the LB equation. With equilibrium distribution
function chosen as in (3.6), only the Navier-Stokes equations can be
recovered [27]. A more general and powerful approach is to express the
equilibrium function as a power series in macroscopic velocity [28]:

f eq
i = Ai +Bici,αuα + Cici,αci,βuαuβ +Diuαuα. (3.9)

However, using this is not the same as saying that more detailed
flow models e.g. super-Burnett model can be recovered from the LB
equation, but rather that different types of flow equations can be
recovered. An example is given in [27, Ch. 3] where the shallow water
equations7 are recovered. 7 The shallow water equations describe

flow below a pressure surface in a fluid
where the horizontal length scale is
much greater than the vertical length
scale. Often used to model waves on
rivers, lakes and oceans.

3.1.2 Recovering the hydrodynamic variables

For the lattice Boltzmann method (LBM) to be useful, we need to ex-
tracts some kind of information from it, in our case we are interested
in the macroscopic variables ρ and u, which when known allows us
to simulate and visualize the change in a fluid’s density and velocity
over time. These macroscopic variables can be recovered from the LB
equation by calculating what is known as moments8 of the particle 8 Moments are calculated as an integral

over all velocities, with the distribution
function f(x, t, ξ) weighted with some
function of velocity as the integrand.
In the discrete case, the integrals is
replaced with a summation sign and
the velocities ξ are replaced with a
discrete set of velocities ci. The link
provided between the mesoscopic and
macroscopic scales by these moments
is what allows us to recover the sought
after macroscopic variables.

distribution function fi. Noting that certain quantities like mass and
momentum must be preserved in order to give a physically meaningful
solution, the zeroth moment is given as

ρ =
8∑
i=0

f eq
i =

8∑
i=0

fi. (3.10)

This simply states that the sum of each particle distribution in node x
equals the fluid density in that node. The first moment is given as

ρu =
8∑
i=0

cifi,

which can be rewritten to give us an expression for the fluid velocity:

u = 1
ρ

8∑
i=0

cifi. (3.11)

Note that the upper and lower bound on the summations is due to the
use of a D2Q9 lattice model.

3.2 The lattice Boltzmann method

In a D2Q9 lattice of size N ×M there are a total of N ·M nodes,
each node containing nine particle distribution functions fi(x, t).
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During each iteration of the method, a series of steps are performed,
a flow chart to help summarize the lattice Boltzmann method is
given in Figure 3.2. Note that the first step is to initialize the system

Set initial values for ρ and u.

For every node, calculate f eq
i = ρwi

(
1 + ci·u

c2
s
− u·u

2c2
s

+ (ci·u)2

2c4
s

)
.

For every node, perform collision, i.e. calcu-
late f†i = − 1

τ [fi(x, t) − f eq
i (x, t)] + fi(x, t).

For every node, perform streaming, i.e. update every node
according to fi(x+ci, t+1) = f†i . Depending on boundary conditions,

boundary nodes may or may not have to be treated separately.

Extract macroscopic variables ρ and u.

Figure 3.2: Flow chart depicting the
different steps performed during each
iteration of the LBM with a general
boundary condition.

with appropriate values for ρ and u. These values may depend on
the problem and it is not always straightforward how to choose the
initial values. A very simple, but not necessarily very accurate way
is to initialize with ρ = 1, u = 0 and fi = f eq

i in every node. For
some additional information on how to initialize the system, see [23,
Ch. 5.5].

3.3 Boundary conditions

When it comes to the nodes lining our computational domain, i.e.
the boundary nodes, we encounter a problem. The nodes in our
domain receive particle distribution functions who stream in from
neighbor nodes. However, when it comes to boundary nodes, they
do not have any neighbors outside the domain, furthermore some of
the distribution functions found in a boundary node will inevitably
stream out of the domain. This is highly undesirable as it would lead
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to information loss and inaccurate simulations, to counter this we
impose what is called boundary conditions (BCs). f6

f2

f5

f3

f1

f7 f4
f8

f0

Figure 3.3: A sample of nine nodes
from some N × M sized lattice. The
length of the arrows indicate that
the different fis have different values.
Distribution functions are only shown
for the middle node.

f6
f2

f5

f3

f1

f7 f4
f8

f0

Figure 3.4: The distribution func-
tions have, during one iteration
streamed outwards from their origin
node, according to their respective cis.
Only streaming from the center node
is depicted.

The primary task of a boundary condition is to specify the value
of the unknown fis streaming into the computational domain from
imaginary nodes lying outside the domain, and to decide what will
happen to fis streaming out of the domain. The whole streaming
process for an arbitrary node is depicted in Figure 3.3 and Figure 3.4.

The choice of BCs greatly depend of the phenomenon being studied,
but some common boundary conditions used are
• Periodic boundary: Distribution functions streaming out of the

domain streams back inside, but on the opposite side.
• Bounce-back BC: Distribution functions streaming out of the

domain now hits an imaginary wall, and bounce back. The fis
that bounce back stay in the nude, i.e. the do not actually stream
anywhere during one iteration, but they bounce back with reversed
direction. This is sometimes thought of as an attempt to replicate
the physical phenomena of a particle hitting a solid wall, but ac-
cording to Bennett [29, Ch. 3.1], the idea that a particle bounces
back with opposite velocity components does not conform well with
reality and is a remnant from the LGA method.

• Zou-He BC: The Zou-He BC can be said to apply the bounce-
back rule to the non-equilibrium part of the distribution func-
tion [30]. Can be used to impose a given density or velocity at the
boundary nodes.

3.4 The Chapman-Enskog method

In order to verify that the LBM produces behavior according to the
compressible Navier-Stokes equation (2.6b), one can expand the left
hand side of the LB equation

fi(x + ci, t+ 1)− fi(x, t) = Ωi(f), (3.12)

where Ωi(f)is a generic collision operator, into a second-order Taylor
series:(
∂

∂t
+∇ · ci

)
fi + 1

2

(
∂2

∂t2
+ 2 ∂

∂t
∇ · ci + ∂

∂xα

∂

∂xβ
ci,αci,β

)
fi ≈ Ωi(f)

This is followed by what is normally called a multi-scale Chapman-
Enskog expansion. This procedure is quite complex and have been
performed by others and will therefore not be repeated here. How-
ever, the basic steps of the Chapman-Enskog (CE) analysis will be
presented to give the reader some idea as to how the Navier-Stokes
equations can be derived from the LBM. Besides from the original
articles by Chapman [31, 32] and Enskog [33, 34] on the theory behind
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what would later become the CE expansion a more modern introduc-
tion is given by Struchtrup in [18, Ch. 4]. For a very detailed and
thorough derivation of compressible Navier-Stokes from the LBM,
see [10, Appendix A] by Viggen.

During a CE multi-scale expansion the functions Ωi(f), fi and the
operators ∂/∂t and ∇ are expanded in terms of what is knows as a
smallness parameter ε, which turns out to be the Knudsen number
Kn. This results in a separation of time scales, terms in different or-
ders of ε are collected and different physical phenomenon at different
time scales can then be studied separately. In addition, the different
equations in order of ε contribute individually to the equations of mo-
tion. If we pair this with the fact that macroscopic variables are given
by moments of the particle distribution function, and that certain
conservation laws must hold, we eventually end up with compressible
Navier-Stokes from the LB equations.

3.5 Lattice units

In contrast with real life problems, which are usually given in a system
of metric units, LB simulations “live in a system of lattice units”.
Therefore, in order to go from lattice units, hereby denoted with the
subscript la, to physical units, denoted with subscript ph, we have
to carry out some kind of conversion. There are more than one way
to convert from physical units to lattice units and vice versa and the
method used here is based on the approach taken in [20].

The time and space resolution ∆t and ∆x are what connects lat-
tice units and physical units. As an example, the physical speed is
connected to the lattice speed through

uph = ∆x
∆t ula. (3.13)

As we know, speed has the unit m s−1, the right hand side of the equa-
tion above must therefore have the same dimension, this is achieved if
∆x is measured in seconds s, and ∆t is measured in meters m. How-
ever, we still need to know the value of the conversion factors ∆x and
∆t. Turns out there are two constraints on our system, the speed of
sound (which is constant for our purposes) given by

cs,ph = ∆x
∆t cs,la, (3.14)

and viscosity given by

νph = ∆x2

∆t νla, (3.15)

where cs,la=1/
√

(3). Using these two equations, we can solve for ∆x and
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∆t and get

∆x = νph

νla

cs,la
cs,ph

, (3.16)

∆t = νph

νla

(
cs,la
cs,ph

)2
. (3.17)

In addition, we have a free parameter τ through

νla =
(
τ − 1

2

)
c2s,la. (3.18)

Inserting (3.18) in e.g. (3.15) gives

νph = ∆x2

∆t

(
τ − 1

2

)
c2s,la. (3.19)

The left side of (3.19) is a constant, and therefore the right side must
also be a constant, from this we can conclude that adjusting τ allows
us to either increase or decrease ∆x or ∆t by some amount. Note that
τ > 0.5 as τ ≤ 0.5 gives zero or negative viscosity, resulting in non-
physical fluids9. In addition numerical instabilities arise when τ → 0.5, 9 Baring any quantum mechanical

phenomenon like for example the
superfluidity phenomenon.

according to Sukop and Thorne [35, Ch. 4.3] τ = 1 is the safest choice.
To summarize, an example of the steps taken to convert from values

produced by the LBM, to physical values with physical units, is given
below:

1. Choose a τ > 0.5.

2. Calculate viscosity in the lattice system from (3.18).

3. Calculate the value for ∆t from (3.17).

4. Calculate the value for ∆x from (3.15).

Lastly, as mentioned by Viggen in [10], simulation of acoustic waves
in air yields extremely small values for ∆x and ∆t, rendering LB
simulations for acoustics in air somewhat troublesome.



4 Non-reflecting boundary conditions

This chapter presents three different non-reflecting boundary con-
ditions (NRBCs). A short background history is given as well as a
detailed mathematical treatment of the different NRBCs. Each sec-
tion is based on the original article(s) where these particular types of
NRBCs originated. In keeping with tone of the primary goals of this
thesis, equations are expanded on and explanations are provided to
complement the original articles.

First of all we establish why non-reflecting boundary conditions
are worth investigating: Physical wave phenomena often take place
in unbounded domains. Such unbounded domains are mostly found
in nature where the distance between the wave source and possible
reflective obstacles is so great that for all intents and purposes, they
can be regarded as being infinitely far away (and thus not reflecting).
For obvious reasons it is not feasible to implement an infinitely large
domain on a computer. Thus, paradoxically, to simulate an unbounded
domain we have restrict the domain by imposing some kind of bound-
aries. This is where non-reflecting boundary conditions comes in. The
aim of a NRBC is to reduce the reflection of waves from the bound-
aries and into the computational domain as much as possible. Thus
allowing us to study the simulation without unwanted interference
from the boundaries.

Note that even though the chapter title, indeed even the thesis title,
contains the words non-reflecting boundary conditions, the material
presented in section 4.2 and section 4.3 cannot, technically speaking,
be said to describe a NRBC. They are instead what is called absorbing
layers treatments. Only section 4.1 presents a “true” NRBC. The term
NRBC are therefore used more like an umbrella term.

4.1 Characteristic boundary conditions

This section is based on the article by Heubes, Bartel and Ehrhardt [36].
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4.1.1 Introduction and mathematical treatment

Characteristic boundary conditions (CBSs) are, as the name implies,
developed with the method of characteristics. Non-reflecting character-
istic boundary conditions for nonlinear hyperbolic equations1 were first 1 Hyperbolic partial differential equa-

tions have “wave-like” solutions, which
means that disturbances in the initial
data are not felt everywhere at once,
instead they propagate with finite
speed.

developed by Thompson [37] and Hedstrom [38].
The method of characteristics is only valid for hyperbolic partial

differential equations (PDEs), which presents us with a problem
since only the continuity equation (2.6a) is hyperbolic, the momen-
tum (2.6b) and energy equation (2.6b) in the NSF model are parabolic
PDEs [39]. This problem is circumvented by setting the Laplacian
terms in (2.10) equal to zero, turning it into the momentum equa-
tion in the Euler model. In addition, the energy equation in the NSF
model is dropped. As a sort of justification for dropping the energy
equation, remember that the energy equation is not actually simulated
by the LBM used in this thesis, as per the isothermal assumption
(section 3.1). After this, we are left with a hyperbolic PDE which can
be written as

∂U
∂t

+ A∂U
∂x

+ B∂U
∂y

= 0, (4.1)

where U = [ρ, ux, uy]ᵀ is a vector of the characteristic variables and A
and B are coefficient matrices given by

A(ρ, ux, uy) =

ux ρ 0
c2

s
ρ ux 0
0 0 ux

 , B(ρ, ux, uy) =

uy 0 ρ

0 uy 0
c2

s
ρ 0 uy

 , (4.2)

where ux and uy are the velocities in x and y direction. Since (4.1) is
a hyperbolic equation, the coefficient matrices in (4.2) are diagonaliz-
able [40], and we can represent them as

SAS−1 = Λ, TBT−1 = M, (4.3)

with eigenvalue matrices

Λ = diag(λ1, λ2, λ3) = diag(ux − cs, ux, ux + cs) and (4.4)
M = diag(µ1, µ2, µ3) = diag(uy − cs, uy, uy + cs). (4.5)

The matrices S and T used in [36] are given as

S =

c2s −csρ 0
0 0 1
c2s csρ 0

 , S−1 =


1

2c2
s

0 1
2c2

s

− 1
2csρ

0 1
2csρ

0 1 0

 ,

T =

c2s 0 −csρ
0 1 0
c2s 0 csρ

 , T−1 =


1

2c2
s

0 1
2c2

s

0 1 0
− 1

2csρ
0 1

2csρ

 .
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With this we differentiate between ingoing and outgoing waves by
simply inspecting the eigenvalues and eigenvectors. A positive eigen-
value λi indicates a wave traveling in positive x-direction, a positive
eigenvalue µi indicates a wave traveling in positive y-direction and
vice versa. This is very convenient as we encounter a problem at the
boundaries since we usually have no information on the incoming wave,
i.e. we do not know anything about waves coming from outside the
boundaries of our system. However, since we would like non-reflecting
boundaries, this problem is solved simply by setting the incoming
wave equal to zero. This will be shown in greater mathematical detail
later on.

Originally, two different NRBCs were investigated in [36], Thomp-
son’s NRBC by Thompson [37] and a NRBC developed by Izquierdo
and Fueyo [41] based on the local one-dimensional inviscid equation
(LODI). They found that these two approaches either overestimated or
underestimated both the velocity tangential to the boundary, and the
mass density. Motivated by this, Heubes et al. constructed what they
call a modified Thompson boundary condition, whose solution can be
interpreted as a convex combination of the solutions of the Thompson
and LODI approach. The modified Thompson BCs are among the
NRBCs tested in this thesis and will be referred to later simply as
CBCs.

By using the definitions in (4.3) we write

A∂U
∂x

= S−1ΛS∂U
∂x

= S−1Lx and B∂U
∂y

= T−1MT∂U
∂y

= T−1Ly,

where

Lx =

Lx,1Lx,2
Lx,3

 and Ly =

Ly,1Ly,2
Ly,3

 . (4.6)

This is called expressing the x- and y-derivatives in characteristics.
The different Lx,is and Ly,is express the amplitude variations of the
characteristic waves, and by following the approach of Hedstrom and
Thompson, they can be expressed as

L̃x,i =

λi`
ᵀ
i
∂U
∂x for an outing wave,

0 for an incoming wave.
(4.7)

L̃y,i =

µim
ᵀ
i
∂U
∂x for an outing wave,

0 for an incoming wave,
(4.8)

Where `ᵀi and mᵀ
i denotes the ith row of S and T respectively and

the tilde (˜) indicates that we have explicitly annihilated the incoming
wave.
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With this we can finally express the modified Thompson BCs for an
x-boundary2 2 Note that by x-boundary, a boundary

with x = const is implied, in other
words, an x-boundary corresponds
to the west and east boundaries of a
square, free of any internal obstacles.

∂U
∂t

= −S−1L̃x − γB∂U
∂y

. (4.9)

where γ ∈ [0, 1] is a parameter which decides the convex combination
of solutions, demonstrated by the fact that the solution of (4.9) can be
seen as the convex combination of the solution of the Thompson BC
and the LODI BC:

UmT = γUThompson + (1− γ)ULODI. (4.10)

Lastly, we deal with the corners, the corners require special at-
tention as a characteristic analysis has to be done in both x- and
y-direction. We start by writing both the x- and the y-derivatives
in (4.1) in characteristics, and using the definitions in (4.7) and (4.8),
we get

∂U
∂t

= −S−1L̃x −T−1L̃y. (4.11)

(3, 1) (3, 2) (3, 3)

(4, 1) (4, 2) (4, 3)

(5, 1) (5, 2) (5, 3)

Figure 4.1: The numerical stencil on
the west boundary.

4.1.2 Implementation of Characteristic boundary conditions for the
LBM

Assuming we have a 2D computational domain, we would now like to
solve (4.9) at every boundary node for every iteration of our lattice
Boltzmann algorithm. By solving (4.9) for each iteration k in our
LBM, we are given ρ, ux and uy at time instant k.

(7, 3) (7, 4) (7, 5)

(6, 3) (6, 4) (6, 5)

(5, 3) (5, 4) (5, 5)

Figure 4.2: The numerical stencil on
the north boundary.

Step 1, computing the wave amplitude variation: It is still
assumed that we are looking at an x-boundary, the steps for the y
boundary are for the most part similar, but slight differences will be
emphasized. We start by writing out (4.7) which gives us

L̃x,1 =

(ux − cs)
[
c2s
∂ρ
∂x − csρ

∂ux

∂x

]
for an outgoing wave,

0 for an incoming wave,

L̃x,2 =

ux
∂uy

∂x for an outgoing wave,
0 for an incoming wave,

L̃x,3 =

(ux + cs)
[
c2s
∂ρ
∂x + csρ

∂ux

∂x

]
for an outgoing wave,

0 for an incoming wave.

In the case of L̃y, its components have the exact same form except
that ux → uy, ∂

∂x →
∂
∂y and uy → ux.

(5, 5) (5, 6) (5, 7)

(4, 5) (4, 6) (4, 7)

(3, 5) (3, 6) (3, 7)

Figure 4.3: The numerical stencil on
the east boundary.

As the lattice Boltzmann is a numerical method, we need to dis-
cretize the spatial derivatives found in L̃x and L̃y. The derivatives
found therein are perpendicular to the boundary and since no nodes
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are available outside the computational domain, the following one-
sided second order finite difference (FD) scheme is a good choice:

∂λ

∂x

∣∣∣∣
x=xi

= 1
2 (−3λ([xi, y], t) + 4λ([xi+1, y], t)− λ([xi+2, y], t)) , (4.12)

where λ(x, t) is a general quantity, and xi indicates the we are looking
at the ith border node on an x-boundary in the lattice. Assuming
our lattice is given as in figure 4.5, the finite difference stencils for the
different boundaries are shown in figure 4.1, 4.2, 4.3 and 4.4.

(3, 3) (3, 4) (3, 5)

(2, 3) (2, 4) (2, 5)

(1, 3) (1, 4) (1, 5)

Figure 4.4: The numerical stencil on
the south boundary.

(7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

Figure 4.5: An example of a 7×7 lat-
tice.

As can be seen from (4.11), the equation to be solved for the cor-
ners is discretized by simply using a combination of difference stencils,
i.e. the north-west corner will use stencils for the west and the north
boundary etc. By discretizing the different Lx,is and Ly,is, the result-
ing characteristics can be written as

− S−1L̃
fd
x =

−
1

2c2
s

(
L̃fd
x,1 + L̃fd

x,3
)

1
2csρ

(
L̃fd
x,1 − L̃fd

x,3
)

−L̃fd
x,2

 , (4.13)
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where the superscript FD indicates that the spatial discretization is
done with a finite difference scheme. The form of S−1L̃

fd
y is the same

except that L̃fd
y,i is used instead.

Step2, time integration at the boundary: Having discretized
the wave amplitude variations in the previous step, we now have to
discretize the spatial derivatives found in (4.9). These derivatives
run parallel to the boundary in question and are discretized with the
following second-order central finite difference scheme:

∂λ

∂y

∣∣∣∣
y=yi

= 1
2 (λ([x, yi+1], t)− λ([x, yi−1], t)) . (4.14)

Finally, in order to solve (4.9) on the boundary nodes and (4.11) on
the corner nodes, we have to perform some sort of numerical integra-
tion. For this task we use the very simple explicit Euler method3. By 3 The explicit Euler, or forward Euler as

it is sometimes called, is a variation of
the Euler method where only previous
values of the function to be integrated
are used. It is first order accurate.

using symbols and notation already familiar to us, the explicit Euler
can be written as

Un+1 = Un + hF(Un, tn). (4.15)

Put in context, Un+1 represents the values of ρ, ux and uy that we
need during the current streaming step of the LBM, Un are val-
ues that are available from the previous iteration of the LBM and
F(Un, tn) represents the function we are integrating, expressed with
values from the previous iteration step. Note also that the step size h
is set to one, and that (4.15) is used only once for each boundary node
during one iteration of the LBM.

Step 3, transfer of variables to the LBM: When it comes
to streaming in the boundary nodes, there is no place for particle
distributions fi streaming out of the computational domain to stream
to, neither are there any particle distributions streaming into the
computational domain from the outside. This presents us with a
problem as we need to compute the fi(x, t)s on the boundary. One
simple way to solve this is to use equilibrium boundary conditions
(EBCs). We are now operating with two boundary conditions, CBCs
and EBCs. The CBC is a way to impose a Dirichlet condition4 on 4 Dirichlet conditions are conditions

that are imposed on ordinary or partial
differential equations, and specifies the
values that a solution needs to take on
the boundary.

the boundaries, therefore giving us the values of ρ, ux and uy at the
boundary nodes. These values are then carried over to the LBM,
where the EBCs ensures that missing populations5 are found in such a

5 As streaming takes place in the
boundary nodes, particle distributions
streaming out of the computational
domain would normally be lost, and
distributions that were supposed to
stream into the computational domain
from the outside are missing.

way that desired macroscopic behavior is approximated.
A simple way to ”find” missing particle distribution is to use the

aforementioned equilibrium boundary conditions, we denote the
boundary lattice points as xB, and ρD and uD = [ux,D, uy,D]ᵀ as the
values of U on the boundary.

fi(xB, t) = f
(eq)
i (xB, t) = wiρD

[
1 + ci · uD(xB)

c2s
+ (ci · uD)2

2c4s
− uD · uD

2c2s

]
.
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4.1.3 Flowchart for LBM with CBCs

Set initial values for ρ and u.

For every node, calculate f eq
i = ρwi

(
1 + ci·u

c2
s
− u·u

2c2
s

+ (ci·u)2

2c4
s

)
.

For every boundary node
Collision step for
fluid region nodes:
f†i = ΩBGK + fi.

Corner
node?

Collision step:
• Compute L̃y and L̃y with

one-sided 2nd order FD
scheme.

• Integrate with one step
forward Euler to find U.

• Transfer U = [ρ, ux, uy]ᵀ to
the LBM with EBCs.

Yes

No

Collision step:
f†i = ΩBGK + ΩPML + fi.

• Compute L̃x or L̃y depend-
ing on the boundary side,
use one-sided 2nd order FD
scheme.

• Deiscretize derivatives par-
alell to the boundary with
2nd order central FD scheme.

• Integrate with one step
forward Euler to find U.

• Transfer U = [ρ, ux, uy]ᵀ to
the LBM with EBCs.

Streaming step for
boundary nodes:

Using ρD and
uD = [ux,D, uy,D]ᵀ

from U, streaming
happens according to

fi(xD, t+ 1) = f eq(xD, t)

Streaming step for
fluid region nodes:
fi(x + ci, t + 1) = f†i .

Extract macroscopic variables ρ and u.

Figure 4.6: A flowchart for the LBM
with CBCs outlining the key steps in
the algorithm.4.2 Sponge layer

This section is based on the articles [42, 43] by Vergnault, Malaspinas
and Sagaut.

This is the first of two absorbing layer techniques reviewed in
this thesis, the other can be found in section 4.3. Absorbing layers
may or may not be used in combination with absorbing boundary
conditions [44], in this thesis the simple mid-way bounce back (not
absorbing) boundary condition is used.
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4.2.1 Sponge layer, mode of operation

The idea behind sponge layers is quite simple, increasing viscosity is
artificially introduced in the sponge layers so that the wave entering
such a layer will experience damping. The viscosity is introduced
through the relaxation frequency ω = 1/τ which should vary quadrat-
ically across the sponge layers, in a direction perpendicular to the
boundary. This relaxation frequency for the sponge layers is given as

ωsponge = 1− 0.999d2

3ν + 0.5 for d ≤ 1, (4.16)

ωsponge = 0.001
3ν + 0.5 for d > 1, (4.17)

Although this does not conform with theory, e.g. the Chapman-Enskog
expansion is no longer valid for very small values of ω, it is argued
that there is no need to match the physics in the sponge layer to the
real world [43].

The distance d mentioned in (4.16) needs some additional discus-
sion. It is not clear to the author of this thesis if d is the distance in
number of nodes, or in some other metric. If the distance is measured
in nodes, (4.16) reduces to

ωsponge = 0.001
3ν + 0.5 (4.18)

and we get a very abrupt change in viscosity in the interface between
the fluid region and the sponge layer. To investigate the effect of such
an abrupt change, different variation profiles for ωsponge were tested
in a sponge layer of thickness d = 10, the profiles tested can be found
in Figure 4.7
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Figure 4.7: The variation profile of
different ωsponge tested. From a cross
sectional point of view, the vertical
dashed line indicates the end of the
sponge layer, i.e. sponge layer on the
left, fluid region on the right, in the
fluid region, ωsponge = ω. As a final
note, although it cannot be seen from
the graph the lower limit for every
ωsponge tested was ≈ 0.001.
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From the test, it was concluded that a logarithmically varying
ωsponge gave the least errors and this profile is used from this point
forward, it is given by the discrete function

ωsponge[n] = ω

log (2) log
(

0.9999 + 2− 0.9999
d− 1 (n− 1)

)
+0.0012 for n = [1, 2, . . . , d].

4.3 Perfectly matched layer

This section is based on the article by Najafi-Yazdi and Mongeau [45].
Both two and three dimensional cases are mentioned in the article, but
we will only look at the two dimensional version in this thesis.

4.3.1 Short introduction to perfectly matched layers

The perfectly matching layer (PML) technique was first introduced by
Berenger to be used on Maxwell’s electromagnetic equations [46].

Similar to the sponge layer method in section 4.2, the PML method
adds an absorbing layer to the computational domain, as seen in Fig-
ure 4.8.

Perfectly matched layer

Fluid region/

interior domain
d

Figure 4.8: The figure is showing
the entire computational domain, the
hatched area represents a perfectly
matching layer with thickness d.

However, unlike the sponge layer method, the governing equations
of a PML is, as the name implies, matched perfectly to the governing
equations of the interior domain. This results in a reflection free
interface between the interior domain and the PML, contrary to
what can be observed in the sponge layer method where difference
in dispersion properties causes some reflection at the interface of the
interior domain and the sponge layer.

To derive the equation for a PML, we start with the general equa-
tion for a linear hyperbolic PDE in two dimensions:

∂U
∂t

+ A∂U
∂x

+ B∂U
∂y

= 0, (4.19)

where U is a m × 1 vector and A and B are m × m matrices. By
decomposing (4.19) into a system of equations, one for every spatial
dimension, introducing auxiliary variables, writing the system of
equations in the frequency domain to allow algebraic manipulation,
and then transforming back to time domain (the derivation can be
found in [46]), gives us

∂U
∂t

+ A∂U
∂x

+ B∂U
∂y

= −(σx + σy)U− σxσyQ− σyA
∂Q
∂x
− σxB

∂Q
∂y

,

where Q is a m × 1 vector and is given as ∂Q/∂t = U, and σx and
σy are positive damping coefficients which control the rate of decay of
the waves entering the PML. Based on [47] by Bécache, Fauqueux and
Joly, who studied the stability of PMLs, the authors of [45] conclude
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that σx = σy = σ in order to overcome instability problems in
certain lattice directions, ergo, we will only operate with one damping
coefficient henceforth, and the equation above reduces to

∂U
∂t

+ A∂U
∂x

+ B∂U
∂y

= −2σU− σ2Q− σ
(

A∂Q
∂x

+ B∂Q
∂y

)
. (4.20)

4.3.2 Perfectly matched layers in the LBM

To incorporate PMLs for the LBM we rewrite the discrete velocity
Boltzmann equation (3.3), into its more general linear hyperbolic form

∂ f
∂t

+ A ∂ f
∂x

+ B∂ f
∂y

= −1
τ

(f − f eq), (4.21)

where A and B contains elements of ci in the following way

A =


c0,α · · · 0

...
. . .

...
0 · · · c8,α

 and B =


c0,β · · · 0

...
. . .

...
0 · · · c8,β

 . (4.22)

In addition, instead of writing fi we now write f where f = [f0, f1, . . . , f8]ᵀ.
Next we state that f eq can be written as

f eq = f̄ eq + f̃ eq. (4.23)

Here, f̄ eq is the mean uniform component and f̃ eq is called the acoustic
perturbation component. The mean uniform component is constant
and is calculated once from (3.6), where the initial values of ρ and u,
mentioned in section 3.2, are used. The acoustic perturbation compo-
nent, is a constantly varying component as it describes the variation
from the mean, as f and f̄ eq are available to us in every iteration of
the LBM, we can easily compute the perturbation component as

f̃ eq = f eq − f̄ eq. (4.24)

Replacing f with f eq in (4.21) produces

∂ f eq

∂t
+ A∂ f eq

∂x
+ B∂ f eq

∂y
= 0. (4.25)

Using the decomposition from (4.23), (4.25) turns into

∂ f̃ eq

∂t
+ A∂ f̃ eq

∂x
+ B∂ f̃ eq

∂y
= 0. (4.26)

Note that that the partial derivative of f̄ eq equals zero since this is a
constant term. As (4.26) has the same form as (4.19), we can apply
the PML framework and end up with

∂ f̃ eq

∂t
+ A∂ f̃ eq

∂x
+ B∂ f̃ eq

∂y
= −σ

(
2f̃ eq + σQ + A∂Q

∂x
+ B∂Q

∂y

)
, (4.27)
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where
∂Q
∂t

= f̃ eq.

Next we note that the distribution function f is the sum of its equilib-
rium function f eq and its non-equilibrium function fneq, which gives
us

f = f eq + fneq (4.28)
= f̃ eq + f̄ eq + fneq. (4.29)

Inserting (4.28) into (4.21) gives the evolution equation6 for the non-

6 The term evolution equation is often
used in the literature and simply
describes the time evolutions of a
system.

equilibrium distribution

∂ fneq

∂t
+ A∂ fneq

∂x
+ B∂ fneq

∂y
= −1

τ
fneq. (4.30)

Ultimately, we want an equation on the form of (4.21) with the ad-
dition of an additional collision term, hereby called ΩPML, which
incorporates the principles of PMLs. As is evident from (4.29), f is
the sum of three terms, we now have equations for these three terms,
therefore the idea is to sum them up to obtain the sought after equa-
tion. To provide some overview, the three equations are presented
individually before they are summed up:

0 1 2 3 4 5 6 7 8 9 10
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2
)
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2

Figure 4.9: Graph of the damping
coefficient σ[n] varying from σmax/d2

at the interface between the fluid
region and PML region, to its max
value σmax at the boundary nodes.
The thickness of the PML region is
denoted with d. This is a depiction
of the cross section of the damping
profile for the east border, i.e. the at
n = 0 we are in the fluid region, n = 1
we are in the first node in the PML
region and n = 10 indicates that we
are in the outermost node in a PML
region of thickness 10.

∂ f̃ eq

∂t
+ A∂ f̃ eq

∂x
+ B∂ f̃ eq

∂y
= −σ

[
2f̃ eq + σQ + A∂Q

∂x
+ B∂Q

∂y

]
= ΩPML,

∂ f̄ eq

∂t
+ A∂ f̄ eq

∂x
+ B∂ f̄ eq

∂y
= 0,

∂ fneq

∂t
+ A∂ fneq

∂x
+ B∂ fneq

∂y
= −1

τ
fneq (4.28)= −1

τ
(f − f eq) = ΩBGK.

Summation of these three yields

∂

∂t
(f̃ eq + f̄ eq + fneq) + A ∂

∂x
(f̃ eq + f̄ eq + fneq) + B ∂

∂y
(f̃ eq + f̄ eq + fneq) = ΩPML + ΩBGK

which, by (4.29) reduces to

∂ f
∂t

+ A ∂ f
∂x

+ B∂ f
∂y

= ΩPML + ΩBGK. (4.31)

Using the ci together with the Del operator, and reverting back to the
more familiar scalar form of the particle distribution function we can
write (4.31) as

∂fi
∂t

+ ci · ∇fi = ΩPML + ΩBGK, (4.32)

where ΩPML is given as

ΩPML = −σ
(
2f̃ eq
i + σQi + ci · ∇Qi

)
. (4.33)
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The role of the PML is now neatly encapsulated in the additional
collision term ΩPML, and the fully discrete version can be derived by
the same steps as proposed in section 3.1. As a last note, the damping
coefficient σ should be varied quadratically from the first nodes in the
PML to the last nodes, i.e. the boundary nodes. On a square, like the
one in Figure 4.10, one possible realization of σ, perpendicular to the
east wall, is

σ[n] =

σmax
d2 · n2, n ∈ [1, . . . , d],

0, otherwise,
(4.34)

where n is the distance in nodes from the fluid region to the bound-
ary. A plot of this function with σmax = 0.06 and d = 10 is found
in Figure 4.9.

4.3.3 Implementation of the LBM with PML

When it comes to implementation, we first divide our computation
domain into three regions: Fluid region, PML interior region and PML
boundary region. This is visualized in Figure 4.10.

Perfectly matched layer

Fluid regiond

Figure 4.10: In a domain with
PMLs, there are three different re-
gions, the implementation of the
LBM differs from region to region.
The middle region is the fluid region,
the blue dotted region is called the
PML interior region and the red
cross-hatched one is called the PML
boundary region.

In the fluid region it is business as normal, i.e. implementation
follows the algorithm from Figure 3.2

In the PML interior region, ΩPML is included in the collision
step, i.e., we are now solving

f†i = ΩPML + ΩBGK + fi = −σ
[
2f̃ eq
i + σQi + ci · ∇Qi

]
+ ΩBGK + fi.

(4.35)
To solve this numerically, we first have to integrate ∂Qi/∂t = f̃ eq

i with
some method to find Q, and secondly we to have to discretize ci · ∇Qi
in some way.

The integration can be done by an Euler-Maclaurin quadrature7, 7 The term numerical quadrature, or
simply quadrature is synonymous with
numerical integration and is used
interchangeably in the literature.

which by [48] is given as∫ b

a

f(t) dt =h

2 [f(a) + f(b)] + h

n−1∑
k=1

f(a+ kh) (4.36)

−
m−1∑
r=1

h2rB2r

(2r)!
[
f2r−1(b)− f2r−1(a)

]
(4.37)

− n
h2m+1B2m

(2m)! f2m(ξ) (4.38)

where n is the number of steps in the method, h = (b− a)/n is the step
length, Br are the Bernoulli numbers and ξ is some number in (a, b).
As we only have access to f̃ eq

i at integer timesteps, the formula above
reduces to the very simple

Qi(x,∆tk+1) =
∫ ∆tk+1

∆tk
f̃ eq
i dt = ∆tk+1 −∆tk

2
[
f̃ eq
i (x,∆tk) + f̃ eq

i (x,∆tk+1)
]
,
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which is basically the one-step trapezoid rule. Here we have assumed
that f̃ eq

i (x, 0) = 0 and that the size of one timestep ∆t = 1 in lattice
units. Timestep number k is denoted with ∆tk, and k ∈ N.

To discretize ci ·∇Qi, the authors of [45] mention the use of a central
difference scheme along the lattice directions. No order is mentioned
but a second order central difference scheme, like the one in (4.14), has
been adopted in this thesis, note that this second order scheme is only
used for nodes in the PML interior region.

As mentioned, we need to discretize ci · ∇Qi in the different lattice
directions. For Q1, Q2, Q3 and Q4 we simply use the appropriate
central difference scheme seen before, but for Q5, Q6, Q7 and Q8,
which points in a diagonal direction, we have to use a combination
of central difference schemes in x- and y-direction. To clarify this
point, a numerical stencil showing the points involved can be seen in
Figure 4.11.

Figure 4.11: For Qis pointing in a
diagonal direction, we use a combina-
tion of horizontal and vertical central
difference schemes. This is only done
for nodes in the PML interior region.

In the PML boundary region we repeat the same steps we did in
the PML interior region, except when it comes to discretizing ci ·∇Qi as
the lack of neighbor nodes on one side forces us to use a combination
of one-sided discretization schemes.

The Qis with directions pointing outside the domain are discretized
with one-sided difference schemes, in the opposite direction of the
outwards pointing Qis. The differential terms for those Qis whose
directions point inside the domain are simply set to zero to avoid
downwind discretization8. And finally, the Qis who point alongside 8 Upwind schemes are a class of nu-

merical discretization methods to solve
hyperbolic PDEs. The term upwind
or downwind refers to the direction, in
which the nodes used to calculate the
derivatives point . If we use the x-axis
as an example, an upwind scheme uses
the points xi, xi−1, xi−2 etc., while a
downwind scheme uses the points xi,
xi+1, xi+2 etc.

the boundaries are discretized with a first order central difference
scheme. A flowchart of the process used in this thesis is presented
in Figure 4.12.
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Set initial values for ρ and u.

For every node, calculate f eq
i = ρwi

(
1 + ci·u

c2
s
− u·u

2c2
s

+ (ci·u)2

2c4
s

)
.

For every fluid region
node, do collision step:

f†i = ΩBGK + fi.

For every node
in the PML:

PML
interior
node?

Collision step:
f†i = ΩBGK + ΩPML + fi.
When calculating ci · ∇Qi:

• Use 1st order central dif-
ference schemes for lattice
directions paralell to the
boundary.

• Set ci · ∇Qi = 0 for lattice
directions pointing inside the
computational domain.

• Use 1st order one-sided differ-
ence schemes for directions of
ci · ∇Qi pointing inside the
computational domain.

Yes

No

Collision step:
f†i = ΩBGK + ΩPML + fi.

Use 2nd order central
difference schemes allong
lattice directions when

calculating ci · ∇Qi.

Streaming step:
fi(x + ci, t + 1) = f†i . Depending on boundary conditions,
boundary nodes may or may not have to be treated seperately.

Extract macroscopic variables ρ and u.

Figure 4.12: A summary of the
LBM with perfectly matching layers
represented in the form of a flowchart.



5 Tweaking of parameters and numerical simulations

If not otherwise stated, simulations with NRBCs were performed in a
domain of 201× 201 nodes. All values are given in lattice units.

Also, throughout this chapter, reference values of ρ and u are used
in various ways. These values were obtained from simulation on a
large domain measuring 3010 × 3010 nodes. The domain was then
initialized with the initial values from section 5.4, simulation was then
stopped just before hitting the walls of the domain. Values of ρ and u
from a 201×201 sized cutout, centered around the center node, are then
used as reference values. These will now be referred to as ρref, ux,ref

and uy,ref and represents values obtained from an ideal non-reflecting
boundary condition.

5.1 Sponge layer thickness

The determining factor of a sponge layer’s effectiveness is its thick-
ness d. A thicker layer absorbs incoming waves to a larger degree, but
also increases the computational cost as the total number of nodes
increases if the fluid region (part of the computational domain not
containing sponge layers) is to remain constant in size. To demon-
strate the effect of different sponge layer thickness, simulations were
done with d = 10 and d = 50. The density in a node situated at
x = [71, 101] were compared against reference values of the den-
sity in the exact same node. The system was initialized with values
from section 5.4. The variations in density and velocity can be found
in Figure 5.1, from which we can see that a thicker sponge layer pro-
duces, in general, smaller fluctuations and lie closer to the reference
values.

5.2 The damping coefficient in PML

A factor that decides the efficiency of a PML is the damping co-
efficient σ. As mentioned in subsection 4.3.2, σ should be varied
quadratically, but out of curiosity, as was done in subsection 4.2.1, a
different variation profile was tested. Values of ρ and u were recorded
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Figure 5.1: Values obtained from
simulations with sponge layers of dif-
ferent thickness compared to reference
values. Red dotted lines are values
obtained from simulation with d = 10
and green solid lines are values ob-
tained from simulations with d = 50.
Simulation with d = 50 produces
smaller fluctuations around the refer-
ence. The big spike at the beginning
is the result of a Gauss pulse traveling
through the measurement node.
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in a certain point, with a quadratically and a logarithmically varying
σ. These values were so compared with ρref and uref. No significant
difference found, and we stick to the sigma profile originally suggested
by Najafi-Yazdi and Mongeau.

The next thing to investigate is how the value of σ affects the
reflections. The original article showed how different values of σ
affected the reflections, but did not show how a quadratically varying
σ with different values of σmax would impact the reflected waves. Here
we investigate both.

As previously, initial values from section 5.4 were used to initialize
the system. First σ was held constant, but varied from from 0.01 to
0.10, increasing with 0.01 after each completion of the LB algorithm.
In the second test, σ was varied according to (4.34) and σmax was
varied from 0.01 to 0.10, increasing with 0.01 after each completion
of the LB algorithm. A similar test was done for the value range 0.1
to 1.0 with increases of 0.1. The error is measured as the absolute
difference

Eλ =
∑

iterations
|λref(x, t)− λ(x, t)| (5.1)

in the point x = [71, 101] where λ(x, t) is some general quantity. A
total of 600 iterations was used to produce one Eλ value.
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Figure 5.2: Time evolution
of the error for ρ and u for
σ ∈ [0.01, 0.02, . . . , 0.10]. The profile
of σ is kept constant throughout each
run of the LB algorithm.

From Figure 5.2 and Figure 5.3 we can observe that there are no
dramatic differences in absolute error, the lowest values, and for which
value of σ and σmax, is presented in Table 5.1.

Constant profile with σ = 0.03 Quadratically varying
profile with σmax = 1.0

ρ 0.0362 0.0321
ux 0.2723 0.2723
uy 0.2555 0.2569

Table 5.1: The damping coefficient
for each profile who gave the least
absolute errors of ρ and u.
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Figure 5.3: Time evolution
of the error for ρ and u for
σmax ∈ [0.01, 0.02, . . . , 0.10]. The
profile of σ is varied according to a
quadratic function throughout each
run of the LB algorithm.

From this we can conclude that a quadratically varying damping
coefficient, internally in the algorithm, gives a slightly better result.
Looking at figure Figure 5.4 and Figure 5.5 we see that σ > 0.1 results
in an increasing error, indeed the simulations “blew up” to infinity
around σ = 0.7. It was also mentioned by the authors of the original
article that increasing σ above a certain optimum value may result in
the growth of spurious waves. Judging by the results, the damping
coefficient should be kept in the range [0.03,. . . ,0.1], in addition, a
quadratically varying σ (internally in the LB algorithm) will be used
in following simulations.
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Figure 5.4: Time evolution of error
for ρ and u for σ ∈ [0.1, 0.2, . . . , 1.0].
The profile of σ is kept constant
throughout each run of the LB
algorithm.

5.3 The thickness of the perfectly matching layer

In addition to the damping coefficient σ, the thickness d is vital to the
performance of the PML. Simulations was done to demonstrate this,
and to find the best combination of σ and d. “Best combination” in
this context is in terms of the absolute error in (5.1).
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Figure 5.5: Time evolution of
error for ρ and u for σmax ∈
[0.1, 0.2, . . . , 1.0]. The profile of σ
is varied according to a quadratic
function throughout each run of the
LB algorithm.

The test setup was identical to the tests performed in section 5.2,
except that d was varied from 10 to 50, with increments of 10. For a
given value of d, σ varied in the optimal range [0, 04, . . . , 0.1] (deter-
mined from section 5.2) with increments of 0.01.

From Figure 5.6 we observe that a higher value of d not necessarily
means better PML performance, and as we can see, in some cases the
error for a given value of d changes with increasing σ. As a reasonable
trade-off, d = 30 with σ = 0.07 is chosen for use in future simulations.

5.4 Gaussian pulse propagation in two dimensions

To test the reflective, or rather, the non-reflective properties of the
different NRBCs, the system is initialized with a Gauss pulse, and the
resulting refelctions are studied. The Gauss pulse used here is given by

ρ(x, t) = ρ0 + 0.173exp
(
− (x− Ξ)2 + (y −Υ)2

25

)
. (5.2)

Here, the denominator in the exponential function decides how wide
the pulse is, Ξ and Υ decides the placement of the pulse. In the
simulations, the pulse was placed with its center aligned with the
center node in the computational domain. The following initialization
values for density and velocity for the system was used:

ρ0 = 1, and u = 0. (5.3)

In testing the performance of the different NRBCs, we use the
optimal values derived from the numerical simulations in the preceding
sections. It is difficult to choose a test value for the thickness d in the
case of sponge layers as an increasing d yields better results, for the
sake of simplicity, d for sponge layers was set to the same value of d
for PMLs. The test values are summed up in Table 5.2.

Note that γ = 0.75 was reproduced from [36], where the authors
mention that their numerical tests showed best results for this value.
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Figure 5.6: The effect of different
PML thickness parameter d on the
density and velocity.
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NRBC d σmax γ

Sponge layers 30 NA NA
Characteristic boundary conditions NA NA 0.75
Perfectly matching layers 30 0.07 NA

Table 5.2: The values of perfor-
mance related parameters in different
NRBC used in Gaussian pulse simula-
tion.

Using these parameter values and using the absolute difference as
the error, we get Figure 5.7. From the figure we conclude that PMLs
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Figure 5.7: The error, measured as
the absolute difference, of the LBM
with three different non-reflecting
boundary conditions. Only the
evolution of the error from 200 it-
erations an beyond are shown since
the reflections are not registered in
the measuring point till after ≈ 200
iterations.

produce less reflections, and the reflections die out quicker. Regarding
density, the fluctuations in Eρ dies out after ≈ 540 iterations. The
sponge layer method is the worst of the three, in terms of absolute
difference, fluctuations are still present after 1500 iterations.

A figure covering the full range of iterations, from 1 to 1500, is
presented in Figure 1 in Appendix 6. This figure is worth looking into
as it shows some deviant behavior from the PMLs and CBCs in the
first hundred or so iterations.
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5.5 Acoustic point source

The point of this simulation is to mimic a sinusoidal wave emitted
from a point source located in the middle of the computational do-
main. The varying center-node density is given by

ρ(x, t) = ρ0 + ρs sin
(

2πt
T

)
, (5.4)

where the point source amplitude ρs ≤ ρ0 and T is the oscillation pe-
riod in lattice units. For the simulation, ρ0 = 1, u = 0, ρs = 0.01 and
T = 20. As the density in the point source node is artificially varied
according to (5.4), we reset the density in the node to its equilibrium
value, ρ0 = 1 in the collision step during the duration of the sinu-
soidal pulse. Doing this ensures that the correct number of particles is
present in the node before streaming.

The error ∆λ is measured as the range in the arithmetic sense of
the word, i.e.

∆λ = max(λ)−min(λ), (5.5)

here, λ(x, t) is again some general quantity.
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Figure 5.8: Semilogarithmic plot of
the drop in the range ∆ρ as result of
a sinusoidally varying point source
being deactivated.

Figure 5.8 shows how the error ∆ρ drops as the point source stops
producing sinusoidal waves. Ideally, ∆ρ would very quickly drop to
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0, nevertheless, ∆ρ for the LBM with PMLs drops by seven orders of
magnitude in approximately 1300 iterations. In accordance with the
results from section 5.4, PMLs performed the best, while sponge layers
performed the worst. The drop in ∆ρ for LBM with sponge layers was
by three orders of magnitude in the same 1300 iterations.

5.6 Long time numerical stability

As a final test, the long time behavior of the different NRBCs were in-
vestigated. The Gaussian pulse from (5.2) and initial values from (5.3)
were used to initialize the system. In the same manner as in [36], long
time numerical stability was established by summing up the total
mass in the system, in every iteration, for 4 · 104 iterations. A NRBC
is said to be long time numerically stable if the total mass tends to
201 · 201 · ρ0 = 40401 (the computational domain was of size 201× 201)
as the number of iterations grow. The results can be seen in Figure 5.9
and Figure 5.10.
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LBM with sponge layers Figure 5.9: Long time numerical
stability of LBM with sponge layers.

From the figures above we can see that the LBM with CBCs and
PMLs reaches the expected value of 40401 after about 1600 and 1100
iterations respectively, and can therefore be considered numerically
stable. On the other hand, LBM with sponge layers gave a total mass
which stayed constant at a value of 40418, 417 units of mass away
from the predicted value.
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6 Conclusion

Three different non-reflecting boundary conditions (NRBCs) for
the lattice Boltzmann method have been thoroughly accounted for
and summarized, thereby providing a compendium of sorts for the
three NRBCs perfectly matching layer (PMLs), sponge layers and
characteristic boundary conditions (CBCs).

We have seen how PMLs, CBCs and sponge layers performed when
tested against each other, and an idealized non-reflecting boundary
condition. In terms of absolute difference between ideal reference val-
ues and values from numerical simulation with the different NRBCs,
PML gave the least reflections. Of the three, the sponge layer method
was the least optimal. However, the potential user needs to be aware
of the fact that PMLs and sponge layers depend on damping layers
with a certain thickness. Increasing the thickness improves the per-
formance but also increases computational cost if the fluid region is
to stay the same size. If this is unsuitable for the application, CBCs
should be considered instead as they do not use damping layers.

A further study could include the use of absorbing boundary condi-
tions for the sponge layer method and the PML method, instead of the
simple bounce back boundary conditions used in this thesis. Ideally
this would contribute to reducing reflections even more.
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Figure 1: Error measured as ab-
solute difference between reference
values and values from simulations
with different NRBCs.
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Note the spikes occurring after approximately 50 iterations for Eux

and Euy
. Both LBM with PMLs and CBCs exhibits this behavior,

while LBM with sponge layers does not. These values should not be
present as they occur before the Gaussian pulse have reached the
boundaries and reflections start propagating back. The absolute error
between the reference values and simulation values with PMLs an
CBCs should therefore be zero, as is the case with Eρ. The author
has no concrete explanation for this deviant behavior, but purely
speculates that it might be connected to the actual implementation,
and not the NRBCs themselves.



Matlab code

Although I have tried to be generous with comments, I would not
recommend anyone to re-use or to try to adapt the code snippets
presented here. They were not written with generality in mind, nor
are they, I would imagine, particularly well written. For this reason, I
have only included the files used to run a LB simulation with PMLs.

Although the code is quite messy, a brief inspection might provide
some ideas or tricks, as for example the use of hypermatrices to repre-
sent every fi on a 2D matrix or the use of linear indexing to avoid for
loops.

Parts of the code are based on the file cavity.m by Jonas Lätt,
found on http://wiki.palabos.org/numerics:matlab_samples.
This site contains several LBM implementations in various languages
and can serve as an additional resource to the novice LBM program-
mer.
PMLBC.m
0001 function [] = PMLBC(sigmaMax,d,T)
0002 % c7 c3 c6 D2Q9 model. At each timestep, particle densities propagate
0003 % \ | / outwards in the directions indicated in the figure. An
0004 % c4 -c1 - c2 equivalent ’equilibrium’ density is found, and thedensities
0005 % / | \ relax towards that state, in a proportion governed by omega.
0006 % c8 c5 c9
0007
0008
0009 % GENERAL SIMULATION CONSTANTS
0010 lx = 201; ly = 201;
0011 % T = 400; %number of iterations
0012 cs = 1/sqrt(3); % speed of sound in the fluid in lattice units for D2Q9
0013 nu = 0.1; % kinematic shear viscosity
0014 tau = nu/(csˆ2) + 0.5; % relaxation factor
0015 % d = 25; % thickness of the PML
0016 omega = 1/tau;
0017
0018 % D29 LATTICE CONSTANTS
0019 t = [4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]’;

http://wiki.palabos.org/numerics:matlab_samples
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0020 cx = [0, 1, 0, -1, 0, 1, -1, -1, 1]’;
0021 cy = [0, 0, 1, 0, -1, 1, 1, -1, -1]’;
0022
0023 % these are special maps used to navigate the computational domain
0024 [wWall,nWall,eWall,sWall,fluidR,PMLR,PMLIR,DMBN] =calcMaps2(lx,ly,d);
0025
0026 [dirMapDMBN] = calcDirectionMaps2(ly, lx, DMBN);
0027
0028 % INITIALIZE THE SYSTEM
0029 rho = ones(ly, lx);
0030 ux = zeros(ly, lx);
0031 uy = zeros(ly, lx);
0032
0033 f = reshape(t*ones(1, lx*ly), 9, ly, lx); % initial distribution
0034 fEq = zeros(9, ly, lx); % equilibrium distribution
0035 fTilde = zeros(9, ly, lx); % temporary particle density distribution
0036 fEqBar = zeros(9, ly, lx); % mean equilibrium distribution is constant
0037 fEqTilde = zeros(9, ly, lx); % acoustic perturbation distribution
0038 fEqTildeOld = fEqTilde;
0039
0040 % calculate the mean equilibrium:
0041 for i = 1:9
0042 uc = cx(i).*ux + cy(i).*uy;
0043 fEqBar(i,:,:) = t(i).*rho.*(1 + uc./(csˆ2) + (uc.ˆ2)./ ...
0044 (2*csˆ4) - (ux.ˆ2 + uy.ˆ2)./(2*csˆ2));
0045 end
0046
0047 % assume Q(x,0) = 0;
0048 Q = zeros(9,ly,lx);
0049
0050 % INITAL VALUES
0051 % create gaussian pulse
0052 [X, Y] = meshgrid(1:ly,1:lx);
0053 Z = 0.173.*exp(-((X-ly/2).ˆ2+(Y-lx/2).ˆ2)./25);
0054 rho = rho + Z;
0055
0056
0057 % VISUALIZATION CONSTANTS
0058 sFrames = 10; % number of frames that is skipped in the visualization
0059 % process
0060
0061 % create sigma
0062 squares = cell(d,1);
0063 mock = ones(ly,lx);
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0064 for k=2:(d+1)
0065 mock(k:(ly-k+1),k:(ly-k+1)) = 0;
0066 squares{k-1} = find(mock);
0067 % reset
0068 mock = ones(ly,lx);
0069 end
0070 sigmaMask=ones(9,ly,lx);
0071 % quadratic variation
0072 sigma=(sigmaMax/(dˆ2)).*((d:-1:1).ˆ2);
0073 for k = d:-1:1
0074 sigmaMask(:,squares{k}) = sigma(k);
0075 end
0076
0077 % MAIN LOOP
0078 for iteration = 1:T
0079
0080 %%%%%%%% COLLISION STEP FOR FLUID REGION %%%%%%%%%%%
0081 for i = 1:9
0082 % intermediary calculations of c vector times u vector and the
0083 % equilibrium distribution
0084 uc = cx(i).*ux + cy(i).*uy;
0085 fEq(i,:,:) = t(i).*rho.*(1 + uc./(csˆ2) + (uc.ˆ2)./ ...
0086 (2*csˆ4) - (ux.ˆ2 + uy.ˆ2)./(2*csˆ2));
0087 end
0088 fTilde(:,fluidR) = (1 - omega).*f(:,fluidR) + omega.*fEq(:,fluidR);
0089 %%%%%%%% COLLISION STEP FOR FLUID REGION END %%%%%%
0090
0091
0092 %%%%%%%% COLLISION STEP FOR THE PML %%%%%%%%%%%
0093 OmegaBGK = -omega.*f(:,PMLR) + omega.*fEq(:,PMLR);
0094 fEqTilde(:,PMLR) = fEq(:,PMLR) - fEqBar(:,PMLR);
0095 Q(:,PMLR) = 0.5.*(fEqTildeOld(:,PMLR) + fEqTilde(:,PMLR));
0096 % euler-maclaurin one step
0097 cNQ = calccNablaQ(wWall,nWall,eWall,sWall,Q, PMLIR, PMLR, ly, lx);
0098
0099 OmegaPML = -sigmaMask(:,PMLR).*(cNQ(:,PMLR) + 2.*fEqTilde(:,PMLR) + ...
0100 sigmaMask(:,PMLR).*Q(:,PMLR));
0101 fTilde(:,PMLR) = OmegaBGK + f(:,PMLR) + OmegaPML;
0102 %%%%%%%% COLLISION STEP FOR THE PML END %%%%%%%
0103
0104
0105 % STREAMING FOR FLUID REGION END
0106 % %%%%%%% STREAMING STEP FOR THE PML BOUNDARY %%%%%%%%%%%
0107 % the populations f i are computed with mid-way bounce back boundary
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0108 % condition
0109
0110 % STREAMING STEP FOR FLUID DOMAIN AND PML EXCEPT BOUNDARY NODES %%%%
0111 for i = 1:9
0112 f(i, dirMapDMBN(i,:)) = fTilde(i, DMBN);
0113 end
0114 %%% STREAMING STEP FOR FLUID DOMAIN AND PML EXCEPT BOUNDARY NODES END %
0115
0116 %%%%%%%% CORNERS %%%%%%%
0117 % NW
0118 % these stay in the node:
0119 f(1,1) = fTilde(1,1); f(2,1) = fTilde(4,1); f(5,1) = fTilde(3,1);
0120 f(6,1) = fTilde(8,1); f(8,1) = fTilde(6,1); f(9,1) = fTilde(7,1);
0121 % these stream out of the node:
0122 f(5,1+1) = fTilde(5,1); f(9,1+ly+1) = fTilde(9,1); f(2,1+ly) = ...
0123 fTilde(2,1);
0124
0125 % NE
0126 % these stay in the node:
0127 f(1,ly*(lx-1)+1-ly) = fTilde(1,ly*(lx-1)+1-ly);
0128 f(4,ly*(lx-1)+1-ly) = fTilde(2,ly*(lx-1)+1-ly);
0129 f(8,ly*(lx-1)+1-ly) = fTilde(6,ly*(lx-1)+1-ly);
0130 f(5,ly*(lx-1)+1-ly) = fTilde(3,ly*(lx-1)+1-ly);
0131 f(9,ly*(lx-1)+1-ly) = fTilde(7,ly*(lx-1)+1-ly);
0132 f(7,ly*(lx-1)+1-ly) = fTilde(9,ly*(lx-1)+1-ly);
0133 % these stream out of the node:
0134 f(4,ly*(lx-1)+1-ly) = fTilde(4,ly*(lx-1)+1);
0135 f(8,ly*(lx-1)+1-ly+1) = fTilde(8,ly*(lx-1)+1);
0136 f(5,ly*(lx-1)+1+1) = fTilde(5,ly*(lx-1)+1);
0137
0138 % SE
0139 % these stay in the node:
0140 f(4,lx*ly) = fTilde(2,lx*ly); f(8,lx*ly) = fTilde(6,lx*ly);
0141 f(6,lx*ly) = fTilde(8,lx*ly); f(3,lx*ly) = fTilde(5,lx*ly);
0142 f(7,lx*ly) = fTilde(9,lx*ly); f(1,lx*ly) = fTilde(1,lx*ly);
0143 % these stream out of the node:
0144 f(3,lx*ly-1) = fTilde(3,lx*ly); f(7,lx*ly-ly-1) = fTilde(7,lx*ly);
0145 f(4,lx*ly-ly) = fTilde(4,lx*ly);
0146
0147 % SW
0148 % these stay in the node:
0149 f(9,ly) = fTilde(7,ly); f(2,ly) = fTilde(4,ly);
0150 f(6,ly) = fTilde(8,ly); f(3,ly) = fTilde(5,ly);
0151 f(7,ly) = fTilde(9,ly); f(1,ly) = fTilde(1,ly);
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0152 % these stream out of the node:
0153 f(2,ly+ly) = fTilde(2,ly); f(6,ly+ly-1) = fTilde(6,ly);
0154 f(3,ly-1) = fTilde(3,ly);
0155 %%%%%%%% CORNERS END %%%
0156
0157 %%%%%%%% BOUNDARIES EX. CORNERS %%%%%%%
0158 % W
0159 % these stay in the node:
0160 f(1,wWall) = fTilde(1,wWall); f(9,wWall) = fTilde(7,wWall);
0161 f(2,wWall) = fTilde(4,wWall); f(6,wWall) = fTilde(8,wWall);
0162 % these strema out of the node:
0163 f(2,wWall+ly) = fTilde(2,wWall); f(6,wWall+ly-1) = fTilde(6,wWall);
0164 f(3,wWall-1) = fTilde(3,wWall); f(5,wWall+1) = fTilde(5,wWall);
0165 f(9,wWall+ly+1) = fTilde(9,wWall);
0166
0167 % N
0168 % these stay in the node:
0169 f(1,nWall) = fTilde(1,nWall); f(8,nWall) = fTilde(6,nWall);
0170 f(5,nWall) = fTilde(3,nWall); f(9,nWall) = fTilde(7,nWall);
0171 % these strema out of the node:
0172 f(2,nWall+ly) = fTilde(2,nWall); f(4,nWall-ly) = fTilde(4,nWall);
0173 f(8,nWall) = fTilde(8,nWall-ly+1); f(5,nWall+1) = fTilde(5,nWall);
0174 f(9,nWall+ly+1) = fTilde(9,nWall);
0175
0176 % E
0177 % these stay in the node:
0178 f(1,eWall) = fTilde(1,eWall); f(4,eWall) = fTilde(2,eWall);
0179 f(8,eWall) = fTilde(6,eWall); f(7,eWall) = fTilde(9,eWall);
0180 % these strema out of the node:
0181 f(3,eWall-1) = fTilde(3,eWall); f(7,eWall-ly-1) = fTilde(7,eWall);
0182 f(4,eWall-ly) = fTilde(4,eWall); f(8,eWall-ly+1) = fTilde(8,eWall);
0183 f(5,eWall+1) = fTilde(5,eWall);
0184
0185 % S
0186 % these stay in the node:
0187 f(1,sWall) = fTilde(1,sWall); f(3,sWall) = fTilde(5,sWall);
0188 f(6,sWall) = fTilde(8,sWall); f(7,sWall) = fTilde(9,sWall);
0189 % these strema out of the node:
0190 f(2,sWall+ly) = fTilde(2,sWall); f(6,sWall+ly-1) = fTilde(6,sWall);
0191 f(3,sWall-1) = fTilde(3,sWall); f(7,sWall-ly-1) = fTilde(7,sWall);
0192 f(4,sWall-ly) = fTilde(4,sWall);
0193 %%%%%%%% BOUNDARIES EX. CORNERS END %%%
0194 %%%%%%%% STREAMING STEP FOR THE PML BOUNDARY END %%%%%%%
0195
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0196 % EXTRACT MACROSCOPIC QUANTITIES RHO AND U
0197 rho = sum(f); % produces a 2D matrix where the elements are the sums
0198 % of f along the first dimension, the dimension that contains the 9
0199 % different f’s
0200 ux = reshape(cx’*reshape(f, 9, lx*ly), 1, ly, lx)./rho;
0201 uy = reshape(cy’*reshape(f, 9, lx*ly), 1, ly, lx)./rho;
0202
0203 % reshape to 2D matrices
0204 rho = reshape(rho, ly, lx);
0205 ux = reshape(ux, ly, lx);
0206 uy = reshape(uy, ly, lx);
0207
0208
0209 % if(mod(iteration,sFrames)==0)
0210 % % 2D VISUALIZATION
0211 % imagesc(rho)
0212 % colorbar
0213 % title(iteration)
0214 % drawnow
0215 % % 3D VISUALIZATION
0216 % % colormap(jet)
0217 % % surfl(X, Y, rho,’light’)
0218 % % shading interp;
0219 % % axis tight
0220 % % title(iteration)
0221 % % drawnow
0222 % end
0223
0224 fEqTildeOld = fEqTilde;
0225 end
0226 end

calccNablaQ.m
0001 function [cNQ] = calccNablaQ(wWall,nWall,eWall,sWall,Q, PMLIR, ly, lx)
0002 % calcNablaQ calculates c i times the spatial derivatives of the
0003 % different Q i, the corners and boundaries (minus corners) are handled
0004 % seperately.
0005 % input:
0006 % wWall, nWall, eWall, sWall = linear indexes for the nodes on the
0007 % west, north etc. wall.
0008 % Q = the function to be derivated, Q is a hypermatrix with nine rows,
0009 % ly colums and lx "pages" (see matlab homepage/forums for description
0010 % of linear indexing in hypermatrices).
0011 % PMLIR = linear indexes of the nodes in the PML region excluding nodes
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0012 % on the boundaries.
0013 % ly, lx = height and length respectively of computational domain.
0014 % Output:
0015 % cNQ = hypermatrix with the spatial derivatives of the Q -
is, the
0016 % calculation is done for every node in the PML.
0017
0018 % for nodes in the PML not on the outer boundary (nodes facing
0019 % the outside of the computational domain)
0020 cNQ = zeros(9,ly,lx);
0021 % c 0 Nabla Q
0022 cNQ(1,PMLIR) = 0;
0023 % c 1 Nabla Q
0024 cNQ(2,PMLIR) = (Q(2,PMLIR + ly) - Q(2,PMLIR - ly))./2;
0025 % c 2 Nabla Q
0026 cNQ(3,PMLIR) = (Q(3,PMLIR - 1) - Q(3,PMLIR + 1))./2;
0027 % c 3 Nabla Q
0028 cNQ(4,PMLIR) = -cNQ(2,PMLIR);
0029 % c 4 Nabla Q
0030 cNQ(5,PMLIR) = -cNQ(3,PMLIR);
0031 % c 5 Nabla Q
0032 cNQ(6,PMLIR) = cNQ(2,PMLIR) + cNQ(3,PMLIR);
0033 % c 6 Nabla Q
0034 cNQ(7,PMLIR) = -cNQ(2,PMLIR) + cNQ(3,PMLIR);
0035 % c 7 Nabla Q
0036 cNQ(8,PMLIR) = -cNQ(2,PMLIR) - cNQ(3,PMLIR);
0037 % c 8 Nabla Q
0038 cNQ(9,PMLIR) = cNQ(2,PMLIR) - cNQ(3,PMLIR);
0039
0040 % for nodes on the outer boundary
0041 cNQ(1,wWall) = 0;
0042 cNQ(2,wWall) = 0; % inwards pointing diff terms = 0 to avoid
0043 % downwind discretization
0044 cNQ(3,wWall) = (Q(3,wWall + 1) - Q(3,wWall - 1))./2; % bussiness as
0045 % usual (central difference schemes) when diff direction is alongside
0046 % boundary
0047 % difference scheme for diff directions pointing outside the domain:
0048 cNQ(4,wWall) = Q(4,wWall+ly) - Q(4,wWall);
0049 cNQ(5,wWall) = -cNQ(3,wWall); % bussiness as usual (
0050 % central difference schemes) when diff direction is alongside boundary
0051 cNQ(6,wWall) = 0; % inwards pointing diff terms = 0 to avoid
0052 % downwind discretization
0053 % difference scheme for diff directions pointing outside the domain:
0054 cNQ(7,wWall) = Q(7,wWall+ly) - Q(7,wWall) + Q(7,wWall+1) - Q(7,wWall);
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0055 % difference scheme for diff directions pointing outside the domain
0056 cNQ(8,wWall) = Q(8,wWall+ly) - Q(8,wWall) + Q(8,wWall-1) - Q(8,wWall);
0057 cNQ(9,wWall) = 0; % inwards pointing diff terms = 0 to avoid
0058 % downwind discretization
0059
0060 cNQ(1,nWall) = 0;
0061 cNQ(2,nWall) = (Q(2,nWall + ly) - Q(2,nWall - ly))./2;
0062 cNQ(3,nWall) = Q(3,nWall+1) - Q(3,nWall);
0063 cNQ(4,nWall) = -cNQ(2,nWall);
0064 cNQ(5,nWall) = 0;
0065 cNQ(6,nWall) = Q(6,nWall-ly) - Q(6,nWall) + Q(6,nWall+1) - Q(6,nWall);
0066 cNQ(7,nWall) = Q(7,nWall+ly) - Q(7,nWall) + Q(7,nWall+1) - Q(7,nWall);
0067 cNQ(8,nWall) = 0;
0068 cNQ(9,nWall) = 0;
0069
0070 cNQ(1,eWall) = 0;
0071 cNQ(2,eWall) = Q(2,eWall-ly) - Q(2,eWall);
0072 cNQ(3,eWall) = (Q(3,eWall + 1) - Q(3,eWall - 1))./2;
0073 cNQ(4,eWall) = 0;
0074 cNQ(5,eWall) = -cNQ(3,eWall);
0075 cNQ(6,eWall) = Q(6,eWall-ly) - Q(6,eWall) + Q(6,eWall) - Q(6,eWall);
0076 cNQ(7,eWall) = 0;
0077 cNQ(8,eWall) = 0;
0078 cNQ(9,eWall) = Q(9,eWall-ly) - Q(9,eWall) + Q(9,eWall-1) - Q(9,eWall);
0079
0080 cNQ(1,sWall) = 0;
0081 cNQ(2,sWall) = (Q(2,sWall + ly) - Q(2,sWall - ly))./2;
0082 cNQ(3,sWall) = 0;
0083 cNQ(4,sWall) = -cNQ(2,sWall);
0084 cNQ(5,sWall) = Q(5,sWall-1) - Q(5,sWall);
0085 cNQ(6,sWall) = 0;
0086 cNQ(7,sWall) = 0;
0087 cNQ(8,sWall) = Q(8,sWall+ly) - Q(8,sWall) + Q(8,sWall-1) - Q(8,sWall);
0088 cNQ(9,sWall) = Q(9,sWall-ly) - Q(9,sWall) + Q(9,sWall-1) - Q(9,sWall);
0089
0090 % north west corner
0091 cNQ(1,1) = 0;
0092 cNQ(2,1) = 0;
0093 cNQ(3,1) = Q(3,1+1) - Q(3,1);
0094 cNQ(4,1) = Q(4,1+ly) - Q(4,1);
0095 cNQ(5,1) = 0;
0096 cNQ(6,1) = 0;
0097 cNQ(7,1) = Q(7,1+ly) - Q(7,1) + Q(7,1+1) - Q(7,1);
0098 cNQ(8,1) = 0;
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0099 cNQ(9,1) = 0;
0100
0101 % north east corner
0102 cNQ(1,ly*(lx-1)+1) = 0;
0103 cNQ(2,ly*(lx-1)+1) = Q(2,ly*(lx-1)+1-ly) - Q(2,ly*(lx-1)+1);
0104 cNQ(3,ly*(lx-1)+1) = Q(3,ly*(lx-1)+1+1) - Q(3,ly*(lx-1)+1);
0105 cNQ(4,ly*(lx-1)+1) = 0;
0106 cNQ(5,ly*(lx-1)+1) = 0;
0107 cNQ(6,ly*(lx-1)+1) = Q(6,ly*(lx-1)+1-ly) - Q(6,ly*(lx-1)+1) + ...
0108 Q(6,ly*(lx-1)+1) - Q(6,ly*(lx-1)+1);
0109 cNQ(7,ly*(lx-1)+1) = 0;
0110 cNQ(8,ly*(lx-1)+1) = 0;
0111 cNQ(9,ly*(lx-1)+1) = 0;
0112
0113 % south east corner
0114 cNQ(1,lx*ly) = 0;
0115 cNQ(2,lx*ly) = Q(2,lx*ly-ly) - Q(2,lx*ly);
0116 cNQ(3,lx*ly) = 0;
0117 cNQ(4,lx*ly) = 0;
0118 cNQ(5,lx*ly) = Q(5,lx*ly-1) - Q(5,lx*ly);
0119 cNQ(6,lx*ly) = 0;
0120 cNQ(7,lx*ly) = 0;
0121 cNQ(8,lx*ly) = 0;
0122 cNQ(9,lx*ly) = Q(9,lx*ly-ly) - Q(9,lx*ly) + Q(9,lx*ly-1) - Q(9,lx*ly);
0123
0124 % south west corner
0125 cNQ(1,ly) = 0;
0126 cNQ(2,ly) = 0;
0127 cNQ(3,ly) = 0;
0128 cNQ(4,ly) = Q(4,ly+ly) - Q(4,ly);
0129 cNQ(5,ly) = Q(5,ly-1) - Q(5,ly);
0130 cNQ(6,ly) = 0;
0131 cNQ(7,ly) = 0;
0132 cNQ(8,ly) = Q(8,ly+ly) - Q(8,ly) + Q(8,ly-1) - Q(8,ly);
0133 cNQ(9,ly) = 0;
0134 end

calcDirectionMaps2.m
0001 function[dirMapDMBN] = calcDirectionMaps2(ly, lx, DMBN)
0002 % calcDirectionMaps2. calculates the movement patters used to stream the
0003 % entire domain, except the boundary nodes which need special attention due
0004 % to boundary conditions
0005 % input:
0006 % ly, lx = height and length respectively of computational domain.
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0007 % DMBN = linear indexes of the entire computational domain, except the
0008 % boundary nodes.
0009 % Output:
0010 % dirMapDMBN = a matrix with 9 rows and size(DMBN) columns, contains the
0011 % linear indices of the movement patterns for each direction i. See figure
0012 % in PMLBC.m for i directions
0013 dirMapDMBN = zeros(9, size(DMBN,1));
0014 dirMapDMBN(1,:) = DMBN;
0015 dirMapDMBN(2,:) = DMBN + ly;
0016 dirMapDMBN(3,:) = DMBN - 1;
0017 dirMapDMBN(4,:) = DMBN - ly;
0018 dirMapDMBN(5,:) = DMBN + 1;
0019 dirMapDMBN(6,:) = DMBN + ly - 1;
0020 dirMapDMBN(7,:) = DMBN - ly - 1;
0021 dirMapDMBN(8,:) = DMBN - ly + 1;
0022 dirMapDMBN(9,:) = DMBN + ly + 1;
0023 end

calcMaps2.m
0001 function [wWall,nWall,eWall,sWall,fluidR,PMLR,PMLIR,DMBN] = ...
0002 calcMaps2(lx,ly,d)
0003 % this function finds the linear indexes belonging to the different regions
0004 % of the computational domain. These are necessary to address the various
0005 % input:
0006 % ly, lx = height and length respectively of computational domain.
0007 % d = thickness of PML.
0008 % Output:
0009 % wWall, nWall, eWall, sWall = linear indexes for the nodes on the
0010 % west, north etc. wall.
0011 % PMLIR = linear indexes of the nodes in the PML region excluding nodes
0012 % on the boundaries.
0013 % PMLR = linear indexes of the nodes in the PML
0014 % DMBN = linear indexes of the entire computational domain, except the
0015 % boundary nodes.
0016 if(d <= 2)
0017 disp(’d has to be greater than or equal to 3’);
0018 return
0019 end
0020
0021 temp = zeros(ly, lx);
0022
0023 % west wall without corners
0024 wWall = temp;
0025 wWall(2:ly-1,1) = 1;
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0026 wWall = find(wWall);
0027 % north wall without corners
0028 nWall = temp;
0029 nWall(1,2:lx-1) = 1;
0030 nWall = find(nWall);
0031 % east wall without corners
0032 eWall = temp;
0033 eWall(2:ly-1,lx) = 1;
0034 eWall = find(eWall);
0035 % south wall without corners
0036 sWall = temp;
0037 sWall(ly,2:lx-1) = 1;
0038 sWall = find(sWall);
0039
0040 % fluid region
0041 fluidR = temp;
0042 fluidR(d+1:ly-d,d+1:lx-d) = 1;
0043 fluidR = find(fluidR);
0044
0045 % entire PML region
0046 PMLR = ones(ly,lx);
0047 PMLR(d+1:ly-d,d+1:lx-d) = 0;
0048 PMLR = find(PMLR);
0049
0050 % only boundary nodes, i.e. those who face the exterior of the
0051 % computational domain
0052 BR = zeros(ly,lx);
0053 BR(:,1) = 1; BR(1,2:lx-1) = 1; BR(:,lx) = 1; BR(ly,2:lx-1) = 1;
0054 BR = find(BR);
0055 % Entire PML region except boundary (BR) nodes
0056 PMLIR = zeros(ly,lx);
0057 PMLIR(PMLR) = 1;
0058 PMLIR(BR) = 0;
0059 PMLIR = find(PMLIR);
0060 % entire Domain minus boundary Nodes
0061 DMBN = ones(ly,lx);
0062 DMBN(BR) = 0;
0063 DMBN = find(DMBN);
0064 end
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