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above the design critical velocity. It is also shown that the stability limit increases significantly when 
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where other torsional modes also contribute.    
In this thesis the aerodynamics of the different cross sectional configurations are accounted for by modelling 
the self-exited forces with the use of aerodynamic derivatives. Uncertainties in curve fitting have been 
discussed, and it is concluded that in the vicinity of the critical design velocity chosen polynomials can be 
used with adequate accuracy. From this it has been concluded that any instability below the critical design 
velocity are of no concern for the tested configurations. 
In this thesis well-known flutter equations are used to assess the flutter stability limit as a function of the 
shape-wise similarity and the frequency ratio and results show that a high shape-wise similarity combined 
with a low frequency ratio gives the lowest critical velocity. The flutter solution has also been compared to the 
multimode solution and it is concluded that the flutter solution provides an engineering approximation of the 
flutter stability by providing conservative results. 
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Abstract

This thesis discusses the possibility of constructing a suspension bridge crossing the Sogne-
fjord in light of the aeroelastic stability. The bridge will have a main span of 3,700 m
and must withstand a critical design wind speed of 63.3 m/s. A preliminary design has
been carried out, and constitutes the foundation for creating a finite element model of
the bridge. Based on natural frequencies and mode shapes the stability limit has been
assessed by the use of a multimodal approach and a simplified solution using well-known
flutter equations.

A few investigations have been carried out, changing the boundary conditions and the
geometry of the backstay cables. It is concluded that the change in stability limit is
insignificant when changing the boundary conditions. Changing the backstay geometry
changes the stability limit by a few per cent, but is considered small compared to the
importance of changing the aerodynamics of the cross section.

An attempt of solving the complex eigenvalue problem for a multimodal approach has been
made. The solution routine has shown good results when few modes are included in the
calculations, compared to a solution provided, but need further modifications especially
when several modes are included. The eigenvalue solution shows that the shape-wise
similarity is a clear indicator of which modes contributing most to the stability limit,
when the governing instability is multimodal flutter. When several torsional modes are
shape-wise similar to one vertical and the frequencies not well separated, it has been
shown that it is not necessarily the torsional mode with the lowest frequency that will
provide the lowest flutter stability limit. The degree of coupling between torsional and
horizontal motion in a mode is suspected to influence the results. Multimodal effects
have also shown to have both a stabilizing and destabilizing effect, and are related to the
shape-wise similarity.

In this thesis the stability limit is assessed using different cross sectional configura-
tions, consisting of separated box-girders. They are different by the aerodynamic devices
mounted to the cross section, and the distance between the girders. It is concluded that
central barriers and guide vanes provides critical velocities well above the design critical
velocity. It is also shown that the stability limit increases significantly when increasing
the distance between the girders. A cross section has been tested for a configuration
without guide vanes and compared with the same configuration with guide vanes, and
it is concluded that guide vanes has a significantly positive effect on the stability limit.
One configuration has shown a static instability phenomenon called static divergence. It
is found that one torsional mode contributes significantly to this instability, but where
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several other torsional modes also contribute.

Simplified expressions from the quasi-steady theory are sometimes used to model the self-
exited forces on the stiffening girder. In this thesis the aerodynamics of the different cross
sectional configurations are accounted for by modelling the self-exited forces with the use
of aerodynamic derivatives. Polynomials have been fitted to experimental data and the
curves show acceptable results within the data range, at least for the most important
derivatives. The bridge presented has shown reduced velocities that are high compared
to the data range from where the aerodynamic derivatives are given. The aerodynamic
derivatives have been extrapolated outside the data range from experiments, giving results
of considerably uncertain reliability. These uncertainties have been discussed, and it is
concluded that in the vicinity of the critical design velocity the chosen polynomials can be
used with adequate accuracy. From this it has been concluded that any instability below
the critical design velocity are of no concern for the tested configurations.

This thesis uses the well-known flutter equations in assessing the flutter stability limit as a
function of the shape-wise similarity and the frequency ratio between one vertical and one
torsional mode, at the same time accounting for aerodynamics by the use of aerodynamic
derivatives. The flutter solution are tested on the different cross sectional configurations
and results show that a high shape-wise similarity combined with a low frequency ratio
gives the lowest critical velocity. The flutter solution has also been compared to the
multimode solution and it is concluded that the flutter solution provides an engineering
approximation of the flutter stability by providing conservative results.
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Sammendrag

Denne oppgaven diskuterer mulighetene for å bygge en hengebru over Sognefjorden i lys
av stabiliteten under høye vindhastigheter. Bruen vil f̊a et hovedspenn p̊a 3,700 m og m̊a
motst̊a en dimensjonerende kritisk vindhastighet p̊a 63.3 m/s. En overslagsdimensjoner-
ing har blitt utført og utgjør grunnlaget for å lage en modell av bruen i et elementmetode
program. Stabilitetsgrensen har blitt vurdert ut ifra svingemoder og tilhørende egen-
frekvenser ved bruk av en multimodal løsning og en forenklet løsning som benytter kjente
flutter ligninger.

Noen f̊a undersøkelser har blitt utført, der ulike opplagerbetingelser for brubjelken og
forskjellig geometri av sidespennet har blitt endret p̊a. Resultatene viser at opplager-
betingelsene har liten effekt p̊a stabilitetsgrensen. P̊a den andre siden viser resultater
at ved å øke lengden p̊a sidespennet reduseres den kritiske vindhastigheten med opptil
noen f̊a prosent. Disse endringen har blitt vurdert ubetydelige i forhold til å endre de
aerodynamiske egenskapene til brubjelken.

Et forsøk p̊a å løse det komplekse egenverdiproblemet har blitt utført. Resultater viser at
løsningsrutinen gir samme verdier som en tildelt løsningsrutine, n̊ar løsningen inkluderer
f̊a svingemode. N̊ar flere svingemoder er inkludert viser løsningsrutinen tydelig insta-
biliteter og modifiseringer trengs. Egenverdiløsningen viser at formlikheten av svinge-
modene er en klar indikasjon p̊a hvilke moder som bidrar mest til instabiliteter, n̊ar det
styrende instabilitetsfenomenet er multimodal flutter. N̊ar flere torsjonsmoder er formlike
med en vertikal mode, og frekvensene av torsjonsmodene er lite separert, viser resul-
tatene at det nødvendigvis ikke er torsjonsmoden med den laveste frekvensen som bidrar
med den laveste stabilitetsgrensen. Graden av kopling mellom horisontale forskyvninger
og torsjonsforskyvninger kan ha en innflytelse p̊a resultatene. Resultater viser at multi-
modale effekter kan b̊ade ha stabiliserende eller destabiliserende innflytelse for den kritiske
vindhastigheten, og er relatert til formlikheten av modene.

I denne oppgaven har stabilitetsgrensen blitt vurdert ved bruk av forskjellige tverrsnitt
for brubjelken som alle best̊ar av to parallelle s̊akalte boks tverrsnitt. Et tverrsnitt har
blitt testet b̊ade med og uten s̊akalte ledeskovler, og det er konkludert med at ledeskovler
gir en betydelig økning i stabilitetsgrensen. Økt avstand mellom boks tverrsnittene viser
ogs̊a at stabilitetsgrensen øker ved at de aerodynamiske egenskapene blir forbedret. Et
av tverrsnittene har vist et instabilitetsfenomen kalt statisk divergens. Resultater viser
at det er spesielt en torsjonsmode som bidrar til denne instabiliteten, men hvor flere
torsjonsmoder bidrar til en viss grad.

Forenklede uttrykk fra kvasi-statisk teori er noen ganger brukt til å beskrive de selv-
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eksiterende kreftene p̊a brubjelken. I denne oppgaven har disse kreftene blitt beskrevet
av s̊akalte aerodynamiske deriverte. Kurver av polynom har blitt tilpasset eksperimentelle
data, og kurvene gir akseptable resultater innenfor rekkevidden av dataene, spesielt for
de viktigeste deriverte. Den presenterte bruen har vist høye reduserte vindhastigheter i
forhold til de verdier som er gitt av eksperimentene. Verdiene av de deriverte har derfor
blitt ekstrapolert utenfor rekkevidden til dataene, og dette reduserer p̊aliteligheten av
resultatene. Disse usikkerhetene har blitt diskutert og det er konkludert med at i omr̊adet
rundt den dimensjonerende kritiske vindhastigheten kan de tilpassede kurvene brukes
med en tilfredsstillende nøyaktighet. P̊a bakgrunn av dette kan det konkluderes med at
instabiliteter under den dimensjonerende kritiske vindhastigheten ikke vil finne sted med
de alternativene for brubjelken som har blitt presentert.

I denne oppgaven har de kjente flutterligningene blitt brukt til å estimere stabilitets-
grensen som funksjon av formlikheten og frekvensforholdet mellom en vertikal og en
torsjonsmode, og i tillegg har de aerodynamiske egenskapene blitt tatt i betraktning ved
bruk av de aerodynamiske deriverte. Flere tverrsnitt har blitt vurdert og resultater viser
at en kombinasjon av høy formlikhet og et lavt frekvensforhold gir den laveste kritiske
vindhastigheten. Flutterløsningen har ogs̊a blitt sammenlignet med den multimodale løs-
ningen og det er konkludert med at flutterløsningen gir konservative resultater sett fra et
ingeniørmessig perspektiv.
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Chapter 1

Introduction

As part of a project called Costal Highway E39, the Norwegian Public Roads Adminis-
tration (NPRA) has been commissioned to investigate the possibility for eliminating all
ferries along the western corridor (E39). This includes the technological aspects of cross-
ing fjords spanning over large distances. The longest fjord crossing in this project will be
the crossing of the Sognefjord. The Sognefjord is considered the most challenging because
of the overall vast depths up to 1,300 m, and will be a pilot project in developing new
concepts for extreme bridges. Three main alternatives are under evaluation, and one of
them is a suspension bridge spanning the entire width of the fjord. The fjord is about 3.7
km wide, indicating that this bridge would be the worlds longest suspension bridge. If
the bridge is to be constructed it will span over the fjord somewhere in the area between
Lavik and Oppedal where the existing ferry has its route. The 10-min design wind speed
for the actual location is found to be 39.6 m/s corresponding to a return period of 50
years. A suspension bridge crossing the Sognefjord has been the subject of this thesis.

Based on the topographical conditions mentioned above a preliminary design of a suspen-
sion bridge has been carried out based on a cross section given in the literature, which
constitutes the foundation necessary for creating a finite element model of the bridge.
The finite element model is used to carry out an eigenvalue analysis for extracting still
air natural frequencies and corresponding mode shapes. The natural frequencies are ana-
lyzed, and several configurations have been tested in order to understand how parameters
change the results.

Recent investigations have shown that aeroelastic considerations, and not only the aero-
dynamics related to the cross section is of importance in assessing the stability limit. As
mentioned in Miyata [16], considerations of bridge response are related to the interaction
of aero- and elastic characteristics of the structure. It may be said that the aerodynamics
are related to the cross sectional configuration while the aeroelastic stability refers to the
whole structure as a 3D problem. In this thesis some aeroelastic investigations have been
carried out but the main focus have been on the aerodynamic characteristics of different
cross sectional configurations.

One of the most important tasks when designing long-span bridges is to avoid devastating
oscillations du to strong wind. Self-exited forces cause these oscillations from interac-
tion between the structure and the wind flow, which affects the structural properties by
changing the total stiffness and damping of the structure. Examples of such phenomenon
are flutter, static divergence, galloping and dynamic instability in torsion. Flutter is in
most cases the most critical where a vertical and torsional vibration mode couples into
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one motion with the same oscillating frequency. This phenomenon may cause structural
failure, as was the reality of the famous Tacoma Narrow Bridge collapse in 1940. Static
divergence, as the name indicates, is a static stability problem where the torsional stiffness
equals zero due to interaction with the airflow. Galloping and dynamic stability in torsion
are both identified as single mode oscillation in vertical and torsional directions respec-
tively. The flutter phenomenon has been subject to a lot of research resent years, and
the understanding of multimodal flutter effects has become more important where several
still air vibration modes contributes to the stability limit, see for instance [1, 2, 15, 26].
These multimodal effects may have a stabilizing or destabilizing effect on the stability.
Two well-known factors that influencing which modes that couples into a multimodal mo-
tion are the shape-wise similarity and the frequency ratio between vertical and torsional
modes. Usually it is the fundamental vertical and torsional modes that will couple into a
flutter motion, but as it has been mentioned in Mishra et al. [15] this is not always the
case , see also [9]. The different aspects mentioned above has been subject for discussion
in this thesis, and are analyzed by solving the multimodal complex eigenvalue problem,
see for instance [15, 28]

Simplified methods for predicting the flutter stability limit are still considered important
today, even if more accurate methods has been developed in the recent years. Selberg’s
formula [32] is still widely used in preliminary designs as an estimation for the flutter
stability of a bimodal system, but the formula is limited to cross sections having a shape
similar to that of a thin airfoil. The mode shapes are also assumed perfectly similar. In this
thesis the well known flutter equations [8, 35] are used to predict the flutter stability limit
for a range of different cross sectional configurations and compared with the multimodal
approach mentioned above. This method provides a stability limit of a bimodal system
consisting of two still-air vibration modes, as a function of the frequency ratio and the
shape-wise similarity of the modes.

The complex eigenvalue solution and the flutter equations are both based on a modal su-
perposition approach where the modes are introduced as generalized degrees of freedom.
The structural displacements, representing a 3 degree of freedom system, are represented
by the sum of the products between the natural mode shapes ϕ

i
and corresponding gener-

alized coordinates ηi. The self-exited forces associated with the structural displacements
can be written as follows[29, 35] ;
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, n ∈ {1, 2, ..., 6} are dimensionless aerodynamic derivatives dependent

on the cross sectional shape and are functions of the reduced velocity. V is the mean wind
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velocity, ρ is the density of air, B is the width of the girder, K = Bω/V is the reduced
frequency and rn, n ∈ {y, z, θ} are the structural displacements. In most cases the terms
associated with the lateral motion, ry and ṙy, are disregarded or taken from the quasi-
steady theory. In this thesis these terms have been neglected, meaning that the system is
reduced to a two-dimensional system with vertical displacement rz and angular rotation
rθ. The importance of the lateral contribution has not been paid attention to in this
thesis but indications may suggest that it has a positive effect on the stability limit [1].
Throughout this thesis experimentally obtain values for the aerodynamic derivatives have
been used, but one study has been carried out where quasi-steady values for aerodynamic
derivatives associated with lateral motion is introduced.
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Chapter 2

Suspension bridges

Suspension bridges are part of the family of cables supported bridges, distinguished by
their ability to span over long distances. The main difference of cable-supported bridges
is the configuration of the cable system. In suspension bridges the cables are suspended
with vertical (may be inclined) hangers connecting the stiffening girder to the main cables.
Cable-stayed bridges are another type of cable-supported bridge where the cable system
contains straight cables connecting the stiffening girder to the pylons. A combination
between different types of bridges is also possible. Suspension bridges are the slenderest of
all bridges, and dominate the type of bridge used for long spans. From the first suspension
bridge that were built and until today, engineers have competed in building the longest
bridges with further decreasing slenderness ratio (depth-to-span ratio). The trend of
increasing slenderness may be said to reach a limit when the famous Tacoma Narrow
Bridge, opened in 1940, collapsed. The bridge experienced a combined torsional and
vertical motion, caused by interaction between the girder and the wind flow. After some
time the torsional motion became severe with a tilting of the girder up to ±45o. Negative
damping caused these self-exited oscillations. The bridge had only been accounted for
static pressure due to wind, and the dynamics related to interactions between the wind
and the girder had not been considered [10]. After this disaster aerodynamics became
important in the design process for bridges to be built and for all existing suspension
bridges. The construction of the longest and slenderest ever-built suspension bridge in
Norway is about to finish within 2013. The bridge will be one of the longest (nr. 9 when
completed) and slenderest suspension bridges in the world with a total span of 1,380 m
and a main span length of 1,310 m [38]. Figure 2.1 shows the main components of a
suspension bridge, and they will be presented shortly in the following.

Anchor block

Hanger Main span cable

Stiffening girder

PylonBackstay cable

Figure 2.1: Main components of a suspension bridge
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2.1 Stiffening girder

The stiffening girder is the structural element of the suspension bridge subjected to most of
the external loading. The girder must locally be able to resist the forces due to e.g. traffic
loads and interaction between the girder and the wind flow, referred to as aerodynamics.
Globally the cable system assists the girder in transferring the loading to the supporting
points. Whether the girder is in steel or concrete the weight, cost, stiffness properties and
the aerodynamics are all considerations of great importance. The shape of the stiffening
girder has been subject to a lot of research and testing during the years, especially after
the Tacoma Narrow collapse. As suspension bridges become longer the aerodynamic has
become more important in addition to maintain the torsional stiffness as the girders be-
comes more slender. The most common configuration of long-span bridges today is closed
box-girders of steel with trapezoidal shaped stiffeners inside the box and braced bulkheads
at intermediate distance. Such a configuration is also favourable when considering corro-
sion and maintenance as well as the dead loads are considerably lower compared to girders
of concrete. One example of such a configuration is the Great Belt Bridge in Denmark
with a main span of 1,624 m. Girders of stiffening trusses are also widely used, examples
are the Golden Gate Bridge and the worlds longest suspension bridge located in Japan,
the Akashi-Kaikyö Bridge with a main span of 1,991 m [10]. From an aerodynamic point
of view box-girders with edge fairings has proven to be favourable because the drag force
is reduced. In resent years a twin box configuration has also proven to give increased
stability during strong wind, especially together with guide vanes and other aerodynamic
devices mounted on the girders. The box-girders in such a configuration are connected
by crossbeams at intermediate distance, and the distance between the box-girders may be
increased which also has been proven to give favourable effects [11, 14, 24, 30, 31]. Fig-
ure 2.2 gives an illustration of such a configuration where guide vanes has been mounted
at the lower outer edge of the girder [11].

Edge fairing

Figure 2.2: Twin box configuration with guide vanes and edge fairings as aerodynamic im-
proving configurations.
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2.2 Cables

The cables in cable supported bridges are characterized by the considerably larger tensile
strength compared to ordinary steel. This reduces the amount of steel needed to carry the
load acting on a bridge. The cables are made by small steel wires, usually of cylindrical
shape with a diameter between 3 and 7 mm [10]. As the cables consist of several, maybe
thousand of small wires, the bending stiffness of the cables is practically zero, which means
that all loading must be transferred as tension through the cables. In suspension bridges
the cables are used to carry the vertical load from traffic, dead load and other concentrated
loading by vertical hangers transferring the load to the cables as tension forces. The load
on a cable can be compared with a simply supported beam subjected to distributed load,
where the moments in the beam for the given load is equal to the horizontal force in the
cable times the sag. I.e. the horizontal cable force is inversely proportional to the sag
meaning that the maximum tension in the cables will be larger as the sag decreases. The
choice of sag is based on economical as well as performance aspects as larger sag will
reduce the required cable area, but will increase the pylon height.

2.3 Hangers

The distributed load that acts on the stiffening girder has to be transferred through the
hangers and to the cables. As for the cables the hangers transfers the load as tension and
are placed with a certain distance between each other depending on the girder configura-
tion, dead load of the girder and all additional loading.

2.4 Pylons

In suspension bridges the main purpose of the towers is to transfer the vertical forces
from the cables down to the ground. Since the forces in the pylons mainly are compressive
forces, and the cable system stabilizes the towers horizontally in longitudinal direction, the
pylons can be constructed quite slender. The towers must be able to resist buckling due to
compressive forces, forces from wind on the rest of the structure, forces due to oscillation
both during construction and as a final construction, etc. Which material to use in the
towers is influenced by several factors such as soil conditions, speed of erection, stability
during construction, economical considerations, etc. [10]. Esthetical consideration has
also been important in the design process as the appearance of suspension bridges are
significant to the surroundings, e.g. the Golden Gate Bridge which is a landmark to the
town of San Francisco.

2.5 Anchor blocks

Suspension bridges have earth anchored cable systems where tension forces in the main
cables are transferred to the ground through the anchor blocks. The transmission of
forces is established by anchoring each individual strand in the cables to the concrete of
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the block. Using a splay saddle to separate the strands does this. Strands are referred to
as a set of wires assembled together as prefabricated elements.
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Chapter 3

Preliminary design

3.1 Geometry

Compared to the Hardanger bridge, which has a curvature of 20,000 m [19], the length
of the main span will be about 2.82 times longer. Assuming a radius of curvature of the
bridge girders 2.82 times higher than the Hardanger bridge will give a vertical curvature
of about 56,500 m. Then the elevation of the girders will be 30.3 m above the supporting
endpoints of the stiffening girder. The length of the stiffening girder will be 0.66 m longer
than the projected length of the main span, see Appendix A.2. Normally the sag of the
main cable is chosen as 1/10 of the span length [10, 23], i.e. 370 m. With a sailing
clearance of 75 m, and a length of the shortest hanger equal to 2 m at midspan the total
height from sea level to the top of the pylons will be (including a height of the girder of
two meters);

ktot = 370m+ 2m+ 2m+ 75m = 449m

This implies that the pylons would have to be nearly 450 m high depending on topography
and foundation, which is more than twice of those constructed for the Hardanger bridge.
The topography on the Lavik-side is steep mountains directly from sea level, which means
that the backstay cables don’t have to be that long. On the other end of the bridge
(Oppedal-side) the landscape is more flat, implying that the backstay cables have to be
longer. In this thesis any considerations regarding the topography will not be considered,
and the backstays will be assumed equal in length and geometry. Assuming that the
backstays will be constructed as individual constructions, the bridge will be a single span
suspension bridge. I.e. only the main span is supported by the cable system, but with
the main cables continued as backstays from the pylon tops to the anchor blocks some
distance from the pylons. The final geometry when all dead load acting on the bridge is
shown in figure 3.1 on the following page. Different symbols that will be used throughout
the thesis are listed below;

• km: Sag of the main span cable

• lm: Horizontal main span length

• Am: Area of suspension cable

• Dm: Diameter of cable

9
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• FRd: Design tensile strength of cable or hanger steel

• γcb: Material density of steel (N/m3)

• gcb: Distributed load of cable along its length

• gcm: Total cable weight distributed over the horizontal projected length of the cable

0

km = 370 m (cable sag)20 m

lm = 3700 m

~ 440 m

Sailing clearence 75 m

2 m

Figure 3.1: Geometry of the bridge.

3.2 Choice of stiffening girder shape

When constructing bridges with long spans, one of the most challenging problems is
the aeroelastic stability in high wind speeds. In order to improve the aeroelastic stability,
various researches have been conducted, and different configurations of the stiffening girder
tested. Compared to the normally used single box girder for longer spans, e.g. Hardanger
Bridge [22] and the Great Belt Bridge [10], it has been shown that slotted box girders
gives improved aerodynamic behaviour [14, 30, 31]. To find the aeroelastic stability limit
of a bridge it’s necessary to find the aerodynamic derivatives of the girder. These can be
found in literature, but it has not been successful to find girder shapes where all the 18
derivatives are given. This is due to the fact that wind tunnel tests usually are limited
to vertical and rotational motion. I.e. the horizontal (lateral) displacements are not
considered.

A choice of stiffening girder cross section has been made, see Figure 3.2 on the next page.
This cross section has been tested in a wind tunnel on a scaled model and is given in
Matsumoto et al. [14]. The cross section consists of two separated parallel box-girders,
connected with a crossbeam at intermediate distance assumed to be 20 m. A vertical
plate, “gap-plate”, or central barrier centered in the cross section has been introduced
to improve the stability in high wind speeds. The mass of the gap-plate is considered
negligible and is left out in further calculations. Edge fairings are introduced, as can be
observed in most bridges built with box-girders, in order to optimize the flow pattern
around the cross section [10]. The chosen girder is henceforth referred to as cross section
2TFGP . The dimensions are based on calculations given in Appendix A.3, where the
width has been decided by using relevant Handbooks [17, 20].
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B* = 10 m

D = 2 m

5 m

4 m

B = 25 m

B* = 10 m

Gap plate (center barrier)
Cross beam

Figure 3.2: Chosen girder cross section.

3.3 Calculation of girder cross section parameters

When constructing a box-girder, there are several factors that must be considered in the
design. The girder must globally be able to resist the moment distribution e.g. due to dead
load, traffic load and wind load. Locally the steel plates must be thick enough to prevent
local buckling due to moments from dead load, point loads, etc. Designing a box girder is
a optimization process in the sense of maximizing the stiffness properties and at the same
time minimizing the construction costs and the weight of the girder. The dimensioning is
not the subject of this thesis and will not be considered because this is a time-consuming
work. Instead other similarly box- girders has been studied, mainly the Hardanger Bridge
and the new Svinesung Bride. The Svinesund Bridge has a similar cross section to the one
chosen in this thesis with crossbeams connecting two symmetrically identical box-girders,
see Figure 3.3. The width of the box-girders are of same magnitude, 11 m total width for
Svinesund Bridge and 10 m for the actual bridge [7]. For simplicity, the same type and
numbers of stiffeners has been adopted to the actual box-girders. The thickness of the
plates are taken from the Svinesund cross section. One box-girder is modelled in CrossX
[3] to find stiffness properties and mass of the suggested girder, see Figure 3.4 on the next
page.

Figure 3.3: Girder cross section of the Svinesund Bridge [7].

The most important properties are summarized below. The material parameters used in
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CrossX are given in the report presented in Appendix B. The origin (or reference point)
is chosen in the left corner of the bottom plate, and the location of the shear centre and
neutral axis (N.A) is given relative to this point. As can be seen from Figure 3.4 the shear
centre almost coincides with the N.A, also shown in Figure 3.4. Here, Y � and Z � marks
the reference coordinate system in CrossX, while Y and Z marks the coordinate system
relative to the centroid. S shows the location of the shear centre. The direction of the
coordinate system (Y , Z) is such that Y represents the strong axis of the cross section.

• Area: A = 5.3175 ∗ 105mm2

• Second moment of inertia:

1. Iy = 6.1704 ∗ 1012mm4

2. Iz = 3.7967 ∗ 1011mm4

• Torsional moment of inertia: It = 9.9314 ∗ 1011mm4

• Weight: m = 4174.23kg/m

• Location of shear centre:

– ys = 13.6mm

– zs = 48.8mm

A

Shear centre (S) 

Centroid (C)

C
C

B

10 000 mm

925 925 925 9253x1050 = 3150 3x1050 = 3150

505 505 505
505

7x570 = 3990 7x570

625

750

625

Stiffening web: t = 16 mm

t = 14 mm

t = 16 mm

t = 16 mm

t = 12 mm

t = 12 mm
Y´

Y

Z´

Z

Figure 3.4: Box-girder with stiffeners modelled in CrossX.
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3.4 Mass calculations

3.4.1 Specific weight

Parameters for specific weight of different components in the bridge are taken from hand-
books given by The Norwegian Public Roads Administration. Parameters used in calcu-
lations are listed below [20]. The density used for steel is 7,850 kg/m3, since this value is
used in CrossX.

• Armed concrete: ρ = 27kN/m3

• Asphalt: ρ = 25kN/m3

• Steel railing (mass): m = 0.5kN/m

3.4.2 Dead load masses

Asphalt

According to Norwegian handbooks the weight of asphalt should be chosen as 2.0 kN/m2.
This value is a minimum requirement for AADT (Annual Average Daily Traffic volume)
above 2000, and for bridge spans longer than 200 m. For pedestrian and cycling road the
minimum value is set to 1.0 kN/m2[20].

The road traffic spans over 6,5 m while 3 m for the pedestrian and cycling road. For
simplicity it has been assumed that both girders have a walking/cycle path. Then the
following distributed load on one box-girder will be;

6.5m ∗ 2000N/m2

9.81m/s2
= 1325kg/m

3m ∗ 1000N/m2

9.81m/s2
= 306kg/m

masphalt = 1631kg/m (3.1)

Transverse bulkheads

In the box-girder there are intermediate transverse bulkheads assumed to cover the total
cross sectional area of the girder. Any possibly transverse stiffeners on the bulkheads
have been neglected. Also any holes for inspection and different installations have been
neglected. The distance between bulkheads is chosen as 4 m, which means that there
are five sections between each hanger in longitudinal direction. The total area within the
outer plates is;

13
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A = 10 ∗ 2 + 2 ∗ 1/2 ≈ 21m2

Assuming a plate thickness of 12 mm, this will give a distributed mass of;

mtb = 21m2 ∗ 0.012m ∗ 7850kg/m3 ∗ 1/4m = 495kg/m ≈ 500kg/m (3.2)

Steel railing

Since this thesis consists of a preliminary design, no details about types of railings will be
given. Therefore values for the weight will be taken as ρ = 0.5kN/m (see section 3.4.1 on
the preceding page). With three railings on each girder, the distributed mass will be;

mrail = 3 ∗ 500N/m ∗ 1/9.81m/s2 = 153kg/m (3.3)

Steel girder

Cross section values for the steel girder is given in Appendix B.1 , and repeated below. In
addition there are non-constructional masses like electro installations, streetlights, ventila-
tion systems etc. These masses are small compared to the girder, and therefore neglected.
The attachments for the lower hanger links will contribute with some mass, but without
any details of how these connections will be constructed some assumptions have been
made. From calculations made for the Hardanger Bridge [19], each hanger attachment
constitutes about 840 kg. The total amount of hangers equals the number of attach-
ments, n = lm/20 = 185, a total of 370 attachments. Assuming a weight of 850 kg per.
attachment, this will give a distributed load on each girder as;

mhl = 185 ∗ 850kg ∗ 1/3700m = 43kg/m (3.4)

Values extracted from CrossX:

• Area: A = 5.3175 ∗ 105mm2

• Weight per unit length:
mg = 4174.2 kg/m (3.5)

Total dead load

Summing up the values from Equations 3.1-3.5 gives the total distributed dead load on
each box-girder;

mdl,g = (1631 + 500 + 153 + 43 + 4175)kg/m = 6502 kg/m (3.6)
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3.4.3 Crossbeam

To connect the two box-girders, crossbeams will span laterally at every twenty meters.
This solution was chosen on the new Svinesund Bridge, where the beam is simply a
rectangular hollow beam with four plates welded together. The choice of plate thickness
is an optimization process not taken into account in this thesis, and the same values are
therefore used. The webs has been chosen a thickness of 14 mm while the flanges 30 mm.
The height of the web has been chosen equal to the height of the box-girder, i.e. 2 m. The
width of the beam has been chosen to 1 m. The cross sectional data has been calculated
in CrossX, see Appendix B.2 . The distributed dead load in lateral direction is;

mcb,l ≈ 678kg/m = 6650N/m (3.7)

The distance between each hanger is 20 m, which means that the hangers must carry load
10 m from each side in longitudinal direction. For simplicity, it has been assumed that
both national lanes are loaded with full traffic load in the entire span, and without any
loading in the pedestrian/cycling road, see Figure 3.5. This means that any point loads
and load combinations are not considered. The procedure herein is assumed satisfactory
for our purpose, and the loads are conservative. The traffic load is assumed distributed
on the centre part of the top plate. The distributed load on each box-girder in lateral
direction is given in the equation below. All estimations are calculated in the ultimate
limit state (ULS). I.e. load factors are included, 1.3 for payloads and 1.2 for dead loads.
The distributed load in longitudinal direction is taken from Handbooks as 9kN/m [20].
This load is distributed over 3 m in lateral direction, i.e. the load per. square meters is
3 kN/m2.

pEd = 3kN/m2 ∗ 20m ∗ 1.3 = 78000N/m (3.8)

10 m 5 m 10 m

6 m 6 m2 m 2 m 2 m2 m

p = 3kN/m2

2

Cross beam

Figure 3.5: Distribution of load on girder. The load is given as distributed load per square
meter.

The dead load weight on one box-girder from equation 3.6 is, when assuming that the
dead load is distributed over the top plate of the girder (10m);
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gEd = 6502kg/m ∗ 9.81m/s2 ∗ 20m/10m ∗ 1.2 = 153083.1N/m (3.9)

Then the system can be illustrated as a simply supported beam with distributed mass,
with the hangers representing the supports, see Figure 3.6. The force in each hanger can
be calculated as;

NH = (78000N/m ∗ 12m+ 153083.1N/m ∗ 20m+ 6650N/m ∗ 5m ∗ 1.2)/2
= 2018790N ≈ 2018.8kN (3.10)

10 m 5 m 10 m

7,5 m

pEd 
gEd

Cross beam

Figure 3.6: Static representation of cross section.

Maximum moment will occur in the middle of the crossbeam when assuming symmetry,
and that the system can be considered as a simply supported beam with a span of 25
m between each cable plane. Referring to Figure 3.7 on the next page , the maximum
moment will be;

Mmaks = NH ∗ 12.5m− 7.5 ∗ (Fp + Fg)− 2.52/2 ∗mcb,l ∗ 1.2
= 10218637.5Nm ≈ 10218.6kNm (3.11)

Where

• Fp is the resultant force from traffic load: Fp = 78000N/m ∗ 6m = 468kN

• Fg is the resultant force from self weight: Fg = 153084N/m ∗ 10m = 1530.8kN

Control of stresses in the crossbeam;

σ =
M

Iy
∗ zmaks = 223.9MPa (3.12)

This value is about 72.5% of the yield stress when assuming fy = 355MPa and a material
factor of 1.15 for regular steel. The dead load contribution from the crossbeam to each
girder is then;

mcb = 1/2 ∗ 678kg/m ∗ 5m/20m = 84.8 kg/m (3.13)
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10 m 2,5 m

5 m

2018.8 kN

F

F

g

p

Mmax

Figure 3.7: Maximum moment in crossbeam.

3.5 Mass moment of inertia of girder

In order to give a correct representation of the stiffening girder in an analysis program,
where the cross section will not be modelled as it is but as line segments with assigned
section properties, the mass moment of inertia (MOI) must be found. All masses, in
addition to the girder mentioned in the preceding sections that contributes with inertia
forces must be accounted for. The MOI is a property describing a body’s resistance to
angular acceleration. The definition of the MOI is as follows [12];

I =

�

m

r2dm (3.14)

Here the moment arm r is the distance from the axis to the element dm. Usually I
is calculated about the body’s mass centre G, defined as IG. The MOI of the girder,
calculated about an axis passing through the shear centre, is found by the use of the
parallel-axis theorem. This theorem states that if the MOI about an axis passing through
the body’s mass centre is known, then the MOI through an arbitrary parallel axis can
be determined. It can be shown that the MOI is equal to;

I = IG +md2 (3.15)

Where

• IG=moment of inertia about the axis passing through the mass centre

• m=mass of the body

• d=perpendicular distance between the two axes

The girder consists of plates welded together and stiffeners welded to the plates. Then
it is convenient to threat every part separately, i.e. calculating the MOI of each part
about it’s own axis and use the parallel-axis theorem to calculate the MOI about the
shear centre of the box-girder. When considering the stiffeners only the second term of
Equation 3.15 is evaluated, since the first term will be small. The results are given in
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Appendix A.5 , and the most important values are summed up in Table 3.1. Here the
values are given as units per length of one girder.

Table 3.1
Summary of cross section values.

Girder element
Mass m
(kg/m)

my�

(kgm/m)
mz�

(kgm/m)
I
(kgm2/m)

Longitudinal steel 4,173.4 9,072.2 4,755.8 51,454.9
Transvers bulkheads 494.6 2,347.2 494.5 5,167.0
Asphalt 1,631.0 9,555.8 3,321.1 14,507.1
Railing 153.0 548.3 397.8 1,515.3
Lower hanger attachment 43.0 0.0 86.0 954.1

Sum: 6,494.9 31,523.3 9,055.3 73,598.4

The centre of gravity (COG) of the girder including asphalt, railing etc. can be found by
the following equation [12];

z̄ =

�
mz��
m

ȳ =

�
my��
m

(3.16)

Here, z̄ and ȳ are related to the coordinate system (Y �,Z �), see Figure 3.4 on page 12.
Using the values from table 3.1, gives the following coordinates of the COG;

• z̄ = 1.39 m

• ȳ = 4.85 m

Table 3.2
Location of centre of gravity.

Coordinates
Center of gravity of girder

With additional mass
(m)

Calculated COG of
steel girder (m)

COG from
CrossX (m)

Difference
(m)

z̄ 1.39 1.14 1.09 -0.049
ȳ 4.85 4.57 4.4507 0.0005

As can be seen from Table 3.2 the COG from manual calculations almost coincide with the
values extracted from CrossX, with some error of about 5cm in vertical direction (without
additional mass). This also confirms that the theoretical calculations are reasonable.
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3.6 Estimation of hanger dimensions

The length of each hanger is equal to the distance between the girder and the cable. The
total weight of the hangers is calculated and then divided by the total span length to
get an even distributed load on the cable. This is not quite correct since the hangers
are longer near the pylons then at the middle of the bridge, but this is neglected. The
dimensioning is done in the ultimate limit state (ULS), and load factors have therefore
been used. With the dead load of the girder and full traffic load, and assuming that
the hangers must transfer all load a distance 20m between each hanger in longitudinal
direction, the force in each hanger are given from Equation 3.10 on page 16 as;

Nh = 2018.8kN (3.17)

The nominal tensile stress for the hangers are Fuk,h = 1,570 MPa [18]. The design tensile
stress FRd is given from Equation 3.18. Here the material factor γm is equal to 1.2 [21]
The required steel area of each hanger is then given by Equation 3.19;

FRd,h =
Fuk

1.5 · γm
=

1, 570

1.5 · 1.2 = 872.2MPa (3.18)

Ah =
Nh

FR

= 2314.6mm2 (3.19)

This will give a required diameter of Dh =
�

4Ah
π

= 54.3mm ≈ 0.054m. Choosing a value

of Dh = 0.05m since the loading is conservative. The distributed load per unit length of
hanger is;

mh = 15.4kg/m (3.20)

The total amount of steel from hangers needed is found from calculations in MATLAB
[36]. The quantities are given below.

• sumlh = 25054m: total length of hangers (one cable plane)

• Qmh = 386180kg (total quantity of hanger steel, one cable plane)

Assuming that the total weight of hanger steel is distributed evenly over the length of the
span gives a distributed mass over one box-girder as;

mm,h = Qmh/lm = 104.4kg/m (3.21)

19



3.7. Estimation of cable dimensions CHAPTER 3. PRELIMINARY DESIGN

3.7 Estimation of cable dimensions

In section 3.4 the total dead load of the girder was found. In order to find an approximate
cable dimension, dead load of the girder and traffic load over the entire span will be
assumed in the calculations. In addition the dead load from the hangers is given in
Equation 3.21 on the preceding page. The total dead load per box-girder, with a load
factor of 1.2, will be;

gEd = (mdl,g +mcb +mm,h) ∗ 9.81m/s2 ∗ 1.2
= (6502kg/m+ 84.8kg/m+ 104.4) ∗ 9.81m/s2 ∗ 1.2 ≈ 78768.8N/m (3.22)

Distributed load from traffic, when the assumption mentioned in Section 3.4.3 on page 15
with full traffic load in both national lanes and load factor 1.5, will be;

pEd = 3kN/m2 ∗ 6m ∗ 1.3 = 23400N/m (3.23)

An expression for the cable area required carrying all the dead load of the girder with
additional mass, the hangers and the weight of the cable itself is given in Equation 3.24
(neglecting any concentrated forces)[10]. This equation is based on the assumption that
the cable weight is distributed over the horizontal projection of the cable length. Clearly
this is not correct since the weight is distributed along the length of the cable, leading
to a higher dead load per meter horizontally near the towers. It is assumed that if this
bridge is to be constructed, a higher nominal tensile strength of the cable steel has been
developed. In the calculations it is assumed a nominal tensile strength of 1,850 MPa
compared to 1,770 MPa which is the maximum strength used today. This will give a
design tensile strength of the cables equal to FRd,c = 1,027.8 MPa.

Am =
(pEd + gEd)lm

�
l2
m
+ 16k2

m

8FRd,ckm − γcblm
�

l2
m
+ 16k2

m

(3.24)

Replacing gcb with gcm = gcb ∗ lc/lm gives a more precise representation of the total load of
the cable, but the difference is considerably small (2,6%). Equation 3.24 will then become;

Am =
(pEd + gEd)lm

�
l2
m
+ 16k2

m

8FRd,ckm − γcblc
�
l2
m
+ 16k2

m

(3.25)

The density is here given as γcb = ρcb · 9.81N/m3. Using the values found in Equations
3.22-3.23, the total area of steel required is found as;

Am = 0.8025m2 (3.26)
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This gives a diameter of Dm =
�

4Am
π

= 1.011m. Choosing a value of Dm = 1.0 m

since the assumption made regarding the loading have been conservative. This gives the
following distributed load along the cable as;

mcb =
π

4
D2

m
∗ ρcb = 6165.4 kg/m (3.27)

and the distributed load on the projected length as;

mcm = mcb ∗ lc/lm = 6326 kg/m (3.28)

3.8 Cable forces

The maximum cable forces can be determined assuming that all loads are distributed
uniformly in the entire span. The horizontal force can be found considering the midpoint
of the span where the sag is 370 m in the dead load condition. Then the system can
be described as a simply supported beam with distributed load, which gives a maximum
moment at midpoint as ql22/8. This moment must be balanced out by the horizontal cable
force with a moment arm of 370 m. Assuming dead load geometry when the bridge is
loaded with traffic, the horizontal force becomes;

Hm =
ql2

m

8km
+

gcml2m
8km

=
(g + p)l2

m

8km
+

gcml2m
8km

(3.29)

Where

• g = (6502kg/m+84.8kg/m+104.4) ∗ 9.81m/s2 = 65640N/m: Dead load of girder,
hangers and additional mass (without load factor)

• p = 3kN/m2 ∗ 6m = 18000N/m: Traffic load (without load factor)

• gcm = mcm ∗ 9.81m/s2 = 62058N/m

Hm =
(65640 + 18000 + 62058)N/m ∗ (3700m)2

8 ∗ 370m ≈ 673853.3kN (3.30)

The load would have been smaller if the deflected geometry was considered, leading to
larger cable sag. The horizontal force in the cable without the traffic load will be;

Hm =
(65640 + 62058)N/m ∗ (3700m)2

8 ∗ 370m ≈ 590603.3kN (3.31)

When the horizontal cable force is known, the maximum cable force can be found from
Equation 3.32 on the following page [12]. Maximum tension in the cable will occur where
the slope of the cable has it’s maximum, i.e. at the pylon top.
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Tmax =
(p+ g + gcm)lm

2

�

1 +

�
lm
4km

�2

≈ 725762.2kN (3.32)

This gives a stress of 924.1 MPa, which leads to a load/capacity ratio of 90% when using
the design tensile stress. Without the traffic load the maximum force will be;

Tmax = 636099 kN (3.33)

and accordingly a load/capacity ratio of 78.8%. The cable area should probably be in-
creased, but is considered satisfactory for our purpose.

3.9 Total mass of bridge

The total weight of the bridge is given in Table 3.3. Here the total mass of the bridge is
given with only dead loads, which will be compared to the bridge in the analysis model.
The backstays are not included here.

Table 3.3
Total mass of the main span: The distributed masses is given for one plane, while the total mass
is obtained by multiplying the distributed mass with the length of each element and a quantity
of 2.

Structural element
Diameter
(m)

Amount
Distributed mass
(kg/m) one plane

Mass
(tons)

Cable 1.0 2 6,165.4 46,812.7
Hangers 0.05 370 104.4 772.4
Girder 2 6,502 48,114.8
crossbeam 185 84.8 313.8

Total 12,856.6 96,013.6
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Chapter 4

Aeroelastic stability

4.1 Introduction

An important task when designing long span bridges is to insure that the vibrations due
to wind loads are within accepted limits. Especially at high wind speeds, phenomenon
such as galloping and flutter can be crucial and fatal to the construction. These self-exited
vibrations are caused by changes in the total stiffness and damping of the structure. After
the famous Tacoma Narrow bridge collapse, these phenomena has been subject to a lot
of research, especially flutter instabilities, which consist of coupling of vibration modes.

The central theory describing wind loads on bridges, causing these effects are the buffeting
theory. The total load can be described as a contribution from the mean wind velocity
in the main flow direction (V ), the velocity fluctuations u, v and w as well as motion in-
duced contributions. The fluctuations in the main flow direction is denoted u; v describes
fluctuations in the along structure direction while w describes the vertical fluctuations.
Directions are related to a horizontal line like structure with the main wind flow perpen-
dicular to the structure’s longitudinal axis (x-axis). As these fluctuating components are
stochastic variables they are functions both in space and in time. It is assumed that a
bridge describes a line-like structure, the wind field is stationary and homogeneous and
that the main flow direction is perpendicular to the longitudinal x-axis. The fluctuating
component in x-direction are of no interest, leaving the along wind and the across vertical
direction as the interesting parts. Basic assumptions in this theory is that the loads can
be calculated from the instantaneous velocity pressure, load coefficients are found in wind
tunnel experiments and a linearization of fluctuating parts will give acceptably accurate
results. Structural displacements and rotations are assumed small, and u, w are assumed
small compared to V [35]. The theory described is shown in Figure 4.1 on the following
page. Explanations of the given components are given below, and where any fluctuating
component can be described by a time invariant mean part and a zero mean fluctuating
part.

From Figure 4.1 on the next page it can be seen that the cross section is given a static
displacement r̄y(x), r̄z(x) and r̄θ(x). About this point the section oscillates with a dynamic
displacement ry(x, t), rz(x, t) and rθ(x, t). Components of displacement and distributed
forces can be written as;
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B* = 10 m 5 m
B = 25 m

D = 2 m

B* = 10 m

w-rz rz
Vrel ry

z

y

qL qz

q qD

qy

ry

rz

r

r + r

V+ u - ry

Figure 4.1: Representation of instantaneous flow, displacement and forces.

rtot(x, t) = r̄(x) + r(x, t), r̄(x) =
�
r̄y r̄z r̄θ

�T
, r(x, t) =

�
qy qz qθ

�T

q
tot
(x, t) = q̄(x) + q(x, t), q̄(x) =

�
q̄y q̄z q̄θ

�T
, q(x, t) =

�
qy qz qθ

�T
(4.1)

The cross sectional drag, lift and moment forces in the flow axis defined in Figure 4.1, are
given by;




qD(x, t)

qL(x, t)

qM(x, t)



 =
1

2
ρV 2

rel
·




D ·CD(α)

B ·CL(α)

B2 ·CM(α)



 (4.2)

The load coefficients describe non-linear curves dependent on the instantaneous oscillation
angle. A linearization of the load coefficients in Equation 4.2 gives the following linear
equations;




CD(α)

CL(α)

CM(α)



 =




CD(ᾱ)

CL(ᾱ)

CM(ᾱ)



+ αf




C �

D
(ᾱ)

C �
L
(ᾱ)

C �
M
(ᾱ)



 =




C̄D

C̄L

C̄M



+ αf




C �

D

C �
L

C �
M



 (4.3)

Here, ᾱ and αf are the mean value and the fluctuating part of the angle of incidence
respectively. C �

D
, C �

L
and C �

M
are the slopes of the load coefficient curves at the mean

angle ᾱ. The expression for the total load matrix can be found in [35] as;
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qy
qz
qθ





tot

= ρV

�
V

2
+ u− ṙy

�








DC̄D

BC̄L

B2C̄M



+

�
rθ +

w

V
− ṙz

V

�



DC �

D

BC �
L

B2C �
M



+ w−ṙz
V




−BC̄L

DC̄D

0










(4.4)

An expression on matrix form is given below. Higher order terms containing products of
quantities that are assumed small, are disregarded.

q
tot
(x, t) =




q̄y(x)

q̄z(x)

q̄θ(x)



+




qy(x, t)

qz(x, t)

qθ(x, t)



 = q̄ +Bq ·v +Cae · ṙ +Kae · r (4.5)

where
v(x, t) =

�
u w

�T
(4.6)

r(x, t) =
�
ry rz rθ

�T
(4.7)

q̄(x) =




q̄y

q̄z

q̄θ



 =
ρV 2B

2




(D/B)C̄D

C̄L

BC̄M



 =
ρV 2B

2
· b̂q (4.8)

Bq(x) =
ρV B

2




2(D/B)C̄D

�
(D/B)C �

D
− C̄L

�

2C̄L

�
C �

L
+ (D/B)C̄D

�

2BC̄M BC �
M



 =
ρV B

2
· B̂q (4.9)

Cae(x) = −ρV B

2




2(D/B)C̄D

�
(D/B)C �

D
− C̄L

�
0

2C̄L

�
C �

L
+ (D/B)C̄D

�
0

2BC̄M BC �
M

0



 (4.10)

Kae(x) =
ρV 2B

2




0 0 (D/B)C �

D

0 0 C �
L

0 0 BC �
M



 (4.11)

It is seen that the total load vector is compounded by a static part and a fluctuating
part. Some improvements have been made to make the buffeting theory suitable for a
modal frequency domain approach. Frequency dependent flow induced dynamic load has
been suggested to replace Bq from Equation 4.9, where frequency dependent admittance
functions has been added to account for characteristics of the cross section, see [35].
Secondly the contents of Kae and Cae has been replaced with aerodynamic derivatives,
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which are functions of the frequency of motion, the mean wind velocity and type of cross
section.

The self-excited forces can be approximated by solving Equation 4.4 on the preceding
page, disregarding any higher order terms and only looking at terms associating with rn

and ṙn, n ∈ {y, z, θ}. This gives the three force components;

qy,se =
1

2
ρV 2B

�
−2(D/B)C̄D

ṙy
V

− ((D/B)C �
D
− C �

L
)
ṙz
V

+ (D/B)C �
D
rθ

�

qz,se =
1

2
ρV 2B

�
−2C̄L

ṙy
V

− (C �
L
+ (D/B)C̄D)

ṙz
V

+ C �
L
rθ

�

qθ,se =
1

2
ρV 2B2

�
−2C̄M

ṙy
V

− C �
M

ṙz
V

+ C �
M
rθ

�
(4.12)

This theory arrived from the buffeting theory and also called the quasi-steady theory, is
applicable both in frequency domain as well as in time domain. As stated in Øiseth et al.
[26] the theory is only valid when the period of oscillation is high compared to the time of
the air flow to travel the distance across the section. Neither does the theory contribute
with torsional damping related with torsional motion terms, ṙθ. The improved theory,
as mentioned above, uses aerodynamic derivatives to describe Kae and Cae. The forces
associated with the aerodynamic derivatives are given in Sarkar et al. [29] as (see also [26]
and [5]);

qy,se =
1

2
ρV 2B

�
KP ∗

1

ṙy
V

+KP ∗
2

Bṙθ
V

+K2P ∗
3 rθ +K2P ∗
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ṙz
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ρV 2B
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ṙy
V
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ρV 2B2

�
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V
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4
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B

+KA∗
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ṙy
V

+K2A∗
6

ry
B

�

(4.13)

Here, K = (ωB)/V denotes the reduced frequency, B the total girder width, ω the circular
frequency of motion and P ∗

n
, H∗

n
, A∗

n
, n ∈ {1, 2, ..., 6} are the dimensionless aerodynamic

derivatives which are functions of the reduced velocity. The self-exited forces are due to
interaction of the wind flow and the structure. Aerodynamic derivatives are strictly de-
pendent on the geometry of the bridge girder and the reduced velocity, and they result in
modifying the structural damping and stiffness away from their mechanical counterparts
found from a zero-wind case. It’s notable from Equation 4.13 that H∗

1 and A∗
2 are the

aerodynamic damping in vertical and torsional motion respectively, as stated in Dyrbye
and Hansen [8]. Usually, the aerodynamic derivatives have been found trough experiments
done in wind tunnel tests of section models, and limited to vertical and torsional displace-
ments. I.e. the terms associated with the along wind motion must either be disregarded
or taken from the quasi-static theory, see [35]. They can found by comparing Equation
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4.10 and 4.11 on page 25 with Equation 4.14. The contents of Kae and Cae can be found
as [26, 35];

Cae(x) =
ρB2

2
ωi(V )




P ∗
1 P ∗

5 BP ∗
2

H∗
5 H∗

1 BH∗
2

BA∗
5 BA∗

1 B2A∗
2



 ,Kae(x) =
ρB2

2
ω2
i
(V )




P ∗
4 P ∗

6 BP ∗
3

H∗
6 H∗

4 BH∗
3

BA∗
6 BA∗

4 B2A∗
3





(4.14)

As shown in 4.14 the resonant frequency ωi(V ) is a function of the mean wind velocity
V. At V = 0, ωi is the natural-frequency in still air. When V �= 0 the aerodynamic
derivatives changes the total stiffness and damping of the structure, as mentioned above,
i.e. calculations involving the aerodynamic derivatives demands iterations.

4.2 Flutter phenomena

The flutter stability limit is defined as when the input from the motion-induced loads is
equal to the energy dissipated by structural damping. Flutter is characterized as a coupled
translational and twisting (torsional) motion that will occur when the natural frequencies
of vertical and torsional oscillations are close to each other and the torsional frequency is
higher than the vertical frequency. When the difference of natural frequencies are high,
coupled flutter will not occur but the critical oscillation will be pure torsional [10, 33, 35].
At, or in the vicinity of an instability limit the dominating forces are the motion-induced
loads. The flutter phenomena originally described the behaviour of thin airfoils but have
also found its application to suspension bridges. The coupling of vibration modes are
called classical flutter and will be discussed further in this thesis.

The structure consists of several modes of vibration, and some more dominating then
others. Vibrations occur as coupling between modes, and the modes that give coupling
has the largest deflections at the same part of the bridges. The first vertical symmetric
and first symmetric torsional modes are likely to couple since the largest deflection of
the modes occur at the same point of the bridge, namely the midpoint. On the other
hand it’s not likely that the first vertical symmetric and first torsional asymmetric mode
will couple since the torsional mode has small deflections where the vertical mode has
large deflections. The coupling and the shapes of the modes play an important role in
aeroelasticity and flutter considerations. The bridge will clearly have horizontal deflections
as well, but in most situations the vertical load/deflection and angular moment/rotation
will not couple significantly to the horizontal deflections. As the lengths of suspension
bridges are increasing, e.g. above 2 km, the horizontal deflections will be significant.
In these cases where modes of vertical, torsional and horizontal deflection couples may
become important [8]. To apply the theory mentioned in Section 4.1, the formulation must
include all terms of the aeroelastic loads (motion induced loads), i.e. the formulation must
include all the 18 different aerodynamic derivatives. Usually any horizontal deflections
of a section in a wind tunnel are neglected leaving only eight derivatives associated with
vertical deflection/velocity and torsional rotations/angular velocity left. I.e. H∗

n
, A∗

n
, n ∈
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{1, 2, 3, 4} are the only experimentally obtained coefficients. The remaining coefficients
H∗

n
, A∗

n
, n ∈ {5, 6} and P ∗

n
, n ∈ {1, 2..., 6} are usually taken from the quasi-steady theory

(or disregarded) by comparing Equation 4.14 on the previous page with Equations 4.10-
4.11, rendering;

P ∗
1 = −2C̄D
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�
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�
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�
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D

D
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��
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�
1
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�2

H∗
5 = −2C̄L

�
1

K

�
A∗

5 = −2C̄M

�
1

K

�
P ∗
2 = P ∗

4 = P ∗
6 = H∗

6 = A∗
6 = 0 (4.15)

4.3 Flutter equations

When finding an instability limit, so called flutter equations can be used to estimate the
critical mean wind velocity. These equations [8, 33, 35], are based on a modal approach
where the structural displacements are expressed as the sum of the products between
natural eigen-modes, ϕ

i
and time dependent generalized coordinates, ηi;

r(x, t) =
Nmod�

i=1




φy(x)

φz(x)

φθ(x)





i

· ηi(t) = Φ(x) ·η(t), Φ(x) =
�
ϕ1(x) ... ϕ

i
(x) ... ϕ

Nmod
(x)

�

η(t) =
�
η1(t) ... ηi(t) ... ηNmod

(t)
�T

, ϕ
i
(x) =

�
φy φz φθ

�T
i

(4.16)

Where φn, n ∈ {y, z, θ} describing the lateral, vertical and torsional displacements along
the bridge girder, respectively. Thus, it’s assumed that the output of the system can
be sufficiently described by an eigenvalue solution containing the necessary eigen-modes
and corresponding eigen-frequencies (natural frequencies). The eigen-modes and their
frequencies are usually extracted from a finite element method program (FEM), in this
thesis ABAQUS will we used. The FEM solution will give undamped natural frequencies
from a zero wind case. Axial displacements along the bridge girder are disregarded, since
this direction is not directly associated with any motion induced loads. From here, any
motion induced terms associated with structural acceleration is disregarded. Nmod is the
number of modes that has been chosen to give an accurately enough solution. Disregarding
the mean load in equation 4.1 on page 24 the total load can be written as;

q
tot

= q(x, t) + q
ae
(x, t, r, ṙ, r̈)

where





q(x, t) =

�
qy qz qθ

�T

q
ae
(x, t, r, ṙ, r̈) =

�
qy qz qθ

�T
ae

(4.17)

28



CHAPTER 4. AEROELASTIC STABILITY 4.3. Flutter equations

Introducing the relations mentioned in Equations 4.16 on the preceding page- 4.17 on the
facing page into the equilibrium equation will render Nmod modal equilibrium conditions;

M̃ 0 · η̈(t) + C̃0 · η̇(t) + K̃0 ·η(t) = Q̃(t) + Q̃(t, η, η̇, η̈) (4.18)

The modal flow induced load vector in the equation above is given by;

Q̃(t) =
�
Q̃1 ... Q̃i ... Q̃Nmod

�T

where Q̃i =

�

Lexp

(ϕT

i
· q)dx (4.19)

Here Lexp is the wind exposed length of the girder, usually set equal to the length, L.
M̃ 0 is the modal mass matrix; C̃0 is the modal damping matrix and K̃0 modal stiffness
matrix. Index zero indicates structural properties in vacuum or in a zero wind condition.
A Fourier transform of the aerodynamic modal load will render a Fourier amplitude given
by;

a
Q̃ae

= (C̃aeiω + K̃ae) ·aη (4.20)

Where C̃ae is the modal aerodynamic damping matrix and K̃ae represents the modal
aerodynamic stiffness matrix. The elements of C̃ae and K̃ae are given by;

�
C̃aeij

K̃aeij

�
=

�

Lexp

�
ϕ

T

i
·Cae ·ϕj

ϕ
T

i
·Kae ·ϕj

�
dx (4.21)

Performing a Fourier transform on both sides of Equation 4.18, gathering all terms asso-

ciated with structural motion on the left side and premultiply by K̃
−1

0 gives the following
relation;

aη(ω) = Ĥη(ω) ·aQ̂
(ω) (4.22)

where Ĥη(ω) is the non-dimensional frequency-response matrix while aη(ω) and a
Q̂
(ω)

are the Fourier amplitudes of η(t) and Q̂(t) respectively. The complete derivation of the
frequency-response matrix is given in [6, 35]. The inverse of the frequency-response matrix
is called the impedance matrix, and by studying the properties of this matrix any stability
limit can be found. When a structure becomes unstable the response will increase rapidly,
even for a small increase in the load. It is seen from Equation 4.22 that the response of
the system becomes infinitely large when the elements of the frequency-response matrix
becomes infinitely large, or when the value of the determinant to the impedance matrix
reaches zero.
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��det
�
Êη(ω, V )

��� = 0 (4.23)

The impedance matrix is defined as;

Êη(ω, V ) =

�
I − κae −

�
ω · diag

�
1
ωi

��2

+ 2iω · diag
�

1
ωi

�
· (ζ − ζ

ae
)

�
(4.24)

The determinant of the impedance matrix will give a solution with Nmod roots, each
representing a stability limit. The solution will contain complex quantities, giving two
conditions to be solved simultaneously;

Re
�
det(Êη)

�
= 0 and Im

�
det(Êη)

�
= 0 (4.25)

The search of an instability limit will demand iterations, finding a critical velocity Vcr

and the associated resonant (or critical) frequency ωr. All of the eigen-value solutions will
clearly give different stability limits, leaving the one with the lowest Vcr as the interesting
solution. Flutter is a coupling of vertical and torsional motion leaving two modes of
particular interest, one mode with a dominating φz component and the other containing
a dominating φθ component. The impedance matrix may then be reduced to a 2 by 2
matrix, given as;

Êη(ωr, Vcr) =

��
1 0

0 1

�
−

�
κaezz κaezθ

κaeθz κaeθθ

�
−

�
(ωr/ωz)2 0

0 (ωr/ωθ)2

�

+2i

�
ωr/ωz 0

0 ωr/ωθ

�
·
�
ζz − ζaezz −ζaezθ
−ζaeθz ζθ − ζaeθθ

��
(4.26)

Here, using that the two modes can be simplified to;

ϕ1(x) ≈
�
0 φz 0

�T

ϕ2(x) ≈
�
0 0 φθ

�T

�
(4.27)

The modes has the corresponding natural frequencies ω1 = ωz and ω2 = ωθ, modal
damping ratios ζ1 = ζz and ζ2 = ζθ , and modal mass given as m̃1 = m̃z and m̃2 = m̃θ.
The elements of the impedance matrix are;

κaezz =
ρB2
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(4.28)
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κaeθθ
=
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ζaezz =
ρB2
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ζaeθθ =
ρB4
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(4.31)

Flutter can only occur if the off diagonal terms of Equation 4.26 on the preceding page
are unequal to zero. When the diagonal terms are zero, stability problems describing
motion in either vertical direction (galloping) or in torsion (static divergence or dynamic
instability in torsion) may be identified from the first or second row of Equation 4.26
on the facing page. The following dimensionless coefficients are introduced to simplify
further calculations;

ψzθ =

�

Lexp

φzφθdx

�

L

φ2
z
dx

�

Lexp

φzφθdx

�

L

φ2
θ
dx

βz =
ρB2

m̃z

βθ =
ρB4

m̃θ

γ =
ωθ

ωz

and ω̂r =
ωr

ωθ

(4.32)

The coefficient ψzθ is a measure of the shape-wise similarity of the vertical and torsional
mode, where a value of unity describing two mode shapes that are identical, and on the
other hand dissimilar shapes as the value reaches zero. Shape-wise dissimilarity clearly
means that the off diagonal terms of Equations 4.28-4.31 equals zero, and static divergence
or galloping may occur. ω̂r is the reduced resonant frequency or the reduced critical
frequency when flutter occur. In the case of flutter the frequency of vertical and torsional
motion equals the resonant frequency, ωz = ωθ = ω̂r. Solving the determinant of real and
complex part of the impedance matrix, see Equation 4.25 on the preceding page, gives
the two following equations;

R4ω̂
4
r
+R3ω̂

3
r
+R2ω̂

2
r
+ 1 = 0 (4.33)

I3ω̂
3
r
+ I2ω̂

2
r
+ I1ω̂r + ζzγ + ζθ = 0 (4.34)

The real and imaginary coefficients are expressed as follows [8, 26, 35];
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(4.36)

Usually, Equation 4.33 and 4.34 are solved graphically by choosing values of the reduced
velocity, and finding the corresponding roots ω̂r when the equations equals zero. The
instability limit is found where the real and imaginary roots cross each other. The root
providing the lowest critical velocity is identified as the critical frequency. The critical
velocity is found from solving the equation below. The resonant frequency ωr is henceforth
referred to as the critical frequency ω̂cr

Vcr

ωθB
=

Vcr

ωcrB
· ω̂cr = Vcr,red ·

ωcr

ωθ

=⇒ Vcr = Vcr,red · ω̂cr ·ωθ ·B (4.37)

4.4 General eigenvalue problem

The flutter equations presented in Section 4.3 by Equations 4.33 - 4.34 were derived by
the assumption that coupling of only two modes contributes to the calculations of any in-
stability. Solving the determinant of the real and imaginary part of the impedance matrix
gives no direct physical interpretation. When solving an eigenvalue problem, the solution
is dependent on the number of modes chosen to describe the problem with sufficient accu-
racy. As before the structural displacements are represented with generalized coordinates
and natural eigen-modes, r(x, t) = Φ(x) ·η(t) which gives an exactly representation when
all the structural modes are included. Introducing this relation into the equation of mo-
tion, considering only aerodynamic forces, and premultiplying by the modal mass matrix
M̃ 0 the equilibrium equation is given by;
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η̈ + M̃
−1

0 ΦT (C0 −Cae)Φ · η̇ + M̃
−1

0 ΦT (K0 −Kae)Φ ·η = 0

=⇒ η̈ + M̃
−1

0 (C̃0 − C̃ae)η̇ + M̃
−1

0 (K̃0 − K̃ae) ·η = 0 (4.38)

The characteristic solution of the homogeneous equation above is given as;

η = η̂eλnt (4.39)

where η̂ is the amplitude vector. Introducing this solution into Equation 4.38 gives the
following quadratic eigenvalue problem;

�
λ2
n
+ λnM̃

−1

0

�
C̃0 − C̃ae(V,ω)

�
+ M̃

−1

0

�
K̃0 − K̃ae(V,ω)

��
η̂ = 0, n = 1, 2, ..., 2N

(4.40)

As before, M̃ 0, C̃0 and K̃0 denotes the Nmod by Nmod modal mass matrix, modal damp-
ing matrix and modal stiffness matrix respectively. C̃ae(V,ω) and K̃ae(V,ω) stands for
aerodynamic modal damping matrix and aerodynamic modal stiffness matrix respectively.
C̃ae(V,ω) and K̃ae(V,ω) are functions of the oscillation frequency ω, the wind velocity V
as well as the aerodynamic derivatives, see Equation 4.14 on page 27. It can be shown that
Equation 4.40 may be written as a complex eigenvalue problem given by, see Appendix
A.6 and [28];

(A− λI)ψ̂ = 0 (4.41)

where ψ̂ = [λnη̂
T

η̂
T ]T , and A is given as;

A =

�
−M̃

−1

0 (C̃0 − C̃ae) −M̃
−1

0 (K̃0 − K̃ae)

I 0

�
(4.42)

I is the Nmod by Nmod identity matrix, while 0 is a Nmod by Nmod matrix containing
only zeros. The solution gives 2N eigenvalues λn and corresponding eigenvectors ψ̂. N
is equal to the number of modes included in the eigenvalue problem. Each of the N
complex couples of conjugated eigenvalues can be written as λn = µn ± iωD, where ωD =
ωn

�
1− v2

n
is the damped circular frequency. µn = −vnωn where vn = −Re(λn)/ωn is the

damping ratio including both structural and aerodynamic damping. i is the imaginary
unit. If µn is negative (positive damping ratio) the system exhibit positive damping
and the solution converges exponentially (decay oscillation). On the other hand, when
µn is positive (negative damping ratio), the damping becomes negative and the solution
diverges and the response becomes infinitely large. I.e. when the real part of the complex
conjugated eigenvalues turn to a positive value (µn < 0) the system has reached a critical
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stage, identified as a stability limit. The wind velocity associated with this critical value
is termed the critical velocity. The associated frequency is termed the resonant or the
critical frequency. Since the flutter derivatives are functions of the frequency of motion
and the wind velocity, the eigenvalue problem has to be solved by an iterative process.
A solution of the eigenvalue problem will give a better understanding of the problem
since one can follow the development of the frequency and damping as the wind velocity
increases. Further descriptions of the eigenvalue problem is given in [2, 28]
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Chapter 5

Finite element model

5.1 Introduction

Based on preliminary calculations carried out in Chapter 3, a finite element model has
been created in order to find natural frequencies and mode shapes of the bridge. The
model is based on the finite element method, henceforth referred to as FEM , and created
by applying the computer program ABAQUS [34]. ABAQUS is an advanced tool and
can be used to model the simplest problems to the more demanding ones. The program
is suitable for static as well as dynamic problems and provides a good user interface,
making it well suited for most users regardless of simulation expertise. ABAQUS can
solve nonlinear as well as linear problems, but in this thesis only linear behaviour is
accounted for. I.e. linear material behaviour is assumed. The cables of suspension bridges
are highly non-linear elements. They can have large displacement even if the strains are
small (non-linear geometry). The geometric stiffness is the most important non-linearity
of suspension bridges since the bending stiffness of the cables practically equals zero.
This non-linear effect can be taken into account by specifying the NLGEOM option in
ABAQUS. The geometric stiffness of the cables will then be updated as the loading
is applied to the model. The first step in creating a model is to create the parts to
be included in the simulation. Elements and nodes build up the parts. The elements
will then be assigned properties such as stiffness and material properties. When all the
necessary parts are created, they are assembled together to one model to be included in
the simulation. As the last step boundary conditions, loads and other properties may be
assigned to the model before the analysis type is chosen. In this thesis a static analysis
will be used when applying load to the model, while an eigenvalue analysis will be used
to extract natural frequencies and mode shapes.

5.2 The ABAQUS model

The FEM -model is be based on calculations and geometry presented in Chapter 3. The
origin in the FEM -model is chosen to be in the shear center of the western girder on the
Lavik side, referred to as North (N), where the girders are supposed to be supported by
the pylons. The other end of the girders are supposed to be connected to the pylons on
Oppedal side, referred to as South (S). The axis parallel with the girders is denoted the
x-axis, positive from North to South. The vertical axis is denoted the y-axis and positive
in the upward direction. The horizontal lateral axis is denoted the z-axis and positive to
the East. As the preliminary design showed the main cable sag has been chosen to be
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km = 370 m, and are connected to the pylon tops at a vertical distance 402.3 m from
the origin. The two girders are connected with crossbeams at intermediate distance 20 m
along the span. The intermediate distance between hangers in one plane is also chosen
to be 20 m and are connected to the outer top edge of the girders. An illustration of the
geometry and coordinates used in ABAQUS is shown in Figure 5.1. The geometry of
the backstay cables has been varied during the analysis, but as a reference geometry the
projected height and length has been chosen as lbs = 350 m and hbs = 140 m respectively.
The curvature of the girders are modelled as presented in Section 3.1 on page 9, with a
maximum elevation 30.3 m of the shear centre in the girders, referred to the origin.

(0,402.3)
y(N) (S)

x(0,0)

(1850,32.3)

(3700,402.3)

(3700,0)

(1850,30.3)

km = 370 m
20 m

Figure 5.1: Coordinates and geometry used to model the bridge in ABAQUS. Red arrows
show the vertical y-axis and longitudinal x-axis.

5.3 Parts in the FEM-model: Geometry and proper-
ties

5.3.1 Stiffening girder

As presented in the preliminary design section, a separated box-girder has been chosen as
the stiffening girder. Thus, the stiffening girder will consist of two symmetric longitudinal
and identical girders spanning from (N) to (S). The girders are modelled as two continuous
beams with the mass and stiffness properties presented in Section 3.3 on page 11, extracted
from CrossX (see Appendix B.1 ) and repeated for convenience below. The girders are
given a generalized section assignment which means that the values below are implemented
and ABAQUS calculates the mass and the mass moment of inertia. ABAQUS then
renders a generalized beam section with properties equal to those of the real section, as
shown in Figure 5.2 on the next page.

• Area: A = 0.53175m2

• Second moment of inertia:

– Iy = 6.1704m4

– Iz = 0.37967m4

• Torsional moment of inertia: It = 0.99314 ∗ 1011m4
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• Material density: ρ =7850 kg/m3

• Location of shear centre:

– ys = 0.0136 m

– zs = 0.0488 m

Figure 5.2: Rendered beam profiles in the finite element model.

The hangers are connected to the outer edges of the girders. In order to model the hangers
as vertical elements, fictitious beams are modelled stretching from the shear centre in the
girders to the points where the hangers are connected to the girders. Dummy nodes
are introduced to model the connection between the hangers and girders. The same
procedure is followed when modelling the connection between the two box-girders and the
crossbeams. Two fictitious beams stretching from the shear centres to the points where
the crossbeam is welded to the girders. The fictitious beams are modelled as stiff members
with practically zero mass. Figure 5.3 on the following page shows the principles of this
modelling technique where the cross section is modelled as an own part. This configuration
is repeated for every 20 meters along the span. Blue circles specifies the shear centre of
the girders where distributed mass and MOI of additional masses has been lumped and
added. The cross section has been modelled in a local coordinate system, (x�, y�), and
transformed to the global coordinate system in the assembly. The girders are modelled
as a second order polynomial by specifying the supporting end points and the maximum
elevation point at the midpoint of the bridge. As for the girders, the crossbeams are given
a generalized section assignment by implementing the values extracted from modelling
the beams in CrossX, see Appendix B.2.

The approximate element size in the stiffening girder is chosen as 10 m. The type of
element chosen for the girders, fictitious beams and crossbeams are B33 elements, a 2-node
beam element with a cubic formulation. This element do not account for shear flexibility
(Euler Bernoulli beam theory) but are effective for modeling frame structures with slender
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B* = 10 m 5 m

B = 25 m

B* = 10 m

(0,0)
(4.5705,-0.9086) (10,-1.0) (15,-1.0) (20.4295,-0.9086)

(25.0,0.0)

Shear centre

Fictitious beam Cross beam

Shear centre

x’

y’

Figure 5.3: Cross section of girder. The cross section is modeled as an own part. Red circles
refer to the dummy nodes connecting the lower hanger attachments to the edge of the girders.
Blue circles refers to the shear centre in the girders, where also additional mass and MOI has
been added. Green lines refer to the fictitious stiff beams with zero mass. Black circles refer to
nodes representing the welded connection between the crossbeam and girders. All dimensions
are given in m.

members. This element was found to give accurate natural frequencies compared to e.g.
a B21 element, a 2-node linear beam member with shear deformations [34]. The findings
are based on an analysis carried out on a simply supported beam with cross sectional
height and width equal to 1 m and 3 m respectively. The length is chosen as L = 20 m.
The cross sectional properties are given below, and the element length is chosen as 0.5 m.

• Iy = 2.25 N/m2

• Iz = 0.25 N/m2

• It = 0.78999 N/m2

• A = 3 m2

• m = 23,550 kg/m

z

a = 3 m

b = 1 m

y

The analytical expression for the horizontal and vertical frequency for mode n is given as
[6];

ωn =
n2π2

L2

�
EI

m
(5.1)

Results from the analysis is given in Table 5.1 on the next page where the vertical, hori-
zontal and torsional frequencies extracted from ABAQUS are compared to the analytical
values. The analytic torsional frequency has not been presented, therefore the percent-
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age difference of the analysis using B21 elements has been given compared to the analysis
using B33 elements. As can be seen the analysis using B33 elements give accurate frequen-
cies compared with B21 elements, especially for lateral horizontal modes. Both elements
seem to give approximately the same torsional frequencies, but the difference increases for
higher modes. Based on these findings, B33 elements are used. An approximate element
size of 10 m is used for the stiffening girder.

Table 5.1
Natural frequencies given for a simply supported beam. The simulated values for different
element formulations are compared with the analytical values given for vertical and lateral
horizontal modes. V refers to the vertical modes, LH refers to the lateral horizontal modes, T
refers to torsional modes and H refers to the longitudinal horizontal mode.

Mode nr. Mode description
Analytical
(rad/s)

B33
(rad/s)

Error %
B21
(rad/s)

Error %

1 1st V 36.8 36.8 0.0 36.7 -0.4
2 1st LH 110.5 110.5 0.0 106.6 -3.5
3 2nd V 147.4 147.4 0.0 145.0 -1.6
4 1st T 284.2 284.0 -0.1
5 3rd V 331.6 331.6 0.0 320.0 -3.5
6 1st H 406.2 406.2 0.0
7 2nd LH 442.1 442.1 0.0 389.6 -11.9
8 2nd T 568.9 567.7 -0.2
9 4th V 589.4 589.5 0.0 554.6 -5.9
10 3rd T 854.4 850.4 -0.5
11 5th V 921.0 921.0 0.0 840.4 -8.8
12 3rd LH 994.7 994.7 0.0 780.3 -21.6

5.3.2 Cables

The main span cables has been modelled as curves describing a second order polynomial
based on the geometry given in Figure 5.1 on page 36, by specifying three points on the
curve. The lowest point on the curve is where the hangers are shortest, i.e. at midpoint
of the bridge 2 m above the top plate of the girders. B33 elements have been used to
model the cables, and the approximate element size is chosen to be 10 m. The equation
of the cable is given as follows, when specifying the origin in accordance with Figure 5.1;

ym =
4km
lm

x

�
x

lm
− 1

�
+ 402.3 (5.2)

The hangers are connected to the cables at nodes with a horizontal distance of 20 m along
the cable. The backstay cables have been modelled as straight elements, and have been
varied in different analysis. An approximate element size of 10 m has been chosen for the
main span cables, while for the backstay cables six elements has been chosen along each

39



5.3. Parts in the FEM-model CHAPTER 5. FINITE ELEMENT MODEL

cable. To insure that the cables are simulated with a small bending stiffness, the cable
area has been calculated such that the stiffness is 10 % of a circle with outer diameter
equal to 1 m found from the preliminary design. The second moment of area of a circle
with diameter 1 m is given as I0 = π/64 ·D4, where D is the diameter. The new stiffness
is then found to be;

Inew = 0.1 · I0 = 4.909 · 10−3m4 (5.3)

which gives a diameter of Dnew = 0.5623 m. The new elasticity modulus may then be
calculated by the following equation, assuming a modulus of elasticity equal to E =
205,000 N/mm2;

Enew =
EA

Anew

= 6.483 · 1011N/m2 (5.4)

The new density is then found when using the distributed mass, m = 6165.38 kg/m, along
the cable found from Equation 3.27;

ρny =
m

Anew

= 24, 827.5kg/m (5.5)

5.3.3 Hangers

As for the cables the hangers has been given a stiffness 10 % of a circle with outer
diameter 0.05 m found from the preliminary design. This gives a diameter of Dny = 0.028
m. Assuming, for simplicity, a modulus of elasticity E = 205,000 N/mm2 gives a modified
modulus of elasticity and density equal to that of the cables, see above. The modulus of
elasticity is usual 160,000 N/mm2 but results will not be affected significantly by using a
higher value. The hangers are modelled with one element for each hanger stretching from
the cable to the dummy nodes connecting them to the girders. B33 elements are used for
the hangers.

5.3.4 Pylons

In this thesis the pylons has been disregarded in the simulations and in the preliminary
design. This has been done because the primary purpose of the towers are to transfer the
vertical cable forces at the pylon top down to the ground, while the anchor blocks and
the backstay cable transfers the horizontal forces to the ground. The design process of
the pylons has been considered to time consuming and is left for further investigations.
This may have some effect on the simulation results, but they are regarded insignificant
in this thesis.

Table 5.2 on the next page below summarize the properties of the different components of
the bridge. I1 denotes the second moment of area about the strong axis, while I2 denotes
the second moment of area about the weak axis. Other parameters used during analysis
are listed below.
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• Thermal expansion coefficient: α = 1.2E−5 1/K

• Gravity acceleration: 9.81 m/s2

Table 5.2
Equivalent properties of bridge elements in ABAQUS. Not all values needs to be implemented.

Bridge
component

Properties

ρ (kg/m) A (m2) D (m) I1 (m4) I2 (m4) It (m4) E (N/m2)

Crossbeams 7,850 0.08630 0.0456 0.00778 0.02153 2.05 · 1011

Girders 7,850 0.53175 6.1704 0.37967 0.99314 2.05 · 1011

Cables 24,827.5 0.24833 0.562 4.909 · 10−3 4.909 · 10−3 6.483 · 1011

Hangers 24,827.5 6.158 · 10−4 0.028 3.068 · 10−8 3.068 · 10−8 6.483 · 1011

5.3.5 Boundary conditions and interactions

The boundary conditions have been changed in different analysis to see how this effects the
results for natural frequencies and mode shapes. The boundary conditions for the cables
are the same in all analysis that has been carried out. The boundary condition for a
reference analysis is given in the list below. To model the connections between the girders
and fictitious beams in the cross section, an option called TIE is specified in each of these
points. This option creates a constraint where all translational and rotational degree of
freedoms of two nodes will be the same. I.e. the connection represents a moment stiff
connection. The same option is used where the lower hanger attachments are connected
to the dummy nodes of the girders.

• Girder supports: The girders are simply supported at each end, i.e. translational
degree of freedoms are prevented. No rotational degree of freedoms prevented.

• Cables at pylon top: In the points where the pylon tops should be, the translational
degree of freedoms in lateral horizontal direction and vertical direction are prevented.
I.e. the cables are free to move in longitudinal direction, and also free to rotate.

• Backstay anchor: All translational degree of freedoms are prevented.

5.3.6 Main geometrical characteristics

The main geometrical characteristics of the bridge are summed up in Table 5.3 on the
following page.
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Table 5.3
Main geometrical characteristics of the bridge.

Main span length lm = 3,700 m
Tower height from origin ht = 402,3 m
Height from sea level to girders hg = 75 m
Main cable sag km = 370 m
Number of hangers in main span nh = 370
Girder width B∗ = 10.0 m
Girder height D = 2.0 m
Shortest hanger lh,min = 2 m
Distance between cable planes B = 25 m

5.4 Applying load

Since a suspension bridge is a relatively flexible structure and the only stiffness in the
cables are the geometric stiffness, non-linear geometry must be used. In all the analysis
steps, non-linear geometry is taken into account by the NLGEOM option. This im-
plies that the deformations are considered in every load increment, and insures that the
geometric stiffness is introduced in the cables.

5.4.1 Modeling of mass

In addition to the mass and MOI from the stiffening girder itself, the mass and MOI (or
rotary inertia) of non-constructional elements must be added to the model. These elements
contribute significantly and affect the mass matrix. Such elements are e.g. asphalt,
railing, lower hanger attachments etc. They have been mentioned in Chapter 3 where the
distributed mass and MOI were found. The additional values must be specified as point
mass (or lumped mass) with specification of the MOI about the three coordinate axises.
The values given in Table 3.1 on page 18 are distributed values along one girder. They are
repeated for convenience in Table 5.4 on the facing page where also the total lumped mass
and MOI has been calculated. The total mass is found by multiplying the distributed
mass by 20 m. The MOI about the longitudinal axis, I11 is found by multiplying the
distributed value by 20 m. The total MOI about the vertical and lateral axis, I22 and I33
respectively is found by applying the formula I = 1/12 ·m ·L3, where L is the distance
between the hangers in one plane. Bold values are specified in each of the part illustrated
in Figure 5.3 on page 38 , and in each of the two shear centres indicated by blue circles.
I.e. the bold values are specified at every 20 m along the girder, and in each of the two
parallel girders.

An alternative procedure has also been tested in one of the analysis. Instead of modelling
the girders as continuous generalized beams with mass, they have also been modelled
as massless beams but with the mass specified as lumped mass every 20 m and with
rotary inertia as described above. This has been done in order to see if the results change
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Table 5.4
Mass and MOI of non constructional elements added in the FEM -model. Bold values are
implemented in the model. I11: MOI about the x-axis. I22: MOI about the y-axis. I33: MOI
about the z-axis.

Additional elements
Mass m
(kg/m)

M
(kg)

I �11
(kgm2/m)

I11
(kgm2)

I22
(kgm2)

I33
(kgm2)

Transvers bulkheads 494.6 9,892.0 5,167.0 103,340.0 329,733.3 329,733.3

Asphalt 1,631.0 32,620.0 14,507.1 290,142.0 1,087,333.3 1,087,333.3

Railing 153.0 3,060.0 1,515.3 30,306.0 102,000.0 102,000.0

Lower hanger
attachment

43.0 860.0 954.1 19,082.0 28,666.7 28,666.7

Total 2,321.6 46,432.0 22,143.5 442,870.0 1,547,733.3 1,547,733.3

significantly. Table 5.5 shows the values implemented when this procedure has been
followed.

Table 5.5
Mass and MOI of girder elements added in the FEM -model. Bold values are implemented in
the model. I11: MOI about the x-axis. I22: MOI about the y-axis. I33: MOI about the z-axis.

Additional elements
Mass m
(kg/m)

M
(kg)

I �11
(kgm2/m)

I11
(kgm2)

I22
(kgm2)

I33
(kgm2)

Longitudinal steel 4,173.4 83,468.0 51,454.9 1,029,098.0 2,782,266.7 2,782,266.7

Transvers bulkheads 494.6 9,892.0 5,167.0 103,340.0 329,733.3 329,733.3

Asphalt 1,631.0 32,620.0 14,507.1 290,142.0 1,087,333.3 1,087,333.3

Railing 153.0 3,060.0 1,515.3 30,306.0 102,000.0 102,000.0

Lower hanger
attachment

43.0 860.0 954.1 19,082.0 28,666.7 28,666.7

Total 6,495.0 129,900.0 73,598.4 1,471,968.0 4,330,000.0 4,330,000.0

5.4.2 Dead load

The geometry modelled in the FEM -model is equal to the geometry in real life with all
dead load acting on the bridge. The only real load given to the model is the gravity
force. When introducing the gravity force in the model, the bridge will deform and the
sag of the cables will be larger. At the same time the deformation in the main span
will cause displacements where the main span cable and backstay cable meet (at pylon
top). Introducing a fictitious contraction force in the cable system by applying a negative
temperature field throughout the cables counteracts these deformations. Several attempts
have been carried out in order to get the geometry equal to the initial. The final model
was found to have a geometry that deviated slightly from the initial but this have been
considered negligible.
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The total mass of the bridge extracted form ABAQUS was found to be;

Mtot,ABQS = 1.055 · 108kg = 105, 529ton = 1.035 · 106kN (5.6)

Subtracting the weight of the backstay cables, the weight of the main span in the FEM -
model is approximated to be, with a projected height and length of the backstay cables
as 140 and 350 respectively;

Mmain = 105, 529ton−
√
1402 + 3502 ∗ 6165.4 · 4/1000ton = 96, 233ton (5.7)

This is about 0.2 % higher then the value found from analytical calculation, see Table 3.3
on page 22. This may be due to some inaccuracy in geometry and mass specified in the
model but this difference is of no significant importance. The maximum force in the cables
are found from ABAQUS where the backstay cables and main span cables meet;

Tmax = 629266kN (5.8)

This will give a stress in the cables equal to;

σ =
Tmax

Acable

= 801.2MPa (5.9)

The maximum tension force given in Equation 3.33 on page 22, Tmax = 636,099 kN , gave
a stress of σ = 809.9MPa. This is only about 1 % higher and confirms that the finite
element mode agrees well with the theoretical calculations. The load/capacity ratio when
using the nominal tensile strength, FRd = 1,850 MPa, will then be 43.3 %.

5.4.3 Other loading

In this thesis the focus has been on the aeroelastic stability limit in strong wind found
by a frequency domain approach. Any response calculations have not been considered,
i.e. only the static loading mentioned above has been introduced in the model. Other
loading such as earthquake loads, traffic loads and wind loads has not been introduced in
the model, but must be part of further investigations. Vortex shedding is an important
phenomenon that occurs at lower wind speeds due to interaction between the bridge girder
and the wind flow. This phenomenon will not cause structural failure since the oscillations
are self-destructive, but may cause unacceptably large oscillations in a serviceability state
and are also left for further investigations.
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Results from Finite element model

The main purpose of the finite element model is to find the mode shapes and the corre-
sponding natural frequencies obtained from a zero wind case. These outputs are essential
in order to calculate the stability limit of the suspension bridge where the mode shapes
and frequencies goes directly into the equation system presented in Section 4.4. In the
ABAQUS model it’s easy to change parameters and see how these changes effects the
results. In the following these changes are analysed and described more thoroughly.

The mode shapes can be categorized into symmetric and antisymmetric (asymmetric)
modes. The symmetric modes are symmetric about the midpoint of the bridge, while
the asymmetric modes are unsymmetrical about the midpoint. The modes of the bridge
are represented by horizontal (lateral) and vertical deformations as well as deformations
due to rotation of the girder about the longitudinal axis (x-axis). In the ABAQUS model
nodes in the middle of every crossbeam has been chosen as points where displacements
and rotations are extracted.

In order to compare displacements due to torsional rotation of the girder with vertical
and lateral displacements, the rotations about the x-axis has been multiplied with half the
width between the cable planes. Asymmetric modes can be identified as modes that meet
the condition

�
l

0 wdx = 0 in the cables and produces no overall additional tension in the
cables. Here, w is the distributed weight of the cable and l is the length of the span [13].In
symmetric modes additional tension will be produced in the cables. The displacements
calculated in ABAQUS in an eigenvalue analysis have been normalized such that the
maximum displacement in the bridge is set to unity. A pure torsional motion of the girder
will then be identified with a vertical displacement at the end of the girder, or vertical
displacement of the cables, equal to ±1.Some modes presented in the following shows
displacements of the girder lower than ±1, which means that the maximum displacement
will occur in the cables, or the pylons if they where modelled.

6.1 Discription of analysis

Several analyses have been carried out to see the effects on the natural frequencies and
mode shapes. The reference analysis is identified as a total symmetric model where the
boundary conditions of the girder are equal on both sides. The mode shapes presented
in the following are extracted from the reference run since this configuration will show
displacements that are symmetric in absolute value about the midpoint on the bridge.
The different analyses are shortly presented below.

45



6.1. Discription of analysis CHAPTER 6. ABAQUS RESULTS

Analysis 1: Reference analysis. Girder is fixed in all translational degree of freedoms
(DOFs). The girders are free to rotate about all axes. At the points where
the pylon tops should be, the translational DOF in the longitudinal direction
is free. The backstay cables are modelled with an initial slope at the pylon
top equal to that of the main span cable. The vertical projected height
from the end supports of the backstay cables to the pylon top supports has
been chosen as 140 m.

Analysis 2: Same configuration as the reference run but with modified end supports
of the girder. The girder supports at Oppedal side are free to move in
longitudinal direction. This configuration is often used in bridges to prevent
compression forces due to a thermal expansion of the girder. This will affect
the stiffness of the bridge as the girder becomes more flexible.

Analysis 3: Same configurations as the reference run, but rotational DOFs about the
lateral axis (z-axis) is prohibited. This configuration can be chosen when
differences in curvatures at the girder ends between the girder and the
oncoming road are unwanted.

Analysis 4: In this run the modelling technic of the girders is changed. Instead of
modelling the girders as continuous beams with distributed mass, they have
been modelled as massless beams, but with the mass lumped at every 20
meters, see Table 5.5 on page 43.

Analysis 5: In this analysis the horizontal projected length of the backstay cable has
been changed. Two analyses has been performed with the same projected
height of the backstay cables as for the reference run, i.e. the slope of the
cable is different on each side of the pylon top. The projected length is
chosen as 555 m and 740 m, i.e. a backstay/main span ratio of 0.15 and
0.2 respectively. Two other analysis has been performed with projected
lengths of 555 m and 740 m but now with an initial slope equal in the main
span and in the backstays. This results in a larger projected height of the
backstay cable. The boundary conditions are the same as the reference run.
Table 6.1 shows the configurations from the analyses.

Table 6.1
Configurations regarding Analysis 5.

Analysis description Span ratio Projected length (m) Projected height (m)

5 a) 0.2 740 140
5 b) 0.15 555 140
5 c) 0.2 740 296
5 d) 0.15 555 222
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6.2 Natural frequencies

6.2.1 Classification of modes

In order to separate modes from each other, the modes have been classified into horizon-
tal, vertical and torsional modes. Each class has then been divided into symmetric and
asymmetric modes. The 3 first modes within symmetric and asymmetric modes has been
found and presented in the following. This means that a total of 18 modes of vibration
will be shown. The following notation has been used to describe the mode shapes;

• Class 1

– 1st HS: First Horizontal symmetric

– 2nd HS: Second Horizontal symmetric

– 3rd HS: Third Horizontal symmetric

– 1st HA: First Horizontal asymmetric

– 2nd HA: Second Horizontal asymmetric

– 3rd HA: Third Horizontal asymmetric

• Class 2

– 1st VS: First Vertical symmetric

– 2nd VS: Second Vertical symmetric

– 3rd VS: Third Vertical symmetric

– 1st VA: First Vertical asymmetric

– 2nd VA: Second Vertical asymmetric

– 3rd VA: Third Vertical asymmetric

• Class 3

– 1st TS: First Torsional symmetric

– 2nd TS: Second Torsional symmetric

– 3rd TS: Third Torsional symmetric

– 1st TA: First Torsional asymmetric

– 2nd TA: Second Torsional asymmetric

– 3rd TA: Third Torsional asymmetric

47



6.3. Mode shapes CHAPTER 6. ABAQUS RESULTS

6.2.2 Results

The natural frequencies extracted from ABAQUS is shown in Table 6.2 on the facing page
for the first four analysis. Here, a total of 18 modes are presented (6 horizontal, 6 vertical
and 6 torsional modes). Analysis 2-4 are compared to Analysis 1. The number in front
indicates how many sinus half waves the mode consists of. Because of this there are several
modes that could be classified in the same way. As can be seen the biggest discrepancy
in natural frequencies are for the horizontal modes in Analysis 2, were a slide bearing is
introduced at one of the end supports. This leads to a more flexible structure laterally,
and the frequencies decrease. Some changes in torsional frequencies can also be seen. No
significant changes are seen for the vertical modes accept for the 1stV A. This may be due
to the horizontal displacements of the cables in vertical asymmetric modes, and since the
girder will not constrain any movement longitudinally in this analysis, the frequency will
be reduced. For the other analysis the changes are insignificant, but some small changes
are seen for Analysis 3 where the frequencies increase for some vertical modes. This is
because rotation about the lateral axis is prevented. The stiffness is increased in vertical
direction causing a slightly increase in natural frequencies. Analysis 4 shows the results
from the analysis where all mass in the girder are lumped in the shear centre and rotary
inertia specified. As can be seen the two modelling techniques presented in this thesis
produce the same results.

From Analysis 1 a total of 35 vibration modes with corresponding undamped natural
frequencies has been extracted. The results are shown in Table 6.3 on page 50. Expla-
nations of the modal shapes are given since many modes consist of a coupling between
motions in different directions. As can be seen all the torsional modes are coupled with
lateral deformations. All the horizontal modes given in Table 6.3 are coupled with the
cables, and can be seen in Figures 6.7 on page 55 to 6.8 on page 56.

In Table 6.4 on page 51 the frequencies extracted for Analysis 5 are shown for the 15
first modes and compared with Analysis 1. Generally it can be seen the frequencies
changes most for the two first vertical symmetric modes, indicated by mode 5 and 9.
This is because the vertical symmetric modes introduce additional tension as mentioned
earlier. And since the backstays are longer in these analyses the cables are more flexible
when tension is introduced. This will reduce the natural frequencies. It can be seen that
Analysis 5c) and 5d) cause a higher reduction in frequencies compared to Analysis 5a)
and 5b) respectively, and this is probably because the length of the backstay cables are
longer in these analysis. One torsional mode shows the same magnitude of change in
frequencies as mode 5 and 9 , identified as a 2ndTS mode (mode 14).

6.3 Mode shapes

6.3.1 Coupling of modes

In Figure 6.1 on page 52 to 6.6 on page 55 the modes extracted from ABAQUS is plotted
for Analysis 1. The 18 modes mentioned in Section 6.2.1 are presented. Each plot shows
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Table 6.2
Natural frequencies for the 18 modes representing horizontal, vertical and torsional motion of
the girder. The modes are separated as symmetric and asymmetric. Results are shown for the
first four analyses where the percentage differences are given compared to Analysis 1. Values
in parenthesis refer to the mode number. The empty cells indicated that any mode shape was
difficult to find for this class.

Mode Description
Analysis1 Analysis2 Analysis3 Analysis4

Natural
frequency
ωi (rad/s)

ωi % ωi % ωi %

1st HS (1) 0.185 0.179 -3.2 0.185 0.0 0.185 0.0

2nd HS (4) 0.427 0.395 -7.5 0.427 0.0 0.427 0.0

3rd HS (11) 0.721 – – 0.721 0.0 0.721 0.0

1st HA (2) 0.321 0.295 -8.1 0.321 0.0 0.321 0.0

2nd HA (6) 0.572 0.541 -5.4 0.572 0.0 0.572 0.0

3rd HA (17) 1.003 0.968 -3.5 1.003 0.0 1.003 0.0

1st VS (5) 0.492 0.492 0.0 0.493 0.2 0.492 0.0

2nd VS (9) 0.686 0.683 -0.4 0.686 0.0 0.686 0.0

3rdVS (15) 0.921 0.919 -0.2 0.923 0.2 0.921 0.0

1st VA (3) 0.408 0.403 -1.2 0.408 0.0 0.408 0.0

2nd VA (12) 0.727 0.725 -0.3 0.728 0.1 0.727 0.0

3rdVA (18) 1.085 1.082 -0.3 1.088 0.3 1.085 0.0

1st TS (11) 0.721 0.720 -0.1 0.721 0.0 0.721 0.0

2nd TS (13) 0.772 0.747 -3.2 0.772 0.0 0.772 0.0

3rd TS (22) 1.232 1.224 -0.7 1.232 0.0 1.232 0.0

1st TA (10) 0.720 0.701 -2.6 0.720 0.0 0.720 0.0

2nd TA (21) 1.224 1.192 -2.5 1.224 0.0 1.223 0.0

3rd TA (33) 1.723 1.713 -0.6 1.724 0.1 1.723 0.0

the horizontal, vertical and torsional component of the deformation along the girder. The
results show that coupling between horizontal motion and torsional motion is present in
most of the modes except from the vertical modes. In some cases there are more than one
mode that have the same amount of sinus half waves in the same class, as indicated in
Table 6.3, but will show different degree of coupling between directions. The amplitudes
are plotted as a function of the reduced length of the girder, i.e. L(x)/L. The deformations
are labelled as follows;

• H: Horizontal (lateral)
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Table 6.3
First 35 undamped vibration modes of the structure with corresponding natural frequencies,
and description of the modal shape for Analysis 1.

Structural modes

Mode nr. ωi (rad/s) Modal shape

1 0.1849 1st HS
2 0.3207 1st HA
3 0.4077 1st VA
4 0.4274 2nd HS
5 0.4924 1st VS
6 0.5719 2nd HA
7 0.6445 1st Cable
8 0.6528 2nd Cable
9 0.6863 2nd VS
10 0.7201 2nd HA + 1st TA
11 0.7207 3rd HS + 1st TS + Cables
12 0.7265 2nd VA
13 0.7720 3rd HS + 2nd TS
14 0.8139 2nd TS + 3rd HS
15 0.9210 3rd VS
16 0.9507 1st TA + 3rd HA
17 1.0027 3rd HA
18 1.0847 3rd VA
19 1.1266 3rd Cable
20 1.1630 4th Cable
21 1.2235 3rd HA + 2nd TA
22 1.2318 4th HS + 3rd TS
23 1.2570 4th HS + 2nd TS
24 1.2625 4th VS
25 1.2689 3rd TS + 4th HS
26 1.4003 2nd TA + 3rd HA + Cables
27 1.4307 4th VA
28 1.5218 4th HA + 2nd TA
29 1.5741 5th Cable
30 1.6011 5th VS
31 1.6493 3rd TS
32 1.6655 6th Cable
33 1.7230 4th HA + 3rd TA
34 1.7280 5th HS + 3rd TS
35 1.7641 5th VA

• V: Vertical

• T: Torsional
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Table 6.4
Comparison between Analysis 1 and Analysis 5 for the 15 first modes. Results show the natural
frequencies of each analysis, and the results for Analysis 5 are compared with Analysis 1 by
giving the percentage change in natural frequencies.

Mode nr.
Analysis1 Analysis 5a) Analysis 5b) Analysis 5c) Analysis 5d)

Natural
frequency
ωi (rad/s)

ωi % ωi % ωi % ωi %

1 0.1849 0.1846 -0.16 0.1852 0.16 0.1852 0.16 0.1850 0.05
2 0.3207 0.3201 -0.19 0.3213 0.19 0.3214 0.22 0.3210 0.09
3 0.4077 0.4070 -0.17 0.4080 0.07 0.4078 0.02 0.4077 0.00
4 0.4274 0.4264 -0.23 0.4281 0.16 0.4280 0.14 0.4276 0.05
5 0.4924 0.4819 -2.13 0.4881 -0.87 0.4789 -2.74 0.4860 -1.30
6 0.5719 0.5710 -0.16 0.5728 0.16 0.5729 0.17 0.5723 0.07
7 0.6445 0.6442 -0.05 0.6449 0.06 0.6448 0.05 0.6447 0.03
8 0.6528 0.6524 -0.06 0.6532 0.06 0.6451 -1.18 0.6530 0.03
9 0.6863 0.6531 -4.84 0.6696 -2.43 0.6532 -4.82 0.6639 -3.26
10 0.7201 0.7130 -0.99 0.7179 -0.31 0.7110 -1.26 0.7164 -0.51
11 0.7207 0.7195 -0.17 0.7208 0.01 0.7209 0.03 0.7204 -0.04
12 0.7265 0.7255 -0.14 0.7275 0.14 0.7275 0.14 0.7269 0.06
13 0.7720 0.7684 -0.47 0.7719 -0.01 0.7690 -0.39 0.7708 -0.16
14 0.8139 0.7976 -2.00 0.8062 -0.95 0.7956 -2.25 0.8033 -1.30
15 0.9210 0.9163 -0.51 0.9204 -0.07 0.9182 -0.30 0.9192 -0.20

In ABAQUS the horizontal lateral component is along the z-axis. The vertical compo-
nent is along the y-axis while the torsional rotation is referred to as rotation about the
longitudinal x-axis.

Horizontal modes

Figure 6.1 to 6.2 on the next page shows that the presented horizontal modes are coupled
with torsional motion. Accept from the third horizontal symmetric mode this coupling is
insignificant. It can be seen that the maximum displacement in the third horizontal mode
is less than unity. This means that also a coupling with the cables is present, and that
the maximum displacement occurs in the cables. The plotted modes are those given in
Table 6.2. A three-dimensional representation of these modes is given in Appendix D.1.

Vertical modes

Figure 6.3 on page 53 to 6.4 on page 53 shows that no coupling is present in the vertical
modes. All vertical modes have the largest displacement in the girder and the cables since
the girder and cables will share the same motion. The plotted modes are those given in
Table 6.2. A three-dimensional representation of these modes is given in Appendix D.2.
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Figure 6.1: Horizontal symmetric modes.
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Figure 6.2: Horizontal asymmetric modes.
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Figure 6.3: Vertical symmetric modes.
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Figure 6.4: Vertical asymmetric modes.
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Torsional modes

Figure 6.5 to 6.6 on the next page shows that coupling between horizontal and torsional
motion is present in every mode presented. The vertical displacement due to rotation
of the stiffening girder refers to the point where the hangers are attached to the bridge
girder, i.e. 12.5 m from the centre of the crossbeam. Note that the torsional modes here
are not necessarily those listed in Table 6.2. The symmetric modes 2ndTS and 3rdTS in
the figures represents mode 14 and 31 respectively. The asymmetric modes 1stTA and
2ndTA represents mode 16 and 26 respectively. This has been done because these modes
show larger amplitudes and are more illustrative, and the number of half waves are equal.
A three-dimensional representation of these modes is given in Appendix D.3.
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Figure 6.5: Torsional symmetric modes.

6.3.2 Coupling between cables and girder

In this section the coupling between the cables and the girder is shown. The horizontal
motion of the cables are extracted from the eigenvalue analysis in ABAQUS and compared
to the horizontal motion of the girder. Figures 6.7 and 6.8 on page 56 shows that the
largest displacement occur in the girder in all the 6 modes accept from the third horizontal
symmetric mode. It’s also noticeable that the shapes of the girder and the cables are equal
only for the first horizontal symmetric and asymmetric modes.
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Figure 6.6: Torsional asymmetric modes.
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Figure 6.7: Coupling between cables and horizontal symmetric motion of the girder.
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Figure 6.8: Coupling between cables and horizontal asymmetric motion of the girder.

6.4 Effective mass in response calculation

When calculating the response of a structure, it is convenient to use modal frequency
analysis due to its efficiency. The modal approach can approximate the response by using
only a small number of modes. For large structures, including many modes can be com-
putationally expensive. Therefore it is important to understand which modes contribute
most to the overall response. The mode shapes presented in the previous section says
nothing about the response since the modal displacements are scaled and only shows how
the structure will deform at natural frequencies. A method to understand the response is
by studying the modal effective mass. The modal effective mass associated with each
mode represents the amount of effective mass participating in the mode, compared to the
total effective mass in the respective direction. Large modal effective mass compared to
the total effective mass will contribute significantly to the response [6]. In ABAQUS the
modal effective masses are calculated during the eigenvalue analysis step.

Figure 6.9 on the next page shows the percentage of modal effective mass for the first 35
modes compared to the total effective mass in vertical translational direction. The results
are given for Analysis1. It is seen from the figure that the three highest peaks, identified
as modes 5, 9 and 15, contributes most to response in vertical direction. In this thesis the
focus is on stability of a suspension bridge but the effective mass can be helpful when
interpreting the modes of the structure. The modes 5, 9 and 15 are also identified as the
three first vertical symmetric (V S) modes, see Table 6.2 on page 49. I.e. the V S modes
contributes most to any response in vertical direction.
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Figure 6.9: Modal effective mass for vertical translation. The modal effective mass is given for
the first 35 modes. The percentage modal effctive mass contribution of each mode to the total
effective mass for translation in vertical direction is shown. The first four peaks are identified
as mode 5, 9, 15 and 24 respectively. The four modes contributes with more than 96 % of the
total effective mass.

Figure 6.10 shows the percentage of modal effective mass for the first 35 modes compared
to the total effective mass in translational lateral direction. The three highest peaks,
identified as mode 1, 4 and 11 respectively, contributes most to lateral response. These
modes are found to be the three first horizontal symmetric modes. It can be seen that
the 1stHS mode contributes alone with over 80 % to any response in lateral direction.
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Figure 6.10: Modal effective mass for horizontal (lateral) translation. The modal effective
mass is given for the first 35 modes. The percentage modal effective mass contribution of each
mode to the total effective mass for translation in horizontal direction is shown. The three first
peaks are identified as mode 1, 4 and 11 respectively. The three modes contributes with more
than 92 % of the total effective mass.

Figure 6.11 on the following page shows the percentage of modal effective mass compared
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Figure 6.11: Modal effective mass for rotation about the longitudinal axis. The modal effective
mass is given for the first 35 modes. The percentage modal effective mass contribution of each
mode to the total effective mass for rotation about the longitudinal axis is shown. The two
highest peaks are identified as mode 1 and 11 respectively. The two modes contributes with
about 58% of the total effective mass.

to total effective mass for rotation about the x-axis. The two highest peaks are identified
as mode 1 and 11, i.e. the first horizontal symmetric mode and the third horizontal
symmetric mode (or the first torsional symmetric mode) respectively. As can be seen
there are several other modes that contributes to rotation about the x-axis, and these
modes are identified as a coupling between horizontal and torsional motion.

It has been shown that the asymmetric modes do not contribute that much to lateral
response as the symmetric modes. But the asymmetric modes for horizontal and vertical
motion can be shown to have a significant contribution to the total effective mass for
rotation about the vertical and lateral axes, see figures in Appendix A.7.

6.5 Estimation of structural properties

When calculating the stability limit by the flutter formula presented in 4.3 on page 28 the
structural mass associated with the horizontal, vertical and torsional degree of freedoms
goes into the equations as modal equivalent distributed mass or mass moment of inertia
(MOI). The modal equivalent distributed masses , m̃y and m̃z, can be estimated from
a theoretical approach assuming that the total mass in the main span is spread out
or distributed over the length of the girder. The MOI, m̃θ, can be approximated by
summation of the contribution from the cables, hangers, girders and crossbeam in the
centre of the sailing lane, i.e. at the midpoint of the bridge where the cables are horizontal.
The MOI is then calculated by assuming that the rotation centre is in the middle of the
crossbeam since the bridge is symmetric about this point. From Table 3.1, Equation 3.21
and Equation 3.27 in Section 3.4 the MOI can be calculated for cross section 2TFGP
using the parallel axis theorem, and that the radius of gyration d for the cables are equal to

58



CHAPTER 6. ABAQUS RESULTS 6.5. Estimation of structural properties

half the total width of the cross section, i.e. 12.5 m. The results from the calculation are
summed up in the Table 6.5. When calculating the contribution from the crossbeam the
formulae 1/12∗mcb ∗L3

cb
/20m is used, where mcb is the distributed mass of the crossbeam

in lateral direction, and Lcb is the length of the beam (5 m). The table shows that the
modal equivalent distributed masses m̃y and m̃z are approximated to be 25,700 kg/m, and
the modal equivalent MOI as 2,840,000 kgm2/m. Henceforth the coordinate system is
changed such that the notations of the axis are in accordance with that given in Chapter
4, i.e. the vertical axis will be denoted z-axis and the y-axis denotes the lateral axis.

Table 6.5
Theoretical modal equivalent distributed mass and MOI of the bridge in the centre of the sailing
lane. The value in parenthesis refers to the distributed mass of the crossbeam along its length in
lateral direction. In the total value for the MOI given for the girder, the MOI about its shear
centre is added, according to Table 3.1.

Element
Distributed mass
one plane (kg/m)

Radius of gyration d
(m)

Mass moment of inertia
(kgm2/m)

Girder 6,494.9 7.5 877,873.1
Hangers 104.4 12.5 32,625.0
Cables 6,165.4 12.5 1,926,687.5

Crossbeam
84.8
(678.4)

353.3

Total 25,699 2,837,538.9

An alternative approach is to calculate the modal equivalent distributed mass and MOI
from the output given by the FEM model using the mode shape integrals and the modal
masses. The equation below can be used as an estimation [35].

M̃ii =

�
φ2
yi
dx ∗ m̃y +

�
φ2
zi
dx ∗ m̃z +

�
φ2
θi
dx ∗ m̃θ (6.1)

This equation has three unknown m̃y, m̃z and m̃θ, but by studying the mode shapes and
the modes shape integrals the number of unknowns may be reduced. The first horizontal
symmetric mode has been shown to have no significant coupling with the torsional motion,
see Figure 6.1 on page 52. The vertical deformation in this mode is equal to zero. This
eliminates the second and third term on the right hand side in the equation above since
the mode shape integrals associated with m̃z and m̃θ are zero. Equation 6.1 can then be
solved for m̃y;

m̃y1 =
M̃11�
φ2
y
dx

(6.2)

The same procedure can be done with the other horizontal modes, and from Figures 6.1-
6.2 on page 52 it is seen that all the horizontal modes, except from the third horizontal
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symmetric mode, doesn’t couple (at least not significantly) with torsional motion. These
modes are identified as mode 1, 4, 2, 6 and 17 respectively. Table 6.6 show the results
by using Equation 6.2. As can be seen the distributed mass will vary, depending on the
mode shapes but also the coupling between the girder and the cables. This is clearly
seen from Figure 6.7 on page 55 where the girder shape of the first horizontal symmetric
mode almost equals the shape of the cables, leading to a large modal mass. The value
obtained from mode 11 is clearly not valid when using Equation 6.2 since this mode show
significant coupling between horizontal and torsional deformations.

Table 6.6
Modal equivalent distributed mass m̃yi for selected number of modes.

Mode nr. Modal equivalent distributed mass m̃yi

1 23 735
4 15 021
11 56 327
2 15 924
6 19 872
17 17 095

The vertical modes are not coupled to any of the other directions but are coupled to
the cables. Equation 6.2 can then be used to estimate the modal equivalent distributed
mass m̃z, by changing y with z. Table 6.7 shows the results for the three first horizontal
symmetric and asymmetric vertical modes. As can be seen there are some variations
between modes but the values are close to each other. An average for all values is given in
the bottom cell, and by comparing with the value given in Table 6.5 there is a discrepancy
of about 1, 3% compared to the theoretical value.

Table 6.7
Modal equivalent distributed mass m̃zi for six first vertical modes.

Mode nr. Modal equivalent distributed mass m̃zi

5 25 944
9 25 843
15 25 659
3 27 289
12 26 241
18 25 264

Average 26 040

Since the horizontal modal equivalent distributed mass m̃y varies from mode to mode, the
moment of inertia will also vary when using Equation 6.1 to calculate m̃θ. Some values
has been calculated by assuming that m̃y is equal to the one of mode 1 for all modes and
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solving the equation below. Modes where deflection due to rotation of the girder is large
are chosen. The results are given in Table 6.8.

m̃θi =
M̃ii −

�
φ2
yi
dx ∗ m̃yi�

φ2
θ
dx

(6.3)

Table 6.8
Mass moment of inertia m̃θ for some selected modes when assuming m̃y

found from mode 1.

Mode nr. Mass moment of inertia m̃θ

14 2 570 000
16 3 377 200
25 3 331 900
26 3 569 500
31 3 527 000

Compared to the theoretical values these results gives deviating values, but at least they
are in the same order of magnitude. In order to visualize the variation in modal mass,
the modal mass is calculated for different values of m̃y, m̃z and m̃θ. The estimated modal
mass is plotted as percentage of the modal mass found from the FEM model. The results
are shown in Figure 6.12 on the next page. As can be seen it is the estimated modal mass
for the vertical modes that coincide fair with the exact modal mass, obviously. The cable
modes are left out in the plot. The biggest discrepancy is for the modes where horizontal
and torsional deformation couples. When using the flutter equations to find any stability
limit the vertical modal equivalent distributed mass, m̃z, and the mass moment of inertia,
m̃θ, is chosen from the theoretical values found above. I.e. m̃z = 25, 700kg/m and
m̃θ = 2, 840, 000kgm2/m. This has been done based on the discussion above and since
this will make comparison between different cross sections easier.
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Figure 6.12: Estimated modal mass given as percentage of the modal mass from the FEM
model. The modal mass is calculated using different values and combinations of m̃y, m̃z and
m̃θ.
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Chapter 7

Results from stability analysis

In Chapter 4 the flutter equations and the eigenvalue solution was presented. In this
chapter these solutions have be tested for a range of cross section models. The cross section
2TFGP presented in Section 3.2 has been found in the literature, and the aerodynamic
derivatives has been extracted from figures in the article written by Matsumoto et al.
[14]. The quality of these figures is limited, so that the results given must not be taken
for granted. Some other cross sections have also been tested. These are found in a report
carried out by Hansen et al. [11] as a study for The Norwegian Public Road Administration
called Brusymfonien. Here several cross sections with separated box-girders have been
tested in the wind tunnel. The shapes are similar to the cross section 2TFGP and with
crossbeams connecting the box-girders. The cross sections have been tested with and
without guide vanes, and with/without a walking/cycle path centrally aligned at the top
of the crossbeams. Herein, only cross sections without a walking/cycle are discussed.
The distance between the box-girder has been varied to see if this gives improved results.
In this thesis four different configurations has been tested, a cross section with distance
between the girders of 15 m (henceforth referred to as BS15GV ), one with a distance of
20 m (BS20GV ) and one with 30 m between the girders. The cross section with 30 m
between the girders has been chosen to be tested for a configuration with/without guide
vanes mounted at the top ends of the crossbeams. With guide vanes the cross section is
referred to as BS30GV and without as BS30. On both BS15GV and BS20GV the guide
vanes are mounted to the lower outer edge of the girders. In the wind tunnel the cross
sections has been tested on a scale model of 1 : 50, i.e. the mass properties has been scaled
up in order to represent a full-scale model. In the following the different cross sections
will be presented, with their cross sectional properties and aerodynamic derivatives. In
the FEM -model the same stiffness properties as for 2TFGP has been used for the girders
and the crossbeams when modelling the bridge with cross sections from Brusymfonien.
The same configurations regarding the cables and hangers are used in all analysis.

7.1 Representation of self-exited forces

The force model for the self exited forces associated with the aerodynamic derivatives
presented in Section 4.1 was developed for a single girder with total width equal B.
When the formulas are used for the presented cross sections above it is important that
the forces are represented in the same way they are implemented in the solution routines.
The difference is how the aerodynamic derivatives are extracted and what is defined as
the width B. In Strømmen [35] and Øiseth et al. [26] (see also [27]), the aerodynamic
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derivatives are functions of the circular frequency (rad/s) and the width B of a girder,
while for the cross sections mentioned above the aerodynamic derivatives are functions
of the frequency in Hz and different definitions of the width. Below these differences
are discussed for each cross section. All the derivatives associated with lateral motion,
P ∗
n
, n ∈ {1, 2..., 6}, H∗

n
and A∗

n
, n ∈ {5, 6}, are disregarded for cross section 2TFGP . This

because the load coefficients has not been found for this cross section. I.e. any forces in
lateral direction have not been considered. At the end of this chapter the quasi-steady
load coefficients have been introduced for the cross sections from Brusymfonien.

7.1.1 Section 2TFGP

In Matsumoto et al. [14] the self-exited forces are given as;

qz,se =
1

2
ρ(2b)V 2

�
kH∗

1

ṙz
V

+ kH∗
2

bṙθ
V
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qθ,se =
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2
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�
kA∗
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ṙz
V

+ kA∗
2

bṙθ
V

+ k2A∗
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4

rz
b

�
(7.1)

Here, k = bω/V is the reduced frequency and ω the in-wind resonant frequency. b is
here defined as half the chord length, where the chord length describes the width of one
box-girder. Using the notation presented in Figure 3.2 on page 11 for the width of one
girder, B∗, and introducing that B∗ = 2b the equation above can be written as;
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(7.2)

Here, K = B∗ω/V is the reduced frequency. One other thing to be aware of is that
the derivatives must be read off at the reduced velocity Vred = V/(n ∗ B∗), where n is
the frequency in Hz. This means that the reduced velocity Vred = V/(ω ∗ B∗) must be
multiplied by 2π in order to extract the correct values of the derivatives.

7.1.2 Sections from Brusymfonien

The other cross sections for Brusymfonien (given in [11]) presented above use the width of
one girder as b, which in this case equals B∗. I.e. the self-excited forces are directly given
by Equation 4.13 on page 26 with B∗ replacing B. The derivatives for the cross sections
in Brusymfonien are also given as a function of the frequency in Hz, therefore the same
procedures must be executed as mentioned in the previous section. The self-exited forces
for the cross sections are then given by;
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7.2 Aerodynamic derivatives and mass properties

7.2.1 Cross section 2TFGP
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Figure 7.1: Aerodynamic derivatives H∗
n for cross section 2TFGP : Blue circles refers to

experimental data obtained in wind tunnel experiments in smooth flow at an angle of 0o. Blue
dashed lines are curves fitted to the data. Red circles refers to data obtained at an angle of 3o

and red dashed lines are curves fitted to the data.

The cross section used for the preliminary design in this thesis is shown in Figure 3.2 on
page 11. As mentioned the aerodynamic derivatives has been extracted from Matsumoto
et al. [14] and polynomials has been fitted to the curves. The derivatives H∗

1 , A
∗
3 and A∗

4

has been fitted with a first order polynomial (linear functions), while the five remaining
derivatives has been fitted with a second order polynomial. This has been done because
the reduced velocity for the actual bridge will become large since the natural frequencies
are low, meaning that the critical frequency also will be quite low. Since the experimental
data are limited to a reduced velocity at about 5, it is important to have curves that not
gives unrealistic data outside the experimental range. Higher polynomial has been found
to give such unrealistic values. The experimental results and curves fitted to the data are
shown in Figure 7.1 and 7.2 on the following page. It has been investigated in the literature
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that the most important derivatives associated with flutter are A∗
1, A

∗
2, A

∗
3, H

∗
1 and H∗

3

[14, 27]. As can be seen the polynomial curves fit well for the most important derivatives
in the reduced velocity range measured in experiments. The experiments presented have
been carried out under the condition with wind angle of attack α of 0o in smooth flow,
and α = 3o in turbulent flow.
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Figure 7.2: Aerodynamic derivatives A∗
n for cross section 2TFGP : Blue circles refers to ex-

perimental data obtained in wind tunnel experiments in smooth flow at an angle of 0o. Blue
dashed lines are curves fitted to the data. Red circles refers to data obtained at an angle of 3o

and red dashed lines are curves fitted to the data.

7.2.2 Cross section BS15GV

The cross section with 15 m between the box-girders is shown in Figure 7.3 on the next
page. The mass properties are given in Table 7.1 on the facing page, where values are given
for the model scale and the full scale. When modelling the cross section in ABAQUS
the distributed mass and mass moment of inertia are specified as point mass with rotary
inertia at every 20 m in nodes located in the centre of each crossbeam. The values
implemented in ABAQUS is given in Table 7.2 on page 69. The experimental data and
the polynomial parameters are given in Appendix C.6. The experimental data has been
fitted with second order polynomials and the result is shown in Figure 7.4 on page 68. As
can be seen, the results show fairly good accuracy for the important derivatives, especially
for the highest reduced velocities from where experimental results have been found.
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Figure 7.3: Cross sections from Brusymfonien [11]: (a) Cross section BS15GV with
15m between the centres of the box-girders. (b) Cross section BS20GV . (c) Cross sections
BS30/BS30GV . All dimensions are in meters. Guide vanes for BS30/BS30GV are mounted
at the top of the crossbeams, but not shown here.

Table 7.1
Mass and mass moment of inertia (MOI) for the tested cross sections. Values are given for the
model scale (MS) and the full scale (FS) [11].

Section Mass, MS (g)
Mass mom. of
inertia, MS (gmm2)

Mass, FS (tons/m)
Mass mom. of
inertia, FS (tonsm2/m)

BS30 7,326 494.678 ∗ 106 10.77 1,818.7

BS30GV 7,326 494.678 ∗ 106 10.77 1,818.7

BS20GV 6,827 267.377 ∗ 106 10.04 983.0

BS15GV 6,758 201.726 ∗ 106 9.94 741.6

7.2.3 Cross section BS20GV

The cross section with 20 m between the box-girders is shown in Figure 7.3. The mass
properties are given in Table 7.1. When modeling the bridge with this cross section
the same procedure as before was followed. The experimental data for the derivatives are
taken from Brusymfonien and fitted with second order polynomials. The result are shown
in Figure 7.5 on page 70, and the experimental data with the polynomial parameters are
given in Appendix C.5. As can be seen, the results show fairly good accuracy for the
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Figure 7.4: Aerodynamic derivatives for cross section BS15GV with guide vanes. Blue circles
refers to experimental data obtained in wind tunnel experiments, angle of incidence 0o. Red
dashed lines are curves fitted to the data.

important derivatives. The biggest discrepancy is for A∗
1 which shows a scatter spread out

in the data range. I.e. values for A∗
1 outside the data range are highly uncertain.

7.2.4 Cross section BS30 and BS30GV

The cross section with 30 m between the box-girders is shown in Figure 7.3 on the pre-
ceding page. The mass properties of the cross section is given in Table 7.1 on the previous
page. The values implemented in the FEM-program is given in Table 7.2. The experimen-
tal data for the derivatives are, as mentioned, taken from Brusymfonien, and second order
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Table 7.2
Mass properties for the cross sections given in Brusymfonien and used as input in the FEM
model. I11 is the mass moment of inertia (MOI) about the longitudinal x-axis, I22 the MOI
about the vertical y-axis and I33 the MOI about the lateral z-axis. The directions follow the
notation in ABAQUS. The values are calculated by multiplying the values in Table 7.1 by 20 m.

Point mass/Inertia
Section

BS30 BS30GV BS20GV BS15GV

Mass (tons) 215.4 215.4 200.8 198.8

I11 (tons m2) 36,374.0 36,374.0 19,660 14,832

I22 (tons m2) 7,180 7,180 6,693.3 6,626.7

I33 (tons m2) 7,180 7,180 6,693.3 6,626.7

polynomials has been used as an approximation. The experimental data and the param-
eters used is given in Appendix C.2 and C.3. Figure 7.6 on page 71 and 7.7 on page 72
shows the approximation and the experimental results. As can be seen, the results shows
fairly good approximations for the important aerodynamic derivatives, except for A∗

2 for
cross section BS30 where a first order polynomial may give better approximation outside
the reduced velocity range tested. Outside the reduced velocity range the polynomial
values turns towards zero, which implies that the aerodynamic torsional damping will be
underestimated, i.e. the results will be conservative. For all the cross sections the range
of the reduced velocities vary, and outside this range it is difficult to know which values
are correct. Any stability results obtained when choosing values outside the range of the
data must therefore be interpreted with caution.
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Figure 7.5: Aerodynamic derivatives for cross section BS20GV with guide vanes. Blue circles
refers to experimental data obtained in wind tunnel experiments, angle of incidence 0o. Red
dashed lines are curves fitted to the data.
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Figure 7.6: Aerodynamic derivatives for cross section BS30 without guide vanes. Blue circles
refers to experimental data obtained in wind tunnel experiments, angle of incidence 0o. Red
dashed lines are curves fitted to the data.
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Figure 7.7: Aerodynamic derivatives for cross section BS30GV with guide vanes. Blue circles
refers to experimental data obtained in wind tunnel experiments, angle of incidence 0o. Red
dashed lines are curves fitted to the data.
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7.3 Numerical Results: Eigenvalue solution

In this section the different cross sections have been tested applying an eigenvalue solution
routine provided by Øiseth [25]. First, results from Analysis 1 through Analysis 5 are
presented using the cross section 2TFGP for an angle of incidence of the wind flow equal
to 0o and 3o. Next the solution from Analysis 1 has been evaluated and the modes that
contribute most to the stability limit is found and discussed further. The cross sections
from Brusymfonien has also been tested and compared with each other and cross section
2TFGP . It is well known that two factors are of great importance for which modes that
couples into a flutter motion, namely the shape-wise similarity and the frequency ratio
between shape-wise vertical and torsional modes. In the following these factors will be
studied further. An attempt of solving the complex eigenvalue solution has been made,
and the solution routines are given in Appendix E.2 and E.4. The solution is given
for selected results, and compared with the provided solution. The solution routine in
Appendix E.1 is used when calculating the stability limit from the provided eigenvalue
solution.

7.3.1 Eigenvalue solutions for cross section 2TFGP

Results obtained from the eigenvalue solution using cross section 2TFGP in Analysis 1
through Analysis 5 are shown in Table 7.3 on the following page. The width and height
of the cross section are B= 25 m and D= 2 m respectively. The width of one girder, B∗ is
10 m. The density of air is assumed to be ρ = 1.25 kg/m3. As can be seen from the table
the stability limit doesn’t change significantly for Analysis 1 through Analysis 4. In
these analysis the boundary conditions were changed, and as expected the results shows
only small changes because of small changes in frequencies for the vertical and torsional
modes, see Table 6.2 on page 49. The natural frequencies of the horizontal modes were
reduced with up to about 8% (for the 1stHS mode) when introducing a slide bearing at
one of the girder supports in Analysis 2. If this affects the stability limit is unknown since
the eigenvalue solution used doesn’t account for horizontal contributions from self-exited
forces associated displacements and velocities. I.e. the derivatives A∗

n
, n ∈ {1, 2, ..., 6},

H∗
n
, n ∈ {5, 6} and A∗

n
, n ∈ {5, 6} has been neglected. Analysis 2 shows a small reduction

in critical velocity for the 3o case, which may be caused by small changes in the mode
shapes or that the frequency between the first vertical and torsional symmetric mode were
slightly reduced. But this may just as well be due to accuracy in the solution routine.

A higher discrepancy can be seen for Analysis 5 where the backstay geometry has been
changed. Analysis 5a) shows a higher reduction then Analysis 5b), clearly because the
length of the backstay cable were longer in this analysis, leading to a more flexible structure
when the pylons are not present. It has been shown, see Table 6.4 on page 51, that the
reduction in natural frequencies are largest for the vertical symmetric modes. And because
of the additional tension these modes introduce the backstay cable will stretch out, leading
to a larger displacement at the pylon top when the backstay cable becomes longer (larger
sag). This has also been studied in Toshio [37] where it was found that a higher span ratio
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Table 7.3
Eigenvalue solution for the different analysis performed in the FEM model with cross section
2TFGP. The results are shown both for angle 00 and 3o of incidence of the wind flow. The
percentage difference compared to Analysis 1 is given at the bottom of each cell. 30 modes has
been included in the calculations.

Mode combination
Derivatives 0o Derivatives 3o

Critical
Velocity
VCR(m/s)

Critical
frequency
ωCR (rad/s)

Critical
Velocity
VCR (m/s)

Critical
frequency
ωCR (rad/s)

Analysis 1 142.32 0 100.27 0.473

Analysis 2 142.27 0 100.01 0.473
(-0.04%) (-0.26%) (0%)

Analysis 3 142.37 0 100.25 0.474
(0.04 %) (-0.02%) (0.21%)

Analysis 4 142.32 0 100.27 0.473
(0%) (0%) (0%)

Analysis 5a) 138.29 0 96.82 0.462
(-2.83%) (-3.44%) (-2.33%)

Analysis 5b) 140.03 0 98.47 0.469
(-1.61%) (-1.80%) (-0.85%)

Analysis 5c) 136.91 0 95.84 0.459
(-3.80%) (-4.42%) (-2.96%)

Analysis 5d) 139.22 0 97.84 0.467
(-2.18%) (-2.42%) (-1.27%)

between the backstay and the main span length reduced the critical velocity. The main
reason is probably because the mode shapes changes slightly. An investigation showed
that the shape-wise similarity of the vertical and torsional mode contributing most to
the stability limit increased as the backstay geometry was changed. The two governing
modes were found to be mode 5 and 14. The shape-wise similarity was found to be 0.95
for Analysis 5c) compared to 0.90 for Analysis 1. The reduction in stability limit seems
to be almost proportional to the increase in shape-wise similarity of mode 5 and 14. The
frequency change may also explain the difference in stability limit. From Table 6.4 the
overall frequencies of the vertical and torsional modes are reduced. This also changes the
reduced velocity and by this also the values of the aerodynamic derivatives.

An eigenvalue solution from Analysis 1 is shown in Table 7.4 on the next page. Here,
different modes combinations have been included in the solution routine. From the table,
the critical frequency is zero for the case with an angle of incidence of the wind equal to 0o.
This indicates that an instability phenomenon other that flutter will occur, namely static
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Table 7.4
Eigenvalue solution when using cross section 2TFGP . The results are shown for a variety of
mode combinations, both for angle 00 and 3o of incidence of the wind flow. Empty cells indicate
that no solution was found within the maximum iterations specified in the solution routine or
that the resonant frequency is zero. The values in parenthesis are found from the eigenvalue
routine created by the author.

Mode combination
Derivatives 0o Derivatives 3o

Critical
Velocity
VCR(m/s)

Critical
frequency
ωCR (rad/s)

Reduced
velocity
Vred

Critical
Velocity
VCR (m/s)

Critical
frequency
ωCR (rad/s)

Reduced
velocity
Vred

50 modes 142.3 0 – 100.2 0.473 21.2
40 modes 142.3 0 – 100.2 0.473 21.2
30 modes 142.3 0 – 100.3 0.473 21.2
20 modes 142.7 0 – 100.6 0.473 21.3
15 modes 142.7 0 – 100.6 0.473 21.3
14 modes 142.7 0 – 100.6 0.473 21.3
13 modes 268.7 0 – 160.8 0.479 33.6
10 modes 458.4 0 – 242.8 0.313 77.6
3 and 16 248.1 0 – 153.7 0.407 37.8
3 and 21 – – – 677.4 0.537 126.1
5 and 11 331.3 0 – 187.6 0.478 39.2
5 and 13 464.8 0 – 234.3 0.488 48.0
5 and 14 168.7 0 – 114.4 0.475 24.1
5,11,13 and 14 144.0 0 – 100.9 0.473 22.2
3,11,13 and 14 143.7 0 – 158.9 0.472 21.4
3,5,11,13 and 14 143.7 0 – 100.9 0.472 21.3

(101.0) (0.472) (21.4)

3,5,9,11,13 and 14 143.7 0 – 100.3 0.472 21.3
(100.4) (0.473) (21.2)

11,13 and 14 144.5 0 – 159.2 0 –
11 and 14 151.7 0 – – – –
11 and 13 272.5 0 – – – –
13 and 14 159.4 0 – – – –
14 169.4 0 – – – –

divergence. This instability phenomenon is recognized as a static instability where the
structure looses its torsional stiffness due to interaction with the airflow. Assume that the
torsional mode that has the lowest natural frequency and responsible for the instability
can be simplified to;

ϕ2(x) ≈
�
0 0 φθ

�T
(7.4)
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Then, the impedance matrix given in Equation 4.26 on page 30 is reduced to;

Êη(ωr = 0, Vcr) = 1− κaeθθ
= 0 (7.5)

Thus, static divergence may be identified from the following equation;

κaeθθ
=

ρB4

4m̃θ

�
ωθ(Vcr)

ωθ

�2

A∗
3

�

Lexp

φ2
θ
dx

�

L

φ2
θ
dx

= 1 (7.6)

When the instability is static, the quasi-static counterpart to A∗
3 applies, and by comparing

Kae(x) in Equation 4.14 with Kae(x) in Equation 4.11 the critical velocity is given as;

Vcr = B ·ωθ ·
�

2m̃θ

ρB4C �
M

·

�

L

φ2
θ
dx

�

Lexp

φ2
θ
dx

�1/2

(7.7)

For this cross section it has not been successful to find any values for the coefficient C �
M
,

therefore it has been considered unnecessary to estimate the static stability limit from the
equation given above with values found from other cross sections in the literature.

From Table 7.4 on the previous page it is seen that when using three torsional modes
(11, 13 and 14) the solution converges. This indicates that the static instability limit is
a multimode phenomenon, where three still air torsional modes contributes significantly
to the stability limit. The table also indicate that mode nr. 14 contribute most of the
three torsional modes. Since static divergence is the governing stability phenomenon it
is reasonable to believe that flutter will not occur below this wind velocity, at least for
an angle of incidence 0o. For the 3o case the stability limit decreases significantly, and
the solution indicate that the instability is a flutter phenomena. The table shows that
when using modes 5 and 14 in the calculations the stability limit is increased from 100
to 114 m/s. Compared to other mode combinations this indicates that these two modes
contribute significantly to the critical velocity. But when adding modes 11 and 13 to the
calculations the solution converges, indicating a multimode-coupled flutter phenomenon.
From Table 7.5 on the facing page it can be seen that mode 5 is highly shape-wise similar
to mode 11, 13 and 14, but one may expect that the mode combination 5 and 13 would
contribute more to the stability limit then mode 5 and 14 since they are more shape-wise
similar than 5 and 14. Also the frequency ratio between mode 5 and 13 is lower. This
may be explained by studying the mode shapes of mode 13 and 14. In Appendix D.4 it
can be seen that in mode 14 the maximum displacements are due to a torsional motion of
the bridge girder with some coupling to the lateral motion, while in mode 13 it has been
found that maximum displacements are in the lateral direction. I.e. both modes couples
with the horizontal motion but to a different degree, and may indicate that this coupling
have an influence on which modes that will contribute most to the critical velocity, and
not only the shape-wise similarity and frequency ratio. The result indicates that the
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multimode phenomenon has a destabilizing effect since including several torsional modes
reduces the stability limit.

Table 7.5
Shape-wise similarity of modes for cross section 2TFGP .

Mode combination Shape-wise similarity ψzθ

5 and 11 0.74
5 and 13 0.93
5 and 14 0.90
3 and 11,13 or 14 ∼0
9 and 11 0.26
9 and 13 0.07
9 and 14 0.09

As Table 7.4 shows, the reduced velocity ranges from 21 at the lowest critical velocity up
to about 50 when combining mode 5 and 13. Compared to the reduced velocity range
in the experiments for the aerodynamic derivatives (up to about 5), this is obviously
a much higher reduced velocity range, implying that the aerodynamic derivatives must
be extrapolated for all possible mode combinations. This reduces the reliability of the
results since experiments up to these ranges are unknown. In Appendix A.1 the design
critical velocity was found as 63.3 m/s. In the vicinity of this velocity the frequency of
motion in the 3o case is found from the eigenvalue solution to be ω= 0.786 rad/s for mode
combination 5, 11, 13 and 14. This implies a reduced velocity of 7.63, which is much closer
to the experimental range, but still values must be extrapolated. For the most important
derivatives the extrapolated values may be said to provide reasonable accurate values, see
Figures 7.1 and 7.2 on page 66.

Values in parenthesis were obtained using the eigenvalue solution routine created by the
author. This solution did not give any reasonable results for the 00 case, but for the 3o

case this solution gave the same results when including few modes in the calculations. One
reason is that the solution gives eigenvalues λn that doesn’t necessarily come in the same
order in each velocity iteration. This has been found to give some unstable behaviour
in the numerical solution, especially when several modes are included in the calculations.
This problem has not been given any attention in this thesis, and any modification in the
routine is left for further investigations. From the discussion above it may be concluded
that the stability limit caused by multimodal effects are possible when a vertical mode
is shape-wise similar to two or more torsional modes. This has also been stated in [27].
Results also indicate that several torsional modes contribute when static divergence is the
governing instability phenomenon. In the 3o case, the wind flow is turbulent. This may
reduce the validity of the results since the buffeting forces may become considerably in
this configuration and are no longer negligible. This has not been considered herein, but
are more thoroughly discussed in Sarkar et al. [29].

In Section 4.4 on page 32 it was stated that in the present of any stability limit the
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damping term µn turns positive, indicating negative damping and diverging oscillation of
the structure. This is illustrated in Figure 7.8 where the real part and the imaginary part
of the eigenvalues are shown for mode combination 5, 11, 13 and 14 in the 3o case. As can
be seen the damping term turns positive for the vertical mode indicating that the critical
frequency is on the vertical branch solution. This is confirmed as the critical frequency is
found to be 0.473 rad/s compared to the undamped natural frequency of mode 5 (0.492
rad/s), see Table 6.3 on page 50.
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Figure 7.8: Development of the eigenvalue solution for cross section 2TFGP and mode com-
bination 5, 11, 13 and 14 in the 3o case. The upper plot shows the damped natural frequencies
given by ωD = ωn

�
1− v2n. Since the eigenvalues comes in complex conjugated pairs both the

negative and positive values of the damped natural frequencies are plotted. The lower plot shows
the real part of the solution associated with damping of the modes, including both structural
and aerodynamic damping.

As the eigenvalue solution shows, only a few modes are needed for the solution to converge
to the exact value. It is usual the lowest modes that contributes most to the critical
velocity. In a computational point of view this is an advantage since the system matrices
are strongly reduced in dimensions when only a few modes are included in the solution.
This is clearly shown in Figure 7.9 on the next page where the computational time is
plotted against the number of modes included in the solution. The result is shown for
cross section 2TFGP at 3o, and indicates a reduction in computational time of about 96%
when reducing the number of modes from 50 to 14. Calculating the shape-wise similarity
of different mode combinations is helpful when choosing the modes to be included in the
calculation, and may save a lot of computational effort.
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Figure 7.9: Computational time as a function of the number of modes included in the eigenvalue
solution for the 3o case. Computational time will also depend on the CPU power in the computer
used.

7.3.2 Eigenvalue solutions for cross section BS15GV

Results obtained from the eigenvalue solution using cross section BS15GV are shown
in Table 7.6 on the following page, and shape-wise similarities for a collection of mode
combinations are shown in Table 7.7 on page 81. This analysis is referred to as Analysis
BS15. The width and height of the cross section are B = 22.96 m and D= 2.56 m
respectively. The width of one girder, B∗ is 7.5 m. The density of air is assumed to
be ρ = 1.25 kg/m3. Table 7.6 shows the critical velocities and corresponding critical
frequencies for several different mode combinations, both shape-wise similar modes and
dissimilar modes.The first 5 vertical and torsional modes are shown in Apendix D.5.
Values in parenthesis are values extracted from the created eigenvalue routine. It can
be seen that a mode combination of mode 5, 12 and 14 gives a critical velocity close to
the exact solution. With only mode 5 and 14 included the critical velocity decreases to
114 m/s. This is likely to be caused by the weakly shape-wise similarity of mode 12 and
14, providing a higher stability limit and a stabilizing effect. This also indicates that
the stability phenomenon is multimode-coupled flutter, where two vertical modes and one
torsional mode contributes significantly. As for cross section 2TFGP it is mode 5 and
14 that contributes most to the stability limit. These modes are identified as the first
vertical symmetric mode and the second symmetric torsional mode respectively, as given
in Figure 6.3 on page 53 and 6.5 on page 54. Compared with cross section 2TFGP the
critical velocity is about 20 m/s higher. The discrepancy between the 3o case and the
present analysis may be due to some differences in structural masses. This cross section is
lighter than 2TFGP and the distance between the cable planes are reduced. This changes
the natural frequencies. Table 7.8 on page 82 shows natural frequencies of vertical and
torsional modes and they are meant to represent the same modes as for 2TFGP . It can
be seen that the vertical frequencies are higher probably because of a reduced distributed
mass of the cross section. The torsional frequencies are reduced probably because of the
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reduced torsional stiffness provided by the cables. This would indicate a lower stability
limit, but this is not the case. The reason may be due to the reduced shape-wise similarity
of mode 5 and 14 as the governing modes, see Table 7.5 on page 77 and 7.7 on the facing
page. It must also be mentioned that the results for 2TFGP were obtained by using
derivatives at α = 3o. This is markable tilting of the cross section and may reduce the
stability limit significantly. It may be concluded that the aerodynamic properties of the
cross section is of great importance for the stability.

Table 7.6
Eigenvalue solution using cross section BS15GV with a distance of 15m between each box-girder.
The cross section has been tested with guide vanes. Empty cells indicate that no solution were
found within the maximum iterations specified in the solution routine or that the resonant
frequency is zero. The values in parenthesis are found from the eigenvalue routine created by
the author.

Mode combination
Critical
Velocity
VCR(m/s)

Critical
frequency
ωCR (rad/s)

Reduced
velocity
Vred

30 modes 120.2 0.744 21.5
20 modes 123.5 0.746 22.1
15 modes 122.5 0.746 21.9

(84.6) (0.746) (15.1)

4 and 16 139.6 0.808 23.0
5 and 11 – – –
5 and 14 114.9 0.725 21.1
12 and 14 182.0 0 –
5,12 and 14 121.6 0.745 21.8

(121.6) (0.745) (21.8)

12 and 25 181.5 1.122 21.6
(181.5) (1.122) (21.6)

5,12,14 and 25 118.4 0.744 21.2
(118.4) (0.744) (21.2)

From Table 7.6 it can be seen that the reduced critical velocity is 21.5 when 30 modes
are included, which is way out of the range of the experimental results for the aerody-
namic derivatives. As for cross section 2TFGP this reduces the reliability of the results.
At a velocity of 60 m/s the frequency of motion is found to be 0.786, which gives a re-
duced velocity of about 10.2. This is within the experimental range for the derivatives
H∗

n
, A∗

n
, n ∈ {1, 4}. For the other four derivatives an interpolation is needed but as can

be seen from 7.4 on page 68 the polynomials seems to follow the path of the experiments,
except from derivative H∗

2 where the polynomial path seems to change towards zero. But
this cross section is not very sensitive to any changes for derivative H∗

2 , as will be shown
at the end in this section. The discussion above indicates that any stability problem due
to high wind velocities below the critical design wind velocity is of no concern.
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Table 7.7
Shape-wise similarity of modes for cross section BS15GV .

Mode combination Shape-wise similarity ψzθ

4 and 14 ∼0
4 and 16 0.94
5 and 11 0.43
5 and 14 0.84
12 and 14 0.15
12 and 25 0.86

The development of the eigenvalue solution using mode 5, 12 and 14 is given in Figure 7.10.
Since the critical frequency were found to be 0.745 rad/s for this mode combination, the
result indicate that the critical frequency is on the torsional branch. This is confirmed by
comparing the colours on both plots, indicating that the damping in the torsional mode
reaches zero. It can also be seen that the damped frequency of the lowest vertical mode
reaches zero. This may indicate that the instability goes from a multimode to a classic
coupled flutter phenomenon.
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Figure 7.10: Development of the eigenvalue solution for cross section BS15GV with mode
combination 5, 12 and 14.
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Table 7.8
Vertical and torsional natural frequencies for the tested cross sections. The percentage difference
for cross section BS15GV is given compared to 2TFGP , while the percentage difference for cross
sections BS20GV and BS30/BS30GV is given compared to cross section BS15GV . The values
in parenthesis are the mode nr. for the respective frequency and analysis. Mode description V
indicate a vertical mode while T indicate torsional modes.

Mode description
2TFGP BS15GV BS20GV BS30/BS30GV

Natural
frequency
ωi (rad/s)

ωi % ωi % ωi %

V 0.408 (3) 0.402 (4) -1.45 0.402 (4) 0.12 0.404 (4) 0.42
V 0.492 (5) 0.500 (5) 1.50 0.498 (5) -0.36 0.497 (6) -0.24
V 0.686 (9) 0.719 (12) 4.79 0.714 (12) -0.67 0.706 (12)
T 0.659 (9) 0.663 (9) 0.74
T 0.720 (10) 0.662 (10) -8.07 0.664 (10) 026 0.628 (10) -5.42
T 0.692 (11) 0.694 (11) 0.38
V 0.727 (12) 0.734 (13) 1.02 0.727 (13) -0.94 0.727 (15) -0.03
T 0.814 (14) 0.802 (14) -1.45 0.761 (14) -5.16 0.713 (13) -6.27
V 0.921 (15) 0.942 (17) 2.31 0.927 (17) -1.64 0.924 (18) -0.31
T 0.951 (16) 0.927 (16) -2.47 0.830 (15) -10.48 0.714 (14) -14.04

7.3.3 Eigenvalue solutions for cross section BS20GV

Results obtained from the eigenvalue solution using cross section BS20GV are shown in
Table 7.9 on page 84. Values in parenthesis are values extracted from the routine given in
Appendix E.4.1. Shape-wise similarities for a collection of mode combinations are shown
in Table 7.10 on page 84. The analysis is referred to as Analysis BS20. The total width
of the cross section is B = 27.96m. The height and the width of one girder are the same as
for cross section BS15GV , i.e. D = 2.56 m and B∗ = 7.5 m respectively. As can be seen
from Table 7.9 a mode combination of mode 5 and 14 gives a critical velocity close to the
exact solution. Mode combination 4 and 15 increases the critical velocity by over 20 m/s
even if the shape-wise similarity is higher for this combination, see Table 7.10. This may
be due to the frequency ratio, which is about 1.5 for combination 5 and 14 while the ratio is
about 2 for combination 4 and 15, see Table 7.8. When adding mode 11 to the calculation
the critical velocity decreases with only about 1 m/s. When including 4 vertical and 5
torsional modes, the solution nearly converges to the exact value, indicating that this is
a multimode-coupled flutter phenomenon but where one vertical and one torsional mode
contributes significantly. Compared to Analysis BS15 the critical velocity increases with
about 15 %. Investigating the frequencies, they are reduced compared to Analysis BS15,
and the percentage reduction in torsional frequencies are higher then the reduction in
vertical frequencies giving a lower frequency ratio. Neither does the shape-wise similarity
change significantly between modes 5 and 14; actually it is increased in this analysis, from
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0.84 to 0.88 for mode combination 5 and 14. These factors would indicate a lower critical
velocity but this is not the case. One explanation is that the aerodynamic properties of this
cross section are improved, since the distance between the box-girders is increased. This
may be explained from Figures 7.5 on page 70 and 7.4 on page 68 where cross section
BS20GV shows higher negative values for derivatives H∗

1 and A∗
2 in the experimental

range, which influence the stability limit by providing positive damping in vertical and
torsional motion respectively.

The reduced critical velocity for this cross section is 29.3 when 30 modes are included,
obviously much higher than the range of the experimental results. The polynomial values
are therefore extrapolated also for this cross section, rendering uncertain results regarding
the critical velocity. At a wind speed of 60 m/s the frequency of motion for this cross
section is found to be 0.694 rad/s when including modes 5, 11 and 14 in the calculation.
This gives a reduced critical velocity of about 11.5. This value is within the range of the
experimental results given for the derivatives. From Figure 7.5 on page 70 it can be seen
that for the most important derivatives the polynomials fit well to the experiments at a
critical velocity equal to 11.5. The largest discrepancy is for A∗

1 where the polynomial
underestimates the value at this point. It can also be seen that the polynomial underes-
timate the aerodynamic stiffness associated with torsion by giving lower negative value
of A∗

3 at this point. The aerodynamic damping associated with torsion is also underesti-
mated by providing lower value of A∗

2 at this point. These remarks are on the safe side
and strengthen the indication that this cross section provides a stability limit above the
design critical velocity.

The development of the eigenvalue solution using mode 5, 11 and 14 is given in Figure 7.11
on page 85. As can be seen the damping of the vertical mode increases as the velocity
increase, identified as the dark green curve in the lower plot. I.e. the critical frequency is
on the torsional branch solution of mode 14 since an eigenvalue solution with only mode 5
and 14 provides almost the same critical velocity, see Table 7.9. The figure also illustrates
a challenge in the numerical solution. It can be seen that the curves change colour because
the eigenvalues doesn’t necessarily come in the same order when solving the eigenvalue
problem given in Section 4.4. The figure shows that this problem occur when the damped
frequency curves intersect. This numerical challenge has been found to cause numerical
instabilities in the solution routine created by the author, especially when several modes
are included in the calculations.

7.3.4 Eigenvalue solutions for cross sections BS30/BS30GV

Results obtained from the eigenvalue solution using cross section BS30 are shown in
Table 7.11 on page 86. Values in parenthesis are values extracted from the solution
routines given in Appendix E.4.1 and E.2. As the results show this routine gives accurate
results when few modes are included in the solution. Shape-wise similarities for a collection
of mode combinations are shown in Table 7.12. The analysis is referred to as Analysis
BS30. The total width of the cross section is B = 37.96 m. The height and width of
one girder are the same as for the other cross sections from Brusymfonien. From Table
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Table 7.9
Eigenvalue solution using cross section BS20GV with a distance of 20m between each box-girder.
The cross section has been tested with guide vanes. The values in parenthesis are found from
the eigenvalue routine created by the author.

Mode combination
Critical Velocity
VCR (m/s)

Critical frequency
ωCR (rad/s)

Reduced
velocity
Vred

30 modes 137.6 0.626 29.3
20 modes 138.0 0.625 29.4
15 modes 137.9 0.625 29.4

(116.8) (0.623) (25.0)

4 vert. + 5 torsional 137.9 0.625 29.4
4,5,11,14 and 15 139.3 0.633 29.3
5,11 and 14 139.3 0.633 29.3

(139.3) (0.633) (29.3)

5 and 14 140.0 0.637 29.3
(140.0) (0.637) (29.3)

4 and 15 163.9 0.655 33.4
(163.9) (0.655) (33.4)

Table 7.10
Shape-wise similarity of modes for cross section BS20GV .

Mode combination Shape-wise similarity ψzθ

4 and 11 ∼0
4 and 14 ∼0
4 and 15 0.96
5 and 11 0.52
5 and 14 0.88
5 and 15 ∼0

7.11 it can be seen that a mode combination of modes 6, 11 and 13 provides a critical
velocity almost equal to the exact solution. This indicates a multimode-coupled flutter
phenomenon where one vertical and two torsional modes contribute significantly to the
critical velocity. The shape-wise similarity are almost identical for mode combinations
6, 11 and 6, 13 but the frequency ratio is lower for combination 6 and 11, providing a
lower critical velocity then combination 6 and 13. Compared to the two previous analyses
the critical velocity is reduced significantly. This may be due to reduction in natural
frequencies. From Table 7.8 on page 82 it can be seen that the vertical frequencies are
slightly reduced while the torsional frequencies are reduced by 5.4 % for mode 10 and 6.3
% for mode 13, where mode 13 corresponds to mode 14 in Analysis BS15 and BS20. In
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Figure 7.11: Development of the eigenvalue solution for cross section BS20GV with mode
combination 5, 11 and 14.

Appendix D.7 this is illustrated where it can be seen that the governing modes have a
lower mode number. This reduces the frequency ratio of the modes responsible for flutter,
and may provide a lower critical velocity. Since the distance between the cable planes has
been increased by 10 m compared to Analysis BS20 one may expect that the critical
velocity would increase since the stiffness provided by the cables increased, but this is
not the case. This may be due to the increase in MOI which balance out the increase
in torsional stiffness. But the main reason is probably due to the lack of guide vanes at
the lower edges of the girders. In [11] this has been stated from experiments which show
significant increase in critical velocity when guide vanes are mounted on the cross sections.
One other reason may be due to the polynomial fitting for the derivative A∗

2. As can be
seen from Figure 7.6 on page 71 the extrapolation of A∗

2 seems to be unreasonable outside
the experimental range, providing less aerodynamic damping associated with torsional
motion. The reduced critical velocity for this cross section is 16.2, which is more than
twice the maximum value extracted from experiments. This indicates that the value for
A∗

2 is positive at this reduced velocity, and may give unreasonable results. At least they are
on the safe side. All the other derivatives are also extrapolated outside the experimental
range and strengthen the uncertainties in the results.

The development of the eigenvalue solution using mode 6, 11 and 13 is given in Figure 7.12
on page 87. It can be seen that zero damping occurs for the vertical mode, indicating that
the critical frequency is on the vertical branch solution. At a wind speed of 60 m/s the
frequency of motion has been found to be about 0.7 when including modes 6, 11 and 13
in the calculations. This gives a reduced critical velocity of 11.4 which is just outside the
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Table 7.11
Eigenvalue solution using cross section BS30 with a distance of 30m between each box-girder.
The cross section has been tested without guide vanes. The values in parenthesis are found from
the eigenvalue routine created by the author.

Mode combination
Critical Velocity
VCR (m/s)

Critical frequency
ωCR (rad/s)

Reduced
velocity
Vred

30 modes 82.2 0.675 16.2
20 modes 82.2 0.675 16.2
15 modes 82.2 0.676 16.2

(37.0) (0.934) (5.3)

4.vert + 4 torsional 82.2 0.676 16.2
4,6,11,13 and 14 82.3 0.673 16.3
6,11 and 13 82.3 0.673 16.3

(82.3) (0.673) (16.3)

6 and 11 84.7 0.669 16.9
(84.7) (0.669) (16.9)

6 and 13 94.2 0.688 18.3
(94.2) (0.688) (18.3)

11 and 13 94.7 0.768 16.4
11 104.6 0.746 18.3

experimental range for derivatives H∗
n
, A∗

n
, n ∈ {1, 4}, ranging up to about 10.1, see Table

C.3. For the other derivatives, ranging to about 7, the extrapolations are more uncertain.
It may be concluded that this cross section provides a stability limit above the design
critical velocity based on the above arguments.

Table 7.12
Shape-wise similarity of modes for cross section BS30/BS30GV .

Mode combination Shape-wise similarity ψzθ

4 and 10 0.98
4 and 14 0.97
6 and 11 0.96
6 and 13 0.98
12 and 11 0.11
12 and 13 0.02
15 and 10 0.03
15 and 14 0.04

Results from the eigenvalue solution using cross section BS30GV are shown in Table 7.13.
Values in parenthesis are extracted using the created routine given in Appendix E.4.1.
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Figure 7.12: Development of the eigenvalue solution for cross section BS30 with mode com-
bination 6, 11 and 13.

As can be seen the routine does not give same results for this configuration as for the
provided eigenvalue routine. Improvements in the routine are needed. All dimensions are
the same as for cross section BS30. In addition this cross section has guide vanes mounted
to the top of the crossbeams. This analysis is referred to as Analysis BS30GV . As the
table shows, mode 6, 11 and 13 contributes significantly to the critical velocity also in this
analysis, but including modes 4 and 10 reduces the critical velocity from 194.6 m/s to
188.1m/s and the solution converges. This is because of the shape-wise similarity of mode
4 and 10 according to Table 7.12 on the preceding page. When including 20 modes in the
calculation the critical velocity shows a value higher than the exact value. This may be due
to some dissimilar mode shapes, e.g. mode 12 and 11 which is weakly shape-wise similar,
and where the vertical frequency exceeds the torsional frequency. These observations
indicates that this is a multimode-coupled flutter phenomenon were several vertical and
torsional modes contribute, but were mode 6, 11 and 13 contributes significantly. It can
be seen that for this case including both mode 11 and 13 has a stabilizing effect since the
stability limit increases. The opposite effect was shown for BS30.

The development of the eigenvalue solution using mode 4, 6, 11, 13 and 14 is given in
Figure 7.13 on page 89. The critical frequency has been found to be 0.713 rad/s and
from the figure, indications suggests that the critical frequency is on one of the vertical
branches. This is confirmed as the damped frequencies of the vertical modes exceed the
undamped frequencies of the torsional modes. The reduced critical velocity is high for
this analysis, as high as 35.1 when 30 modes are considered. This is obviously to high for
these results to be reliable. But this cross section can be said to at least give a higher

87



7.4. Importance of aerodynamic derivatives CHAPTER 7. STABILITY ANALYSIS

Table 7.13
Eigenvalue solution using cross section BS30GV with a distance of 30m between each box-girder.
The cross section has been tested with guide vanes. The values in parenthesis are found from
the eigenvalue routine created by the author.

Mode combination
Critical Velocity
VCR (m/s)

Critical frequency
ωCR (rad/s)

Reduced
velocity
Vred

30 modes 188.4 0.715 35.1
20 modes 190.1 0.720 35.2
15 modes 189.4 0.717 35.2

(158.0) (0.833) (25.3)

4 vert. + 4 torsional 189.4 0.717 35.2
4,6,11,13 and 14 188.1 0.713 35.2

(162.4) (0.795) (27.2)

4,6,10,11,13,14 187.0 0.710 35.1
6,11,13 194.6 0.792 32.8
6 and 13 180.6 0.744 32.4
6 and 11 185.3 0.761 32.5

critical velocity then the other cross sections. In the vicinity of the design critical velocity
the frequency of motion is found to be about 0.7, giving a reduced critical velocity of
11.4. This is within the experimental range, and Figure 7.7 on page 72 shows that the
polynomials fit well to the data at this reduced velocity. The biggest discrepancy is for A∗

2

which underestimates the torsional damping, but this is on the safe side. This indicates
that any stability problem due to strong wind below the design critical wind velocity is
of no concern for this cross section.

7.4 Importance of aerodynamic derivatives

I the previous section the reliability of the results was discussed in relation with the aero-
dynamic derivatives. In order to get satisfactory and reliable results it is crucial to predict
the self-exited forces as accurately as possible. Finding the most important derivatives
is therefore an important task. This has been investigated for cross section 2TFGP and
BS15GV by following the procedure in Øiseth et al. [26]. Here the aerodynamic deriva-
tives have been scaled separately by a factor ranging 0-1.6, and the change in stability
limit has been studied. Figure 7.14 on page 90 shows the results when scaling the aerody-
namic derivatives given for cross section 2TFGP . The results are given when including
modes 5, 11, 13 and 14. With an angle of incidence of 3o, which was identified as giving
a flutter phenomenon, the figure shows that the most important derivatives are A∗

1, A
∗
3,

H∗
3 and to some extent H∗

1 . It is noticeable that by scaling A∗
2 no significant changes

were observed, which was unexpected since this derivative provides aerodynamic damp-
ing associated with torsional motion. It can be seen from the figure that by scaling H∗

3
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Figure 7.13: Development of the eigenvalue solution for cross section BS30GV with mode
combination 4, 6, 11, 13 and 14.

by a factor 0.2 the stability limit increases by over 60 %, this is because the values for
H∗

3 are positive (see Figure 7.1) and will provide negative aerodynamic forces when the
forces are moved to the left side of the equation system as given in Equation 4.40 on
page 33. When the angle of incidence is 0o the cross section indicated a static divergence
instability phenomenon. As this phenomenon is a static instability problem in torsion
the importance of any aerodynamic derivative associated with torsional stiffness would be
expected. As can be seen from Figure 7.14 this is confirmed from the curve given for A∗

3,
indicated by the purple line. As can be seen the stability limit is increased by over 120 %
when scaling the derivative by 0.2. This is because the value of A∗

3 is positive, and will
provide negative torsional stiffness to the system. Obviously this is not a reliable result
since static divergence indicates a critical frequency equal to zero rendering a reduced
critical velocity infinitely large, but the trend is clear.

Figure 7.15 on the following page shows the results when scaling the aerodynamic deriva-
tives for cross section BS15GV . Results are given when including modes 5, 12 and 14.
As can be seen the most important derivatives are A∗

1, A
∗
2, H

∗
3 , H

∗
1 and to some extent

A∗
3. Compared to 2TFGP the importance of A∗

2 are significant and by eliminate this
derivative in the calculation decreases the stability limit by 20 %, implying a reduction of
the critical velocity from 121 m/s to about 97 m/s. From Figure 7.4 on page 68 it can
be seen that for the most important derivatives found above the polynomials fit well to
the data especially in the range of the data obtained in experiments. Outside this range
the polynomials obviously gives uncertain results, as mentioned earlier.
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Figure 7.14: Change of stability limit when scaling aerodynamic derivatives separately for
cross section 2TFGP . The plot to the left shows results for derivatives H∗

n, n ∈ {1, 2, 3, 4} while
the plot to the right shows results for derivatives A∗

n, n ∈ {1, 2, 3, 4}. The purple line show the
results from the 0o wind case.
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Figure 7.15: Change of stability limit when scaling aerodynamic derivatives separately for
cross section BS15GV . The plot to the left shows results for derivatives H∗
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while the plot to the right show results for derivatives A∗
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7.5 Flutter solution and comparative results

In section 7.3 the aeroelastic stability limit was found by solving the complex eigenvalue
problem, an exact solution when all the vibration modes are included in the solution.
For engineering purposes and as preliminary investigations, simplified solutions has been
important in order to predict the stability limit, especially flutter. In the following a sim-
plified solution is tested on the different cross sections presented in the previous sections,
also called the flutter equations. They were derived in Section 4.3, and the solution rou-
tines for this problem is given in Appendix E.3 and E.4.2. As the eigenvalue solutions has
shown the instability limit is highly dependent of the shape-wise similarity of the vertical
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and torsional modes. In addition the frequency ratio between modes likely to cause flutter
may be of great importance for which modes contributing the most. But this factor is not
that clear from the solutions presented in Section 7.3. This is investigated further in the
following. The flutter solutions are compared to the eigenvalue solution provided and the
one presented in Appendix E.4.1, when using only two modes. Since the different solutions
are developed from the same starting point they should provide approximately the same
answer. When using the flutter equations it is necessary to find the modal equivalent
distributed mass and mass moment of inertia. These parameters were estimated for cross
section 2TFGP in Section 6.5. For the cross sections from Brusymfonien the distributed
mass and MOI was given and presented in Table 7.1 on page 67. As for cross section
2TFGP the modal equivalent distributed mass m̃z and MOI m̃θ has been calculated in
the centre of the sailing lane where the hangers are at their shortest and the cables are
horizontal. The calculations are summarized in Table 7.14. The solution routines for
solving the flutter equations are given in Appendix E.3 and E.4.2.

Table 7.14
Modal equivalent distributed mass and MOI for cross sections from Brusymfonien. MOI is
found about the vertical centre in the crossbeams.

Element
Distributed mass
one plane (kg/m)

Radius of gyration d
(m)

Mass moment of inertia
(kgm2/m)

B
S
15
G
V Cables 12,330.8 11.48 1,625,081.1

Hangers 208.8 11.48 27,517.8
Girder &
Crossbeam

9,940 741,600.0

Total m̃z=22,480 m̃θ=2,394,200

B
S
20
G
V Cables 12,330.8 13.98 2,409,936.5

Hangers 208.8 13.98 40,808.0
Girder &
Crossbeam

10,040 938,000.0

Total m̃z=22,580 m̃θ=3,433,700

B
S
30

/
B
S
30

G
V Cables 12,330.8 18.98 4,442,052.3

Hangers 208.8 18.98 75,218.2
Girder &
Crossbeam

10,770 1,818,700.0

Total m̃z=23,310 m̃θ=6,336,000

7.5.1 Cross section 2TFGP

In this section the cross section 2TFGP has been tested by the use of the flutter equations.
The width of one girder is given as B∗ = 10 m, and the still-air structural properties in
this analysis are assumed to be ωz = 0.5 rad/s, ωθ = γωz rad/s, ξz = 0.005 and ξθ =
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0.005. The modal equivalent distributed mass and MOI are found from Section 6.5 as m̃z

= 25,700 kg/m and m̃θ = 2,840,000 kgm2/m. The still-air vibration modes are assumed
to be dominated by either a vertical component φz or a torsional component φθ, and are
related by the shape-wise similarity ψzθ. As the multimode eigenvalue solution indicated
the stability phenomenon was static divergence for the 0o wind case. This would indicate
that the flutter equations would not give any solution at a frequency ratio of about 1.4
or below. This can be seen from Table 7.4 and Table 7.8 where mode 11 contributes
to the static stability limit and has a frequency of about 0.7 rad/s, giving a frequency
ratio of about 1.4 when using the vertical frequency of mode 5 (0.492 rad/s). Critical
velocities when the eigenvalue solution is used, are presented in parenthesis in Table 7.15.
The corresponding critical frequencies are given in table 7.16 on the facing page. Here
the solutions are given as a function of the frequency ratio γ between the modes and
the shape-wise similarity ψzθ. As aspected the flutter equations gave no solution at a
low frequency ratio of about 1.4, indicated by lines at the top of each cell. The flutter
solution is illustrated in Figure 7.16 on page 94, and as can be seen the real root solution
have two positive roots for each velocity iteration, and the imaginary root solution has
only one positive root. No flutter will occur because no one of the real curves crosses the
imaginary curve.

Table 7.15
Critical velocities for cross section 2TFGP at 0o of incidence of the wind flow given as a function
of the shape-wise similarity and the frequency ratio between the two modes. The values in
parenthesis are obtained by using the eigenvalue solution with two modes. The values found by
the flutter equations are given in top of each cell. Empty cells indicate that no solution was
found from the flutter equations.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 – 117.7 124.6 143.3 162.7 181.9 200.9 256.8
(124.4) (133.2) (132.9) (147.3) (165.7) (184.4) (203.2) (258.6)

0.9 – – – 147.8 166.2 185.0 203.8 259.7
(124.3) (133.1) (141.9) (156.6) (170.9) (188.7) (206.9) (262.0)

0.8 – – – – 172.4 189.9 208.1 263.5
(124.3) (133.1) (141.9) (159.5) (177.1) (194.6) (212.2) (264.9)

0.6 – – – – – – – 283.9
(124.3) (133.1) (141.9) (159.4) (177.0) (194.6) (212.2) (264.9)

As the tables show the stability limit increases when the frequency ratio increases. The in-
teresting about these results is that the solutions indicate that the instability phenomenon
changes character from static divergence to flutter when the frequency ratio reach a cer-
tain value. This is indicated from Table 7.16 where the critical frequency changes from
zero to over 0.5 rad/s somewhere between a frequency ratio of 1.5 and 1.6 (1.4 and 1.5
for the flutter solution) for a shape-wise similarity equal to 1.0. The frequency ratio onset
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Table 7.16
Critical frequencies for cross section 2TFGP at 0o of incidence of the wind flow given as a
function of the shape-wise similarity and the frequency ratio between the two modes. The
values in parenthesis are obtained by using the eigenvalue solution with two modes. Empty cells
indicate that no solution was found from the flutter equations.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 – 0.53 0.54 0.56 0.57 0.59 0.61 0.67
(0.0) (0.0) (0.54) (0.55) (0.57) (0.59) (0.61) (0.66)

0.9 – – – 0.55 0.57 0.59 0.60 0.66
(0.0) (0.0) (0.0) (0.55) (0.57) (0.58) (0.60) (0.65)

0.8 – – – – 0.56 0.58 0.60 0.65
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

0.6 – – – – – – – 0.64
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

of this change in stability character also seems to increase as the shape-wise similarity
decreases. No clear reason for this has not been found, and is left for further investi-
gations. It is also seen that when the critical frequency equals zero the critical velocity
doesn’t change when reducing the shape-wise similarity, obviously because there is no
coupling between the two modes and the stability limit is only dependent on the torsional
mode and its frequency. I.e. a higher torsional frequency provides a higher critical ve-
locity. Comparing the bimodal eigenvalue solution with the multimode solution given in
Table 7.4 on page 75, it can be shown that the bimodal solution gives an estimate of the
critical velocity well below the multimode solution, 124.4 m/s when assuming a torsional
frequency of 0.7 rad/s (γ = 1.4) compared to 142 m/s from the multimodal solution.
I.e. the bimodal approach provides a conservative result, at least when assuming a low
frequency ratio. Although it must be mentioned that the critical velocity indicated by
static divergence cannot be said to be a realistic value since the frequency approaches zero
during the iteration process, meaning that the reduced velocity approaches infinity. But
at least it can be stated that flutter will be no problem below this velocity.

7.5.2 Cross section BS15GV

The cross section referred to as BS15GV has also been tested by the use of flutter equa-
tions. The width B∗ of one girder is 7.5 m and the total width between the cable planes
is 22.98 m. The still air properties are assumed to be ωz = 0.5 rad/s, ωθ = γωz rad/s,
ξz = 0.005 and ξθ = 0.005. The modal equivalent distributed mass and MOI are found
from Table 7.14 as m̃z = 22,480 kg/m and m̃θ = 2,394,000 kgm2/m. This cross section
has guide vanes mounted to the girders. As before the still-air vibration modes are as-
sumed to be dominated by either a vertical component φz or a torsional component φθ,
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Figure 7.16: Development of the flutter solution for cross section 2TFGP . Red curves repre-
sent the positive real roots of the flutter equations, while the blue dashed line represents the only
positive imaginary root. Results are shown for a shape-wise similarity ψzθ = 1, and a frequency
ratio γ = 1.4.

and are related by the shape-wise similarity ψzθ. The critical velocities and corresponding
critical frequencies are presented in Table 7.17 on the next page and 7.18 on page 96
respectively. Here the solutions from the flutter equations are given at the top of each
cell, while the eigenvalue solutions are given in parenthesis. The percentage difference
between the flutter- and eigenvalue solution is given in the third row in each cell. The
eigenvalue solutions using the routine given in Appendix E.4.1 are given at the bottom of
each cell, and as can be seen this routine provides accurate results for a bimodal analysis
when using this cross section.

As expected the critical velocity increases as the frequency ratio γ increases or when the
shape-wise similarity ψzθ decreases. The flutter equations gives critical velocities that
deviate insignificantly from the eigenvalue solution, and any discrepancy may be due to
the fact that the solutions are iterative processes and convergence criteria’s influence the
final results. In Section 7.3.2 the eigenvalue solution gave a critical velocity of 114.9 m/s
when including mode 5 and 14, identified as one vertical and one torsional mode with
shape-wise similarity equal to 0.83 and frequency ratio of about 1.6. From Table 7.17
this would indicate a critical velocity of about 90 m/s from the flutter solution. I.e. the
flutter solution underestimates the critical velocity by approximately 20 %, which is a
conservative result. This may be due to differences in structural mass but also that the
reduced velocities are different, rendering different values of the aerodynamic derivatives.
In the flutter solution the mass has been assumed evenly distributed along the girders,
which is an engineering approximation. The modal equivalent mass has been shown to be
dependent on the mode shapes, and the degree of coupling between other directions and
the cables. This is not accounted for in the flutter equations.
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Table 7.17
Critical velocities for cross section BS15GV given as a function of the shape-wise similarity and
the frequency ratio between the two modes. The value at the top in each cell was found using
the flutter equations. The values in parenthesis were found by using the eigenvalue solution,
while the percentage difference between the flutter solution compared to the eigenvalue solution
is given in the third row in each cell. The value at the bottom in each cell was found by using
the eigenvalue routine created by the author.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 70.7 78.8 86.6 101.5 115.9 129.9 143.8 184.4
(70.9 ) (79.0 ) (86.8 ) (101.7) (116.2) (130.3) (144.1) (184.7)
-0.3% -0.3% -0.2% -0.3% -0.2% -0.2% -0.2% -0.2%
70.9 79.0 86.8 101.8 116.2 130.3 144.1 184.7

0.9 72.8 81.1 89.1 104.4 119.2 133.7 147.9 189.6
(73.0 ) (81.3 ) (89.3) (104.7) (119.5) (134.0) (148.2) (190.0)
-0.3% -0.3% -0.3% -0.3% -0.2% -0.2% -0.2% -0.2%
73.0 81.3 89.3 104.7 119.5 134.0 148.3 190.1

0.8 75.2 83.7 91.9 107.7 123.0 137.9 152.6 195.7
(75.4 ) (83.9 ) (92.2) (108.0) (123.3) (138.3) (152.9) (196.0)
-0.3% -0.3% -0.3% -0.3% -0.3% -0.2% -0.2% -0.2%
75.4 83.9 92.2 108.0 123.3 138.3 152.9 196.1

The development of the flutter solution is shown to the left in Figure 7.17 on the next
page. The solution is plotted for a frequency ratio of 1.4 and a shape-wise similarity
ψzθ equal to 1. The critical velocity is defined as the intersection point between the real
and imaginary root curves that provides the lowest velocity value. The reduced critical
velocity as a function of the frequency ratio γ is shown in the right plot of Figure 7.17.
Here, the reduced velocity is given as a function of the frequency ωθ (Ṽcr = Vcr/B∗ωθ).
As can be seen the reduced critical velocity increases as the frequency ratio increases.

7.5.3 Cross section BS20GV

The width of one girder is 7.5 m and the total width between the cable planes is 27.96
m. The structural properties are assumed to be ωz = 0.5 rad/s, ωθ = γωz rad/s, ξz =
0.005 and ξθ = 0.005. The modal equivalent distributed mass and MOI are found from
Table 7.14 as m̃z = 22,580 kg/m and m̃θ = 3,433,700 kgm2/m. This cross section has
guide vanes mounted to the cross section. The still-air vibration modes are assumed to be
dominated by either a vertical component φz or a torsional component φθ, and are related
by the shape-wise similarity ψzθ. Table 7.19 on page 97 shows the critical velocities found
for cross section BS20GV using the flutter equations. Here, the flutter solutions are given
at the top of each cell and the eigenvalue solution is given in parenthesis. The percentage
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Table 7.18
Critical frequencies for cross section BS15GV given as a function of the shape-wise similarity
and the frequency ratio between the two modes. The value at the top in each cell was found using
the flutter equations. The values in parenthesis were found by using the eigenvalue solution,
while the percentage difference between the flutter solutions compared to the eigenvalue solution
is given in the third row in each cell. The value at the bottom in each cell was found by using
the eigenvalue routine created by the author.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 0.66 0.70 0.75 0.83 0.91 1.00 1.08 1.34
(0.66) (0.70) (0.75) (0.83) (0.91) (1.00) (1.08) (1.34)
0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
0.66 0.70 0.75 0.83 0.91 1.00 1.08 1.34

0.9 0.66 0.70 0.74 0.82 0.90 0.99 1.07 1.33
(0.66) (0.70) (0.74) (0.82) (0.90) (0.99) (1.07) (1.32)
0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
0.66 0.70 0.74 0.82 0.90 0.99 1.07 1.32

0.8 0.66 0.70 0.74 0.82 0.90 0.98 1.06 1.31
(0.66) (0.70) (0.73) (0.81) (0.90) (0.98) (1.06) (1.31)
0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
0.66 0.70 0.73 0.81 0.90 0.98 1.06 1.31
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Figure 7.17: Development of the flutter solution given for cross section BS15GV . Shape-wise
similarity is equal to ψzθ = 1: (a) Development of the real and imaginary part of the solution
at a frequency ratio of γ = 1.4. The critical values are identified where the two curves intersect,
indicated by green lines. (b) Reduced critical velocity (Ṽcr = Vcr/B∗ωθ) as a function of the
frequency ratio between the torsional and vertical mode.

between the flutter solution and the eigenvalue solution is given in the third row in each
cell. The eigenvalue solutions using the solution routine presented in Appendix E.4.1 is
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given at the bottom in each cell. The corresponding critical frequencies are given in the
same manner in Table 7.20 on the next page.

Table 7.19
Critical velocities for cross section BS20GV given as a function of the shape-wise similarity and
the frequency ratio between the two modes.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 110.5 120.9 131.3 151.8 171.9 191.7 211.3 269.2
(110.5) (120.9) (131.3) (151.9) (172.0) (191.9) (211.5) (269.4)
0.0% 0.0% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1%
110.5 120.9 131.3 151.9 172.0 191.9 211.5 269.9

0.8 114.2 124.8 135.4 156.4 177.1 197.5 217.6 277.2
(111.7) (122.1) (132.6) (153.3) (173.6) (193.6) (213.4) (271.8)
2.3% 2.2% 2.1% 2.0% 2.0% 2.0% 2.0% 2.0%
114.3 124.8 135.5 156.5 177.2 197.6 218.0 277.4

As the tables show the critical velocity increases as the frequency ratio between the ver-
tical and torsional mode increases, and increases as the shape-wise similarity decreases.
The percentage error of critical velocities between the flutter solution and the eigenvalue
solution are insignificant, but increase as ψzθ decreases. This may be due to the procedure
used for calculating the modal matrices from the bimodal eigenvalue approach. How the
mode shapes are assumed in order to get a shape-wise similarity equal to those in the ta-
bles influence the values of the mode shape integrals and thereby the values in the modal
matrices. In Section 7.3.3 the eigenvalue solution gave a critical velocity of 140 m/s when
including mode 5 and 14 in the calculations, which was close to the exact solution. The
shape-wise similarity and frequency ratio between these two modes has been found to be
approximately ψzθ = 0.88 and γ = 1.5 from Tables 7.8 and 7.10 respectively. From this,
Table 7.19 indicates a critical velocity between 121 m/s and 125 m/s, i.e. an underesti-
mation of about 10-13 %. As mentioned earlier this may have to do with differences in
mass properties and the values for the aerodynamic derivatives at different values of the
reduced velocity.

7.5.4 Cross section BS30/BS30GV

These two cross sections are identical regarding cross sectional shape, stiffness and mass
properties. The only difference is that BS30 doesn’t have guide vanes mounted to the
cross section. The width of one girder is 7.5 m and the total width between the cable
planes is 37.96 m. The structural properties are assumed to be ωz = 0.5 rad/s, ωθ = γωz

rad/s, ξz = 0.005 and ξθ = 0.005. The modal equivalent distributed mass and MOI are
found from Table 7.14 as m̃z = 23,310 kg/m and m̃θ = 6,336,000 kgm2/m. The still-air
vibration modes are assumed to be dominated by either a vertical component φz or a
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Table 7.20
Critical frequencies for cross section BS20GV given as a function of the shape-wise similarity
and the frequency ratio between the two modes.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 0.62 0.65 0.68 0.75 0.82 0.89 0.96 1.17
(0.62 ) (0.65 ) (0.68) (0.75 ) (0.82 ) (0.88) (0.95 ) (1.17 )
0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 0.2%
0.62 0.65 0.68 0.75 0.82 0.88 0.95 1.17

0.8 0.61 0.64 0.68 0.74 0.80 0.87 0.94 1.14
(0.62 ) (0.65 ) (0.68) (0.75 ) (0.81 ) (0.88) (0.95 ) (1.16)
-0.6% -0.7% -0.8% -0.9% -1.0% -1.1% -1.1% -1.3%
0.61 0.64 0.67 0.74 0.80 0.87 0.94 1.14

torsional component φθ, and are related by the shape-wise similarity ψzθ.

Table 7.21
Critical velocities for cross section BS30 given as a function of the shape-wise similarity and the
frequency ratio between the two modes. The value at the top in each cell was found using the
flutter equations. The values in parenthesis were found by using the eigenvalue solution. The
value at the bottom was found by using the eigenvalue routine created by the author.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 78.3 88.1 97.6 97.8 102.2 109.8 118.1 144.6
(78.3 ) (88.2 ) (97.7 ) (96.0 ) (101.4) (109.1) (117.5) (144.1)
-0.1% -0.1% -0.1% 1.9% 0.8% 0.6% 0.6% 0.4%
78.1 87.9 97.4 96.0 101.0 109.1 117.5 144.1

0.8 77.4 78.1 80.2 87.1 95.0 103.5 112.1 138.6
(76.4 ) (77.2 ) (79.6 ) (86.6 ) (94.6 ) (103.0) (111.7) (138.2)
1.3% 1.1% 0.8% 0.6% 0.4% 0.4% 0.4% 0.3%
76.5 77.2 79.6 86.6 94.6 103.1 111.7 138.2

0.6 (67.2) (70.5) (74.3) (82.3) (90.6) (99.2) (107.8) (133.9)

0.4 (63.2) (67.0) (71.1) (79.3) (87.7) (96.2) (104.8) (130.5)

Table 7.21 shows the critical velocities given for cross section BS30 as a function of
the frequency ratio and the shape-wise similarity. The flutter solution is given at the
top in each cell while the eigenvalue solutions are given in parenthesis. The percentage
difference between the solutions is given in the third row in each cell. The eigenvalue
results obtained from the routine presented in Appendix E.4.1 is given at the bottom
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Table 7.22
Critical velocities when different derivatives are scaled by a factor zero: Cross section BS30.
Values in parenthesis are the values from the eigenvalue solution without any scaling.

shapewise
similarity ψzθ

H∗
2 = 0 H∗

3 = 0 A∗
1 = 0 A∗

4 = 0 H∗
2 = H∗

4 = 0

Frequency ratio γ

1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5

1.0 78.3 88.0 57.9 62.1 57.1 61.4 80.2 89.0 77.4 78.4
(78.3) (88.2)

0.8 81.2 86.8 58.0 62.2 57.3 61.6 85.3 94.9 69.3 72.6
(76.4) (77.2)

in each cell. The corresponding critical frequencies are given in the same manner in
Table 7.23 on the next page. As can be seen from Table 7.21 the solutions gave some
unexpected results. While the previous cross sections showed increasing critical velocities
as the shape-wise similarity decreased, this cross section shows the opposite. This may
have to do with the shapes of the aerodynamic derivatives. From the contents of the
impedance matrix, see Equations 4.28 on page 30 to 4.31 on page 31, it can be seen that
the terms dependent on the shape-wise similarity are the off-diagonal terms associated
with aerodynamic derivatives H∗

2 , H
∗
3 , A

∗
1 and A∗

4. Some of these terms are suspected
to have a stabilizing effect on the stability limit since reducing their values decreases the
critical velocity. A study has been carried out to find the reason for this problem. In
Table 7.22 the derivatives mentioned above has been scaled individually by a factor zero.
This was done to see which derivatives that increased or decreased the stability limit. As
can be seen, H∗

3 and A∗
1 reduce the stability limit when comparing these values with those

in Table 7.21. When H∗
3 and A∗

1 are zero the stability limit doesn’t change when ψzθ is
reduced, implying that H∗

2 and A∗
4 have no influence in this reduced velocity range. Since

the stability limit doesn’t change when either H∗
3 or A∗

1 are zero, one analysis is carried
out when neither of them is scaled. The result is shown in the two last columns. As can
be seen the results gives reduced critical velocity when ψzθ is reduced. This implies that
the unexpected results may be caused by a combination of the values for H∗

3 and A∗
1. The

strange results are also suspected to have a connection with the polynomial fit for A∗
2. A

simple study confirms this possibility. By scaling A∗
2 by zero the results will change to

giving increased velocity when ψzθ is reduced. From about 77 m/s to about 81 m/s when
ψzθ is reduced from 1.0 to 0.8, using the eigenvalue solution with γ = 1.4. The flutter
solution gave the same results. Since a value of zero for A∗

2 is conservative according to
Figure 7.6 on page 71, it may be concluded that a bad polynomial fit for A∗

2 is the main
factor responsible for the unexpected results shown in Table 7.21. This is illustrated in
Figure 7.18, where the different derivatives has been scaled separately. It can be seen that
by scaling A∗

2 by a factor less than 1, the stability limit will increase. This is an opposite
effect compared to cross section BS15GV , see Figure 7.15 on page 90. As mentioned

99



7.5. Flutter solution CHAPTER 7. STABILITY ANALYSIS

this is because A∗
2 shows positive values at high reduced velocities, which is shown to be

unreasonable. It is concluded that the extrapolation for A∗
2 provides overly conservative

results when a second order polynomial is fitted to the experimental data.

Table 7.23
Critical frequencies for cross section BS30 given as a function of the shape-wise similarity and
the frequency ratio between the two modes. The value at the top in each cell was found using
the flutter equations. The values in parenthesis were found by using the eigenvalue solution.
The value at the bottom was found by using the eigenvalue routine created by the author.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 0.68 0.72 0.77 0.94 1.04 1.15 1.25 1.56
(0.68 ) (0.73 ) (0.77) (0.94 ) (1.04) (1.15 ) (1.25 ) (1.56)
-0.2% -0.3% -0.4% 0.0% 0.0% 0.0% 0.0% 0.0%
0.68 0.72 0.77 0.94 1.04 1.15 1.25 1.56

0.8 0.72 0.78 0.83 0.94 1.04 1.15 1.25 1.56
(0.72 ) (0.78) (0.83) (0.94) (1.04 ) (1.15) (1.25) (1.56)
-0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.72 0.78 0.83 0.94 1.04 1.15 1.25 1.56
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Figure 7.18: Change of stability limit when scaling aerodynamic derivatives separately for
cross section BS30. The plot to the left shows results for derivatives H∗

n, n ∈ {1, 2, 3, 4} while
the plot to the right show results for derivatives A∗

n, n ∈ {1, 2, 3, 4}.

The critical velocities and corresponding critical frequencies obtained when using cross
section BS30GV are given in Tables 7.24 on the next page and 7.25 on the facing page
respectively. The results are given in the same manner as for the previous cross sections
but the eigenvalue provided in Appendix E.4.1 has not been presented as this solution
showed some numerical instabilities. As can be seen the critical velocity increases with
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increasing frequency ratio γ and when the shape-wise similarity ψzθ decreases. The lowest
eigenvalue solution in Table 7.13 on page 88 were found to be 180.6 m/s using mode 6
and 13 with a shape-wise similarity ψzθ = 0.98, and a frequency ratio between the modes
of about γ = 1.4. From Table 7.24 this would indicate a critical velocity close to 162 m/s
using the eigenvalue solution. This is a conservative result when the mode shapes, modal
equivalent distributed mass and MOI has been approximated.

Table 7.24
Critical velocities for cross section BS30GV given as a function of the shape-wise similarity and
the frequency ratio between the two modes.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 160.6 172.3 183.4 204.2 223.4 241.5 258.6 317.1
(161.5) (173.4) (184.7) (205.8) (225.4) (243.7) (260.9) (306.7)
-0.6% -0.6% -0.7% -0.8% -0.8% -0.9% -0.9% 3.4%

0.8 174.1 185.6 196.6 217.2 235.8 253.1 269.1 309.1
(175.2) (187.0) (198.2) (219.0) (238.1) (255.6) (271.8) (313.1)
-0.6% -0.8% -0.8% -0.8% -0.9% -1.0% -1.0% -1.3 %

Table 7.25
Critical frequencies for cross section BS30GV given as a function of the shape-wise similarity
and the frequency ratio between the two modes.

shapewise
similarity ψzθ

Frequency ratio γ

1.4 1.5 1.6 1.8 2.0 2.2 2.4 3.0

1.0 0.71 0.74 0.76 0.82 0.87 0.92 0.96 1.11
(0.71 ) (0.74) (0.77 ) (0.82) (0.88 ) (0.93 ) (0.97 ) (1.10)
-0.4% -0.4% -0.5% -0.6% -0.7% -0.8% -0.8% 1.2%

0.8 0.74 0.76 0.79 0.85 0.89 0.94 0.98 1.08
(0.74 ) (0.77) (0.80) (0.85) (0.90 ) (0.95 ) (0.99 ) (1.10 )
-0.4% -0.6% -0.6% -0.7% -0.8% -0.8% -0.9% -1.2%

7.6 Including quasi-steady theory

In the previous analyses the self-exited forces related to the lateral motion were not
included in the calculations, since the aerodynamic derivatives associated with this direc-
tion have not been experimentally obtained. For the cross sections from Brusymfonien
some of the static coefficients have been obtained during experiments [11]. A simple
study has been carried out where these coefficients are introduced in the eigenvalue so-
lution. I.e. the aerodynamic derivatives H∗

n
, A∗

n
, n ∈ {5, 6} and P ∗

n
, n ∈ {1, 2..., 6} are
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replaced by quasi-steady aerodynamic derivatives. They were derived in Equation 4.15
on page 28 and repeated below for convenience. It can be seen that the derivatives
P ∗
2 = P ∗

4 = P ∗
6 = H∗

6 = A∗
6 = 0. The coefficient C �

D
is zero.

P ∗
1 = −2C̄D

D

B

�
1

K

�
P ∗
5 =

�
C̄L − C �

D

D

B

��
1

K

�
P ∗
3 = C �

D

D

B

�
1

K

�2

H∗
5 = −2C̄L

�
1

K

�
A∗

5 = −2C̄M

�
1

K

�
P ∗
2 = P ∗

4 = P ∗
6 = H∗

6 = A∗
6 = 0 (7.8)

The static force coefficients are given in Table 7.26 for the different cross sections. The
results when including the static force coefficients are given in Table 7.27 and compared
to the results obtained in Section 7.3.2 to 7.3.4. To save computational time the govern-
ing modes that contributed significantly to the stability limit has been included in the
solutions. As can be seen from Figure 7.27 the change in critical velocity are insignificant.
For all cross sections accept BS30GV , results shows a small increase in stability limit.

Table 7.26
Static load coefficients for cross sections from Brusymfonien [11]. Coefficient C �

D
is zero.

Section Drag (CD) Lift (CL) Moment CM C �
L

C �
M

BS15GV 1.523 -0.145 0.134 5.46 0.04

BS20GV 1.754 0.118 0.185 6.37 -0.80

BS30 1.784 -0.218 0.222 5.31 -2.97

BS30GV 1.819 -0.200 0.194 6.96 -3.24

Table 7.27
Critical velocities and frequencies for cross sections from Brusymfonien. Results are shown
when the quasi-steady coefficients are used, and compared to the solution without. QST: quasi-
steady theory.

Section
Mode
combination

Critical Velocity
VCR (m/s)

Critical frequency
ωCR (rad/s)

QST Without QST QST Without QST

BS15GV 5,12,14 122.2 121.6 0.746 0.745

BS20GV 5,11,14 140.1 139.3 0.632 0.633

BS30 6,11,13 82.4 82.3 0.672 0.673

BS30GV 4,6,11,13,14 187.6 188.1 0.709 0.713
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Chapter 8

Conclusion

The stability limit of a long-span suspension bridge crossing the Sognefjord has been
assessed by using several cross sectional configurations, and by changing boundary condi-
tions and backstay geometry. It is concluded that by changing the boundary conditions
the stability limit changes insignificantly. This is because the vertical and torsional fre-
quencies for the governing modes doesn’t change significantly, compared to the horizontal
modes where the frequencies are reduced by 3-8 % for the first three symmetric and asym-
metric modes. Since the lateral deformations are not considered in this thesis, this effect
is left for further investigations. On the other hand it is concluded that by changing the
backstay/main span ratio from 0.1 to 0.2 the critical velocities are reduced with about
3.4-4.4 % depending on the projected height of the backstay cable. Two different technics
are used for modelling the stiffening girder. One by lumping all the mass and specify-
ing rotary inertia every 20 m, and the other by only lumping the additional mass. It is
concluded that the two modelling technics are equivalent and provides the same stability
limit.
The bridge has been tested with different cross sectional configurations for the stiffening
girder, consisting of separate box-girders. One cross sectional configuration has shown a
static instability phenomenon in torsion called static divergence when the angle of inci-
dence of the wind flow is α = 0o. The stability limit has been found to be about 140 m/s.
The same cross section gave a flutter stability limit of about 100 m/s when the angle of
incidence is changed to α = 3o. The validity of this result is considered questionable since
the values of the aerodynamic derivatives at 3o are found in a turbulent wind flow where
the buffeting forces are no longer negligible. When flutter occurs for this cross-section,
several torsional modes together with one vertical mode contribute significantly to the sta-
bility limit. I.e. the instability is described as a multimode-coupled flutter phenomenon.
It has been shown that the torsional mode that provides the largest shape-wise similarity
and lowest frequency ratio together with the vertical mode does not necessarily provide
the lowest flutter stability limit. It may be concluded that other factors contributes to
the stability limit. It is suspected that the degree of coupling to the horizontal motion
and the cables may influence the results to some extent.
A study has been carried out on several cross sectional configurations where the distances
between the box-girders have been varied. The stability limit varied from about 80 m/s to
over 180 m/s for a cross section with distance 30 m between the girders. It is concluded
that the lack of guide vanes will reduce the stability significantly. It is also concluded
that the critical velocity is higher when the distance between the box-girders is increased,
because of improved aerodynamics All cross-sections show that the governing instability
phenomenon is multimode flutter, but the degree of contribution from different modes
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differs. The multimode phenomenon has shown to give both stabilizing and destabilizing
effects. With a distance 15 m between the girders two vertical and one torsional mode
contributes significant to the stability limit. Here, one vertical and one torsional mode
showed a small degree of shape-wise similarity, and contributed as a stabilizing set of
modes. For the remaining cross sections one vertical and one or more torsional modes
contributed significantly to the stability limit. The shape-wise similarity indicates whether
the multimodal effects are stabilizing or destabilizing. If one vertical mode shows the same
magnitude of shape-wise similarity to two or more torsional modes, the multimode effect
is most likely to give reduced critical velocity. One exception was shown for a cross section
with 30 m between the girders with guide vanes. Here the opposite effect indicated that
a vertical mode, shape-wise similar to two torsional modes by the same magnitude gave
a stabilizing effect. The reliability of this result has been considered reduced since the
reduced velocities are very high for this cross section.
The self-exited forces has been modelled using the aerodynamic derivatives obtain in wind
tunnel tests. Since the wind tunnel tests are limited to vertical and rotational motion the
derivatives associated with the horizontal motion has been disregarded. For some of the
cross sections the static load coefficients have been obtained and the derivatives associated
with the lateral motion have been replaced by the quasi-steady aerodynamic derivatives.
Some of the results are recalculated using the static coefficients, and it is concluded that
the results show no significant changes in the critical velocities.
The importance of the aerodynamic derivatives has also been assessed by scaling their
values separately and recalculated the critical velocities for two cross sectional configura-
tions. It is found that the most important aerodynamic derivatives are A∗

1, A
∗
1, A

∗
3, H

∗
1 and

H∗
3 . The critical velocities found for the different analysis has shown reduced velocities

above those obtained from wind tunnel tests. The values for the derivatives have therefore
been extrapolated, and the reliability of the results has been assessed. It has been found
that it is crucial to represent the derivatives as accurately as possible. In the vicinity of
the critical velocities the values for the derivatives has shown to give uncertain results.
But it may be concluded that in the vicinity of the design critical velocity the derivatives
render values of sufficient accuracy. By this it may be concluded that any instability due
to strong wind are of no concern for this bridge when using the presented cross sections.
The solution routine for solving the complex eigenvalue problem, created by the author,
has shown good results when few modes are included in the calculations. When several
modes are included, the solution indicates numerical instabilities. I.e. the solution routine
needs further modifications.
The critical flutter velocities have been found when using the different cross sectional
configurations. The solutions have been found using the well-known flutter equations for
a bimodal system with one vertical and one torsional mode. It is concluded that the
shape-wise similarity and the frequency ratio are two important factors when assessing
the flutter stability limit. A high shape-wise similarity combined with a low frequency
ratio will provide the lowest critical velocity. The flutter solution has shown to provide
critical velocities below those found with the multimode solution. It may be concluded
that the flutter solution serves as an engineering approximation by providing conservative
results for the cross sections tested herein.
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Further recommodations

In this thesis the aeroelastic stability limit due to strong wind has been assessed. Only the
self-exited forces related to vertical and rotational motion has been used since aerodynamic
derivatives associated with the lateral motion are not experimentally obtained for the
cross-sectional configurations presented herein. As suspension bridges becomes longer the
lateral deflections will increase, and the lateral contribution to the stability limit may be
of importance. This can be investigated further by performing wind tunnel experiments
where all three degree of freedoms is accounted for.

It has been shown in this thesis that an increase of the backstay/main span ratio will
give reduced velocities. It would be interesting to see how other aeroelastic configurations
may influence the stability limit. This may include different cable configurations, e.g. a
mono cable with inclined hangers or several cables. The pylons have not been modelled in
this thesis. The pylons probably have an influence on the natural frequencies and mode
shapes, and this can be investigated further.

In this thesis all calculations were done in the frequency domain. It would be interesting
to see if response calculations in the time domain would give the same critical veloci-
ties. Vortex shedding is a phenomenon that has not been discussed in this thesis. This
phenomenon is important in the design process of suspension bridges, and may cause vi-
brations of unwanted magnitude, but they will not cause structural failure since they are
self-destructive. In a serviceability state such oscillations may become too large and are
unwanted. This phenomenon can therefore be investigated further for the actual bridge.

It was found that one cross-section gave static divergence. When the bimodal approach
was used to asses the flutter velocity for this cross-section, it was found that the frequency
onset of flutter increased as the shape-wise similarity decreased. If this has to do with
the extrapolation of the aerodynamic derivatives or is caused by other factors, would be
interesting to find out.

An attempt of solving the complex eigenvalue problem was carried out in this thesis. The
solution routine provided result in agreement with the provided solution routine, especially
when few modes were included in the calculation. When including several modes, the
routine showed some numerical instability. Further investigation of these problems will
improve the solution routine.
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Appendix A

Calculations

A.1 Design wind speed

In order to calculate the structural loads due to wind, the statistical properties of the
mean wind velocity are required. The mean wind velocity, vm,10, is based on numerous
meteorological observations recorded over several years, and averaged over a period of 10
min. In the European Standard [4] the mean wind velocity at an arbitrary distance above
ground is given by the following equation;

vm,10(z) = cr(z) · vb (A.1)

Here, vb refers to a mean wind velocity at a distance 10m above ground and the definition
is given as;

vb = cdir · cseason · calt · cprob · vb,0 (A.2)

Definition of the different symbols is as follows;

• cdir: Direction factor. Can be chosen equal to 1.0 for all directions

• calt: Level factor. Can be set equal to 1.0

• cprob: Probability factor used when a return period other than 50 years is used.
Otherwise it can be set equal to 1.0

• cseason: Season factor. Can be set equal to 1.0

• vb,0: Reference velocity dependent on location and geography. For the local govern-
ment of Høyanger this value is equal to 26 m/s

With all factors equal to 1.0, vb will be equal to the reference velocity. The roughness
factor, cr(z), is given as;

cr(z) = kr · ln
�
zf
z0

�
(A.3)
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Here, kr is the terrain roughness factor, while z0 is usually called the roughness length.
The design wind velocity has in this thesis been calculated at a height of z = 77 m when
assuming a sailing clearance of 75 m and a height of the bridge girder equal to 2 m. The
following factors have been used;

• z0 = 0.01

• kr = 0.17

This gives a roughness factor equal to cr(z) = 1.52, which leads to a value for the mean
wind velocity at a height 77 m above ground as;

vm(77) = 1.52 · 26m/s = 39.6m/s (A.4)

Multiplying the mean wind velocity with a safety factor of 1.6 [20], corresponding to a
return period of 500 years, gives a critical design wind speed. From a stability analysis
the lowest critical velocity must therefore be higher than;

VCR > 1.6 · vm(77) = 63.3m/s (A.5)

A.2 Geometry

The elevation of the girder is calculated by the use of a sector with a radius equal to the
bridge-girder curvature, see figure below.

no

wg

3700 m

b

Figure A.1: Curvature of the bridge girder.

wg = 56500−
�

565002 − (3700/2)2 = 30.3m

The length of the curved girder can be found by calculatingthe length of the circular
sector. The length of a circular sector is given by:

L = 2πR
n◦

360◦
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n◦ is the angle of the sector.

n◦ = 2arcsin(
3700/2

56500
) = 3.75278◦

b = 2π56500 ∗ 3.75278◦

360◦
= 3700.66m

A.3 Choice of stiffening girder dimensions

Free width of roadway according to HB017 [17];

Free width = 1 x 3 + 3 m = 6 m

For one driving lane this value is set to 6.5 m according to HB185 [20].

• Driving lane width

Driving lane width is based on an assumption that the Annual Daily Traffic volume is
between 8000-12000 with speed limit 90 km/t.

=⇒ 3.75 m lane width

=⇒ Width of shoulders = (6.5-3.75)/2 = 1.38 m

• Walking and cycling path

=⇒ Width of minimum 3 m [17]

• Free space between bearing constructions and traffic profile should be at least 0.5
m [20].

Total width and height of each of each box-girder is then, when the height is given as 1/5
of the width B∗;

=⇒ B∗ = 6.5 m + 3 m + 0.5 m = 10 m

=⇒ D = B∗/5 = 2 m

Width of air gap = 0.5 ∗B∗ = 5 m, and the width B = 25 m.

A.4 Area of longitudinal stiffeners

Area of stiffener type A:
Upper width: bAu = 200mm
Lower width: bAl = 400mm
Thickness: t = 6mm
Hight of the trapeze: hA = 270mm
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Sti!ener type C

350

200

220

Sti!ener type B

278

140

300

Sti!ener type A

400

200

270

Figure A.2: Stiffeners used in the box-girders.

Length of the inclined plates:

linc =

�

hA

2 + (
bAl − bAu

2
)
2

=

�
2702 + (

400− 200

2
)
2

= 287, 9mm

AA = t(2linc + bAu) = 6(2 ∗ 287, 9 + 200) = 4655, 1mm2 = 0, 00466m2

Area of stiffener type B:
Upper width: bBu = 140mm
Lower width: bBl = 278mm
Thickness: t = 6mm
Hight of the trapeze: hB = 300mm
Length of the inclined plates:

linc =

�

hB

2 + (
bBl − bBu

2
)
2

=

�
3002 + (

278− 140

2
)
2

= 307, 8mm

AB = t(2linc + bAu) = 6(2 ∗ 287, 9 + 140) = 4534mm2 = 0, 00453m2

Area of stiffener type C:
Upper width: bCu = 200mm
Lower width: bCl = 350mm
Thickness: t = 6mm
Hight of the trapeze: hC = 220mm
Length of the inclined plates:

linc =

�

hC

2 + (
bCl − bCu

2
)
2

=

�
2202 + (

350− 200

2
)
2

= 232, 4mm

AC = t(2linc + bCu) = 6(2 ∗ 232, 4 + 200) = 3989, 2mm2 = 0, 0040m2
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A.5 Mass moment of inertia

The mass moment of inertia of the box-girder is calculated about the cross sectional shear
centre. The calculations are made by dividing the cross sections into minor parts, and
summing up the contribution from each part. The calculations are based on the drawings
made in CrossX (see Appendix B). From calculation in CrossX, origin is chosen at the
left lower corner of the bottom plate. S marks the position of the shear centre. Mark
that the coordinate system is calculated such that the Y-axis represents the strong axis,
while the Z-axis represents the weak axis, see Figure A.3. As can bee seen from the tables
below the mass moment of inertia of the stiffeners through its own N.A. is neglected. In
the calculations different symbols has been used;

• l = Length of the part

• m = Mass of the part

• A= Area of part

• t = Thickness of part

• r = Distance from the part´s centre of gravity to the axis of rotation (shear centre)

• z = Horizontal distance from origin to the part´s centre of gravity

• y = Vertical distance from origin to the part´s centre of gravity

• zos = Horizontal distance from origin to shear centre

• yos = Vertical distance from origin to shear centre

• I = Mass moment of inertia of the part about the shear centre

• IG = Mass moment of inertia of the part about it´s centre of gravity

• I2 = Mass moment of inertia of the point mass m about the shear centre

I = IG + I2 =
1
12ml2 +mr2

r2 =
�
(z − zos)2 + (y − yos)2

From CrossX the following values for the shear centre were obtained;

• zos = 1078.0mm

• yos = 4619.3mm
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Table A.1
Mass moment of inertia of steel girder.

z_os 4,6193 m
y_os 1,078 m
Material density 7850 kg/m^3

Longitudinal plates 
l                  

[m]
t               

[m]
y'                

[m]
z'                

[m]
r                  

[m]
A           

[m^2]
m        

[kg/m]
my    

[kgm/m]
mz 

[kgm/m]
I_G     

[kgm^2/m]
I_2       

[kgm^2/m]
I       

[kgm^2/m]
Plate 1 10 0,014 5,000 2,000 0,998 0,140 1099,0 5495,0 2198,0 9158 1094 10252
Plate 2 10 0,012 5,000 0,000 1,143 0,120 942,0 4710,0 0,0 7850 1231 9081
Plate 3 2 0,016 5,000 1,000 0,389 0,032 251,2 1256,0 251,2 84 38 122
Plate 4 2 0,016 10,000 1,000 5,381 0,032 251,2 2512,0 251,2 84 7274 7358
Plate 5 2,0000 0,016 0,000 1,000 4,620 0,032 251,2 0,0 251,2 84 5362 5445
Plate 6 1,4142 0,012 -0,500 1,750 5,163 0,017 133,2 -66,6 233,1 22 3551 3574
Plate 7 1,4142 0,012 -0,500 1,750 5,163 0,017 133,2 -66,6 233,1 22 3551 3574
Longitudinal stiffeners
S_A1 0,925 0,169 3,804 0,005 36,5 33,8 6,2 0 529 529
S_A2 1,975 0,169 2,796 0,005 36,5 72,2 6,2 0 286 286
S_A3 3,025 0,169 1,835 0,005 36,5 110,5 6,2 0 123 123
S_A4 4,075 0,169 1,059 0,005 36,5 148,9 6,2 0 41 41
S_A5 5,925 0,169 1,591 0,005 36,5 216,5 6,2 0 92 92
S_A6 6,975 0,169 2,525 0,005 36,5 254,9 6,2 0 233 233
S_A7 8,025 0,169 3,525 0,005 36,5 293,3 6,2 0 454 454
S_A8 9,075 0,169 4,547 0,005 36,5 331,6 6,2 0 756 756
S_B1 0,505 1,823 4,181 0,005 35,6 18,0 64,9 0 622 622
S_B2 1,075 1,823 3,622 0,005 35,6 38,3 64,9 0 467 467
S_B3 1,645 1,823 3,066 0,005 35,6 58,5 64,9 0 335 335
S_B4 2,215 1,823 2,517 0,005 35,6 78,8 64,9 0 225 225
S_B5 2,785 1,823 1,980 0,005 35,6 99,1 64,9 0 139 139
S_B6 3,355 1,823 1,467 0,005 35,6 119,4 64,9 0 77 77
S_B7 3,925 1,823 1,018 0,005 35,6 139,7 64,9 0 37 37
S_B8 4,495 1,823 0,755 0,005 35,6 160,0 64,9 0 20 20
S_B9 5,505 1,823 1,157 0,005 35,6 195,9 64,9 0 48 48
S_B10 6,075 1,823 1,635 0,005 35,6 216,2 64,9 0 95 95
S_B11 6,645 1,823 2,158 0,005 35,6 236,5 64,9 0 166 166
S_B12 7,215 1,823 2,700 0,005 35,6 256,8 64,9 0 260 260
S_B13 7,785 1,823 3,252 0,005 35,6 277,1 64,9 0 376 376
S_B14 8,355 1,823 3,809 0,005 35,6 297,4 64,9 0 516 516
S_B15 8,925 1,823 4,370 0,005 35,6 317,7 64,9 0 680 680
S_B16 9,495 1,823 4,932 0,005 35,6 337,9 64,9 0 866 866
S_C1 -0,399 0,601 5,041 0,004 31,3 -12,5 18,8 0 796 796
S_C2 -0,399 1,399 5,029 0,004 31,3 -12,5 43,8 0 792 792
S_C3 0,142 1,375 4,487 0,004 31,3 4,5 43,1 0 630 630
S_C4 0,142 0,625 4,500 0,004 31,3 4,5 19,6 0 634 634
S_C5 5,142 1,375 0,601 0,004 31,3 161,0 43,1 0 11 11
S_C6 5,142 0,625 0,692 0,004 31,3 161,0 19,6 0 15 15
S_C7 9,858 1,375 5,247 0,004 31,3 308,7 43,1 0 862 862
S_C8 9,858 0,625 5,258 0,004 31,3 308,7 19,6 0 866 866
Sum: 4173,4 19072,2 4755,8 51454,9

Table A.2
Mass moment of inertia of additional elements.

Transverse Bulkheads 
l                  

[m]
t               

[m]
y'                

[m]
z'               

[m]
r                  

[m]
A           

[m^2]
m        

[kg/m]
my    

[kgm/m]
mz 

[kgm/m]
I_G     

[kgm^2/m]
I_2    

[kgm^2/m]
I      

[kgm^2/m]
Rectangular plate 5 1 0,389 20 471 2355 471 4082,0 71,1 4153,1

Triangle -0,3333333 1 4,953 1 23,55 -7,85 23,55 436,1 577,8 1013,9

Sum: 21 494,55 2347,15 494,55 5167,0

Coating
l                  

[m]
t               

[m]
y'                

[m]
z'                

[m]
r                  

[m]
A           

[m^2]
m        

[kg/m]
my    

[kgm/m]
mz 

[kgm/m]
I_G     

[kgm^2/m]
I_2      

[kgm^2/m]
I       

[kgm^2/m]
Asphalt traffic road 6,5 6,75 2,04 2,338 1325 8943,75 2703 4665,1 7241,6 11906,7

Asphalt pedestrian 3 2 2,02 2,784 306 612 618,12 229,5 2370,9 2600,4

Sum: 1631 9555,75 3321,12 14507,1

Railing
l                  

[m]
t               

[m]
y'                

[m]
z'                

[m]
r                  

[m]
A           

[m^2]
m        

[kg/m]
my    

[kgm/m]
mz 

[kgm/m]
I_G      

[kgm^2/m]
I_2      

[kgm^2/m]
I      

[kgm^2/m]
Inner railing 1,2 6,75 2,6 2,618 51 344,25 132,6 0 349,7 349,7

Mid railing 1,2 3,5 2,6 1,889 51 178,5 132,6 0 182,0 182,0

Outher railing 1,2 0,5 2,6 4,391 51 25,5 132,6 0 983,5 983,5

Sum: 153 548,25 397,8 1515,3

Lower hanger 
attachment

l                  
[m]

t               
[m]

y'                
[m]

z'                
[m]

r                  
[m]

A           
[m^2]

m        
[kg/m]

my    
[kgm/m]

mz 
[kgm/m]

I_G     
[kgm^2/m]

I_2     
[kgm^2/m]

I       
[kgm^2/m]

0 2 4,710 43 0 86 0 954,1 954,1

Sum: 43 0 86 954,1 954,1
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Table A.3
Calculation for stiffeners.

Stiffener A B C
b_u [mm] 200 140 200
b_l [mm] 400 278 350
h [mm] 270 300 220
t [mm] 6 6 6
l_inc [mm] 287,9 307,8 232,4
A [mm^2] 4655,1 4534,0 3989,2
A [m^2] 0,0 0,0 0,0

Au [mm^2] 1200 840 1200
Ainc [mm^2] 1727,5 1847,0 1394,6
yu' [mm] 267 297 217
yinc' [mm] 135 150 110
zu' [mm] 0 0 0
zinc1 [mm] 150 104,5 137,5
zinc2 [mm] 150 104,5 137,5
y'_c [mm] 169,0 177,2 142,2 z_os 4619,3 [mm]
z'_c [mm] 0 0 0 y_os 1078 [mm]

Stiffener z'_s y'_s z'_0 z' y' r
S_A1 169,0 925,0 3804,5
S_A2 169,0 1975,0 2796,2
S_A3 169,0 3025,0 1835,2
S_A4 169,0 4075,0 1059,5
S_A5 169,0 5925,0 1590,9
S_A6 169,0 6975,0 2525,0
S_A7 169,0 8025,0 3524,9
S_A8 169,0 9075,0 4547,5
S_B1 1822,8 505,0 4181,2
S_B2 1822,8 1075,0 3621,7
S_B3 1822,8 1645,0 3066,1
S_B4 1822,8 2215,0 2517,0
S_B5 1822,8 2785,0 1979,7
S_B6 1822,8 3355,0 1467,4
S_B7 1822,8 3925,0 1018,2
S_B8 1822,8 4495,0 755,1
S_B9 1822,8 5505,0 1157,2
S_B10 1822,8 6075,0 1635,2
S_B11 1822,8 6645,0 2158,3
S_B12 1822,8 7215,0 2700,4
S_B13 1822,8 7785,0 3252,1
S_B14 1822,8 8355,0 3809,2

S_B15 1822,8 8925,0 4369,6
S_B16 1822,8 9495,0 4932,3
S_C1 100,541362 100,541362 500 600,5 -399,5 5041,4
S_C2 100,541362 100,541362 1500 1399,5 -399,5 5029,0
S_C3 1375,0 142,2 4487,0

S_C4 625,0 142,2 4500,0
S_C5 1375,0 5142,2 601,3
S_C6 625,0 5142,2 691,8
S_C7 1375,0 9857,8 5246,9
S_C8 625,0 9857,8 5258,1

113



APPENDIX A. CALCULATIONS

Shear centre (S) 

Y´
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Figure A.3: Overview of dimensions when calculating the mass moment of inertia.
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A.6 Eigenvalue problem

To solve the eigenvalue problem presented in Section 4.4 on page 32, it’s necessary to
solve Equation 4.40. Starting from Equation 4.38 given as;

η̈ + M̃
−1

0 (C̃0 − C̃ae)η̇ + M̃
−1

0 (K̃0 − K̃ae) ·η = 0 (A.6)

and introducing the vector ψ = [η̇T
η
T ]T and ψ̇ = [η̈T

η̇
T ]T , gives the following

equation;

ψ̇ =

�
η̈
T

η̇
T

�
=

�
−M̃

−1

0 (C̃0 − C̃ae) −M̃
−1

0 (K̃0 − K̃ae)

I 0

��
η̇
T

η
T

�

=⇒ ψ̇ = Aψ (A.7)

Introducing the characteristic solution η = η̂eλnt and its first and second derivatives;
η̇ = λnη̂eλnt and η̈ = λ2

n
η̂eλnt, which gives the following relations;

ψ =

�
λnη̂

η̂

�
eλnt = ψ̂eλnt; ψ̇ =

�
λ2
n
η̂

λnη̂

�
eλnt = λnψ̂eλnt (A.8)

Introducing these relations into Equation A.7 gives the following equation;

ψ̂λne
λnt = Aψ̂eλnt (A.9)

Then the final eigenvalue problem can be written as;

ψ̂(A− λI) = 0 (A.10)
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A.7 Effective mass
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Figure A.4: Modal effective mass for rotation about the vertical axis. The percentage modal
effective mass contribution of each mode to the total effective mass for rotation about the vertical
y-axis is shown. The modes with the highest peaks are identified as horizontal, torsional or a
coupling motion between them.
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Figure A.5: Modal effective mass for rotation about the lateral axis. The percentage modal
effective mass contribution of each mode to the total effective mass for rotation about the lateral
z-axis is shown. The modes with the highest peaks are identified as vertical modes. The modes
with highest peaks are identified as both symmetric and asymmetric modes. The six first peaks
are the modes in class 2 presented in Section 6.2.1.
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Appendix B

Elements modelled in CrossX

B.1 Box-Girder

Figure B.1: Box-girder modelled in CrossX.
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B.2 Cross beam

Figure B.2: Crossbeam modelled in CrossX.
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Aerodynamic derivatives
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Appendix D

Mode shapes

This chapter shows the mode shapes from the different classes presented from Analysis
1. The first 5 vertical and torsional modes for sections used in the stability analysis and
the comparative analysis are also shown. The torsional and horizontal modes may show
amplitudes less then 1 because of coupling.

D.1 Horizontal modes from Analysis 1

(a)

(b) (e)

(f)(c)

(d)

Figure D.1: Horizontal symmetric and asymmetric modes: (a) 1stHS(1) (b) 2ndHS(4) (c)
3rdHS(11) (d) 1stHA(2) (e) 2ndHA(6) (f) 3rdHA(17). Red color indicates large amplitudes.
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D.2 Vertical modes from Analysis 1

(a)

(b) (e)

(f)(c)

(d)

Figure D.2: Vertical symmetric and asymmetric modes: (a) 1stVS(5) (b) 2ndVS(9) (c)
3rdVS(15) (d) 1stVA(3) (e) 2ndVA(12) (f) 3rdVA(18). Red color indicates large amplitudes.
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D.3 Torsional modes from Analysis 1

(a)

(b) (e)

(f)(c)

(d)

Figure D.3: Torsional symmetric and asymmetric modes: (a) 1stTS(11) (b) 2ndTS(14) (c)
3rdTS(31) (d) 1stTA(16) (e) 2ndTA(26) (f) 3rdTA(33). Red color indicates large amplitudes.
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D.4 Section 2TFGP
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Figure D.4: First 5 vertical and torsional modes for cross section 2TFGP .

D.5 Section BS15GV

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
z
4

Ve rt ical modes

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
z
5

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
z
1
2

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
z
1
3

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
z
1
7

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
θ
9

Tors ional modes

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
θ
1
0

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
θ
1
1

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
θ
1
4

0 0.2 0.4 0.6 0.8 1
−1

0

1

φ
θ
1
6

Figure D.5: First 5 vertical and torsional modes for cross section BS15GV .
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D.6 Section BS20GV
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Figure D.6: First 5 vertical and torsional modes for cross section BS20GV .

D.7 Section BS30/BS30GV
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Figure D.7: First 5 vertical and torsional modes for cross section BS30/BS30GV .
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Appendix E

MATLAB calculations
The MATLAB routines presented below uses the ∗.dat files from ABAQUS as input files to a function
that calculates the stability limit by solving the complex eigenvalue problem or the flutter equations.

E.1 Eigenvalue solution1

This MATLAB routine calculates the stability limit by calling the function aerostab Havard.m provided
by Øiseth [25] .

1 %% Desc r ip t i on
2 % This s c r i p t c a l c u l a t e s the a e r o e l a s t i c s t a b i l i t y l im i t based on
3 % the gene ra l e i g enva lue problem where s e v e r a l modes i s chosen to de s c r ibed
4 % the problem . The s c r i p t import the data from the ∗ . dat f i l e from ABAQUS
5 % by the func t i on read ABAQUS dat .m created by Ole Andre Oiseth , and
6 % s l i g h t l y modi f i ed by the author to in c lude Cable d i sp lacements . The
7 % func t i on aeroestab Havard .m i s used to perform the i t e r a t i o n proce s s .
8 % Date : 10 . 06 . 2012 Haavard Maurset
9 c l c
10 c l e a r a l l
11 c l o s e a l l
12 %%
13 t i c
14 VALGT= [ ] ; % Modes to be inc luded in the c a l c u l a t i o n s
15 Nodes=185; % Number o f nodes a long the g i r d e r where d i sp lacements
16 % are ext rac t ed
17 CNodes=187; % Nodes along the cab l e f o r e x t r a c t i n g d i sp lacements
18 L=3700; % Length o f g i r d e r
19 %% Importing the data from ABAQUS
20 [ Eigenvectors , Eigenvalues , CableEigenvec ] . . .
21 =read ABAQUS dat ( ’ f i l ename . dat ’ ,Nodes , CNodes ) ;
22 omegaomega=(Eigenva lues (VALGT, 3 ) ) ;
23 Modalmass=Eigenva lues (VALGT, 5 ) ;
24
25 %% Def in ing the modes and s o r t the t ab l e by the x−coord ina te ( a long br idge )
26 Coordinates=Eigenvector s ( : , 2 : 4 ) ;
27 [ ˜ , b]= so r t ( Coordinates ( : , 1 ) ) ;
28
29 %% Ca lcu l a t ing the mode integra l s
30 % Importing the modes from ABAQUS. The f i r s t component o f a mode i s the
31 % ve r t i c a l , second ho r i z on t a l ( l a t e r a l ) and the th i rd t o r s i o n a l
32 % disp lacements
33
34 phiphi=ze ro s (3 , s i z e ( Eigenvectors , 1 ) , l ength ( omegaomega ) ) ;
35 t e l l e r =1;%min (VALGT) ;
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36 f o r n=1: l ength ( omegaomega )
37 phiphi ( 2 , : , t e l l e r )=Eigenvector s (b , 6 ,VALGT(n) ) ’ ;%n+min (VALGT)−1) ’ ;
38 phiphi ( 1 , : , t e l l e r )=Eigenvector s (b , 7 ,VALGT(n) ) ’ ;%n+min (VALGT)−1) ’ ;
39 phiphi ( 3 , : , t e l l e r )=Eigenvector s (b , 8 ,VALGT(n) ) ’ ;%n+min (VALGT)−1) ’ ;
40 t e l l e r=t e l l e r +1;
41 end
42
43 moderInt=ze ro s (3 , 3 , s i z e ( phiphi , 3 ) , s i z e ( phiphi , 3 ) ) ;
44 f o r i =1: s i z e ( phiphi , 3 )
45 f o r j =1: s i z e ( phiphi , 3 )
46 f o r n=1:3
47 f o r m=1:3
48 integrand ( 1 , : )=phiphi (n , : , i ) .∗ phiphi (m, : , j ) ;
49 moderInt (n ,m, i , j )=trapz ( integrand ) ∗L/Nodes ;
50 end
51 end
52 end
53 end
54
55 %% St ruc tu r a l p r op e r t i e s
56 M=diag (Modalmass ) ; % Modal mass matrix
57
58 % Natural f r e qu en c i e s and damping r a t i o s
59 omega=omegaomega ;
60 zeta=diag (0 . 05∗ ones (1 , l ength ( omegaomega ) ) ) ;
61 % Modal matr i ce s
62 K=diag ( omega ) .ˆ2∗M; % Modal s t i f f n e s s matrix
63 C=2.∗ ze ta .∗M∗diag ( omega ) ; % Modal damping matrix
64 % Constants
65 ro =1.25; % Density o f a i r
66 B=7.5 ; % Width o f one g i r d e r
67
68
69 %% Eigenvalue s o l u t i o n
70 maxf it =200; % Max number o f f requency and v e l o c i t y
71 maxVit=1000; % i t e r a t i o n s
72
73 V=1; % I n i t i a l mean wind v e l o c i t y
74 dV=1; % Ve loc i ty increment
75
76 A= [ ] ;
77 [ Vvec , imS , reS ,VCR,OmegaCR]=aerostab Havard ( @aerodynamicderivativesBS15GV ,M,

C,K, omega , moderInt , ro ,B, maxfit , maxVit ,V,dV,A) ;
78
79
80
81 %% Resu l t s
82 f i g u r e (1 )
83 s e t ( gcf , ’Name ’ , ’ So lu t i on o f the e i g enva lue problem ’ , ’ Numbert it le ’ , ’ o f f ’ )
84 p l o t ( subp lot ( 2 , 1 , 1 ) ,Vvec , imS , ’ o ’ )
85 y l ab e l ( ’ $Im(\ lambda n ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
86 t i t l e ( ’ Imaginary part o f the e i g enva lu e s (damped natura l f r e qu en c i e s ) ’ , . . .
87 ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
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88
89 p l o t ( subp lot ( 2 , 1 , 2 ) ,Vvec , reS , ’ o ’ ) , g r i d on
90 x l ab e l ( ’V (m/ s ) ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
91 y l ab e l ( ’ $Re(\ lambda n ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
92 t i t l e ( ’ Real part o f the e i g enva lu e s ( damping term , $\mu n= −v {n}\omega n$ ) ’

, ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
93
94 d i sp ( [ ’The a e r o e l a s t i c s t a b i l i t y l im i t i s ’ , num2str (VCR) , ’ m/ s ’ ] )
95 d i sp ( [ ’The c r i t i c a l f requency i s ’ , num2str (OmegaCR) , ’ rad/ s ’ ] )
96
97 CPUtime=toc ;
98 d i sp ( [ ’ Computationaltime : ’ , num2str ( f l o o r (CPUtime/60) ) , ’min ’ , . . .
99 num2str ( f l o o r ( (CPUtime/60− f l o o r (CPUtime/60) ) ∗60) ) , ’ sek ’ ] )

E.2 Eigenvalue solution 2

This MATLAB routine calculates the stability limit by calling the function aeroelasticstab.m created
by the author and given in Appendix E.4.1 . This routine has mainly been used for comparison with
the aerostab Havard function provided by Øiseth [25] since this routine is not fully developed. The
routine has shown to give good results when few modes are included in the solution, but need further
modifications.

1 %% Desc r ip t i on
2 % This s c r i p t c a l c u l a t e s the a e r o e l a s t i c s t a b i l i t y l im i t based on
3 % the gene ra l e i g enva lue problem where s e v e r a l modes i s chosen to de s c r ibed
4 % the problem . The s c r i p t import the data from the ∗ . dat f i l e from ABAQUS
5 % by the func t i on read ABAQUS dat .m created by Ole Andre Oiseth , and
6 % s l i g h t l y modi f i ed by the author to in c lude cab l ed i sp l a cement s .
7 % The func t i on a e r o e l a s t i c s t a b .m i s used to perform the i t e r a t i o n proce s s .
8 % Date : 10 . 06 . 2012 Haavard Maurset
9 c l c
10 c l e a r a l l
11 c l o s e a l l
12 %%
13 t i c
14 VALGT= [ ] ; % Number o f modes to be inc luded
15 Nodes=185; % Number o f nodes a long the g i r d e r where d i sp lacements
16 % are ext rac t ed
17 CNodes=187; % Nodes along the cab l e f o r e x t r a c t i n g d i sp lacements
18 L=3700; % Length o f g i r d e r
19 %% Importing the data from ABAQUS
20 [ Eigenvectors , Eigenvalues , CableEigenvec ] . . .
21 =read ABAQUS dat ( ’ f i l ename . dat ’ ,Nodes , CNodes ) ;
22 omegaomega=(Eigenva lues (VALGT, 3 ) ) ;
23 Modalmass=Eigenva lues (VALGT, 5 ) ;
24
25 %% Def in ing the modes and s o r t the t ab l e by the x−coord ina te ( a long br idge )
26 Coordinates=Eigenvector s ( : , 2 : 4 ) ;
27 [ ˜ , b]= so r t ( Coordinates ( : , 1 ) ) ;
28
29 %% Ca lcu l a t ing the mode integra l s
30 % Importing the modes from ABAQUS. The f i r s t component o f a mode i s the
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31 % ho r i z on t a l ( l a t e r a l ) , second v e r t i c a l and the th i rd t o r s i o n a l
32 % disp lacement
33
34 phiphi=ze ro s (3 , s i z e ( Eigenvectors , 1 ) , l ength ( omegaomega ) ) ;
35 t e l l e r =1;%min (VALGT) ;
36 f o r n=1: l ength ( omegaomega )
37 phiphi ( 2 , : , t e l l e r )=Eigenvector s (b , 6 ,VALGT(n) ) ’ ;%n+min (VALGT)−1) ’ ;
38 phiphi ( 1 , : , t e l l e r )=Eigenvector s (b , 7 ,VALGT(n) ) ’ ;%n+min (VALGT)−1) ’ ;
39 phiphi ( 3 , : , t e l l e r )=Eigenvector s (b , 8 ,VALGT(n) ) ’ ;%n+min (VALGT)−1) ’ ;
40 t e l l e r=t e l l e r +1;
41 end
42
43 moderInt=ze ro s (3 , 3 , s i z e ( phiphi , 3 ) , s i z e ( phiphi , 3 ) ) ;
44 f o r i =1: s i z e ( phiphi , 3 )
45 f o r j =1: s i z e ( phiphi , 3 )
46 f o r n=1:3
47 f o r m=1:3
48 integrand ( 1 , : )=phiphi (n , : , i ) .∗ phiphi (m, : , j ) ;
49 moderInt (n ,m, i , j )=trapz ( integrand ) ∗L/Nodes ;
50 end
51 end
52 end
53 end
54
55 %% St ruc tu r a l p r op e r t i e s
56
57 M=diag (Modalmass ) ; % Modal mass matrix
58
59 % Natural f r e qu en c i e s and damping r a t i o s
60 omega0=diag ( omegaomega ) ;
61 zeta=diag (0 . 05∗ ones (1 , l ength ( omegaomega ) ) ) ;
62 % Modal matr i ce s
63 K=omega0 .ˆ2∗M; % Modal s t i f f n e s s matrix
64 C=2.∗ ze ta .∗M∗omega0 ; % Modal damping matrix
65 % Constants
66 ro =1.25; % Density o f a i r
67 B=7.5 ; % Width o f one g i r d e r
68
69
70 %% Eigenvalue s o l u t i o n
71 maxf it =200; % Max number o f f requency and v e l o c i t y
72 maxVit=1000; % i t e r a t i o n s
73
74 V0=0; % I n i t i a l mean wind v e l o c i t y
75 dV=1; % Ve loc i ty increment
76 omg0=1; % I n i t i a l assumption o f c r i t i c a l f requency
77
78 [Omega , v n , omega n , omega , Vvec , ImLambda ,ReLambda , Vcr ,OmegaCr]=

a e r o e l a s t i c s t a b ( @aerodynamicderivativesBS15GV ,M,C,K, omg0 , moderInt , ro ,B,
maxVit , maxfit ,V0 ,dV, phiphi ) ;

79
80
81
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82 %% Resu l t s
83 f i g u r e (1 )
84 s e t ( gcf , ’Name ’ , ’ So lu t i on o f the e i g enva lue problem ’ , ’ Numbert it le ’ , ’ o f f ’ )
85 p l o t ( subp lot ( 2 , 1 , 1 ) ,Vvec , ImLambda , ’ o ’ )
86 y l ab e l ( ’ Im( $\ lambda n$ ) ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
87 t i t l e ( ’ Imaginary part o f the e i g enva lu e s (damped natura l f r e qu en c i e s ) ’ , ’

i n t e r p r e t e r ’ , ’ l a t e x ’ )
88
89 p l o t ( subp lot ( 2 , 1 , 2 ) ,Vvec , ReLambda , ’ o ’ ) , g r i d on
90 x l ab e l ( ’V (m/ s ) ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
91 y l ab e l ( ’Re( $\ lambda n$ ) ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
92 t i t l e ( ’ Real part o f the e i g enva lu e s ( damping term , $\mu n= −v {n}\omega n$ ) ’

, ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
93
94 d i sp ( [ ’The a e r o e l a s t i c s t a b i l i t y l im i t i s ’ , num2str (Vcr ) , ’ m/ s ’ ] )
95 d i sp ( [ ’The c r i t i c a l f requency i s ’ , num2str (OmegaCr) , ’ rad/ s ’ ] )
96
97 CPUtime=toc ;

E.3 Flutter stability

This MATLAB routine calculates the stability limit by calling the function flutterstab.m given in
Appendixc E.4.2. The routine calculates the flutter stability limit when two modes, one vertical and one
torsional, are assumed to give any instability.

1 %% Desc r ip t i on
2 % This s c r i p t c a l c u l a t e s the f l u t t e r s t a b i l i t y l im i t f o r coup l ing o f one
3 % ho r i z on t a l and one t o r s i o n a l mode by us ing the f l u t t e r equat ions . The
4 % func t i on f l u t t e r s t a b .m i s used to s o l v e the equat ion system .
5 % Date : 10 . 06 . 2012 Haavard Maurset
6 c l c
7 c l e a r a l l
8 c l o s e a l l
9 %% St ruc tu r a l p r op e r t i e s
10
11 % Modal equ iva l en t d i s t r i b u t e d masses and MOI, choose one .
12 % M0=[25700 0 0 ;0 25700 0 ;0 0 2840000 ] ; % 2TFGP
13 % M0=[22480 0 0 ;0 22480 0 ;0 0 2394200 ] ; % BS15GV
14 % M0=[22580 0 0 ;0 22580 0 ;0 0 3433700 ] ; % BS20GV
15 % M0=[23310 0 0 ;0 23310 0 ;0 0 6336000 ] ; % BS30/BS30GV
16
17 m z=M0(2 , 2 ) ;
18 m theta=M0(3 , 3 ) ;
19
20 % Natural f r e qu en c i e s and damping r a t i o s f
21 omega z=0.5 ;
22 omega theta=2;
23 gamma=[1.4 1 .5 1 .6 1 .8 2 .0 2 .2 2 .4 3 . 0 ] ;
24 omega theta2=gamma.∗ omega z ; % Frequency r a t i o vec to r
25 zeta =[0.005 0 . 0 0 5 ] ; % zeta=[ z e t a z z e t a th e t a ]
26
27 % Constants
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28 ro =1.25; % Density o f a i r
29 B=’ value here ’ ; % Width o f one g i r d e r
30
31 beta z=ro ∗Bˆ2/m z ; % Co e f f i c i e n t s used f o r
32 be ta the ta=ro ∗Bˆ4/m theta ; % s imp l i f i c a t i o n s in the
33 % Flu t t e r equat ions
34
35 % Spec i f y i ng the shapewise s im i l a r i t y o f the two modes
36 p s i=’ va lue her ’ ;
37 %% Flu t t e r s o l u t i o n
38
39 Vred=’ value her ’ ; % Creat ing reduced v e l o c i t y vec to r
40 RAD=1;
41
42 [ ImaginaryRoot , RealRoot , ReRoot ,OmgRedIm,OmgRedRe, Vcr ,OmegaCr , VredCr ,

OmgRedCr , Vred omega]= f l u t t e r s t a b ( @aerodynamicderivativesBS15GV ,
omega theta , omega theta2 , beta z , beta theta , zeta , ps i , gamma, Vred ,RAD,B) ;

43
44
45 %% Plo t t i ng the r e s u l t s
46 n=1; % Def in ing f o r which f requency r a t i o r e s u l t s w i l l be p l o t t ed
47 hold on
48 f i g u r e (1 )
49 p l o t (Vred ,OmgRedRe(n , : ) , ’ r ’ ,Vred ,OmgRedIm(n , : ) , ’−−b ’ )
50 s e t ( l egend ( ’ Real Root ’ , ’ Imaginary Root ’ ) , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) , l egend ( ’

boxo f f ’ )
51 %ylim ( [ 0 . 8 ∗min(OmgRedIm(n , : ) ) 1 .2∗max(OmgRedIm(n , : ) ) ] )
52 x l ab e l ( ’ Reduced v e l o c i t y $\hat{V}=V/(Bˆ∗\omega {CR}) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x

’ )
53 y l ab e l ( ’ Reduced f requency $\hat {\omega} {CR}=\omega {CR}/\omega {\ theta }$ ’ ,

’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
54 %t i t l e ( ’ Development o f the r e a l and imaginary roo t s ’ , ’ i n t e r p r e t e r ’ , ’ l a tex

’ )
55 l i n e ( [ 1 1 ]∗VredCr (n) , [ 0 . 8 ∗min(OmgRedRe(n , : ) ) OmgRedCr(n) ] , ’ Color ’ , [ 0 0 . 5

0 ] )
56 l i n e ( [ min (Vred ) VredCr (n) ] , [ 1 1 ]∗OmgRedCr(n) , ’ Color ’ , [ 0 0 . 5 0 ] )
57
58 f i g u r e (2 )
59 p l o t (gamma, Vred omega , ’−ob ’ )
60 x l ab e l ( ’ Frequency r a t i o $\omega {\ theta }/\ omega z$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
61 y l ab e l ( ’ Reduced c r i t i c a l v e l o c i t y $V {Cr}/(Bˆ∗\omega {\ theta }) $ ’ , ’

i n t e r p r e t e r ’ , ’ l a t e x ’ )
62
63 d i sp ( [ ’The f l u t t e r s t a b i l i t y l im i t i s ’ , num2str (Vcr (n) ) , ’ m/ s ’ ] )
64 d i sp ( [ ’The c r i t i c a l f requency i s ’ , num2str (OmegaCr(n) ) , ’ rad/ s ’ ] )
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E.4 MATLAB functions

E.4.1 MATLAB function: aeroelasticstab.m

1 %% Desc r ip t i on
2 % This s c r i p t c a l c u l a t e s the a e r o e l a s t i c s t a b i l i t y in terms o f the c r i t i c a l
3 % v e l o c i t y and the c r i t i c a l f requency . The input to the func t i on i s g iven
4 % in the m− f i l e e i g enva lue .m
5 % Date : 10 . 06 . 2012 Haavard Maurset
6 %% Creat ing the func t i on
7
8 func t i on [Omega , v n , omega n , omega , Vvec , ImLambda ,ReLambda , Vcr ,OmegaCr]=

a e r o e l a s t i c s t a b ( aerodynamicder ivat ives ,M,C,K, omg0 , moderInt , ro ,B, maxVit ,
maxfit ,V0 ,dV, phiphi )

9 %% Ca l cu l a t ing p r op e r t i e s
10 % I and zerosM are the matr i ce s in matrix A given in Equation 4 .42 in
11 % Sect i on 4 . 4 . IM i s the i d e n t i t y matrix
12
13 I=diag ( ones (1 , s i z e ( phiphi , 3 ) ) ) ;
14 zerosM=ze ro s ( s i z e ( phiphi , 3 ) , s i z e ( phiphi , 3 ) ) ;
15 IM=diag ( ones (1 ,2∗ s i z e ( phiphi , 3 ) ) ) ;
16 %% Eigenvalue s o l u t i o n with an i t e r a t i v e p roce s s
17 V(1)=V0 ;
18 % I n i t i a l assumptions o f f requency
19 vn min=0.5 ; % and damping in c l ud ing aerodynamic
20 omega (1 )=omg0 ; % damping as we l l as s t r u c t u r a l damping
21
22 i =2; % Next step , s t a r t i n g with i=2
23
24 whi l e vn min > 0 && i <= maxVit
25 V( i )=V( i −1)+dV; % Inc r e a s i ng the v e l o c i t y by increment
26 % dV
27 Vvec ( i −1)=V( i ) ; % Creat ing v e l o c i t y vec to r s t a r t i n g
28 % at v e l o c i t y V0+dV
29
30 Vred=V( i ) /( omega ( i −1)∗B) ;
31
32 % Importing the aerodynamic d e r i v a t i v e s
33 % AD=[P1∗ P2∗ P3∗ P4∗ P5∗ P6∗ H1∗ H2∗ H3∗ H4∗ H5∗ H6∗ A1∗ A2∗ A3∗ A4∗ A5∗

A6∗ ] ˆT
34 AD=aerodynamicder ivat ive s (Vred , omega ( i −1) ) ;
35
36 % Aerodynamic damping matrix
37 Cae h=ro ∗Bˆ2/2∗omega ( i −1) ∗ [AD(1) AD(5) B∗AD(2) ; . . .
38 AD(11) AD(7) B∗AD(8) ; . . .
39 B∗AD(17) B∗AD(13) Bˆ2∗AD(14) ] ;
40
41 % Aerodynamic s t i f f n e s s matrix
42 Kae h=ro ∗Bˆ2/2∗omega ( i −1) ˆ2∗ [AD(4) AD(6) B∗AD(3) ; . . .
43 AD(12) AD(10) B∗AD(9) ; . . .
44 B∗AD(18) B∗AD(16) Bˆ2∗AD(15) ] ;
45
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46 Cae=ze ro s ( s i z e ( phiphi , 3 ) , s i z e ( phiphi , 3 ) ) ;
47 Kae=ze ro s ( s i z e ( phiphi , 3 ) , s i z e ( phiphi , 3 ) ) ;
48 f o r k=1: s i z e ( phiphi , 3 )
49 f o r l =1: s i z e ( phiphi , 3 )
50 f o r n=1:3
51 f o r m=1:3
52 Cae (k , l )=Cae (k , l )+moderInt (n ,m, k , l ) .∗Cae h (n ,m) ; % Modal aerodynamic
53 Kae(k , l )=Kae(k , l )+moderInt (n ,m, k , l ) .∗Kae h (n ,m) ; % s t i f f n e s s and damping
54 % matr i ce s
55 % N mod x N mod
56 end
57 end
58 end
59 end
60
61
62 A=[−M\(C−Cae ) −M\(K−Kae) ; I zerosM ] ;
63 lambda ( : , i −1)=e i g (A, IM) ;
64 ReLambda ( : , i −1)=r e a l ( lambda ( : , i −1) ) ;
65 ImLambda ( : , i −1)=imag ( lambda ( : , i −1) ) ;
66 omega n ( : , i −1)=abs ( lambda ( : , i −1) ) ;
67 v n ( : , i −1)=−r e a l ( lambda ( : , i −1) ) . / omega n ( : , i −1) ;
68 [ vn min , Pos]=min ( v n ( : , i −1) ) ; % Finding the mode with the lowest
69 Omega(1 , i −1) = omega n (Pos , i −1) ; % damping value
70
71 j =1; % Reset t ing i t e r a t i v counter a f t e r
72 % increment ing the v e l o c i t y
73 % Frequency i t e r a t i o n s
74 whi l e abs (Omega( j , i −1)−omega ( i −1) ) > 0.0000001 && j <= maxf it
75 omega ( i −1)=Omega( j , i −1) ;
76 j=j +1; % Update i t e r a t i o n counter
77
78 % Updating the aerodynamic d e r i v a t i v e s f o r the new i t e r a t i v
79 % frequency , and a l s o the aerodynamic matr i ce s
80 AD=aerodynamicder ivat ive s (Vred , omega ( i −1) ) ;
81
82 Cae h=ro ∗Bˆ2/2∗omega ( i −1) ∗ [AD(1) AD(5) B∗AD(2) ; . . .
83 AD(11) AD(7) B∗AD(8) ; . . .
84 B∗AD(17) B∗AD(13) Bˆ2∗AD(14) ] ;
85
86 Kae h=ro ∗Bˆ2/2∗omega ( i −1) ˆ2∗ [AD(4) AD(6) B∗AD(3) ; . . .
87 AD(12) AD(10) B∗AD(9) ; . . .
88 B∗AD(18) B∗AD(16) Bˆ2∗AD(15) ] ;
89
90 Cae=ze ro s ( s i z e ( phiphi , 3 ) , s i z e ( phiphi , 3 ) ) ;
91 Kae=ze ro s ( s i z e ( phiphi , 3 ) , s i z e ( phiphi , 3 ) ) ;
92 f o r k=1: s i z e ( phiphi , 3 )
93 f o r l =1: s i z e ( phiphi , 3 )
94 f o r n=1:3
95 f o r m=1:3
96 Cae (k , l )=Cae (k , l )+moderInt (n ,m, k , l ) .∗Cae h (n ,m) ;
97 Kae(k , l )=Kae(k , l )+moderInt (n ,m, k , l ) .∗Kae h (n ,m) ;
98
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99 end
100 end
101 end
102 end
103
104 A=[−M\(C−Cae ) −M\(K−Kae) ; I zerosM ] ;
105 lambda ( : , i −1)=e i g (A, IM) ;
106 ReLambda ( : , i −1)=r e a l ( lambda ( : , i −1) ) ;
107 ImLambda ( : , i −1)=imag ( lambda ( : , i −1) ) ;
108 omega n ( : , i −1)=abs ( lambda ( : , i −1) ) ;
109 v n ( : , i −1)=−r e a l ( lambda ( : , i −1) ) . / omega n ( : , i −1) ;
110 [ vn min , Pos]=min ( v n ( : , i −1) ) ;
111 Omega( j , i −1) = omega n (Pos , i −1) ;
112
113 end
114 % When the v e l o c i t y becomes c l o s e to the c r i t i c a l the increment i s reduced
115 % to improve accuracy . Must be adjusted .
116 i f min ( abs (ReLambda ( : , i −1) ) ) < 0 .005 % && V( i ) > 100
117 dV=0.5∗dV;
118 i f dV <=0.01
119 dV=0.01;
120 end
121 end
122
123 omega ( i )=Omega( j , i −1) ; % Updating the f requency vec to r in element i
124 i=i +1; % Updating the v e l o c i t y increment counter
125
126
127
128 end
129
130 Vcr=Vvec ( l ength (Vvec ) ) ; % Def in ing the c r i t i c a l v e l o c i t y and
131 OmegaCr=omega ( l ength ( omega ) ) ; % frequency as the va lue s in the l a s t
132 % element o f the ve c t o r s
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E.4.2 MATLAB function: flutterstab.m

1 %% Desc r ip t i on
2 % This s c r i p t c a l c u l a t e s the f l u t t e r s t a b i l i t y in terms o f the c r i t i c a l
3 % v e l o c i t y and the c r i t i c a l f requency . The input to the func t i on i s g iven
4 % in the m− f i l e f l u t t e r s o l u t i o n .m
5 % Date : 10 . 06 . 2012 Haavard Maurset
6 %% Creat ing the func t i on
7 func t i on [ ImaginaryRoot , RealRoot , ReRoot ,OmgRedIm,OmgRedRe, Vcr ,OmegaCr ,

VredCr ,OmgRedCr , Vred omega]= f l u t t e r s t a b ( aerodynamicder ivat ives ,
omega theta , omega theta2 , beta z , beta theta , zeta , ps i , gamma, Vred ,RAD,B)

8 %% Flu t t e r s o l u t i o n
9 f o r j =1: l ength (gamma)
10 f o r i = 1 : l ength (Vred )
11
12 AD=aerodynamicder ivat ive s (Vred (1 , i ) ,RAD) ;
13
14 % CALCULATING THE REAL ROOTS OF THE FLUTTER EQUATIONS
15 R4=gamma( j ) ˆ2∗(1 + 0 .5∗ beta z ∗AD(10) + 0.5∗ beta the ta ∗AD(15) + 0.25∗ beta z ∗

beta the ta ∗(AD(13) ∗AD(8) ∗ p s i − AD(14) ∗AD(7) + AD(15) ∗AD(10) − AD(16) ∗AD
(9) ∗ p s i ) ) ;

16 R3=gamma( j ) ∗( ze ta (2 ) ∗ beta z ∗gamma( j ) ∗AD(7) + zeta (1 ) ∗ beta the ta ∗AD(14) ) ;
17 R2=−(1 + gamma( j ) ˆ2 +4∗gamma( j ) ∗ ze ta (1 ) ∗ ze ta (2 ) + 0 .5∗ beta z ∗gamma( j ) ˆ2∗AD

(10) + 0.5∗ beta the ta ∗AD(15) ) ;
18 R1=0;
19 R0=1;
20
21 Realpar=[R4 R3 R2 R1 R0 ] ;
22 RealRoot ( : , i , j )=r e a l ( r oo t s ( Realpar ) ) ;
23 RRoot=RealRoot ( : , i , j ) ;
24 m=1;
25 f o r k=1:4
26 i f RRoot (k , 1 )>=0
27 ReRoot (m, 1 )=RRoot (k , 1 ) ;
28 m=m+1;
29 end
30 end
31 OmgRedRe( j , i )=max(ReRoot ( : , 1 ) ) ; %Must be changed dependent on the roo t s
32 ReRoot = [ ] ;
33 RRoot= [ ] ;
34
35 % CALCULATING THE IMAGINARY ROOTS OF THE FLUTTER EQUATIONS
36
37 I3=gamma( j ) ˆ2∗ ( (1/8) ∗ beta z ∗ beta the ta ∗( AD(7) ∗AD(15) − AD(8) ∗AD(16) ∗ p s i −

AD(9) ∗AD(13) ∗ p s i + AD(10) ∗AD(14) ) + 0 .25∗ ( beta z ∗AD(7) + beta the ta ∗AD
(14) ) ) ;

38 I2=−(ze ta (1 ) ∗ ( 0 . 5∗ beta the ta ∗AD(15) + gamma( j ) ) + zeta (2 ) ∗gamma( j ) ˆ2∗ (0 .5∗
beta z ∗AD(10) + 1) ) ;

39 I1=−0.25∗( beta z ∗gamma( j ) ˆ2∗AD(7) + beta the ta ∗AD(14) ) ;
40 I0=zeta (1 ) ∗gamma( j ) + zeta (2 ) ;
41
42 ImaginaryPar=[ I3 I2 I1 I0 ] ;
43 ImaginaryRoot ( : , i , j )=r e a l ( r oo t s ( ImaginaryPar ) ) ;
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44 IRoot=ImaginaryRoot ( : , i , j ) ;
45 n=1;
46 f o r k=1:3
47 i f IRoot (k , 1 )>=0
48 ImRoot (n , 1 )=IRoot (k , 1 ) ;
49 n=n+1;
50 end
51 end
52 OmgRedIm( j , i )=max( ImRoot ( : , 1 ) ) ; %Must be changed dependent on the roo t s
53 ImRoot = [ ] ;
54 IRoot = [ ] ;
55
56 end
57 end
58
59 %% Finding the c r i t i c a l va lue s
60
61 % Ca l cu l a t ing the d i f f e r e n c e in f requency f o r the r e a l and imaginary
62 % s o l u t i o n s f o r the same reduced v e l o c i t y
63 f o r m = 1 : l ength (gamma)
64 f o r k = 1 : l ength (Vred )
65 diffOmgRed (m, k )=abs (OmgRedRe(m, k )−OmgRedIm(m, k ) ) ;
66 end
67
68 % Finding the p o s i t i o n s where the d i f f e r e n c e i s the sma l l e s t
69 [ min diffOmgRed , Pos]=min ( diffOmgRed (m, : ) ) ;
70
71 VredCr (m)=Vred (Pos ) ;
72 OmgRedCr(m)=OmgRedRe(m, Pos ) ;
73 OmegaCr(m)=OmgRedCr(m) ∗omega theta2 (m) ;
74 Vcr (m)=omega theta2 (m) ∗B∗VredCr (m) ∗OmgRedCr(m) ;
75 Vred omega (m)=VredCr (m) ∗OmgRedCr(m) ;
76
77 end
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