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Abstract

This master’s thesis realize an audio noise reduction tool by use of digital signal process-
ing. The tool is used to restore phonograph recordings. The recordings are restored on
behalf of Ringve Museum, Norway’s national museum of music and musical instruments.
Sometimes the noise can be louder than the actual audio. In the view of a museum or li-
brary institution, this makes them less valuable as they are not presentable to the general
public.

A common restoration environment will include multiple tools. We will only specialize
in one of them reducing broadband, stationary and additive noise. This is often perceived
as static hiss or buzz. To realize the tool we use the numerical computation environment
MATLAB. In MATLAB the calculations are written using a high-level programming lan-
guage with many embedded functions.

There are several established algorithms specializing in noise reduction of audio and
speech. We will look at some basic and some complex algorithms that are based on the
Short Time Fourier Transform (STFT). This technique slices the audio in short time frames
to be able to analyze the local complex frequency spectrum. The noise reduction procedure
compare the audio spectrum with its estimated noise spectrum to calculate an attenuation
at each frequency. The attenuated signal is transformed back into time domain. Some of
the algorithms are based on the Wiener filter or AR-modeling. The program will include
a user interface with selectable algorithms and parameters. In old recordings a certain
level of noise may be wanted to preserve authenticity. Thus a noise floor generator will be
implemented.

Some necessary theory of digital signal processing will be given, but some general
knowledge will be required. The noise reduction theory is presented before the realiza-
tion and program flow is explained. A listening test will be conducted. Audio examples
are used to illustrate the general results, and the development process, results and further
work is discussed.

The program gave better results than one of the commercial available softwares. An-
other important result is that the stationary property is a poor approximation. The phono-
graph noise exhibits periodical properties with longer time periods than used in the short
time transform. A model incorporating this feature should be implemented.
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Sammendrag

Masteroppgaven omhandler støyreduksjon av lydopptak ved bruk av digital signalbehan-
dling. Hovedmålet er å lage et verktøy som kan restaurere digitaliserte fonografruller. På
opptakene er bakgrunnsstøyen ofte høyere enn selve lydmaterialet. Dette gir opptakene
liten verdi, da de ikke kan presenteres for et publikum. Fonografrullene er restaurert på
veiene av Ringve museum, Norges nasjonale museum for musikk og musikalske instru-
menter.

Vi antar at støyen er stasjonær, bredbåndet og additiv. Dette oppfattes gjerne som en
konstant summing eller during. Verktøyet vil kun være et av flere nødvendige i et fulls-
tendig restaureringsmiljø. For å realisere verktøyet bruker vi MATLAB, et matematikkpro-
gram som bruker et høynivå programmeringsspråk til å manipulere numeriske data.

Det finnes en rekke etablerte algoritmer og artikler på området. Vi skal se på flere
algoritmer av forskjellig kompleksitet, men kun konsentrere oss om en bestemt gruppe.
Denne gruppen benytter seg av korttids Fouriertransform. Her partisjoneres lydfilen i ko-
rte tidsintervaller for å analysere det instantane frekvensspektrumet. Ved å sammenligne
lydspektrumet med det estimerte støyspektrumet kan vi bestemme en dempning ved hver
frekvens. Noen av algoritmene er basert på Wiener filteret og AR-modellering. Program-
met vil ha et grensesnitt med valg av algoritmer og parametre. I gamle opptak kan det
være ønskelig å ivareta et støygulv, en slik funksjon vil være viktig å implementere.

Det mest nødvendige av teori om digital signalbehandling blir gjennomgått, men en
generell kompetanse er forventet. Teorien bak støyreduksjon presenteres før den realiseres
i programkode og programflyten beskrives. En generell lyttetest blir også gjennført. Lyt-
teeksempler illustrerer de generelle resultatene fra prosessen, og i etterkant diskuterer vi
løsningene fra utviklingsfasen, resultatene og fremtidige forbedringer.

Verktøyet viste seg å gi gode resultater på nivå med kommersielle alternativ. Et annet
viktig resultat er at antagelsen om at støyen er stasjonær er en dårlig tilnærmelse. Fono-
grafrullene har en støy med stor varianse og periodiske trekk som varer lenger enn korttid-
stransformen. En modell tilpasset disse egenskapene burde utvikles for bedre verktøyet.
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1 INTRODUCTION

1 Introduction

1.1 Outline
In this paper we will look at noise reduction by digital signal processing. The goal is to de-
noise old audio recordings, hence we start to look at established speech enhancement- and
audio restoration algorithms. To realize the restoration tool we use the numerical computa-
tion environment, MATLAB [1]. MATLAB feature a high-level programming language and
several functions to visualize data. The premises of our tool are that the noise is consid-
ered stationary, broadband and additive. Other tools are needed to perform impulsive noise
removal, pitch restoration or saturation reduction.

The first section presents related work and a brief introduction to conservation- and
digitalization of phonograph recordings. This gives us some information on the target au-
dience. Next, a chapter on necessary signal processing theory and in-depth noise reduction
theory. Some basic knowledge of digital signal processing is required. The procedure chap-
ter explains the program flow, some restoration guidelines and a listening test. The result
section describes intermediate results and the noise reducer performance. Next, we discuss
the development, results and further work. At last a short conclusion of the project.

1.2 Background
This thesis is a continuation of a semester project in digital audio restoration, which focused
on impulsive noise/click reduction [2].

To obtain some old recordings I contacted Ringve, Norway’s national museum of music
and musical instruments, located in Trondheim. I was given several phonograph record-
ings. These recordings were digitalized at the National Library of Norway, located in Mo i
Rana. The cylinders are from the 1900’s. The audio material needs restoration and is sup-
posed to be featured at Ringve Museum towards the end of the semester. This gives an
excellent incentive to realize a noise reduction tool.

The cylinder phonograph was invented by Thomas Edison in 1877 and commercially
available by the late 1880’s, and throughout the 1910’s [3]. It was a mechanical device and
used wax cylinders as the recording medium. The sound was imprinted by a steel needle,
which vibrated by acoustical energy focused through a horn. The cylinder rotated either by
a hand driven wrench or a spring system. The effective frequency range was approximately
160-2000 Hz [4].

1.3 Related work
Similar tools on noise reduction are developed by DARTECH Inc. and CEDAR Ltd. and is
discussed in [2]. DARTECH’s de-hissing tool is used for comparison [5].

The first algorithms were developed in the late 70’s and early 80’s to digitally enhance
speech perception. They are based around the Short-Time Fourier Transform (STFT). This
technique analyze the audio by extracting short time frames and transforming them into
the frequency domain. Throughout the 90’s more papers have been released focusing on
audio restoration. There are primarily two popular papers presenting two different algo-
rithms. The first is a Wiener filter based approach given in the book Digital Audio Restoration
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1.4 Conservation and digitalization 1 INTRODUCTION

- a statistical model based approach by Godsill and Rayner [4]. The second is a more complex al-
gorithm presented in the article Elimination of the Musical Noise Phenomenon with the Ephraim
and Malah Suppressor by Oliver Cappé [6]. There exist other algorithms not based on the
STFT, but they are not discussed in this thesis. Those solutions are based on the Wavelet
Transform [7], and the recently suggested block thresholding method [8].

An earlier, pre-digital noise reduction technique is the noise gate. It attenuates the signal
unless it is above a certain threshold. This cancel the noise in silent transitions and works
best if the noise is masked by audio otherwise. A more practical noise gate use overlapping
band pass filters with individual thresholds to further remove noise in live audio content
[9].

1.4 Conservation and digitalization
The conservation and digitalization of phonograph records are typically handled by a li-
brary institution for the sake of preserving cultural heritage. Another important aspect of
conservation is availability to the public. As I have learned from Ringve museum, old ob-
jects are most valuable when in reach by an audience. Digitalization is essential, as it is
limitless in form of availability and preservation. A known fact is that people are shy of
distortion and noise, as well as bad resolution. Thus as noise increases the availability per
se decreases. This could be said about distortion and bandwidth as well.

My initial thought was that the digital recordings were made with a microphone placed
in front of an old phonograph. This is not the case. The digital recordings are made with
a modern turntable pickup mounted on a specialized playback system. Either the pickup
is mounted on an extra long tone arm to give a small change in angle between the needle
and groove, or a device tracks the needle parallel to the cylinder. The tracking is crucial
as a force in the wrong direction could damage the fragile imprint. A modern lightweight
pickup is used not only to minimize wear, but give a better frequency response [10].

The pickup consists of a moving magnet and coil producing a small electrical signal.
The signal is amplified in the analog domain. The preamplifier may need an equalizer. The
standard RIAA preamplifier for LP records use a fixed equalization curve [11], and is not
suitable for cylinder recordings. At last the signal is recorded through an ADC.
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2 THEORY

2 Theory

2.1 Digital signal processing

2.1.1 Short-Time Fourier Transform

The STFT is a signal processing technique used to determine the phase and frequency of
non-stationary time signals [12]. We wish to look at the spectral content as the signal varies
through time. This is done by chopping up the signal in small sections or short time frames,
analyzing each frame as a stationary part using the Fourier transform. The STFT is invertable
and allow us to manipulate the signal in frequency domain.

The discrete STFT of the signal x(n) is

X(p, k) =
L−1

∑
l=0

gwin(l)x(pM + l)e−j2πkl/L k = 0, 1, 2, . . . , L− 1 (1)

where p is the frame number, starting at zero [4]. In frame p, k is the discrete frequency
bin and l is the sample index. L is the total number of samples, or frame size. M is the step
size or number of samples between successive frames, and is typically smaller than L to
give an overlap of L−M samples. gwin(l) is a window function.

When using the Discrete Fourier Transform (DFT) on a truncated signal, the limits be-
come a part of the signal’s frequency response. If the frame acts as a rectangular window
the abrupt transition from zero to the first sample will generate undesirable frequency com-
ponents. These components can interfere with components from the actual signal. If the
frame is viewed through a smoother window, as the Hamming window in figure 1, the
transition becomes less abrupt and generates less undesirable frequency components. On
the other hand there are less accurate points to determine the signal frequency, hence we
loose some frequency resolution, but gain dynamic range. Not to loose so much information
at the tapered ends of the window, we overlap successive frames. A greater description of
window functions are given in [13].

We invert the STFT using an Overlap-Add (OLA) method. First each frame has to be
inverse transformed.

xp(l) = gcorr(l)
L−1

∑
k=0

X(p, k)ej2πkl/L l = 0, 1, 2, . . . , L− 1 (2)

x(n) is now recognized as the chopped up overlapping sections abbreviated xp(l).
gcorr(l) is a gain correction function to reverse the amplitude modifications done by the
overlap and windowing.

gcorr(l) =



1
gwin(l)

M > L/2

M
L−1
∑

l=0
gwin(l)

M ≤ L/2
(3)
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2.1 Digital signal processing 2 THEORY

With less than 50% overlap the inverse window is used. This is only applicable for the
Hamming window or other non zero tapered windows. With 50% or more overlap the
signal has been amplified (almost uniformly depending on window type) by the window
integral, or discrete sum, divided by the step size. The inverse is used to scale down the
signal. This is also valid for zero tapered windows. Another gain correction function is
described in [4].

To regain the complete signal the overlapping sections are added together.

x(n) = ∑
p

xp(n− pM) 0 ≤ n− pM < L− 1 (4)

2.1.2 AR-modeling

The digital filter is essential in digital signal processing. As a signal is sent through the filter,
it is manipulated to enhance certain aspects of the signal. The filter behavior is described
by a transfer function with a set of filter coefficients. The top coefficients, bi represent zeroes
in the transfer function, and the bottom ones, ai represent poles. The digital filter transfer
function as found in [14]:

H(z) =
B(z)
A(z)

=
b0 + b1z−1 + b2z−2 + · · ·+ bNz−N

1 + a1z−1 + a2z−2 + · · ·+ aMz−M (5)

An autoregressive process generates a signal where the current values correlate with the
previous values. Autoregressive (AR)-modeling tries to model such a process by an all
pole Infinite Impulse Response (IIR) filter, which exited by white noise produces an output
similar to the autoregressive process [15]. The model is represented by the filter coefficients
and the white noise variance. The AR-model is defined as

x(n) = −
ρ

∑
i=1

aix(n− i) + w(n) (6)

where x(n) is the output signal, ai the AR-model coefficients, ρ the model order, and
w(n) a white noise signal with variance σ2

e [16]. A higher order gives a better model, but
demands more computation. Solving for the coefficients, often called the autocorrelation
method, involves solving the normal equations also called Yule-Walker equations. A complete
solution also involves finding an estimate of the white noise variance.

2.1.3 Wiener-filter

The Wiener filter suppress additive noise by comparing the noisy signal with an estimated
noiseless signal [17]. The filter is derived from the performance criterion of Minimum Mean
Square Error (MMSE), and takes the following form in the frequency domain:

H(ω) =
SX(ω)

SX(ω) + SD(ω)
(7)

where ω is the continuous frequency [4]. SX(ω) is the energy density spectrum of the
noiseless signal, and SD(ω) is the energy density spectrum of the noise.
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Figure 1: Hamming windowing a 500 Hz tone.
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2.2 Stationary noise reduction 2 THEORY

A basic estimate of a energy density spectrum is

SX(ω) = |X(ω)|2 (8)

For reference an estimate of the discrete power density spectrum is

PX(k) =
1
N
|X(k)|2 (9)

where N is the length of the power spectrum [16].

2.2 Stationary noise reduction

The noise reduction procedure use the STFT. The signal- and noise spectrum is calculated
using the same frame size. Based on the ratio between the spectrums a suppression rule
determines the amount of attenuation of each frequency bin. The resulting gain is applied
to the complex noisy signal. Since we are multiplying the complex signal with a factor, the
phase remains as the original. This could introduce some phase-modulating effects in the
restored output [4]. The noiseless audio frames are transformed back into time domain,
and spliced together using the OLA method. Such a noise reduction procedure is often
referred to as Short-Time Spectral (Amplitude) Attenuation (STSA) [18].

x(n)

d(n)

Noise
removal
process

x̂(n)y(n)

Figure 2: Noise reduction signals.

By figure 2, y(n) is the known, observable noisy signal. The noise d(n) can be observed
when x(n) is zero (no audio present). This is referred to as the noise print and is used to
estimate the noise spectrum. x̂(n) is the estimated noiseless audio.

2.2.1 Basic suppression rules

There are three basic suppression rules. All very similar and derived from the Wiener filter
[4].

The Wiener filter solution is given in equation 7. As SX(ω) is unknown it is substituted
with the related noisy spectrum, SY(ω).

SY(ω) = SX(ω) + SD(ω) (10)

The principle is transformed into the discrete domain by substituting the continuous
frequency variable, ω with the discrete frequency variable, k. This gives a pseudo-Wiener
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2 THEORY 2.2 Stationary noise reduction

filter solution. Combining 7 and 10 gives us the following suppression rule

Gwiener(k) =


SY(k)− SD(k)
SY(k)

SY(k) > SD(k)

0 otherwise
(11)

The rule is only valid when the difference between the signal- and noise spectrum is
positive, otherwise the gain must remain zero.

Another rule is spectral subtraction. Here the noise amplitude spectrum is subtracted
from the signal amplitude spectrum.

Gssub(k) =


|Y(k)| − |D(k)|
|Y(k)| |Y(k)| > |D(k)|

0 otherwise
(12)

The third variant is power subtraction. Here the gain is the square root of the Wiener
solution.

Gpsub(k) =


√
SY(k)− SD(k)
SY(k)

SY(k) > SD(k)

0 otherwise

(13)

There are small differences in the output produced by each suppression rule. The spec-
tral subtraction suppress the most, and the power subtraction the least. The Wiener solu-
tion is somewhere in between. A gain curve describing the relation can be seen in [4].

2.2.2 Noise spectrum estimation

There is little in the articles describing how to estimate the noise spectrum. The obvious
way is to compute the spectrum from the raw DFT components.

The noise print may vary over a longer period than one frame. To get a good estimate
the noise print is partitioned with the same window function, frame- and step size as the
noise reduction process. To estimate the spectrum from the DFT components the Fourier
transform is done as well. The spectrums are then averaged. When the STFT with overlap
is used to compute an averaged power spectrum, it is often called Welch’s method [16].

Typical averaging methods are the arithmetic mean, Root Mean Square (RMS) and maxima.

D̂mean(k) =
∑
p

D(p, k)

P
p = 0, 1, 2, . . . , P− 1 (14)

where P is the total number of frames.

D̂rms(k) =

√√√√∑
p

D(p, k)2

P
(15)

D̂max(k) = max
p

D(p, k) k = 0, 1, 2, . . . , L− 1 (16)

Alternatively the spectrum can be estimated using an AR-model instead of the Fourier
transform. To get the spectrum of each frame we calculate the frequency response of the
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2.2 Stationary noise reduction 2 THEORY

digital filter in equation 5, equipped with the AR-model coefficients from equation 6 and
the white noise variance. The order of filter coefficients control the spectrum precision.
Fewer coefficients will describe the spectrum more coarsely, possibly carving out more
noise. The complex frequency response is given by

H(ejω) =

√
σ2

e

1 +
ρ

∑
i=1

aie−jωi
(17)

2.2.3 The Ephraim-Malah Suppression Rule

The basic suppression rules can result in some annoying artifacts called musical noise. This
occurs when the estimated noise spectrum mismatch the noisy data, leaving peaks at ran-
dom frequencies. To suppress this we need a smoothing effect in our suppression rule. The
ordinary Epharim-Malah Suppression Rule (EMSR) was derived in [19] and further devel-
oped in [18]. In recent years others have continued the development [6][20]. The smoothing
effect is implemented by analyzing both the current and previous restored frame, combin-
ing them in a feedback topology. The EMSR is derived with a performance criterion of
MMSE, based on modeling speech and noise as independent random Gaussian variables.
The restored phase is shown to be the same as in the noisy audio. We skip the derivation
and head straight for the good stuff.

The EMSR as defined by Cappé [6]:

Gemsr(k) =
√

π

2

√√√√( 1
1 + Rpost(k)

)( Rprio(k)
1 + Rprio(k)

)
· M

[(
1 + Rpost(k)

) ( Rprio(k)
1 + Rprio(k)

)]
(18)

Rpost is the a posteriori SNR at each frequency bin. In other words the SNR of the latest
frame. Rprio is the a priori SNR, weighted between the previous and latest frame. M(θ)
stems from a confluent hypergeometric function [18], described in equation 22.

Rpost(k) =
|Y(p, k)|2
|D(k)|2 − 1 (19)

Rprio(k) = (1− α)P
(

Rpost(k)
)
+ α
|G(p− 1, k)Y(p− 1, k)|2

|D(k)|2 (20)

p denotes the frame number. The definition by Cappé introduce a new parameter, α
(0 ≤ α ≤ 1). The parameter acts as a weighting factor, controlling the amount of feedback.
As α approaches 1 the SNR of the previous restored frame dominates. P(x) ensures zero or
positive output.

P(x) =
{

x x ≥ 0
0 otherwise (21)

M(θ) = e−θ/2 [(1 + θ)I0 + θ I1] (22)

I0 and I1 are the modified Bessel functions of first kind, of zero and first order. Their
formulas are presented in [21].
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The EMSR is derived with the assumption that the signal is always present. The sup-
pression rule can be further expanded to include the probability of signal absence, q(k). This
includes a new definition of Rprio.

R′prio(k) =
Rprio(k)
1− q(k)

(23)

where the new R′prio replace all the previous instances of Rprio. A likelihood ratio, Λ is
defined to modify the original EMSR.

Λ(k) =
µ(k)eθ

1 + R′prio(k)
(24)

where µ is defined as

µ(k) =
1− q(k)

q(k)
(25)

Finally, the modified EMSR is

G′emsr(k) =
Λ(k)

1 + Λ(k)
Gemsr(k)

∣∣∣
Rprio=R′prio

(26)

2.2.4 EMSR alternatives

Due to the complexity of computing Bessel functions, alternatives to the EMSR have been
purposed [22]. They use the same modeling assumptions and SNR definitions as the origi-
nal EMSR. Here they are fitted with the same SNR definitions as above. The phase is shown
to be the same as in the noisy audio. The frequency variable k is omitted for simplicity.

Joint Maximum A Posteriori Spectral Amplitude and Phase Estimator (JMAP) is a so-
lution with a Maximum A Posteriori (MAP) performance criterion to estimate the optimal
phase and amplitude.

Gjmap =

Rprio +

√
R2

prio + 2
(
1 + Rprio

) Rprio

1 + Rpost

2
(
1 + Rprio

) (27)

Approximate Maximum A Posteriori Spectral Amplitude Estimator (AMAP) uses an
approximation of the Bessel function, together with the MAP criterion to estimate the opti-
mal amplitude.

Gamap =

Rprio +

√
R2

prio +
(
1 + Rprio

) Rprio

1 + Rpost

2
(
1 + Rprio

) (28)

Minimum Mean Square Error Spectral Power Estimator (MMSEP). The same MMSE
criterion as in the EMSR, but used to estimate the optimal power.

Gmmsep =

√√√√( Rprio

1 + Rprio

)(
1 + θ

1 + Rpost

)
(29)
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Again θ is

θ =
(
1 + Rpost

) Rprio

1 + Rprio
(30)

Gain curves comparing the EMSR, JMAP, AMAP and MMSEP can be seen in [22]. The
JMAP and MMSEP are very close to the EMSR.
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3 Procedure

3.1 The De-Hisser tool

This section describes the realization of the noise reduction theory as a computer pro-
gram. The program is specialized to reduce noise in WAV-files and aims to be one link
in a toolchain to perform audio restoration. A block diagram of the De-Hisser tool is shown
in figure 3.

3.1.1 Top level script

The top level MATLAB script is found in appendix A.1. The script features an interface
to select files and parameters, and runs the subroutines (functions) to estimate the noise
spectrum and perform noise suppression. It also controls a low pass filter and a noise floor
generator.

The noise print is extracted via the input file by entering a start and stop sample, or by
loading a separate file. The input feature a trim option, primarily to test short excerpts to
determine parameter values. The parameter values are attached to the output filename.

Three strings select the suppression rule, noise spectrum estimation- and averaging
method. The strings are passed on to the underlying functions. There are seven selectable
suppression rules: spectral subtraction, Wiener solution, power subtraction, EMSR, JMAP,
AMAP and MMSEP. There are three spectrum estimation methods: Fast Fourier Transform
(FFT), AR-modeling and Welch’s method. And there are three spectrum averaging meth-
ods: maxima, mean and RMS.

Further the interface presents the STFT parameters frame size, step size and window func-
tion. The sizes are given by the total number of samples, and the frame size is preferred to
be a power of two, to avoid bad signal partitioning. The step size is selected as a fraction of
the frame size. The window function is selected by a string. Further the string is evaluated
as code, executing the corresponding MATLAB window function, where the frame size is
used as an argument setting the window length. This setup allow us to choose among
seventeen window functions. A list is displayed by typing ’help window’ in the command
window. The STFT parameters are used by the spectrum estimator- and noise suppressor func-
tions.

Next there are parameters adjusting the noise reduction gain, noise floor gain and AR-model
order. The estimated noise spectrum is amplified or attenuated by the noise reduction gain.
A noise floor is generated by adding a fraction of the residue to the output. The residue is
the difference between the original- and noiseless signal. The fraction is set with the noise
floor gain, if set to zero no noise is added. The AR-model order is used by the spectrum
estimation function. In addition to all the other parameters the EMSR, JMAP, AMAP and
MMSEP have the frame weight parameter. The EMSR is also controlled by the signal absence
parameter.

At last a Butterworth low pass filter can be enabled together with a cutoff frequency.
The filter is fixed to fourth order. The frequency is given in Hertz. The low pass filtering is
performed by a secondary function before the noise floor is added.

Following the parameters are settings to play the selected noise print, original file, the
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Figure 3: De-hisser tool, flowchart.
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restored output and the residue. By listening to the residue we can determine the amount
of good audio that is removed. At the end of the main script the output is saved with the
same resolution as the input.

3.1.2 STFT and windowing

The STFT is computed sequentially and the frames are estimated as the signal progresses.
This loop is present in both the spectrum estimator and the noise suppressor function. In
each function only the window function and step size are taken as arguments. The frame
size is set as the window function length.

At the first and last frame there is an uneven distribution of the window function, due
to the overlap. A solution to this was developed by zero padding the signal. One empty
frame is padded to each end of the signal. To make a whole number of frames fit, the
number of frames are rounded up and the lack of samples are zero padded. To be able to
access parts of an yet to be estimated signal it has to be preallocated in memory with correct
length. After the signal have been partitioned, it is multiplied by the window function in
time domain.

Next, the DFT is computed using the common FFT algorithm. The FFT is not scaled
down by it’s length, although doing so is a common practice to get the correct amplitude.
This is default by MATLAB and not necessary since we are dealing in ratios. It is neither
truncated to a single sided spectrum. This makes it easier to do the inverse transform. The
signal is now ready to be processed in the frequency domain.

3.1.3 The spectrum estimator

The spectrum estimator function can be found in appendix A.2. After the STFT have gen-
erated a frame a switch case jumps to the selected estimation- and averaging method. If a
FFT estimate is chosen all there is to compute is the FFT of the partitioned frame. The noise
spectrum output is kept complex, not to discard any information that might become useful.

In the case of an AR-modeled spectrum the coefficients are calculated using MATLAB’s
aryule function. The frame and model order are required input arguments. The aryule func-
tion use the Levinson-Durbin recursion to solve the Yule-Walker equations. The coefficients
are normalized by the first coefficient [23], as in equation 5. The variance of the white noise
input is also given by aryule. Solving the AR-model of only zeros results in coefficients of
infinite value, this corrupts our estimate, therefore a control sequence skips the zero-valued
frames. The complex frequency response of the AR-model is computed with MATLAB’s
freqz function. Since the FFT gives a two-sided spectrum, the response is calculated around
the whole unit circle, giving a two-sided spectrum. The number of points calculated is
equal to the frame size. To get the amplitude similar to the FFT, the frequency response is
amplified by the square root of both the variance and signal length [24].

MATLAB’s own Welch’s method function, pwelch can be used. This bypasses the STFT
and averaging process of the spectrum estimator function. In theory it should produce a
similar result to the FFT and is implemented out of curiosity. Welch’s method only produce
a mean averaged spectrum. The pwelch function takes the noise print, window function
and number of overlapping samples as input arguments. The option ’twosided’ is selected
with same reason as in the AR-model case. The resulting spectrum is of the same length
as the window function. The output is not a complex spectrum, but an unbiased estimated
power spectrum. To scale the result to a similar amplitude as the FFT, the output is scaled
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by ∑
k

gwin(k)2 / ||gwin(k)||2, where || · || denotes the second norm, or Pythagorean theorem

[25].

3.1.4 The noise suppressor

The noise suppressor function is executed from the top level after the spectrum estimation,
and is shown in appendix A.3. Again a switch case is used to select the suppression rule.

If one of the basic suppression rules is selected, it is first ensured to get only positive
resulting arguments, otherwise the gain remains zero. The condition to prove a positive
result is simplified by only comparing the amplitude. All the suppression rules result in a
frequency gain vector that is applied to the complex signal.

If the Ephraim-Malah based suppression rules are selected, separate functions are exe-
cuted. Common to all are the calculation of the a posteriori and a priori SNRs. First there
is a divide by zero protector. All the frequency bins equal to zero at the input are excluded
from the calculations, and set to zero in the gain vector. As the a priori SNR is calculated,
the MATLAB function max corresponds to the positive output function of equation 21. In
the case of JMAP and AMAP the gain vector is ready to be calculated and returned to the
noise suppressor function. In the case of MMSEP, the θ variable is calculated before the
gain vector.

The EMSR is more complex. Before θ is calculated the a priori SNR is modified by the
probability of signal absence parameter. If the parameter is set to zero, the SNR remains
unchanged. The exponential growth of θ can result in overflow and infinite values. By trial
the MATLAB exponential function seem to overflow above 700. It is the a posteriori SNR
that gives θ high values, thus it is truncated when values reach above 700. After θ and the
Bessel functions are computed the hypergeometric function and gain vector is calculated.
If the signal absence probability is above zero the gain vector is modified as stated in the
theory section.

After processing in the frequency domain, the window gain correction is applied to
the inverse transformed frame. At last the restored frame is added to the preallocated
estimated signal. When the noiseless signal is complete the zero padding is removed.

3.2 Using the De-Hisser
From Ringve I got 20 recordings in various quality. A few of them were not recorded by
the National Library. The first task was to sort out a few phrases that would only need de-
hissing and had usable noise prints. Both song, speech and instrumentals with many and
few instruments were picked out. Recordings that would need click- and/or saturation
reduction were excluded from the project. REAPER, an audio editing software was used to
slice audio and extract noise prints [26].

Three phrases were picked out as examples supporting the results: A horn section with
fast transients and a high pitched bell, Herbert Victor and His Orchestra - Dream Melody.
The original file can be heard in Herbert-orig.wav . A speech example from the record
Harlan and Stanley - Two Rubes and the Tramp Fiddler, as heard in Stanley-orig.wav . A piano
piece by Edvard Grieg - Romances and Ballads for voice and piano, Op 9- No.4, Outward Bound
recorded by an unknown source. This gives a totally different soundscape with more low
end and less high end. The original is heard in Grieg-orig.wav .

Most parameter combinations were thoroughly tested on about 10 different phrases
throughout the whole project. Hundreds of different restored files were generated. Most of
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the digital recordings were 16-bit with 44.1 kHz sampling rate, but one case was tested at
24-bit and 96 kHz. Most of the time the gain was set to produce maximum noise reduction
without any distortion. The FFT with maxima averaging was the go to noise spectrum esti-
mation algorithm. The frame size was typically tested at 1024, 2048 and 4096 samples. The
step size was typically half, quarter or an eight of the frame size, corresponding to 50, 75
or 87.5% overlap. The rectangular, Hamming and Hann windows were tested. The frame
weight was most of the time set to 0.98 as recommended by Cappé [6]. When restoring
recordings on the behalf of Ringve, a noise floor was often left to give an authentic sound
and not to generate any noticeable artifacts.

Some of the recordings seem to be missing some high- and low end, especially to be
recorded with a modern pickup. Maybe they were filtered in or after the recording process.
I contacted the National Library, responsible for the recording, but they couldn’t help me
validate if filters were used, or hand me any copies of the raw digital recordings. However
they were still considered equally relevant.

3.3 Conducting a listening test
A pilot listening test was conducted with 13 participants. The test was simply to rank six
audio clips with varying degree of noise reduction by preference. If the clips were indis-
tinguishable they could be ranked equally. There were three such groups with different
recordings. The goal was to identify any preference of noise floor or algorithm. The two
main algorithms, spectral subtraction and EMSR were chosen with and without a noise
floor. The original was included, and a clip with an alternative EMSR parameter setup.
The test was sent by email and the participants were asked to note the type of loudspeak-
ers or headphones that were used.

Before calculating the results the sixth alternative was excluded, as the parameters were
inconsistent between groups and rather experimental. The results were given a score from
zero to four, four being the most preferable. A tie resulted in the lowest score, also lowering
the possible top score. In each of the five cases, the mean of all the participants and groups
were taken.
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4 Results

4.1 De-Hisser subroutines
Figure 4a shows a raw FFT spectrum together with its corresponding AR-modeled spec-
trum. The estimates are of equal gain and RMS averaged values. In practice the spectrums
are moved slightly with the gain parameter to give the optimum noise reduction. The
same spectrum estimated by Welch’s method is shown in figure 4b. Here the average is
calculated by the arithmetic mean.

It was found that the FFT and AR-modeled noise spectrum amplitude depends heavily
on step size. The dependence is most prominent with either RMS or mean averaging. A
larger step size result in larger amplitude. Welch’s method produced a consistent result
regardless of step size. The FFT and AR-model estimates seem to coincide with Welch’s
method when the step size is a quarter of the frame size.
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Figure 4: An estimated spectrum.
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4.2 Phonograph noise reduction
In general the spectral subtraction resulted in a noise floor like remainder most of the time.
The EMSR could suppress the noise even further, but often gave an unnatural sounding
remainder. To mask these artifacts the noise floor had to be raised equally high as that of
the spectral subtraction. Reducing the noise as much as possible and later adding the noise
floor often yield a more natural sounding result. The Wiener solution and power subtrac-
tion were to weak, producing poor results. Some of the restorations exhibit similarities to
the musical noise phenomenon.

Figure 5 shows the Herbert Victor Orchestra sound file before and after noise reduction.
The original together with the EMSR restored output is heard in Herbert-orig-emsr.wav .
The spectral subtraction variant together with its AR-model and Welch’s method equiva-
lent, is heard in Herbert-fft-ar-welch.wav . The maxima FFT estimate was in general better
or equal to the AR-model, and always better than Welch’s method when trying to achieve
the best end result. If fixed STFT parameters and a mean average were used the Welch’s
method prove better at low frequencies than the FFT, but didn’t reduce the high end suffi-
ciently.

The Stanley and Harley speech example is presented in Stanley-orig-ssub-emsr.wav .
The EMSR gave more noise reduction, but a huge increase in computation time. The JMAP
and AMAP were very similar to the EMSR. An EMSR versus AMAP example is heard
in Stanley-emsr-amap.wav . The MMSEP led to an unnatural sounding noise floor. All
the EMSR alternatives ran much faster. With medium frame- and step sizes the spectral
subtraction clocked in at 0.9 seconds on 10 seconds of audio. The AMAP used 2.1 seconds,
whereas the EMSR used 5.2 seconds. The Grieg example show another general case, Grieg-
orig-ssub-emsr.wav . The DART software did not perform as good as the De-Hisser. An
example is heard in Herbert-dart.wav .

A high gain could easily create distortion, increasing gradually with the noise reduction.
Light distortion could be suppressed with a low pass filter of about 5 kHz, but often led to
dulling of the signal. However overestimating and filtering the signal could give a better
first impression. As for the EMSR, the frame weight parameter could give distortion in
fast audio material. An example is heard in Herbert-emsr-dist.wav . Here the distortion is
exaggerated giving max noise reduction.

As for the STFT parameters, the frame size was very dependent on material and of
course sampling rate. With spectral subtraction a larger frame size often yield better results.
A small step size often led to better noise reduction and less distortion, but a significant
increase in computation time. The Hamming and Hann windows gave very similar results.
The rectangular window with no overlap gave very poor results.

The frame weight parameter gave a reverb/echo like effect with large frame sizes. The
signal absence parameter could reduce reverberation and other noise artifacts in rapid
pulse like material, such as speech. In Stanley-absence.wav the parameter is set to zero,
then 0.3. A high probability of signal absence gave distortion and small amplitude modu-
lations to slow material, such as continuous tones.

By analyzing the restored recordings with a band pass filter and a spectrum analyzer,
the usable frequency range was found to be approximately 100-6000 Hz.
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(a) Original

(b) De-hissed using the EMSR.

Figure 5: Spectrogram, Herbert Victor and his Orchestra.
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4.3 Listening test results
The test results are shown in figure 6. All the participants used acceptable playback sys-
tems, no laptop speakers or similar. Some reported the EMSR and spectral subtraction
(without knowing) as indistinguishable. Not in any case were the original preferred above
any other version. Two of the participants reported that some of the clips were sounding
like heavily compressed MP3s or sent through a phaser effect.
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Figure 6: Listening test results.
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5 Discussion

5.1 De-Hisser

5.1.1 Development

An easier way to partition the signal in the STFT is by using MATLAB’s buffer function
[27]. This slices the signal in overlapping sections as a matrix, allowing all the frames to
be processed at once. Also the frame-fitting and some zero padding is done automatically.
On the other hand it would have taken up more memory, and the window gain correction
would require an individual solution at the signal ends, if not padded manually. I didn’t
quite figure out the window gain correction function described by [4], as it seems unclear
in the inversion of zero tapered window functions.

The frame size parameter could have been presented in milliseconds, allowing a con-
stant frame length with respect to sample rate. To escape unnecessary warnings the size
should be forced to a power of two. As of now the dependency fault between step size and
spectrum amplitude is corrected by adjusting the noise reduction gain. The fault is most
likely in the averaging routine, and a gain correction similar to the window gain correc-
tion is probably needed. The amplitude calculations in the AR-model and Welch’s method
could be avoided by scaling the FFT spectrum.

A lot of time was spent on scaling the θ parameter, not to produce overflow in the
bessli function. The Bessel function was monitored by checking the returned error flag
vector [21]. Only later was the problem found to be the exponential function and solved
by truncation, as purposed in [28]. This problem was difficult to separate from the need
of a divide by zero protector. The final form, where the noisy signal has to be checked
for zeros, was somewhat hidden as the a posteriori SNR could occur as minus one giving
a zero valued denominator in the gain vector equation. Another time killer was all the
testing of parameter combinations, a more rigorous test method should have been used.

The low pass filter could have been placed pre- or post residue calculation. The latter
was selected as not to add back the filtered part in the noise floor generator. This way
the residue have to be updated. This update was not present until the very end of the
project, thus an untrue residue have been used during the development. In other words
good audio removed by the low pass filter have not been heard. This may have led to
unnecessary dulling of some signals.

Three types of noise floor generators could have been used: One, by setting a minimum
gain in the suppression rule. Two, by adding a fraction of the original signal. Or three,
adding the residue. In the EMSR, Cappé suggests setting a minimum a priori SNR [6].
The more general method of adding the residue was selected since the De-Hisser now
supports multiple suppression rules. A minimum gain method was actually tested and
gave a different sounding, but suitable noise floor using the basic suppression rules. The
method suggested by Cappé gave an unnatural sounding noise floor.

5.1.2 Use and results

The large variance of noise in phonograph recordings (and poor noise prints) may have
moved the problem of musical noise from the spectral subtraction to the EMSR. As the
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spectral subtraction is now only capable of reducing the noise to an acceptable floor, the
EMSR give some artifacts similar to musical noise. To assume that the typical phonograph
noise is stationary is probably too crude. The noise has a periodic behavior due to the rota-
tional motion of the cylinder. Incorporating a statistic model representing the revolutions
should be considered. A more hands one approach could be synchronizing the noise print
throughout the audio by cross-correlation or an adaptive gain. In the current model a long
noise print have to be compressed into one frame. This results in overestimation as the
noise vary more slowly throughout the audio.

The AMAP and JMAP outperform the EMSR. The result can be very similar, but the
EMSR alternatives have less complexity. It is always interesting discussing real-time ca-
pabilities, and the basic suppression rules or the EMSR alternatives prove to be the most
promising algorithms. The suppression rules can process the audio more than ten times
faster than real-time. In addition to that, neither the program code nor MATLAB is espe-
cially designed for real-time processing.

The frame weight distortion is discussed in [6], and confirms that less distortion is
achieved with smaller step sizes. A smaller step size result in less delay before the gain
vector is updated, this actually gives less smoothing. The reverb/echo effect is probably
a result of the smoothing effect being so delayed that it shapes the current audio with re-
semblance to the previous audio. As the results show the signal absence parameter is most
applicable to speech signals. The parameter is not as useful when maintaining a noise floor,
since reverberation is easily masked by noise.

The low pass filter can make it difficult to discover distortion, and should first be en-
abled after the user is certain no distortion is created. The results also confirm that the use
of a modern pickup give an enhanced frequency response.

5.1.3 Further work

An objective test could be performed using a synthetic example, where a clean audio source
is contaminated by a random noise generating process. Also more window functions could
be tested. Greater bit depth and sampling rate was neither tested enough to give any re-
sults, and should be studied further. In theory higher resolution would give more precise
spectrum estimations, that could help differentiate noise and good audio.

Some other suppression rules have been purposed. Ephraim and Malah purpose a log-
spectral EMSR in [29]. There are also other perceptually motivated suppression rules pur-
posed by Wolfe and Godsill in [30]. A modification to improve the EMSR’s transient dis-
tortion is purposed in [20], called the W2 modification. The AMAP and JMAP could have
been tested with the signal absence modifier, this is also purposed in [22].

Another good implementation would be a noise gate in between the noise suppressor
and noise floor generator. The noise gate could probably do some of the noise removal that
the low pass filter now does, but without dulling the signal. On the other hand a standalone
noise gate could be preferred in a restoration environment.

As discussed in [2], and still a bit of mystery is that the DART tool do not necessarily
need an user selected noise print. It may be possible to extract the noise print automatically
by looking for short sections with minimal energy. Anyhow a noise print can be selected,
and the DART tool feature a graphical equalizer applied to the noise print. This is a neat
feature and would correspond to a frequency dependent noise reduction gain in our case.

The De-Hisser interface was setup for further implementation of a graphical interface.
MATLAB have both graphical interface- and standalone application support to compile the
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program as a finished software product.

5.2 Listening test
Surprisingly the EMSR and spectral subtraction were equally preferred without any noise
floor. Another subjective listening test found in [31], show more preference towards the
EMSR. In figure 6, we see the EMSR have a slight edge over spectral subtraction in the clips
containing a noise floor. If we look at the two bars with noise floor versus the bars without,
it is clearly the participants prefer no noise floor. Due to the nature of the examples and rank
setup, the participants may have been caught up in finding the clip with least noise, rather
than actually choosing the one they preferred. The ABX test method is a good alternative.
From a statistical standpoint the clips should have been graded instead of ranked. This
would allow a measure of distance between the clips.

The listening test material were the first batch of recordings restored with the program,
so the parameters were set with little experience. A too low cutoff frequency was used
and a too much gain, resulting in a dull and distorted output. Today the parameters would
have been set differently, and the difference between the algorithms might had been clearer.
The test should have included a speech or song example.

The phase modulation effect noted by some, could be the zero phase shift behavior
of the suppression rules. The same phenomenon is surely present in MP3 encoding and
should be studied further. I chose not to do any objective tests as there are multiple in
other articles [8][22][31].
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6 Conclusion

A de-hissing tool were created with MATLAB and proved to be very powerful. We were
able to reduce noise in old phonograph recordings by a significant amount. Both some
basic- and state of the art noise reduction algorithms were successfully realized. The EMSR
or the alternative AMAP algorithm gave most noise reduction, although the basic spectral
subtraction method gave a pleasant result with less complexity. Some noise artifacts are
still present, and a few guidelines and further development have been purposed.

We built a solid framework around the STFT. The program is easily expandable to sup-
port more algorithms and a graphical interface. Noise reduction by STSA prove to be a
huge research field with all its algorithms and parameters. It takes some time before you
can start modify, automate and qualify the algorithms best suited for phonograph restora-
tion.

One important result was that phonograph audio, with its large noise variance, should
only be considered semi-stationary. A model supporting the periodic noise behavior should
be implemented. A subjective test show that people prefer the restorations by far, and the
availability of old recordings highly depend on noise reduction techniques.
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A MATLAB code

A.1 De-hisser STSA

1 %% De-Hisser STSA
2 % Vegard Hella, NTNU, 2013.
3 close all;
4 clear all;
5 clc;
6

7 %----------------------- file dialog -------------------------
8 inputfile = '../audio_examples/Stanley-orig.wav';
9 %audio_start = 1; audio_stop = 277000; %optional trim

10

11 noiseprintfile = '../audio_examples/Stanley-np.wav'; %=inputfile
12 %noise_start = 1; noise_stop = 158000; %optional trim
13

14 outputfile = '../audio_examples/Stanley.wav';
15

16 %--------------------- user parameters -----------------------
17 %Algorithms
18 suppression_rule = 'ssub'; %ssub, wiener, psub, emsr, jmap,
19 %amap, mmsep
20 estimation_algorithm = 'fft'; %fft, ar, welch (mean)
21 noise_averaging = 'max'; %max, mean, rms
22

23 %STFT
24 L = 2*1024; %frame size [typ. 1024, 2048, 4096]
25 M = L/4; %step size [typ. L/2, L/4, L/8]
26 gwin = 'hann'; %rectwin, hamming, hann, '>>help window'
27

28 %Noise reduction
29 gain = 1.00; %noise reduction gain
30 Rmin = 0.00; %noise floor gain [0 -> 1]
31 rho = 170; %AR-model order [1 -> (L-1)]
32

33 %EMSR
34 alpha = 0.98; %previous frame weight [0 -> 1]
35 qk = 0.20; %probability of signal absence [0 -> 0.99]
36

37 %LP-filter
38 lowpass = false; %optional low pass filter
39 f3db = 6000; %cutoff frequency [Hz]
40

41 %Playback
42 listen_original = false;
43 listen_noiseprint = false;
44 listen_result = true;
45 listen_residue = false;
46

47 %Save
48 save_result = false;
49 save_residue = false;
50
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51

52 %----------------------- application -------------------------
53 % Load files
54 [wav_file, Fs, nbits] = wavread(inputfile);
55 if exist('audio_stop', 'var')
56 wav_file = wav_file(audio_start:audio_stop); %trim
57 end
58

59 noise_print = wavread(noiseprintfile); %extract noise print
60 if exist('noise_stop', 'var')
61 noise_print = noise_print(noise_start:noise_stop); %trim
62 end
63

64 win = gwin;
65 gwin = eval([gwin, '(L)']); %generate window function
66

67 % Estimate noise print
68 noise_spectrum = gain * spectrum_estimator(noise_print, ...
69 gwin, M, estimation_algorithm, rho, noise_averaging);
70

71 %save(['grieg2/noise spectrum/', estimation_algorithm, '_', ...
72 % noise_averaging], 'noise_spectrum');
73

74 % Noise removal
75 tic
76 wav_estimate = noise_suppressor(wav_file, noise_spectrum, ...
77 gwin, M, suppression_rule, alpha, qk);
78 toc
79

80 wav_residue = wav_file - wav_estimate;
81

82 % Low pass filter signal
83 if lowpass
84 wav_estimate = lpfilter(wav_estimate, f3db, Fs); %low pass filter
85 end
86

87 % Add noise floor
88 if (Rmin > 0)
89 wav_estimate = wav_estimate + Rmin*wav_residue;
90 end
91

92 wav_residue = wav_file - wav_estimate; %update residue
93

94

95 if listen_original %listen to original file
96 sound(wav_file, Fs);
97 end
98 if listen_noiseprint %listen to noiseprint
99 sound(noise_print, Fs);

100 end
101 if listen_result %listen to result
102 sound(wav_estimate, Fs);
103 end
104 if listen_residue %listen to residue
105 sound(wav_residue, Fs);
106 end
107

108

109 % Save files, state parameters in filename
110 outputfile = [outputfile(1:end-4), '_', suppression_rule, ...
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111 '_', estimation_algorithm, '_', noise_averaging, ...
112 '_', win, ...
113 '_N', num2str(L), ...
114 '_M', num2str(M), ...
115 '_g', num2str(gain), ...
116 '_Rm', num2str(Rmin), '.wav'];
117

118 if lowpass
119 outputfile = [outputfile(1:end-4), ...
120 '_f', num2str(f3db), '.wav'];
121 end
122 if max(strcmpi(estimation_algorithm, {'ar', 'ceps'}))
123 outputfile = [outputfile(1:end-4), ...
124 '_r', num2str(rho), '.wav'];
125 end
126 if strcmpi(suppression_rule, 'emsr')
127 outputfile = [outputfile(1:end-4), ...
128 '_a', num2str(alpha), ...
129 '_q', num2str(qk), '.wav'];
130 end
131

132 if save_result
133 wavwrite(wav_estimate, Fs, nbits, outputfile);
134 end
135 if save_residue
136 wavwrite(wav_residue, Fs, nbits, [outputfile(1:end-4), '_res.wav']);
137 end
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A.2 Spectrum estimator

1 function Dk_hat = spectrum_estimator(dn, gwin, M, algorithm, rho, averaging)
2 %Dk_hat = SPECTRUM_ESTIMATOR(dn, gwin, M, algorithm, rho) estimates the
3 %twosided spectrum, 'D(k) hat' from the time signal 'd(n)'.
4 % 'gwin' is a window function describing a frame of size 'L'. 'M' is the
5 % step size between sucessive frames. 'algorithm' gives the type of
6 % estimation method:
7 % 'fft' (Fast Fourier Transform)
8 % 'ar' (AR-model, with order 'rho')
9 % 'ceps' (cepstrum)

10 % 'welch' (Welch's method, a modified periodogram)
11 % 'rho' is the AR-model or cepstrum order.
12 % 'averaging' gives the averaging process of multiple frames:
13 % 'max' (maximum noise amplitudes)
14 % 'mean' (arithmetic mean)
15 % 'rms' (root mean square)
16 % 'Dk_hat' is the resulting spectrum of size 'L'. Depending on
17 % algorithm 'Dk_hat' may be complex.
18

19 L = length(gwin);
20

21 if strcmpi(algorithm, 'welch')
22 Dk_hat = pwelch(dn, gwin, (L-M), 'twosided');
23 Dk_hat = sum(gwin)^2/norm(gwin)^2 * Dk_hat; %pwelch scale
24 else
25

26 N = length(dn);
27 dn = [zeros(L,1); dn; zeros((ceil(N/L)*L - N) + L, 1)]; %zero padding
28 N = length(dn); %update length
29

30 Dk_hat = zeros(L, 1); %preallocate memory
31

32 for n = 1:M:N-(L-M) %n is the signal sample index
33

34 dn_frame = gwin .* dn(n:n+L-1);
35

36 switch algorithm
37 case 'fft'
38 Dk = fft(dn_frame);
39

40 case 'ar'
41 if sum(abs(dn_frame)) > 0
42 [A, sigma2] = aryule(dn_frame, rho);
43 Dk = sqrt(sigma2*L) * freqz(1, A, L, 'whole');
44 %spectrum shape is represented by the filter coefficients.
45 %signal energy is represented by the variance, sigma^2.
46 else
47 Dk = 0;
48 end
49

50 otherwise
51 disp('Error: no recognizable choice of algorithm.')
52 break;
53 end
54

55 switch averaging
56 case 'max'
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57 i = abs(Dk) > abs(Dk_hat);
58 Dk_hat(i) = Dk(i);
59

60 case 'mean'
61 Dk_hat = (Dk_hat + Dk) / 2;
62

63 case 'rms'
64 Dk_hat = sqrt((Dk_hat.^2 + Dk.^2) / 2);
65

66 otherwise
67 disp('Error: no recognizable choice of averaging method.')
68 break;
69 end
70

71 end
72

73 end
74

75 end
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A.3 Noise suppressor

1 function xn_hat = noise_suppressor(yn, Dk, gwin, M, rule, alpha, qk)
2 %xn_hat = NOISE_SUPPRESSOR(yn, Dk, gwin, M, rule) reduces noise in 'y(n)',
3 %based on noise spectrum 'D(k)'.
4 % 'Dk' can be complex. 'Dk' is of length 'L'.
5 % 'gwin' is a window function describing a STFT frame of size 'L'.
6 % 'M' is the step size between successive frames. 'rule' is a selection
7 % of noise suppression rules:
8 % 'ssub' (spectral subtraction)
9 % 'wiener' (wiener solution)

10 % 'psub' (power subtraction)
11 % 'emsr' (Ephraim-Malah suppression rule)
12 % 'jmap' (Joint MAP Spectral Amplitude and Phase Estimator)
13 % 'amap' (Approximate MAP Spectral Amplitude Estimator)
14 % 'mmsep' (MMSE Spectral Power Estimator)
15 % 'xn_hat' is then the estimated noiseless signal. 'alpha' is a
16 % smoothing factor (EMSR), and 'qk' is the probability of signal
17 % absence (EMSR).
18

19 L = length(gwin);
20 N = length(yn);
21

22 yn = [zeros(L,1); yn; zeros((ceil(N/L)*L - N) + L, 1)]; %zero padding
23 Npad = length(yn); %update padded length
24

25 xn_hat = zeros(Npad, 1); %preallocate memory
26 Gk = zeros(L, 1);
27 Xk_hat = zeros(L, 1);
28

29 for n = 1:M:Npad-(L-M) %n is the signal sample index
30

31 yn_frame = yn(n:n+L-1);
32 Yk = fft(gwin .* yn_frame);
33

34 switch rule
35 case 'ssub' %Spectral subtraction
36 i = (abs(Yk) - abs(Dk)) > 0;
37 Gk(i) = (abs(Yk(i)) - abs(Dk(i))) ./ abs(Yk(i));
38

39 case 'wiener' %Wiener filter solution
40 i = (abs(Yk) - abs(Dk)) > 0;
41

42 SY = abs(Yk(i)).^2;
43 SD = abs(Dk(i)).^2;
44

45 Gk(i) = (SY - SD) ./ SY;
46

47 case 'psub' %Power spectrum subtraction
48 i = (abs(Yk) - abs(Dk)) > 0;
49

50 SY = abs(Yk(i)).^2;
51 SD = abs(Dk(i)).^2;
52

53 Gk(i) = sqrt( (SY - SD) ./ SY );
54

55 case 'emsr' %Ephraim-Malah suppression rule
56 Gk = emsrc(Yk, Dk, Xk_hat, alpha, qk);
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57 %[Gk, Rpost] = emsrcw2(Yk, Dk, Xk_hat, alpha, qk);
58

59 case 'lsanc'
60 disp(['The Log Spectral Amplitude Non Causal Estimator', ...
61 '(LSANC) is not available.'])
62 break;
63

64 case 'mmsep' %Minimum Mean-Square Error Spectral Power Estimator
65 Gk = mmsep(Yk, Dk, Xk_hat, alpha);
66

67 case 'amap'
68 Gk = amap(Yk, Dk, Xk_hat, alpha);
69

70 case 'jmap'
71 Gk = jmap(Yk, Dk, Xk_hat, alpha);
72

73 otherwise
74 disp('Error: no recognizable suppression rule.')
75 break;
76 end
77

78 Xk_hat = Gk .* Yk;
79

80 xn_frame = ifft(Xk_hat);
81

82 if M > L/2 %gain correction
83 xn_frame = xn_frame .* (1./gwin);
84 else
85 xn_frame = xn_frame .* (M/sum(gwin));
86 end
87

88 xn_hat(n:n+L-1) = xn_hat(n:n+L-1) + xn_frame; %overlap add
89

90 end
91

92 xn_hat = xn_hat(L+1:L+N); %zero padding removal
93

94 end
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A.4 EMSR

1 function Gk = emsrc(Yk, Dk, Xk_hat, alpha, qk)
2 %Gk = EMSRC(Yk, Dk, Xk_hat) The Ephraim-Malah suppression rule as defined
3 %by Cappé.
4 % where 'Yk' is the noisy signal spectrum, 'Dk' the noise spectrum and
5 % 'Xk_hat' is the previous frame of the estimated noiseless signal. 'Gk'
6 % is then the resulting frequency gain vector. 'alpha' is the frame
7 % weighting, and 'qk' the probability of signal absence.
8

9 L = length(Yk);
10 Gk = zeros(L, 1);
11

12 i = (abs(Yk) > 0) & (abs(Dk) > 0); %divide by zero protector
13

14 Rpost = (abs(Yk(i)).^2 ./ abs(Dk(i)).^2) - 1;
15

16 Rprio = (1-alpha) * max(Rpost, 0) ... %positives
17 + alpha * (abs(Xk_hat(i)).^2 ./ abs(Dk(i)).^2);
18

19 Rprio = Rprio ./ (1 - qk);
20

21 Rpost(Rpost > 700) = 700; %exponential of theta overflow protection
22

23 theta = (1+Rpost) .* (Rprio ./ (1+Rprio));
24

25 I0 = besseli(0, theta/2); %zero order
26 I1 = besseli(1, theta/2); %first order
27

28 M_em = exp(-theta/2) .* ((1+theta).*I0 + theta.*I1);
29

30 Gk(i) = (sqrt(pi)/2) ...
31 * sqrt( (1./(1+Rpost)) .* (Rprio./(1+Rprio)) ) .* M_em;
32

33 if qk > 0 %signal presence uncertainty
34 mu = (1-qk) ./ qk;
35 Lambda = mu .* exp(theta) ./ (1+Rprio);
36 Gk(i) = Lambda ./ (1+Lambda ) .* Gk(i);
37 end
38

39 end
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A.5 JMAP

1 function Gk = jmap(Yk, Dk, Xk_hat, alpha)
2 %Gk = JMAP(Yk, Dk, Xk_hat) Joint Maximum A Posteriori Spectrum Amplitude
3 %and Phase Estimator.
4 % where 'Yk' is the noisy signal spectrum, 'Dk' the noise spectrum and
5 % 'Xk_hat' is the previous frame of the estimated noiseless signal.
6 % 'alpha' is the frame weight. 'Gk' is then the frequency gain vector.
7

8 N = length(Yk);
9 Gk = zeros(N, 1);

10

11 i = (abs(Yk) > 0) & (abs(Dk) > 0); %divide by zero protector
12

13 Rpost = (abs(Yk(i)).^2 ./ abs(Dk(i)).^2) - 1;
14

15 Rprio = (1-alpha) * max(Rpost, 0) ... %positives
16 + alpha * (abs(Xk_hat(i)).^2 ./ abs(Dk(i)).^2);
17

18 Gk(i) = (Rprio + sqrt(Rprio.^2 + 2*(1+Rprio).*(Rprio./(1+Rpost)))) ...
19 ./ (2*(1+Rprio));
20

21 end
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A.6 AMAP

1 function Gk = amap(Yk, Dk, Xk_hat, alpha)
2 %Gk = AMAP(Yk, Dk, Xk_hat) Approximate Maximum A Posteriori Spectral
3 %Amplitude Estimator.
4 % where 'Yk' is the noisy signal spectrum, 'Dk' the noise spectrum and
5 % 'Xk_hat' is the previous frame of the estimated noiseless signal.
6 % 'alpha' is the frame weight. 'Gk' is then the frequency gain vector.
7

8 N = length(Yk);
9 Gk = zeros(N, 1);

10

11 i = (abs(Yk) > 0) & (abs(Dk) > 0); %divide by zero protector
12

13 Rpost = (abs(Yk(i)).^2 ./ abs(Dk(i)).^2) - 1;
14

15 Rprio = (1-alpha) * max(Rpost, 0) ... %positives
16 + alpha * (abs(Xk_hat(i)).^2 ./ abs(Dk(i)).^2);
17

18 Gk(i) = (Rprio + sqrt(Rprio.^2 + (1+Rprio).*(Rprio./(1+Rpost)))) ...
19 ./ (2*(1+Rprio));
20

21 end
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A.7 MMSEP

1 function Gk = mmsep(Yk, Dk, Xk_hat, alpha)
2 %Gk = MMSEP(Yk, Dk, Xk_hat, alpha) Minimum Mean-Square Error Spectral Power
3 %Estimator.
4 % where 'Yk' is the noisy signal spectrum, 'Dk' the noise spectrum and
5 % 'Xk_hat' is the previous frame of the estimated noiseless signal.
6 % 'alpha' is the frame weight. 'Gk' is then the frequency gain vector.
7

8 N = length(Yk);
9 Gk = zeros(N, 1);

10

11 i = (abs(Yk) > 0) & (abs(Dk) > 0); %divide by zero protector
12

13 Rpost = (abs(Yk(i)).^2 ./ abs(Dk(i)).^2) - 1;
14

15 Rprio = (1-alpha) * max(Rpost, 0) ... %positives
16 + alpha * (abs(Xk_hat(i)).^2 ./ abs(Dk(i)).^2);
17

18 theta = (1+Rpost) .* (Rprio ./ (1+Rprio));
19

20 Gk(i) = sqrt((Rprio./(1+Rprio)) .* ((1+theta)./(1+Rpost)));
21

22

23 end
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A.8 Low pass filter

1 function yn = lpfilter(xn, f0, Fs, order)
2 %yn = LPFILTER(xn, f0, Fs, order) Low pass butterworth filter.
3 % where 'xn' is the input signal, 'f0' the cut off frequency, 'Fs' the
4 % sampling time and the filter 'order'. Then 'yn' is the filtered output
5 % signal.
6

7 if nargin < 4
8 order = 4;
9 end

10

11 Wn = f0 / (Fs/2);
12 [B, A] = butter(order, Wn, 'low'); %butterworth LP coefficients
13

14 yn = filter(B, A, xn); %filter the signal
15

16 end
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B Listening test results
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 

C
J

K
H

T
Z

M
P

L
G

M
a

U
I

 
 

 
 

 
 

 
 

 
 

 
 

 
A
1
 
e
m
s
r
 
n
f

2
2

2
3

3
3

3
2

3
2

4
3

2
 

 
 

 
 

 
 

 
 

 
 

 
 

A
2
 
o
r
i
g
 
 
 

1
1

1
1

1
1

1
1

1
1

1
1

1
 

 
 

 
 

 
 

 
 

 
 

 
 

A
3
 
e
m
s
r
 
 
 

4
3

3
4

5
4

4
4

4
3

2
4

3
 

 
 

 
 

 
 

 
 

 
 

 
 

A
4
 
s
s
u
b
 
n
f

3
2

4
2

2
2

2
3

2
2

5
2

2
 

 
 

 
 

 
 

 
 

 
 

 
 

A
5
 
s
s
u
b
 
 
 

5
3

5
5

4
5

5
5

4
4

3
5

4
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

B
1
 
e
m
s
r
 
 

5
5

4
5

3
5

4
2

5
4

2
5

4
 

 
 

 
 

 
 

 
 

 
 

 
 

B
2
 
s
s
u
b
 
 

4
4

3
3

3
4

3
3

3
3

3
4

3
 

 
 

 
 

 
 

 
 

 
 

 
 

B
3
 
s
s
u
b
 
n
f

3
3

5
4

2
3

2
3

4
3

2
3

2
 

 
 

 
 

 
 

 
 

 
 

 
 

B
4
 
o
r
i
g
 
 

1
1

1
1

1
1

1
1

1
1

1
1

1
 

 
 

 
 

 
 

 
 

 
 

 
 

B
5
 
e
m
s
r
 
n
f

2
2

2
2

3
2

5
4

2
2

4
2

2
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C
1
 
s
s
u
b
 
n
f

2
2

2
2

2
2

4
3

3
2

3
2

2
 

 
 

 
 

 
 

 
 

 
 

 
 

C
2
 
s
s
u
b
 
 
 

4
4

5
5

3
4

5
4

2
3

3
4

3
 

 
 

 
 

 
 

 
 

 
 

 
 

C
3
 
o
r
i
g
 
 
 

1
1

1
1

1
1

1
1

1
1

1
1

1
 

 
 

 
 

 
 

 
 

 
 

 
 

C
5
 
e
m
s
r
 
n
f

3
3

4
3

3
3

3
5

4
4

3
3

4
 

 
 

 
 

 
 

 
 

 
 

 
 

C
6
 
e
m
s
r
 
 
 

5
5

3
4

3
4

2
2

5
5

2
5

4

57



C ENVIRONMENTAL RISK ANALYSIS

C Environmental risk analysis
N

T
N

U

K
ar

tle
gg

in
g

 a
v 

ris
ik

of
yl

t 
ak

tiv
ite

t
U

ta
rb

ei
de

t 
av

N
um

m
er

D
at

o

H
M

S
-a

vd
.

H
M

S
R

V
26

01
22

.0
3.

20
11

G
od

kj
en

t 
av

S
id

e
E

rs
ta

tt
er

H
M

S
R

ek
to

r
1

 a
v 

1
01

.1
2.

20
06

E
n

h
et

: 
In

st
itu

tt 
fo

r 
E

le
kt

ro
ni

kk
 o

g 
T

el
ek

om
m

un
ik

sj
on

 (
IE

T
)

D
at

o
: 

 0
6.

06
.1

3
D

el
ta

ke
re

 v
e

d
 k

ar
tl

eg
g

in
g

en
 (

m
/ 

fu
n

ks
jo

n
):

 V
eg

ar
d 

H
el

la
 (

st
ud

en
t)

, J
an

 T
ro

 (
ve

ile
de

r)

K
o

rt
 b

es
kr

iv
e

ls
e

 a
v 

h
o

ve
d

ak
ti

vi
te

t/
h

o
ve

d
p

ro
se

ss
: 

P
ro

gr
am

m
er

in
g

ID
 n

r.
   

   
   

   
   

   
  A

k
ti

vi
te

t/
p

ro
se

ss
A

n
sv

ar
li

g
E

ks
is

te
re

n
d

e
 

d
o

ku
m

en
ta

sj
o

n
E

ks
is

te
re

n
d

e
 

si
kr

in
g

st
il

ta
k

L
o

v,
 f

o
rs

kr
if

t 
o

.l.
K

o
m

m
en

ta
r

1
M

us
ea

rm
 o

g
 s

tiv
e 

sk
ul

dr
e

V
H

58



C ENVIRONMENTAL RISK ANALYSIS

N
T

N
U

R
is

ik
ov

ur
de

rin
g

ut
ar

b
ei

de
t 

av
N

um
m

er
D

at
o

H
M

S
-a

vd
.

H
M

S
R

V
26

03
04

.0
2.

20
11

go
dk

je
nt

 a
v

si
de

E
rs

ta
tt

er

H
M

S
/K

S
R

ek
to

r
1

 a
v 
2

9.
2.

20
10

E
n

h
et

: 
In

st
itu

tt 
fo

r 
E

le
kt

ro
ni

kk
 o

g 
T

el
ek

om
m

un
ik

sj
on

 (
IE

T
)

D
at

o
: 

06
.0

6.
13

L
in

je
le

d
er

: 
R

ag
na

r 
H

er
gu

m
D

el
ta

ke
re

 v
e

d
 r

is
ik

o
vu

rd
er

in
g

e
n

 (
m

/ 
fu

n
ks

jo
n

):
 V

eg
ar

d 
H

el
la

 (
st

ud
en

t)
, J

an
 T

ro
 (

ve
ile

de
r)

A
k

ti
vi

te
t 

fr
a 

ka
rt

le
g

g
in

g
s-

sk
je

m
ae

t

M
u

lig
 u

ø
n

sk
et

h
en

d
el

se
/

b
el

as
tn

in
g

V
u

rd
er

in
g

 
a

v 
sa

n
n

sy
n

-
lig

h
et

V
u

rd
er

in
g

 a
v 

ko
n

se
k

ve
n

s:
R

is
ik

o
-

ve
rd

i
K

o
m

m
en

ta
re

r/
st

at
u

s
F

o
rs

la
g

 t
il

 t
ilt

ak

ID nr
   

   
   

(1
-5

)
M

e
nn

e
sk

e
(A

-E
)

Y
tr

e
 

m
ilj

ø
(A

-E
)

Ø
k/

m
at

er
ie

ll
(A

-E
)

O
m

-
d

ø
m

m
e

(A
-E

)

1
M

us
ea

rm
 o

g
 s

tiv
e 

sk
ul

dr
e

3
B

A
A

A
3B

S
itt

e 
rik

tig
, p

au
se

r.

S
an

n
sy

n
lig

h
et

K
o

n
se

kv
en

s
R

is
ik

o
ve

rd
i (

b
er

eg
n

es
 h

ve
r 

fo
r 

se
g

):

1.
 S

væ
rt

 li
te

n
2.

 L
ite

n
3.

 M
id

de
ls

4.
 S

to
r

5.
 S

væ
rt

 s
to

r

A
. S

væ
rt

 li
te

n
B

. L
ite

n
C

. M
od

er
at

D
. A

lv
or

lig
E

. S
væ

rt
 a

lv
or

lig

M
en

n
es

ke
 =

 S
an

n
sy

n
lig

h
et

 x
 K

o
n

se
kv

en
s

 M
en

n
es

ke
Y

tr
e 

m
ilj

ø
 =

 S
an

n
sy

n
lig

h
et

 x
 K

o
n

se
kv

en
s 

Y
tr

e 
m

ilj
ø

Ø
ko

n
o

m
i/m

at
er

ie
ll

 =
 S

an
n

sy
n

lig
h

et
 x

 K
o

n
se

kv
en

s
 Ø

k/
m

at
ri

el
l

O
m

d
ø

m
m

e
 =

 S
an

n
sy

n
lig

h
et

 x
 K

o
n

se
kv

en
s 

O
m

d
ø

m
m

e

59



C ENVIRONMENTAL RISK ANALYSIS

N
T

N
U

R
is

ik
ov

ur
de

rin
g

ut
ar

b
ei

de
t 

av
N

um
m

er
D

at
o

H
M

S
-a

vd
.

H
M

S
R

V
26

03
04

.0
2.

20
11

go
dk

je
nt

 a
v

si
de

E
rs

ta
tt

er

H
M

S
/K

S
R

ek
to

r
2

 a
v 
2

9.
2.

20
10

S
an

n
sy

n
lig

h
et

 v
u

rd
er

es
 e

tt
er

 f
ø

lg
en

d
e

 k
ri

te
ri

er
:

S
væ

rt
 li

te
n

1
L

it
en 2

M
id

d
el

s
3

S
to

r
4

S
væ

rt
 s

to
r

5

1 
ga

ng
 p

r 
50

 å
r 

el
le

r 
sj

el
dn

er
e

1 
ga

ng
 p

r 
10

 å
r 

el
le

r 
sj

el
dn

er
e

1 
ga

ng
 p

r 
år

 e
lle

r 
sj

el
dn

er
e

1 
ga

ng
 p

r 
m

ån
ed

 e
lle

r 
sj

el
dn

er
e

S
kj

er
 u

ke
nt

lig

K
o

n
se

k
ve

n
s

 v
u

rd
er

es
 e

tt
er

 f
ø

lg
en

d
e

 k
ri

te
ri

er
:

G
ra

d
er

in
g

M
en

n
es

ke
Y

tr
e

 m
ilj

ø
V

an
n

, j
o

rd
 o

g
 lu

ft
Ø

k/
m

at
er

ie
ll

O
m

d
ø

m
m

e

E
S

væ
rt

 A
lv

o
rl

ig
D

ø
d 

S
væ

rt
 la

ng
va

rig
 o

g 
ik

ke
 

re
ve

rs
ib

el
 s

ka
de

D
rif

ts
- 

el
le

r 
ak

tiv
ite

ts
st

an
s 

>
1

 å
r.

T
ro

ve
rd

ig
he

t 
og

 r
es

pe
kt

 
be

ty
de

lig
 o

g 
va

rig
 s

ve
kk

et

D
A

lv
o

rl
ig

A
lv

or
lig

 p
er

so
ns

ka
de

. 
M

ul
ig

 u
fø

rh
et

.
La

ng
va

rig
 s

ka
de

. 
La

ng
 

re
st

itu
sj

on
st

id
D

rif
ts

st
an

s 
>

 ½
 å

r
A

kt
iv

ite
ts

st
an

s 
i o

pp
 ti

l 1
 å

r
T

ro
ve

rd
ig

he
t 

og
 r

es
pe

kt
 

be
ty

de
lig

 s
ve

kk
et

C
M

o
d

er
at

A
lv

or
lig

 p
er

so
ns

ka
de

.
M

in
dr

e 
sk

ad
e

 o
g 

la
ng

 
re

st
itu

sj
on

st
id

D
rif

ts
- 

el
le

r 
ak

tiv
ite

ts
st

an
s 

<
 1

 
m

nd
T

ro
ve

rd
ig

he
t 

og
 r

es
pe

kt
 s

ve
kk

et

B
L

it
en

S
ka

de
 s

om
 k

re
ve

r 
m

ed
is

in
sk

 
be

ha
nd

lin
g

M
in

dr
e 

sk
ad

e
 o

g 
ko

rt
 

re
st

itu
sj

on
st

id
D

rif
ts

- 
el

le
r 

ak
tiv

ite
ts

st
an

s 
<

 
1u

ke
N

eg
at

iv
 p

åv
irk

ni
ng

 p
å 

tr
ov

er
di

gh
et

 o
g 

re
sp

ek
t

A
S

væ
rt

 li
te

n
S

ka
de

 s
om

 k
re

ve
r 

fø
rs

te
hj

el
p

U
be

ty
de

lig
 s

ka
de

 o
g 

ko
rt

 
re

st
itu

sj
on

st
id

D
rif

ts
- 

el
le

r 
ak

tiv
ite

ts
st

an
s 

<
 

1d
ag

Li
te

n
 p

åv
irk

ni
ng

 p
å 

tr
ov

er
di

gh
et

 
og

 r
es

pe
kt

R
is

ik
o

ve
rd

i 
=

 S
an

n
s

yn
li

g
h

et
 x

 K
o

n
se

kv
en

s
 

B
er

eg
n

 r
is

ik
ov

er
di

 f
or

 M
en

ne
sk

e.
 E

nh
et

en
 v

ur
de

re
r 

se
lv

 o
m

 d
e

 i 
til

le
gg

 v
il 

be
re

gn
e 

ris
ik

ov
er

di
 fo

r 
Y

tr
e

 m
ilj

ø
, 

Ø
ko

no
m

i/m
at

er
ie

ll 
og

 O
m

dø
m

m
e.

 I 
så

 f
al

l b
er

eg
ne

s 
di

ss
e

 h
ve

r 
fo

r 
se

g.

T
il

 k
o

lo
n

n
en

 ”
K

o
m

m
en

ta
re

r/
st

at
u

s,
 f

o
rs

la
g

 t
il

 f
o

re
b

yg
g

e
n

d
e

 o
g

 k
o

rr
ig

er
en

d
e

 t
ilt

ak
”:

T
ilt

ak
 k

an
 p

åv
irk

e 
bå

de
 s

an
ns

yn
lig

he
t 

og
 k

on
se

kv
en

s.
 P

rio
rit

er
 ti

lta
k 

so
m

 k
an

 fo
rh

in
dr

e
 a

t h
en

de
ls

en
 in

nt
re

ffe
r,

 d
vs

. s
an

ns
yn

lig
he

ts
re

du
se

re
nd

e
 

til
ta

k 
fo

ra
n 

sk
je

rp
et

 b
er

ed
sk

ap
, 

dv
s.

 k
on

se
kv

en
sr

ed
us

er
en

de
 ti

lta
k.

 

60




	Preface
	Introduction
	Outline
	Background
	Related work
	Conservation and digitalization

	Theory
	Digital signal processing
	Short-Time Fourier Transform
	AR-modeling
	Wiener-filter

	Stationary noise reduction
	Basic suppression rules
	Noise spectrum estimation
	The Ephraim-Malah Suppression Rule
	EMSR alternatives


	Procedure
	The De-Hisser tool
	Top level script
	STFT and windowing
	The spectrum estimator
	The noise suppressor

	Using the De-Hisser
	Conducting a listening test

	Results
	De-Hisser subroutines
	Phonograph noise reduction
	Listening test results

	Discussion
	De-Hisser
	Development
	Use and results
	Further work

	Listening test

	Conclusion
	References
	MATLAB code
	De-hisser STSA
	Spectrum estimator
	Noise suppressor
	EMSR
	JMAP
	AMAP
	MMSEP
	Low pass filter

	Listening test results
	Environmental risk analysis

