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Abstract

The NUTS test satellite plans to include an IR camera as its main payload to observe
gravity waves in the atmosphere. The payload module of the satellite has perform
both image enhancement and compression to obtain images that have a good SNR
while also being small enough in size to be able to transferred down to an earth
station in a reasonable amount of time. This places some demand on the payload
module. It not only needs to acquire and store images, it needs to perform image
processing on them as they are acquired in order to not have to dedicate a large
amount of storage space and resources to simply storing image series before working
on them.
Several possible camera interfaces were examined, and evaluated for use with either
a FPGA or a microcontroller. It was found that the Camera Link interface was
preferable when working with a FPGA, while a direct integration solution would
work best with a microcontroller.
The payload module will also need to be able to take commands from, and transmit
image data to, other parts of the satellite, and it was found that it would be sufficient
for the module to act as a I2C slave on the back plane bus.
FPGAs and microprocessors were compared for their fitness in being used as the
processing module in the payload, and it was found that the FPGA was in general
better suited for this task.
Finally, an example implementation was designed, and a FPGA designed was written
in verilog.
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Sammendrag

NTNU test satellitt planlegger å inkludere et IR camera som hovednyttelast, med
formål å ta bilde av tyngdebølger i atmosfæren. Nyttelastmodulen i satellitten må
utføre både bildebehandling og bildekomprimering for å oppnå bilder som både har
god nok SNR, men samtidig er små nok til å kunne sende til en mottakerstajon på
jorda i en fornuftig tid. Dette setter noen krav til nyttelastmodulen. I tillegg til å
måtte hente bilder fra kameraet og lagre disse må den behandle bilder etterhvert
som de kommer inn slik at man unngår å bruke mye lagringsplass og ressurser på å
lagre bildeserier før de behandles.
Flere kameragrensesnitt ble undersøkt og evaluert med tanke på bruk med FPGA
eller mikrokontroller. Det ble funnet at Camera Link er det foretrukne grenses-
nittet når man bruker FPGA, mens direkte integrasjon var best når man bruker
mikrokontroller.
Nyttelastemodulen må også kunne ta ordre fra, og sende bildedata til, andre deler
av satellitten. Det ble funnet at det holder å ha nyttelastmodulen som en I2C slave
på bakplansbussen.
FPGA og mikrokontroller ble sammenlignet i forhold til deres egnethet som pros-
esseringsenheten i nyttelastmodulen, og det ble funnet at FPGA generelt var mer
egnet til denne typen oppgave.
Det ble til slutt gjort et design av en eksempelimplementering, som og et FPGA
design ble skrevet i verilog.
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Problem description

(Translated from Norwegian)
INTERFACE FOR IR-CAMERA IN STUDENT SATELLITE NUTS
The student will examine how an IR-camera can be integrated into the student
satellite NUTS. The Main computer in NUTS is a microcontroller that is not capable
of processing the raw images from the camera. Depending on which camera is
chosen, the camera interface will likely be either USB or Cameralink. The student
will come up with one or more design suggestions that will be able to receive images
from the camera, perform image processing, and store these to a flash memory for
later processing. The interface can for example be built using a FPGA. Considering
it will be put in a satellite, there will be some constraints and demands on the
solution. The electronics must fit on a board that is 66x123x5mm3 or smaller. The
power consumption is also important, the interface should draw as little power as
possible, and it is especially important that it can either go into hibernation or shut
down. The interface will need to both control the camera and collect the image
data.
To create a datapoint, several pixels in the camera needs to be combined (for example
four pixels become one). A datapoint has to be built from a number of single frames
from the camera, so that the “integration time” becomes about one second. It is the
result of this integration that will be stored as a datapoint in flash. The pictures
will be stored in a raw, uncompressed format.
Original project goal text in norwegian:
GRENSESNITT FOR IR-KAMERA I STUDENTSATELLITTEN NUTS
Studenten skal undersøke korleis eit industrielt IR-kamera kan koblast til elektron-
ikk i studentsatellitten NUTS. Hovuddatamaskina i NUTS er ein mikrokontroller
som ikkje vil kunne handsame rå bildedata frå kameraet. Avhengig av kva kamer-
atype som vert endeleg valt, vil truleg USB eller CamLink vere aktuelle grensesnitt.
Studenten skal føreslå ei eller fleire løysingar til eit design til eit grensesnitt som
kan motta bilde frå kameraet, behandle desse og lagre bilde frå kameraet til eit
flashminne for seinare prossessering. Grensesnittet kan tildømes byggast ved hjelp
av ein FPGA. Sidan dette skal inn i ein satellitt, set dette nokre avgrensingar og
krav til løysinga. Elektronikken må få plass på eit kort som er maksiumum 66 x 123
x 5 mm^3. I tillegg er straumtrekket viktig; grensesnittet bør bruke minst mogleg
straum, og spesielt viktig er det at det kan gå i dvale eller slåast av. Grensesnittet
må kunne både styre kameraet og hente bildedata.
For å lage eit datamålepunkt må fleire pixlar i kameraet binnast (til dømes fire
px blir ein px). Eit slikt datamålepunkt må byggast opp av fleire enkeltframes frå
kameraet, slik at total "integrasjonstid" blir ca eit sekund. Det er resultatet av
denne integreringa som skal lagrast som eit datapunkt til flash. Bilda skal lagrast i
eit rått, ukomprimert format.
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1. Introduction

1.1. NUTS student satellite

The NUTS test satellite is a project supported and organized by the department for
electronics and telecommunications at NTNU. The goal of the project is to design,
build test and launch a double cubesat by 2014. The work will mostly be performed
by students at NTNU as either projects or as thesises.
The payload of the satellite is an IR-camera, which will be used to capture gravity
waves in the atmosphere. It will also have an experimental wireless internal bus,
which may be used to transmit data between modules at high speed.[Bir11]

1.2. Previous work

This thesis builds in part on the theoretical groundwork performed by Marianne
Bakken in her masters thesis, “Signal Processing for Communicating Gravity Wave
Images from the NTNU Test Satellite” and Snorre Rønnings project work “Optimiz-
ing an Infrared Camera for Observing Atmospheric Gravity Waves from a Cubesat
Platform”. These works lay out the requirements of both the camera in the satellite
and the methods by which an image with a good enough SNR ratio can be obtained.

1.3. Aim of thesis

The aim of this thesis is to map out the requirements and constraints of the payload
module in the NUTS test satellite from a digital design standpoint, and to come
up with a suggested design solution. It will attempt to analyze some scenarios that
will affect the requirements of the payload module, and how these can be practically
overcome. These design solutions should fulfill the requirements of the module, while
being balanced against the constraints that the module is placed under.

1.4. Outline

The first section of this thesis will lay the theoretical groundwork for what the
payload module should contain based on the facts at hand at the time of writing
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Chapter 1 Introduction

this thesis.
chapter 2 gives an overview of the larger system that the payload will fit into.
chapter 3 gives an overview on the application of the camera and how this affects
the payload.
chapter 4 is a summary of the most common interfaces for SWIR cameras, and how
these can be implemented in an embedded system.
chapter 5 takes a look at how the camera will communicate with the rest of the
satellite.
chapter 5 examines what requiremements the image acquisition and processing im-
poses on the payload in a couple of different scenarios.
chapter 7 is a summary of the effects of space radiation on electronics and how these
effects can be mitigated.
chapter 8 takes a look at what is requires of the central processing itself, and gives
suggestions on how these could be implemented.
The second part of this thesis is an example design based on a specific case.
chapter 9 lays out the case, and discusses how the design best can be made to fit
this case. A processing module is chosen.
chapter 10 contains a description of the FPGA design to be used on the processing
module.
chapter 11 are the final remarks and conclusions of this thesis.
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Theory
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2. NUTS test satellite

2.1. Introduction

This chapter will give a short overview of the NUTS test satellite mission and sys-
tems, to give context to how the work of this thesis will fit into the larger system.

2.2. Mission statement

Copied from [Bir11]:
“The NUTS aims to design, develop, test, launch and operat a double

Cubesat by 2014. Students from different curiums will do the largest
part of the work, supported by the project managment and technical
staff. The work will be performed as part of the students project. and
theses. We have chosen our design to be generic and modular, so the
satellite bus can support different pay loads. As paylad for the first
satellite, an IR-camera will be implemented, in addition to a wireless
internal databus.
Recruitment and education of skillful students will be a main part of

the project goals. Through hands-on experience, the students will be
able to master different skills needed in their job after graduation.”

11



Chapter 2 NUTS test satellite

2.3. Overview

The satellite consists (currently) of five seperate modules that perform their tasks
autonomously. These are:

• Communication system
Responsible for transmitting and receiving radio signals to and from ground stations
on earth

• Attitude determination and control system (ADCS)
Determines what direction the satellite is pointing, and uses magnetic coils to adjust
it to the desired direction.

• Electrical power system
Conditions power collected from solar cells to the batteries, and provides power to
the rest of the satellite.

• Onboard data handling
The central processing unit of the satellite, responsible for keeping the state of the
satellite and issuing commands to other systems.

• Payload (camera)
The IR camera module, responsible for controlling the camera, and grabbing and
processing images.
Fig. 2.1 shows a general diagram of the satellite.
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2.3 Overview

Figure 2.1.: System overview (from [nut])
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Chapter 2 NUTS test satellite

As mentioned in the mission statement, the overall design of the satellite aims to be
modular. In practice this means that the different parts (modules) of the satellite
are connected by a backplane, which distributes power from a power module and
routes data traffic between the modules through a common wired bus. Each module
fits into the backplane using a standard connector.
Most info from this chapter comes from [BG13], where a more complete overview
can be found.
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3. Background on camera application

3.1. Overview

The main payload of NUTS student satellite is an IR-camera, which will be used
to capture gravity waves in the atmosphere. This chapter will provide background
on the application of this camera and how this will affect the requirements of any
processing module on the payload.

3.2. Gravity waves

“Gravity wave” is a general term for waves that occur either in the meeting between
two medium (for instance two liquids with different densities) or at the surface
of a medium (ocean waves for example). When a medium (water for example) is
displaced (for instance by wind), gravity will work to restore equilibrium, which will
create oscillations (waves) as equilibrium is restored.

Atmoshperic gravity waves happen between different “layers” of air in the atmo-
sphere, where lower layers of air gets displaced into higher layers (passing over
mountains for instance) and oscillate up and down before equilibrium is restored
by gravity. Since these air layers hold different temperatures, these waves can be
captured by infrared cameras, allowing you to “see” the lower air travelling in and
out of the higher air layer.[Hab] More information on gravity waves can be found in
[Røn12] and [Bak12].

Fig. 3.1 illustrates atmospheric gravity waves making an impression on the ocean
surface. This is an example of gravity waves being observed indirectly.
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Chapter 3 Background on camera application

Figure 3.1.: Image of atmospheric gravity wave impression on the ocean surface
(from [JSMRRT])

3.3. How the camera is used

To obtain a datapoint, the camera will take a series of images that will then be
combined to a single image using motion compensation and image averaging. The
resulting image will be compressed to take up less transfer time to the ground station.
After it is compressed, the module will store the image until it ready to be received
used by the OBC[Bak12].

Based on the preliminary results from [Bak12], the downlink capacity of the satellite
amounts to a maximum of 45 per day on average (with a 256x256 resolution and 8
bit pixel depth). If all capacity is used to send images, this amounts to the imaging
system being used every 32 minutes on average in the long term.

3.3.1. Overview

To get a proper image to capture the gravity waves, some form of image enhancment
needs to be performed, as a single image will be subject to motion blur and noise. To
do this, several images will be taken and averaged to obtain a good SNR. Background
subtraction will also be performed. As the satellite is in motion while the pictures
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3.3 How the camera is used

are taken, it might also be necessary to compensate for the motion blur that occurs
over the integration time of each image.

As these images end up being rather large to transmit from the satellite through
the limited bandwith of the radio link, compression will also need to be performed.
Seen in Fig. 3.2 is the suggested image processing system from Bakkens thesis:

Figure 3.2.: Conceptual system, from Bakken’s thesis[Bak12]

To limt the scope of this thesis, only the image averaging part of this will be con-
sidered in an implementation.

3.3.2. Background subtraction

Dark current in a CMOS camera will produce a fixed noise pattern on any images
produced. The simplest way to remove this from the images is to obtain an image
with the shutter closed, and use the noise imprint from this image to subtract from
any images taken with the camera.

3.3.3. Image averaging

When producing an image of a faint phenomenon, a long integration time is required
to get an image with acceptable signal-to-noise ratio. The usual way of doing this
is to take a single image with a long shutter time. The problem with doing this in
the satellite is that this would result in motion blur from the motion of the satellite
itself. To avoid this, the camera will instead take several pictures in a series and
average them to obtain a single image with good SNR. This avoids the problem with
motion blur, but introduces a new one: figuring out how much and how a picture
has shifted since the last one was taken.
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Chapter 3 Background on camera application

3.3.4. Motion compensation

The motion of the satellite between images has to be compensated for, as mentioned
above. Depending on the type of motion, this can be a potentially complex problem
in terms of finding how images in the series should overlap. There is also the problem
of detecting the motion of the satellite and the image, but that won’t be explored in
this thesis. [Bak12] presents some suggested algorithms for finding a match between
images.
There are two kinds of motion between the camera and the object of interest (gravity
waves in the atmosphere); the sideways movement of the satellite along its orbit,
and the rotational movement of the satellite around its center of gravity.
Sideways movement is not avoidable, but may not prove a problem as long as it
does not move too fast. It is also easy to compensate for, as images only need to be
overlapped where they have a common subject.
Rotational movement is far trickier to compensate for, and will not be touched on
in this thesis besides acknowledging that it exists as a potential problem.
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4. Potential camera interfaces

4.1. Overview

When considering what camera to use in the satellite, ease and practicality of inte-
gration depends mostly on what interface the camera uses for control and readout
of images. Interfaces vary in what physical link layer they use, and in how much
physical space they require. The end result should in any case to obtain a frame
from the camera, which is the part of the design this chapter will deal with.

The three most common ways of interfacing with cameras (USB, Camera Link,
and direct integration) will be looked at and evaluated for their complexity and
space usage. It will also be examined generally how they could be connected to a
processing module

4.2. USB

4.2.1. Bus specification

USB (Universal Serial Bus) is a very common interface in peripheral devices designed
to hook up to a PC. It is a four-wire, serial, single-master multiple-slave bus. In a
typical USB application a “host” (typically a PC) will control one or more “devices”.
Depending on the version of USB used (low speed, full speed, high speed, and super
speed) the bus has a bandwidth of between 1.5Mbit/s (USB 1.0) to 480 Mbit/s (2.0)
to 5 Gbit/s (3.0). [usb11, usb00]

4.2.2. Link to processing module

Making use of the USB interface will most likely require an external IC to convert
to an inter-IC bus such as UART or SPI (which usually already exists, or can be
easily implemented on a FPGA), or to some sort of parallel bus. A big problem is
that since the camera is a USB “device”, the image acquisition has to act as a USB
host. This leads to an increase in complexity and difficulty of implementation.
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Chapter 4 Potential camera interfaces

4.2.3. Implementation suggestions

As shown in [AA11], a USB 2.0 interface can be implemented using a CY7C67300
chip acting as a host controller. While they have chosen to use an embedded micro-
controller to acquire the image data from the USB controller, it can also be connected
to a simpler FPGA design as the USB controller has an onboard microcontroller that
should be able to .

4.3. Camera Link

4.3.1. Camera Link specification

Camera Link is a standard for image transmission from cameras to frame grabbers
based on the channel link physical link layer. It transmits parallel pixel data by
using LVDS, a high speed serial link. It has three configurations; base (24 data bits
wide), medium (48 data bits), and full (72 bits). The base configuration contains
4 LVDS channels for image data, 1 for clock, 4 for camera configuration, and 2 for
transmitting and receiving serial communication. The other configurations add 4
channels for data and 1 for clock each. The receiving design will need to deserialize
and sort the data.
The possible clock speeds for this kind of communication is between 20 MHz and 85
MHz, achieving data rates of between 2.04 Gbit/s (base configuration) to 5.44GBit/s
(full) at 85 MHz. On each clock cycle it transmits one pixel regardless of the bit size
of each pixel. In addition it transmit three bits; frame valid, line valid, and data
valid. Frame and line valid
To configure and communicate with the camera the standard provides four control
inputs and two serial communication lines to the camera. The serial communication
uses the RS232 standard with 1 start bit, 1 stop bit, no parity and no handshaking
settings.
Fig. 4.1 illustrates the physical layer of the Camera Link standard.
[cam00, cama, camb]
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4.3 Camera Link

Figure 4.1.: Illustration of camera link layer
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4.3.2. Link to processing module

The Camera Link specification is based upon using the National Semiconductor
Channel Link SerDes series of chips, so using a receiver chip would give you a
parallel TTL output to deal with. If using a FPGA with LVDS capability however ,
this deserializer could more easily be implemented on the FPGA itself (as has been
done in [WGLC13]).

4.4. Direct integration

A common option among small cameras is direct integration with a pin-out version.
This means communicating directly to the camera on an IC to IC level with a
standard TTL parallel output. As there is no standard for readout among cameras
however, coming up with a standard solution for this kind of interface is not really
possible. It should however be pointed out that this is the preferred interface if using
a microcontroller, as it needs no converting or go-betweens like USB and Camera
Link.
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5. Payload to satellite interface

5.1. Overview

All modules in the NUTS test satellite connect to each through the backplane.
This chapter will review how to connnect to the backplane and what is required to
communicate with the rest of the satellite.

5.2. The backplane

The backplane provides the power and common communication interface between
the modules in the satellite. For power there is a 3.3V and a 5V line. The backplane
uses a I2C bus to communicate between modules. The “active” modules use the
CubeSat Space protocol to communicate[RB13, Bru11]. Fig. 5.1 shows how the
module interface is logically connected while Tab. 5.1 lists the functionality of the
backplane connections.

Name Width Function
3V3_MODULEn 1 5 V line from the EPS
5V_MODULEn 1 3.3 V line from the EPS

I2Cn 2 I2C bus lines
IDn 3 Module ID

DBGn 4 JTAG programming and debug line
RESETn 1 Active low module reset

Table 5.1.: Backplane connections

5.3. Requirements

The module will need to be able to take commands from the master modules in the
satellite, and to be able to transmit the images from storage within the module to
the a receiving module in another part of the satellite. To do this it will have able
to implement a I2C bus interface. Depending on whether it needs to act as a master
on the bus, it might need to be able to implement CSP. It will in addition need
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Figure 5.1.: Backplane logic unit (from[Bru11])

to provide a ID to the logic module. Whether it provides a JTAG interface to the
backplane depends on what processing module is chosen.

5.3.1. I2C

I2C stands for “Inter IC”, and is commonly used for communication between inte-
grated circuits situated on the same printed circuit board. It is a half duplex, serial,
two-wire, multi-master bus which can achieve data rates up to 400 kB/s. The bus
implemented on the backplane has been proven to be capable to run at this rate,
although this will likely not be achieveable in the fully integrated satellite. Two
big advantages of I2C bus is that it has automatic arbitration between masters,
and low power consumption. The big drawback is the low bandwidth of the bus.
[i2c00, Vol11]

The I2C bus is common enough that most microcontroller has I2C ready to use. It
can also be relatively simply be implemented on an FPGA. As the payload module
should act independently of other modules without requiring to talk to other parts
of the satellite, it should be sufficient to implement this module as a slave. This
also avoids the overhead of using CSP, as the master module simply addresses the
payload as a slave on the bus.

24



5.4 Module command interface

5.4. Module command interface

As the module will act mostly independently, it does not need to have a very ex-
tensive command set. The data it needs to operate is when it needs to start a
image series, if it should go into and out of hibernation, and a command to abort
imaging in progress. In addition it needs to be able to report its status, so other
modules can determine whether it is ready to transmit new image data. This can
be accomplished by having a status register that can be read by a master.
Tab. 5.2describes a preliminary set of commands the module should implement.

Command Description
BEGIN Begin image acquisition

HIBERNATE Go into low power mode
ABORT Abort image acquisiton in progress

Table 5.2.: Commands

5.5. Image transmission bus

While the backplane provides a ready bus to use when transmitting images to the
data handling part of the satellite, the limited bitrate of this bus (max 400 kB/s at
best) might be insufficient to use as a image data bus. Not only will this act as a
bottleneck in how often images can be taken, it will also take a hold of the primary
communication bus of the satellite for an inordinate amount of time, preventing
other modules from talking to each other.
The solution then could be using a separate bus that connects directly to the OBC,
using for instance SPI (which has much higher potential data rates), or the ex-
perimental internal wireless bus. For this reason it can be interesting to have the
payload module be part of the wireless bus, in case images can be offloaded of the
payload using this bus.

25





6. Data rates and storage

6.1. Overview

As an image series is captured, it would be advantageous to perform the background
subtraction and image averaging as the pictures are acquired from the camera, as this
saves on storage resources both in the processing module and external storage. This
chapter gives an approximation of what throughput and storage space is required,
based on reasonable assumptions of image format and mode of usage.

6.2. Image acquisition and storage

6.2.1. Assumptions

To limit the range that needs to be considered, the max resolution, framerate and
pixel resolution (AD conversion resolution) from the XSW-640 specifications has
been used. This camera was considered for use in the satellite, but was discarded
for cost reasons.

Max resolution 640x512
AD resolution 14 bits
Max framerate 50 Hz
Integration time 1 s

Table 6.1.: XSW-640 specification[xsw]

When talking about “full resolution” and “full framerate” later, this refers to these
specifications. As these are well above the requirements listed in previous works,
using these figures are considered the ceiling of what is relevant to consider.[Bak12,
Røn12] 14 bits resolution per pixel is mostly standard in these kinds of cameras, so
this is what will be used to estimate picture size.
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6.2.2. Image and series size data

160x128 280
320x256 1120
640x512 4480

Table 6.2.: Size per image vs image size [Kbits]

Tab. 6.2 gives the size per image and consequently the minimum size of the memory
needed contain one image series when using simultaneous averaging.

10 Hz 20 Hz 30 Hz 40 Hz 50 Hz
160x128 2800 5600 11200 22400 44800
320x256 11200 22400 44800 89600 179200
640x512 44800 89600 179200 358400 716800

Table 6.3.: Total size of image series as a function of series size vs resolution [Kbits]

Tab. 6.3 lists the total size an image series, and signifies the amount of storage needed
to store an image series without simultaneous averaging

6.2.3. Bus frequency and data rate

10 Hz 25 Hz 50 Hz
160x128 204 800 512 000 1 024 000
320x256 819 200 2 048 000 4 096 000
640x512 3 276 800 8 192 000 16 384 000

Table 6.4.: Pixels per second, Framerate vs. Image size

Tab. 6.4 are the number of pixels needed to transfer per second, effectively trans-
lating minimum number of camera bus transactions assuming one pixel is sent per
transaction.

Tab. 6.5 represents how many store operations would be needed per second to store
incoming data.

Tab. 6.6 represents the amount of data the processing module would need to work
through to process an image series.
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6.2 Image acquisition and storage

Word size [bits] Operations pr second Time [ns]
8 32,768,000 30.5
16 16,384,000 70

Table 6.5.: Time window per word stored vs. word size (full resolution, full fram-
erate)

10 Hz 25 Hz 50 Hz
44800 112000 224000

Table 6.6.: XSW full resolution throughput [Kbits]

Up to ... samples Accumulator bit size
4 16
8 17
16 18
32 19
64 20

Table 6.7.: Accumulator bit size vs number of samples

To accommodate overflow when accumulating the pixel values, the accumulators
need to be of bigger length than the input values. Tab. 6.7 gives an overview of how
big an accumulator needs to be vs how many images need to be added together.
Additional bit requirements are calculated:

log2(NumbeOfSamples) = AdditionalBitsNeeded (rounded up)

6.2.4. Minimum transfer I2C transfer time

Resolution Transfer time [s]
160x128 0.82
320x256 3.2768
640x512 13.1

Table 6.8.: I2C transfer time for raw images

Tab. 6.8 gives an overview of how long it would take to transfer an image from the
payload to another part of the satellite. This assumes each pixel was sent as two
transmissions and the transmission went a constant 400 kB/s from start until end.
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6.2.5. Example series of images

Below are some samples of different configuration of image resolution and framerate,
and what demands are placed on the system in these cases. The minimum required
memory is images are averaged as they are acquired. The minimum system frequency
means the minimum frequency needed to store and load a pixel per bus cycle,
assuming each pixel can be stored and loaded in one cycle. Accumulator bit size
means how big the pixel value accumulator needs to be to avoid overflow.

6.2.5.1. “Worst Case”: 640x512, 50 Hz

Minimum system frequency: 32,768,000 Hz
Minimum required memory: 4480 Kbits
Accumulator bit size: 20 bits

6.2.5.2. “Average case”: 320x256, 25 Hz

Minimum system frequency: 32,768,000 Hz
Minimum required memory: 1120 Kbits
Accumulator bit size: 19 bits

6.2.5.3. “Optimistic case”: 160x128, 10 Hz

Minimum system frequency: 32,768,000
Minimum required memory: 280 Kbits
Accumulator bit size: 19 bits
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7. The space environment

7.1. Overview

The space environments offers extra challenges in designing electronic devices com-
pared to earth based devices. The biggest difference lies in the extra destructive
radiation that results from not being protected by the earths atmosphere, which is
made worse by the fact that the device will be inaccessible once operational in space.
This means that not only is it important that the design is thoroughly verified to
be correct, it also needs to have the ability to self-correct any error that can be
induced by space radiation (or other kinds of interference). This chapter will review
the different effects resulting from space radiation, and go over some techniques to
mitigate and correct the errors can result in digital circuits from these.

7.2. SEE

SEE, or Single Event Effects, is the umbrella under which the effects of space radia-
tion on the function of digital circuits lie. They are called single event effects as they
are assumed to be random and non-reoccurring (in the same sense that lightning
those not strike the same place twice). When operating in the space environments
SEEs are all but unavoidable, and will (according to Murphy’s law) most likely strike
where they are the most destructive. The three most important kinds of SEEs are
SET (Single Event Transient), SEU (Single Event Upset), and SEL (Single Event
Latch-up). [nas96][Pet11]

7.2.1. Single Event Upset

Single event upsets occur when a high energy particle causes a memory (for example
a flip-flop) to change state, either through direct radiation of the memory circuit or
via a SET.

7.2.2. Single Event Transient

Single event transients happen when a high energy particle causes influences the
output of a logical gate. If this change is stored in memory, it becomes a SEU.
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7.2.3. Single Event Latch-up

A single event catchup happen if a CMOS transistor is hit in such a way that the
current generated will activate a “parasitic” transistor, in essence causing a short in
the transistor structure. While this can be corrected by cycling the power, the short
circuit current may already have caused irreversible damage to the circuit. [lat]

7.3. Mitigation

There are several techniques that can be employed both on the hardware and the
software side of the design that will lessen the potential impact a SEE can have.
What techniques will be used where will should be evaluated on the criticality of
the part that it will be employed on, and should be balanced against the likeliness
of failure.

7.3.1. Choosing rad-hard components

The first line of defense against radiation is choosing appropriate techology and
devices. Some types of electronics are more sensitive to radiation, where for instance
a smaller technology node (90 nm vs 45 nm) has a smaller treshold for the amount
of energy needed to cause a SEU. Some manufacturers offer so-called “rad-hard”
devices which mean that they have been designed with less sensitivity to radiation
in mind. An example of this are the RTAX FPGAs from Microsemi, which are
specifically created to survive in a space environment[rta].

7.3.2. Triple modular redundancy

Triple modular redundancy is the practice of having three redundant modules per-
forming the same task, and having the result be decided by majority vote. This
can be employed on every level of the system, from having three identical systems
performing the same function, down to having specific parts of a FPGA design or
memory. It can also be used as a software technique bu performing the same opera-
tion(s) three times and comparing the results. The drawback of using this technique
is a threefold increase in required space and effect when dealing with hardware, while
a software application will potentially take three times as long to complete.

A variation on this technique is having three modules that are functionally identical
but implemented differently. Using this technique you not only avoid errors from
SEEs, but also from bugs and designer errors.
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7.3 Mitigation

7.3.3. Memory scrubbing

By adding redundant information in the form of error correcting codes, SEUs in
memory may be detected and corrected. This is especially valuable in volatile RAM,
which is much more vulnerable than non-volatile memory such as FLASH[nas96].

7.3.4. Sanity checking

In software it is common to have some sort of checking whether results from a
calculation is “reasonable”, i.e. if the result is within bounds of what the range of
inputs could produce. This can also be applied when designing hardware to ensure
that a SEU or SET does not propagate unchecked.
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8. Processing module

8.1. Overview

As an independent module, the design has to:

1. Communicate with and acquire images from the camera

2. Perform image enhancement and compression

3. Store until ready to be received by the OBC

4. Take commands from and transmit images to the OBC

In short, it will have to function as a frame grabber and an image processing unit.
The previous chapters have reviewed the different options for what the requirements
of the system will be. This chapter will attempt to come up with suggestions for how
to implement the module, and look at the drawbacks and benefits of the different
solutions.

8.2. Review of requirements

Using the theoretical background established so far, it can be determined that the
central processing module needs to be able to:

• Implement I2C slave interface

• Needs to be able to communicate with and configure camera through serial
communication

• Perform image acquisition using a high speed data bus

• Be able to handle image processing in a reasonable amount of time

Ideally, it should also be able to:

• Be radiation tolerant

• Do image enhancement as images arrive

• Be able to enter low power mode
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8.3. Data logistics

To conserve memory resources, it is preferable to keep an even data flow through
the system. Looking at the system from a data flow perspective:

Figure 8.1.: Data flow in module

The same as described in[Bak12].

Expanding and adding in the known components:

Figure 8.2.: Data flow 2

The goal then becomes to minimize bottlenecks that would require extra storage
space. Not only does this save on resources, it also gives room for greater potential
output by reducing the amount of time that needs to be between imaging series. As
identified earlier, the I2C bus serves as a big bottleneck when it comes to freeing up
space for the module, so a efficient pipeline will serve to free up more space to hold
compressed images until they are ready to transmit. With this in mind, we look at
the options available for processing.
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8.4. Processing

Working with image processing, especially in real time, is an inherently computa-
tionally demanding task. Working with large arrays of data is often handled with
specially designed circuits, or handled by special microcontrollers called Digital Sig-
nal Processors (DSP). A good alternative to the specially designed circuit is using
FPGAs, especially when considering cost and flexibility.
The greatest difference between DSPs and FPGAs is that a DSP works serially,
while a FPGA has the potential to perform truly parallel computation. A brief
overview of drawbacks and benefits of using each are listed below.

8.4.1. FPGA

Using a FPGA gives a great advantage in terms of throughput, as several parts of
the image processing can be performed simultaneously. It gives great flexibility in
creating a design that suits the purpose of the system. This flexibility may even
allow the whole module to be implemented on a single chip, which will give fewer
points of failure. The module overall does not require a complex control structure,
so a FPGA design can be implemented efficiently and in a modular fashion.
SRAM based FPGAs are vulnerable to SEEs, potentially causing the design to get
corrupted. This will require some form of mitigation, which will result in a more
complex design. It will also be harder to implement some sort of module-wide power
saving solution, as the FPGA cannot power itself down.

8.4.2. DSP

DSPs have the advantage of having an architecture specifically geared towards signal
processing. Most DSPs allows working on large sets of data using special instruc-
tions, and typically have some form of direct memory access to allow peripheral
devices to directly store to memory. Serial communication such as I2C and UART
come standard in most of these controllers, there is no need to implement a special
solution for these. Practically all controllers have some sort of power saving mode,
which would allow easy implementation of a hibernation mode for the module. This
would also most likely allow lower power consumption.
DSPs are at an disadvantage performance-wise compared to a FPGA. As they are
at heart microcontrollers, they can only work serially despite having powerful in-
structions. As there does not need to be complex control systems in the module,
control structures in the program code will mostly be overhead. It would potentially
have to run at a high clock speed to be able to load and store data for the image
averaging process while receiving image data.
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Implementation
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9. Example implementation

9.1. Overview

9.2. Assumptions

As the the specifications for the system are not fully ready, a number of assumptions
have to be made. These will be based on information from the image processing
theses and educated guessing based on my experience and research.

9.2.1. Framerate and resolution

Resolution: 320 x 256, close to and a bit more than what is recommended in
[Bak12],[Røn12]

Number of samples: To avoid having to do actual division, the number of samples
has been chosen as 16. In digital systems, right shifting a binary number four spaces
is equivalent of dividing by 16.

9.2.2. Camera interface

The assumed interface is Camera link, as this is a common interface from my ex-
perience with looking at different IR cameras. It also allows a more efficient and
easy implementation than USB or direct integration, and would be the preferable
interface given the choice.

The transfer clock is assumed to be 20 MHz, as this is the lowest transfer clock sup-
ported by Channel Link chipsets while also surpassing the requirements of transfer
bandwidth posed by the framerate and resolution assumptions.

Number of pixels * framerate = 320 ∗ 256 ∗ 14 ∗ 16 = 1310720 pixels per second.

9.2.3. Satellite interface

It is assumed that the payload can be accessed as a I2C slave.
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Spec Value
Framerate 16 Hz

Image resolution 320x256
Camera interface Camera link
Satellite interface I2C slave

Table 9.1.: Specification assumptions

9.3. Processing module

The first decision to be made is on what the processing module will be, as this
will determine how the rest of the system will be implemented. The major part is
whether to use a FPGA or a DSP. As outlined in sec. 8.4.1 and sec. 8.4.2, FPGA
has the advantage of greater throughput and parallel computation. Considering the
amount of data that needs to be processed simultaneously while also storing and
loading to external storage, using a DSP becomes risky. The processing module
needs to do motion compensation, image acquisition and storage at the same time,
which leaves a controller with little leeway unless running at a high clock frequency.
It would also mean that the camera link interface would need to be deserialized
using external chips, which introduces more points of failure into the system as well
as increasing the size of the design. A FPGA on the other hand would not have any
of these problems, and would have resources to spare for further processing without
risking it interfering with with image acquisition and enhancement.

For these reasons, a FPGA will be used as the main processing module in the project.

9.4. Camera interface

9.4.1. Physical link

To physically connect to the FPGA, the output port from the camera needs to be
linked to the circuit board via cable, which will connect into a port mounted on the
circuit board. From the port mount, 16 LVDS lines need to be connected to LVDS
compatible ports on the FPGA.

Care should be taken to avoid different trace lengths in the data and clock lines to
avoid skew. These should also be kept physically separate from other parts of the
board due to the high frequency signals.

For general layout design rules with regard to channel/camera link, refer to [cha].
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9.4 Camera interface

9.4.2. FPGA camera link interface and camera configuration
module

The module that is receiving from the camera will need to act as a deserializer,
recovering clock from the clock line, using a PLL to multiply the frequency by 7,
and using it to capture bits from each of the four data lines into shift registers. This
in itself can be a challenge, as there is no common standard for clock alignment.

Figure 9.1.: Camera link deserializer

The four camera control signal lines have their usage defined by the camera producer,
and will need to have their behavior defined accordingly as there does not seem to
be any common practice.

The serial communication line can be implemented as a RS232 compatible serial
communication device. Finding a simple UART module that can be interfaced to
a camera configuration state machine should be sufficient to build a mostly self
sufficient camera configuration design module.

The settings for serial communication are one start bit, one stop bit, no parity and
no handshaking.

[cama]
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9.5. Image enhancement and storage

9.5.1. Image averaging

Each transmission from the camera will give 18 bits of data, of which three are
control signals and 14 are pixel data. As the receiving module is done storing these
temporarily, the next part of the chain should start working immediately in averaging
this pixel data with the values of the other images in the series, and then store the
new average onto temporary storage. The data valid bit should be sampled to be
certain that there is actual image data that is being received, as the transmissions
will be padded out with dummy data between each image.
The averaging is performed by accumulating the pixel values per pixel. As pixel
data is received from the camera, it is added into an accumulator for each pixel.
To accommodate the potential extra bit length, log2(16) = 4 extra bits will be
needed. Referring toTab. 6.7, the accumulators and the adder need to be 18 bits.
The result is then obtained by shifting the result of each 4 places to the right to
divide by 16 when a picture series is finished. This can be accomplished by just
loading the leftmost 14 bits of the 18 bits from memory before storing them again,
or just transmitting the leftmost 14 bits.

9.5.2. Motion compensation

Assuming the displacement from picture to picture is known in terms of pixels, the
images can be aligned by adding or subtracting from the address of the memory.
This means that for each image, the address for the memory needs to be incremented
by one to reflect the change in overlap (assuming the pixel data is loaded from left
to right, top to bottom).
While the mechanics of the compensation of more complex motion is the same
(adding or subtracting from the accumulator address), finding the number to shift
by is more difficult, and may need to be done on a pixel by pixel basis (for instance
when considering rotational motion). If the difference can be found as a vector
however, it is simply a matter of deconstructing the vector and translating it to the
equivalent pixel position. Pixels that do not “overlap” can be discarded.
This implementation assumes no compensation is needed.

9.5.3. Storage

To preserve memory in the FPGA while processing, the images will be stored in
external memory. This will be accomplished using SRAM, as it provides good speed
and low power consumption, and as the memory requirements are not very great.
This also reduces the complexity of the memory controller, as the memory does not
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9.6 Satellite interface

need to be clocked. To accommodate the 18 bit accumulators, two SRAM chips
will be used in parallel, one with a 16-bit word size and one with a 8-bit word size,
combining together to get a 24-bit word size memory. To contain a single image this
memory needs to have at room for at least 81920 words, rounding up to 128K word
memory size.

The memory controller will need to keep track of memory depth and storing and
retrieving pixel data to be processed. It will also need to provide data to be trans-
mitted to the I2C control module as needed.

9.5.3.1. Image channel out of module

To transmit a raw image over the I2C bus will in the best case take 3,2768 seconds
(Tab. 6.8). In this implementation it is assumed that this is not a problem, but
should it be necessary to perform “burst” imaging, more memory would need to be
added to hold more than one image series.

9.6. Satellite interface

The command interface can be implemented by building a serial interface that re-
ceives write/read command and register address, and receives/transmits the appro-
priate data. To keep things simple there will be three registers available to the
master in the transaction: one writable command register, one readable status reg-
ister, and one data register to read out image data.

The command register will be hooked directly up to the main control module to
simplify the logic.

The status register will contain information about the state of the processing module,
as well as the state of the image data store.

The data register will contain new image data as long as it is available, and will
automatically load new data when it is read.

sec. 10.3 contains the full command and status list.

9.7. Top level control

The top level control module is the module responsible for keeping track of the
status of the payload module, acting on commands received by the I2C module, and
providing control signals to the other parts of the design.
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9.8. SEU mitigation

The FPGA should either have some sort of ECC checking on the configuration
memory to prevent a SEU upset from corrupting the design, or have a design memory
that is hard against SEU (such as FLASH memory).

In the FPGA design the parts that are critical to continued operation, such as control
and status, will be triplicated using TMR on a design module level. In practice this
means the I2C interface and main control.

The data acquisition is not considered critical enough in this instance to warrant
full TMR on a device or design level, as a SEU in the datapath will not interrupt
continued function of the payload. If a part of the image processing becomes faulty
as a result of a SEU, it can be reset by the main control.

In the event of a failure of the payload, the biggest possible consequence for the rest
of the FPGA is that it starts putting out random signals on the I2C bus. This can
be corrected by resetting the payload and reconfiguring the FPGA.

9.9. Power saving

As the payload control is contained in a single device, putting the entire module in a
complete shutdown state is not possible without adding some sort controller module
external to the FPGA. The FPGA main control in the design will instead clock gate
parts when a HIBERNATE command is issued. Depending on the camera it can
also be relevant to power gate the power supply to the camera.

9.10. Clock domains

To be able to store the result of one transmission and load a new one for the accu-
mulator before a new transmission arrives, the main clock for the system is twice
the transmission clock, meaning the system clock is 40 MHz. This allows for a
simplified store/load mechanism, as a store/load will be performed each clock cycle
until accumulation is done.

The output of the deserializer will be double buffered to prevent metastability when
crossing clock domains.

If the system needs to run at a higher clock frequency, the memory controller will
need to start sampling the transmission clock to determine whether new data has
arrived.
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9.11. Choosing FPGA

9.11.1. Requirements

The two critical requirements to consider with an FPGA is how many resources the
design will use and what kind of interfaces will be used.

9.11.1.1. Resources

As the design consists of three parts, each part can be generally looked at separately.
While this does not necessarily give a very accurate assessment, it will provide some
ground to estimate how much will be required. These figures will be found by looking
at previous results from others.

The I2C slave implemented in [sc] uses around 70 LUTs when synthesized for a
Lattice semiconductor device. To give headroom, this will be rounded up to 100
LUTs.

The camera link interface in [Mic] lists the typical resource usage as 280 LEs for
a Camera Link base receiver when synthesized for a Altera device. This will be
approximated to 300 LUTs, as LEs are the most basic logic block in Altera devices
and contain one four input LUT.

The control structures, such as top level control state machine do not take up sig-
nificant resources, and 50 or so LUTs should be more than sufficient.

The image averaging and memory controller process will need to keep track of and
control the memory of the processing module. 100 LUTs has been reserved for this
part.

To accommodate further addition to the design (such as a compression scheme), the
resource requirement is doubled to account for the possibility of resource consuming
encoding schemes.

All in all:

Part LUTs
I2C 100

Camlink receiver 300
Memory and averaging 100

Control 50
Total (x2) 1100

Table 9.2.: Resource estimation
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9.11.1.2. I/O interfaces and pins

The parts of the design that require I/O are the I2C module, the Camera Link
interface, and the memory controller.
I2C requires two in/outputs, each with a tri-state.
The Camera Link interface requires 5 LVDS inputs for data and clock, 4 outputs
for camera control, and one input and output for serial communication. This totals
up to 11 lines, or 22 pins as it is a differential interface.
The memory controller will need to communicate with a 24-bit memory, using a
32-bit address. Together with various control signals, this amounts to about 60 I/O
pins.

9.11.2. Priorities

The preferred qualities that will be looked at when making a selection, in no par-
ticular order, are

• Low power
• Relatively low cost
• Radiation hardness
• Built in SEE mitigation
• Easy to use/familiar tools
• Ready to use IP cores

9.11.3. FPGA comparison

Three FPGAs for this implementation has been considered, each from a different
vendor; Xilinx, Altera and Microsemi. Each of these satisfy the approximate re-
quirements of the design, and are approximately equal in terms of core statistics
and price. A thing to note about the core statistics is that no vendor use a common
unit for resource, so the closest comparable stat has been selected for comparison.
The definition of the units are defined below each table.

9.11.3.1. Altera: Cyclone IV

1 Logic element = 1 4-input LUT + 1 flip-flop
Benefits:

• Easy and familiar tool set
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Logic Elements 6,272
Embedded Memory (Kbits) 270

Approximate price 20 USD[alt]
Table 9.3.: Core statistics for Cyclone IV EP4CE6[cyc]

• Hard configuration SEE mitigation
Drawbacks:

• Not the strongest in any category

9.11.3.2. Xilinx: Spartan 6

Logic cells 9,152
Flip-flops 11,440

Block RAM (Kbits) 576
Approximate price 20 USD[avn]

Table 9.4.: Core statistics for Spartan 6 XC6SL9

1,6 logic cells = 1 6-input LUT (supposedly to account for LUTs being 6-input
instead of 4)
Benefits:

• Best value in terms of resources vs price
• Soft SEU mitigation
• One of the major vendors, easy to find support

Drawbacks:

• No hard SEU mitigation.

9.11.3.3. Microsemi: ProAsic3

Versatiles 6,144
RAM (KBits) 36

Approximate price 20 USD[avn]
Table 9.5.: Core statistics for ProAsic3 A3P250[pro13]

1 versatile = 1 3-input LUT OR 1 flip-flop
Benefits:
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• Built in FLASH configuration
The major advantage of the Proasic3 is using built in FLASH memory as configura-
tion memory. This makes the configuration immune to SEUs, and does not require
external configuration storage and programming. It also allows for a much faster
start up.
Drawbacks:

• Small vendor, hard to find support
• Worst value in terms of resources vs price

9.11.4. FPGA selection

The FPGA selected for this implementation is the Altera Cyclone IV EP4CE6, cho-
sen ultimately for the familiarity with the tools and the device family, allowing faster
integration and implementation. It also has the advantage of the automatic SEU
mitigation in configuration memory. While the Proasic3 has better SEU mitigation
overall, the payload module is not critical for the for the overall working of the
satellite and therefore this is not considered the highest priority. Better to spend
some extra resources triplicating control structures in the Cyclone IV, especially
since the Proasic3 has roughly half the resources of the other FPGAs. While the
payload might fail eventually, it can be restarted or reconfigured without general
loss of functionality in the satellite.

9.12. Other components

9.12.1. SRAM

As the design will run on a 40 MHz clock, the memory will need to have access
times less than 1

40MHz
= 25ns. Otherwise there are no other special requirements,

but having low power consumption is a plus. This implementation is based on using
the CY7C1011 (16-bit 128K) and CYC1019 (8-bit 128K)
In reality it would probably be just as well to use what is on hand, as long as the
access times are sufficiently short and the physical interface in the FPGA is adjusted.

9.12.2. Configuration hardware

To load the configuration data into the FPGA some sort of external programmer
is needed. To make things simple this implementation uses the EPCS4, a serial
configuration device made by Altera specifically for programming Altera FPGAs
using Active Serial configuration. It contains a 4-MBit FLASH memory, with the
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9.13 Space requirements

design configuration file taking up approximately 2,944,088 bits at maximum un-
compressed.

9.13. Space requirements

Device Part Package Size [mm]
FPGA EP4CE6 144-pin EQFP 22 x 22

Configuration controller EPCS4 8-pin SOIC 6 x 4.9
8 bit SRAM CY7C1019DV33 32-pin TSOP 20.95 x 11.76
16 bit SRAM CYC71011DV33 44-pin TSOP 18.5 x 12

Table 9.6.: Device sizes

Total required area with the packages chosen is approximately 50 x 40 mm, well
below the constraint of 66 x 123 mm. In addition, all of the devices come in smaller
packages, so this area can be reduced if necessary.

9.14. Cost estimate

Device Part Cost [USD]
FPGA EP4CE6 17.93

Configuration controller EPCS4 13
8 bit SRAM CY7C1019DV33 1.42
16 bit SRAM CYC71011DV33 2.54

Total ≈ 36
Table 9.7.: Device costs

The cost estimate in Tab. 9.7 is based on prices listed on [alt, avn], and is simply
meant as a rough guide. The main point is that device cost for the module is quite
low.
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10. FPGA design

A FPGA design has been planned and partially implemented. This section will give
an overview of this design.

10.1. Data flow and control overview

Figure 10.1.: Diagram of data flow and control
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This graph gives a rough overlook of how the different design parts should interact.
Typical use case from power on to data transmitted:

1. Design loaded, all modules reset
2. Camera configured by camera configuration module, signals main control
3. I2C receives “Begin imaging command” from I2C master, signals camera config

and memory controller to start
4. Deserializer starts receiving data, puts out to accumulator every transfer clock
5. Memory module stores and loads accumulated data to combine image series
6. Once the image series is finished, memory module signals main control module
7. I2C receives read command from I2C master and starts reading out data

10.2. Design Modules

10.2.1. I2C controller and slave interface

Name Input/output Size Function
clk input 1 Clock input

nreset input 1 Active low reset
status input 3 Status output from main control
data_in input 16 Data from memory module

mem_state input 5 Memory state from memory controller
req output 1 Request new data from memory module

command output 3 Output from command register to main control
sda inout 1 I2C data line
scl input 1 I2C clock line

Table 10.1.: Interface for I2C controller

The I2C control module consists of an I2C physical interface and a control module
responsible for loading in data from the memory module.
The I2C physical interface is a modified version of an I2C slave design by [Fie].
The parts that are modified are the serial interface (to signal that the output buffer
has been loaded) and the register interface (to implement custom read and write
registers).
It contains three communication registers: command, status and data. The com-
mand register is takes any command from the a master module and sends control
signals directly to the main controller.
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10.2.2. Main control

Name Input/output Size Function
clk input 1 Clock input

nreset input 1 Active low reset
avg_done input 1 “Averaging finished” signal from memory module
data_in input 1 Data from memory module
command input 3 Command input from I2C module

config_done input 1 “Configuration of camera done” signal from
camera control module

mem_status input 5 Memory status from memory module
cam_config output 1 “Configure camera” signal to camera control

module
start_im output 1 “Start imaging and averaging” signal to camera

and memory control
enable output 1 Enable signal to allow clock gating unneeded

parts of the design
sreset output 1 Subsystem reset to allow resetting other modules
status output 3 I2C data line (connected to pin)

Table 10.2.: Interface for main controller

The main controller is the module that is responsible for keeping the state of the
design and providing control signals to the other design modules.
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10.2.2.1. State machine diagram and description

Figure 10.2.: Main control state machine

State name Function
RESET Reset state. Sets default values for control outputs
IDLE Waiting for command
AVG Image averaging in process

READY Image averaging done, ready to transmit
HIB Hibernation, unnecessary modules clock gated

Table 10.3.: Main control state description

10.2.3. Camera configuration and control

Since the configuration interface beyond the physical layer is specific to each camera,
no functionality has been implemented for this part of the design beyond a simple
control signal interface.
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Name Input/output Size Function I/O standard
clk input 1 Clock input

sreset input 1 Active low reset
start_im input 1 “Start imaging” signal from

main control
config_done output 1 “Configuration done” signal to

main control
UART_Rx input 1 Input serial communication pin

from camera
LVDS

UART_Tx output 1 Output serial communication pin
to camera

LVDS

Camera control 4 output 1 Camera control signal 4 LVDS
Camera control 3 output 1 Camera control signal 3 LVDS
Camera control 2 output 1 Camera control signal 2 LVDS
Camera control 1 output 1 Camera control signal 1 LVDS

Table 10.4.: Interface for Camera configuration controller

10.2.4. Deserializer

Name Input/output Size Function I/O standard
Rx3 input 1 Cameralink data line 3 LVDS
Rx2 input 1 Cameralink data line 2 LVDS
Rx1 input 1 Cameralink data line 1 LVDS
Rx0 input 1 Cameralink data line 0 LVDS

RxClk input 1 Cameralink transmit clock line LVDS
data output 28 Parallel data output from deserializer
tr_clk output 1 Transmit clock output (20 MHz)

Table 10.5.: Interface for deserializer

The deserializer has been realized with the ALTLVDS_RX megafunction, using 4
channels, 7:1 deserialization factor and 20 MHz input clock settings. The output
data is then double buffered at 40 MHz to prevent metastable outputs when crossing
to the 40 MHz clock domain.

10.2.5. Memory and image accumulation controller

The memory controller both acts as controller module for the accumulation process,
and as the memory manager for the system. In this combined process the controller
keeps track of how much data has been acquired from the camera using an address
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Name Input/output Size Function
clk input 1 Clock input

sreset input 1 Active low reset
start_img input 3 “Start imaging” signal from main control
data_in input 18 Data from accumulator

req input 1 Request for data from I2C module
mem_status output 3 Memory status output

ram_data_load input 24 Input line from RAM physical interface
ram_data_store output 24 Output line to RAM physical interface

address output 32 Address line to RAM physical interface
read output 1 Write signal to RAM physical interface
write output 1 Read signal to RAM physical interface

Table 10.6.: Interface for memory controller

and iteration counter, and signaling the main controller when the process is finished.
It then waits for the I2C controller to request data to transmit. The dividing by
16 part of the averaging process is accomplished by only loading the fourteen upper
bits of the accumulated pixel values when sending them to the I2C controller.

10.2.6. Image data accumulator and bit untangler

Name Input/output Size Function
clk input 1 Clock input

previous_value input 18 Accumulated value from RAM
new_value input 14 New value to be added to accumulator

result output 18 Result of accumulation
Table 10.7.: Interface for accumulator

This is simply an 18 bit adder, receiving new pixel data from the camera and adding
it to the accumulated value from RAM. The result is then stored by the memory
controller

Since the bit values come out from the deserializer out of order[cama], this part
simply rewires them back in order.

10.2.7. Module connection diagram

As the RTL diagrams are quite large, they have been relegated to the appendix.
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10.3 Command interface and data readout

Name Input/output Size Function
data_in input 28 Data from deserializer
data_out output 14 Data arranged from MSB to LSB
d_val output 1 Data valid
f_val output 1 Frame valid
l_val output 1 Line Valid

Table 10.8.: Interface for bit untangler

10.3. Command interface and data readout

The module interface is implemented as an I2C slave. This means that whenever
image data needs to be transmitted to another part of the satellite, the receiving
module needs to take control in the transaction.

10.3.1. Writing

To write to the command register, send a write command to the device address, and
transmit a register address. While there is no address for the command register, the
I2C protocol still requires an address to be transmitted. As such it doesn’t matter
what register address is given when writing. A list of commands is given below in
Tab. 10.9.

Command Value Meaning
NOP 0x0 No operation. Default value for command register

BEGIN 0x1 Begin averaging operation
HIBERNATE 0x2 Design goes into or out of power saving mode. Only

possible in IDLE/HIB
ABORT 0x3 Aborts current operation

Table 10.9.: Command list

10.3.2. Reading

When reading, there are two registers that can be addressed: the status register and
the data register. The status register contains the state of the main controller and
the state of the memory.

The three MSB of the status register contain the main controller state, while the
lower five contain the state of the memory as seen in Tab. 10.11.
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Register Address Meaning
STATUS 0x0 Status register
DATA 0x1 Image series data

Table 10.10.: Register list

Status2 Status1 Status0 Memory4 Memory3 Memory2 Memory1 Memory0
Table 10.11.: Status register

State Value Meaning
31+ 0x1f 31 or more words left to transmit in memory
30-0 0x1e - 0x00 Number of words left to transmit in memory

Table 10.12.: Memory state list

State Value Meaning
IDLE 0x0 Idling
AVG 0x1 In averaging operation

READY 0x2 Ready to transmit data
HIB 0x3 In power saving mode

Table 10.13.: Status list

10.4. Power conservation

The main control module has an “enable” output control signal that is intended to
clock gate the camera configuration and control module and the memory control
module when the main control is in hibernation state. This functionality has not
been implemented however.

10.5. SEU mitigation

The main controller module and the I2C controller will be triplicated using the TMR
scheme, creating three equal design modules with same outputs and voting on the
output.

Other modules that fail should have error detection that allows the main controller
to reset them when a SEU has been detected. This has not yet been designed.
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10.6. Current state of implementation and
considerations for further work

Currently, the design is at the main module interface and behavior stage. Most has
been implemented in verilog, but remains to be fully verified.

10.6.1. Current resource use

Synthesiszing the current design in Quartus for the EP4CE6 shows a resource usage
of 476 LEs, about 8% of device resources.

10.6.2. Main control

Fully implemented, but not verified.

10.6.3. Memory controller

Contains a working state machine for loading and storing every other cycle, and a
higher level state machine for keeping track of memory address and image series
progress. Not yet verified.

10.6.4. Deserializer, accumulator, bit untangler

Fully implemented, not verified.

10.6.5. I2C serial interface and controller

Fully implemented, not verified.

10.6.6. Not yet implemented

• TMR scheme for main control and I2C
• SEU detection in memory controller
• Using “enable” signals to clock gate
• Behavior for camera configuration module, as well as the UART module.
• Sampling FVALID signal from deserializer to confirm valid data
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11. Summary, conclusion and further
work

11.1. Summary

To implement a SWIR camera and perform image processing boils down to a three
step problem: how to acquire images from the camera to the processing module, how
to do the image processing, and how to provide a interface to control the processing
and readout of the processed images.
The acquisition part consists of implementing a physical bus such as USB, Camer-
alink or a parallel TTL interface. As the configuration and control of a camera is
both unique to each camera and not well documented, the problem of how to set
up and communicate with a generic camera has not been approached beyond how
to implement the physical bus. It has, however, been determined that the Camera
Link bus is most congruent with the aim of implementing a framegrabber in a par-
allel processing system such as a FPGA. A parallel interface is preferred if using
a microcontroller or DSP, as these can more easily treated as a memory mapped
device.
The main processing module would either need to be an actual processor, such as
a microcontroller or digital signal processor, or a complex digital circuit that could
be programmed onto an FPGA. Performing image processing is in general a highly
parallel problem. While not strictly required for any part of the design in this thesis,
it was determined that a FPGA is most suited to perform this kind of processing
by its nature as a programmable circuit. Other benefits include being able to add
processing tasks without worrying about image acquisition being interfered with.
Connecting the payload to the backplane of the satellite requires an I2C bus inter-
face, and it was determined that the simplest and most effective way to provide a
command interface is to implement this interface as a slave device, requiring a mas-
ter on the bus to to send commands and control readout. This reduces complexity
of the controller in the FPGA, and reduces the amount of masters trying to take up
time on the bus.
Implementing image averaging in an FPGA (creating a datapoint) is solved by
accumulating pixel data per pixel, and right shifting the result to divide. This
approach requires that a power of two number of sample images (in the example
implementation this is 16), but is the fastest, simplest and most accurate way. The
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accumulation process works by loading accumulated pixel data from memory, and
adding it with new pixel data as it arrives. This means it is not necessary to keep
a whole image series in memory before averaging, saving memory space.

11.2. Conclusion

This thesis has examined how a SWIR camera can be integrated into the NUTS
test satellite. It has looked at what would be required in terms of digital system
components, interfaces and processing, and how to compensate for the space envi-
ronment. It has also looked upon the effects motion blur and compensation on image
acquisition. Finally it has laid out a design concept and an example design for a
specific case, and partially implemented the HDL code in Verilog for the processing
module. This design concept is fault-tolerant, low cost, within the constraints of the
specification, and provides a simple and efficient way of acquiring images from the
the IR-camera.

11.3. Further work

While most of the example implementation should be usable for the final use case,
it needs to be finished and verified before it is ready to be used in the satellite. It
would likely also need to be modified to fit the specification of the actual camera
and use case.
Image compression using 3D DPCM and SR needs to be implemented, and the
memory module and main control needs to be modified to accommodate this. It
might be necessary or of interest to separate the image averaging process from the
memory controller to provide a common bus for the different processes.
No physical board layout has been done.
Power needs to be estimated, and the design might need to be modified to reduce
power consumption.
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A. The appendix

There are two parts to this appendix: An overview of the HDL files included with
thesis, and an overview of the RTL diagrams included. As these are too large to be
included without looking like a mess, they have been included seperately.
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B. Example design verilog code

Following is a list of verilog files included with the thesis, and a short description of
their content.

B.1. Top level instantiation

B.1.1. top_level_module.v

This module instantiates and connects all the other modules of the system. If all
the design files are loaded into a project in quartus with this file as the top module,
the whoel system will be instantiated.

B.2. I2C

B.2.1. I2C_ctrl.v

The top level control module of the I2C part of the design, instantiates the output
register loader module and the I2C slave interface, and connects them together as
well as connecting the input and output registers to the rest of the design.

B.2.2. I2CSlave.v

Connects the register interface and the serial interface.

B.2.3. I2CSlave_define.v

Definitions for configuring the I2C slave to your purpose.

B.2.4. register_loading.v

Loads image data from the memory controller to the output data register.
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B.2.5. registerInterface.v

Loads from, and sends data to the serial interface to and from the registers.

B.2.6. serialInterface

The serialises output data and deserializes input data to and from the I2C line.

B.3. Camera Link and accumulator

B.3.1. camlink.v

A 7:1 deserializer generated with the ALTLVDS_RX megafunction.

B.3.2. bitUntangler.v

Puts the output bits from the deserializer in an order that is easier to deal with.

B.3.3. accumulator.v

A 18-bit adder that receives data from the deserializer and the memory controller,
with the result being stored by the memory controller.

B.3.4. doublebuffer.v

Just a double buffer of the output of the deserializer to prevent metastable output.

B.3.5. topLevel.v

Instantiates the deserializer, accumulator, bituntangler and double buffer, and con-
nects them together.

B.4. Main control

B.4.1. main_ctrl.v

Main controller of the design, takes commands and uses them to control the rest of
the design.
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B.5 Memory

B.5. Memory

B.5.1. memory_top.v

The top level instantiator of the memory controller and the physical interface.

B.5.2. memory_ctrl.v

The memory controller is responsible for keeping track of the memory state, and
storing and loading values for the accumulator. It also provides ready image to the
I2C module.

B.5.3. memphy.v

The physical interface that generates the appropriate output signals from the mem-
ory controller.

B.6. Camera config

B.6.1. camera_config_ctrl.v

Camera config has no specified behaviour yet. Just a generic state machine.
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C. RTL diagrams

RTL diagrams to illustrate how the different modules are connected.

C.1. Top level instantiation: top_module.png

C.2. I2C control: I2C_ctrl_I2C_ctrl_inst.png

C.3. I2C slave: i2cSlave_i2C_slave_I.png

C.4. Camera Link and accumulator:
topLevel_topLevel_inst.png

C.5. Memory:memory_top_memory_top_inst.png
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