
Energy Efficient Reed-Solomon Error
Correction

Sindre Drolsum Flaten

Master of Science in Electronics

Supervisor: Bjørn B. Larsen, IET
Co-supervisor: Erling Furunes, Energy Micro AS

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

Energy Efficient
Reed-Solomon Error Correction

Sindre Drolsum Flaten

Master’s Thesis

Department of Electronics and Telecommunications
Norwegian University of Science and Technology

June 27, 2013

Abstract

Energy efficient implementations are very important in order to increase the op-
erating time for battery-powered devices. In this thesis a Reed-Solomon encoder
and decoder have been implemented. The implementations have been synthesized
using a 45nm technology library and power estimations have been performed. To
find the most energy efficient implementation, several implementation techniques
were evaluated. The implemented system is a 5-bit, RS(31, 27) code. For a Reed-
Solomon encoder with low activity, the energy consumption can be reduced by
over 40% with the use of clock gating. Several different Reed-Solomon decoder
configurations were implemented and synthesized. When comparing the energy
consumption of the different configurations, a configuration with two-parallel syn-
drome cells and pipelined Chien search, Forney and error correction module were
found to be the most energy efficient. This configuration had a 36% lower energy
consumption compared to a configuration with the same parallel syndrome cells,
and no pipelined modules. It also had a 7% lower energy consumption compared
to a configuration with the same pipelined modules and the standard syndrome
cells.

ii

Problem Description

This problem description has been formulated based on the problem description
given by Energy Micro for the 2012 autumn project

In radio communication, Forward Error Correction is used to detect and correct
errors that may occur during transmission of data. Forward Error Correction can
be achieved using Reed-Solomon codes.

In battery-powered radio applications, a low-power Reed-Solomon implementation
will improve the reliability of the system and increase the battery lifetime. Energy
efficient hardware is crucial when designing a battery-powered application.

The student should implement a suggested topology for both the Reed-Solomon
encoder and decoder, where the main focus is on low energy consumption. The
implementation should be simulated and the energy consumption of the chosen
design is to be evaluated. Based on these results, are there room for further
improvements when it comes to energy consumption, area and speed? If so, try to
use other techniques to reduce the energy consumption. What is the trade-off of
different implementation techniques (measured in energy consumption, area and
speed)?

The chosen implementation can be compared to the energy consumption of other
hardware implementations.

iii

iv

Preface

This Master’s thesis has been written at NTNU spring/- summer 2013 as a con-
tinuation of my project work autumn 2012. The assignment was given by Energy
Micro in Oslo and involves implementation of a Reed-Solomon system where the
main focus is on low energy consumption.

When starting the project work I did not have any experience with error correction
or signal encoding. I have spent much time studying the Reed-Solomon concepts
and how these could be implemented in HDL. Learning to use new tools and
debugging the HDL implementations have also been vary time consuming. These
are the things that are not directly described in a thesis, but they are a big part
of the process. The most rewarding thing is often getting an implementation to
work after hours of trail and error.

I would like to thank my project supervisor, Associate Professor Bjørn B. Larsen,
and Erling Furunes at Energy Micro for guidance during this whole last year. I
would also like to thank Dr. George Petrides for helping me with the Reed-Solomon
theory.

- Sindre Drolsum Flaten
Trondheim, 27.06.2013

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 1
1.3 Report Structure . 2

2 Theory 3
2.1 Low Power Design Techniques . 3

2.1.1 Power Consumption in CMOS Technology 3
2.1.2 Glitch Reduction . 4
2.1.3 Clock Gating . 5
2.1.4 Precomputation and Parallelism 6

2.2 Reed-Solomon . 6
2.3 Galois Field . 8

2.3.1 Field Generator Polynomial 8
2.4 Galois Field Arithmetic . 9

2.4.1 Addition and Subtraction in Galois Field 9
2.4.2 Multiplication and Division in Galois Field 10

3 Reed-Solomon Encoder 13
3.1 Generator Polynomial . 13
3.2 Reed-Solomon Encoding . 13

4 Reed-Solomon Decoder 15
4.1 The Received Codeword . 15
4.2 Decoding Techniques . 15
4.3 Syndrome Decoding . 17
4.4 Decoding Algorithm . 18

4.4.1 Berlekamp-Massey Algorithm 20
4.4.2 Inversionless Berlekamp-Massey Algorithm 22
4.4.3 Euclidean Algorithm . 23

4.5 The Chien Search . 24
4.6 Forney Algorithm . 25

5 Implementation 27
5.1 Symbol and Correction Size . 27

vii

5.2 Implementing Arithmetic Operations 29
5.2.1 Addition . 29
5.2.2 Galois Field Multipliers . 29
5.2.3 Division . 31

5.3 Implementation Techniques . 31
5.4 Implementation of Encoder . 32
5.5 Implementation of Decoder . 33

5.5.1 Implementation of Syndrome Calculation 34
5.5.2 Implementation of Key Equation Solver 36
5.5.3 Implementation of Chien Search 38
5.5.4 Implementation of Forney Algorithm 39
5.5.5 Error Correction . 40
5.5.6 Decoder Architecture . 40

6 Verification and Test 45
6.1 Verification and Test of Encoder . 45
6.2 Verification and Test of Decoder . 46

7 Synthesis 49
7.1 FreePDK 45nm CMOS Technology Library 49
7.2 Synopsys Synthesis Tools . 49

7.2.1 Synplify Pro . 50
7.2.2 Design Compiler and Power Compiler 50

7.3 Synthesis of Reed-Solomon Encoder 52
7.4 Synthesis of Reed-Solomon Decoder 52

7.4.1 Decoder Configuration 1 . 52
7.4.2 Decoder Configuration 2 . 52
7.4.3 Decoder Configuration 3 . 53
7.4.4 Decoder Configuration 4 . 53
7.4.5 Decoder Configuration 5 . 53
7.4.6 Decoder Configuration 6 . 54
7.4.7 Decoder Configuration 7 . 54

8 Synthesis and Simulation Results 55
8.1 Synthesis Results Encoder . 55
8.2 Synthesis Results Decoder . 58

8.2.1 Configuration 1 Synthesis and Simulation Results 58
8.2.2 Configuration 2 Synthesis and Simulation Results 60
8.2.3 Configuration 3 Synthesis and Simulation Results 60
8.2.4 Configuration 4 Synthesis and Simulation Results 64
8.2.5 Configuration 5 Synthesis and Simulation Results 65
8.2.6 Configuration 6 Synthesis and Simulation Results 66
8.2.7 Configuration 7 Synthesis and Simulation Results 67

9 Evaluation of Results 69
9.1 Encoder . 69

viii

9.2 Decoder . 70

10 Discussion 77
10.1 Encoder . 77
10.2 Decoder . 78

11 Conclusions 81

12 Further Work 83

References 85

A Galois Field 89
A.1 Galois Field Representation . 89

A.1.1 Field Elements GF(16) . 89
A.1.2 Field Elements GF(32) . 90

B Examples 91
B.1 Implementation Examples . 91

B.1.1 Constant Multiplier . 91
B.1.2 Constructing a Full Multiplier 92

B.2 Decoding Example . 92

C Test Vectors 98
C.1 Encoder Test Vectors . 98

C.1.1 Simulation Test Vectors . 98
C.2 Decoder Test Vectors . 99

C.2.1 Simulation Test Vectors . 99

D Scripts 100
D.1 Matlab Scripts . 100

D.1.1 Encoder Test Vector Script 100
D.1.2 Decoder Test Vector Script 101

D.2 Design Compiler and Power Compiler Scripts 102
D.2.1 Synopsys Design Compiler Setup File 102
D.2.2 Constraints Script . 103
D.2.3 Compile Script . 103
D.2.4 Clock Gate Insertion Compile Script 105

ix

List of Figures

2.1 Clock gating principle . 5
2.2 The concept of FEC using Reed-Solomon codes 6
2.3 Reed-Solomon codeword structure 7

4.1 Reed-Solomon decoding techniques [10] 16

5.1 8-bit to 5-bit conversion . 29
5.2 Reed-Solomon encoder architecture 32
5.3 Implemented Reed-Solomon decoding techniques 34
5.4 Syndrome cell . 34
5.5 Two-parallel syndrome cell . 35
5.6 Inversionless Berlekamp-Massey algorithm architecture 37
5.7 Architecture for computing the error evaluator polynomial 38
5.8 Chien search cell . 39
5.9 Forney module . 40
5.10 Reed-Solomon pipelined decoding scheme 40
5.11 Reed-Solomon pipelined decoding diagram 41
5.12 Reed-Solomon full serial decoding scheme 41
5.13 Reed-Solomon full serial decoding diagram 42
5.14 Block diagram decoder . 43

7.1 Generating SAIF files from RTL simulation 51

8.1 Synthesized encoder view . 56
8.2 Dynamic power consumption with and without clock gating 57
8.3 Block diagram view of configuration 1 58
8.4 Area distribution decoder configuration 1 59
8.5 Power consumption of different modules in configuration 3 63
8.6 Power consumption distribution with two errors 64
8.7 Power consumption distribution with zero errors 64

9.1 Energy consumption of encoder . 70
9.2 Dynamic power consumption for configuration 3, 5, 6 and 7 73
9.3 Comparison of total power consumption for different configurations 74
9.4 Energy consumption for configuration 2, 3, 5, 6 and 7 75
9.5 Area comparison of decoder configurations 76

x

List of Tables

5.1 Different symbol and correction sizes 28

6.1 Test vectors used to verify encoder functionality 46

8.1 Area usage of encoder . 56
8.2 Power consumption encoder . 56
8.3 Energy consumption encoder . 57
8.4 Power consumption encoder with clock gating 57
8.5 Area usage of decoder configuration 1 58
8.6 Power consumption decoder configuration 1 59
8.7 Power consumption standard Berlekamp-Massey algorithm 59
8.8 Energy consumption configuration 1 59
8.9 Area usage of decoder configuration 2 60
8.10 Power consumption decoder configuration 2 60
8.11 Power consumption inversionless Berlekamp-Massey algorithm . . . 60
8.12 Energy consumption configuration 2 60
8.13 Area usage of decoder configuration 3 61
8.14 Area usage of decoder configuration 3 with clock gate insertion . . . 61
8.15 Power consumption decoder configuration 3 61
8.16 Power consumption decoder configuration 3 with clock gate insertion 61
8.17 Energy consumption configuration 3 62
8.18 Energy consumption configuration 3 with clock gating 62
8.19 Area usage of decoder configuration 4 65
8.20 Power consumption decoder configuration 4 65
8.21 Energy consumption configuration 4 65
8.22 Area usage of decoder configuration 5 65
8.23 Area usage of decoder configuration 5 with clock gate insertion . . . 65
8.24 Power consumption decoder configuration 5 66
8.25 Power consumption decoder configuration 5 with clock gate insertion 66
8.26 Energy consumption configuration 5 with clock gating 66
8.27 Area usage of decoder configuration 6 66
8.28 Area usage of decoder configuration 6 with clock gate insertion . . . 66
8.29 Power consumption decoder configuration 6 67
8.30 Power consumption decoder configuration 6 with clock gate insertion 67
8.31 Energy consumption configuration 6 with clock gating 67
8.32 Area usage of decoder configuration 7 67

xi

8.33 Area usage of decoder configuration 7 with clock gate insertion . . . 67
8.34 Power consumption decoder configuration 7 68
8.35 Power consumption decoder configuration 7 with clock gate insertion 68
8.36 Energy consumption configuration 7 with clock gating 68

9.1 Energy consumption of configuration 1 and 2 71
9.2 Comparison of dynamic power configuration 3 71
9.3 Comparison of power consumption of configuration 3 and 4 72
9.4 Energy consumption of configuration 3 and 4 72
9.5 Reduction of total power for configuration 5 72
9.6 Reduction of total power for configuration 6 72
9.7 Runtime comparison configuration 3 and 5 75
9.8 Runtime comparison configuration 3 and 6 76
9.9 Runtime comparison configuration 3 and 7 76

A.1 Field elements for GF(16) with p(x) = x4 + x+ 1 89
A.2 Field elements for GF(32) with p(x) = x5 + x2 + 1 90

B.1 Chien search example . 96

C.1 Test vectors used for simulation of encoder 98
C.2 Test vector with zero errors . 99
C.3 Test vector with one error . 99
C.4 Test vector with two errors . 99

xii

List of Abbreviations

ARQ Automatic Repeat Request

ASIC Application-Specific Integrated Circuit

BCH Bose-Chaudhuri-Hocquenhem

CG Clock Gating

DVB Digital Video Broadcasting

FEC Forward Error Correction

FPGA Field-Programmable Gate Array

GCD Greatest Common Divider

GF Galois Field

GTECH Generic Technology

HDL Hardware Description Language

LFSR Linear Feedback Shift Register

PDK Process Design Kit

ROM Read Only Memory

RS Reed-Solomon

RTL Register-Transfer Level

SAIF Switching Activity Interchange Format

VCD Value Change Dump

xiii

xiv

Chapter 1

Introduction

1.1 Motivation

Many portable electronic devices have a digital communication system enabling
them to receive and transmit data. These systems often use error detection and
error correction techniques to achieve good communication. Error detection and
correction enables digital data to be restored after being corrupted, because of
noise or other types of error. There are different error detection schemes and error
correction schemes. Error detection is often accomplished by a parity-, polarity-
or a checksum scheme. In these techniques extra data is added before transmis-
sion, which then can be checked on the receiving end for possible errors. Error
correction is often done using automatic repeat request (ARQ), or forward error
correction (FEC) [1]. When using ARQ, the data is retransmitted if an error is
detected. FEC is achieved by using an error correction code to encode the data.
The encoder adds redundant data to the message, and the decoder uses this redun-
dancy to correct the error. Reed-Solomon codes are one type of error correction
code used to perform FEC.

When implementing FEC on a battery powered electronic device, a fast and en-
ergy efficient implementation is highly desirable. This will increase the battery
lifetime of the device, and enable the system to be more reliable. Therefore a
FEC implementation using Reed-Solomon codes should be designed with regards
to minimize energy consumption.

1.2 Problem Description

A Reed-Solomon encoder and decoder are to be designed and implemented using
Verilog. The main goal in this thesis is to find an energy efficient Reed-Solomon
implementation. The Reed-Solomon encoder and decoder shall be synthesized

1

using a cell library. The power consumption is also to be estimated, and based on
these estimations the energy consumption should been evaluated.

The Reed-Solomon decoding process is the most complex part of the Reed-Solomon
system. The main focus should therefore been on implementing different tech-
niques that could reduce the energy consumption of the decoder. The different
decoder configurations are to be be compared and evaluated with regards to en-
ergy consumption.

1.3 Report Structure

A brief overview of this thesis can be given as:

• In chapter 2 general low power design techniques, the concept of Reed-
Solomon codes and Galois field are described.

• In chapter 3 the Reed-Solomon encoding process is described.

• Chapter 4 explains the basics of Reed-Solomon decoding.

• In chapter 5 the different techniques used to implement the Reed-Solomon
encoder and decoder are described.

• Chapter 6 presents methods for verification and test.

• Chapter 7 explains the synthesis and power estimation procedure.

• In chapter 8 the synthesis results and power estimation of the Reed-Solomon
encoder and decoder are presented.

• In chapter 9 the results and power estimations are evaluated.

• Chapter 10 contains a discussion of the results in this thesis.

• Chapter 11 concludes this thesis.

• Chapter 12 contains suggestions for further work.

2

Chapter 2

Theory

2.1 Low Power Design Techniques

The need for lower power consumption is increasing, as we develop more and
more portable electronic devices. Reducing the power consumption will increase
the battery lifetime, which is important for portable devices. Low power design
techniques can be used to make a more energy efficient device. These techniques
are based on understanding the concepts of power consumption, which will be
explained in the next sections.

2.1.1 Power Consumption in CMOS Technology

The power consumption in CMOS technology can be put into two main categories,
static and dynamic power consumption. The total power consumption can then
be written as in equation 2.1.

Ptotal = Pstatic + Pdyn (2.1)

Another important factor when talking about power consumption, is the CMOS
delay. The CMOS delay is shown in equation 2.2 [2].

Td =
CL × Vdd

µCOX

(
W

L

)
(Vdd − Vt)2

(2.2)

Where µCOX
(
W

L

)
is a technology dependent factor.

If, for instance, the supply voltage (Vdd) is lowered to reduce power consumption,
the delay of the transistor will increase. Energy is power over time. The increased
delay can therefore make the total amount of energy spend on one operation the

3

same, as if we had a circuit with higher supply voltage, thus lower delay. The
CMOS delay must therefore be taken into account when designing for low power.

Static Power Consumption
Static power consumption is due to leakage currents in the CMOS transistor.
There are three main types of leakages, sub-threshold leakage, gate leakage and
diode leakage. As CMOS technology and threshold voltage are scaled down, the
leakage currents increase [2]. Static power consumption can be written as equation
2.3, where Ileakage consists of the three leakage currents mentioned in this section.

Pstatic = IleakageVdd (2.3)

There are several methods that can be used to reduce the static power consump-
tion. These include multiple VT , multiple Vdd, power supply scaling and back
biasing [3].

Dynamic Power Consumption
Dynamic power consumption occurs when CMOS gates are active and switching.
The dynamic power consumption is composed of two factors: the power consump-
tion when switching and the short-circuit power consumption. The dynamic power
consumption can be written as shown in equation 2.4 [2]. The dynamic power con-
sumption when the gate is switching is dependent on the switching activity α, the
capacitance factor CL, the power supply Vdd and the operating frequency f . The
second part of dynamic power consumption is the short-circuit power consump-
tion (IscVdd). Short-circuit power occurs because CMOS transistors do not switch
instantaneously. This means that there is a small period of time, when both the
pull-up and pull-down paths in the gate are on simultaneously [3].

PD = αCLV
2
ddf + IscVdd (2.4)

The switching power is the dominant part of the dynamic power consumption.
By reducing the factors in equation 2.4, we can reduce the power consumption.
When, for instance, working at a Register-transfer level (RTL), the power supply
and operating frequency are parameters that are not directly handled. To reduce
the dynamic power when working at RTL, we focus on the switching activity, α.
In the next subsections some RTL techniques for low power will be presented.

2.1.2 Glitch Reduction

Glitches occur when converting combinatorial paths with different propagation de-
lays [3]. This conversion can cause oscillation in the system, making values on a
register switch many times. The oscillation will consume dynamic power, which is
unwanted. The oscillation can also start propagating to other parts of the design,
which again will lead to more power being consumed. Glitches can also cause

4

timing delays, which are undesirable.

There are several techniques that can be used to handle the propagation of glitches.
Gate-level control can be used to reduce glitches by pipelining the design. This
can be very efficient, but it has some disadvantages. When the design is pipelined
extra logic, such as registers and control logic, are added. This can cause a higher
latency in the design. When using this technique the designer have to consider the
trade-off.

Another approach is to add extra logic and rearrange the logic structure, so com-
ponents that can cause oscillation are moved further back in the signal chain [3].
If, for instance, a multiplexer selects different signals that are going to be added
together, the control signal for the multiplexer can oscillate giving the adders a
oscillating input signal. To remove oscillation on the input to the adders, we can
double the amount of adders and add the signals before we multiplex them. The
downside is that extra logic must be implemented.

2.1.3 Clock Gating

Clock gating is an efficient technique for reducing the dynamic power in a system.
The idea behind clock gating is to disable transitions from propagating to parts of
the clock path, by using clock gating circuits [3]. This means, that logic elements
in a circuit are not clocked when we do not need them. This is, for instance, when
the system is in idle or redundant information is computed. By not loading unnec-
essary transitions when the clock is not active, we can save power due to decreased
switching activity of the logic elements [3]. Clock gating can be implemented us-
ing a latch and an AND gate as shown in figure 2.1. Testability of a design can
become worse when introducing clock gating, because this leads to multiple clock
domains.

Figure 2.1: Clock gating principle

5

2.1.4 Precomputation and Parallelism

When using precomputation logic the idea is to precompute circuit output values
one clock cycle before they are required [4]. This makes it possible turn off logic,
and thus save power because of decreased switching activity. If there is no change
of output values, we simply keep the previous computed values.

Parallel architecture can also be utilized to reduce power consumption [2]. By
using parallel logic the system can work on half the speed and still be able to
maintain the same data throughput. This comes at the expense of an increased
circuit area.

2.2 Reed-Solomon

Reed-Solomon (RS) error correction is an error correction technique, which is used
in communication systems and data storage applications for correcting errors that
may occur during transmission or from disc reading errors [5]. Reed-Solomon codes
were first described in the paper Polynomial Codes Over Certain Finite Fields [6].
Reed-Solomon codes are often used to perform Forward Error Correction (FEC).
When using FEC, redundant (parity) information is added to the data before it
gets transmitted or stored [7]. When the data is received/read, the receiver can
detect and correct errors. The number of errors that can be corrected depends on
the implementation of Reed-Solomon code. One of the advantages of the Reed-
Solomon code is the ability to correct both random and burst errors [5]. The
principal concept for Reed-Solomon codes are shown in figure 2.2.

Figure 2.2: The concept of FEC using Reed-Solomon codes

Reed-Solomon codes are a sub class of Bose-Chaudhuri-Hocquenhem (BCH) codes
[5] [8]. The Reed-Solomon code has several defined characteristics. Reed-Solomon
codes are block codes, which means that the data message is divided into several
blocks of data, often called symbols [7]. It is also a cyclic and linear code, meaning

6

that a codeword can be produced by adding two codewords together, or shifting
the symbols of a codeword. The block symbols of a Reed-Solomon codeword are
elements of a finite field [5]. Finite fields and finite field arithmetic will be further
described in section 2.3 and 2.4.

Figure 2.3: Reed-Solomon codeword structure

A Reed-Solomon code can be described as RS(n,k), where n is the total length
of the codeword, k is the number of data symbols and n− k + 1 is the minimum
distance. Each of the symbols in a Reed-Solomon code contain m number of bits,
where the relationship between n and m is shown in equation 2.5. The structure
of the Reed-Solomon code can be seen in figure 2.3.

n = 2m − 1 (2.5)

The Reed-Solomon code can correct up to t errors by adding 2t parity symbols to
the codeword, as shown in equation 2.6. If the locations of the errors are known,
the Reed-Solomon code can correct up to twice as many errors. Errors with known
locations are called erasures. A Reed-Solomon code can also correct a combination
of errors and erasures as long as equation 2.7 is satisfied.

2t = n− k (2.6)

2verrors + verasures ≤ n− k (2.7)

Where verrors in equation 2.7 is the number of errors and verasures is the number
of erasures in the code. In this thesis only error correction are dealt with.

Since Reed-Solomon codes are able to correct burst errors, they are used in storage
devices (CDs, DVDs, Blu-Ray Discs etc.), mobile communication, modems, Digital
Video Broadcasting (DVB) and barcodes, to name a few.

7

2.3 Galois Field

The symbols in a Reed-Solomon code are elements of a finite field, also called
Galois field (GF) . Galois field consists of a finite set of elements, meaning that
it can be represented by a fixed length word. A Galois field can be written as
GF (pm), where p is a prime number and m is an integer. The elements in a Galois
field are based on a primitive element, denoted α [7]. By using α, the elements of
a Galois field can be represented in index form as:

0, α0, α1, α2, α3,, αN−1 (2.8)

A binary field can be constructed by choosing the the primitive element α to be
2. The binary field will form a set of 2m elements, and the field can be written
as GF (2m). If the primitive element equals 2, the power N in (2.8) will then be
N = 2m − 1.

A Galois field element can also be represented by a polynomial expression with
the base xm, as shown in equation 2.9 [7].

am−1x
m−1 ++ a1x

1 + a0x
0 (2.9)

If coefficients am−1 to a0 of the polynomial expression take the values 0 or 1, we
can represent a field element with a binary number. 2m elements in Galois field,
can then represent 2m combinations of a m-bit number. If m = 4 the Galois field
is GF(24), which is GF(16). This field has 16 elements, and can be represented by
a 4-bit number (binary: 0000 to 1111 or decimal: 0 to 15).

2.3.1 Field Generator Polynomial

A Galois field can be constructed using a field generator polynomial or primitive
polynomial. This polynomial is the minimal polynomial of a primitive element
of the finite extension field GF(pm). The primitive polynomial p(x) is of degree
m and is irreducible, meaning it has no factors [7]. The primitive element α is
a root of the primitive polynomial p(x). By using this, all non-zero elements of
GF(pm) can be constructed using a successive power of α. A large field have several
primitive polynomials, and each primitive polynomial give a unique representation
of the elements. For instance, the field GF(16) have two primitive polynomials,
p(x) = x4 + x + 1 and p(x) = x4 + x3 + 1 [9]. To construct the field for GF(16)
the primitive polynomial p(x) = x4 + x+ 1 will be used.

When constructing the field, the primitive polynomial is set equal to zero, p(α) =
0. This can be done because the primitive element α is a root of the primitive
polynomial. For the given primitive polynomial this can be written as:

p(α) = α4 + α + 1 = 0 (2.10)

8

which is:
α4 = α + 1 (2.11)

To construct the whole field in polynomial form, α is multiplied in at each stage.
When the polynomial form reaches α4, α + 1 is substitute for α4. The resulting
terms is finally added together using Galois field addition. The first five elements of
GF(16) in polynomial form are {0, 1, α, α2, α3}, and rest of the non-zero elements
in GF (16) are found in the following way:

α4 = α + 1
α5 = α(α4) = α(α + 1) = α2 + α
α6 = α(α5) = α(α2 + α) = α3 + α2

α7 = α(α6) = α(α3 + α2) = α4 + α3 = α3 + α + 1
α8 = α(α7) = α(α3 + α + 1) = α4 + α2 + α = α2 + α + α + 1 = α2 + 1
α9 = α(α8) = α(α2 + 1) = α3 + α
α10 = α(α9) = α(α3 + α) = α4 + α2 = α2 + α + 1
α11 = α(α10) = α(α2 + α + 1) = α3 + α2 + α
α12 = α(α11) = α(α3 + α2 + α) = α4 + α3 + α2 = α3 + α2 + α + 1
α13 = α(α12) = α(α3 + α2 + α + 1) = α4 + α3 + α2 + α = α3 + α2 + α + α + 1 = α3 + α2 + 1
α14 = α(α13) = α(α3 + α2 + 1) = α4 + α3 + α = α3 + α + α + 1 = α3 + 1

Table A.1 in appendix A.1.1 shows all the elements of GF (16) in index form,
polynomial form, binary form and decimal form. It should be noted that the
elements after α14 will only repeat the same sequence as shown in table A.1.

2.4 Galois Field Arithmetic

An arithmetic operation performed on a Galois field element will result in another
element of the same field, since only a finite set of elements exist. In this section
arithmetic operations such as addition, subtraction, multiplication and division
will be explained. Implementation of these arithmetic operations using hardware
are described in section 5.2.

2.4.1 Addition and Subtraction in Galois Field

Addition and subtraction in Galois field are done in exactly the same way using a
exclusive-OR function (XOR), or by modulo 2 addition/subtraction of the coeffi-
cients [7]. Since addition and subtraction have exactly the same effect, addition is
used when performing a subtraction operation. In polynomial form this is written
as shown in equation 2.12.

0∑
i=m−1

aix
i +

0∑
i=m−1

bix
i =

0∑
i=m−1

cix
i (2.12)

9

Since addition is a XOR operation and the coefficients can only take the value 0
or 1, ci = 0 when ai = bi and ci = 1 when ai 6= bi for 0 ≤ i 6= m− 1.

If we want to add the numbers 12 and 15 in GF(16) this will result in 3. Us-
ing a polynomial expression this gives:

(x3 + x2) + (x3 + x2 + x+ 1) = x+ 1

Shown with binary numbers:

1100 (12)
1111 (15)
0011 (3)

An example with subtraction is not shown, since subtraction in done in exactly
the same way as addition.

2.4.2 Multiplication and Division in Galois Field

When multiplying two polynomials with degree m−1, the resulting product poly-
nomial would have a degree of 2m− 2. In Galois field multiplication the product
can not be larger than the largest element of the field GF (2m), thus multiplication
in Galois field is defined as the product modulo the field generator polynomial p(x)
[7]. The product modulo can be found by dividing the product polynomial by the
field generator polynomial p(x), and then take the remainder. This will always
give a result that is inside the Galois field.

There are several different ways in which the remainder can be found. One possible
way is to first multiply the values using the polynomial expression, and then divide
the result by the field generator polynomial. This division is done by multiplying
the divisor by a value to make it the same degree as the dividend, and then
subtracting the divisor from the dividend [7]. An example on how this is done is
shown below:

We want to multiply the two values 12 and 15 in Galois field GF(16). First, we
multiply the two values using the polynomial expression. Second, we use Galois
addition on the values with the same exponents, as shown below.

(x3 + x2)(x3 + x2 + x+ 1) = x6 + x5 + x4 + x3 + x5 + x4 + x3 + x2

= x6 + x2

Then the result is divided by the field generator polynomial.

10

x6 x5 x4 x3 x2 x1 x0

dividend: 1 0 0 0 1 0 0
divisor ×x2: 1 0 0 1 1

1 0 0 0

The resulting remainder is then the product of the two values, which was binary
1000 or 8 in decimal. The value that was used to get the divisor in the same degree
as the dividend, is called the quotient. In this example the quotient was x2.

Dividing two elements in a Galois field can be done by multiplying by the inverse
of the divisor. The inverse of a field element is defined as the element value, that
when multiplied by the field element produces a value of 1 [7]. Below is an example
on how this can be done.

We want to divide 15 by 12. First the inverse of 12 is found, which is:
12 = α6

α(−6)mod15 = α9 = 10
15÷ 12 = 15× 10

Then 15 is multiplied by 10 to get the result. This can be done using the multi-
plication technique previously described in this section.

(x3 + x2 + x+ 1)(x3 + x) = x6 + x4 + x5 + x3 + x4 + x2 + x3 + x
= x6 + x5 + x2 + x

x6 x5 x4 x3 x2 x1 x0

dividend: 1 1 0 0 1 1 0
divisor ×x2: 1 0 0 1 1

1 0 1 0 1
divisor ×x: 1 0 0 1 1

1 1 0 0

Dividing 15 by 12 gives us binary 1100, which is 12 in decimal.

11

12

Chapter 3

Reed-Solomon Encoder

3.1 Generator Polynomial

The Reed-Solomon generator polynomial g(x) is used to construct the Reed-
Solomon code. It consists of n − k = 2t factors and is described in equation
3.1 [7].

g(x) = (x+ αb)(x+ αb+1).....(x+ αb+2t−1) (3.1)
= x2t + g2t−1x

2t−1 + g2x
2 + g1x+ · · ·+ g0

Where α in equation 3.1 is a primitive element of the Galois field, and b can
be chosen to be b = 0. It is possible to choose another value for b. This will
however give a generator polynomial constructing a different Reed-Solomon code.
g0 to g2t−1 are the coefficients of the generator polynomial. The Reed-Solomon
generator polynomial must not be mistaken for Galois field generator polynomial
which was presented in section 2.3.1.

3.2 Reed-Solomon Encoding

The Reed-Solomon encoder is used to encode the message block by adding the
parity symbols to the original message. The message polynomial which is to be
encoded can be written as shown in equation 3.2 [7].

M(x) = Mk−1x
k−1 ++M2x

2 +M1x
1 +M0x

0 (3.2)

k in equation 3.2 is total number of information symbols that form the message
polynomial M(x). The size of a symbol varies depending on the amount of infor-
mation the user wants to send.

13

Before the message is transmitted, the encoder shifts the message polynomial
n − k times. This is done so the parity symbols can be added to the end of the
message. Then the encoder divide by the generator polynomial g(x). This will give
a quotient q(x) and a remainder r(x) as shown in equation 3.3 [7]. Multiplying by
g(x) on both sides in equation 3.3 and using the fact that addition and subtraction
are the same in finite field, equation 3.3 can be written as 3.4.

M(x)× xn−k

g(x)
= q(x) +

r(x)

g(x)
(3.3)

As seen from equation 3.4, the remainder is added to the end of the messageM(x)
as the parity symbols.

M(x)× xn−k + r(x) = q(x)× g(x) (3.4)

The message M(x) and the remainder r(x) form the transmitted codeword T (x)
as shown in equation 3.5.

T (x) = M(x)× xn−k + r(x) (3.5)

As seen from equation 3.5, the transmitted codeword is equal to the code generator
polynomial multiplied by a quotient. The code generator polynomial consist of a
number of factors and these are also factors of the encoded message [7]. The
received message will therefore be divisible by the generator polynomial without
remainder. However, if this is not true the received message will contain errors.
This is further described in section 4.3.

14

Chapter 4

Reed-Solomon Decoder

4.1 The Received Codeword

The transmitted codeword T (x) can get corrupted when being transmitted. The
errors that occur in the transmission phase, can be described by the error polyno-
mial E(x). These errors can be on any of the symbols in the transmitted codeword,
and can therefore be described as shown in equation 4.1.

E(x) = En−1x
n−1 + En−2x

n−2 ++ E2x
2 + E1x

1 + E0x
0 (4.1)

When the transmitted codeword is received by the decoder, the codeword will
consist of the messaged sent from the encoder and an error part. This is shown in
equation 4.2 [7].

R(x) = T (x) + E(x) (4.2)

The received message is represented by the polynomial R(x) and take the form:

R(x) = Rn−1x
n−1 +Rn−2x

n−2 ++R2x
2 +R1x

1 +R0x
0 (4.3)

4.2 Decoding Techniques

The Reed-Solomon decoding process can be split into two parts. The first part
of the decoding is to detect if an error has occurred during transmission of the
codeword. The decoder does this by checking if the codeword is a valid codeword
or not. If an error has occurred, the decoder will try to correct this error by
finding the error position and error value. In this chapter methods for detecting
and correcting errors in a Reed-Solomon code will be presented.

15

Figure 4.1, taken from [10] gives an overview of some of the Reed-Solomon decod-
ing techniques. The figure shows that Reed-Solomon decoding techniques can be
divided into two main classes. The left side of the figure consists of algorithms
that use syndrome calculation to find the error locations and the error values in
the received codeword. On the right side of the figure, no syndrome calculation is
needed to find the error locations and error values. These techniques are sometimes
called transform decoding without transforms [5].

An algebraic decoding process using syndrome calculation consists of five main
steps. First the syndromes are calculated based on the received codeword. Then
the error locator and error evaluator polynomials are found using the syndromes.
The error locations are found by evaluating the error locator polynomial. When
the locations of the errors are found, the two polynomials are used to find the error
values. The last step consists of correcting the errors in the received codeword.
When using transform decoding, the received codeword is first transformed to the
frequency domain [5]. Then the frequency error vector is obtained by recursive
extension. At the end, an inverse Fourier transform is done to find the error values
in the time domain.

Figure 4.1: Reed-Solomon decoding techniques [10]

16

As seen from figure 4.1, the error locator polynomial and error evaluator poly-
nomial can be found using several different algorithms. The Berlekamp-Massey
and the Euclidean algorithm are widely used in decoding schemes for finding these
polynomials [10] [11] [12] [13]. In this thesis a decoding process using syndrome
calculation has been chosen. The methods highlighted in figure 4.1 are the methods
presented in the next subsections.

4.3 Syndrome Decoding

To be able to find the errors and correct them, the decoder first has to calculate
the syndromes. There are n− k syndrome values that have to be calculated. The
syndromes are only dependent on the error pattern, so if all the syndromes are
equal to zero there are no errors on the received codeword [7].

The syndrome calculations can be done in different ways. The received codeword
can be divided by the generator polynomial g(x), which essentially is dividing it
by all it’s factors, to get the syndromes. The division will produce a quotient and
a remainder. It is also possible to use substitution of the roots on the received
codeword. This will also give us the syndrome values.

The first approach can be written as shown in equation 4.4, where each syndrome
is represented by Si and i is in the range 0 ≤ i ≤ (n− k)− 1 [7]:

R(x)

gi(x)
= qi(x) +

Si
gi(x)

where gi(x) = (x+ αi) (4.4)

If all the syndromes are zero there are no errors, as previously explained. This is
an important property of a Reed-Solomon code, and will have an impact on how
the syndrome equation is described.

When using substitution to find the syndromes, equation 4.4 is rewritten to equa-
tion 4.5 [7]. When αi is substituted in for x this will give qi× (x+αi) = 0 because
adding the same values in a Galois field produces zero, as shown in section 2.4.1.

Si = qi(x)× (x+ αi) +R(x)
= qi(α

i)× (αi + αi) +R(αi)
= qi(α

i)× 0 +R(αi)
= R(αi)

Si = Rn−1(α
i)n−1 +Rn−2(α

i)n−2 ++R2(α
i)2 +R1(α

i)1 +R0(α
i)0 (4.5)

The syndromes can also be expressed as an syndrome polynomial as shown in
equation 4.6.

17

S(x) =
2t−1∑
i=0

Six
i (4.6)

As was mentioned earlier the, syndromes are only dependent on the errors in-
troduced. This is used when producing an equation used to represent the error
locations and the error values. This can be written as shown in equation 4.7 [7].
Yv represent the error values and Xv represent the error location of a specific error.
v is total number of errors where v ≤ t.

Si = E(αi) =
v∑
l=1

Ylα
iel

=
v∑
l=1

YlX
i
l (4.7)


S0

S1
...
...

S2t−1

 =


X0

1 X0
2 · · · X0

v

X1
1 X1

2 · · · X1
v

...
...

...
...

...
...

X2t−1
1 X2t−1

2 · · · X2t−1
v

×

Y1
Y2
...
Yv


The matrices above shows how the 2t syndrome equations can be written with
regards to the location and value of the error.

4.4 Decoding Algorithm

The usual approach when wanting to find and correct errors using Reed-Solomon
codes is to first calculate the syndromes, then find the error locator polynomial
based on the syndromes. After this is done, the roots of the error locator poly-
nomial can be evaluated to find the location of the error. When the location is
known, the error value can be found. The last step in the decoder process is to
correct the error.

A equation know as the key equation, is often used to find the error locator poly-
nomial and error evaluator polynomial. These two polynomials are used in the
decoding process to find the error locations and error values. The process of find-
ing the error locator polynomial and the error evaluator polynomial, thus solving
equation 4.8, is sometimes refereed to as the key equation solver [5].

Ω(x) = S(x)σ(x)modx2t (4.8)

18

The key equation shown in equation 4.8 describes the relationship between the
error locator polynomial, the syndrome polynomial and the error evaluator poly-
nomial.

The error locator polynomial, which is used to find the error locations, can be
defined as shown in equation 4.9 [7].

σ(x) = (1 +X1x)(1 +X2x)....(1 +Xvx)

= 1 + σ1x++ σv−1x
v−1 + σvx

v (4.9)

In equation 4.9 the inverse X−1v of the error locators are the roots and v is the
errors.

To solve equation 4.8, the error evaluator polynomial also has to be found. The
error evaluator polynomial, also referred to as the error magnitude polynomial, is
a polynomial defined as shown in equation 4.10. This polynomial is later used to
find the error values.

Ω(x) =
0∑

i=v−1

Ωix
i (4.10)

Based on the key equation we can write the error evaluator polynomial as shown
in equation 4.11. Where v is the errors.

Ω(x) =
v∑
l=1

YlXl

v∏
j=1,j 6=l

(1−Xjx) (4.11)

The syndrome polynomial used in the key equation was defined in equation 4.6
section 4.3.

Several different techniques can be used to solve the key equation, and find the
coefficients of the error locator polynomial σ(x). One method is to use the fact
that equation 4.9 has errors located at Xl, if the root X−1l makes σ(x) = 0 for
l = 1, 2, ..., v. By using this, we can multiply by YlX i+v

l on both sides of equation
4.9, as shown in equation 4.12 [5].

Yl(X
i+v
l + σ1X

i+v−1
l ++ σvX

i
l) = 0 (4.12)

For each value of l and i we can write:

v∑
l=1

YlX
i+v
l + σ1

v∑
l=1

YlX
i+v−1
l ++ σv

v∑
l=1

YlX
i
l = 0 (4.13)

19

If equation 4.7 is combined with 4.13 we can write [7]:

Si+v + σ1Si+v−1 ++ σvSi = 0 i = 0, 1,, 2t− v − 1 (4.14)

Siσv + Si+1σv−1 ++ Si+v−1σ1 = −Si+v (4.15)

Equation 4.15 can be used to find the coefficients of the error locator polynomial.
For v errors v equations can be written to find the coefficients σ. This can be
written as a matrix as shown in 4.16 [5].


S0 S1 · · · Sv−1
S1 S2 · · · Sv

S2 S3 · · ·
...

...
...

Sv−1 Sv · · · S2v−2

×


σv
σv−1
σv−2
...
σ1

 =


−Sv
−Sv+1

−Sv+2
...

−S2v−1

 (4.16)

The equations in matrix 4.16 are called Newton identities. To solve the matrix
and find the values of σ, the inverse of the matrix in 4.16 has to be found [5]. This
would require that we know how many errors there are (must know v). One way
of finding v is by choosing an appropriate value for v, for instance v = t, and then
calculate the determinant of the matrix in 4.16. If the determinant is non-zero, the
correct value of v was chosen (correct amount of errors) [5]. If the determinant is
zero, another value for v must be chosen. This is the direct method for finding the
error locator polynomial. When the error locator polynomial has been found using
the direct method, the error evaluator polynomial can be found by substituting
the error locator polynomial into the key equation.

There are also other approaches that can be used to find the coefficients of the error
locator polynomial and the error evaluator polynomial. The Berlekamp-Massey
and the Euclidean algorithm are two algorithms, that are commonly used to solve
the key equation. These techniques are more efficient than the one described here.

4.4.1 Berlekamp-Massey Algorithm

The Berlekamp-Massey algorithm is a algorithm used to find the coefficients of
the error locator polynomial shown in equation 4.9. These coefficients can then
be substituted into equation 4.8 to find the coefficients of the error evaluator
polynomial, equation 4.10, thus solving the key equation. The coefficients can be
found by evaluating the syndromes shown in equation 4.6. The Berlekamp-Massey
algorithm is an iterative method, and it uses the equations shown in matrix 4.16
to find the coefficients of the error locator polynomial [1].

20

The Berlekamp-Massey algorithm finds the error locator polynomial using two
main steps:

First the minimum-degree polynomial σµBM(x), that satisfies the µth Newton iden-
tity in equation 4.16, is calculated.

The second step checks if the first polynomial σµBM(x) satisfies the (µ+ 1) Newton
identity. If it does, then σµ+1

BM (x) = σµBM(x). However, if it does not satisfy the
(µ+1) Newton identity, a correction term is added to σµBM(x) to get the polynomial
σµ+1
BM (x). This correction term is called discrepancy, and is denoted dµ. These steps

are continued until µ equals 2t (2t iteration steps). The error locator polynomial is
then formed by the σ2t

BM(x) polynomial. The minimum-degree polynomial obtained
in the µth iteration can be written as shown in equation 4.17 [1].

σµBM(x) = 1 + σµ1x+ σµ2x
2 + · · ·+ σµlµx

lµ (4.17)

Where lµ is the degree of the polynomial σµBM(x). The discrepancy dµ can be
found using equation 4.18 [1].

dµ = sµ+1 + σµ1 sµ + σµ2 sµ−1 + · · ·+ σµlµsµ+1−lµ (4.18)

Calculation of the minimum-degree polynomial σµ+1
BM (x) in iteration µ + 1 can be

done in the following way:

Algorithm 1 Calculating the µ + 1 iteration using the Berlekamp-Massey algo-
rithm
1: Input : dµ
2: if dµ = 0 then
3: σµ+1

BM (x) = σµBM(x)
4: lµ+1 = lµ
5: else if dµ 6= 0 then

(Goes back to a previous row ρ, such that dρ 6= 0 and ρ− lρ is maximum)
6: σµ+1

BM (x) = σµBM(x) + dµd
−1
ρ x(µ−ρ)σ(ρ)(x)

7: l(µ+1) = max(lµ, lρ + µ− ρ)

8: dµ+1 = sµ+2 + σµ+1
1 sµ+1 + σµ+1

2 sµ + · · ·+ σµ+1
lµ+1

sµ+2−lµ
9: end if

The Berlekamp-Massey algorithm is initialized using the following parameters:

µ = −1
σµBM = 1
dµ = 1
lµ = 0

µ− lµ = −1

21

When the 2t iterations are complete, the minimum degree error locator polynomial
σ
(2t)
BM has been found. The Berlekamp-Massey algorithm is a serial algorithm where

the error locator polynomial is first found. Then the error locator polynomial is
substituted into the key equation to find the error evaluator polynomial. Once
these two polynomials have been found, the Chien search and the Forney method
can then be used to find the error locations and error values.

As seen in line six of algorithm 1, the Berlekamp-Massey algorithm requires in-
version. To remove the use of inversion in the Berlekamp-Massey algorithm, an
inversionless Berlekamp-Massey algorithm can be used.

4.4.2 Inversionless Berlekamp-Massey Algorithm

In [14] an inversionless Berlekamp-Massey algorithm was presented, which removes
the use of inversion when using the Berlekamp-Massey algorithm. The algorithm
presented in [14] is a 2t-step iterative algorithm and is shown in algorithm 2.

Algorithm 2 Inversionless Berlekamp-Massey algorithm
Initial Condition:

D−1 = 0, δ = 1
σ−1(x) = τ−1(x) = 1
∆0 = S1

1: for i = 0→ 2t− 1 do
2: σi(x) = δ × σi−1(x) + ∆ixτ i−1(x)
3: ∆i+1 = Si+2σ

i
0 + Si+1σ

i
1 + · · ·+ Si−vi+2σ

i
vi

4: if ∆i = 0 or 2Di−1 ≥ i+ 1 then
5: Di = Di−1, τ i = xτ i−1(x)
6: else
7: Di = i+ 1−Di−1, δ = ∆i

8: τ(x) = σi−1(x)
9: end if
10: end for

In algorithm 2, σi(x) is the ith step error locator polynomial with degree vi, and
the coefficients of σi(x) are σij. ∆i is the ith step discrepancy and δ is the previous
discrepancy. τ i(x) is an auxiliary polynomial and Di is used to track the degree
of the polynomial in the ith step.

From algorithm 2 we can see that there is no division, therefore no inversion is
needed to calculate the error locator polynomial.

Having calculated the error locator polynomial, the error evaluator polynomial can
be calculated using the key equation. Calculation of the error evaluator polynomial
Ω(x) can be written as shown in equation 4.19 and 4.20 [14].

22

Ω(x) = S(x)σ(x)modx2t

= (S1 + S2x+ · · ·+ S2t−1
2t)

×(σ0 + σ1x+ · · ·+ σvx
v)modx2t

= Ω0 + Ω1x+ · · ·+ Ωt−1x
t−1 (4.19)

Ωi = Si+1σ0 + · · ·+ S1σi , i = 0, 1, · · · , t− 1 (4.20)

When using the inversionless Berlekamp-Massey algorithm, calculation of the error
evaluator polynomial is performed after the error locator polynomial has been
found. Since the two polynomials are calculated in sequence the latency of the
inverionless Berlekamp-Massey algorithm is higher then an algorithm where the
two polynomials are calculated in parallel.

4.4.3 Euclidean Algorithm

The Euclidean algorithm is a well known algorithm, which is used to find the
greatest common divisor of two numbers [1]. For two numbers a and b the greatest
common divider (GCD) is r = GCD(a, b). This algorithm also calculates two
coefficients, s and t, which is used to solve the key equation.

r = sa+ tb (4.21)

To easier see that the Euclidean algorithm can be used so solve the key equation,
the key equation can be rewritten as shown in equation 4.22 [1].

Λ(x)S(x)− µ(x)x2t = −Ω(x) (4.22)

Where µ(x) is a polynomial that satisfy the key equation [1]. By applying the
Euclidean algorithm to S(x) and x2t, which are the two known, we get GCD r, s
and t. This can be written for the ith recursion as shown in equation 4.23 [1].

ri(x) = si(x)x2t + ti(x)S(x) (4.23)

By solving the key equation we want to obtain Ω and σ. When using the Euclidean
Algorithm we get the two following solutions, shown in equation 4.24 and 4.25,
after applying the algorithm.

Ω(x) = −σri(x) (4.24)

23

σ(x) = σti(x) (4.25)

As the equations show we need to obtain ri(x) and ti(x). This is done by using
the two following recursions [1]:

ri(x) = ri−2(x) + q(x)ri−1(x) (4.26)

ti(x) = ti−2(x) + q(x)ti−1(x) (4.27)

The value of ri is the remainder when dividing ri−2 by ri−1, and ti is the remainder
when dividing ti−2 by ti−1. q(x) is the quotient polynomial at the i division. The
algorithm is initialized with the following parameters:

i = −1
r−1 = x2t

r0 = S(x)
t−1 = 0
t0 = 1

The recursion continuous as long as deg(ri(x)) ≥ t. When deg(ri(x)) < t, the
recursion stops and a constant λ is multiplied by equation 4.23 to get the resulting
equations, previously shown in equation 4.24 and 4.25 [1]. The Chien search and
Forney method can then be used to find the error locations, and the error values.

4.5 The Chien Search

After the error locator polynomial and error evaluator polynomial have been cal-
culated, a method called the Chien search can be used to find the roots of the
error locator polynomial [15]. The Chien search is a trial and error method, where
each of the elements of the field GF (2m) are substituted into the error locator
polynomial.

σ(x) = σ(αi), for i = 0, 1, ..., n− 1 (4.28)

σ(αi) = 0 (4.29)

If the condition in equation 4.29 is satisfied, the value is a root and the error
location is then the inverse position of i, which is (n− 1). If σ(αi) 6= 0 there is no
error at that position.

24

4.6 Forney Algorithm

After having found the error locations with the Chien search, Forney’s algorithm
can be used to find the error values [16]. The Forney algorithm uses the error
evaluator polynomial and the error locator polynomial to find the error values.
When using the Forney algorithm the error value Yl at location Xl is given by
equation 4.30.

Yl = X1−b
l

Ω(X−1l)

σ′(X−1l)
l = 1, 2,, v (4.30)

Where Ω(x) is the error evaluator polynomial, σ′(X−1l) is the derivative of σ(X−1l)
and v is the number of errors. Equation 4.30, which is used to find the error value,
only gives a valid result for symbol positions containing an error.

25

26

Chapter 5

Implementation

5.1 Symbol and Correction Size

Before implementing the Reed-Solomon encoder, the symbol bit size and correction
capability of the Reed-Solomon code have to be chosen. The symbol bit size
determines the amount of symbols in the Reed-Solomon code. Larger symbol bit
size gives a larger Galois field size, which again increases the number of information
bits the encoder can encode. The symbol size is given by m and the field size is
given by GF (2m), where m is the number of bits in each symbol, as explained in
section 2.3.

The correction capability of the Reed-Solomon code will also affect how much
information it is possible to encode. By increasing the correction capability i.e. the
parity symbols added, the number of information bits we can send will decrease. A
trade-off between symbol size and correction capability should therefore be found.

It is desirable that the data packages that are going to be encoded are between
16 – 32 bytes (128 – 256 bits). In this thesis, the size of the data packages were
chosen to be 16 bytes per package. Choosing to use 16-byte data package, give the
possibility of exploring smaller Reed-Solomon codes.

Several different symbol size options and correction sizes were explored. Table
5.1 shows the different symbols and parity sizes that were evaluated. Choosing a
symbol size of either 4 or 8-bit is probably the easiest solution. Both can divide
the 16-byte package and give an integer. This makes it easier to divide the data
package into symbols. Especially, when using 8-bit shift registers for shifting data
in to the encoder and data out from the encoder.

27

Correction Correction Information Transmissions
Bit size n k Parity capability (%) bit needed

4 15 11 4 2 13.33 44 3
5 31 27 4 2 6.45 135 1
5 31 25 6 3 9.67 125 2
5 31 23 8 4 12.90 115 2
6 63 55 8 4 6.35 330 1
8 255 239 16 8 3.14 1912 1

Table 5.1: Different symbol and correction sizes

A 4-bit encoder would need to divide the 16-byte data package into 32 symbols. A
Reed-Solomon code using a symbol size of 4-bit only encodes and sends a total of
15 symbols each time. Multiple transfers would therefore be needed to send the 16
bytes. How many transmissions that are needed, depends on the chosen correction
capability. When using a symbol size of 8-bit, only 16 symbols would be needed
for encoding the 16 bytes. A Reed-Solomon code using 8-bit have a total of 255
symbols. Choosing a 8-bit symbol size would give an inefficient system, as only 16
of the 255 symbols would contain useful information.

Both a 5-bit system and a 6-bit system were evaluated, as shown in table 5.1.
The 6-bit system was quickly found unsuitable, as it transfers over twice as much
data as needed. The 6-bit system would be using time to encode symbols that is
considered useless. To save time as smaller system should be chosen.

Three different 5-bit systems were considered, where the symbol correction size was
two, three and four. The first 5-bit system can correct up to two symbol errors, and
has the capability of sending up to 135-bit of information in one transmission. The
16-byte data package could be transmitted after only one encoding cycle, which is
desirable. The down side is that it only has a correction capability of 6.45%. The
two other 5-bit system have a larger correction capability. The 5-bit systems with
the possibility of correction up to three and four symbol errors, need to transmit
two times to send the 16-byte data package. Since both systems need to transfer
two times, the 5-bit system that can correct four errors would be the better option
between the two. The reason for this is the increased error correction capability.

It is not known what kind of environment the system is going to be used in. Choos-
ing the right correction capability is therefore hard. For Reed-Solomon systems
used to transfer data where there is a lot of noise, it is obvious that a larger cor-
rection capability is important if not wanting to retransmit. But lager correction
capability equals less “information” in each transmission. Sending the whole data
packet in one transmission could be very desirable. In this thesis the smallest
5-bit system with the possibility of correcting two symbol errors have been chosen.
This makes it possible to send 135 bits of information in one transmission, thus
the whole 16 bytes of data.

28

Figure 5.1: 8-bit to 5-bit conversion

Microcontrollers often use 8-bit shift registers to shift the data. It is therefore
desirable to look at how these 8-bit can be converted to a data package of 5-bit.
The shifting of a 8-bit data package to 5-bit data package can be done as shown in
figure 5.1. As shown in the figure, the first five bits are put in the first output. The
remaining three bits are put in the second output. The last two places in the second
output is filled with bit values from the second input. This bit converting process
becomes complicated when 16 bytes is to be shifted into the encoder, and a fair
amount of hardware is needed. In this thesis a module converting a 8-bit package
to a 5-bit package has been implemented. This module was not a main focus of
the thesis, and it has therefore not been optimized. Because no optimizations
were performed, the in shifting module consumed a large area. The module was
therefore not used when synthesis and power estimations were performed on the
Reed-Solomon encoder and decoder.

In this thesis p(x) = x5 + x2 + 1 is chosen as the primitive polynomial for GF (25).
The field elements for GF (25) with p(x) = x5 + x2 + 1 can be seen in appendix
A.1.2.

5.2 Implementing Arithmetic Operations

When designing the Reed-Solomon system, different arithmetic operations need to
be implemented. The Galois field arithmetic operations were described in section
2.4.1 and 2.4.2. Techniques for implementing these operations will be described in
the next subsections.

5.2.1 Addition

Galois field addition, which is an addition modulo-2 operation, can be implemented
using a two input XOR gate. To implement a m bit addition module, we need m
such XOR gates.

5.2.2 Galois Field Multipliers

Multiplication in Galois field is a more complicated process than the addition
process, as mentioned in section 2.4.2. The multipliers can be implemented using

29

constant multipliers, memory multipliers and full multipliers.

Constant Multipliers
Multipliers with one variable input and one fixed input is called a constant multi-
plier. A constant multiplier can be implemented using a bit-parallel full multiplier,
where one of the inputs are fixed. This is not necessarily the optimal solution, as
a full multiplier used as a constant multiplier will have redundant circuitry. The
representation with the least Hamming weight, i.e. the representation with the
fewest non-zero values, is the minimal representation the constant multiplier can
have [17]. By finding the minimal representation, a dedicated logic constant mul-
tiplier can be implemented. This reduces the implementation complexity of the
multiplier.

A constant multiplier can be constructed using the general polynomial represen-
tation of a = a0 + a1α + a2α

2 + . . . + am−1α
m−1, and then multiplying by the

constant value. When multiplying with the constant value, a shifted version for
each non-zero coefficient is produced in the columns αm to α2m−2. These shifted
values are substituted with a m-bit equivalent from the field GF (2m). The val-
ues in the columns α0 to αm−1 are then added to give the minimal representation
from the input to the output. An example on how a 5-bit constant multiplier is
constructed, is shown in appendix B.1.1.

Memory Multipliers
Multiplication in Galois field can also be implemented using a look-up table. This
look-up table is implemented using read only memory (ROM) . When multiplying
a value by a constant in a small Reed-Solomon design, this type of implementation
method can be used. For a bigger design with 8 bit, the number of entries for each
multiplier would be 28 = 256. If a full multiplier is implemented as a look-up
table, the number of entries will be 22×8. From this we can draw the conclusion,
that implementing multipliers as look-up tables are very inefficient when the bit
size increases.

Full Multipliers
Full multipliers can be implemented by using polynomial multiplication. In polyno-
mial multiplication the finite field elements are represented using the polynomial
basis. This multiplication approach can be written as a multiplication modulo
p(x), as shown in equation 5.1.

c(x) = a(x)b(x) mod p(x) (5.1)

Where a(x) and b(x) are two field elements, p(x) is a degree m irreducible poly-
nomial over GF (2m) and c(x) is the product.

The polynomial basis multiplication, shown in equation 5.1, is performed in two
steps [18]. First polynomial multiplication is performed, then a reduction modulo
an irreducible polynomial (field generator polynomial) is performed. The polyno-
mial multiplication is written as shown in equation 5.2, where d(x) is the product

30

of the multiplication.

d(x) = a(x)b(x) (5.2)

The polynomial d(x) has a maximum degree of 2m−2, and the coefficients of d(x)
are determined by the expression in equation 5.3 [18]. Equation 5.3 is a bit-parallel
computation, and have a gate complexity of m2 AND gates and (m − 1)2 XOR
gates.

dk =


∑k

i=0 aibk−i, k = 0, . . . ,m− 1∑2m−2
i=k ak−i+(m−1)bi−(m−1), k = m, . . . , 2m− 2

(5.3)

When d(x) = a(x)b(x) has been computed, a reduction modulo an irreducible
polynomial p(x) is performed. Reducing the polynomial product d(x) of degree
2m − 2 by a degree m polynomial p(x), gives a resulting polynomial with degree
deg(c(x) ≤ m − 1). The reduction involves mapping the coefficients dm − d2m−2
of d(x) into the coefficients c0 − cm−1 of c(x) by using p(x). An example on how
a 5-bit full multiplier is constructed can be seen in appendix B.1.2.

5.2.3 Division

The easiest way to perform division in finite field is to multiply with the inverse
of the divisor, as described in section 2.4.2. The inverse field values can be stored
in a look-up table with 2m entries to represent all the inverses field elements. To
complete the division process, the inverse value is multiplied with the dividend
using a full multiplier.

5.3 Implementation Techniques

To find a suitable implementation with the lowest energy consumption for both
the Reed-Solomon encoder and decoder, different implementation techniques have
been tested.

The Reed-Solomon encoder implementation chosen in this thesis has very low
complexity. Clock gating was therefore the only implementation technique di-
rectly used to reduce the power consumption, and thereby reducing the energy
consumption.

The different implementation techniques used to possibly reduce the energy con-
sumption in the decoder are:

• Reduce decoding time by using pipelined modules

31

• Compute only half of the syndrome values

• Two-parallel syndrome cells to reduce decoding time

• Reduce number of calculations in Forney module

• Clock gating implementation of the modules

How these techniques have been implemented are described in the next subsections.
The different decoder configurations used for synthesis are described in section 7.3
and 7.4.

5.4 Implementation of Encoder

The Reed-Solomon encoder can be implemented using different techniques. One of
the most common ways of implementing the encoder, is by using a pipelined bit-
serial architecture. This implementation can be achieved by using a linear feedback
shift register (LFSR) circuit, [5], [7], [19]. The Reed-Solomon encoder using LFSR
is illustrated in figure 5.2. The architecture consist of 2t Galois multipliers, 2t
Galois adders, 2t registers, a multiplexor and an AND-gate to prevent further
feedback into the encoder, when all the m-bit symbols have been shifted in. The
registers are used to store the remainder polynomial at each clock cycle. In this
thesis the Reed-Solomon encoder is implemented using a LFSR circuit.

Figure 5.2: Reed-Solomon encoder architecture

The encoding process using the LFSR based design can be described in the fol-
lowing way:

First the message symbols are shifted from position n − k down to 0, to position
n − 1 down to n − k. The n − k − 1 positions are then filled with zeroes. This

32

allows the parity symbols to be placed in the n−k−1 positions. Then the message
symbols are shifted symbol by symbol into the encoder. Each message symbol is
multiplied with the generator polynomial using Galois field multiplication. The
results of these multiplication are then added to the previous results, which are
stored in the registers in figure 5.2. During this time, the output control enable
only the input data to be shifted through. When all the symbols have been shifted
through the encoder, the registers shown in figure 5.2 will hold the remainders.
These remainders are the parity symbols, which will be added to the original
message polynomial before being transmitted. To shift out the remainders stored
in the registers, the control signal connected to the AND gate is set to zero. This
allows input values of only zeroes to be passed into the encoder. In this way the
parity symbols will be shifted to the output without altering their values. It takes
k+ 1 clock cycles to shift through all the message symbols, and n+ 1 clock cycles
to output the whole codeword. After the n+ 1th clock cycle the encoder can start
encoding new data for transmission [20].

To reduce the hardware needed for the implementation, a fixed-rate encoder can
be used. A fixed-rate encoder has a predetermined generator polynomial, which
allows the encoder architecture to be implemented using constant multipliers. This
reduces the hardware complexity of the multipliers, thus reducing the overall area
of the encoder. In this thesis the code generator polynomial shown in equation
5.4 has been used. Since the Reed-Solomon system implemented in this thesis can
correct up to two symbol errors, four consecutive elements of the field as roots
are required. To reduce a small part of the hardware implementation the roots
starting from αb where b = 0 have been chosen. By choosing the roots starting
from α0 the syndrome module and Chien search module in the decoder will have
a reduction in complexity since α0 = 1.

g(x) = α0x4 + α23x3 + α17x2 + α26x+ α6

= x4 + 15x3 + 19x2 + 23x+ 10 (5.4)

5.5 Implementation of Decoder

The Reed-Solomon decoder implemented in this thesis uses a syndrome based
architecture. The syndrome based architecture calculates 2t syndrome values to
detect if errors have occurred in the codeword. Reed-Solomon with syndrome based
decoding was described in chapter 4. The syndrome calculation, key equation
solver, Chien search, Forney method and error correction unit can be implemented
in different ways. An overview of the different implementations done in this thesis
can be seen in figure 5.3. In the next subsection the methods for implementing
the Reed-Solomon modules are described.

33

Figure 5.3: Implemented Reed-Solomon decoding techniques

5.5.1 Implementation of Syndrome Calculation

Implementation of the syndrome calculation module is done using equation 4.7
as a reference. The received symbols are multiplied by the roots of the generator
polynomial, αi, and then the terms are added together. The implementation is
illustrated in figure 5.4.

Figure 5.4: Syndrome cell

The syndrome cell, shown in figure 5.4, consist of a adder, a constant multiplier,

34

which multiply by αi, and a register which holds the previous result. Each root of
the generator polynomial, αi, has to be substituted into the received polynomial.
This requires the syndrome module to consist of 2t syndrome cells to be able to
calculate all the syndrome values.

The each symbol of the codeword is serially input into the syndrome module, and
it takes n clock cycles to calculate all the syndrome values.

By implementing a parallel syndrome architecture, the number of clock cycles
needed to calculate the syndrome values can be reduced to

n

2
. The parallel archi-

tecture can be achieved by using two-parallel syndromes cells [21]. A two-parallel
syndrome cell is shown in figure 5.5. When using the two-parallel syndrome cell,
two symbols are used as input at the time. One input is for the odd symbols, and
one is for the even symbols. As seen from the input sequence in figure 5.5, the
input containing the odd symbols are delayed one clock cycle. This enables us to
calculate rn−1(αi)2 + rn−2α

i + rn−3 in the same clock cycle.

Figure 5.5: Two-parallel syndrome cell

In [22] a technique for reducing the power consumption of the syndrome compu-
tations is suggested. The idea is to reduce the number of syndrome calculations
needed to determine if the received codeword has errors or not. The standard ap-
proach is that a codeword is error free if all the 2t syndromes are equal to zero. By
using the first t syndrome values as error detectors, we can reduce the number of
calculations needed to determine if a codeword is error free. If the first continuous
t symbols equal zero, all 2t syndromes will equal to zero. This implies that if t
syndromes are zero, all error values are zero or the decoder is out of correction
capability (verrors > t). Either way the decoding procedure can be stopped. If not
t continuous syndromes are zero, the decoder will continue to calculate the rest of

35

the 2t syndromes. For applications with low probability of errors occurring, this
technique could reduce the power consumption.

5.5.2 Implementation of Key Equation Solver

In this thesis, three different techniques for finding the error locator polynomial
and error evaluator polynomial have been described. These algorithms essentially
solve the key equation, which was presented in section 4.4. The direct method
described in section 4.4, can be very efficient way of solving the matrix shown in
4.16 for a small number of errors. As the number of errors increase this algorithm
becomes more and more complicated, thus inefficient because we have to do an
exhaustive search to find the number of errors.

The Euclidean algorithm described in section 4.4.3, can also be used to solve the
key equation. The algorithm uses Euclid’s GCD method to solve key equation,
thus obtaining the error-location polynomial and error evaluation polynomial. The
Euclidean algorithm is a parallel algorithm, which means that it computes the error
locator and error evaluator polynomial in parallel.

In this thesis the Berlekamp-Massey algorithm is used to solve the key equation.
The Berlekamp-Massey algorithm was described in section 4.4.1. The algorithm
has been chosen because of its low hardware complexity, and the possibility of
reusing some of the the logic elements. The hardware used to calculate the dis-
crepancy can for instance be reused to calculate the error evaluator polynomial.
An inversionless Berlekamp-Massey algorithm [14] is described in section 4.4.2.
This modified Berlekamp-Massey algorithm allows for the ith step error locator
polynomial to be calculated in parallel with the i+1 discrepancy. The algorithm
also removes the need for inversion when computing the error locator polynomial.

By decomposing the inversionless Berlekamp-Massey algorithm described in sec-
tion 4.4.2 we can easier see how the algorithm can be implemented [14].

σ
(i)
j =

{
δ × σ(i−1)

0 , for j = 0

δ × σ(i−1)
j + ∆(i)τ

(i−1)
j−1 , for 1 ≤ j ≤ vi

(5.5)

∆
(i+1)
j =

{
0, for j = 0

∆
(i+1)
j−1 Si−j+3 × σ(i)

j−1, for 1 ≤ j ≤ vi
(5.6)

In equation 5.5 and 5.6, σ(i)
j is the j th coefficient for the ith step error locator

polynomial, τ (i)j ’s are the coefficients of of τ (i)(x) and ∆
(i+1)
j ’s are the partial re-

sults when computing ∆(i+1). As seen from the equation, computation of σ(i)
j

requires the discrepancy computed at cycle zero and the j th error locator coef-
ficient computed at the previous step. Computation of ∆

(i+1)
j requires the error

36

locator coefficient σ(i)
j−1 and the partial discrepancy result ∆

(i+1)
j−1 , which is both

computed at previous cycle.

Similar, the computation of the error evaluator polynomial coefficients Ωi in equa-
tion 4.20 can be computed as shown in equation 5.7.

Ω
(j)
i =

{
Si+1σ0, for j = 0

Ω
(j−1)
i + Si−j−1σj, for 1 ≤ j ≤ i

(5.7)

By looking at the decompositions in equation 5.5 and 5.6, we can see that two
finite field multipliers and one finite field adder are needed to calculate the ith
step error locator polynomial. One finite field multiplier and one finite field adder
are also needed to calculate each partial result discrepancy. The architecture for
implementing the inversionless Berlekamp-Massey algorithm [14] can be seen in
figure 5.6. As seen from the architecture three finite field multipliers and two
finite field adders are required to calculate the error locator polynomial and the
discrepancy.

Figure 5.6: Inversionless Berlekamp-Massey algorithm architecture

The decomposed error evaluator polynomial in equation 5.7 can also be imple-
mented with a similar architecture as the one shown in figure 5.6. Figure 5.7
shows the architecture for computing the error evaluator polynomial. The archi-
tecture needs one finite field multiplier and one finite field adder if implemented
using equation 5.7.

37

Figure 5.7: Architecture for computing the error evaluator polynomial

The finite field multipliers in figure 5.6 and 5.7 are full multipliers, which was
described in section 5.2.2. The adders in figure 5.6 and 5.7 are implemented
using five 2-input XOR gates. The inversionless Berlekamp-Massey algorithm was
implemented as a finite state machine.

5.5.3 Implementation of Chien Search

Chien search is used to find the location of the errors using the error locator
polynomial σ(x). The error locations are found by substituting the roots α into
the error locator polynomial, and then adding all the terms together. If the sum
is equal to zero, an error position has been found. If the sum do not equal zero,
there is no error on that position. To check all the positions for a possible error,
the Chien search module has to compute all the values from σ(α0) to σ(αn−1).
This takes n clock cycles when the field size is n = GF (2m). The Chien search
cell for substituting αi into σi is shown in figure 5.8. Since σ0 only is a constant,
we need t such Chien search cells to compute σ(αi).

38

Figure 5.8: Chien search cell

The Forney algorithm needs both the derivative of the error locator polynomial
σ′(αi) and the Ω(αi) values. Both these values can be computed in the Chien
search block. By adding together all the odd terms σodd(αi) we get the derivative
σ′(αi). Ω(αi) can be calculated using the same Chien search cell used to calculate
σ(αi). The only difference is that the coefficient of the error evaluator polynomial
are used as input. t− 1 Chien search cells are needed to calculate Ω(αi).

5.5.4 Implementation of Forney Algorithm

The Forney algorithm calculates the error values by using the error positions found
with Chien search. The error values are found using equation 4.30 and then sub-
stituting the location Xj into the equation. For a given location ai this gives:

el = α−i
Ω(α−i)

σ′(α−i)
(5.8)

From equation 5.8 we can see that finite field division is needed to find the error
value. This can be achieved by multiplying with the inverse value of the divisor,
σ′(α−i). The inverse values are found by implementing a ROM, which stores
all the inverse field values. Figure 5.9 shows how the Forney algorithm can be
implemented [19]. Ω(αi), σ′(α−i) and σ(αi) are all calculated in the Chien search
module.

39

Figure 5.9: Forney module

The multiplier shown in figure 5.9 is a full multiplier, and is implemented as
described section 5.2.2. The first set of registers are used to store the values while
the inverse of σ′(α−i) is found.

5.5.5 Error Correction

When the error positions and error values have been found using the Chien search
and Forney algorithm, the error correction module corrects the errors. This is
done by adding the error values to the received codeword. The error correction
module reads the received codeword, which is temporarily stored in the decoder,
and then adds the error values to the codeword using XOR gates.

5.5.6 Decoder Architecture

Figure 5.10: Reed-Solomon pipelined decoding scheme

In section 5.5.1 through 5.5.5 implementation techniques for the Reed-Solomon
decoder have been presented. In this thesis two decoder architectures are imple-
mented using different modules. The first architecture is the pipelined architecture,

40

which is shown in figure 5.10. In this architecture the three last stages of the de-
coding process are connected in a pipelining stage. This means that the Forney
method calculates the error value right after the first symbol has been checked
for errors. In this architecture all the positions in the codeword are checked for
possible errors. This could lead to many unnecessary calculation in the Foreny
module, since not all symbols will have a valid error value. On the other hand,
this architecture has a low latency, because the Chien search, Forney and error
correction module are pipelined. A decoding diagram of the pipelined architecture
can be seen in figure 5.11.

Figure 5.11: Reed-Solomon pipelined decoding diagram

Figure 5.12: Reed-Solomon full serial decoding scheme

The second decoder architecture shown in figure 5.12, is a full serial architecture.
This means that the Forney module waits for the Chien search module to finish
all its calculations. When the Chien search is finished, the Forney module starts
performing its calculations, i.e. no pipelined modules. If all the error positions are
first found, only the error values to the know positions have to be calculated. This
reduces the number of calculations performed in the Forney module. The latency
of this architecture, however, is larger then the pipelined architecture, because no
errors are corrected until all the positions in the codeword have been checked for
errors. The decoding diagram for the full serial architecture can be seen in figure
5.13.

41

Figure 5.13: Reed-Solomon full serial decoding diagram

A more detailed block diagram of the general decoder architecture can be seen in
figure 5.14. The top level decoder consist of several modules. The first module
in the decoder is the input shift module. This module shifts in the codeword five
bits at the time. Each symbol is sent to the memory module and the syndrome
calculation module, using the IN_STAGE_OUT bus shown in figure 5.14. The
symbols are stored in separate addresses in the codeword memory module while
the decoder is decoding. Once the first symbol of the codeword has been shifted
into the decoder, the I_START signal is set high and the syndrome module starts
to calculate the syndrome values. When all the symbols have been shifted in and
all the syndrome values are calculated, the syndrome module check if a error has
occurred. This is done by checking if all the syndrome values are zero. If all the
syndromes equal zero the NO_ERROR flag goes high and the decoding process
stops. If not, the S_READY flag goes high, indicating that the error locator
polynomial can be calculated using the Berlekamp-Massey algorithm.

The syndrome values are sent to the Berlekamp-Massey module using the bus
signals S1 - S4. In the Berlekamp-Massey module the error locator polynomial is
calculated. When the error locator polynomial has been calculated, the L_READY
flag goes high. The error evaluator polynomial is then calculated using the syn-
drome values and the error locator polynomial. The Omega module reads the
coefficients of the error locator polynomial using the bus signals L0 - L2. Once
the error evaluator polynomial is calculated, the LW_READY flag is set high.
The Chien search will then use the two polynomials found by solving the key
equation to find the error positions. The Omega module transfers the coefficients
of the error evaluator polynomial to the Chien search module with the buses W0
and W1.

Depending on the architecture, the EP_READY flag will go high either after
the first position in the codeword has been check for error (pipelined architec-
ture), or after all the positions have been checked (full serial architecture). When
EP_READY is set high, the Forney module calculates the error values. The For-
ney module reads the error positions using the ERROR_POS bus, the derivative
of the error locator polynomial using the L_DER bus and the Ω(α) value using
the W_TOT bus. The EV_READY signal indicates that the error values are

42

ready. When both the EP_READY and EV_READY signals are high, the error
correction module reads the codeword symbols from the memory module, and cor-
rects the symbols that have an error. The decoder starts shifting out the corrected
symbols using the DATA_OUT bus when the RS_DONE signal is set high.

Figure 5.14: Block diagram decoder

43

44

Chapter 6

Verification and Test

The design and simulation of the Reed-Solomon encoder and decoder were both
done using Aldec Active-HDL 9.2 Education Edition. The HDL implementation
was written using Verilog.

To verify and test the Reed-Solomon encoder and decoder, each sub-module of
the designs were first tested separately, and then connected together and tested as
a system. The test vectors used for verification were generated using the Matlab
R2012b functions RSEncoder and RSDecoder in the communication toolbox.

6.1 Verification and Test of Encoder

The encoder system using LFSRs has four constant multipliers. These multipliers
were first tested separately, before being connected into the encoder system. This
was done using different values as input to the multipliers and then observing the
result at the output. Since the Reed-Solomon design is a 5-bit system, only 32
possible values (25 = 32), ranging from 0 to 31, can be used as input. The results
from the multiplication were verified using the look-up table provided by [23]. This
type of testing is not the most efficient way of doing verification, but for such a
small number of values it can easily be done without writing a large test bench.

To verify the encoder system with all sub-modules, a test bench was written using
Active-HDL. This test bench reads data from a text file, and then inputs it into
the Reed-Solomon encoder for encoding. The encoded values, i.e. the original
input data and parity symbols, are then compared to encoded values made using
Matlab. If the encoded data is equal to the data encoded using the RSEncoder
function in Matlab, the encoding is presumed to be correct.

To know that the encoder works for all possible input messages, the ideal solution
would be to test all possible values, which is 2732 = 6, 36 × 1045 (27 symbols of
information, each symbol can have a value between 0 and 31). This would take a
lot of time, and is not a very efficient way of testing the system.

45

To verify the system, the corner cases and some other special cases were tested
as input to the encoder. The preliminary test cases were used to check how the
encoder handles different input values. The test cases used are described below.

1. All symbol values are 31

2. All symbol values are zero

3. All symbol values are one

4. Increasing input values

5. Decreasing input values

6. Rapidly changing bit values

7. Different bit patterns

The test vectors used in these tests can be seen in table 6.1. 2000 randomly
generated vectors were also tested, to verify the functionality of the encoder. These
test vectors were randomly generated using a Matlab script.

All test vectors used for synthesis purposes were generated using the Matlab script
shown in appendix D.1.1. The script first randomly generates 16 bytes of data,
and then pad the remaining 7 bits with zeros, since only 16 bytes of information
is to be encoded each time. This gives a total of 135 bits, which is the total
number of bits that can be encoded with the 5-bit Reed-Solomon system. The
randomly generated data are then encoded using the RSEncoder function. Both
the generated data message and the codeword are written to separate text files.
These text files are uses as input to the test bench.

An example of some of the test vectors used is shown in appendix C.1.1.

Case Input symbols Parity symbols
1 31 6 21 18 30
2 0
3 16 20 31 26
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 24 2 8 18
5 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 3 22 1 16
6 21 10 21 10 21 10 21 10 21 10 21 10 21 10 21 10 21 10 21 10 21 10 21 10 21 10 21 2 19 10 17

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 19 15 18 14
7 27 4 27 4 27 4 27 4 27 4 27 4 27 4 27 4 27 4 27 4 27 4 27 4 27 4 27 25 21 1 9

31 31 31 0 0 0 31 31 31 0 0 0 31 31 31 0 0 0 31 31 31 0 0 0 31 31 31 5 11 20 5

Table 6.1: Test vectors used to verify encoder functionality

6.2 Verification and Test of Decoder

The decoder consists of the five main modules, i.e. syndrome calculation, key
equation solver, Chien search, Forney algorithm and error correction unit. It also
has a input stage, a memory module to store the symbols while decoding and
a ROM module, which holds the inverse field values. The functionality of the

46

decoder was verified in several steps before the design was synthesized. Five test
steps were used during the verification process. These five steps are listed below:

1. Individual module test

2. Decoding of codewords with no errors

3. Decoding of codewords with one error

4. Decoding of codewords with two errors

5. Decoding of several codewords in sequence

In the first test a hand calculated example was used to verify each module in-
dividually. When each module gave the expected result, all the modules were
connected and the same test case again applied. This was done to correct any
timing issues that occurred when connecting all the modules in the decoder. The
hand calculated example is shown in appendix B.2.

In the second step of the decoder verification, codewords containing zero errors
were tested. This was done to verify that the syndrome module can detect a
codeword with no errors, and notify this. The codewords used in this test were
the nine encoded messages shown in table 6.1.

The third step in the decoder verification was performed using encoded messages
with added noise. First codewords with one error were tested. All possible one
error combinations, which are n × n combinations, were added to an encoded
message and then decoded. To test all possible codeword combinations with one
error would not be very efficient, therefore the nine test vectors from table 6.1
were used. These test cases were presented in section 6.1. The total number of
test vectors for the nine test cases were 9× 961.

To test the decoder on codewords with two errors, the same encoded messages
used to test codewords with one error were used. To reduce the number of test
vectors, the two errors had the same value. For a codeword with the same two
error values there are 465 combinations, and for all error values the number of
combinations are 465 × n for each codeword. With the nine codewords used in
this test, the total number of test vectors are 9 × 465 × n. The Matlab script
shown in appendix D.1.2, with some modifications, was used to generate the test
vectors. Testing all possible two value combinations would give a total of 465×n2

test vectors for each codeword. This would give a large amount of test vectors, if
all codeword combinations should have been tested. However, by choosing good
corner cases, one can assume that the system works correct if all the selected test
vectors pass.

The last step in the decoder verification was performed using randomly generated
codewords as input to the decoder. This test was done to verify that the decoder
could handle decoding of several codewords in sequence. The codewords were
generated using a Matlab script and the RSDecoder function. The script can be
seen in appendix D.1.2.

47

The Matlab script first generates 27 random values between 0 and 31, and then
encodes these values. The encoded values are then added together with random
values (noise). The noise is randomly added to zero symbols, one symbol or two
symbols in the encoded codeword. The noisy codeword is then decoded using the
decoder function. The noisy codeword was used as input to the decoder, and the
Matlab decoded codeword was used as a comparison to the values from the decoder
system.

2000 random test vectors were generated and tested for the last verification step.
Each of these test vectors either had zero errors, one error or two errors. After
testing all these vectors, the functionality of decoder was assumed to be correct.
To verify the functionality of the all the decoder designs, the same procedure as
described above was used.

48

Chapter 7

Synthesis

The Reed-Solomon encoder and decoder were both synthesized using Synopsys
synthesize tools and a 45nm CMOS cell-library.

7.1 FreePDK 45nm CMOS Technology Library

The technology library used for ASIC synthesis is the 45nm CMOS technology
library found in the FreePDK package [24]. This library is developed by Oklahoma
State University, and is freely distributed for use in research projects. Information
about FreePDK can be found in [25]. Ideally for this thesis 90nm or 180nm CMOS-
technology should have been used, as this is the technology used by Energy Micro
in their microcontroller development. Cell-libraries are often very expensive and
license restricted. The FreePDK 45nm technology library was chosen for synthesis
in this thesis, because it was the only one available.

The cell-library uses a power supply voltage of 1,1 V.

7.2 Synopsys Synthesis Tools

In this thesis three Synopsys synthesis tools were used: Synplify Pro, Design Com-
piler and Power Compiler. Design Compiler and Power Compiler are accessed by
prompting the dc_shell command in a terminal window. The Design Vision tool
by Synopsys has also been used in some extent in this thesis. Design Vision is
the graphical user interface for the Design Compiler synthesis tools. Design Vi-
sion makes it possible to graphically view the synthesized design at both generic
technology (GTECH) level and gate level. It also lets the user perform Design
Compiler commands using a graphical user interface.

49

7.2.1 Synplify Pro

Synplify Pro is an FPGA synthesis software used for synthesizing RTL code into
FPGA logic. Synplify Pro was used at an early stage in the design process to
check for design violations, and to detect unwanted latches. The FPGA synthesis
also determines the speed and area usage of the design. These results are however
not relevant for comparison to an ASIC implementation, and are therefore not pre-
sented in this thesis. Xilinx Virtex-IV was used as target FPGA when synthesizing
with Synplify Pro.

7.2.2 Design Compiler and Power Compiler

Design Compiler is a synthesis tool, which compiles and converts a design written
in a hardware description language (HDL), into a gate-level netlist. This netlist is
then mapped to a technology library specified by the user.

The Design Compiler tool can be set up using the .synopsys_dc.setup file. In this
file the target library, symbol library, synthetic library and file source path are
defined. The setup file used in this thesis can be seen in appendix D.2.1.

When performing synthesis with Design Compiler, the area of the design is mea-
sured in absolute area. In this thesis the area results from synthesis are also
presented using NAND2 gate count. In the FreePDK 45nm technology library file
the NAND2 area was specified to be 1,887200.

The Power Compiler tool is accessed through Design Compiler. It is used for ana-
lyzing and minimizing power consumption at RTL and gate-level. Power Compiler
makes it possible to perform clock gating to reduce dynamic power consumption
and leakage optimization, to reduce standby power.

To be able to report the power consumption, Power Compiler analyzes and prop-
agates switching activity through the synthesized design. The switching activity
is obtained by simulating the design and generating a value change dump (.vcd).
The VCD files can be made using the following commands when simulating in
Active-HDL.

1. vcd file <file_name>.vcd

2. vcd add –r <tb_design>/<module_instance>/*

3. run

The VCD files are then converted to a SAIF file using the vcd2saif command in
Design Compiler. Switching Activity Interchange Format (SAIF) is a format used
by Power Compiler to calculate the power consumption of the design. The work
flow of how this is done can be seen in figure 7.1.

50

Figure 7.1: Generating SAIF files from RTL simulation

In this thesis only RTL-level power estimation has been preformed. The reason
for this is to speed up the estimation process. This comes to the expense of some
accuracy of the power estimations.

Three basic scripts were used when synthesizing the Reed-Solomon designs. The
first script was the constraints.tcl script. This script sets all the design constraints,
such as clock speed, input and output delay, input and output load and maximum
area when synthesizing. The clock speed was set to 40MHz, which is in between
the operation frequencies of Energy Micro’s microcontrollers (they range from 32
– 48MHz [26]). The constraints.tcl script can be seen in appendix D.2.2.

The other two scripts shown in appendix D.2.3 and D.2.4 are very similar to each
other. The main difference is the insert_clock_gating command, which is used in
the second script to automatically insert clock gating in the design. The flow of
the synthesis script is described below:

1. Read Verilog design files using the analyze command.

2. Elaborate the top-level module

3. Apply constrains using the constraints.tcl file

4. Insert clock gating using the insert_clock_gating command

5. Compile the design

6. Read .saif file containing switching activity using read_saif command

7. Write report files

51

7.3 Synthesis of Reed-Solomon Encoder

The Reed-Solomon encoder design in this thesis was synthesized using the De-
sign Compiler scripts described in section 7.2.2. The synthesis of the encoder was
performed in two parts. First the encoder design was synthesized and power esti-
mations were performed using the switching activity generated when one codeword
was being encoded.

In the second part, the encoder was synthesized with clock gate insertion. To see
the effect the clock gating had on the power consumption of the encoder, different
activity levels when encoding was simulated. Activity level indicates how much of
the simulation time the encoder is encoding data. The simulations were performed
using 20 test vectors and the activity levels were set to 100% 75%, 50%, 25% and
5%. The test vectors used can be seen in appendix C.1.1.

7.4 Synthesis of Reed-Solomon Decoder

Seven different Reed-Solomon decoder configurations were designed and synthe-
sized. Each design was simulated in Active-HDL to generate switching activity.
The switching activity was used during power estimation of the system.

7.4.1 Decoder Configuration 1

The first decoder configuration is implemented using the standard syndrome mod-
ule, key equation solver, Forney algorithm, Chien search and correction module.
These modules are described in section 5.5. Configuration 1 uses the standard
Berlekamp-Massey algorithm to calculate the error locator polynomial, and to
solve the key equation. The standard Berlekamp-Massey algorithm was described
in section 4.4.1. The Forney, Chien search and correction module are implemented
and connected together using pipelining. This is done to reduce latency in the
decoder. The pipelined architecture was described in section 5.5.6.

Decoder configuration 1 was simulated with test vectors containing zero errors,
one error and two errors. Switching activity generated during the simulation was
used to estimate the power consumption during the synthesis process. The test
vectors used can be seen in appendix C.2.1.

7.4.2 Decoder Configuration 2

Decoder configuration 2 is implemented with the same standard modules as used
in configuration 1, except for the standard Berlekamp-Massey algorithm. Configu-
ration 2 uses an inversionless Berlekamp-Massey algorithm instead of the standard

52

algorithm. The inversionless Berlekamp-Massey algorithm removes the need for
division, and therefore no inversion is needed to calculate the error locator poly-
nomial. The algorithm was further described in section 4.4.2.

Configuration 2 was simulated using the same test vectors as in configuration 1.
Information from this simulation was used to estimate the power consumption
during synthesis.

7.4.3 Decoder Configuration 3

The third decoder configuration is implemented with the standard syndrome mod-
ule, the inversionless Berlekamp-Massey algorithm, the standard Chien search,
Forney module and error correction module. This module uses the same pipelined
implementation on the Chien, Forney and correction module as used in configura-
tion 1 and 2. To reduce the power consumption in the design, the modules in this
configuration are implemented in such away that all modules not performing any
calculation, are not clocked.

Switching activity used for estimation of power consumption was generated during
simulation with test vectors that contained zero errors, one error and two errors.
The test vectors were the same as the one used for simulation of configuration 1
and 2.

Decoder configuration 3 was synthesized both with full clock gate insertion and no
clock gate insertion. The clock gate insertion was performed using the synthesis
process in Design Compiler. This process was descried in section 7.2.2.

7.4.4 Decoder Configuration 4

Decoder configuration 4 is implemented with a modified syndrome module. This
modified syndrome module calculates the first t syndrome values to check for
errors. If the first t syndromes are equal to zero, it is assumed that there are no
errors. If the syndrome values are not equal to zero, rest of the 2t syndromes are
calculated. The modified syndrome module is described in section 5.5.1. All other
modules in configuration 4 are the same one as used for configuration 3.

Configuration 4 was simulated using the test vectors in appendix C.2.1. The
switching activity from this simulation was used for estimation of the power con-
sumption. Synthesis was performed with no clock gate insertion.

7.4.5 Decoder Configuration 5

Configuration 5 is designed with a syndrome module that has a parallel archi-
tecture. The module uses two-parallel syndrome cells to calculate the syndrome

53

values, instead of the normal syndrome cells described in section 5.5.1. The two-
parallel syndrome cells enables the decoder to input two symbols into the syndrome
module at the time. This reduces the number of clock cycles needed to compute
the syndromes. The two-parallel syndrome cells architecture is described in sec-
tion 5.5.1. To reduce the power consumption, modules that are not performing
any calculations are not clocked.

The test vectors used as input during simulation were the same as used for the
other configurations. During synthesis of configuration 5, full clock gate insertion
was implemented. The synthesis results can be seen in section 8.2.5.

7.4.6 Decoder Configuration 6

Configuration 6 uses the two-parallel syndrome cell configuration together with
a modified Chien and Forney module. The Chien search module is implemented
so that it finds all the error positions, before the Forney module finds the error
values. The maximum number of calculations done in the Forney module are
therefore two. There is no pipelining in configuration 6, since the Chien search
finds all the error positions before any error values are found. This is the full
serial architecture described in section 5.5.6. The decoding time in configuration
6 is longer then in configuration 5. This is because the error correction module
waits for all the error positions and then for all the error values, before it starts to
correct errors.

Configuration 6 was synthesized with and without clock gate insertion. The test
vectors with zero errors, one error and two errors were used to generate switching
activity for the power estimations. Results from the synthesis and the estimated
power consumption are presented in section 8.2.6.

7.4.7 Decoder Configuration 7

Decoder configuration 7 is based on decoder configuration 5. This configura-
tion uses two-parallel syndrome cells in the syndrome module, the inversionless
Berlekamp-Massey algorithm and pipelined implementation of the Chien search,
Forney and error correction module. Configuration 7 has some improvements com-
pared to configuration 5. Configuration 7 has two data inputs into the decoder.
This allows two symbols to be shifted into the decoder in each clock cycle. This
improvements removes the need for a wait time before the syndrome values can
be calculated, and it should lead to a shorter decoding time.

Configuration 7 was synthesized with clock gate insertion, and switching activity
was generated using the test vectors in appendix C.2.1. The results from the
synthesis and the power estimations performed on configuration 7 are presented
in section 8.2.7.

54

Chapter 8

Synthesis and Simulation Results

The encoder and the decoder configurations were simulated and synthesized using
Active-HDL and Design Compiler from Synopsys. Switching activity from the
simulations was used to estimate the power consumption of the designs using
Synopsys Power Compiler.

8.1 Synthesis Results Encoder

Figure 8.1 shows a view of Design Vision and the synthesized encoder design. The
area and gate count results for the encoder can be seen in table 8.1. A NAND2
gate has been used as gate equivalent in this thesis. The NAND2 gate has an area
of 1,887200, as described in section 7.2.2.

55

Figure 8.1: Synthesized encoder view

Area NAND2 gate equivalent
Combinational 749 397
Sequential 372 197
Total 1121 594

Table 8.1: Area usage of encoder

The estimated total power consumption for encoding one codeword can be seen
in table 8.2. The table also shows the dynamic and leakage power for the same
test case. Table 8.3 shows the calculated energy consumption for the encoder that
encodes one codeword.

Internal Power Switching Power Leakage Power Total Power
(µW) (µW) (µW) (µW)
70.29 17.27 8.30 95.86

Table 8.2: Power consumption encoder

56

Total Power Runtime Total Energy
(µW) (µs) (nJ)
95.86 0.863 0.0827

Table 8.3: Energy consumption encoder

The dynamic power consumption for different activity levels is shown in figure 8.2.
The blue bars show the dynamic power for encoder with no clock gating and the
red bars show the dynamic power consumption for the encoder design with clock
gating.

100% 75% 50% 25% 5%

20

40

60

80

Activity

D
yn

am
ic

po
w
er
µ
W

No CG
CG

Figure 8.2: Dynamic power consumption with and without clock gating

Table 8.4 shows the power consumption when the encoder design is clock gated.

Internal Power Switching Power Leakage Power Total Power
(µW) (µW) (µW) (µW)
65.85 18.66 7.81 92.32

Table 8.4: Power consumption encoder with clock gating

57

8.2 Synthesis Results Decoder

8.2.1 Configuration 1 Synthesis and Simulation Results

The Reed-Solomon decoder configuration 1 is implemented with the standard
Berlekamp-Massey algorithm, which is used to solve the key equation. This con-
figuration is described in section 7.4.1. Figure 8.3 shows a screenshot of the syn-
thesized design. The synthesis and simulation results for decoder configuration 1
are shown in table 8.5, and table 8.6.

Figure 8.3: Block diagram view of configuration 1

Area NAND2 gate equivalent
Combinational 10593 5613
Sequential 5332 2825
Total 15925 8438

Table 8.5: Area usage of decoder configuration 1

58

Input Stage (2.9%)

Syndrome (8.4%)

Key (44.4%)

Chien (13.6%)

Forney (5.8%)

Correction (3.6%)

Memory (19.3%)

Inverse (1.5%)

Other (0.5%)

Figure 8.4: Area distribution decoder configuration 1

In figure 8.4 the area distribution for configuration 1 is shown. The estimated
power consumption for the standard Berlekamp-Massey module is shown in table
8.7. The energy consumption of decoder configuration 1 is shown table 8.8

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 565.11 22.68 101.01 689
1 569.50 28.73 101.01 699
2 575.15 31.42 101.01 708

Table 8.6: Power consumption decoder configuration 1

Errors Total Power (µW)
0 283.1
1 303.2
2 301.6

Table 8.7: Power consumption standard Berlekamp-Massey algorithm

Total Power Runtime Total Energy
Errors (µW) (µs) (nJ)

0 689 0.913 0.629
1 699 2.713 1.896
2 708 2.738 1.939

Table 8.8: Energy consumption configuration 1

59

8.2.2 Configuration 2 Synthesis and Simulation Results

Decoder configuration 2 was simulated and synthesized with the inversionless
Berlekamp-Massey algorithm. Configuration 2 is further described in section 7.4.2.
Synthesis results and estimated power consumption for decoder configuration 2 are
shown in table 8.9 and 8.10. A more detailed view of the power consumption for
the inversionless Berlekamp-Massey module is shown in table 8.11. The energy
consumption of configuration 2 can be seen in table 8.12.

Area NAND2 gate equivalent
Combinational 10204 5407
Sequential 5188 2749
Total 15392 8156

Table 8.9: Area usage of decoder configuration 2

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 550.55 22.48 97.69 671
1 554.48 27.92 97.69 680
2 560.63 31.19 97.69 690

Table 8.10: Power consumption decoder configuration 2

Errors Total Power (µW)
0 266.1
1 290.1
2 287.4

Table 8.11: Power consumption inversionless Berlekamp-Massey algorithm

Total Power Runtime Total Energy
Errors (µW) (µs) (nJ)

0 671 0.913 0.613
1 680 2.813 1.913
2 690 2.813 1.941

Table 8.12: Energy consumption configuration 2

8.2.3 Configuration 3 Synthesis and Simulation Results

The third decoder configuration was simulated and synthesized using the configu-
rations described in section 7.4.3. In this configuration inactive modules were not
clocked. This was done to reduce the power consumption of the system. Synthesis

60

results and the estimated power consumption for this configuration can be found
in table 8.13 and 8.15. The power consumption was estimated using test vectors
with zero errors, one error and two errors as shown in the table.

Area NAND2 gate equivalent
Combinational 11889 6299
Sequential 5668 3003
Total 17557 9302

Table 8.13: Area usage of decoder configuration 3

Area NAND2 gate equivalent
Combinational 7938 4206
Sequential 6065 3214
Total 14003 7420

Table 8.14: Area usage of decoder configuration 3 with clock gate insertion

Table 8.14 shows the area of configuration 3 with full clock gate insertion. Es-
timated power consumption with full clock gate insertion can be seen in table
8.16.

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 276.91 31.35 108.42 417
1 307 35.36 108.42 451
2 317.25 39.27 108.42 465

Table 8.15: Power consumption decoder configuration 3

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 175.40 34.56 100.16 310
1 126.42 38.72 100.20 265
2 133.39 41.53 100.20 275

Table 8.16: Power consumption decoder configuration 3 with clock gate insertion

Table 8.17 shows the energy consumption of configuration 3 with no clock gate
insertion. The energy consumption of configuration 3 with full clock gating can
be seen in table 8.18.

61

Total Power Runtime Total Energy
Errors (µW) (µs) (nJ)

0 417 0.938 0.391
1 451 2.963 1.336
2 465 2.963 1.378

Table 8.17: Energy consumption configuration 3

Total Power Runtime Total Energy
Errors (µW) (µs) (nJ)

0 310 0.938 0.291
1 265 2.963 0.778
2 275 2.963 0.815

Table 8.18: Energy consumption configuration 3 with clock gating

Figure 8.5 shows a detailed view of the power consumption for each module when
there are zero errors, one error and two errors. The power consumed by each
module measured in percentage is shown in figure 8.6 and 8.7.

62

5 20 40 60 80 100 120 140

Input Stage

Syndrome

Key

Chien

Forney

Correction

Memory

Inverse

Other

Power consumption µW

0 errors 1 error 2 errors

Figure 8.5: Power consumption of different modules in configuration 3

63

Input Stage (3.2%)

Syndrome (9.5%)

Key (24.3%)

Chien (9%)

Forney (7.5%)

Correction (4.3%)

Memory (29.4%)

Inverse (1.8%)

Other (11%)

Figure 8.6: Power consumption distribution with two errors

Input Stage (8.8%)

Syndrome (25.6%)

Key (11.6%)

Chien (3.6%)

Forney (2.3%)

Correction (1.2%)

Memory (34.1%)

Inverse (1.1%)

Other (11.7%)

Figure 8.7: Power consumption distribution with zero errors

8.2.4 Configuration 4 Synthesis and Simulation Results

Configuration 4 was simulated and synthesized with a modified syndrome module,
which calculates t syndromes first, to check if the received codeword is error free.
This configuration is described in section 7.4.4. The estimated power consumption
was done with regards to received codewords that had zero errors, one error and
two errors. The synthesis and power consumption results for decoder configuration
4 are shown in table 8.19 and 8.20. Table 8.21 shows the energy consumption of
configuration 4.

64

Area NAND2 gate equivalent
Combinational 11914 6313
Sequential 5781 3063
Total 17695 9376

Table 8.19: Area usage of decoder configuration 4

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 272.55 28.12 110.06 411
1 297.11 32.95 110.06 440
2 304.15 36.15 110.06 450

Table 8.20: Power consumption decoder configuration 4

Total Power Runtime Total Energy
Errors (µW) (µs) (nJ)

0 411 0.938 0.385
1 440 3.763 1.655
2 450 3.763 1.693

Table 8.21: Energy consumption configuration 4

8.2.5 Configuration 5 Synthesis and Simulation Results

Decoder configuration 5 was implemented using two-parallel syndrome cells, as
described in section 7.4.5. Synthesis results for configuration 5 can be seen in
table 8.22. The estimated power consumption is shown in table 8.24. Synthesis
and simulation results with full clock gate insertion are shown in table 8.23 and
8.25. The energy consumption of configuration 5 with full clock gating can be seen
in table 8.26.

Area NAND2 gate equivalent
Combinational 13222 7006
Sequential 5953 3154
Total 19175 10160

Table 8.22: Area usage of decoder configuration 5

Area NAND2 gate equivalent
Combinational 9089 4816
Sequential 6372 3376
Total 15461 8192

Table 8.23: Area usage of decoder configuration 5 with clock gate insertion

65

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 243.20 25.18 118.46 387
1 290.46 31.79 118.46 441
2 297.99 35.15 118.46 452

Table 8.24: Power consumption decoder configuration 5

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 115.82 31.46 109.54 257
1 111.71 36.80 109.54 258
2 118.44 39.16 109.54 267

Table 8.25: Power consumption decoder configuration 5 with clock gate insertion

Total Power Runtime Total Energy
Errors (µW) (µs) (nJ)

0 257 1.438 0.369
1 258 3.463 0.893
2 267 3.463 0.925

Table 8.26: Energy consumption configuration 5 with clock gating

8.2.6 Configuration 6 Synthesis and Simulation Results

Configuration 6 was implemented using a modified Chien search module, as de-
scribed in section 7.4.6. The synthesis results and the estimated power consump-
tion for this configuration are shown in table 8.27 and table 8.29. Synthesis and
simulation results with full clock gate insertion are shown in table 8.28 and 8.30.
Table 8.31 shows the energy consumption of configuration 6 with full clock gating.

Area NAND2 gate equivalent
Combinational 14256 7554
Sequential 7034 3727
Total 21290 11281

Table 8.27: Area usage of decoder configuration 6

Area NAND2 gate equivalent
Combinational 10063 5332
Sequential 7483 3965
Total 17546 9297

Table 8.28: Area usage of decoder configuration 6 with clock gate insertion

66

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 252.90 25.47 134.84 413
1 283.43 25.38 134.84 444
2 286.46 26.54 134.84 448

Table 8.29: Power consumption decoder configuration 6

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 122.82 32.14 126.49 281
1 102.71 30.49 126.46 260
2 105.40 31.51 126.46 263

Table 8.30: Power consumption decoder configuration 6 with clock gate insertion

Total Power Runtime Total Energy
Errors (µW) (µs) (nJ)

0 281 1.438 0.404
1 260 4.413 1.147
2 263 4.463 1.173

Table 8.31: Energy consumption configuration 6 with clock gating

8.2.7 Configuration 7 Synthesis and Simulation Results

Decoder configuration 7 was implemented using two-parallel syndrome cells. The
synthesis results for configuration 7 can be seen in table 8.32. The estimated
power consumption is shown in table 8.34. Synthesis and simulation results with
full clock gate insertion are shown in table 8.33 and 8.35. Energy consumption for
decoder configuration 7 can be seen in table 8.36.

Area NAND2 gate equivalent
Combinational 13805 7315
Sequential 5893 3122
Total 19690 10437

Table 8.32: Area usage of decoder configuration 7

Area NAND2 gate equivalent
Combinational 9463 5014
Sequential 6307 3341
Total 15770 8355

Table 8.33: Area usage of decoder configuration 7 with clock gate insertion

67

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 305.84 44.77 121.77 472
1 320.72 38.41 121.77 481
2 330.26 42.71 121.77 495

Table 8.34: Power consumption decoder configuration 7

Internal Power Switching Power Leakage Power Total Power
Errors (µW) (µW) (µW) (µW)

0 197.90 50.91 109.21 358
1 135.30 43.39 109.21 288
2 144.40 46.58 109.21 300

Table 8.35: Power consumption decoder configuration 7 with clock gate insertion

Total Power Runtime Total Energy
Errors (µW) (µs) (nJ)

0 358 0.587 0.210
1 288 2.612 0.752
2 300 2.612 0.783

Table 8.36: Energy consumption configuration 7 with clock gating

68

Chapter 9

Evaluation of Results

The Reed-Solomon system designed in this thesis has not been compared to pre-
viously made Reed-Solomon designs. The reason for this is that no other RS(31,
27) code, synthesized with 45nm CMOS technology have been found.

9.1 Encoder

The Reed-Solomon encoder was implemented to be as compact as possible. The
constant multipliers implemented in the encoder uses an absolute area of 23− 40,
compared to the full multipliers that uses an absolute area of 235. By using
constant multipliers the total area of the design decreases.

Clock gating was implemented in the encoder design to reduce the power consump-
tion. During encoding, almost all logic elements are clocked. To see the effect of
the clock gating, different activity levels had to be simulated. This was described
in section 7.3. Figure 9.1 shows the total energy consumption for the encoder with
different activity levels, when encoding 20 codewords. When the activity level of
the encoding goes below 50%, we see the largest energy saving potential. Energy
consumption can be reduced with up to 65%, when implementing clock gating on
a encoder that has an activity level of only 5%.

69

100% 75% 50% 25% 5%

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·10−8

E
ne
rg
y
(J
)

No CG CG

Figure 9.1: Energy consumption of encoder

9.2 Decoder

The different decoder configurations were presented in section 7.4.

The chart in figure 8.4 on page 59 shows that the implementation of the Berlekamp-
Massey algorithm for solving the key equation, takes up almost half of the total
area of the decoder. This was expected, as the implementation of the Berlekamp-
Massey algorithm uses several Galois multipliers and adders. It has also several
temporary registers used for storing intermediate result. It is also worth noticing
that the memory unit, used for storing the received symbols while decoding, takes
up the second most area in the decoder. The “other” clause shown in the chart is a
control circuit and multiplexers implemented at the top-level of the decoder. The
control circuit and multiplexers are used to control which module that can access
the memory modules.

Comparing the synthesis results for configuration 1 and 2 shown in table 8.5 and
8.9, one can see that configuration 2 has a 3,3% lower gate count than configuration
1. The inversionless Berlekamp-Massey algorithm do not need to access the ROM
that stores the inverse Galois field values. This reduces some of the logic needed
to implement the inversionless Berlekamp-Massey module. Thus, the overall area

70

usage of the encoder decreases.

When comparing the total power consumption of the two configuration shown
in table 8.6 and 8.10 on page 59 and 60, we can seen that configuration 2 uses
between 18 - 19µW less power than configuration 1 in all three test cases. Table
8.7 on page 59 and table 8.11 on page 60 shows the power consumption of the two
different Berlekamp-Massey algorithms. Comparing these results, we see that the
inversionless Berlekamp-Massey implementation uses slightly less power than the
standard Berlekamp-Massey algorithm.

Total Energy Config 1 Total Energy Config 2
Errors (nJ) (nJ)

0 0.629 0.613
1 1.896 1.913
2 1.939 1.941

Table 9.1: Energy consumption of configuration 1 and 2

However, the configuration 2 with the inversionless Berlekamp-Massey implemen-
tation uses about 100ns more to decode a codeword. Table 9.1 shows the energy
consumption of configuration 1 and 2. Comparing the results for the two designs,
configuration 2 uses at average 0,50% more energy than configuration 1, when
decoding codeword containing errors.

Decoder configuration 3 was synthesized both with and without clock gate in-
sertion. The synthesis results can be seen in table 8.13 and 8.14 on page 61.
Configuration 3 with clock gate insertion has a decrease in gate count with about
20%. Design Compiler optimizes the design when clock gate insertion is being
used. This results in lower area usage.

Dynamic Power Dynamic Power With CG Reduction
Errors (µW) (µW) (%)

0 308.26 209.96 32
1 342.36 165.14 52
2 356.52 174.92 51

Average 45

Table 9.2: Comparison of dynamic power configuration 3

Table 9.2 shows the dynamic power consumption for decoder configuration 3. Con-
figuration 3 with clock gate insertion has a average 45% reduction in dynamic
power, compared to the same configuration with no clock gating.

Configuration 4, which was implemented using a modified syndrome module, has
a small reduction in power consumption, compared to configuration 3 as shown
in table 9.3. Table 9.4 shows the energy consumption for configuration 3 and 4.

71

When comping the results for the two designs, we can see that configuration 4
uses more energy when there are one and two errors in the codeword. In these two
cases the syndrome module uses twice as much time to calculate the syndromes,
because only t syndromes are calculated at the time. When there are no errors in
the codeword, configuration 4 has a moderate decrease in energy consumption.

Total Power Config 3 Total Power Config 4 Reduction
Errors (µW) (µW) (%)

0 417 411 1.44
1 451 440 2.44
2 465 450 3.22

Average 2.37

Table 9.3: Comparison of power consumption of configuration 3 and 4

Total Energy Config 3 Total Enrgy Config 4
Errors (nJ) (nJ)

0 0.391 0.385
1 1.336 1.655
2 1.377 1.693

Table 9.4: Energy consumption of configuration 3 and 4

Table 9.5 and 9.6 shows the reduction of power consumption for configuration
5 and 6 when clock gate insertion is performed. As seen from the results for
configuration 5 and 6, clock gating has a good effect, reducing the average power
consumption with about 40%.

Total Power Total Power With CG Reduction
Errors (µW) (µW) (%)

0 387 257 33
1 441 258 41
2 452 267 41

Average 38

Table 9.5: Reduction of total power for configuration 5

Total Power Total Power With CG Reduction
Errors (µW) (µW) (%)

0 413 281 32
1 444 260 41
2 448 263 41

Average 38

Table 9.6: Reduction of total power for configuration 6

72

Figure 9.2 shows the average dynamic power consumption for the four configura-
tion 3, 5, 6 and 7. Using configuration 3 as a reference, it can be seen that there
is a reduction in dynamic power for both configuration 5 and 6. Clock gating has
the greatest effect when comparing the non-clock gated designs to the clock gated
designs. With the techniques used in configuration 5 and 6, the average dynamic
power has been reduced with approximately 30µW in configuration 5, and 40µW
in configuration 6. Configuration 7 has the highest dynamic power consumption
of the four configurations shown in table 9.2.

Config 3 Config 5 Config 6 Config 7

140

180

220

260

300

340

380

D
yn

am
ic

po
w
er
µ
W

No CG
CG

Figure 9.2: Dynamic power consumption for configuration 3, 5, 6 and 7

The total average power consumption for the same four configurations are shown
in figure 9.3. As seen in the figure, configuration 5 has the lowest total power
consumption. Compared to configuration 3, configuration 5 and 6 have increasing
leakage power, and in configuration 6 the leakage power account for almost half the
total power consumption. The increase in leakage power from configuration 5 to 6
is approximately 20µW, making configuration 6 use more power than configuration
5. Therefore, the reduction in dynamic power from configuration 5 to 6 has no
effect on the total power consumption. Configuration 7 consumes the most power
when comparing the four configurations.

73

Config 3 Config 5 Config 6 Config 7

50

100

150

200

250

300

T
ot
al

P
ow

er
µ
W

Internal Power Switching Power Leakage Power

Figure 9.3: Comparison of total power consumption for different configurations

Figure 9.4 shows the energy consumption of configuration 2, 3, 5, 6 and 7 sim-
ulated with zero errors, one error and two errors. Configuration 3 has the same
implementation as configuration 2, only with clock gating. Configuration 5 and 6
are implemented with techniques to reduce the power consumption of the decoder
design, as described in section 5.3 and 5.5. For all three test cases configuration
3 with clock gating uses substantially less energy than configuration 2. The av-
erage reduction in energy consumption from configuration 2 to configuration 3
is approximately 58%. Comparing configuration 5 and 6 to configuration 3, we
see that there is a increase in energy for all three test cases. The average energy
consumption increases 18% from configuration 3 to configuration 5, and 43% from
configuration 3 to configuration 6.

Configuration 5 was implemented with a single data input into the decoder and
two-parallel syndrome cells. The syndrome module therefore had to wait for at
least half the symbols to enter, before it could start calculating the syndromes.
This caused the decoding time to increase, resulting in an increase in energy con-
sumption as shown in table 9.4. To remove the wait time a more optimized con-
figuration was designed. As seen in figure 9.2 and 9.3, configuration 7 consumes
more power compared to the other configurations. The decoding time however,
is decreased because the two-parallel syndrome cells have been properly imple-
mented. This causes the overall energy consumption shown in figure 9.4, to be
reduced compared to both configuration 3, 5 and 6. Configuration 7 has a 7%
average reduction in energy consumption, compared to configuration 3. Compar-
ing the two last configurations, we see that configuration 7 has 36% lower energy
consumption than configuration 6.

74

0 Errors 1 Error 2 Errors

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

·10−9
E
ne
rg
y
(J
)

Config 2 Config 3 Config 5 Config 6 Config 7

Figure 9.4: Energy consumption for configuration 2, 3, 5, 6 and 7

Looking at the runtime results for the configurations shown in tables 9.7 and 9.8,
the average increase in runtime is 29% for configuration 5 and 51% for configuration
6. This contributes greatly to the increase in energy consumption for the two
designs, compared to configuration 3.

Runtime Runtime Increase
Errors Config 3 (µs) Config 5 (µs) (%)

0 0.938 1.438 53.30
1 2.963 3.463 16.87
2 2.963 3.463 16.87

Average 29.01

Table 9.7: Runtime comparison configuration 3 and 5

75

Runtime Runtime Increase
Errors Config 3 (µs) Config 6 (µs) (%)

0 0.938 1.438 53.30
1 2.963 4.413 49.54
2 2.963 4.463 50.62

Average 51.15

Table 9.8: Runtime comparison configuration 3 and 6

Table 9.9 shows a comparison of the runtime for configuration 3 and 7. One can
see that the parallel syndrome cells help reducing the average decoding time by
20%.

Runtime Runtime Decrease
Errors Config 3 (µs) Config 7 (µs) (%)

0 0.938 0.587 37.42
1 2.963 2.612 11.84
2 2.963 2.612 11.84

Average 20.36

Table 9.9: Runtime comparison configuration 3 and 7

Figure 9.5 shows an area comparison of configuration 3, 5, 6 and 7. Configuration
3 with no improvements has the lowest gate count of the four configurations. Con-
figuration 7, which has the lowest energy consumption, has a 12% increase in gate
count, compared to configuration 3. This can be explained by the implementation
of the two-parallel syndrome cells. To implement these syndrome cells, extra logic
is needed.

Config 3 Config 5 Config 6 Config 7

1,500

2,500

3,500

4,500

5,500

6,500

7,500

8,500

9,500

N
A
N
D
2
ga
te

co
un

t

Figure 9.5: Area comparison of decoder configurations

76

Chapter 10

Discussion

10.1 Encoder

The Reed-Solomon encoder was implemented using the LFSR architecture de-
scribed in section 5.4. In this thesis, a fixed rate encoder was used to reduce the
hardware implementation. By using a fixed rate encoder, a predetermined code
generator polynomial can be used. This allows us to use constant multipliers in
the encoder implementation, instead of using full multipliers. Full multipliers are
more complex and use more area. The constant multipliers implemented in this
thesis have an absolute area of 23 − 40, depending on the multiplying value. To
comparison, the full multipliers implemented in this thesis have an absolute area
of approximately 235. This is an increase of 500 − 1000% for each multiplier,
depending on which value we want to multiply with. The encoder needs four mul-
tipliers, so the total area would be: area multiplier × 4. From this it is clear
that the use of constant multipliers will reduce the total area of the encoder by a
great amount, when compared to full multipliers. Synthesis tools have the abil-
ity of optimizing and removing unused logic in a design. Full multipliers could
have been used instead of constant multipliers. The synthesis tool could then have
removed the unused and redundant hardware. By using this approach, we could
save time during the implementation phase because only one multiplier has to be
made. Using the constant multipliers, however, gives us greater control on how
the synthesis tool implement the multipliers.

Clock gate insertion was used in the encoder design to reduce the power consump-
tion. A reduction in power consumption leads to a reduced energy consumption.
The energy consumption for the encoder was presented in figure 9.1 on page 70.
When the encoder only encodes 5% of the time, the energy consumption can be
reduced with over 50% when the design is clock gated. For Reed-Solomon encoders
that have a low activity rate, clock gating can be used to reduce the power con-
sumption thus reducing the energy. The energy consumption varies a great amount
for the different activity levels. The reason for this is that the same amount of
codewords were encoded each time. To get the right relationship between encoding

77

and idle (i.e activity level), the run times had to increase.

10.2 Decoder

When comparing the standard Berlekamp-Massey algorithm with the inversionless
Berlekamp-Massey algorithm, the inversionless algorithm uses at average 15µW
less power than the standard algorithm. The decoding process takes longer time
with the inversionless Berekamp-Massey algorithm, therefore the total energy con-
sumption of the configuration is higher with this algorithm. The gate count is
however lower with the inversionless algorithm with about 3,3%. This can be
explained by that the standard Berlekamp-Massey algorithm needs to access the
ROM module that stores the inverse values. This requires some extra logic that
the inversionless Berlekamp-Massey algorithm do not need. Using the inversionless
algorithm, gives us a possibility of reusing some of the hardware. The hardware
implemented to calculate the discrepancy can also be used, with some modifica-
tions, to calculate the error evaluator polynomial. By doing this, the module that
calculates the error evaluator polynomial can be removed. This would possibly
reduce the total area of the hardware implementation of the key equation solver.
The reduction of hardware components could also lead to a reduction in power
consumption. This optimization has not been done in this thesis.

Configuration 3 had an 45% average reduction in dynamic power when the design
was fully clock gated. The result from the power estimation was expected, as clock
gating can give 40 to 50% reduction in dynamic power consumption. The results
show that clock gating is a very efficient technique for reducing dynamic power.
Figure 8.5 on page 63 shows the power consumption for configuration 3 without
clock gating when decoding. It is interesting to notice that the syndrome module
uses over twice as much power, when calculating syndrome values for codewords
with no errors. The input stage module also uses more power, when there are
no errors in the codeword. It is not known why the syndrome module uses more
power in the no errors test case. As seen in the same figure the other modules use
less power when there are no errors. This was expected, as these modules do not
perform any calculations when no errors have been detected.

In figure 8.7 on page 64 one can see the power distribution between the different
modules. As seen from the figure, the syndrome module uses 25% of the total
power when decoding codewords with zero errors. With this in mind, configuration
4 was implemented with a syndrome module that only computes the first half of
the syndrome values to check if there are errors. If the t first syndrome values are
all zero, there is no errors. If they are not zero, rest of the 2t syndrome values are
calculated. It was expected that this would reduce the energy consumption for
codewords with zero errors, since fewer calculation are performed. For codewords
with errors, it was expected that the energy consumption would increase. The
reason for this is that t plus t values are calculated in sequence, instead of 2t
values calculated in parallel. This increases the total runtime of the decoding

78

process. In the zero error test, the reduction in energy consumption was 1,5%.
For the test case containing an error, the average increase in energy was 22%.
Based on these results, the syndrome module used in configuration 4 should only
be used where the codewords rarely contain any errors. The decrease in energy
consumption by 1,5% was much less than expected. Only half the calculations
are performed in the zero error test case, so it would be fare to assume that the
decrease should have been higher. Taking into account that some extra logic was
implement to check if t syndromes were zero.

By using two-parallel syndrome cells (configuration 5) and then reduce then num-
ber of calculation performed in the Forney module (configuration 6) by only calcu-
lating the error values for known error positions, the dynamic power consumption
was reduced. Comparing the results to configuration 3 with clock gating, the re-
duction in dynamic power was approximately 18% for configuration 5 with clock
gating, and 23% for configuration 6 with clock gating.

Looking at the total power consumption shown in figure 9.3, the power consump-
tion has only been reduced with 23µW from configuration 3 to configuration 5.
This is approximately a 8% reduction. From configuration 3 to configuration 6
the reduction in total power consumption is 15µW, which is a 5% reduction. The
reduction in dynamic power do not have major impact on the total power. This is
because the the leakage power in configuration 5 and 6 increases, compared to the
leakage power in configuration 3. From configuration 5 to configuration 6 the total
power has increased with approximately 8µW, even though the dynamic power is
reduced from configuration 5 to configuration 6. The leakage power increases with
17µW from configuration 5 to 6, which is a increase of 15%.

This increase in leakage power can be traced back to the extra logic added in con-
figuration 5 and configuration 6. Implementation of two-parallel syndrome cells
require some extra hardware. For each cell an extra adder, multiplier and AND
gate are implemented, compared to the standard syndrome cell. The modification
done in configuration 6 also requires extra logic. In the Chien module extra reg-
isters have been implemented to temporary store the error positions, since all the
error positions are found before the error values are calculated. Control logic is
also needed to control this process. The same is done in the Forney module, since
all error values are calculated before the symbols are corrected. The extra hard-
ware needed to implement the registers and control circuitry makes the leakage
power increase. This makes the total power increase, even though the calculations
are reduced.

As presented in figure 9.4, by clock gating configuration 2 the average energy con-
sumption was reduced with 58%. However, configuration 5 with the two-parallel
syndrome cells, and configuration 6 that use modified Chien serach and Forney
module, had an increase in energy consumption compared to configuration 3. Con-
figuration 5 had an increase of 18%, and configuration 6 had an increase of 43% in
energy consumption. The increase in energy is manly due to the longer decoding
time in the two configurations. As was shown in table 9.7 and 9.8, which compared

79

the runtime of configuration 3, 5 and 6, configuration 3 had the lowest runtime of
the three. At average, configuration 5 has a 29% longer runtime then configuration
3, and configuration 6 has a 51% longer runtime than configuration 3.

Configuration 5 uses two-parallel syndrome cells and the same pipelined Chien
search, Forney and error correction design, as used in configuration 3. The parallel
syndrome architecture implemented in configuration 5 should ideally decrease the
runtime. In configuration 5 and 6 only one symbol is shifted into the decoder at the
time. The syndrome module therefore have to wait for at least half the codeword
to be shifted in, before it can start to calculate the syndrome values. This is done
so the syndrome module does not have to stop while calculating the syndromes,
since two symbols are send into the syndrome module at the time. This increase
in runtime could be reduced by shifting in two symbols into the decoder at each
clock cycle. This would eliminate the need for a wait time before the syndrome
calculations start, and reduce the decoding time for these configurations.

A more optimized design was implemented to remove the wait time problem in
configuration 5. In configuration 7, two symbols are shifted into the decoder at
each clock cycle. A wait time is therefore not needed before the syndrome module
starts to calculate the syndrome values. This configuration has a 20% decrease
in decoding time, compared to configuration 3. The total power consumption is
however increased, compared to configuration 3. The average energy consumption
for configuration 7 is therefore only reduced with 7%. Implementing the two-
parallel syndrome cells adds extra logic to the design. Configuration 7 has an gate
count increase of 12%, compared to the gate count for configuration 3. Seeing as
energy efficiency is the main focus, this increase in gate count can be manageable.

In configuration 6 the Chien search, Forney and error correction module are not
pipelined like they were in configuration 3 and 5. Configuration 6 uses two-parallel
syndrome cells and a modified Chien search and Forney module. The Chien search
module calculate n values and the Forney module calculates at maximum t values.
The modified Forney module used in configuration 6 performs 29 fewer calculations
than the original Forney module used in configuration 3 and 5. Because the Forney
module has to wait for the Chien search to finish, the decoding time increases. For
the three last steps in the decoding process, configuration 6 needs at least n+ t+n
clock cycles to correct and shift out the codeword. This is more then the pipelined
designs, which use n + 5 clock cycles to correct and shift out the codeword. The
reduction in power consumption is to low compared to the increase in decoding
time. The effect of reducing the calculations in the Forney module is therefore not
good enough.

If the Chien search and Forney module in configuration 6 are optimized to reduce
the power consumption even more, the increase of clock cycle in this implementa-
tion could be tolerable. For the energy consumption for configuration 6 to be less
then the energy consumption for configuration 3 and 7, the power consumption
must be reduced by at least 34%.

80

Chapter 11

Conclusions

In this thesis, a Reed-Solomon encoder and decoder have been designed and syn-
thesized. The designs have been evaluated with respect to energy consumption. To
find an energy efficient Reed-Solomon design, different implementation techniques
have been compared and discussed. The Reed-Solomon decoder has been the main
focus of this thesis, as it is the most complicated part of the Reed-Solomon system
and has the most potential for reduction of energy consumption.

A compact RS(31, 27) encoder was implemented using constant multipliers to
reduce the area usage, and synthesized with clock gating to reduce the power
consumption. For encoders with low activity, the energy consumption can be
reduced with 20− 60% by using clock gating.

Different techniques were evaluated to see which one gave the best results with
regards to energy consumption of the decoder.

The energy consumption of the decoder can be reduced by a small amount, if only
half of the syndrome values are calculated when checking for errors in a codeword.
If the first half of the syndrome do not equal zero, rest of the syndrome have to be
calculated. This increases the decoding time, and the energy consumption is there-
fore increased by 22% when decoding codewords with errors. This implementation
technique should therefore only be used in systems that rarely have errors.

By using two-parallel syndrome cells and pipelining the Chien search, Forney and
error correction module, the energy consumption can be reduced with 36% com-
pared to a decoder with the same parallel syndrome cells and a full serial imple-
mentation of the Chien search, Forney and error correction module. The pipelined
design with two-parallel syndrome cells, had a 7% lower energy consumption com-
pared a pipelined design with standard syndrome cells.

81

82

Chapter 12

Further Work

The decoding time can be reduced by implementing more parallelism in the Reed-
Solomon decoder. Both the Chien search and Forney method can be implemented
with a parallel structure [21]. This will reduce the number of clock cycles. For
a full parallel implementation of the decoder, the Euclidean algorithm could be
used. This algorithm calculates the error locator and error evaluator polynomials
in parallel. It would also be interesting to see how the energy consumption of this
algorithm compares to the Berlekamp-Massey algorithm.

In order to possibly reduce the energy consumption, reuse of multipliers and adders
in the decoder should be explored. All the modules in the decoder have separate
multipliers and adders. Many of these modules are performing calculations only
a short time period during decoding of a codeword. The multipliers and adders
could therefore be shared between several of the modules. This could possibly
reduce the total area and the power consumption for the decoder.

To get more relevant synthesis results and power estimations for the Reed-Solomon
design, a 90nm or 180nm library should be used when synthesizing. This is the
CMOS technology used by Energy Micro.

83

84

References

[1] J. C. Moreira and P. G. Farrell, Essential Of Error-Control Coding. John Wiley
& Sons Ltd, 2006.

[2] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, Low-Power CMOS Digital
Design. IEEE Journal of solid-state circuit, Vol. 27, No. 4, pp. 473-484, 1992.

[3] C. Piguet, A. Amara and P. Royannez, Low-Power CMOS Circuits - Tech-
nology, logic design and CAD tools, Chapter 11: VHDL for Low Power. CRC
Press Taylor & Francis Group, 2006.

[4] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh and M. Papaefthymiou,
Precomputation-Based Sequential Logic Optimization for Low Power. IEEE
Transactions on very large scale integration (VLSI) systems, Vol. 2, No. 4,
1994.

[5] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their Applications.
Wiley-IEEE Press, 1994.

[6] I. S. Reed and G. Solomon, Polynomial Codes Over Certain Finite Fields.
SIAM Journal of Applied Mathematics, Volume 8, No 2, pp. 300-304, 1960.

[7] C.K.P Clarke, Reed-Solomon Error Correction. BBC R&D White paper, WHP
031, July 2002.

[8] M. Purser, Introduction to error-correcting codes. Artech House, Boston, Lon-
don, 1995.

[9] Number of primitive polynomials of degree n over GF(2) - OEIS, Date: 6th of
May 2013
http://oeis.org/A011260

[10] A. Raghupathy and K. J. R. Lui, Algorithm-Based Low-Power/High-Speed
Reed-Solomon Decoder Design. IEEE Transactions on circuits and systems II:
Analog and Digital Signal Processing, Vol. 47, NO. 11, November 2000.

[11] A. Kumar and S. Sawitzki, High-Throughput and Low-Power Architectures
for Reed Solomon Decoder. IEEE Conference Record Thirty-Ninth Asilomar
Conference on Signals, Systems & Computers, pp. 990-994, 2005.

85

http://oeis.org/A011260

[12] A. Genser, C. Bachmann, C. Steger, J. Hulzink and M. Berekovic, Low-Power
ASIP Architecture Exploration and Optimization for Reed-Solomon Processing.
20th IEEE International Conference on Application-specific Systems, Architec-
tures and Processors, pp. 177-182, 2009.

[13] A. Al Azad, M. Huq and I. R. Rokon, Efficient Hardware Implementa-
tion of Reed Solomon Encoder and Decoder in FPGA using Verilog. Inter-
national Conference on Advancements in Electronics and Power Engineering
(ICAEPE’2011) Bangkok Dec., 2011.

[14] H. Chia Chang and C. Shung, New Serial Architecture for the Berlekamp-
Massey Algorithm. IEEE Transactions on Communications, vol.47, no.4, pp.
481-483, Apr 1999

[15] R. Chien, Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.
IEEE Transactions on Information Theory, Volume 10, Issue 4, pp. 357-363,
1964.

[16] G. Forney, On decoding BCH codes. IEEE Transactions on Information The-
ory, Volume: 11 , Issue: 4 , pp. 549-557, 1965.

[17] H. Wu, M. A. Hasan, I. F. Blake and S. Gao, Finite Field Multiplier Using
Redundant Representation. IEEE Transaction on computers, Vol. 51, NO. 11,
November 2002.

[18] J. P Deschamps, J. L. Imaña and G. D. Sutter, Hardware Implementation of
Finite-Field Arithmetic. The McGraw-Hill Companies, Inc., pp. 163-231, 2009.

[19] K. C. C. Wai and S. J. Yang, Field Programmable Gate Array Implementation
of Reed-Solomon Code, RS(255,239). (Poster Paper) in Proceedings of 2nd
IEEE Upstate NY Workshop on Communications and Networking, Rochester,
NY., November, 2005.

[20] S. S. Shah, S. Yaqub and F. Suleman, Self-correcting codes conquer noise Part
2: Reed-Solomon codecs. EDN Magazine, March 15, 2001.

[21] S. Lee, C. Choi, and H. Lee, Two-parallel Reed-Solomon Based FEC Architec-
ture for Optical Communications. IEICE Electronics Express, Vol. 5, No. 10,
pp. 374-380, May, 2008.

[22] H. C. Chang, C. C. Lin and C. Y. Lee, A Low Power Reed-Solomon Decoder
For STM-16 Optical Communications. 2002 IEEE Asia-Pacific Conference on
ASIC. Proceedings, pp. 351-354, 2002.

[23] Addition and Multiplication Tables for Galois Fields GF (25) Date: 30th of
April 2013
http://www.ee.unb.ca/cgi-bin/tervo/galois3.pl?p=6&C=
1&D=1&A=1

[24] FreePDK45nm, Date: 31th of May 2013
http://vlsiarch.ecen.okstate.edu/?page_id=12#

86

http://www.ee.unb.ca/cgi-bin/tervo/galois3.pl?p=6&C=1&D=1&A=1
http://www.ee.unb.ca/cgi-bin/tervo/galois3.pl?p=6&C=1&D=1&A=1
http://vlsiarch.ecen.okstate.edu/?page_id=12#

[25] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P.
D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh and R. Jenkal FreePDK:
An Open-Source Variation-Aware Design Kit. MSE ’07. IEEE International
Conference pp. 173-174, 3-4 June 2007

[26] Energy Micro AS - Products, Date: 15th of February 2013
http://www.energymicro.com/products/

87

http://www.energymicro.com/products/

88

Appendix A

Galois Field

A.1 Galois Field Representation

A.1.1 Field Elements GF(16)

Index Polynomial Binary Decimal
form form form form

0 0 0000 0
α0 1 0001 1
α1 α 0010 2
α2 α2 0100 4
α3 α3 1000 8
α4 α + 1 0011 3
α5 α2 + α 0110 6
α6 α3 + α2 1100 12
α7 α3 + α + 1 1011 11
α8 α2 + 1 0101 5
α9 α3 + α 1010 10
α10 α2 + α + 1 0111 7
α11 α3 + α2 + α 1110 14
α12 α3 + α2 + α + 1 1111 15
α13 α3 + α2 + 1 1101 13
α14 α3 + 1 1001 9

Table A.1: Field elements for GF(16) with p(x) = x4 + x+ 1

89

A.1.2 Field Elements GF(32)

Index
form Polynomial form Binary form Decimal form

0 0 00000 0
α0 1 00001 1
α1 α 00010 2
α2 α2 00100 4
α3 α3 01000 8
α4 α4 10000 16
α5 α2 + 1 00101 5
α6 α3 + α 01010 10
α7 α4 + α2 10100 20
α8 α3 + α2 + 1 01101 13
α9 α4 + α3 + α 11010 26
α10 α4 + 1 10001 17
α11 α2 + α + 1 00111 7
α12 α3 + α2 + α 01110 14
α13 α4 + α3 + α2 11100 28
α14 α4 + α3 + α2 + 1 11101 29
α15 α4 + α3 + α2 + α + 1 11111 31
α16 α4 + α3 + α + 1 11011 27
α17 α4 + α + 1 10011 19
α18 α + 1 00011 3
α19 α2 + α 00110 6
α20 α3 + α2 01100 12
α21 α4 + α3 11000 24
α22 α4 + α2 + 1 10101 21
α23 α3 + α2 + α + 1 01111 15
α24 α4 + α3 + α2 + α 11110 30
α25 α4 + α3 + 1 11001 25
α26 α4 + α2 + α + 1 10111 23
α27 α3 + α + 1 01011 11
α28 α4 + α2 + α 10110 22
α29 α3 + 1 01001 9
α30 α4 + α 10010 18

Table A.2: Field elements for GF(32) with p(x) = x5 + x2 + 1

90

Appendix B

Examples

B.1 Implementation Examples

B.1.1 Constant Multiplier

Multiplying with a constant value of 10. 10 = α6 = α3 + α The 5-bit equivalents
for α7, α6 and α5 from table A.2 are:

α5 = α2 + 1
α6 = α3 + α
α7 = α4 + α2

Produce a shifted version of the input.

α7 α6 α5 α4 α3 α2 α1 α0

×α3 a4 a3 a2 a1 a0 0 0 0
×α a4 a3 a2 a1 a0 0

a2 + a4 → 0 0 a2 + a4 0 a2 + a4
a3 −→ 0 a3 0 a3 0

a4 −→ a4 0 a4 0 0
a1 + a3 + a4 a0 + a2 + a3 a1 + a2 a0 + a3 a2 + a4

Add the values in column α4, α3, α2, α1 and α0 to give the input bit contribution
for each output bit. The addition is implemented using XOR gates.

c0 = a2 + a4
c1 = a0 + a3
c2 = a1 + a2
c3 = a0 + a2 + a3
c4 = a1 + a3 + a4

91

B.1.2 Constructing a Full Multiplier

The 5-bit full multiplier used in this thesis was constructed in the following way:

STEP 1: Use equation 5.3 and the two polynomials a(x) = a0 + a1x + a2x
2 +

a3x
3 + a4x

4 and b(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 to determine the coefficients

of d(x).

d0 = (a0 + b0)
d1 = (a0 + b1)⊕ (a1 + b0)
d2 = (a0 + b2)⊕ (a1 + b1)⊕ (a2 + b0)
d3 = (a0 + b3)⊕ (a1 + b2)⊕ (a2 + b1)⊕ (a3 + b0)
d4 = (a0 + b4)⊕ (a1 + b3)⊕ (a2 + b2)⊕ (a3 + b1)⊕ (a4 + b0)
d5 = (a1 + b4)⊕ (a2 + b3)⊕ (a3 + b2)⊕ (a4 + b1)
d6 = (a2 + b4)⊕ (a3 + b3)⊕ (a4 + b2)
d7 = (a3 + b4)⊕ (a4 + b3)
d8 = (a4 + b4)

STEP 2: Then use the relationships of table A.2 in appendix A.1.2 to map the
coefficients dm − d2m−2 into the field.

The relationships for α5, α6, α7 and α8.

α5 = α2 + 1
α6 = α3 + α
α7 = α4 + α2

α8 = α3 + α2 + 1

Resulting polynomial c(x).

c0 = d0 ⊕ d5 ⊕ d8
c1 = d1 ⊕ d6
c2 = d2 ⊕ d5 ⊕ d7 ⊕ d8
c3 = d3 ⊕ d6 ⊕ d8
c4 = d4 ⊕ d7

B.2 Decoding Example

Decoding example with the (31, 27) Reed-Solomon code.

Introducing two errors in the 6th (x25 term) and 19th (x12 term) symbols of a
encoded message. The two errors, with value 19 and 24, can be written as an error
polynomial as shown below:

E(x) = 19x25 + 24x12

The received message then becomes:

92

R(x) = (26x30 + 28x29 + 4x28 + 29x27 + 20x26 + 3x25 + 8x24 + 17x23 + 30x22 + 30x21 + 5x20

+ 31x19 + 30x18 + 15x17 + 25x16 + 4x15 + 13x14 + 29x13 + 25x12 + 30x11 + 20x10

+ x9 + 27x8 + 29x7 + 21x6 + 16x5 + 0 + 14x3 + 8x2 + 11x+ 11) + (19x25 + 24x12)

= 26x30 + 28x29 + 4x28 + 29x27 + 20x26 + 16x25 + 8x24 + 17x23 + 30x22 + 30x21 + 5x20

+ 31x19 + 30x18 + 15x17 + 25x16 + 4x15 + 13x14 + 29x13 + x12 + 30x11 + 20x10

+ x9 + 27x8 + 29x7 + 21x6 + 16x5 + 0 + 14x3 + 8x2 + 11x+ 11

The symbols can then be written as shown below, where the values written in bold
are the ones with an error.

26 28 4 29 20 16 8 17 30 30 5 31 30 15 25 4 13 29 1 30 20 1 27 29 21 16 0 14 8 11 11

To calculate the syndrome value Si, the corresponding root αi is substituted in for
x. The results are then added together. This can be written as a series intermediate
steps as shown:

S0 with α0 = 1 S1 with α1 = 2 S2 with α2 = 4 S3 with α3 = 8

(0 + 26)× 1 = 26 (0 + 26)× 2 = 17 (0 + 26)× 4 = 7 (0 + 26)× 8 = 14
(26 + 28)× 1 = 6 (17 + 28)× 2 = 26 (7 + 28)× 4 = 3 (14 + 28)× 8 = 4
(6 + 4)× 1 = 2 (26 + 4)× 2 = 25 (3 + 4)× 4 = 28 (4 + 4)× 8 = 0
(2 + 29)× 1 = 31 (25 + 29)× 2 = 8 (28 + 29)× 4 = 4 (0 + 29)× 8 = 19
(31 + 20)× 1 = 11 (8 + 20)× 2 = 29 (4 + 20)× 4 = 10 (19 + 20)× 8 = 29
(11 + 16)× 1 = 27 (29 + 16)× 2 = 26 (10 + 16)× 4 = 7 (29 + 16)× 8 = 7
(27 + 8)× 1 = 19 (26 + 8)× 2 = 1 (7 + 8)× 4 = 25 (7 + 8)× 8 = 23
(19 + 17)× 1 = 2 (1 + 17)× 2 = 5 (25 + 17)× 4 = 5 (23 + 17)× 8 = 21
(2 + 30)× 1 = 28 (5 + 30)× 2 = 19 (5 + 30)× 4 = 3 (21 + 30)× 8 = 18
(28 + 30)× 1 = 2 (19 + 30)× 2 = 26 (3 + 30)× 4 = 27 (18 + 30)× 8 = 15
(2 + 5)× 1 = 7 (26 + 5)× 2 = 27 (27 + 5)× 4 = 23 (15 + 5)× 8 = 26
(7 + 31)× 1 = 24 (27 + 31)× 2 = 8 (23 + 31)× 4 = 5 (26 + 31)× 8 = 13
(24 + 30)× 1 = 6 (8 + 30)× 2 = 9 (5 + 30)× 4 = 3 (13 + 30)× 8 = 12
(6 + 15)× 1 = 9 (9 + 15)× 2 = 12 (3 + 15)× 4 = 21 (12 + 15)× 8 = 24
(9 + 25)× 1 = 16 (12 + 25)× 2 = 15 (21 + 25)× 4 = 21 (24 + 25)× 8 = 8
(16 + 4)× 1 = 20 (15 + 4)× 2 = 22 (21 + 4)× 4 = 14 (8 + 4)× 8 = 15
(20 + 13)× 1 = 25 (22 + 13)× 2 = 19 (14 + 13)× 4 = 12 (15 + 13)× 8 = 16
(25 + 29)× 1 = 4 (19 + 29)× 2 = 28 (12 + 29)× 4 = 14 (16 + 29)× 8 = 7
(4 + 1)× 1 = 5 (28 + 1)× 2 = 31 (14 + 1)× 4 = 25 (7 + 1)× 8 = 21
(5 + 30)× 1 = 27 (31 + 30)× 2 = 2 (25 + 30)× 4 = 28 (21 + 30)× 8 = 18
(27 + 20)× 1 = 15 (2 + 20)× 2 = 9 (28 + 20)× 4 = 5 (18 + 20)× 8 = 21
(15 + 1)× 1 = 14 (9 + 1)× 2 = 16 (5 + 1)× 4 = 16 (21 + 1)× 8 = 17
(14 + 27)× 1 = 21 (16 + 27)× 2 = 22 (16 + 27)× 4 = 9 (17 + 27)× 8 = 26
(21 + 29)× 1 = 8 (22 + 29)× 2 = 22 (9 + 29)× 4 = 26 (26 + 29)× 8 = 29
(8 + 21)× 1 = 29 (22 + 21)× 2 = 6 (26 + 21)× 4 = 25 (29 + 21)× 8 = 10
(29 + 16)× 1 = 13 (6 + 16)× 2 = 9 (25 + 16)× 4 = 1 (10 + 16)× 8 = 14
(13 + 0)× 1 = 13 (9 + 0)× 2 = 18 (1 + 0)× 4 = 4 (14 + 0)× 8 = 31
(13 + 14)× 1 = 3 (18 + 14)× 2 = 29 (4 + 14)× 4 = 13 (31 + 14)× 8 = 28
(3 + 8)× 1 = 11 (29 + 8)× 2 = 15 (13 + 8)× 4 = 20 (28 + 8)× 8 = 17
(11 + 11)× 1 = 0 (15 + 11)× 2 = 8 (20 + 11)× 4 = 19 (17 + 11)× 8 = 14
(0 + 11) = 11 (8 + 11) = 3 (19 + 11) = 24 (14 + 11) = 5

S0 = 11 S1 = 3 S2 = 24 S3 = 5

Using the inversionless Berlekamp-Massey shown in algorithm 2 and equation 5.5
and 5.6, we find the error locator polynomial. The syndrome values in the inver-

93

sionless Berlekamp-Massey algorithm starts with S1 and not S0. This however, do
not change the calculation method or results. We therefore change the notation
and use the following:
S1 = S0 = 11 S2 = S1 = 3 S3 = S2 = 24 S4 = S3 = 5

Initial condition:
D(−1) = 0 δ = 1 σ(−1)(x) τ (−1)(x) = 1 ∆(0) = S1

i = 0 σ
(0)
0 = δ × σ(−1)

0 = 1× 1 = 1

σ
(0)
1 = δ × σ(−1)

1 + ∆(0) × τ (−1)0 = 1× 0 + 11× 1 = 11

σ
(0)
2 = δ × σ(−1)

2 + ∆(0) × τ (−1)1 = 1× 0 + 11× 0 = 0

σ(0)(x) = 11x+ 1

∆
(1)
0 = 0

∆
(1)
1 = ∆

(1)
0 + S2 × σ(0)

0 = 0 + 3× 1 = 3

∆
(1)
2 = ∆

(1)
1 + S1 × σ(0)

1 = 3 + 11× 11 = 12

∆(1) = 12

Updating values: ∆(0) 6= 0 and 2D(−1) < 1 so..
D(0) = 0 + 1−D(−1)=1 δ = ∆(0) = 11 τ (0)(x) = σ−1(x) = 1

i = 1 σ
(1)
0 = δ × σ(0)

0 = 11× 1 = 11

σ
(1)
1 = δ × σ(0)

1 + ∆(1) × τ (0)0 = 11× 11 + 12× 1 = 3

σ
(1)
2 = δ × σ(0)

2 + ∆(1) × τ (0)1 = 11× 0 + 1× 0 = 0

σ(1)(x) = 3x+ 11

∆
(2)
0 = 0

∆
(2)
1 = ∆

(2)
0 + S3 × σ(1)

0 = 0 + 24× 11 = 19

∆
(2)
2 = ∆

(2)
1 + S2 × σ(1)

1 = 19 + 3× 3 = 22

∆(2) = 22

Updating values: ∆(1) 6= 0 and 2D(0) ≥ 1 so..
D(1) = D(0)=1 δ = δ = 11 τ (1)(x) = τ (0)(x) = x

94

i = 2 σ
(2)
0 = δ × σ(1)

0 = 11× 11 = 15

σ
(2)
1 = δ × σ(1)

1 + ∆(2) × τ (1)0 = 11× 3 + 22× 0 = 29

σ
(2)
2 = δ × σ(1)

2 + ∆(2) × τ (1)1 = 11× 0 + 22× 1 = 22

σ(2)(x) = 22x2 + 29x+ 15

∆
(3)
0 = 0

∆
(3)
1 = ∆

(3)
0 + S4 × σ(2)

0 = 0 + 5× 15 = 12

∆
(3)
2 = ∆

(3)
1 + S3 × σ(2)

1 = 22 + 24× 29 = 6

∆
(3)
3 = ∆

(3)
2 + S2 × σ(2)

1 = 6 + 3× 22 = 25

∆(3) = 25

Updating values: ∆(2) 6= 0 and 2D(1) < 3 so..
D(2) = 2 + 1−D(1)=2 δ = ∆2 = 22 τ (2)(x) = σ(1)(x) = 3x+ 11

i = 3 σ
(3)
0 = δ × σ(2)

0 = 22× 15 = 12

σ
(3)
1 = δ × σ(2)

1 + ∆(3) × τ (2)0 = 22× 29 + 25× 11 = 31

σ
(3)
2 = δ × σ(2)

2 + ∆(3) × τ (2)1 = 22× 22 + 25× 3 = 23

σ(3)(x) = 23x2 + 31x+ 12

Then, using equation 4.20 and 5.7 we find the error evaluator polynomial.

i = 0 Ω
(0)
0 = S1 × σ0 = 11× 12 = 27

Ω
(1)
0 = Ω

(0)
0 + 0 = 27 + 0 = 27

i = 1 Ω
(0)
1 = S2 × σ0 = 3× 12 = 20

Ω
(1)
1 = Ω

(0)
0 + S1 × σ1 = 20 + 11× 31 = 19

Ω0 = 27 Ω1 = 19

The error locator polynomial and error evaluator polynomial are then:
σ(x) = 23x2 + 31x+ 12
Ω(x) = 19x+ 27

To find the error positions, the Chien search is used. Each value of the field αi

is substituted into the error locator polynomial. This can be done by multiplying
each coefficient of the error locator polynomial with the corresponding power of α
and then adding the results to produce the sum, as shown in table B.1. So, σ2 is
multiplied by α2, σ1 by α and σ0 by α0. Each row in table B.1 can be obtained by

95

multiplying the previous row with the corresponding power of α. If a sum value
becomes zero, there is an error at that position.

×4 ×2 ×1
x x2 term x term unity sum

α−30 22 27 12 1
α−29 18 19 12 13
α−28 2 3 12 13
α−27 8 6 12 2
α−26 5 12 12 5
α−25 20 24 12 0
α−24 26 21 12 3
α−23 7 15 12 4
α−22 28 30 12 14
α−21 31 25 12 10
α−20 19 23 12 8
α−19 6 11 12 1
α−18 24 22 12 2
α−17 15 9 12 10
α−16 25 18 12 7
α−15 11 1 12 6
α−14 9 2 12 7
α−13 1 4 12 9
α−12 4 8 12 0
α−11 16 16 12 12
α−10 10 5 12 3
α−9 13 10 12 11
α−8 17 20 12 9
α−7 14 13 12 15
α−6 29 26 12 11
α−5 27 17 12 6
α−4 3 7 12 8
α−3 12 14 12 14
α−2 21 28 12 5
α−1 30 29 12 15
α0 23 31 12 4

Table B.1: Chien search example

Having found the error positions, we use the Forney method to find the error
values. The error values are found using equation 4.30. The derivative of σ(x)
is obtained by setting all the even powers of x to zero and dividing by x, where
x = X−1j . This gives:

σ′(X−1j) = 31X−1j / X−1j = 31

The error positions where found to be in the 6th (x25 term) and 19th (x12 term)
symbols. By setting Xj = α25 and Xj = α12 in equation 4.30, we can calculate the
corresponding error values. The inverse values are needed when using the Forney
method. So, the inverse value of α25 is α−25 = α6 = 10 and the inverse values of
α12 is α−12 = α19 = 6.

96

For the first position, we get:

Yj = α2519α−25 + 27

31
= 25

19α6 + 27

31
= 25

19× 10 + 27

31
= 25

20

31

Finite field division can be performed my multiplying with the inverse of the
divisor. The inverse of 31 is α−15 = α16 = 27:

25(20× 27) = 19

For the second position, we get:

Yj = α1219α−12 + 27

31
= 14

19α19 + 27

31
= 14

19× 6 + 27

31
= 14

30

31

14(30× 27) = 24

The error values are added to the received codeword to produce the corrected
message.

C(x) = (26x30 + 28x29 + 4x28 + 29x27 + 20x26 + 16x25 + 8x24 + 17x23 + 30x22 + 30x21 + 5x20

+ 31x19 + 30x18 + 15x17 + 25x16 + 4x15 + 13x14 + 29x13 + x12 + 30x11 + 20x10

+ x9 + 27x8 + 29x7 + 21x6 + 16x5 + 0 + 14x3 + 8x2 + 11x+ 11) + (19x25 + 24x12)

= 26x30 + 28x29 + 4x28 + 29x27 + 20x26 + 3x25 + 8x24 + 17x23 + 30x22 + 30x21 + 5x20

+ 31x19 + 30x18 + 15x17 + 25x16 + 4x15 + 13x14 + 29x13 + 25x12 + 30x11 + 20x10

+ x9 + 27x8 + 29x7 + 21x6 + 16x5 + 0 + 14x3 + 8x2 + 11x+ 11

The corrected message is then:
26 28 4 29 20 3 8 17 30 30 5 31 30 15 25 4 13 29 25 30 20 1 27 29 21 16 0 14 8 11 11

97

Appendix C

Test Vectors

C.1 Encoder Test Vectors

C.1.1 Simulation Test Vectors

Input symbols Parity symbols
24 23 12 20 5 22 1 8 1 3 26 22 10 30 1 14 12 24 25 5 15 14 20 22 24 16 0 27 6 6 0
8 21 20 5 3 15 30 10 18 7 24 8 16 22 28 30 17 4 4 8 26 8 26 7 29 4 0 31 9 14 2
11 6 8 19 15 11 26 18 17 29 9 24 24 12 18 2 1 16 24 29 4 18 15 0 10 8 0 17 2 29 2
5 25 9 16 5 19 8 20 22 23 14 2 7 29 4 26 17 31 2 14 3 30 0 24 26 28 0 21 9 19 8
27 2 12 8 25 13 29 5 8 4 4 27 18 17 4 27 19 11 16 12 2 7 3 5 7 12 0 17 29 5 27
13 1 28 30 15 15 10 28 11 3 24 12 7 12 3 4 30 30 18 1 7 11 26 0 1 24 0 30 25 18 1
5 20 23 20 14 17 9 23 6 21 5 11 20 24 2 29 24 15 13 14 9 16 16 26 25 20 0 30 31 11 29
20 12 25 17 11 30 28 17 19 18 6 9 15 7 27 6 7 5 7 13 9 29 13 5 28 24 0 1 25 15 20
31 14 3 8 13 19 8 19 22 7 3 9 10 13 16 2 8 25 0 29 23 15 18 7 14 28 0 17 28 25 22
30 17 16 7 15 19 21 12 11 31 1 28 29 25 3 8 10 21 4 23 3 20 15 24 22 20 0 2 28 12 7
28 28 10 22 6 0 23 16 15 28 19 19 27 25 18 5 7 28 0 15 5 31 22 16 15 12 0 18 1 22 21
1 21 1 2 16 3 26 26 23 4 21 16 31 20 25 14 13 26 2 4 5 12 26 25 1 16 0 15 21 19 13
12 16 13 21 20 9 13 0 31 5 3 11 6 15 10 30 29 1 23 8 13 17 30 13 31 4 0 25 25 16 28
9 22 21 17 22 21 5 4 31 5 1 17 28 21 6 11 14 31 5 27 20 12 6 13 15 8 0 7 10 27 26
3 18 7 12 18 8 9 19 8 26 31 23 11 18 3 29 28 26 8 19 0 13 10 5 5 12 0 20 22 26 9
13 3 19 15 22 22 20 1 2 10 16 20 13 26 22 30 17 10 3 19 24 13 2 8 4 8 0 8 29 15 22
8 14 16 14 28 16 30 20 30 7 21 9 21 22 2 8 7 21 27 11 24 21 0 19 12 20 0 14 24 11 11
29 0 14 13 14 24 10 25 15 1 5 23 15 4 10 19 6 23 7 29 8 24 6 9 2 4 0 4 30 24 5
18 21 17 13 20 20 21 20 30 6 22 7 3 19 14 14 21 24 11 21 13 26 26 8 19 16 0 28 4 27 21
18 17 27 8 10 3 30 20 15 20 17 20 17 23 16 31 6 3 3 2 12 14 11 24 20 28 0 17 2 9 3

Table C.1: Test vectors used for simulation of encoder

98

C.2 Decoder Test Vectors

C.2.1 Simulation Test Vectors

Input 26 14 25 25 9 2 1 20 13 28 13 4 17 29 21 12 8 27 30 12 2 5 18 5 9 28 0 26 9 28 12codeword
Decoded 26 14 25 25 9 2 1 20 13 28 13 4 17 29 21 12 8 27 30 12 2 5 18 5 9 28 0 26 9 28 12codeword

Table C.2: Test vector with zero errors

Codeword 9 19 14 9 26 18 2 8 5 17 6 24 23 30 24 2 30 31 19 30 10 28 0 15 4 28 0 2 0 15 17with error
Decoded 9 19 14 9 26 18 2 8 5 17 6 15 23 30 24 2 30 31 19 30 10 28 0 15 4 28 0 2 0 15 17codeword

Table C.3: Test vector with one error

Codeword 30 19 26 25 25 22 27 24 6 31 2 20 6 7 10 6 8 30 12 18 19 22 12 27 29 28 0 15 29 1 8with error
Decoded 6 19 26 25 25 22 27 24 6 31 2 20 6 7 10 6 16 30 12 18 19 22 12 27 29 28 0 15 29 1 8codeword

Table C.4: Test vector with two errors

99

Appendix D

Scripts

D.1 Matlab Scripts

D.1.1 Encoder Test Vector Script

1 %--------------------------------%
2 % %
3 % RS Encoder used to generate %
4 % stimulus for simulation %
5 % %
6 %--------------------------------%
7
8 home
9 clear all

10 %Script for creating 16Byte (128 bit) packets
11 %padded with zero before encoding to make get 27 symbols of information.
12
13 % Open new write file
14 % fileID = fopen(’stimulus.txt’, ’w’);
15 % fileID2 = fopen(’stimulus_encoded.txt’, ’w’);
16
17
18 % Setting up Reed-Solomon encoder
19 j = 2000; % Number of test vectors to generate
20 m = 5; % Number of bits in each symbol
21 n = 2^m-1; % Codeword length
22 k = 27; % Message length
23 max_value = 25; % Full symbols with info, when sending 16 Byte (128 bit)
24 % 128/5 = 25,6 => 25 symbols and 3 bit
25
26
27 for i=1:j
28 data = randi([0 n], max_value, 1); % 125 bit random values
29 fileID = fopen(’stimulus.txt’, ’a’);
30 fileID2 = fopen(’stimulus_encoded.txt’, ’a’);
31
32 %this gives total of 135 bit
33 data_full = data;
34 data_full(26) = 28; %add data and pad with two zeroes (00)
35 data_full(27) = 0; %pad last symbol with zero
36
37 % Write information symbols to file
38 fprintf(fileID, ’%d ’, data_full);
39 fprintf(fileID, ’%d\r\n’,’’);
40

100

41 hEnc = comm.RSEncoder(n, k, ’BitInput’, false); %Create RS Encoder
42 hEnc.GeneratorPolynomialSource = ’Property’;
43 hEnc.GeneratorPolynomial = rsgenpoly(n,k,37,0); % Prim.Poly = 37 and A^b

where b=0
44 hEnc.PrimitivePolynomialSource = ’Property’;
45 hEnc.PrimitivePolynomial = [1 0 0 1 0 1]; % Prim.Poly = 37
46
47 encodedData = step(hEnc, data_full); % Encode data, adding parity
48
49 % Write encoded data to file
50 fprintf(fileID2, ’%d ’, encodedData);
51 fprintf(fileID2, ’%d\r\n’,’’);
52
53 fclose(fileID); % Close file at end of loop
54 fclose(fileID2); % Close file at end of loop
55 end

D.1.2 Decoder Test Vector Script

1 %--------------------------------%
2 % %
3 % RS decoder script %
4 % used to generate %
5 % stimulus for simulation %
6 % %
7 %--------------------------------%
8
9

10 home
11 clear all
12
13 m = 5; % Number of bits in each symbol
14 n = 2^m-1; % Codeword length
15 k = 27; % Message length
16 t = (n-k)/2; % Error-correction capability of the code
17 nw = 1; % Number of words to process each time
18
19 %Decoder test gen
20 for i=1:2000
21 data = randi([0 n], k, 1); % 125 bit random values
22 fileID = fopen(’input.txt’, ’a’);
23 fileID2 = fopen(’encoded.txt’, ’a’);
24 fileID3 = fopen(’noisy.txt’, ’a’);
25 fileID4 = fopen(’decoded.txt’, ’a’);
26 fileID5 = fopen(’noise.txt’, ’a’);
27
28 data_full = data;
29
30 % Write information symbols to file
31 fprintf(fileID, ’%d ’, data_full);
32 fprintf(fileID, ’%d\r\n’,’’);
33
34 %fprintf(fileID2, ’%s’, bindata);
35 %fprintf(fileID2, ’%s\r\n’,’’);
36
37 % Setup for RS encoder
38 hEnc = comm.RSEncoder(n, k, ’BitInput’, false); %Create RS Encoder
39 hEnc.GeneratorPolynomialSource = ’Property’;
40 hEnc.GeneratorPolynomial = rsgenpoly(n,k,37,0); % Prim.Poly = 37 and A^b

where b=0
41 hEnc.PrimitivePolynomialSource = ’Property’;
42 hEnc.PrimitivePolynomial = [1 0 0 1 0 1]; % Prim.Poly = 37
43
44
45 %Setup for RS decoder

101

46 hDec = comm.RSDecoder(n, k, ’BitInput’, false); %Create RS Decoder
47 hDec.GeneratorPolynomialSource = ’Property’;
48 hDec.GeneratorPolynomial = rsgenpoly(n,k,37,0); % Prim.Poly = 37 and A^b

where b=0
49 hDec.PrimitivePolynomialSource = ’Property’;
50 hDec.PrimitivePolynomial = [1 0 0 1 0 1]; % Prim.Poly = 37
51
52 encodedData = step(hEnc, data_full); % Encode data, adding parity
53
54 % Write encoded data to file
55 fprintf(fileID2, ’%d ’, encodedData);
56 fprintf(fileID2, ’%d\r\n’,’’);
57
58 % Generate noise
59 t = randi([0 2], 1, 1);
60 noise = (1+randi([0 n-1],nw,n)).*randerr(nw,n,t); % t errors per codeword
61 noisy = noise’;
62 noisy = noisy(:);
63 cnoisy = gf(encodedData,m) + noisy; % Add noise to the code under gf(m) arithmetic.
64
65 fprintf(fileID5, ’%d ’, noisy);
66 fprintf(fileID5, ’%d\r\n’,’’);
67
68 %convert the GF object to a double so we can write it to file
69 pcnoisy = double(cnoisy.x);
70
71 fprintf(fileID3, ’%d ’, pcnoisy);
72 fprintf(fileID3, ’%d\r\n’,’’);
73
74 [dc nerrs] = step(hDec, cnoisy.x); % Decode the noisy code.
75
76 fprintf(fileID4, ’%d ’, dc);
77 fprintf(fileID4, ’%d\r\n’,’’);
78
79
80 % Check that the decoding worked correctly.
81 isequal(dc,data_full);
82 nerrs; % Find out how many errors hDec corrected.
83
84 fclose(fileID); % Close file at end of loop
85 fclose(fileID2); % Close file at end of loop
86 fclose(fileID3); % Close file at end of loop
87 fclose(fileID4); % Close file at end of loop
88 fclose(fileID5); % close file at end of loop
89
90 end

D.2 Design Compiler and Power Compiler Scripts

D.2.1 Synopsys Design Compiler Setup File

1 # .synopsys_dc.setup file
2 # Define the target search path, technology library, symbol library
3 # and link library
4
5
6 # Define for 45nm FreePDK cell-library
7 set 45nm /home/sindredf/master_project/OSU_FreePDK/osu_freepdk_1.0/lib
8 set target45nm ${45nm}/files
9 # set synth_lib45nm ${45nm}/

10 # set target45nm ${45nm]/
11

102

12 # Define the libraries and search path
13 set search_path [concat $search_path ./SRC ./SYN/SCR ${target45nm} dw_foundation.sldb]
14 set target_library ${target45nm}/gscl45nm.db
15 set link_library [concat "*" $target_library]
16 #set symbol_library <path/file>
17
18 # Optinal lib uncomment if to be used
19 set synthetic_library dw_foundation.sldb
20
21 define_design_lib WORK -path ./SYN/WORK
22
23 # Define path directories for file locations
24 set source_path "./SRC/"
25 set script_path "./SYN/SCR/"
26 set log_path "./SYN/RPT/"
27 set ddc_path "./SYN/DDC/"
28 set netlist_path "./SYN/NETLIST/"
29 set saif_path "./SYN/SAIF/"

D.2.2 Constraints Script

1 # Create a clock with 25 ns period and 50% duty cycle (40Mhz clock)
2 create_clock -name "clk" -period 25 -waveform {0 12.5} {clk}
3
4 set_clock_uncertainty 0.1 clk
5 set_clock_latency 0.2 clk
6 set_clock_transition 0.1 clk
7 set_dont_touch_network clk
8
9 set_dont_touch_network [get_ports clk]

10 set_dont_touch_network [get_ports reset]
11 set_ideal_network reset
12 #set_ideal_network -no_propagate reset
13
14 set_load 0.1 [all_outputs]
15
16 set_input_delay 0.67 -clock clk [all_inputs]
17 set_output_delay 0.5 -clock clk [all_outputs]
18
19 #set_max_area <value>

D.2.3 Compile Script

1 #---#
2 # #
3 # Decoder design compile script #
4 # CONFIG #
5 # #
6 # #
7 # #
8 #---#
9

10 #Testing with 0, 1 and 2 errors
11 remove_design -all
12
13 analyze -library WORK -format verilog {./SRC/decoder_top.v ./SRC/adder.v
14 ./SRC/AND_gate.v ./SRC/D_reg.v ./SRC/Chien_cell_W.v ./SRC/Chien_cell.v
15 ./SRC/Chien_search.v ./SRC/Codeword_Store.v ./SRC/Error_corr.v
16 ./SRC/Forney.v ./SRC/MUX.v ./SRC/Full_mult.v ./SRC/in_stage.v ./SRC/inverse_GF32.v
17 ./SRC/Mult_x2_5bit.v ./SRC/Mult_x4_5bit.v ./SRC/Mult_x8_5bit.v ./SRC/MUX_1to2.v ./SRC/

NOR.v

103

18 ./SRC/Omega_calc.v ./SRC/BM_alg.v ./SRC/syndrome_calc_S0.v ./SRC/syndrome_calc_S1.v
19 ./SRC/syndrome_calc_S2.v ./SRC/syndrome_calc_S3.v ./SRC/Syndrome_ctrl.v ./SRC/

clk_gate.v}
20
21 elaborate decoder_top -library WORK
22
23 # Apply constraints
24 source ./SYN/SCR/constraints.tcl
25
26 compile -incremental
27
28 # Run report commands
29 echo "Decoder config \n" >> ./SYN/RPT/report_config.txt
30 echo "Report files" >> ./SYN/RPT/report_config.txt
31
32 echo "Config QOR REPORT\n" >> ./SYN/RPT/report_config.txt
33 report_qor >> ./SYN/RPT/report_config.txt
34
35 echo "Config AREA HIER\n" >> ./SYN/RPT/report_config.txt
36 report_area -hierarchy >> ./SYN/RPT/report_config.txt
37
38 echo "Config CELL REPORT\n" >> ./SYN/RPT/report_config.txt
39 report_cell >> ./SYN/RPT/report_config.txt
40
41
42 #----------------------#
43 # ZERO ERRORS #
44 #----------------------#
45 # Read the backword annotation SAIF file
46 read_saif -input ./SYN/SAIF/error0.saif -instance_name decoder_top_tb/UUT -verbose
47
48 #power reports
49 echo "Config POWER REPORT with 0 errors\n" >> ./SYN/RPT/report_config.txt
50 report_power >> ./SYN/RPT/report_config.txt
51
52 echo "Config POWER REPORT HIER with 0 errors\n" >> ./SYN/RPT/report_config.txt
53 report_power -hier >> ./SYN/RPT/report_config.txt
54
55 #----------------------#
56 # ONE ERROR #
57 #----------------------#
58
59 # Read the backword annotation SAIF file
60 read_saif -input ./SYN/SAIF/error1.saif -instance_name decoder_top_tb/UUT -verbose
61
62 # Run report commands
63 #power reports
64 echo "---\n" >> ./SYN/RPT/report_config.txt
65 echo "Config POWER REPORT with 1 errors\n" >> ./SYN/RPT/report_config.txt
66 report_power >> ./SYN/RPT/report_config.txt
67
68 echo "Config POWER REPORT HIER with 1 errors\n" >> ./SYN/RPT/report_config.txt
69 report_power -hier >> ./SYN/RPT/report_config.txt
70
71 #-----------------------#
72 # TWO ERRORS #
73 #-----------------------#
74
75 # Read the backword annotation SAIF file
76 read_saif -input ./SYN/SAIF/error2.saif -instance_name decoder_top_tb/UUT -verbose
77
78 # Run report commands
79 #power reports
80 echo "---\n" >> ./SYN/RPT/report_config.txt
81 echo "Config POWER REPORT with 2 errors\n" >> ./SYN/RPT/report_config.txt
82 report_power >> ./SYN/RPT/report_config.txt
83
84 echo "Config POWER REPORT HIER with 2 errors\n" >> ./SYN/RPT/report_config.txt
85 report_power -hier >> ./SYN/RPT/report_config.txt

104

D.2.4 Clock Gate Insertion Compile Script

1 #---#
2 # #
3 # Decoder design compile script #
4 # CONFIG #
5 # WITH CG #
6 # #
7 # #
8 #---#
9

10 #Testing with 0, 1 and 2 errors
11 remove_design -all
12
13 analyze -library WORK -format verilog {./SRC/decoder_top.v ./SRC/adder.v
14 ./SRC/AND_gate.v ./SRC/D_reg.v ./SRC/Chien_cell_W.v ./SRC/Chien_cell.v
15 ./SRC/Chien_search.v ./SRC/Codeword_Store.v ./SRC/Error_corr.v
16 ./SRC/Forney.v ./SRC/MUX.v ./SRC/Full_mult.v ./SRC/in_stage.v ./SRC/inverse_GF32.v
17 ./SRC/Mult_x2_5bit.v ./SRC/Mult_x4_5bit.v ./SRC/Mult_x8_5bit.v ./SRC/MUX_1to2.v ./SRC/

NOR.v
18 ./SRC/Omega_calc.v ./SRC/BM_alg.v ./SRC/syndrome_calc_S0.v ./SRC/syndrome_calc_S1.v
19 ./SRC/syndrome_calc_S2.v ./SRC/syndrome_calc_S3.v ./SRC/Syndrome_ctrl.v ./SRC/

clk_gate.v}
20
21 elaborate decoder_top -library WORK
22
23 # Apply constraints
24 source ./SYN/SCR/constraints.tcl
25
26 set_clock_gating_style -sequential latch
27
28 insert_clock_gating
29
30 compile -incremental
31
32 # Run report commands
33 echo "Decoder config WITH CG\n" >> ./SYN/RPT/report_config_CG.txt
34 echo "Report files" >> ./SYN/RPT/report_config_CG.txt
35
36 echo "Config QOR REPORT\n" >> ./SYN/RPT/report_config_CG.txt
37 report_qor >> ./SYN/RPT/report_config_CG.txt
38
39 echo "Config AREA HIER\n" >> ./SYN/RPT/report_config_CG.txt
40 report_area -hierarchy >> ./SYN/RPT/report_config_CG.txt
41
42 echo "Config CELL REPORT\n" >> ./SYN/RPT/report_config_CG.txt
43 report_cell >> ./SYN/RPT/report_config_CG.txt
44
45
46 #----------------------#
47 # ZERO ERRORS #
48 #----------------------#
49 # Read the backword annotation SAIF file
50 read_saif -input ./SYN/SAIF/error0.saif -instance_name decoder_top_tb/UUT -verbose
51
52 #power reports
53 echo "Config POWER REPORT with 0 errors\n" >> ./SYN/RPT/report_config_CG.txt
54 report_power >> ./SYN/RPT/report_config_CG.txt
55
56 echo "Config POWER REPORT HIER with 0 errors\n" >> ./SYN/RPT/report_config_CG.txt
57 report_power -hier >> ./SYN/RPT/report_config_CG.txt
58
59 #----------------------#

105

60 # ONE ERROR #
61 #----------------------#
62
63 # Read the backword annotation SAIF file
64 read_saif -input ./SYN/SAIF/error1.saif -instance_name decoder_top_tb/UUT -verbose
65
66 # Run report commands
67 #power reports
68 echo "---\n" >> ./SYN/RPT/report_config_CG.txt
69 echo "Config POWER REPORT with 1 errors\n" >> ./SYN/RPT/report_config_CG.txt
70 report_power >> ./SYN/RPT/report_config_CG.txt
71
72 echo "Config POWER REPORT HIER with 1 errors\n" >> ./SYN/RPT/report_config_CG.txt
73 report_power -hier >> ./SYN/RPT/report_config_CG.txt
74
75 #-----------------------#
76 # TWO ERRORS #
77 #-----------------------#
78
79 # Read the backword annotation SAIF file
80 read_saif -input ./SYN/SAIF/error2.saif -instance_name decoder_top_tb/UUT -verbose
81
82 # Run report commands
83 #power reports
84 echo "---\n" >> ./SYN/RPT/report_config_CG.txt
85 echo "Config POWER REPORT with 2 errors\n" >> ./SYN/RPT/report_config_CG.txt
86 report_power >> ./SYN/RPT/report_config_CG.txt
87
88 echo "Config POWER REPORT HIER with 2 errors\n" >> ./SYN/RPT/report_config_CG.txt
89 report_power -hier >> ./SYN/RPT/report_config_CG.txt

106

	Introduction
	Motivation
	Problem Description
	Report Structure

	Theory
	Low Power Design Techniques
	Power Consumption in CMOS Technology
	Glitch Reduction
	Clock Gating
	Precomputation and Parallelism

	Reed-Solomon
	Galois Field
	Field Generator Polynomial

	Galois Field Arithmetic
	Addition and Subtraction in Galois Field
	Multiplication and Division in Galois Field

	Reed-Solomon Encoder
	Generator Polynomial
	Reed-Solomon Encoding

	Reed-Solomon Decoder
	The Received Codeword
	Decoding Techniques
	Syndrome Decoding
	Decoding Algorithm
	Berlekamp-Massey Algorithm
	Inversionless Berlekamp-Massey Algorithm
	Euclidean Algorithm

	The Chien Search
	Forney Algorithm

	Implementation
	Symbol and Correction Size
	Implementing Arithmetic Operations
	Addition
	Galois Field Multipliers
	Division

	Implementation Techniques
	Implementation of Encoder
	Implementation of Decoder
	Implementation of Syndrome Calculation
	Implementation of Key Equation Solver
	Implementation of Chien Search
	Implementation of Forney Algorithm
	Error Correction
	Decoder Architecture

	Verification and Test
	Verification and Test of Encoder
	Verification and Test of Decoder

	Synthesis
	FreePDK 45nm CMOS Technology Library
	Synopsys Synthesis Tools
	Synplify Pro
	Design Compiler and Power Compiler

	Synthesis of Reed-Solomon Encoder
	Synthesis of Reed-Solomon Decoder
	Decoder Configuration 1
	Decoder Configuration 2
	Decoder Configuration 3
	Decoder Configuration 4
	Decoder Configuration 5
	Decoder Configuration 6
	Decoder Configuration 7

	Synthesis and Simulation Results
	Synthesis Results Encoder
	Synthesis Results Decoder
	Configuration 1 Synthesis and Simulation Results
	Configuration 2 Synthesis and Simulation Results
	Configuration 3 Synthesis and Simulation Results
	Configuration 4 Synthesis and Simulation Results
	Configuration 5 Synthesis and Simulation Results
	Configuration 6 Synthesis and Simulation Results
	Configuration 7 Synthesis and Simulation Results

	Evaluation of Results
	Encoder
	Decoder

	Discussion
	Encoder
	Decoder

	Conclusions
	Further Work
	References
	Galois Field
	Galois Field Representation
	Field Elements GF(16)
	Field Elements GF(32)

	Examples
	Implementation Examples
	Constant Multiplier
	Constructing a Full Multiplier

	Decoding Example

	Test Vectors
	Encoder Test Vectors
	Simulation Test Vectors

	Decoder Test Vectors
	Simulation Test Vectors

	Scripts
	Matlab Scripts
	Encoder Test Vector Script
	Decoder Test Vector Script

	Design Compiler and Power Compiler Scripts
	Synopsys Design Compiler Setup File
	Constraints Script
	Compile Script
	Clock Gate Insertion Compile Script

