
FPGA Filter Design and Measurements
with Emphasis on a Filter with Steep
Transition Bands

Andre Firing

Master of Science in Electronics

Supervisor: Bjørn B. Larsen, IET
Co-supervisor: Stig Rooth, Kongsberg Norspace AS

Tor Audun Ramstad, IET

Department of Electronics and Telecommunications

Submission date: May 2013

Norwegian University of Science and Technology

Design of Digital Systems
Master’s Thesis

FPGA Filter Design and Measurements
with Emphasis on a Filter with Steep

Transition Bands

Andre Firing

Supervisors
Bjørn B. Larsen, IET
Tor A. Ramstad, IET

Stig Rooth, Kongsberg Norspace

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Electronics and Telecommunications

Abstract

The objective of this thesis was to design and implement a digital bandpass filter with em-
phasis on steep transition bands. The goal of the design was to create a FPGA based dig-
ital alternative to an existing analog filter used in the Galileo Satellite Search and Rescue
Transponder. This filter has a passband of 100 kHz centered at 70.98 MHz. The transition
bands of the filter are approximately 50 kHz on both sides of the passband, ending in a
stopband attenuation of at least 80 dB. The phase of the filter response is linear.

The proposed filter, called Masterfilter, was designed by applying multistage and mul-
tirate filtering techniques, including undersampling, signal mixing, decimation and inter-
polation. The filter was designed with a sampling frequency of 30 MHz, and the input
signal was undersampled down to 10.98 MHz. The output of the Masterfilter was centered
at 3.48 MHz, with a bandwidth of 100 kHz. Matlab was used to simulate the behavior and
determine intermediate filter characteristics, while VHDL was used to implement the filter
in hardware. To make the design fit the performance and spacial limitations of a space
qualified FPGA, digital design optimization techniques such as pipelining and resource
sharing were implemented. The filter was designed to be as general as possible, meaning
that no vendor specific components were used in the design.

The digital filter was tested using several approaches, including impulse responses and
tone testing of both internal filters and the complete filter system. The transfer function
of the Masterfilter was verified using Modelsim simulations. In addition to these simula-
tions, a version of the filter was implemented in an Altera Cyclone II FPGA, where the
functionality of the filter, and the actual frequency response was determined. These results
provided a transfer function for the complete filter system.

It was concluded that the filter did fulfill the requirements given, and that it would
be a sufficient digital alternative to the existing analog filter in the Search and Rescue
Transponder. An infinite attenuation, where the output transmitted a constant zero was
measured at 39 kHz below the passband, at at 30 kHz above the passband. Some issues
with timing were encountered when using certain optimization techniques. Therefore, it
would be recommended that a device specific clocking logic should be used in an FPGA
implementation.

i

ii

Sammendrag (Norwegian)

Bakgrunnen for denne masteroppgaven var design og implementering av et digitalt bånd-
passfilter med hovedvekt på minimale transisjonsbånd. Målet med oppgaven var å utvikle
et FPGA-basert digitalt filter tilsvarende et analogt båndpassfilter, plassert i dagens Galileo
Satellite Search and Rescue Transponder. Det digitale filteret skulle designes og imple-
menteres for bruk på en romfartskvalifisert FPGA. Det eksisterende analoge filteret har en
båndbredde på 100 kHz sentrert ved 70.98 MHz, med transisjonsbånd på 50 kHz. Dempin-
gen i stoppbåndet skal være minst 80 dB, og faseresponsen skal være lineær.

Det foreslåtte digitale filteret, her kalt Masterfilter, ble utformet ved å benytte fler-
trinns filterteknikker, som blant annet undersampling, miksing, desimering og interpoler-
ing. Sampling frekvensen til filteret ble satt til 30 MHz, og inngangssignalet ble under-
samplet til 10.98 MHz. Utgangssignalet av filteret ble sentrert om 3.48 MHz, med en
båndbredde på 100 kHz. Matlab ble benyttet for å lage prototyper av interne filtere i de-
signfasen, og det endelige filteret ble implementert i VHDL. For å oppfylle kravene til
ytelse og plassbruk i en romfartskvalifisert FPGA ble digitale optimaliseringsteknikker
benyttet. Dette omfattet blant annet pipelining og resource sharing. For å gjøre filteret så
generisk som mulig, ble ingen leverandør-spesifike komponenter benyttet.

Filteret ble grundig testet ved blant annet test av pulsrespons og tonetesting av både in-
terne komponenter og det samlede filtersystemet. Filterets overføringsfunksjon ble bestemt
ved hjelp av simuleringer i Modelsim. I tillegg til disse simuleringene ble det også im-
plementert en versjon av filteret i en Altera Cyclone II FPGA. Her ble funksjonalitet og
frekvensrespons testet og kartlagt.

På grunnlag av de testresultatene som ble funnet i denne oppgaven ble det konkludert
med at det foreslåtte digitale filteret ville være et tilstrekkelig alternativ til det eksisterende
analoge filteret i dagens Search and Rescue Transponder. En uendelig demping ble målt
for frekvenser 39 kHz under passbåndet, og 30 kHz over passbåndet. Det ble funnet noen
utfordringer med timing i den fysiske implementeringen av filteret, og det anbefales at
FPGA-spesifik klokkelogikk blir benyttet i en eventuell implementasjon.

iii

iv

Preface

This paper was written as a master’s thesis in design of digital systems at NTNU. The
focus of my master’s degree is FPGA design, and digital signal processing was a relatively
new field for me before this thesis. This thesis was performed over the course of 20 weeks,
without any related preceeding specialization project.

The assignement was given by Kongsberg Norspace, under the supervision of Stig
Rooth. The initial problem description was quite open, and further limitations were in-
troduced throughout the semester. Also, it was decided that the focus of the thesis should
mainly be FPGA based design of the filter, as this was most relevant considering previous
experience and interests.

I would like to thank my thesis supervisors, Associate Professor Bjørn B. Larsen and
Professor Tor A. Ramstad for helpful guidance, and Kongsberg Norspace for an interesting
and challenging assignment. I would also like to thank Stig Rooth, Maxime Adadja and
Espen Flo Eriksen for guidance and insight during this semester.

v

vi

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Problem Description . 4
1.3 Report Structure . 4

2 Signal Processing 5
2.1 Digital Sampling . 5

2.1.1 Signal Resolution . 5
2.1.2 Quantization and Noise . 5
2.1.3 The Sampling Theorem . 7
2.1.4 Sampling of Bandpass Signals 7
2.1.5 Noise in Bandpass Sampled Signals 10

2.2 Filtering . 10
2.2.1 FIR Filters . 11

2.3 Signal Mixing . 13
2.4 Decimation . 13
2.5 Interpolation . 15

3 Digital Design 19
3.1 Fixed-Point Representation . 19

3.1.1 Overflow . 20
3.2 Digital Signal Processing in an FPGA 20

3.2.1 Digital Mixing . 20
3.2.2 FPGA Clocking . 21
3.2.3 FPGA and Space Qualification 22
3.2.4 FPGA Architecture . 23

3.3 Optimizing for Performance and Area 23
3.3.1 Pipelining . 24
3.3.2 Resource Sharing . 25
3.3.3 Constant Input Multipliers . 26

4 Existing Analog Filter 29

5 Methods and Tools 31

vii

6 Proposed Digital Filter 33
6.1 Initial Sampling, Mixer and Filter . 33
6.2 Signal Decimation . 38
6.3 Bandpass Filtering . 40
6.4 Signal Interpolation . 41
6.5 Clock Hierarchy . 43
6.6 Filter Specifications . 45

6.6.1 Group Delay . 45
6.6.2 Overflow . 45

7 Synthesis and Resource Optimization 47
7.1 Initial Synthesis . 47
7.2 Optimizations in HDL . 47

7.2.1 Resource Sharing . 48
7.2.2 Filter Coefficient Optimization 49
7.2.3 Optimizing for Performance . 49

8 Simulation and Verification 53
8.1 Digital Simulation . 53

8.1.1 Impulse Responses . 53
8.1.2 Tone Testing . 54
8.1.3 Spectrum Analysis . 54

8.2 FPGA-Testing . 56

9 Discussion 61

10 Conclusions 65

11 Further Work 67

A Filter Frequency and Phase Responses 69

B VHDL Simulation 73

C Filter Optimization 75

D Testing of the Filters 77
D.1 Testing With Tones . 77

E VHDL Code 79
E.1 10 MHz Clock Generator Code . 79

F Hardware Simulations 81

G Filter FPGA Tests 89

References 93

viii

List of Figures

2.1 ADC Quantization and Noise [2] . 6
2.2 Impact of Aliasing [1] . 8
2.3 Illustration of Bandpass Sampling [4] 9
2.4 Allowed and Forbidden Sampling Frequencies [1] 10
2.5 Impact of Tap Weights in an FIR Filter 11
2.6 FIR Filter Structure [3] . 12
2.7 Symmetric FIR Filter Structure [3] . 13
2.8 Signal Mixer . 14
2.9 Decimation by D = 4 . 15
2.10 Decimation with a Highpass Filter . 16
2.11 Illustration of Interpolation . 16
2.12 Frequency Placement After Upsampling by N = 6 17

3.1 Clock Skew [10] . 21
3.2 C-Cells and R-Cells in an RTAX2000S [14] 24
3.3 Pipelining [10] . 25
3.4 Resource Sharing Illustration . 25
3.5 Resource Sharing, Continued . 26

4.1 Current Filter Response . 29
4.2 SART Converter Chain . 30
4.3 Expected Input Frequency Placement 30

6.1 Aliased Signal at 30MHz Sampling . 36
6.2 Down-Mixed Signal . 37
6.3 Mixer and Coverfilter . 37
6.4 Signal after Coverfilter . 38
6.5 Signal at Fs = 30 MHz and Fs = 10 MHz 39
6.6 Signal at Fs = 5 MHz . 40
6.7 Signal at Fs = 2.5 MHz . 41
6.8 Signal After Bandpass Filtering . 42
6.9 The Masterfilter . 43
6.10 Generation of 10 MHz Clock Signal . 44

7.1 Improvement of Reusable Filters . 48
7.2 Area Usage and Performance for Space Qualified FPGAs 51
7.3 The Optimized Masterfilter . 52

ix

8.1 Simulation Input . 54
8.2 Simulation Output . 55
8.3 Simulation Output, 7.5 MHz Offset . 56
8.4 Testing Setup on FPGA . 57
8.5 Results from the FPGA-Testing . 58
8.6 Attenuation of Masterfilter . 59

A.1 Theoretical Response of Coverfilter . 69
A.2 Theoretical Response of HdDec2 . 69
A.3 Theoretical Response of HdDec3 . 70
A.4 Theoretical Response of HdDec4 . 70
A.5 Theoretical Response of HdBand . 70
A.6 Theoretical Response of HdOut . 71
A.7 Theoretical Response of HdOut2 . 71

B.1 Waveform Simulations of Processing Units 73
B.2 Waveform-Simulations of Internal Filters in the FPGA 74

C.1 Reusable Decimation- and Interpolation Filter 75

F.1 Mixer Output . 81
F.2 Coverfilter Output . 81
F.3 Downsampler3 Output . 82
F.4 HdDec2 Decimation Output . 82
F.5 Downsampler2_1 Output . 82
F.6 HdDec3RU Decimation Output, Stage 1 83
F.7 HdDec3RU Decimation Output, Stage 2 83
F.8 Downsampler2_2 Output . 83
F.9 HdDec4RU Decimation Output . 84
F.10 Downsampler2_3 Output . 84
F.11 Bandpassfilter Output . 84
F.12 Upsampler21 Output . 85
F.13 HdDec4RU Interpolation Output . 85
F.14 Upsampler22 Output . 85
F.15 HdDec3RU Interpolation Output, Stage 1 86
F.16 HdDec3RU Interpolation Output, Stage 2 86
F.17 Upsampler23 Output . 86
F.18 HdDec2 Interpolation Output . 87
F.19 Upsampler3 Output . 87
F.20 HdOut Output . 87

G.1 Hardware Coverfilter Response . 89
G.2 Hardware HdDec2 Response . 89
G.3 Hardware HdDec3RU Response, Decimation Channel 90
G.4 Hardware HdDec3RU Response, Interpolation Channel 90
G.5 Hardware HdDec4RU Response, Decimation Channel 90
G.6 Hardware HdDec4RU Response, Interpolation Channel 91
G.7 Hardware Bandpassfilter Response . 91

x

G.8 Hardware HdOut Response . 92
G.9 Hardware HdOut2 Response . 92

xi

xii

List of Tables

3.1 Space Qualified FPGAs . 23

6.1 Direct Design of the Filter . 33
6.2 Resulting Frequency Components After Sampling [MHz] 35
6.3 Interpolation Stages . 42
6.4 Group Delay Summary . 45
6.5 Overflow Summary . 46

7.1 Initial Synthesis Report . 47
7.2 Optimization by Filter Reusage . 49
7.3 Original and Improved Filter Coefficients 49
7.4 Improvement after Pipelining . 50
7.5 Optimized Synthesis Report . 50

8.1 Effect of Increasing Precision . 59

D.1 Tone-Test of Coverfilter . 77
D.2 Tone-Test of HdDec2 . 77
D.3 Tone-Test of HdBand . 77
D.4 Tone-Test of HdOut . 78
D.5 Tone-Test of HdOut2 . 78
D.6 Tone-Test of HdDec3RU . 78
D.7 Tone-Test of HdDec4RU . 78

xiii

xiv

List of Abbreviations

ADC Analog to Digital Converter

C-Cells Combinatorial Cells (Actel)

CORDIC Coordinate Rotation Digital Computer

DAC Digital to Analog Converter

dBFS Decibels relative to full scale

DSP Digital Signal Processing

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

Fs Sampling Frequency

GPIO General Purpose Input/Output

HDL Hardware Description Language

IIR Infinite Impulse Response

IP Intellectual Property

LO Local Oscillator

LTI Linear Time-Invariant

LUT Look-Up Table

MSB Most Significant Bit

NCO Numerically Controlled Oscillator

PLL Phase-Locked Loop

QML Qualified Manufactering Line

RAM Random Access Memory

R-Cells Register Cells (Actel)

1

RHA Radiation Hardened Assurance

RMS Root-Mean-Square

RTL Register Transfer Level

SART Search and Rescue Transponder

SAW Surface Acoustic Wave

SEL Single Event Latch-Up

SEU Single Event Upset

SNR Signal-to-Noise Ratio

SQNR Signal-to-Quantization-Noise Ratio

TID Total Ionizing Dose

TMR Triple Module Redundancy

VHDL Very-High-Speed Integrated Circuit Hardware Description Language

2

Chapter 1

Introduction

1.1 Motivation
One of the most important components in any signal processing system is frequency sen-
sitive filters. Filters are applied to exclude frequency components from a signal, and they
are generally classified according to their frequency responses. A field where digital signal
processing, and hence filtering is widely applied is in communication systems. Communi-
cation systems can be found in cellphones, broadcasting and even in space.

The concept of space communication systems brings forth new challenges in the filter
design, such as reliable performance in extreme conditions. This is where digital signal
processing has an advantage over traditional analog systems. As long as the system clock
is held at a constant frequency, the behavior of the system will also remain stable, in
contrast to analog systems which will drift significantly during changing temperatures. In
satellite systems, analog components will have to be heated to a constant temperature to
achieve reliable performance, which means bringing a heavy and energy costly heat source
on board the satellite.

One application of space communication is the use of emergency transponders, which
receives distress signals from one location on earth, filters the signal and transmits it back
to a rescue central. This functionality can be found in some modern satellites, among them
the new Galileo Satellites. One of the filters used in the Galileo Satellite Search and Rescue
Transponder is a very narrow bandpass filter centered at 70.98 MHz, with a bandwidth of
100 kHz. The transition bands of the filter are approximately 50 kHz at both sides of
the passband, with an attenuation exceeding 80 dB in the stopbands. To design a digital
finite impulse response (FIR) version of this filter directly with the Parks-McClellan filter
design algorithm [1] would require an extreme amount of filter stages, which would not
be possible to implement in any of the current space qualified Field Programmable Gate
Arrays (FPGA). To design a realizable digital filter with these specifications, advanced
filter techniques and digital design methodology will have to be applied. However, the
gain of reducing the area which will be climate controlled on the satellite will free up the
weight- and power budget for other potential applications, which in turn makes the design
efforts well worth while.

3

1.2 Problem Description
The object of this thesis is to design an FPGA based digital filter suitable to replace the
analog filter which is used in the current Galileo Satellite Search and Rescue Transponder.
This filter has a very high quality factor, with a bandwidth of 100 kHz, transition bands of
50 kHz and a center frequency of 70.98 MHz. Since the filter is to be placed in a sensitive
communication system, the filter will need to be strictly stable and have a linear phase.
The filter is a second stage filter in the receiver chain, preceded by a 1.8 MHz bandpass
surface acoustic wave (SAW) filter and a mixer. The input of this filter will therefore be a
bandpass signal, with a bandwidth of 1.8 MHz centered at 70.98 MHz, and a sufficiently
attenuated stopband. From preceding stages in the transponder chain, one can also expect
to find undesired signal components at 741 MHz and 670 MHz. These components should
be removed with this digital filter. Furthermore, the following specification should be
fulfilled by the digital filter:

• FS ,FPGA = 30MHz±5MHz

• The FPGA should use the same clock frequency for receiving and transmitting data
externally.

• The design should fit into a space qualified FPGA, preferably an Actel RTAX2000S.

• The bandwidth of the passband should be approximately 100 kHz.

• The attenuation in the stopbands should be at least 80 dB, 50 kHz apart from the
passband.

• The filter response should have a linear phase.

The filter should be designed and simulated with Matlab, and implemented in hardware
using VHDL. The implemented filter should be verified by simulations of the VHDL code,
and testing on an FPGA. The simulated performance of the filter should be characterized
by its transfer function.

1.3 Report Structure
The report will be structured as follows:

• Chapters 2 and 3 will handle the necessary signal processing and digital design
theory needed for the design and testing.

• Chapter 4 will introduce the existing analog filter used in the Search and Rescue
Transponder unit.

• In chapter 5, the tools used in the thesis are described.

• Chapter 6 describes the designed filter, and the reasons behind the design choices.

• In chapters 7 and 8 the physical performance estimations and simulation results are
described.

• In chapters 9, 10 and 11 the results are discussed and conclusions are stated. Sug-
gestions of further improvements are also described.

4

Chapter 2

Signal Processing

2.1 Digital Sampling
One of the fundamental prerequisites of a digital signal-processing system is that the input
of the system should be a digital signal. In contrast to analog signals, the digital signal con-
sists of several quantized steps which represents the magnitude and frequency information
of the signal.

2.1.1 Signal Resolution
The granularity of the digital signal, or how similar the digital signal is to its original
analog signal is dependent upon, among other parameters, how many bits which are used
to represent the amplitude steps. These steps are called quantization steps, represented by
[1]

∆ =
xmax − xmin

2b−1
(2.1.1)

where x is the input signal and b represents the number of bits which will represent the
signal. ∆ defines the quantizer step size, which are determined by the Analog to Digital
Converter (ADC).

Equation 2.1.1 suggest a significant increase in signal resolution as a result of increas-
ing the bit width. This can be illustrated using a signal with an analog amplitude of 2 V. If
a 2 bit digital signal is to represent this signal, there would only be four steps to represent
this 2 V range. However, if a 16 bit digital signal is used to model this analog signal,
216 steps would be available. If the quantization is linear or uniform, meaning that each
quantization step is of equal size, the granularity of the signal would be

2V
216−1

= 3.05 ·10−5 V = 30.5µV (2.1.2)

2.1.2 Quantization and Noise
Since the number of quantization steps used to represent the signal cannot be infinite, a
quantization error results from the analog to digital conversion, which is represented by

5

[1]

−
∆

2
≤ eq(n) ≤

∆

2
(2.1.3)

A graphical illustration of the quantization error resulting from an ADC can be seen in
figure 2.1. Equation 2.1.3 only applies if the analog signal is located within the domain
of the ADC. If the signal exceeds the ADC range, the quantization error will exceed the
limits from equation 2.1.3. The signal is then clipped, which results in overload noise [1].

Figure 2.1: ADC Quantization and Noise [2]

The noise resulting from the quantization error is often analyzed together with the
signal, as signal-to-quantization-noise power, SQNR [1]. The SQNR can be expressed as

S QNR = 10log10
Px

Pn
(2.1.4)

where Px is the signal power, E[x2(n)], and Pn is the power of the quantization noise [1]

Pn = σ2
e =

∫ ∆
2

− ∆
2

e2 p(e)de =
1
∆

∫ ∆
2

− ∆
2

e2de =
∆2

12
(2.1.5)

or, expressed as the root-mean-square (rms) quantization noise [2]

Pn,rms =
∆
√

12
(2.1.6)

Assuming that the quantization noise is uncorrelated to the input signal and that Pn,rms
remains approximately as described in equation 2.1.6, a theoretical output signal-to-noise
ratio (SNR) can be calculated for a given input at the ADC. For a rail-to-rail sinewave
expressed as

v(t) =
∆ ·2N

2
sin(2π f t) (2.1.7)

6

where N is the number of bits used to quantize the signal, the RMS value would be [2]

vrms =
∆ ·2N

2
√

2
(2.1.8)

The SNR for an ideal ADC would then be expressed as [2]

S NR = 20log10
vrms

Pn,rms
(2.1.9)

S NR = 20log10
∆ ·2N/2

√
2

∆/
√

12
(2.1.10)

which results in the commonly used formula for calculating the SNR over the dc to fs
2

bandwidth for quantized signals,

S NR = 6.02N + 1.76dB (2.1.11)

Examining equation 2.1.11, it is apparent that the SNR will improve by approximately
6 dB for each bit added to quantize the signal. The constant 1.76 of equation 2.1.11
originates from the rail-to-rail sinewave at the input, and it will vary for other input signals.

2.1.3 The Sampling Theorem
In addition to the voltage amplitude steps being sampled, it is also essential to know
how often to sample these signals. The Sampling Theorem states that "A bandlimited
continuous-time signal, with the highest frequency (bandwidth) B hertz, can be uniquely
recovered from its samples provided that the sampling rate Fs ≥ 2B samples per second"
[1]. For lowpass signals, this implies that the sampling frequency should be twice the
frequency of the highest frequency component of the signal. The sampling rate at which
Fs = 2B is called the Nyquist rate [1].

When an analog signal is sampled, the frequency components are repeated every kFs
frequency, where k is an integer [1]. If the original signal is sampled with a lower fre-
quency than 2B, the resulting signal will contain interfering frequency components. This
phenomena is called aliasing, which means that the frequency components are overlap-
ping, and the resulting reconstructed signal will not be equal to the original signal. Alias-
ing is irreparable and should be avoided [3]. Figure 2.2 describes the process of sampling
and reconstructing the original signal, with and without aliasing. Figure 2.2a shows a sig-
nal which is sampled with a sampling frequency that satisfies the sampling theorem, and
figure 2.2b shows a signal sampled at a lower sampling rate than 2B.

2.1.4 Sampling of Bandpass Signals
If one is to sample a signal with bandwidth 2B and center frequency Fc, where B << Fc,
the traditional interpretation of the sampling theorem would suggest that the sampling
frequency should be at least 2(Fc + B). This way the signal is treated as a lowpass signal,
which assures that there will be no aliasing at all [4]. However, what the sampling theorem
really states is that the sampling frequency needs to be twice the signal bandwidth, making
the frequency at which the signal is centered irrelevant for the ability to preserve the signal

7

(a) FS > 2B (b) FS < 2B

Figure 2.2: Impact of Aliasing [1]

information after sampling. This fact can be exploited to reduce the sampling frequency
of bandpass signals significantly, as these signals can be downsampled with a sampling
frequency of 2B or higher. However, the reduced sampling frequency brings forth new
issues with mirroring, aliasing and noise.

The theory of bandpass sampling states that when sampling a signal at a rate of fs,
all frequency components in the analog domain will be mirrored down to the baseband,
which is located at dc to fs

2 Hz [5]. To better understand the effects of mirroring, the term
band position is introduced. This term refers to the fractional number of signal bandwidths
which the lowest frequency of a bandpass signal is located from the baseband. A special
case of band position is called Integer Band Positioning[5]. This approach first defines
an integer m to be a multiple of the bandwidth, FH = mB [1], where FH is the highest
frequency component of the signal. This integer m is the band position, and the original
signal will be aliased and reflected for each band position, 0 to m−1. This is illustrated for
a bandpass signal with several possible sampling frequencies in figure 2.3. These bands
are also known as Nyquist zones. Notice that if the band of the original signal is placed
within an even numbered Nyquist zone, the sampled signal at the baseband will be the
inverse of the original signal [1]. The theoretical lowest sampling frequency is defined as
Fs = 2B, but it should be noted that this only applies if there are no signal components at
Fc±B/2 [5].

Another limitation when using the theoretical minimum sampling rate is that any en-
gineering imperfection, such as clock instability will cause aliasing due to the low margin
of error in the FS

B ratio [5]. These considerations leads to the fact that one does not have to
use 2B as a goal in it self for the optimal sampling frequency.

To counter the sensitivity to engineering imperfections, a sampling scheme called Ar-
bitrary Band Positioning is introduced. This line of thought states that the band positioning
does not have to be strictly set by the signal bandwidth, leaving room for zero-magnitude
frequency components at both sides of the signal. When selecting a sampling frequency
which yields non-aliasing regions on both sides of the FH

B rate, this extra bandwidth is

8

0 5 10 15 20 25-5-10-15-20-25
MHz

0 5 10 15 20 25-5-10-15-20-25
MHz

0 5 10 15 20 25-5-10-15-20-25
MHz

0 5 10 15 20 25-5-10-15-20-25
MHz

Original Spectrum fs = 35 MHz fS / 2 Original Spectrum

m = 1

m = 1

fs = 22.5 MHz

fs = 17.5 MHz

fs = 15 MHz

m = 2

m = 2

(a)

(b)

(c)

(d)

fS / 2

fS / 2

fS / 2

Figure 2.3: Illustration of Bandpass Sampling [4]

called the guard band [5]. This region safeguards against aliasing due to engineering
imperfections, which is important as virtually all reference clocks are somewhat unsta-
ble. Arbitrary band positioning leads to the following two limitations of the sampling
frequency Fs [1]

2FH ≤ kFs (2.1.12)

(k−1)Fs ≤ 2FL (2.1.13)

These equations can be solved for k to show that kmax ≤
FH
B [1]. kmax is the maximum

number of Nyquist zones that can fit in the range of dc to FH . This leaves the minimum
sampling rate to avoid aliasing effects as

Fs,min =
2FH

kmax
(2.1.14)

Equation 2.1.14 implies that the sampling frequency can be selected from a range of fre-
quencies, limited by [1]

2FH

k
≤ Fs ≤

2FL

k−1
(2.1.15)

and
1 ≤ k ≤ b

FH

B
c (2.1.16)

These limitations can be seen graphically in figure 2.4. It should be noted that even though
guard bands are introduced and the limitations in figure 2.4 are upheld, clock instability
when undersampling is critical.

9

Figure 2.4: Allowed and Forbidden Sampling Frequencies [1]

2.1.5 Noise in Bandpass Sampled Signals
One of the fundamental requirements of bandpass sampling is that the sampled signal
is, in fact, a bandpass signal and that the rest of the band is sufficiently attenuated. The
reason for this is that all the wideband noise will also be combined into all of the Nyquist
zones [5]. This will result in a degraded SNR in the baseband. The sampled SNR can be
calculated as [5]

S NR ≈
S

Np + (n−1)No
(2.1.17)

where S is the spectral power density, Np is the in-band noise power density, No is the out-
of-band noise power density and n is the integer band position. For systems with several
Nyquist zones and where the noise power density is equally distributed over the whole
spectrum, the SNR degradation can be roughly expressed as [5]

DS NR = 10log(n)dB (2.1.18)

This degradation of the SNR can consequently be reduced by increasing the sampling fre-
quency, reducing the number of Nyquist zones between the original signal and the base-
band.

2.2 Filtering
One of the most fundamental components of any signal processing system is called a filter.
A filter is a circuit which alters the attributes of a signal in the time- or frequency domain
[3]. There are many types of filters, but in this thesis the focus will be set on digital, linear
time-invariant (LTI) filters. LTI filters are generally divided into two types: Finite Impulse
Response (FIR) filters and Infinite Impulse Response (IIR) filters [1]. Although IIR filters

10

are generally known to have lower sidelobes in the stopband than equally sized FIR filters,
the thesis’ problem description states that the filter should always be stable, and the phase
of the filter should always be linear. This is always the case for FIR filters, while IIR filter
have the possibility of being unstable as a result of their feedback-based structure [1].

2.2.1 FIR Filters
An LTI FIR filter can be expressed mathematically as a convolution sum given by [3]

y[n] = x[n]∗ f [n] =

L−1∑
k=0

f [k]x[n− k] (2.2.1)

or, expressed in the z-domain
Y(z) = F(z)X(z) (2.2.2)

where

F(z) =

L−1∑
k=0

f [k]z−k (2.2.3)

L is the number of stages of the filter, and f [k] is a set of constants which are called the
filter coefficients, or tap weights. As the number of filter stages grows, the complexity of
the filter also grows. On the other hand, when the number of stages grows, the attenuation
and steepness of the filter also improves. This effect can be seen for a lowpass filter in
figure 2.5.

(a) Filter With 10 Tap Weights (b) Filter With 30 Tap Weights

Figure 2.5: Impact of Tap Weights in an FIR Filter

For extremely steep FIR filters, the number of coefficients can grow to the magnitude
of 104 and higher, which imposes issues with area when realizing the filter. FIR filters tend

11

to use more tap wights than IIR filters, which makes them more expensive to implement.
On the other hand, FIR filters have the advantage of being [6]

• Robust

• Inherently stable

• Easy to design for linear phase

• Common in digital applications

The FIR filter representation from equation 2.2.3 can be expressed as a circuit where
x[n] is the input and y[n] is the output, as seen in figure 2.6a. Alternatively, one can alter
the direct form FIR filter in figure 2.6a into the transposed structure in figure 2.6b [3]. This
transposed FIR filter has an advantage of a significantly shorter critical path, which results
in an increase in performance and throughput [3].

Another way of reducing the size of the FIR filter is to exploit the symmetry of the tap
weights. As seen in figure 2.5, the tap weights are identical at both sides of the center tap
weight (often described as the 0th sample [3]). This means that the tap weights are equal
in pairs, and only half of the multiplications needs to be performed in order to produce
the filter response. Coefficients can also be antisymmetric, and with both odd and even
number of filter stages [3]. An FIR filter which exploits the symmetric properties of the
tap weights can be seen in figure 2.7.

F[0]

F[1]

F[2]

F[L-1]

x[n]

y[n]

z
−1

z
−1

z
−1

(a) Direct Form FIR filter

x[n]

y[n]

F[L-1]

z
− 1

F[L-2]

F[L-3]

F[0]

z
−1

z
−1

(b) Transposed FIR filter

Figure 2.6: FIR Filter Structure [3]

An additional benefit of symmetric and antisymmetric filter coefficients is that they
have a guaranteed linear-phase response. Linear-phase response means that the group
delay is constant for every input frequency [3], which is quite important in for example
communication systems, as signals might otherwise be distorted. The group delay of an
N-tap FIR filter can be expressed as [4]

G =
D

2 · fs
s (2.2.4)

where D is the number of time-delay elements in the delay line of the filter, and fs is the
sampling frequency. Ideally, the output of a linear-phase filter would simply be a time
delayed and amplitude-scaled version of the input [1].

12

z
−1

F[0]

z
−1

z
−1

F[1]

F[L-2]

F[L-1]

x[n]

y[n]

z
− 1

z
−1

z
−1

z
−1

Figure 2.7: Symmetric FIR Filter Structure [3]

2.3 Signal Mixing
Another important operation in signal processing of bandpass signals is the process of
shifting the signal in the frequency domain. Frequency shifting is important in several set-
tings. In a receiver it is very common to shift a bandpass signal down to a lower frequency,
which allows for less demanding processing of the information contained in the signal. In
a digital filter, this down-conversion, followed by a reduction of the sampling frequency
is common to reduce the filter size. This is because the filter size is dependent upon the
steepness of the filter as a function of the sampling frequency. This will be explained in
section 2.4.

Frequency conversion can be achieved in both the analog and the digital domain with
a component called a mixer. This three-port device receives a signal and multiplies it with
a nonlinear or time-varying element and, ideally, outputs a signal consisting of the sum
and difference of the two signals [7]. The multiplicand signal, which often originates in
a local oscillator (LO), is in many real applications a sine wave with frequency fLO. The
mixing process is illustrated in figure 2.8.

In most cases, only one of the two frequency components, fRF + fLO or fRF − fLO are
wanted, and the other component will have to be filtered out. In reality, more frequency
components than just fRF ± fLO might be generated as unwanted harmonic signals [7].

2.4 Decimation
As mentioned in section 2.2.1, the number of tap weights needed to realize a digital FIR
filter heavily depends upon how wide the transition band is, with respect to the sampling
frequency. A direct form symmetric FIR filter would for instance need significantly more
tap weights to obtain a transition band of 5 kHz at a 100 MHz sampling frequency, than if

13

RF Signal Mixer

Local Oscillator

fRF

fLO

fO = fRF ± fLO

Figure 2.8: Signal Mixer

the sampling frequency was set to 100 kHz. In fact, the size of the filter at the 100 MHz
sampling frequency would probably not be feasible in any realistic system. However, in
the case of bandpass signals, where the bandwidth of the signal carrying the actual infor-
mation is much lower than the signal center frequency, there are techniques for reducing
the number of tap weights.

Decimation, or downsampling is a multirate signal processing technique for reducing
the sampling frequency of a signal by a factor D. The general formula for sample rate
conversion can be expressed as [1]

y(mTy) =

∞∑
n=−∞

x(nTx)g(mTy−nTx) (2.4.1)

where g(t) = sinc(πt/Tx), and Tx is the original sampling period. This equation can be
specialized for decimation of a factor D as [1]

y(mTy) = y(mDTx) =

∞∑
k=−∞

x(kTx)g((mD− k)Tx) (2.4.2)

A simple illustration of decimation can be seen in figure 2.9, where a lowpass signal is
decimated by a factor D = 4. Here one can observe that even though only the Dth sample
is kept, the curvature of the signal and hence the frequency is maintained after downsam-
pling. This is due to the fact that sampling theorem is still satisfied, as previously explained
in section 2.1.3.

However, successful signal decimation is more than just arbitrarily reducing the sam-
pling rate of the signal. If one assumes a signal with nonzero frequency components at
all frequencies |F| ≤ Fs/2, a sample rate reduction of D would cause folded frequency
components below Fs/2D [1]. This will cause aliasing when reconstructing the signal. To
avoid this distortion, the bandwidth of the original signal will first have to be reduced to
the resulting bandwidth after decimation. In other words, if the original signal bandwidth
is Fs/2, a filter will be needed to reduce this bandwidth to Fs/2D by suppressing all other
frequency components [1]. If the relevant bandpass signal is placed in the lower band,
where |F| ≤ Fs/2D, a lowpass filter should be used, with the ideal frequency response [1]

HD(ω) =

{
1, |ω| ≤ π/D
0, otherwise (2.4.3)

14

Figure 2.9: Decimation by D = 4

Another case of decimation is when the relevant bandpass signal is placed in the
|F| > Fs/2D region. As explained in section 2.1.4, when sampling at a frequency Fs,
all frequencies F ≥ Fs/2 will be folded down into the baseband. The folding attributes
can be exploited in decimation to both scale down the sampling frequency and to reduce
the frequency at which the signal is centered in one operation. This can be illustrated by
decimating a signal with a factor of D = 2. Equation 2.4.2 suggests that frequencies of
|F| ≥ Fs/4 would be folded down into the band |F| ≤ Fs/4. To avoid having the folded-
down frequency components distorted by the frequencies which already occupies the band
|F| ≤ Fs/4, a highpass filter with the following ideal frequency response should be applied
before the downsampling process

HD(ω) =

{
0, |ω| ≤ π/2
1, otherwise (2.4.4)

This filter, along with the downsampling will ideally leave only the |F| ≥ Fs,original/4 fre-
quency components in the baseband. However, as these signal components will be folded
about Fs,original/4, the signal components will now be inverted. This means that the fre-
quency component at the original Fs,original/2− 1 Hz would now be placed at 1 Hz, and
the component at the original Fs,original/4 + 1 Hz would be placed at the new Fs,new/2−1
Hz. These folded frequency placements behave similarly as the undersampled signals dis-
cussed in section 2.1.4. The process of highpass decimation is illustrated in figure 2.10.

In the digital domain, the downsampling process of decimation can be achieved effi-
ciently by only using every Dth sample of the signal. The digital filter needed, in both
cases of where the relevant signal is placed, should be an FIR filter to maintain the linear
phase response. There are no absolute requirements of the attenuation of the filter used in
the decimation process, but the filter should be designed for the specific application it is
meant for, and how much aliasing this application can withstand [8].

2.5 Interpolation
The goal of signal interpolation is to increase the sampling frequency of the signal, while
maintaining the signal information. Although interpolation resembles signal decimation,

15

Fs,original/2

Fs,new

P
o

w
er

P
o

w
er

Fs,new/2

Fs,original/4

Fs,new = Fs,original/2

Figure 2.10: Decimation with a Highpass Filter

there are some vital differences. The first step of the interpolation process is to increase
the sampling frequency, which is called upscaling or upsampling [9]. This can be done
by placing the original samples at every Nth position, and inserting zeros in between each
sample [9]. This process is illustrated in figure 2.11. In the frequency domain, the sig-
nal will be mirrored at every Nyquist interval. An illustration of this phenomena when
upsampling by a factor of N = 6 can be seen in figure 2.12.

1101

1101

1101

0110

0110

0110

1111

1111

1111

0000

0000 0000 0000 0000 0000

0000

0000 0000 0000 0000

0000

Original Signal

Interpolation by 2

Interpolation by 4

t

Figure 2.11: Illustration of Interpolation

The next step of the interpolation process is to filter the upscaled signal. Depending
on the upscaling factor, there will be several mirrored signals within the bandwidth which
needs to be removed. As with the decimation process, one can choose if the desired signal
lies in the upper or lower part of the new bandwidth with the type of filter used in the
filtering stage.

16

Fs/2

P
o
w
er

3Fs

P
o
w
er

Fs/2 Fs 2Fs3Fs/2 5Fs/2

Figure 2.12: Frequency Placement After Upsampling by N = 6

17

18

Chapter 3

Digital Design

When working with digital signal processing, one of the first decisions to make is whether
to use fixed-point representation, or floating-point representation of numbers. In a general
sense, floating-point representation has a much higher accuracy than fixed-point represen-
tation [3]. This, however, comes at the cost of both performance and circuit complexity.

3.1 Fixed-Point Representation
Any integer can be represented as a fixed-point number through the formula for unsigned
integer conversion [3]

X =

N−1∑
n=0

xn2n (3.1.1)

where N is the number of bits and xn is a boolean that is either present or not for the nth

symbol. This formula will not apply to negative numbers, as there is no way to determine
the sign of this binary number.

There are two common ways of representing signed numbers as fixed-point numbers,
with Signed-Magnitude and with Two’s Complement. Signed-magnitude representation
uses equation 3.1.1 to convert the absolute value of the integer, and adds another most
significant bit (MSB) which represents the sign of the number. The benefit of this repre-
sentation is a simplified prevention of overflows [3]. On the other hand, this representation
makes it more expensive to perform additions, since the process will have to be split up
depending on which number is largest [3].

When using two’s complement to represent signed numbers, the conversion from inte-
ger is done with the following equation

X =

{ ∑N−2
n=0 xn2n X ≥ 0
−2N−1 + 1 +

∑N−2
n=0 xn2n X < 0

(3.1.2)

This representation has the advantage of being able to add several signed numbers within
the N-bit range without having to handle overflow, as long as the final output does not
result in overflow [3]. It should be mentioned that there are other, more task-optimized
ways of representing digital numbers, although two’s complement is the most common in
digital signal processing (DSP) applications [3].

19

3.1.1 Overflow
An issue when using fixed-point representation for hardware filter design is the concept
of dynamic range overflow, which determines how large numbers the filter will need to
handle as a worst case. The worst case dynamic range growth can be expressed as [3]

G ≤ log2

L−1∑
k=0

| f [k]| (3.1.3)

where f [k] is the kth coefficient and L is the filter order. The total number of bits needed
to represent the filter is then the sum of the input bit width and this growth factor. If this
condition is upheld, no overflow will occur, regardless of which number representation
is used. However, equation 3.1.3 is quite pessimistic, as there is only one single input
combination which achieves this maximum growth in output size.

The maximum allowed input Xmax for a given filter internal bit width in the can also
be derived from the dynamic range growth, as seen in equation 3.1.4.

Xmax = ±
2N−1∑L−1

k=0 | f [k]|
(3.1.4)

To avoid the possibility of overflow, Xmax should be less than the maximum possible input,
determined by the bit width.

In larger filter systems, where several filters are cascaded together to form a steep filter,
there will have to be some scaling of the bit width. The reason for this is that the bit width
would grow to an unfeasible size if not handled. For example, if a filter system with five
stages, an input precision of eight bit and coefficients of eight bit would to be connected
together without scaling, the output of the filter would sum up to

Winput + 5 ·Wcoe f f icient = 48bit (3.1.5)

To counter this problem, a scaling unit could be placed at each filter output. One way of
achieving this in a fixed point system is to divide the signal by a constant factor, here called
the scalingfactor. This will not cause distortion, but it will reduce the signal amplitude,
which in turn allows for reducing the bit width of the signal.

3.2 Digital Signal Processing in an FPGA
The general signal processing techniques and challenges relevant for this thesis were pre-
sented in chapter 2. However, as this thesis is focused upon digital signal processing and
the techniques presented in the previous chapter are directed at general signal processing,
some additional challenges will surface when working with an FPGA.

3.2.1 Digital Mixing
As explained in section 2.3, the mixing process consists of multiplying the original signal
with a time-varying signal, often a sine wave. In a digital system, this sine wave will
have to be sampled in the same manner as the input signal, and stored in registers. This
suggests that the same issues as the ones described in section 2.1 also applies to this signal.

20

Of course, this multiplicand signal could be sampled with a much better resolution than the
input signal at compile time to reduce the quantization errors, but to store this signal in the
FPGA would require a vast memory. One way of reducing this error is to use CORDIC-
based algorithms [3]. The Coordinate Rotation Digital Computer (CORDIC) algorithm
is a very common algorithm used in applications such as pocket calculators and DSP-
systems. Its main function is to calculate efficient ways of minimizing the quantization
error when representing a time-varying function [3]. The CORDIC-architecture is well
suited for implementation in an FPGA, but in the case of signal mixing with a predefined
signal, the multiplicand signal could simply be calculated in the design process with the
help of for example CORDIC-based algorithms in Matlab.

Another, more hands-on method of reducing the size and error of the multiplicand
signal is to carefully choose the mixing factor and sampling frequency. If a sine wave is
used to mix the input signal, one can exploit the fact that a sine wave is periodical. This
would suggest that if for example the LO frequency is set to 15 MHz and the sampling
frequency is set to 30 MHz, the LO would only need two samples per period, 1 and −1
to perfectly represent the signal. Consequently, the logic needed to represent this mixer
would be very efficient in hardware, as a multiplication with 1 could be replaced by wires,
and a multiplication by −1 for two’s complement signed numbers consists of an inversion
and an addition with 1.

3.2.2 FPGA Clocking
One of the fundamental differences between computer simulations and testing in an actual
FPGA is the intricate timing in the physical system. Many digital systems employ a clock
signal to coordinate the movement of data through the system [10]. This is called a syn-
chronous design, and it is strictly necessary in for example digital FIR filters since all the
time delay elements consists of clocked D-Flip Flops.

1

0

T/2 T 2T/3 2T 5T/2

1

0

T/2 T 2T/3 2T 5T/2

CLK

CLK

ts

CLK_IN
CLK

CLK

Figure 3.1: Clock Skew [10]

21

In a multistage FIR filter, stable timing is critical. An important issue with clocking
in large systems is called Clock Skew. Clock Skew is where a clock signal is out of phase
with the system reference [10]. This is a product of either long clocking paths, or from the
clock signal propagating through logic with delay. This could for example be an inverter,
which is common to use when synchronizing dataflow in cascaded logic. An example of
clock skew in a circuit which generates an inverted clock signal can be seen in figure 3.1.

Clock skew can be reduced in several ways. Skew added as a result of long trans-
mission paths within the FPGA can to some extent be reduced in the routing process.
Timing-critical components can be grouped together, close to the clock source, and com-
ponents which are communicating with each other can be placed close. Some modern
synthesizer-tools have this option [3]. Also, many FPGAs have dedicated clock routing
with low latency, which can be used to reduce clock skew. For example, Actels Antifuse
FPGAs, including the RTAX2000S, lets the designer assign clock sources to a dedicated
clock network which supports high fanout and minimal skew [11].

Clock skew due to delay in logic or clock generation can also be reduced by adding a
phase-locked loop (PLL). The PLL is a component which detects differences in the signal
phase between the clock source and the feedback from a given point in the delay line, and
compensates for this difference at the source [10]. Many modern FPGAs have PLLs built
in, and their outputs can be properly routed to dedicated clock hardware.

3.2.3 FPGA and Space Qualification
One of the challenges facing FPGA-based designs for space applications is the limita-
tions of the FPGA-technology. First off, the main difference between common FPGAs
and space qualified FPGAs is the ability withstand significant radiation. The radiation af-
fecting satellites is much stronger compared to the radiation experienced on earth. This
means that random upsets, such as bit-inversion1 in memory is prone to happen in digital
electronics [12]. There are two common ways of countering this phenomena. The first
method is to introduce error correction into the circuit, which checks each stored bit with
majority voting at a given interval. This method costs both area, performance and energy.
The other method of countering radiation is to build physically larger and more resilient
FPGAs, which in turn means physically larger gates. This results in longer delays and
lower performance, as well as reduced exploitable logical area.

Space-application FPGAs are often classified as either radiation-tolerant or radiation-
hard [13]. Since space is a relatively new domain for FPGAs, the qualified devices with
flight-heritage are sparse. Historically, Actel have been the sole supplier of radiation-hard
FPGAs due to the high production cost and small market, but as the FPGA technology
has developed and grown more popular, also major manufacturers such as Xilinx have
started to develop suitable FPGAs. To be classified as a space-quality FPGA, the FPGA
manufacturers needs to be classified with a qualified manufacturing line (QML) Class V
with radiation hardness assurance (RHA) [13]. This implies, among other specifications,
that the single event upset (SEU) limit should be above 37 MeVcm2/mg, and that the total
ionizing dose (TID) should be tested for 300 krad for radiation-hard FPGAs and 100 krad
for radiation-tolerant FPGAs. Actel’s radiation-hard FPGAs are also equipped with Triple
Module Redundancy (TMR), which means that each register cell in the FPGA has two

1Bit-inversion is when a single bit is altered to the opposite value, hence a logic 1 becomes a logic 0, and a
logic 0 becomes a logic 1.

22

other, equal master-slave clones [14]. These three cells acts as a single register cell to the
user, but they can correct SEU-errors by using majority voting between themselves. If an
error is detected in one of the cells, the majority value will be restored to all of the three
cells.

Another important factor when choosing an FPGA for a space application is whether
or not the FPGA has any flight heritage. Due to the fact that space hardware has a limited
possibility of maintenance, the unit needs to work perfectly, all the time. Since failure is
not an option, the safest bet for investors is usually the FPGA which already has proven
it self stable in the field. A short list of radiation hardened, space qualified FPGAs which
might be suitable for a large digital filter has been summarized in table 3.1 [14], [15]. In
this table, the total ionizing dose is measured in krad, the single-event latch-up (SEL) im-
munity is given as MeVcm2/mg4 and the SEU is given as probability of upset/device/day
in geostationary orbit.

FPGA Size1 RAM [kB] DSP Blocks TID SEL SEU TMR
RTAX2000S 250000 288 No 300 117 10−10 Yes
RTAX4000S 500000 540 No 300 117 10−10 Yes
Virtex4QV 200448 6048 96 300 100 1.5−6 No

Table 3.1: Space Qualified FPGAs

Note that the Xilinx Virtex4QV FPGA has less area than the Actel FPGAs. However,
the Virtex FPGA has built in DSP-blocks, which can compensate for the lacking area. It
should also be pointed out that the architecture of the Virtex FPGA is fundamentally differ-
ent from the Actel FPGAs, as the Virtex FPGA uses a Look-up Table (LUT) architecture,
rather than a sea of modules structure[14], [15].

3.2.4 FPGA Architecture
How the FPGA architecture is designed is highly dependent upon the manufacturer and
what purpose the FPGA has. As explained in the previous section, space qualified FPGAs
tend to be physically large to reduce the impact of radiation. Aside from this, there are
several ways of organizing the synthesized logic inside the FPGA. In the Altera Axceler-
ator FPGA series, the modules are divided into combinatiorial cells (C-cells) and register
cells (R-cells). These two building blocks can be used as a measurement of how much
area the design will require of the FPGA. A Register Transfer Level (RTL) illustration of
the different cells can be seen in figure 3.2.

3.3 Optimizing for Performance and Area
As mentioned in section 3.2.3, space qualified FPGAs are slow compared to the com-
mercial FPGAs. In order to fulfill requirements in both area and performance, advanced
synthesis and programming techniques must be utilized. In a multirate FIR filter several
clock domains are used to act as the different sampling frequencies. This means that the

1The sizes of the FPGAs are given as equivalent ASIC gates to the LUTs or C-/R-Cells

23

Figure 3.2: C-Cells and R-Cells in an RTAX2000S [14]

optimization focus will differ in each individual clock domain, since the slowest sam-
pling frequency filters will not need to be compliant for the highest frequency domain.
However, the lowest frequency-domain filter might be significantly larger than the highest
frequency-domain filter. Consequently, the components with the highest clock frequency
requirements should be optimized for performance, while the components with the lowest
clock frequencies should be optimized for area, as long as they still satisfy the performance
requirements.

3.3.1 Pipelining
A common performance optimization in sequential digital logic is based on trading area
for performance. One way of achieving this is by dividing cascaded components into
smaller sections separated with flip-flops, which allows for a faster system clock [10].
This technique is called pipelining. The frequency limit of a given cascaded datapath can
be expressed as [10]

f <
1

t f f + td + tsu + ts
(3.3.1)

where t f f is the delay of the flip-flop, td is the delay through the combinatorial logic, tsu is
the setup time and ts is possible clock skew time. When using equation 3.3.1 for designs
which contains slow and complex combinatorial logic, the factor td will be significantly
dominant. In order to increase the throughput in such systems, pipelining can be used to
divide the critical paths. To calculate the new frequency limit, equation 3.3.1 will now have
to be used for the new, smaller datapaths separately. In the ideal case where a pipeline stage
is added at t = td/2, and the remaining factors in equation 3.3.1 remains approximately
constant, a frequency increase of up to 50% could be possible. An illustration of pipelining
can be seen in figure 3.3.

24

Logic

P
ip

el
in

e
R

eg
is

te
rs

Logic

P
ip

el
in

e
R

eg
is

te
rs

Logic

P
ip

el
in

e
R

eg
is

te
rs

Logic

P
ip

el
in

e
R

eg
is

te
rs

Stage 1 Stage 2 Stage 3 Stage 4

Clk

Figure 3.3: Pipelining [10]

3.3.2 Resource Sharing
One of the fundamental properties of the symmetric FIR filter is that coefficients are used
twice1 in the filter. However, in an FPGA with excessive potential performance this opti-
mization can be extended to other logic blocks. By examining the coefficients of the filter
one might see patterns which can be exploited to reduce area. The concept of resource
sharing can be seen in figure 3.4.

In the case of figure 3.4, only one register is shared. Resource sharing can also be
extended to include combinatorial logic as well. Depending on how the combinatorial
logic is implemented in hardware, a multiplexer is often more efficient to implement than
a multiplier, at least for large bit widths. For Actel, the architecture is based on multi-
plexers [16]. This means that in order to achieve an efficient physical synthesis, the design
should also be based on multiplexers. One way of trading multipliers for multiplexers with
resource sharing can be seen in figure 3.5. Note that in this design, timing is more critical
than in the design from figure 3.4 due to the fact that a logic block will have to monitor and
enforce sequentiality in the shared logic. Additionally, more registers are added to store
the data before the final adder. However, these registers acts as pipelining on the critical
path, shortening it by one adder. This will in turn increase the performance of the design,
as discussed in section 3.3.1.

Register
r = 5

DFF DFF

Register
r = 5

Register
r = 5

DFF DFF

Figure 3.4: Resource Sharing Illustration

1In odd-order symmetrical FIR filters, the center coefficient is used only once.

25

Register
r = 5

DFF DFF

S1

S2

D

C ENB

Multiplexer

Clock

S1

S2

D

C ENB

Demultiplexer

S

D1

D2

DFF

DFF

Figure 3.5: Resource Sharing, Continued

3.3.3 Constant Input Multipliers
In a FIR-filter, all of the multipliers are based on the fact that one input is constant. Since
the possible outputs from one multiplier with one constant input port is based on the range
of the second input, the output values can be predicted when compiling, using either logic
or memory. This is usually done in the synthesis process, and the designer does not need
to handle it. The number of operations needed in the multiplier depends on the number
of "ones" in the multiplicand. The reason for this is because the product of two N-bit
numbers can be expressed as [3]

P = A ·X =

N−1∑
k=0

ak2kX (3.3.2)

where A = [a0, · · · ,aN−1]. Equation 3.3.2 suggests that if A is constant for all values of X,
and the number of non-zero elements in A is reduced, the complexity of the multiplication
will also be reduced. For example if A is ”11101”, ak will be non-zero for four instances
of the summation, which results in four additions. Using two’s complement number rep-
resentation, A would here be −3. If the sign of A is inverted, A would be 3, or 00011 in
two’s complement. A would then only need two additions to complete the summation in
equation 3.3.2. However, the product would now be −P rather than P.

One feature of the FIR filter structure is that a multiplication is always followed by an
addition. This can be seen in the following pseudo code from a symmetric FIR filter:

SmallAdder <= X[N] + X[L-N];
Multiplier <= SmallAdder * Coefficient;

26

LargeAdder[N] <= LargeAdder[N-1] + Multiplier;

A trait of using two’s complement number representation is that addition is equally com-
putational complex for both positive and negative numbers [3]. Therefore, one can use the
product −P instead of the original product P from the multiplier, and replace the adder
with a subtracter. This can be achieved by introducing an inverter at one of the inputs of
the adder. For numbers represented by many bits, this extra logic will be compensated by
the reduction in multiplier logic.

To utilize the optimization described above, one can invert the constant FIR filter co-
efficient, given that this inversion leaves a coefficient where the majority of bits are zero.
The filter behavior can now be described with the following pseudo code:

SmallAdder <= X[N] + X[L-N];
Multiplier <= SmallAdder * (-Coefficient);
LargeAdder[N] <= LargeAdder[N-1] - Multiplier;

27

28

Chapter 4

Existing Analog Filter

The current analog filter, which the proposed digital filter will replicate has the frequency
response shown in figure 4.1. The filter is currently used in the Galileo Satellite Search and
Rescue Transponder (SART). The purpose of the filter is to remove unwanted frequency
components, such as noise and mixing products from the signal. The frequency modulated
signal inside the passband of the filter can be located in one of several bands, defined
by the specification for COSPAS-SARSAT 406 MHz distress beacons [17]. The signal
information is irrelevant for this thesis, and it will therefore be treated as an isolated signal
with a bandwidth of 100 kHz.

Figure 4.1: Current Filter Response

As previously mentioned, the filter is placed within the satellite SART unit. The basic
functionality of the filter chain can be seen in figure 4.2. The actual input frequency of
the SART, centered at 406 MHz - 406.1 MHz is mixed down to 70.98 MHz before it is
received by this analog filter. The output of the SART is a bandpass filtered signal centered
at around 1544 to 1545 MHz, in the L-Band [18], [19].

The expected frequency components of the filter from figure 4.1 can be seen in fig-

29

Downconversion
and Filtering

Upconversion

Fc = 70.98MHz

BW = 1.8MHz

Fc = 70.98MHz

BW = 100kHz

Fc = 1544 – 1545MHz

BW = 100kHz
Fc = 406 – 406.1MHz

Figure 4.2: SART Converter Chain

ure 4.3. As one can observe, there are three signal components in the input signal. The
strongest component is the signal at 70.98 MHz, which is the passband of the signal fil-
tered at the front end SAW filter of the receiver. This SAW filter has a bandwidth of
approximately 1.8 MHz, while the relevant signal has a total bandwidth of 100 kHz. The
frequency components in the signal are unwanted. These components are the result of
a mixing process, where the IF signal, which is placed at 406 MHz is mixed with a lo-
cal oscillator of 335 MHz. From the problem description in section 1.2 it was given that
undesired frequency components were to be expected at 741 MHz and 670 MHz, with a
bandwidth of 1.8 MHz.

Furthermore, the input signal noise outside the 1.8 MHz bandwidth is assumed to
be wide band and uniformly distributed, and one can assume that the stopband of the
preceding SAW filter is sufficiently attenuated.

Figure 4.3: Expected Input Frequency Placement

30

Chapter 5

Methods and Tools

To understand the signal processing techniques, and to efficiently design the filter coeffi-
cients, MathWorks Matlab R2012a was used. Matlab-scripts were created to simulate the
DSP-components in detail, for increased insight in functionality and testability. The HDL
version of the filters were designed with Aldec Active-HDL Student Edition version 9.1.
Two C++ based programs were created to ease the design of the symmetric FIR filters.
The first program, called prototypefilter.cpp creates a rough version of a FIR filter, where
all components are declared explicitly. This filter makes it easier to perform optimiza-
tions at the lowest level. The second program is more interactive, and the generated filters
can be customized from a terminal window without recompiling. This program is called
generatefilter.cpp. This script uses more efficient generate statements for component dec-
larations. However, the program still unwraps the generate statemetns which creates the
large adders, as these will be altered for area-optimizations in section 7.2.2. Both programs
requires the filter coefficients being present in a separate file, called coeff.txt.

C++ was also used to create a script which generates testbenches for the VHDL Filters.
Separate scripts were created for testing the individual filters, the filters with reusable logic
described in section 7.2.1, the complete filter system and for the complete filter system
with extra wires for probing.

Digital simulations of the filters were performed in Active-HDL and Mentor Modelsim
SE-64 10.2. Synplify Premier with Design Planer E-2011.03-SP1 was used for HDL syn-
thesis, to estimate and make sure that the design would satisfy the requirements in perfor-
mance and area for the given FPGA. For FPGA-testing Quartus II 30-bit 12.0 Web Edition
was used. This Quartus II installation used SignalTap II Logic Analyzer for communication
with the FPGA. The FPGA was mounted on an Altera DE2-70 development board, and
a Terasic THDB-ADA high speed ADC and Digital to Analog Converter (DAC) daughter
card was mounted to the FPGA’s General Purpose Input/Output (GPIO) interface.

All VHDL, Matlab and C++ code can be found in the enclosed zip-file.

31

32

Chapter 6

Proposed Digital Filter

As explained in section 2.2.1, a bandpass, linear phase FIR filter with transition bands of
50 kHz at each side, centered at 70.98 MHz would be infeasible to implement directly
in any space qualified FPGA. When generating a symmetric FIR bandpass filter which
fulfills the requirements from section 1.2 using Matlabs filter design software, the result is
a filter consisting of 1685 stages. When synthesizing this filter in VHDL, using Synplify
Premier, the specifications in table 6.1 are estimated. These results clearly states that this
filter would not be possible to implement directly in the space qualified FPGAs discussed
in section 3.2.3. Note that the no estimations were completed for the Virtex 4QV FPGA,
as the Synplify Premier routing and fitting process failed as a result of the design size. The
passband ripple of this filter was estimated to 1.8 dB.

FPGA Combinatorial Cells Register Cells Clock Frequency
RTAX2000S 587% 220% 27.3 MHz
RTAX4000S 313% 117% 27.3 MHz
Virtex 4QV N/A N/A N/A

Table 6.1: Direct Design of the Filter

However, as explained in chapter 4, the input of the filter is a bandpass signal with a
bandwidth of 1.8 MHz, and it could be assumed that the stopband is sufficiently attenuated
by a preceding SAW filter. This suggests that the sampling techniques described in chapter
2 would be well suited for this application. To be safe, it is assumed that the input signal
has a bandwidth of 2 MHz, and not 1.8 MHz. Hence, guard bands of 100 kHz are added
to each side of the signal so that the digital filter will be more robust against imperfections
in the preceding filter chain.

6.1 Initial Sampling, Mixer and Filter
Since the filtering will occur inside an FPGA, the analog signal would need to be sampled
and quantized with an ADC. As specified in the problem description, the target FPGA for
this filter should be space qualified, preferably an Actel RTAX2000S. This FPGA does
not have any DSP blocks, meaning that all arithmetic components will be implemented as

33

logic, and no dedicated hardware will be used. This FPGA also has a limited performance,
and the sampling frequency should be chosen accordingly. The sampling process should
also move the center frequency towards dc.

The proposed ADC for this design should have an analog bandwidth above the highest
frequency component of the signal, at 70.98 MHz + 1 MHz, but it should preferably also
be lower than the mixing components at 670 MHz and 741 MHz. The output of the ADC
should be able to handle a sufficient amount of bits so that the quantization noise discussed
in chapter 2.1.2 will be kept to a minimum. An ADC which fulfills these requirements is
the Texas Instruments ADS5463-SP, which is a space qualified 12-bit ADC with an analog
bandwidth of 500 MHz [20]. The input voltage range of the ADC is 2.2Vpp. It should be
noted that there are several suitable alternatives to this ADC. According to equation 2.1.1,
the step sizes of this ADC would be

∆ =
2.2V

212−1
= 0.537mV (6.1.1)

and the quantization noise, according to equation 2.1.6

Pn,rms =
0.537 ·10−3
√

12
= 1.55 ·10−4 W (6.1.2)

Using equation 2.1.11, the estimated SNR of the ADC output for a given rail to rail tone
would be

S NR = 12 ·6.02dB + 1.76dB = 74dB (6.1.3)

Note that the result from equation 6.1.3 is for ideal operation, with a perfect rail to rail
tone. The datasheet for the ADC states an SNR of 65.3 dB relative to full scale (dBFS)
[20].

When undersampling the input at the allowed 30 MHz ± 5 MHz, the resulting signal
will be mirrored down to the baseband, which will be 15 MHz ± 2.5 MHz. The main
focus when choosing the sampling frequency will be to analyze where the frequency com-
ponents will be located in the baseband. To which location a frequency will be folded
down to can be observed with the help of Matlab. A table of baseband scenarios of se-
lected sampling frequencies within the allowed region defined in the problem description
can be seen in table 6.2. None of these sampling frequencies would break the limitations
of the sampling frequency in undersampling applications stated in equations 2.1.15 and
2.1.16, since Fs >> B.

It should be noted that the original 70.98 MHz input will be inverted in the baseband
when the sampling frequency is lower than approximately 29 MHz. This is because the
signal will located in an even numbered Nyquist zone in these cases. Equation 2.1.18
states that the degredation in SNR is dependent upon the number of signal replications
when undersampling. With a sampling frequency of 28 MHz the SNR degradation would
be

DS NR = 10log(6)dB = 7.78dB (6.1.4)

A sampling frequency of 30 MHz would result in a degradation of

DS NR = 10log(5)dB = 6.99dB (6.1.5)

meaning that if a sampling frequency above 29 MHz is chosen, a gain of 0.79 dB of SNR
will follow.

34

Fs \Finput 70,98 MHz 741 MHz 670 MHz
25 MHz 4,02 9 5
26 MHz 7,02 13/dc 6
27 MHz 10,02 12 5
28 MHz 13,02 13 2
29 MHz 12,98 13 3
30 MHz 10,98 9 10
31 MHz 8,98 3 12
32 MHz 6,98 5 2
33 MHz 4,98 15 10
34 MHz 2,98 7 10
35 MHz 0,98 6 5

Table 6.2: Resulting Frequency Components After Sampling [MHz]

When studying table 6.2, it is important to notice if the mixing components at 741 MHz
and 670 MHz will be placed within the passband of the filter. This could lead to distortion
in the signal. For example, when sampling at 28 MHz, one of the mixing components will
be placed as close as 0.02 MHz from the center frequency of the signal. Even though these
mixing components will be suppressed greatly by the analog bandwidth of the ADC, any
interference in the passband should be avoided, which makes these sampling frequencies
less attractive.

The next consideration when choosing the sampling frequency is how complex the
filter at the next stage will have to be. This filter is, as with any FIR filter, dependent upon
the sampling frequency and the steepness of the transition band. The main goal of this
filter is to remove any frequency components outside the 2 MHz input bandwidth. This
way, the signal and noise inside the 2 MHz bandwidth can be treated as one isolated signal,
without significant noise in the remaining baseband.

Two approaches of reducing the complexity of the initial sampling, mixing and filter-
ing were considered. The first approach is to sample so that the signal and the undesired
components are placed as far apart from each other as possible. This is the case for sam-
pling frequencies 33 MHz to 35 MHz. The other approach is to design the relevant signal
and the undesired components within a small region, possibly overlapping each other in
the noise region of the 2 MHz bandwidth. This would be the case of for example the 30
MHz and 32 MHz sampling frequencies. The signal could in these cases be mixed down
as one isolated signal consisting of both the relevant signal and the noise.

A sampling frequency of 30 MHz was chosen for the ADC and FPGA, as this fre-
quency would mean that the signals could be mixed down as one isolated signal, due to
the fact that all frequency components in the baseband would be located in the upper base-
band. The 30 MHz sampling frequency will also have the benefit of a reduced degradation
in SNR after sampling compared to lower sampling frequencies, as shown by equation
6.1.5. Additionally, since the FPGA is expected to be strained for performance, the design
would be best suited for a low sampling frequency, which makes the 30 MHz sampling
frequency more attractive than the higher frequencies.

By using this sampling frequency, the input will be aliased down as shown in figure
6.1. The mixing components will be placed at 9 MHz and 10 MHz in the baseband, which

35

Figure 6.1: Aliased Signal at 30MHz Sampling

means that one of the components will be placed within the 2 MHz bandwidth. Unlike the
mixing components illustrated as single frequencies in figure 6.1, the real mixing compo-
nents also have a 1.8 MHz bandwidth. This means that the mixing component centered at
10 MHz will have some degree of noise at

10MHz +
1.8
2

MHz = 10.9MHz (6.1.6)

These frequency components will not interfere with the real signal, now placed at 10.98
MHz ± 100

2 kHz, since the lower limit of the real signal is placed at 10.93 MHz.
The next step of the system is to mix down the center of the signal. As explained in

section 3.2.1, this can be achieved quite efficiently by choosing the relationship between
FS and FLO carefully. By choosing the mixing factor Fs

FLO
to 4, the signal would only need

to mix with four constant samples of the LO sine wave. These samples could be set to 1,
0, −1 and 0. This operation is trivial to implement in hardware, as the only logic needed
is a counter, a multiplexer and a simple inversion and addition with 1 when the input is
multiplied by −1. The result of this mixing can be seen in figure 6.2, where the center
frequency now is placed at 3.48 MHz.

At this point, the signal should be filtered with a lowpass filter. All frequencies above
3.48 MHz ± 50 kHz are defined as unwanted. The lowest frequency of the upper mixing
component from figure 6.2 is placed at 10.56 MHz which gives a filter transition band of

10.56MHz−3.53MHz = 7.03MHz (6.1.7)

at a sampling frequency of 30 MHz. This filter, called Coverfilter, was realized as a fixed-
point lowpass symmetric FIR filter with 14 tap weights. The frequency response of the

36

Figure 6.2: Down-Mixed Signal

quantized Coverfilter, as well as the reference full precision Coverfilter can be seen in
figure A.1 in appendix A. When quantizing the filter to fixed-point representation, a co-
efficient resolution of 13 bit was found suitable for the required attenuation. When com-
paring the normalized fixed-point response of the Coverfilter with the full precision filter
response, one can see a significant quantization error in the stopband. The passband is
more or less preserved after quantization. The signal after this filter can be seen in figure
6.4.

A block diagram of the mixer and coverfilter can be seen in figure 6.3.

Coverfilter

Mixer

Local
Oscillator

fin

fLO = 7.5MHz

fout

Figure 6.3: Mixer and Coverfilter

37

Figure 6.4: Signal after Coverfilter

6.2 Signal Decimation
To reduce the complexity of the filter, a decimation stage is needed. As explained in section
2.4, decimation is a process consisting of two operations. First, the signal is filtered with
either a highpass filter or a lowpass filter, depending on how the signal is decimated. The
second step is to reduce the sampling frequency by removing samples at a given rate.

The first decimation stage uses the Coverfilter from the mixing process as a decimation
filter. As seen in figure 6.4, this lowpass filter attenuates all present frequency components
above approximately 4.5 MHz. The signal can now be successfully decimated by a factor
of 3, resulting in a sampling frequency of 10 MHz. The frequencies ranging from 5 MHz
to 15 MHz in the original signal will be mirrored down into the new baseband. However,
these components are suppressed sufficiently by the Coverfilter, which suggests that they
will ideally not affect the resulting downsampled signal. This process can be seen from
the Matlab simulation in figure 6.5.

The next decimation will be by a factor of 2. This stage is somewhat different from
the first decimation stage, in that it is the signal in the upper frequency band (Fs/4 < F <
Fs/2) of the downsampled signal from figure 6.5 which is relevant. This means that the
frequency components currently below Fs/4 will have to be attenuated before downscaling
the sampling frequency. As this stage will only downsample the signal by a factor of 2,
the resulting signal is expected to have a new center frequency of

Fs,new−Fcenter = 5MHz−3.48MHz = 1.52MHz (6.2.1)

Since the lowest (undesired) frequency component before this decimation is centered
at 1.5 MHz, it will be placed only 20 kHz apart from the new center frequency, which is

38

Figure 6.5: Signal at Fs = 30 MHz and Fs = 10 MHz

unacceptable. To remove this frequency component, as well as reducing the noise floor
around 1.52 MHz, a highpass filter is implemented before the downsampling process. A
suitable symmetric FIR filter was designed and converted to fixed-point arithmetic, with
13 bit precision coefficients. The filter phase and frequency response can be seen in figure
A.2. This filter will henceforth be referred to as HdDec2. After the filtering the signal is
downsampled by 2, which results in the signal shown in figure 6.6. Note that the signal
is inverted at this point, meaning that the previously highest frequency components of the
signal now are the lowest, as explained in section 2.4

The next two stages of the decimation chain are identical to the second stage, with the
exception of the decimation filter characteristics. The first of these two stages decimates
by two, leaving the center frequency of the signal at

2.5MHz−1.52MHz = 0.98MHz (6.2.2)

This is a frequency which is occupied by the noise previously defined within the isolated
input signal, as seen in figure 6.6. This suggests that the 2 MHz bandpass signal no longer
can be seen as an isolated signal, but as a 100 kHz signal surrounded by noise. To success-
fully implement this decimation stage, the noise currently located at 0.98 MHz ± 50 kHz
should be filtered out. Ideally, this filtering can be done with a bandstop filter where only
the region 0.98 MHz ± 50 kHz is attenuated. However, seeing that bandstop filters uses
significantly more resources than a single transition filter, a highpass filter is introduced
before the downsampling stage. The filter response of this filter can be seen in figure
A.3, and the signal after the decimation stage can be seen in figure 6.7. The filter at this
decimation stage was implemented as two cascaded highpass filters, called HdDec3.

At this point the signal is again inverted in the frequency domain, resulting in a can-
cellation of the previous inversion.

39

Figure 6.6: Signal at Fs = 5 MHz

As with the previous two stages, the final stage of decimation decimates by a factor of
2. The signal after this stage will then be centered at

1.25MHz−0.98MHz = 270kHz (6.2.3)

This is also a frequency currently occupied by unfiltered noise, which means a new dec-
imation filter needs to be implemented. The filter response of this filter can be seen in
figure A.4. This last decimation filter is called HdDec4, and it is followed by a final down-
sampling by a factor of 2. The signal is now inversed in the frequency domain.

6.3 Bandpass Filtering
At this point, the sampling frequency is low enough for the ratio between the sampling fre-
quency and the steepness of the transition bands to realistically achieve a good bandpass
filtering, with a reasonable number of filter tap weights. The bandpass filter coefficients
were, as with the decimation filters, designed with the Parks-McClellan algorithm in Mat-
lab. The response of the bandpass filter, HdBand, can be seen in figure A.5 in the appendix.
This filter is significantly larger than the rest of the filters, due to the fact that it has two
transitions between passband and stopband, as well as a much higher attenuation than the
decimation filters. The coefficient precision of the HdBand filter was set to 18 bit. The
signal after the bandpass filtering can be seen in figure 6.8. As this filter was quite complex
with a very high attenuation, some ripple in the passband was to be expected. This ripple
was determined to 1.8 dB. The filter specifications from section 1.2 did not mention any
requirements of the passband ripple.

40

Figure 6.7: Signal at Fs = 2.5 MHz

The signal has now been filtered according to the specifications. However, since the
next step of the SART will be to mix the signal up to the L-band before transmission.
A signal placed at 270 kHz will produce mixing components with a very close vicinity
relative to the L-band frequency, as explained in section 2.3. The undesired output of the
mixer would consequently require a very complex analog filter to remove, which would
make the whole digital filter more or less redundant. Therefore, an interpolation process
will be needed to scale up both the sampling frequency and the signal center frequency
before the digital processing is complete.

6.4 Signal Interpolation
As a design choice, the upsampling factors were decided to be the same as in the decima-
tion process. The benefit of this approach is that the filters designed for the decimation
process can be reused in the interpolation process, to reduce the number of filters which
had to be designed and implemented in hardware. However, the filters are implemented as
separate physical logic components, so this will not result in any performance- or spacial
gains by itself. The resulting center frequency placements and sampling frequencies of the
interpolation process can be seen in table 6.3.

At the 30 MHz clock domain, the interpolation product centered at 3.48 MHz is chosen
as the desired signal, and the signals at 6.52 MHz and 13.48 MHz are defined as unwanted.
The reason for this was because the signal at 3.48 MHz would not be inversed compared to
the input signal, and a lowpass filter which removes the other two unwanted signals would
be quite simple to implement. This filter was designed as two smaller FIR filters, called
HdOut and HdOut2. The filter responses of these filters can be seen in the appendix, in

41

Figure 6.8: Signal After Bandpass Filtering

Stage Int. Factor Fs Center Frequency Unwanted Component(s)
1 2 2.5 MHz 0.98 MHz 0.27 MHz
2 2 5 MHz 1.52 MHz 0.98 MHz
3 2 10 MHz 3.48 MHz 1.52 MHz
4 3 30 MHz 3.48 MHz 6.52 MHz and 13.48 MHz

Table 6.3: Interpolation Stages

figures A.6 and A.7 respectively.
After this last filtering process, the signal could have been mixed up to the original

input frequency at 10.98 MHz. This process would have mixed the signal with a local
oscillator of 10.98MHz−3.48MHz = 7.5MHz, which is similar to the mixing at the input.
This step was dropped due to the following reasons:

• Although this mixing process could reuse the mixer at the input, an additional filter
at the output of the mixer would be required, to remove any mixing components at
7.5MHz− 3.48MHz = 4.02MHz. This could be costly in an already area strained
design.

• The 30 MHz clock domain is the critical clock domain by far, and adding additional
logic along this path might cause the performance requirements to be broken.

42

• The goal of the SART system, as described in chapter 4 is to filter out the distress
signal and transmit it at a much higher frequency. Therefore, the signal will be
mixed up at a later stage in the SART chain, and the if the output frequency of this
filter is 3.48 MHz or 10.98 MHz would be less significant given that the unwanted
mixing components could be removed efficiently with for example a SAW filter.

All the processes and filters described in sections 6.1 to 6.4 were combined and im-
plemented in VHDL as seen in figure 6.9. The VHDL-code can be seen in the enclosed
zip-file. This parent filter structure will be called the Masterfilter. Since all internal com-
ponents in the Masterfilter has a linear phase response, due to the exclusive use of internal
FIR filters, it is assumed that the Masterfilter itself has a linear phase response. The reason
for this is that there are no feedback nodes in the filter, which suggests that the principle
of superposition applies [21].

Coverfilter

Y(n)

X(t)

Fs = 10MHz

SC
A

LI
N

G

U
N

IT ↓ N=3

Downsampler3

ADC

Fs = 30MHz

Mixer

7.5MHz

Downsampler2_1
HdDec2

↓ N=2

SC
A

LI
N

G

U
N

IT

Fs = 5MHz

HdDec3

↓ N=2

Downsampler2_2

Fs = 2.5MHz

SC
A

LI
N

G

U
N

IT

HdDec3

SC
A

LI
N

G

U
N

IT

HdOut

↑ N=3

Upsampler3

Fs = 30MHz
SC

A
LI

N
G

U

N
IT

HdOut2

SC
A

LI
N

G

U
N

IT

HdDec2

↑ N=2

Upsampler23

Fs = 10MHz

SC
A

LI
N

G

U
N

IT↑ N=2

Upsampler22

Fs = 5MHz

HdDec3

SC
A

LI
N

G

U
N

IT

SC
A

LI
N

G

U
N

IT

HdDec3

HdDec4

↑ N=2

Upsampler21

Fs = 2.5MHz

SC
A

LIN
G

U

N
IT

HdBand

SC
A

LIN
G

U

N
IT

HdDec4

↓ N=2

Downsampler2_3

Fs = 1.25MHz

SC
A

LIN
G

U

N
IT

Figure 6.9: The Masterfilter

It should be noted that the DAC process and mixing following the FPGA filter is not
discussed in this thesis, as the main focus lies on the FPGA digital signal processing.
The ADC process is handled, since the undersampling which occurs as a result of this
process facilitates the simplified filtering at the 30 MHz system clock frequency. Since the
sampling frequency of the FPGA is set to 30 MHz, it would not be possible to transmit
the filtered signal at the original 70.98 MHz center frequency. If this had been a strict
requirement, it would be possible to send the output of the FPGA and DAC through an
analog mixer followed by an analog filter which removes the undesired mixing component.
However, as described in chapter 4, the output of this filter is destined to be mixed up to
the L-band. This suggests that the intermediate frequency 70.98 MHz is not necessary for
the functionality of the SART.

6.5 Clock Hierarchy
To be able to process the signal in different sampling domains, an efficient clock generator
would be needed. In a timing-critical digital system such as this, all clock domains should

43

preferably be implemented using PLLs, as these ensures phase and frequency stability.
However, in order to make the design as portable as possible, the clock generator was also
manually implemented.

Most clock domains in the filter were implemented with a simple boolean variable and
an inverter, since the division of the frequency was by a factor of two. An example of this
is the generation of the 5 MHz clock signal, which uses the 10 MHz signal as a reference
and divides it by two. This can be seen in the following VHDL code, where tmp5 is a
boolean signal declared within the architecture.

--5MHz clock generator
clk_proc3:process (clksig_10)
begin
if (rising_edge(clksig_10)) then
tmp5 <= not(tmp5);

end if;
end process;
clksig_5 <= tmp5;

Note that the generated clock signal (tmp5) is stored in a register, and that the actual 5 MHz
clock signal (clksig_5) reads its value from this register. By adding this extra register, the
clock source has a stable value to transmit, and clock jitter is reduced to a minimum.

In order to generate a 10 MHz clock signal from a 30 MHz source, a division by three
is needed. This is not as trivial, as FPGA-synthesizable flip-flops cannot be sensitive to
both rising- and falling edge of the reference clock. Therefore, two processes are needed,
where one uses an inverted clock as an input, while the other uses the original clock. This
approach can be seen in VHDL code in appendix E.1. This way of generating a 10 MHz
clock signal can also be seen in figure 6.10a.

2bit
Counter

Clk

2bit
Counter

Clk

30 MHz
Clock

S1

S2

D

C ENB

Multiplexer

Positive counter

Negative counter

C[1]

C[0]

‘0’

‘1’

C[1]

C[0]

‘1’

‘0’

DFF
Clk

in
p

u
t

output

Register

10 MHz
Clock

(a) 10MHz Clock Signal With 50% Duty Cycle

2bit
Counter

Clk
30 MHz

Clock
S1

S2

D

C ENB

Multiplexer

Positive counter

C[1]

C[0]

‘0’

‘1’

DFF
Clk

in
p

u
t

output

Register

C[1]

C[0]

‘1’

‘0’

10 MHz Clock,
33% Duty Cycle

(b) 10MHz Clock Signal With 33% Duty Cycle

Figure 6.10: Generation of 10 MHz Clock Signal

Another approach for achieving a 10 MHz clock from a 30 MHz reference clock is to
use duty cycling. Since this clock is used for sampling, and only the rising edge of the
clock is used as reference, it does not matter how long the signal stays high or low as long
as the clock edge is detected. The functionality is only defined by the clock period. This
attribute allows a simpler clock generator where the first clock cycle of the 30 MHz clock
generates a high value on the 10 MHz clock, and the two next periods of the 30 MHz clock
sets the 10 MHz clock low. An illustration of this can be seen in figure 6.10b. Note that
one less counter is needed in this design.

44

6.6 Filter Specifications

6.6.1 Group Delay
Since the filter system consists exclusively of FIR filters the group delay of the filter will
ideally be constant, as discussed in section 2.2.1. The number of stages, as well as the
delay of each filter can be summarized with table 6.4. The group delay was calculated
using equation 2.2.4. These delays adds up to a total filter delay of 55.7µs. This delay

Filter Stages Fs [MHz] Number Group Delay
Coverfilter 13 30 1 217 ns
HdDec2 16 10 2 1.6µs
HdDec3 22 5 4 8.8µs
HdDec4 20 2.5 2 8µs
HdBand 91 1.25 1 36.4µs
HdOut 27 30 1 450 ns
HdOut2 13 30 1 217 ns

Table 6.4: Group Delay Summary

is, as a result of the FIR structure, constant for all frequencies. The remaining DSP-
components in the filter, such as the mixer are not included in this calculation, as the delay
of these components is much lower than that of the filters.

6.6.2 Overflow
Overflow could occur in two general places in each individual filter, either in the internal
wire connections in between the large adders, or at the output of the filter. A multiplication
in VHDL between an N-bit value and an M-bit value will require a product of width
N + M bits, which will not overflow. However, if several products of width N + M are
added together, which is the case in an FIR filter, there is a chance of the sum of these
values being larger than N + M bits. To calculate if this could be a possibility in any of the
proposed filters, equation 3.1.4 was used to determine the maximum allowed input value
which would not result in overflow. For example, the Coverfilter has an internal bit width
of 26 bit. The absolute sum of the coefficients,

∑
| f [k]|, amounts to 5924, which means

the maximum allowed input which does not result in overflow will be

Xmax =
±226−1

5924
= ±5664.15 (6.6.1)

To represent ±5664 as a binary number,

dlog2 (5664.15) + 1e = 13bit (6.6.2)

will be needed. Since the input of the Coverfilter is only 12bit, an internal overflow will
never occur. Overflow-calculations for each individual filter can be seen in table 6.5.

The second location which could generate overflow is at the output of each internal
filter, as a result of bit width reduction. As explained in section 3.1.1, this could be coun-
tered by first dividing the output by a constant scalingfactor, lowering the output dynamic

45

Filter Int. Bitwidth
∑
| f [k]| Xmax dlog2 (Xmax) + 1e Input Width

Coverfilter 26 5924 ±5664 13 12
HdDec2 28 12152 ±11044 15 14
HdDec3 26 3904 ±8594 15 14
HdDec4 27 5641 ±11896 15 14
HdBand 33 1045256 ±4110 14 14
HdOut 26 3194 ±10505 15 14
HdOut2 21 96 ±10922 15 14

Table 6.5: Overflow Summary

range. The output bit width can then safely be reduced using the VHDL statement resize.
The value of the scalingfactor was initially set to 1, and a proper value was determined
from simulations of the individual filters.

46

Chapter 7

Synthesis and Resource
Optimization

7.1 Initial Synthesis
The first synthesis of the Masterfilter indicated that the filter design proposed in chapter 6
would not fit into the RTAX2000S FPGA. This was expected, due to the limitations in the
FPGA architecture, explained in section 3.2.3. The initial synthesis of the systems area
and clock domains can be seen in table 7.1.

Parameter Requirement Estimation Resource Useage
clksig_1_25 1.25 MHz 18.4 MHz 6.8%
clksig_2_5 2.5 MHz 27.8 MHz 9%
clksig_5 5 MHz 31.1 MHz 16.1%
clksig_10 10 MHz 32 MHz 31.3%
CLK_30MHz 30 MHz 27.4 MHz 109.5%
C-Cells 21504 24306 113%
R-Cells 10762 4833 45%

Table 7.1: Initial Synthesis Report

As seen in table 7.1, both the CLK_30MHz and the C-Cell estimation failed to fulfill
the filter requirements at this stage.

7.2 Optimizations in HDL
To counter the issues described in section 7.1, several optimizations were concidered and
implemented in the filter.

47

7.2.1 Resource Sharing
Prior to the initial synthesis in section 7.1, the only optimization in filter resource usage
was the use of symmetric filter structures, as shown in section 2.2.1. However, as table 7.1
suggests, further area optimizations would be needed.

An efficient method of optimizing in the filter structure would be to trade off perfor-
mance for area. As described in chapter 6, similar filters were used in both the decimation
stages and the interpolation stages. This means that the filter coefficients will be equal in
both stages, and they can be shared between the decimation- and interpolation filters. One
can even take this a step further, by allowing both filters within the same clock domain to
share multipliers and adders. This would require a reference clock with twice the original
frequency in addition to some controll logic, as discussed in section 3.3.2.

As the initial synthesis report indicated in section 7.1, performance is not an issue at
certain clock domains, and the reduced multipliers and adders from the resource sharing
more than makes up for the extra added logic. Consequently, adding this optimization has
the potential of reducing the area of the total filter significantly. As a rough measurement,
two equal N-stage filters will initially require N multipliers, N small adders and N large
adders. By using resource sharing, this will be reduced to N/2 multipliers, N/2 small
adders and N/2 large adders. However, the filter delay elements will not be applicable for
resource sharing, as this would affect the functionality of the filter. These new (reusable)
filters with shared logic are called HdDec3RU and HdDec4RU. Note that the 2.5 MHz
clock domain will now only be used for upsampling and downsampling, and not in any of
the filters. This will lower the strain on this clock domain. However, the 10 MHz clock
domain will now drive both the HdDec2 filter and the two HdDec3RU filters. This will
increase the strain on this domain.

Figure 7.1: Improvement of Reusable Filters

An illustration of a filter with shared logic can be seen in figure C.1 in the appendix.
Size estimations with and without the reusable filters conducted with Synplify Premier can

48

Combinatorial Cells Register Cells
HdDec3RU 1955 591
HdDec4RU 1955 647
HdDec4 + HdInt1 2948 604
HdDec3 + HdInt2 3094 662

Table 7.2: Optimization by Filter Reusage

be seen in table 7.2. Figure 7.1 shows the combined HdDec3 and HdDec4 area usage in
the Masterfilter, compared with equivalent use of HdDec3RU and HdDec4RU filters. The
resource usage was measured for the RTAX2000S FPGA.

7.2.2 Filter Coefficient Optimization
As explained in section 3.3.3, the filters in this system uses multipliers with one constant
input which have a good possibility of being optimized for both area and performance.
However, as synthesis tools tend to have a seemingly sporadic behavior, and it is not
always predicable where an optimization might cause a gain or loss in performance, each
filter coefficient needs to be inspected individually. This was done by first looking at the
filters which did not initially satisfy the requirements in performance. Each coefficient of
this filter was inverted, and the corresponding adders after the coefficient multiplication
were replaced with subtracters. The filter was then synthesized and the estimated size and
performance was recorded. After this test was conducted for the individual coefficients,
the inversions which improved the performance were combined and the circuit was tested
again. The improvements of each filter after these changes can be seen in table 7.3. The
synthesis targeted the RTAX2000S FPGA, and no synthesizer optimization settings were
enabled during these tests.

Filter Size1 Imp. Size1 Gain Original Clk Imp. Clk Gain
HdCover 878 838 4.56% 35.2 MHz 37 MHz 5.11%
HdDec2 1438 1279 11.06% 33.6 MHz 38.5 MHz 14.58%
HdDec3RU 2032 1745 14.12% 32.7 MHz 35.5 MHz 8.56%
HdDec4RU 1955 1807 7.57% 8.8 MHz 17 MHz 93.18%
HdBand 9379 8987 4.18% 16.6 MHz 17 MHz 2.4%
HdOut 2070 1858 10.24% 29.4 MHz 31.4 MHz 6.8%
HdOut2 654 510 22.02% 63.1 MHz 74.7 MHz 18.38%

Table 7.3: Original and Improved Filter Coefficients

7.2.3 Optimizing for Performance
Although the limitations of the FPGA set strict requirements for the area of the design, the
timing of the filter was also critical to achieve the desired outcome. For the filter to work
correctly, the delay of the critical paths in each filter would need to be below the period of

1Size measured in C-Cells

49

the filter clock. However, this does not necessarily mean that every internal filter would
need to be able to achieve a 30 MHz clock frequency. As there are several clock domains
within the filter system, each filter is only required to uphold the frequency of which it is
designed for. This would suggest that only the 30 MHz filters should be optimized with
pipelining, as this was the only domain which struggled to uphold the timing requirements,
as seen in table 7.1.

Clock Domain Before Pipelining1 After Pipelining Improvement
1.25 MHz 18.5 MHz 17.7 MHz -4.5%
2.5 MHz 149.1 MHz 164.1 MHz 10%
5 MHz 16.3 MHz 16.5 MHz 1.2%
10 MHz 20.5 MHz 15.7 MHz -23.4%
30 MHz 29.9 MHz 32.8 MHz 9.7%

Table 7.4: Improvement after Pipelining

After applying a pipeline stage at the end of the 30 MHz filters, the improved timing
shown in table 7.4 was achieved. The pipeline was added after the last of the adders in
the combinatorial part of the filter, before the scaling unit. The filter was now within both
the area and performance requirements of the FPGA. The improved filter area estimation
targeted at the RTAX2000S FPGA can be seen in table 7.5.

As discussed in section 3.2.3, the Actel RTAX2000S FPGA was not the only FPGA
suited for this project. Therefore, two other space qualified FPGAs of equal or greater per-
formance and area were tested with the filter system. In these tests, the FPGAs’ area usage
and performance were estimated for both the filter design with reusable filters (w/RU) and
without the reusable filters (wo/RU). The results can be seen in figure 7.2, where the crit-
ical area characteristics were logged. In the RTAX2000S and RTAX4000S, the area was
determined by the C-Cell count, and in the Xilinx Virtex 4QV the area was determined by
the number of LUTs used.

Parameter Requirement Estimation Resource Usage
C-Cells 21504 20487 95%
R-Cells 10762 4877 45%

Table 7.5: Optimized Synthesis Report

The Masterfilter after all the optimizations can be seen in figure 7.3.

1Timing estimations performed before the pipelining was added, but after the reusable filters from section
7.2.1 and coefficient optimizations from section 7.2.2 were implemented

50

Figure 7.2: Area Usage and Performance for Space Qualified FPGAs

51

↑ N=2

Upsampler22

Fs = 5MHz

↓ N=2

Downsampler2_2

Fs = 2.5MHz

Y(n)
HdOut

↑ N=3

Upsampler3

Fs = 30MHz

SC
A

LI
N

G

U
N

IT

HdOut2

SC
A

LI
N

G

U
N

IT

HdDec2

↑ N=2

Upsampler23

Fs = 10MHz

SC
A

LI
N

G

U
N

IT

HdDec3RU HdDec3RU

SC
A

LI
N

G

U
N

IT

SC
A

LI
N

G

U
N

IT

HdDec4RU

SC
A

LI
N

G

U
N

IT
↓ N=2

Downsampler2_3

Fs = 1.25MHz

↑ N=2

Upsampler21

Fs = 2.5MHz

H
d

B
an

d

SCALING
UNIT

X(t)

Fs = 10MHz
SC

A
LI

N
G

U

N
IT ↓ N=3

Downsampler3

ADC

Fs = 30MHz

Mixer

7.5MHz

Downsampler2_1
HdDec2

↓ N=2

SC
A

LI
N

G

U
N

IT

Fs = 5MHz

D

I

D

I

D

I

D

I

D

I

D

I

Figure 7.3: The Optimized Masterfilter

52

Chapter 8

Simulation and Verification

Several different testing approaches were used in the verification of the digital filter system.
These tests and simulations included both simulation of functionality in the Modelsim
environment, and actual testing on an FPGA.

8.1 Digital Simulation
After a filter was designed in Matlab, and the parameters were translated into the proper
VHDL code, simulations were used to determine the correctness of the implementation.
The digital simulations were divided into three levels of tests:

1. Impulse Responses

2. Tone testing

3. Spectrum analysis

8.1.1 Impulse Responses
These structural tests covered the basic correctness of the implementations in VHDL. This
was done by sending a scaled Dirac delta function into each internal filter [22]. In practice
this means sending the value 1 into the filter, but in the digital filter where the output is
scaled down by a factor of N, the input should also be set to N. For example, if the output
is scaled down five bit positions to remove overflow, N will be set to 25 = 32. After one
clock cycle the input is set back to zero. When this N has propagated through the system,
the filter should have transmitted the filter coefficients, or the impulse response. This test
would uncover most implementation errors in the filter, related to the coefficients and delay
line. In addition to the filters being tested, the mixer, clock generator, downsamplers and
upsamplers were also examined. The results of these simulations can be seen in appendix
B. The results from the bandpass filter simulations can be seen in a digital waveform file
in the enclosed zip-file.

53

8.1.2 Tone Testing
The second test of the internal filters included testing of individual tones in both the pass-
bands and stopbands of each filter.

This was done by testing with a series of signals consisting of a single constant tone,
and observing the output of the filter. This was performed for a handful of selected tone
frequencies. This test would give a quick way of uncovering errors early on in the design
phase, and it could be used to uncover issues with overflow and bit-precision. Overflow at
the output would mainly occur in the passband, so rail-to-rail tones in these regions could
indicate roughly the amount of bits needed to safely represent the output. This would also
help determine the ideal Scalingfactor when resizing the signal from the size of the internal
filter calculations, to the size of the output. The results of these tests were compared with
the expected results retrieved from the filter characteristics in appendix A. The measured
responses were also normalized to their highest value, and the deviation from the expected
attenuation was calculated. The results of this test can be seen in appendix D.1.

8.1.3 Spectrum Analysis
The final computer simulation of the design involved a comprehensive spectrum analysis
of the Masterfilter. To achieve this, a custom spectrum analysis setup was designed. This
setup consisted of a C++ script which generates N testbenches, where N depends on the
resolution of the analysis. These testbenches fed the filter with a constant frequency sine
signal for a long enough time for the filter to stabilize. The output of the filter was stored in
a datafile, which could be analyzed in Matlab. To calculate the spectrum of the response,
Matlab would run through each of the N simulation response files and perform an analysis
on the data. A second version of the Masterfilter was created with probe outputs between
each filter stage, meaning that each signal could be traced through the system. This way,
it could be assured that it was the actual input frequency that propagated through the pass-
band, and not a bi-product from the internal signal processing. The input of the system,
and corresponding output of the filter can be seen in figures 8.1 and 8.2, respectively. The
output of each intermediate stage of the filter system can be seen in appendix F.

Figure 8.1: Simulation Input

54

Figure 8.2: Simulation Output

The left side of the simulation results depicts the spectrum estimate of each signal at
the given stage. Note that all the signal spectrum results are plotted on top of each other in
the same figure, which means that this figure is mostly relevant for viewing frequency lo-
cations within the baseband, and not attenuation and noise floor. This is because a stronger
signal in one position will always overlap a weaker signal in the same position, so only
the strongest frequency components in all the combined tests are shown. However, color
is added to separate each signal, which gives a decent idea of how the signal is affected in
the frequency domain.

The right hand image shows the signal power of the given input frequency at the current
stage. This value is retrieved by finding the power of the frequency component at which
the signal is expected at the current stage, and storing it as the frequency power of this
input stimuli. For example, in figure 8.1 the input test with frequency 11 MHz is expected
to be found at 11 MHz, since no processing has occurred at this stage. On the other hand,
in figure 8.2, the input test with frequency 11 MHz is expected to be found at 11MHz−
7.5MHz = 3.5MHz. Therefore, in figure 8.2 the power of the frequency component at 3.5
MHz in the left hand figure is plotted at 11 MHz in the right hand figure. A closer look at
the transition bands and the passband of the output can be seen in figure 8.3. Note that the
frequencies shown in figure 8.3 also has a 7.5 MHz offset, where the real output will be
centered at 3.48 MHz as previously explained.

This way of modeling the signal is interesting for two reasons. Firstly, one can observe
the power of the signal at separate frequencies, which can indicate if the Scalingfactor of
each filter is correct. The second reason is that one can see how the input signal is peeled
off at each stage in the filter, and how the passband remains intact, as seen in appendix F.

All input tests which yielded a constant zero at the output, as well as frequencies
outside the 10 MHz to 12 MHz range were modeled as −74 dB. The reason for this was
that the maximum theoretical SNR for the ADC described in chapter 6 was determined to
this value, according to equation 6.1.3. It should be noted that a ripple in the passband was
detected during these simulations. The maximum ripple in the passband was measured to
2.84 dB.

55

Figure 8.3: Simulation Output, 7.5 MHz Offset

8.2 FPGA-Testing
The final, and most realistic test conducted on the filters was testing in an actual FPGA.
Although the design was already extensively tested with Modelsim simulations, there were
several issues related to the physical implementation, such as timing and connectivity. The
filters were implemented and tested on an Altera Cyclone II EP2C70F896C6N FPGA on
an Altera DE2-70 development board. The goal of this test was to assure that the simulated
behavior of the filter would translate to an actual system. Ideally, an Actel RTAX2000S
would have been used, but this FPGA was unfortunately not available for this project.

The stimuli for these tests were generated within the FPGA itself, using the numeri-
cally controlled oscillator (NCO) intellectual property (IP) from Altera. The NCO was
implemented using the CORDIC architecture described in section 3.2.1. The NCO was
programmed to either be set to a constant frequency, or controlled by the switches of the
Altera DE2 board. It should be noted that a stable 30 MHz clock was not available on
the Alera DE2 board. Therefore, a 28.86 MHz crystal oscillator originally meant for the
DE2-70 TV-decoder was routed as the system clock. The functionality of the filter should
remain intact, but actual frequencies are shifted. For example, the input passband center
frequency at 10.98 MHz with a sampling frequency of 30 MHz will now be placed at

fc = 10.98MHz ·
28.86MHz

30MHz
= 10.56MHz (8.2.1)

An illustration of the test setup can be seen in figure 8.4. Both the input and the output
of the system were stored in the FPGA random access memory (RAM), and transmitted to
the computer on request from the SignalTap II Interface.

56

ALTERA NCO
Signal Generator DAC

ADC

Coaxial Cable

14bit Bus

FILTER SYSTEM

12bit Bus

14bit Bus

Switch Input[5 ... 0]

FPGA
RAM

JTAG/USB à PC

SignalTap II

14bit Bus

Figure 8.4: Testing Setup on FPGA

The first test on the FPGA was to assure the correct functionality of each individual
filter, by sending tones with a constant frequency interval into the different regions of
the filters, in the same manner as described in section 8.1.2. Responses were gathered
from the SignalTap II interface, and processed with Matlab. The time used between each
frequency was significantly greater than the filter delay calculated in section 6.6.1, and the
length of the recorded results were maximized, only limited by the FPGA RAM size. This
was done to reduce the error resulting from the lack of phase control when performing
the frequency analysis on the result. As the Fourier transform is inherently continuous
any discontinuities, even at the ends of the signal, will result in increased noise when
transforming from the time domain to the frequency domain. This effect can be reduced by
using window functions in Matlab, but some noise will still occur. A brute force solution
for reducing this noise further is to use longer sequences of the signal, making the noise
from the discontinuities less significant than the actual signal data. The results of the
individual filter tests on the FPGA can be seen in appendix G. The expected results can
be seen in appendix A. Note that both the decimation- and interpolation channels of the
HdDec3RU- and HdDec4RU filters were tested separately. The frequency responses of
both channels were expected to be equal.

The next test performed on the FPGA was testing of the complete Masterfilter. The
VHDL code, along with the IP cores were compiled and the FPGA was programmed via
the Quartus II software. The SignalTap II Logic Analyser was used to query the FPGA
RAM to retrieve the stored signal. This signal was then stored to a datafile, which could
be analyzed in Matlab. The Matlab-script for processing and plotting the datafiles can be
found in the enclosed zip-file. A spectrum analysis of the results from the FPGA-testing
can be seen in figure 8.5. In this figure, all the separate tests were plotted together, in the
same manner as described in section 8.1.3. Aspreviously discussed, the issues created by
phase discontinuities in the Fourier transform will also apply to the results in figure 8.5.
This suggests that the attenuation would be lower than this figure displays.

In addition to figure 8.5, which gives an idea of the products generated by the filter
system itself, a more accurate transfer function analysis showing the real attenuation of the

57

Figure 8.5: Results from the FPGA-Testing

Masterfilter was performed. Since the output of the filter is located 7.5 MHz lower than
the input frequency, an offset would be needed to explore the attenuation of the filter. This
was solved by recording the power of the tone at input frequency fi and its given response
at frequency fi − 7.5 MHz, and calculating the attenuation. This attenuation can be seen
in figure 8.6a. It should be noted that the attenuation of the filter in figure 8.6a resulted
in a constant zero at frequencies outside the pass- and transition bands. To illustrate the
attenuation, these values were modeled as the maximum SNR calculated in equation 6.1.3,
−74 dB.

Since the Masterfilter uses a coefficient precision which allows a significantly higher
attenuation at the internal bandpass filter, a new version of the Masterfilter with 18 bit
internal bit width instead of 14 bit was created. This was done to determine what attenu-
ation the filter could theoretically achieve when not limited by bit width. The same filter
attenuation test was performed on this filter, and the normalized transfer function can be
seen in figure 8.6b. It should be noted that in order to increase the precision to 18 bit,

58

(a) Attenuation of 14 bit Masterfilter (b) Attenuation of 18 bit Masterfilter

Figure 8.6: Attenuation of Masterfilter

all internal filters needed to increase the size of their internal components as well. The
precision of the coefficients were not affected by these changes. Note also that only the 2
MHz bandwidth from 10 MHz to 12 MHz was tested for the Masterfilter, as frequencies
outside this bandwidth are assumed sufficiently attenuated.

Transition 14 bit Attenuation [dB] 18 bit Attenuation [dB]
Stop 1 - 3.38 MHz −∞ −124.14
Pass 1 - 3.43 MHz −5.93 −4.62
Pass 2 - 3.53 MHz −6.32 −3.48
Stop 2 - 3.58 MHz −∞ −115.84

Table 8.1: Effect of Increasing Precision

From the results illustrated in figure 8.6 the key attributes of the filter summarized in
table 8.1 were determined. Note that for the 14 bit filter, the last recorded attenuation
before the output was attenuated to a constant zero were −98.38 dB at 3.391 MHz and
−72.69 dB at 3.56 MHz. When examining the passband of the filters, a small but signifi-
cant ripple was detected. In the 14 bit filter this ripple was determined to 2.85 dB, while
the 18 bit filter yielded a ripple of 2.79 dB.

The code used for the FPGA-testing can be found in the enclosed zip-file. Note that the
code used for these tests did not apply the reusable filters, but rather the original filters for
HdDec3 and HdDec4. The reason for this was that these filters raised issues with timing
that the FPGA could not handle. Timing issues occurred sporadically after resets, suggest-
ing that for these filters to work, all the clock domains needed to be strictly synchronized.
This was not always the case with the Cyclone II FPGA. The simulations suggests that this
could have been fixed with the use of an additional PLL, as discussed briefly in section
3.2.2. However, the internal PLL of the Cyclone II FPGA could only handle frequencies
down to 9.38 MHz [23]. This could not satisfy the timing requirements of the HdDec4RU
filter at the 5 MHz domain.

59

60

Chapter 9

Discussion

In the previous two chapters, the digital filter proposed in chapter 6 was synthesized, tested
and verified with digital simulations and in an FPGA. The tests were targeted at the filters
functionality, performance and area. Where the filter failed its requirements, optimizations
were applied and new tests were performed. As a design decision, the output of the filter
was located 7.5 MHz below the input. This was done to reduce the complexity of the
30 MHz clock domain of the filter, as explained in section 6.4. Since all the internal
components in the Masterfilter have a linear phase, it is assumed that the Masterfilter itself
also has a linear phase, as a result of the principle of superposition. An additive delay will
occur as a result of the internal filters, but the delay will be constant for all frequencies in
the passband. The response will also be inherently stable, since only FIR filters were used
and no feedback occurs within the Masterfilter.

As seen in table 7.3 and figure 7.1, both the reusing of internal filters and the coefficient
optimizations provided a significant improvement in the area estimations of the filter. The
excess area generated from these optimizations were used as a trade off for more perfor-
mance, as shown by the pipelining scheme implemented in section 7.2.3. This pipelining
optimization resulted in a degradation of performance in the slower clock domains, as
more logic was implemented. However, the critical clock domain at 30 MHz, achieved a
9.7% increase in performance, which suggested that the filter would now comply with the
specifications.

In section 8.1.1 the implementations of the internal filters were tested using impulse
responses, and the output can be seen in appendix B. When these results were studied,
they proved to match the expected results, seen in appendix A. These results gave a good
indication that the filters were implemented correctly in VHDL, according to the filters
designed in chapter 6. However, these tests only took one pulse as input, so other issues
with for example step responses, timing and overflow could not be determined.

The tone testing described in section 8.1.2, with corresponding results in appendix D.1
proved the general characteristics of the individual filters. For the filters with the least
precision and complexity, the simulation proved quite close to the expected results. On the
other hand, in the more complex filters with high attenuation such as the HdBand-filter,
there were significant deviation in the measured attenuation compared with the expected
results. One possible explanation for this might originate in the precision of the filter
output. As seen in table D.3, the 169 kHz tone was expected to yield an attenuation of

61

−115 dB, but the recorded attenuation was only −69.5 dB. A possible explanation for this
is that the −115 dB attenuation assumes an output bit width of Wcoe f f icients + Winput = 33
bit. However, the output bit width is only 14 bit, which will result in a significantly reduced
attenuation.

In section 8.1.3, a spectrum analysis was performed to determine the transfer function
of the Masterfilter. This simulation was conducted on the VHDL code in the Modelsim
environment. At the interconnecting points between each internal component in the Mas-
terfilter, a figure showing the frequency response of the recorded signal was created, as
described in detail in section 8.1.3. When studying the analysis results in appendix F,
one can observe how each filter stage removes certain components from the original input.
One can also observe how signal mixing and altering of the sampling frequency affects fre-
quency components in the baseband. From the results of the computer simulated spectrum
analysis seen in figure 8.2, it is apparent that all input frequencies outside the filter pass-
band and transition bands will be completely attenuated. However, as explained in section
8.1.3, these simulations were performed in ideal conditions in Modelsim which means that
noise from other sources such as quantization and timing issues were not accounted for.

When testing the filter in the Altera Cyclone II FPGA as described in section 8.2, a
few issues arise. First off, the timing which functioned during the digital simulations only
worked partially in the FPGA. The optimized reusable filters introduced in section 7.2.1
required a very stable clock signal synchronized with the preceding filters, which was not
always the case in the FPGA. During some tests, the filters worked sporadically depending
on when the circuit was reset, indicating a timing related problem, as discussed in section
3.2.2. The timing issues did not affect the system when using the less sensitive HdDec3-
and HdDec4 filters instead of the reusable filters. Since area was not critical in the Cyclone
II FPGA, these filters were implemented.

The results from the FPGA-testing, shown in figure 8.5, suggests a perfect attenuation
of input frequencies less than 50kHz above and below the passband. The passband itself is
about 100 kHz, which was required by the filter specifications. One can also observe the
frequency placement of the filter output, 7.5 MHz below the input frequency as intended
by the design in section 6.

When testing the Masterfilter attenuation outside the passband and transition bands, a
constant zero was recorded at the output. This was expected, since the internal attenua-
tion of the filter was designed to be greater than the 14 bit filter output could handle, as
suggested in section 8.2. In figure 8.6a one can observe this effect from the Masterfilter
transfer function. In figure 8.6b, one can see the actual attenuation of the filter, where the
internal signal precision of the filters are extended to 18 bit. The number of stages and the
coefficient precision in the internal filters are not altered in the 18 bit Masterfilter. These
results suggests that if the precision of the filter is high enough, one can get up to well over
120 dB attenuation in the stopband, which exceeds the requirements stated in the problem
description. However, this increase in precision is expected to cause a drastic increase in
the area usage, due to the use of larger multipliers.

As shown in sections 8.1.3 and 8.2, there is a notable ripple in the passband of the
Masterfilter. This ripple is insignificant compared to the attenuation of the filter, but one
should be aware of it, as it amounts to almost 3 dB in some regions. The ripple occurs due
to the fact that the passband of the internal filters in the Masterfilter are not completely
flat. This ripple, which seems insignificant at each filter stage, will sum up to a more
significant ripple. However, most of the ripple originates in the internal HdBand filter,

62

which has a passband ripple of 1.8 dB. If a filter with less ripple is desired, this HdBand
could be optimized. As previously shown, the attenuation of the proposed HdBand filter is
not fully utilized in the 14 bit Masterfilter, suggesting excess attenuation could be traded
for reduced passband ripple. Comparing the proposed Masterfilter with the Masterfilter
generated directly in Matlab described in chapter 6, the Masterfilter proposed in this thesis
proved approximately 1 dB higher passband ripple. Specific requirements of the passband
ripple, apart from the current filter transfer function shown in figure 4.1, were not specified
in the problem description in section 1.2.

It is important to note that the FPGA-tests described in section 8.2 were performed
using an Altera Cyclone II FPGA rather than a space qualified FPGA, such as the Ac-
tel RTAX2000S. This means that the results from these tests might not be representable
for other FPGA architectures. On the other hand, the filter code is designed to be very
portable. No vendor specific logic was used in the computer simulated code, which means
that it should work more or less without any customization, given that the FPGA can han-
dle the filter requirements. However, using a non vendor specific clocking scheme caused
problems with timing in the Cyclone II FPGA. It should be noted that an Altera specific
PLL was used to synchronize the FPGA and the ADC/DAC interface. This should not
affect the filter behavior.

One design feature of the filter proposed in chapter 6 which was not tested in this
thesis, was the undersampling process. The real input of the filter system should in fact
be centered at 70.98 MHz and undersampled down to 10.98 MHz, as described in section
6.1. This phenomena is well documented, and it was assumed that this would not need any
further testing.

A convenient implication of the modular multistage FIR structure used in the Master-
filter is that if one wishes to use the filter for a wider or more narrow passband, it would be
sufficient to only replace the HdBand filter. This would be much simpler than designing a
completely new filter from scratch, given that the new passband is within the limitations of
the current HdBand filter. No limitations would apply for how narrow the passband could
be, but the width would be limited by the sampling frequency of the HdBand filter, 1.25
MHz.

Since this filter was designed to be as general as possible, it should be customized to
fit specific FPGAs with given input and output precision. For example, if the output of the
FPGA was to be connected to an 8 bit DAC, the excess attenuation in the filter which would
not be used could be traded for area, performance or a more smooth passband with reduced
ripples. The issues related to the digital to analog conversion after the signal filtering were
not discussed in detail in this thesis. However, a suggested method of reaching the original
70.98 MHz input was mentioned, where an analog mixer and filter was applied.

63

64

Chapter 10

Conclusions

In this thesis, a digital bandpass filter with input sampling frequency 30 MHz, a bandwidth
of 100 kHz and transition bands of less than 50 kHz was designed. The input signal of the
filter, which had an initial bandwidth of 1.8 MHz centered at 70.98 MHz was designed to
be downsampled to a baseband of 15 MHz, and centered at 10.98 MHz. The output of the
filter was chosen to be centered at 3.48 MHz, with a sampling frequency of 30 MHz. The
filter was designed as a multistage decimation and interpolation filter with clock domains
reaching from 30 MHz down to 1.25 MHz. The filter, called Masterfilter, was designed and
simulated with Matlab, and implemented using VHDL. To fit the Mastefilter into a space
qualified FPGA, performance- and spacial optimization techniques such as pipelining and
resource sharing were applied. Additional support tools for generating VHDL FIR filters
and testbenches were created using C++. The Masterfilter was first tested using Modelsim
with input generated in Matlab, and then tested in an actual FPGA, using a built in NCO
signal generator.

The following structural specifications were determined after the filter was designed:

• The Masterfilter will require 95% of the combinatorial cells in the Actel RTAX2000S
FPGA. Additionally, the Masterfilter would also fit into the Actel RTAX4000S and
Xilinx Virtex 4-QV FPGAs, both with and without the timing intensive resource
sharing optimization.

• The Masterfilter will fulfill the performance specifications in the Actel RTAX2000S
FPGA. The critical clock domain in the Masterfilter, the 30 MHz domain, achieved
an estimated performance of 32.8 MHz.

• The delay of the Masterfilter was determined to 55.7µs.

• The Masterfilter was determined to have a stable linear phase response, as a result
of exclusive use of internal FIR filters with linear phase, without any feedback.

The following results can be summarized from the testing of the Masterfilter on an
Altera Cyclone II FPGA:

• With an internal and external bit width of 14 bit, the attenuation at the output ex-
ceeded the precision of the filter output. This resulted in a constant zero at the
output, suggesting an infinite attenuation. However, the last recorded attenuation in

65

the passband was −72.69 dB at 30kHz above the passband, and −98.38 dB at 39
kHz below the passband. The attenuation in the passband was approximately 6 dB
compared to the input signal.

• The maximum actual attenuation of the Masterfilter was determined by extending
the internal and external bit precision to 18 bit. This resulted in an attenuation of
−124.14 dB 50 kHz below the passband, and an attenuation of −115.84 dB was
recorded 50 kHz above the passband.

• The undesired frequency components at 670 MHz and 741 MHz were sampled down
and attenuated by both the analog bandwidth of the ADC and in the intermediate
filters of the Masterfilter.

These estimations and results suggests that the proposed filter would satisfy both the
performance- and area requirements for the Actel RTAX2000S, given that the resource
sharing optimization is applied. However, this filter would require a good clock source,
which can generate stable clock signals for all the clock domains, as well as inversed
clocks. If larger FPGAs are used, such as the RTAX4000S or the Virtex 4QV, the Mas-
terfilter using the original filters without resource sharing would be more than sufficient,
leaving extra room in the FPGA for additional functionality. The signal conversion from
the digital domain to the analog domain after the FPGA filtering, and mixing up to the
original center frequency was not discussed in detail in this thesis.

66

Chapter 11

Further Work

Since this thesis was limited to one semester, there was only time for a limited number
of tests and design optimizations. One potential extension of the digital filter would be
internal testing of the behavior and structure within the FPGA. In section 8.2 a NCO
signal generator was implemented inside the Altera Cyclone II FPGA. This setup could
be extended to also include an FFT-unit, which could process the output of the filter. This
way, the filter response could be determined very rapidly, and the overflow characteristics
could be explored over long sequences of input.

If the filter is to be optimized further, it could be possible to reuse even more compo-
nents in the two HdDec3RU filters. These filters could be combined into one filter with
four separate delay lines using shared arithmetic units. This would require twice the clock
frequency for the arithmetic, but it would save roughly half the area it takes to implement
the existing arithmetic.

In this thesis, it was assumed that the phase linearity was certain as a result of exclu-
sively linear internal components and the superposition principle, as discussed in chapter
9. However, this feature could also have been measured in the FPGA as it was a strict
requirement of the filter.

67

68

Appendix A

Filter Frequency and Phase
Responses

(a) Frequency and Phase Response (b) Coefficients

Figure A.1: Theoretical Response of Coverfilter

(a) Frequency and Phase Response (b) Coefficients

Figure A.2: Theoretical Response of HdDec2

69

(a) Frequency and Phase Response (b) Coefficients

Figure A.3: Theoretical Response of HdDec3

(a) Frequency and Phase Response (b) Coefficients

Figure A.4: Theoretical Response of HdDec4

(a) Frequency and Phase Response (b) Coefficients

Figure A.5: Theoretical Response of HdBand

70

(a) Frequency and Phase Response (b) Coefficients

Figure A.6: Theoretical Response of HdOut

(a) Frequency and Phase Response (b) Coefficients

Figure A.7: Theoretical Response of HdOut2

71

72

Appendix B

VHDL Simulation

(a) Clock
Generator

(b)
Down-
sampler
x2

(c)
Down-
sampler
x3

(d)
Mixer

(e) Up-
sampler
x2

(f) Up-
sam-
pler
x3

Figure B.1: Waveform Simulations of Processing Units

73

(a) Cover-
filter

(b)
HdDec2

(c) HdOut (d)
HdOut2

(e) Hd-
Dec3RU

(f) HdDec4RU

Figure B.2: Waveform-Simulations of Internal Filters in the FPGA

74

Appendix C

Filter Optimization

z 1 z 1 z 1

z 1 z 1 z 1

z 1 z 1

z 1 z 1 z 1

z 1 z 1 z 1

S1

S2

D

C ENB

Multiplexer

F[1] F[2] F[N]

y[n]

f = 2*Fs

z 1

2
xdec[n]

xint[n]

F[0]

Figure C.1: Reusable Decimation- and Interpolation Filter

75

76

Appendix D

Testing of the Filters

D.1 Testing With Tones

F[MHz] 2 4 9 10 13
Expected attenuation [dB] 0 0 -30 -67 -74
Real attenuation [dB] 9 13 -19.4 -54.7 -64.1
Normalized attenuation [dB] -4 0 -32.4 -67.7 -77.1
Deviation [dB] 4 0 2.4 0.7 3.1

Table D.1: Tone-Test of Coverfilter

F[MHz] 0.5 1 1.5 3.5 4.5
Expected attenuation [dB] -74 -91 -90 0.18 -0.2
Real attenuation [dB] -68.4 -72.5 -67.8 -6.38 -5.11
Normalized attenuation [dB] -63.3 -67.4 -62.7 -1.27 0
Deviation [dB] 10.7 23.6 27.3 1.09 0.2

Table D.2: Tone-Test of HdDec2

F[kHz] 46 169 228 308 371 534
Expected attenuation [dB] -110 -115 0.8 0.85 -114 -102
Real attenuation [dB] -72.4 -67 2.5 1 -70 -76
Normalized attenuation [dB] -74.9 -69.5 0 -1.5 -72.5 -78.5
Deviation [dB] 35.1 45.5 0.8 2.35 41.5 23.5

Table D.3: Tone-Test of HdBand

77

F[MHz] 3 6 8 11 14
Expected attenuation [dB] 0.74 -40 -90 -60 -70
Real attenuation [dB] 6.61 -35.02 -68.4 -52.8 -64.5
Normalized attenuation [dB] 0 -41.63 -75 -59.4 -71.1
Deviation [dB] 0.74 1.63 15 0.6 1.1

Table D.4: Tone-Test of HdOut

F[MHz] 3 6 8 11 14
Expected attenuation [dB] 0.5 -15.5 -45 -25 -23.2
Real attenuation [dB] -16.2 -34.4 -76.6 -36.9 -44.4
Normalized attenuation [dB] 0 -18.2 -60.4 -20.7 -28.2
Deviation [dB] 0.5 2.7 15.4 4.3 5

Table D.5: Tone-Test of HdOut2

F[MHz] 0.5 1 1.5 2
Expected attenuation [dB] -70 -70 1 -0.4
Real attenuation, dec[dB] -51.6 -45.2 -4.6 -6.5
Real attenuation, int[dB] -64.7 -60.6 -4.5 -6.4
Normalized att., dec[dB] -47 -40.6 0 -1.9
Normalized att., int[dB] -60.2 -56.1 0 -1.9
Deviation, dec [dB] 23 29.4 1 1.9
Deviation, int [dB] 9.8 13.9 1 1.9

Table D.6: Tone-Test of HdDec3RU

F[MHz] 0.2 0.4 0.6 1
Expected attenuation [dB] -73 -68 -55 0.4
Real attenuation, dec[dB] -59.3 -51.7 -43.8 5.8
Real attenuation, int[dB] -59.4 -56.5 -48 5.8
Normalized att., dec[dB] -65.1 -57.5 -49.6 0
Normalized att., int[dB] -65.2 -62.3 -53.8 0
Deviation, dec [dB] 7.9 10.5 5.4 0.4
Deviation, int [dB] 7.8 5.7 1.2 0.4

Table D.7: Tone-Test of HdDec4RU

78

Appendix E

VHDL Code

E.1 10 MHz Clock Generator Code
-- 10MHz clock generator
clk_proc:process (CLK_30MHz)
variable poscount : unsigned(2 downto 0) := "000";
variable negcount : unsigned(2 downto 0) := "000";
begin
if (rising_edge(CLK_30MHz)) then
if (poscount = "000") then
tmp10 <= not(tmp10);
poscount := poscount+1;

else
if poscount = "010" then
poscount := "000";

else
poscount := poscount+1;

end if;
end if;

end if;

if (falling_edge(CLK_30MHz)) then
if (negcount = "001") then
tmp10 <= not(tmp10);
negcount := negcount+1;

else
if negcount = "010" then
negcount := "000";

else
negcount := negcount+1;

end if;
end if;

end if;
end process clk_proc;

79

80

Appendix F

Hardware Simulations

Figure F.1: Mixer Output

Figure F.2: Coverfilter Output

81

Figure F.3: Downsampler3 Output

Figure F.4: HdDec2 Decimation Output

Figure F.5: Downsampler2_1 Output

82

Figure F.6: HdDec3RU Decimation Output, Stage 1

Figure F.7: HdDec3RU Decimation Output, Stage 2

Figure F.8: Downsampler2_2 Output

83

Figure F.9: HdDec4RU Decimation Output

Figure F.10: Downsampler2_3 Output

Figure F.11: Bandpassfilter Output

84

Figure F.12: Upsampler21 Output

Figure F.13: HdDec4RU Interpolation Output

Figure F.14: Upsampler22 Output

85

Figure F.15: HdDec3RU Interpolation Output, Stage 1

Figure F.16: HdDec3RU Interpolation Output, Stage 2

Figure F.17: Upsampler23 Output

86

Figure F.18: HdDec2 Interpolation Output

Figure F.19: Upsampler3 Output

Figure F.20: HdOut Output

87

88

Appendix G

Filter FPGA Tests

Figure G.1: Hardware Coverfilter Response

Figure G.2: Hardware HdDec2 Response

89

Figure G.3: Hardware HdDec3RU Response, Decimation Channel

Figure G.4: Hardware HdDec3RU Response, Interpolation Channel

Figure G.5: Hardware HdDec4RU Response, Decimation Channel

90

Figure G.6: Hardware HdDec4RU Response, Interpolation Channel

Figure G.7: Hardware Bandpassfilter Response

91

Figure G.8: Hardware HdOut Response

Figure G.9: Hardware HdOut2 Response

92

Bibliography

[1] Proakis JG, Manolakis DG. Digital Signal Processing: Principles, Algorithms and
Applications. Fourth ed. New Jersey: Pearson Education, Inc.; 2007.

[2] Kester W. Taking the Mystery out of the Infamous Formula, "SNR = 6.02N +

1.76dB," and Why You Should Care. 2009. Available from: http://www.analog.
com/static/imported-files/tutorials/MT-001.pdf

[3] Meyer-Baese U. Digital Signal Processing with Field Programmable Gate Arrays.
Third ed. New York: Springer Berlin Heidelberg; 2007.

[4] Lyons RG. Understanding Digital Signal Processing. Third Edition. Boston: Pearson
Education, Inc.; 2011.

[5] Vaughan RG, Scott NL, White DR. The Theory of Bandpass Sampling. IEEE Trans.
on Signal Processing. vol.39(9), pp. 1973-1984. 1991.

[6] Losada RA. Digital Filters with MATLAB. The MathWorks, Inc.; 2008 May 18.
Available from: http://www.mathworks.com/tagteam/55876_digfilt.pdf

[7] Pozar DM. Microwave and RF Wireless Systems. Chapter 7. New York: John Wiley
& Sons, Inc.; 2001.

[8] dspGuru by Iowegian International. Decimation. [cited 2013 May 8]. Available from:
http://www.dspguru.com/dsp/faqs/multirate/decimation.

[9] dspGuru by Iowegian International. Interpolation. [cited 2013 May 8].Available
from: http://www.dspguru.com/dsp/faqs/multirate/interpolation.

[10] Uyemura JP. Introduction to VLSI Circuits and Systems. New Jersey: John Wiley &
Sons, Inc.; 2002.

[11] Actel. Global Clock Networks in Actel Antifuse Devices. Application Note AC207.
2004. Available from: http://www.actel.com/documents/GlobalClk_AN.
pdf.

[12] Morris K. FPGAs in Space: Programmable Logic in Orbit. Electronic Engineer-
ing Journal. August 3. 2004. Available from: http://www.eejournal.com/
archives/articles/20040803_space/

93

[13] Roosta R. A Comparison of Radiation-Hard and Radiation-Tolerant FPGAs for
Space Applications. NASA Electronic Parts and Packaging Program. December
2004.

[14] Microsemi. RTAX-S/SL and RTAX-DSP Radiation-Tolerant FPGAs. Datasheet.
Revision 15. May 2012. Available from: http://www.actel.com/documents/
RTAXS_DS.pdf.

[15] Xilinx. Space-Grade Virtex-4QV Family Overview. Product Specification
DS653 v2.0. April 2010. Available from: http://www.xilinx.com/support/
documentation/data_sheets/ds653.pdf.

[16] Actel. Actel HDL Coding. Style Guide. 2009. Available from: http://www.actel.
com/documents/hdlcode_ug.pdf.

[17] COSPAS-SARSAT. Specification for COSPAS-SARSAT 406 MHz distress
beacons. C/S T.001. Issue 3 – Revision 13. October 2012 Available from:
http://www.cospas-sarsat.org/images/stories/SystemDocs/Current/
CS_T001_OCT_2012.pdf

[18] Hein GW, Godet J, Issler JL, Martin JC, Erhard P, Rodriguez RL et al. Status of
Galileo Frequency and Signal Design. Brussels: Galileo Signal Task Force of the Eu-
ropean Commission. 2002. Available from: http://ec.europa.eu/dgs/energy_
transport/galileo/doc/galileo_stf_ion2002.pdf

[19] Elbert BR. The satellite communication applications handbook. Norwood: Artech
House, Inc.; 2004.

[20] Texas Instruments. ADS5463-SP, Class V, 12-bit, 500-MSPS Analog-to-Digital Con-
verter. Datasheet. March 2008. Revised August 2012. Available from: http://www.
ti.com/lit/ds/sgls378d/sgls378d.pdf.

[21] Agarwal A, Lang JH. Foundations of Analog and Digital Electronic Circuits. San
Francisco: Morgan Kaufmann Publishers; 2005.

[22] Hassani S. Mathematical Physics: For Students of Physics and Related Fields. Chap-
ter 7. New York: Springer-Verlag; 2000.

[23] Altera. Using PLLs in Cyclone Devices. Application Note AN251 v.1.2, March 2003.
Available from: http://www.altera.com/literature/hb/cyc/cyc_c51006.
pdf.

94

