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Sammendrag

Ettersom moderne brodesign sikter mot lenger og slankere broer, er det nødvendig å
kunne bestemme de aerodynamiske egenskapene til slike konstruksjoner med stor nøyak-
tighet. Den horisontale frihetsgraden har tradisjonelt sett blitt ansett som uinteressant,
og aerodynamiske egenskaper har blitt bestemt ved seksjonsmodelltester som kun in-
volverer en vertikal og en torsjonal frihetsgrad. Likevel, for veldig lange broer kan det
vise seg at den horisontale frihetsgraden utgjør en forskjell.

Denne oppgaven tar for seg en rigg basert på den tradisjonelle opphengsriggen, men som
i tillegg til vertikal og torsjonal bevegelse også tillater horisontal bevegelse. En prototype
beregnet for eksperimenter i stille luft har blitt designet, bygd og testet.

Ved å introdusere en horisontal frihetsgrad blir stivheten til systemet ikke-lineær med
hensyn på bevegelse av seksjonsmodellen. For å bedre forstå modellens oppførsel i riggen,
har det blitt utviklet en element-modell og en analytisk stivhetsmodell.

To typer systemidentifikasjonsmetoder ble brukt for å bestemme de dynamiske egen-
skapene til prototypen. Covariance Block Hankel Matrix (CBHM)-metoden har tidligere
blitt brukt til å bestemme aerodynamiske egenskaper til flere kjente broer, blant annet
Hardangerbrua, mens Subspace State Space System Identification (N4SID)-metoder er en
nyere type metoder som er kjent for robusthet, nøyaktighet og enkelhet i bruk. Det viser
seg at N4SID-metoden som er brukt i denne oppgaven gir langt bedre dempingsestimater
enn CBHM-metoden.

Den foreslåtte riggen virker lovende for videre forskning og utvikling, selv om den har
enkelte ulemper og begrensinger.
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Abstract

As modern bridge design continuously aims for longer and slender bridges, it is nec-
essary to be able to determine aerodynamic properties of such structures with a high
degree of accuracy. The horizontal degree of freedom has traditionally been considered
uninteresting, and aerodynamic properties have been determined by section model tests
involving a vertical and a torsional degree of freedom only. However, for very long
bridges, horizontal motion may prove to be important.

This thesis has focused on an experimental setup based on the traditional suspension
rig, but in addition to vertical and torsional motion, it also allows horizontal motion. A
prototype intended for still air experiments has been designed, built and tested.

Introducing a third degree of freedom renders the stiffness of the system non-linear with
respect to motion of the section model. To better understand the model’s behaviour in
the rig, a FE-model and an analytical stiffness model have been developed.

Two types of system identification methods were utilised to determine the dynamic
properties of the prototype. The Covariance Block Hankel Matrix (CBHM) method
have over the years been used to determine aerodynamic properties of several well-known
bridges, e.g. the Hardanger Bridge, while Subspace State Space System Identification
(N4SID) methods is a newer family of methods well known for their robustness, accuracy
and ease to use. It turns out that the N4SID method used in this thesis produces far
better damping estimates than the CBHM method.

The proposed experimental setup seems promising for further research and development,
although it has several drawbacks and limitations.

iii





Preface

This thesis constitutes the result of the final semester of my master’s degree program
at the Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
The work has been carried out at the Faculty of Engineering Science and Technology,
Department of Structural Engineering, under the supervision of Associate Professor Ole
Andre Øiseth and Professor Ragnar Sigbjörnsson.

It has been interesting to work on a problem where I was able to compare theory with
practice. It was also motivating that the experimental setup investigated during this
work have not been (successfully) developed earlier.

I found it particularly interesting to learn some of the basic theory behind system iden-
tification, which I was completely unfamiliar with at the beginning of this work.

Lars Halvor Kaasa Trondheim, June 2011

v





Acknowledgements

This work was financially supported by a grant from the Norwegian Public Roads Ad-
ministration, which I greatly appreciate. They also provided technical information about
the Hardanger Bridge.

I would like to express my gratitude to my main supervisor, Associate Professor Ole
Andre Øiseth, for his motivation, support and guidance of this work, and for allowing
me to drop by his office with questions whenever I needed to. I am also grateful for the
support of my co-supervisor Ragnar Sigbjörnsson.

I also wish to thank Associate Professor Anders Rönnquist for his encouragement and
positive attitude, which not only inspired me during my work, but also made me spe-
cialise in structural dynamics in the first place.

Finally, I would like to thank the laboratory staff at the Department of Structural
Engineering, which has been helpful during my work of building a prototype of the
suspension rig. Particularly, I would express my gratitude to Senior Engineer Odd
Kristian Nerdahl, who guided and supported me during preparations, and Paul Brekka
Rike, who helped me set up the load cells.

vii





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art experimental setups . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope of present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic theory 5
2.1 Model scale experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Section models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Similitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Aerodynamic derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Determination by section model tests . . . . . . . . . . . . . . . . 13
2.2.3 Limitations and error sources . . . . . . . . . . . . . . . . . . . . . 13

2.3 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Model of a dynamic structural system . . . . . . . . . . . . . . . . 19
2.3.3 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Covariance Block Hankel Matrix (CBHM) identification . . . . . . 24
2.3.5 Subspace State Space System Identification (N4SID) . . . . . . . . 28
2.3.6 Model order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Noise and disturbances . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Detrending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Low-pass filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Design and experimental setup 37
3.1 Model scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



CONTENTS

3.1.3 Natural frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Prototype design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Conceptual sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 Section model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.5 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.6 Mass and moment of inertia . . . . . . . . . . . . . . . . . . . . . . 47
3.2.7 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.8 Natural frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.9 Static displacements . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Section model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Load cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.4 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.5 Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Results and discussion 59
4.1 Identification experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Effect of excitation amplitudes . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Abaqus/CAE simulations . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Response measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Computation of displacements . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Preprocessing of data . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Identification parameters . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 Verification based on simulated data . . . . . . . . . . . . . . . . . 73

4.4 Dynamic properties in still air . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.1 Modal quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Stiffness matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.3 Damping matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Effect of static displacements . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.1 Natural frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.2 Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Effect of excitation amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6.1 Abaqus/CAE simulations . . . . . . . . . . . . . . . . . . . . . . . 92
4.6.2 Horizontal translation . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6.3 Single mode effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Concluding remarks 99
5.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x



CONTENTS

5.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.2 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.3 Non-linear effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Suggestions for further work . . . . . . . . . . . . . . . . . . . . . . . . . . 100

References 103

Appendix A: Stiffness matrix 109
A.1 Stiffness matrix of the basic suspension system . . . . . . . . . . . . . . . 109
A.2 Stiffness matrix of the full system . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix B: Monte Carlo simulation of a turbulent wind field 125
B.1 Simulation of spatially coherent time series . . . . . . . . . . . . . . . . . 125
B.2 Representative turbulence characteristics . . . . . . . . . . . . . . . . . . . 126

Appendix C: Abaqus/CAE model 129
C.1 Section model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.2 Suspension system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.3 Mass and moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.4 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.5 Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.6 Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.7 Simulation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xi





List of figures

1.1 Sketch of a traditional suspension rig . . . . . . . . . . . . . . . . . . . . . 1
1.2 Rig allowing three degrees of freedom . . . . . . . . . . . . . . . . . . . . 3
2.3 Basic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Discrete state space model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Power spectral density of noisy displacement record . . . . . . . . . . . . . 23
2.6 Singular values obtained by the CBHM method . . . . . . . . . . . . . . . 30
2.7 Natural frequencies estimated by the CBHM method for increasing model

order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Signal with 10 % RNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 Magnitude of transfer functions of Butterworth and Chebyshev Type I

filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Phase response of Butterworth and Chebyshev Type I filters . . . . . . . 34
2.11 Bidirectional filtering vs. conventional filtering . . . . . . . . . . . . . . . 35
2.12 Decimation of signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13 Geometry of the Hardanger Bridge . . . . . . . . . . . . . . . . . . . . . . 37
3.14 Sketch of the suspension rig . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.15 Wind tunnel at NTNU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.16 Section model setup modelled in Abaqus/CAE . . . . . . . . . . . . . . . 44
3.17 Section model profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.18 Details of the section model setup . . . . . . . . . . . . . . . . . . . . . . 44
3.19 Rigid body modes of the section model . . . . . . . . . . . . . . . . . . . . 50
3.20 Change in natural frequencies as function of important design parameters 52
3.21 Ratio of vertical to horizontal translational frequencies . . . . . . . . . . . 53
3.22 Force vs. horizontal translation of the section model . . . . . . . . . . . . 54
3.23 Final construction drawings of the suspension rig . . . . . . . . . . . . . . 55
3.24 Pictures of the experimental setup . . . . . . . . . . . . . . . . . . . . . . 57
4.25 Displacement of a wire bracket from P0 to P . . . . . . . . . . . . . . . . 62
4.26 Wire bracket positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.27 Fluctuating component of forces due to free vibration response . . . . . . 64
4.28 Free vibration response and corresponding power spectra . . . . . . . . . . 65
4.29 Verification of modal damping ratios estimated by logarithmic decrements 68
4.30 Singular values obtained by the CBHM method . . . . . . . . . . . . . . . 69
4.31 Estimated natural frequencies vs. model order . . . . . . . . . . . . . . . . 69

xiii



LIST OF FIGURES

4.32 Effect of sampling rate on CBHM identification . . . . . . . . . . . . . . . 71
4.33 Relative changes of structural matrices identified by the CBHM method

when sampling rate is changed from 200 Hz to 10 Hz . . . . . . . . . . . . 71
4.34 Effect of sampling rate on N4SID identification . . . . . . . . . . . . . . . 72
4.35 Relative changes of structural matrices identified by the N4SID method

when sampling rate is changed from 200 Hz to 10 Hz . . . . . . . . . . . . 72
4.36 Effect of maximum lag for covariance estimates on CBHM identification . 74
4.37 Relative changes of structural matrices identified by the CBHM method

when maximum lag for covariance estimates is changed from 1 to 30 times
the longest natural period . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.38 Effect of displacement record length and number of oscillation cycles on
modal damping ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.39 Identification based on simulated noise-free displacement records of vari-
ous lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.40 Identification based on simulated noisy (1% RNS) displacement records
of various lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.41 Natural frequencies identified from three sets of recorded displacements . 80
4.42 Modal damping ratios identified from three sets of recorded displacements 82
4.43 Verification of identified damping ratios . . . . . . . . . . . . . . . . . . . 82
4.44 Damped (complex) mode shapes estimated by the N4SID method . . . . . 83
4.45 Damping matrix identified from three sets of recorded displacements . . . 87
4.46 Natural frequencies as function of static horizontal translation . . . . . . . 88
4.47 Change in natural frequencies as function of static displacements . . . . . 89
4.48 Identified and corrected natural frequencies obtained from simulated re-

sponse of a turbulent wind field acting on the section model . . . . . . . . 91
4.49 Effect of maximum excitation amplitude on the corresponding natural

frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.50 Free vibration response (large horizontal amplitude) and corresponding

power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.51 Natural frequencies identified from recorded displacements with large and

medium amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.52 Effect of excitation amplitude on the corresponding natural frequency . . 96
4.53 Effect of excitation amplitude on the corresponding damping ratio . . . . 97
A.54 Definition of geometry and displacements of the basic suspension system . 110
A.55 Effect of infinitesimal displacements . . . . . . . . . . . . . . . . . . . . . 111
A.56 Infinitesimal horizontal displacement . . . . . . . . . . . . . . . . . . . . . 113
A.57 Infinitesimal vertical displacement . . . . . . . . . . . . . . . . . . . . . . 117
A.58 Infinitesimal rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.59 Kinematic relations between full system and subsystems . . . . . . . . . . 122
B.60 Turbulence characteristics applied in simulations . . . . . . . . . . . . . . 127
C.61 FE-model in Abaqus/CAE . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.62 Parametrised sketch of the suspension system . . . . . . . . . . . . . . . . 131
C.63 Pretensioning of springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xiv



List of tables

2.1 Scaling of full scale quantities . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Basic geometry dimensions of the Hardanger Bridge . . . . . . . . . . . . 38
3.3 Static load coefficients of the Hardanger Bridge . . . . . . . . . . . . . . . 38
3.4 Equivalent distributed mass and moment of inertia of the Hardanger Bridge 39
3.5 Natural frequencies of the lowest symmetric modes of the Hardanger Bridge 39
3.6 Spring configurations used on the prototype . . . . . . . . . . . . . . . . . 46
3.7 Target mass and moment of inertia . . . . . . . . . . . . . . . . . . . . . . 47
3.8 Mass and moment of inertia of the section model setup . . . . . . . . . . . 48
3.9 Natural frequencies of the section model . . . . . . . . . . . . . . . . . . . 51
4.10 Natural frequencies obtained analytically and estimated by spectral analysis 67
4.11 Modal damping ratios estimated by logarithmic decrements . . . . . . . . 67
4.12 Initial displacement for free vibration response simulations . . . . . . . . . 73
4.13 Natural frequencies identified from three sets of recorded displacements . 79
4.14 Natural frequency of torsional rotation obtained for various configurations 81
4.15 Modal damping ratios identified from three sets of recorded displacements 81
4.16 Component magnitudes of the complex mode shapes . . . . . . . . . . . . 84
4.17 Analytical and identified stiffness matrix, identified from three sets of

recorded displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.18 Damping matrix identified from three sets of recorded displacements . . . 86
4.19 Static component of response obtained from simulated response of a tur-

bulent wind field acting on the section model . . . . . . . . . . . . . . . . 91
4.20 Identified and corrected natural frequencies obtained from simulated re-

sponse of a turbulent wind field acting on the section model . . . . . . . . 92
4.21 Maximum (physically feasible) excitation amplitudes of the prototype . . 93
4.22 Modal damping ratios obtained by identification based of recorded dis-

placements with medium and large amplitudes . . . . . . . . . . . . . . . 98
B.23 Estimated parameters for determination of turbulence properties. . . . . . 127

xv





1 Introduction

1.1 Background

As modern bridge design continuously aims for longer and slender bridges, it is necessary
to be able to determine aerodynamic properties of such structures with a high degree
of accuracy. The loads induced on a structure subjected to wind are a result of a
complex interaction between the flow of air and the structure itself, rendering analytical
and computational simulations computationally challenging [37]. Hence, prediction of
response of a structure subjected to wind usually implies model scale experiments in
a wind tunnel, whereon the results are interpreted and extrapolated to the full scale
structure. These experiments provide valuable information about the aerodynamic and
aeroelastic behaviour of a bridge deck that would otherwise be hard to obtain. To achieve
additional insight, experiments may be enhanced by computational fluid dynamic (CFD)
analyses [10], but this is computationally expensive and not common at present.

Traditional section model testing in wind tunnel was first used by Scanlan and Tomko [41].
A section model is a stiff, shape-wise representative segment of a full scale structure [15].
The testing has traditionally been performed in a suspension rig that allows vertical and
rotational motion only, as shown in Figure 1.1. The motivation for the restraining of

Figure 1.1: Sketch of a traditional suspension rig [15].
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horizontal motion is mainly an issue of practical considerations that arise by introducing
additional degrees of freedom into the system; the setup itself is likely to lack the simplic-
ity of the two-degree-of-freedom-setup and the motion of the section model become more
complex – hence it becomes harder to obtain accurate identifications of the aerodynamic
derivatives [10]. Finally, the horizontal motion has traditionally been considered to be
of less importance.

A section model exposed to a wind field may be used to perform a direct comparison of
different bridge deck configurations. More importantly, loads exerted by the wind flow
may be extracted and characteristic aerodynamic quantities such as static load coeffi-
cients, admittance functions and aerodynamic derivatives may be obtained as functions
of the reduced velocity. These properties may then be used to predict dynamic response
of the full scale structure. Since flutter, i.e. coupling of the fundamental vertical and
torsional mode, usually is the critical instability phenomenon for bridges [49], it is tradi-
tionally assumed that the horizontal motion does not affect the aerodynamic properties
associated with the vertical and torsional motion. The aerodynamic derivatives associ-
ated with horizontal motion has either been estimated by quasi-static values or chosen
by experience [49].

Given the lower stiffness and increased horizontal motion of longer and slender bridges,
these simplifications may significantly decrease accuracy of response and flutter predic-
tions. The importance of the horizontal degree of freedom on coupled aeroelastic effects
has been emphasised by e.g. Katsuchi et al. [23] and Mishra et al. [33]. Hence it is
desirable to design an experimental setup that allows a horizontal degree of freedom. It
is also necessary to implement a system identification method capable of extracting the
aerodynamic derivatives, including those related to horizontal motion.

1.2 State of the art experimental setups

There has only been developed a few setups allowing for a horizontal degree of freedom
that have been described in the literature. The most frequently encountered concept
was developed and tested by Sarkar and Chowdhury [10,37], and is shown in Figure 1.2.
Unlike traditional setups, the section model is not suspended in wires, but rather sup-
ported by pneumatic bushings that glide along polished steel shafts. This not only allows
independent motion in both horizontal, vertical and torsional degrees of freedom, but
also makes it possible to restrain motion in one or more directions. Hence, it possible
to isolate and test the response of a single mode, and more importantly, to investigate
coupling effects between any combination of two modes. This is favourable, because it
was found that system identification based on motion involving three degrees of freedom
tends to be less accurate.

Singh et al. [22, 42] used this setup to determine lateral aerodynamic derivatives of
various bridge decks. Their main findings indicate that theoretical expressions of the

2
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Figure 1.2: Rig allowing three degrees of freedom [10,37].

aerodynamic derivatives associated with horizontal motion may give a good approxima-
tion in one case, but a rather crude approximation in another – the accuracy is highly
dependent on the shape of the bridge deck. Furthermore, the theoretical values are not
always conservative. In some cases there are also trends of structural stiffening effects
due to the interaction between the horizontal motion and the flow of air, and hence
modification of frequencies associated with this motion. This may be of significance in
understanding wind-induced motion of large bridges.

1.3 Scope of present work

The drawback of the system described above, is that it require expensive components
and precision machined parts to avoid excessive (frictional) damping. It is therefore
desirable to develop a simple suspension rig, based on a traditional wire setup, that
allows horizontal motion in addition to vertical and torsional motion.

The goal of the work presented herein is to develop a suspension rig with a horizon-
tal, a vertical and a torsional degree of freedom that is suitable for determination of
aerodynamic derivatives in the wind tunnel at NTNU.

The problem comprises three parts:

1. Design, build and test a suspension rig prototype to be used in still air, i.e. not in
the wind tunnel.

2. Implement and test system identification methods that are suitable to determine
dynamic properties of the section model.

3. Investigate non-linear effects due to the introduction of a horizontal degree of
freedom.

The section model mounted in the rig will be based on the Hardanger Bridge. Due to time
considerations, wind tunnel testing is not possible, and hence aerodynamic derivatives
will not be determined.

3



1 INTRODUCTION

As the setup may be used for further research, effort will be made to provide user-
friendly tools to assist the design process of new section models, including a FE-model
for dynamic simulation in Abaqus/CAE, Microsoft Excel spreadsheets and MATLAB
code for system identification.
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2 Basic theory

To ensure that the design of the suspension rig is well suited for measurements of the
aerodynamic properties of bridge decks, it is important to understand relevant theory.
This chapter will focus on theory of model scale experiments, aerodynamic derivatives
and methods of system identification. A brief part concerning signal processing is also
presented.

2.1 Model scale experiments

Model scale experiments can provide useful information about structural problems where
full scale measurements are not feasible. This may be because the model experiments
are a part of the design process of a structure that do not yet exist, or because it is
difficult and/or expensive to carry out experiments on it.

In general, a scale model is used to predict physical characteristics of a full scale system,
such as displacements, velocities, accelerations and forces [57]. Physical characteristics
are often described by relevant (dimensionless) parameters capable of representing the
full scale system, which in turn can be used to ensure proper scaling of the model.

In wind engineering, aeroelastic simulations are capable of providing information on
the overall wind induced mean and dynamic loads and responses of a structure [7].
Aeroelasticity comprises the interaction between aerodynamic, elastic and inertial forces.
One of the most common ways to perform aeroelastic simulations, is by section model
tests.

2.1.1 Section models

A section model is a rigid model of a typical section of a slender, line-like structure, e.g.
a bridge. It is more or less impossible to represent features such as cables and hangers
correctly on an aeroelastic section model [15], and hence they are usually not included in
the setup. The section model is dynamically mounted, traditionally by springs and wires
(see Figure 1.1), where the setup is configured to achieve certain dynamic properties,
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2 BASIC THEORY

e.g. natural frequencies and damping ratios. It is often orientated perpendicular to the
air stream, consequently ignoring any three-dimensional effects along the longitudinal
axis of the structure [12]. Since only a part of the structure is examined, the geometric
scale can be relatively large, typically in the range between 1:10 and 1:100.

The main use of section model tests lies in the detection of unstable motion [49], which
for bridges usually is the phenomenon of flutter, i.e. a coupling of two or more modes,
often associated with vertical and torsional motion. This coupling occur at high mean
wind velocities due to motion induced changes in the effective structural stiffness. These
changes are governed by the aerodynamic derivatives, described in detail in section 2.2.
The aerodynamic derivatives can be determined by systematic testing involving a suit-
able range of reduced velocities. Static load coefficients and aerodynamic admittance
functions, for use in calculations of buffeting response, can also be determined.

Section model tests are of major importance during the design process of e.g. a bridge,
since the deck profile can be aerodynamically optimised. Such optimisation may involve
reshaping the deck profile to increase critical (flutter) velocity, and installation of guide
vanes to minimise response due to vortex shedding and buffeting [50].

2.1.2 Similitude

To obtain results representative for the full scale structure, it is important that the model
is correctly scaled.

A scale model is said to have complete similitude with the full scale structure if they are
geometric, kinematic and dynamic similar. According to Buckingham’s π-theorem [5],
any physically meaningful equation involving n variables can be rewritten to an equation
of n−m dimensionless parameters, where m is the number of fundamental dimensions,
e.g. mass, length and time, used to rewrite the equation. Thus, a series of relevant
dimensionless parameters of the full scale structure should be duplicated in the model
and the wind field. However, complete duplication of these parameters is impractical.
As a matter of fact, the requirements can only be satisfied exactly when the model and
the full scale structure are identical [51]. Hence, only the important parameters should
be satisfied, rendering a model having partial similitude with the full scale structure.

The most important parameters are briefly outlined below.

2.1.2.1 Similarity of wind

The simulation of natural wind in a wind tunnel can be considered in two categories.
The near field simulation considers topographical conditions in the vicinity of the struc-
ture, while the far field simulation preserves the average characteristics of the turbulent
boundary layer air flow. The former may require installation of geometrically scaled sur-
roundings in the wind tunnel, while the latter concerns preservation of wind parameters,
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particularly regarding turbulence. Section model tests of bridges usually emphasise far
field simulation, as long bridges often spans above a flat water surface.

The most important turbulence parameters are turbulence intensities and turbulence
integral length scales, together with spectral densities of fluctuating wind components
and spatial correlations of these [51]. Spectral densities and corresponding co-spectra are
usually encountered in a reduced (dimensionless) form. Scaling of mean wind velocity
distributions is usually not important for section model tests of bridges [7, 15].

Details about the parameters mentioned above are outside the scope of this paper, but
can be found in e.g. [49].

2.1.2.2 Aeroelastic similarity of section model

To achieve aeroelastic similarity, the following dimensionless parameters should (theo-
retically) be equal in full scale and model scale:

Reynolds number can be defined as the ratio of the fluid inertia force to the fluid
viscous force [51].

Re = Fi
Fv

= ρaL
3V 2/L

µaLV
= ρaLV

µa
(2.1)

where ρa is the density of air, µa is the dynamic viscosity of air, L is a relevant
characteristic linear dimension and V is the short term mean wind velocity. It is
often impossible to maintain the Reynolds number in wind tunnel experiments,
but the consequences are small if the model only has sharp corners. On the other
hand, flow pattern around rounded corners and circular cylinders are very sensitive
to the Reynolds number, and care should be taken if the section model contains
such elements [15,51].

Density ratio is the ratio of the structural material density to air density [51]. How-
ever, to maintain dynamic characteristics, it is enough to maintain the mass ratio
in an overall way. By assuming an effective density ρeff, we get

ρeff
ρa

= ρeffL
3/L

ρaL2 = m

ρaL2 (2.2)

where m is mass per unit length of the structure. Similarly, in torsional problems,
the ratio is based on moment of inertia per unit length of structure, mI , giving the
ratio

mI

ρaL4

Froude number is the ratio of fluid inertia force to gravitational force [51]:

Fr = Fi
Fg

= ρaL
3V 2/L

ρaL3g
= V 2

gL
(2.3)
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where g is the acceleration of gravity. Consequently, Froude numbers become im-
portant for wind-induced response of cable-supported structures like suspension
bridges, where geometric stiffness due to gravity is a dominant factor. However,
as long as full scale displacements are small and the geometric stiffness is nearly
invariant with respect to mean wind velocity, literal Froude-scaling is not neces-
sary [15].

Cauchy number is defined as the ratio of elastic force to fluid inertia force [51]:

Ca = Fe
Fi

= EeffL
2

ρaL3V 2/L = Eeff
ρaV 2 (2.4)

where Eeff is the effective bulk modulus of elasticity, depending on the type of
model. Considering the natural frequency of the structure,

ω =

√
EeffI

m

this ratio can be rewritten to

Ca = EeffI
/
L2

ρaV 2/L2 =
(
ωL

V

)2 m

ρaL2 = 1
V̂ 2

m

ρaL2 (2.5)

where
V̂ = V

ωL
(2.6)

is the reduced velocity and m
/
ρaL

2 is the mass ratio derived above.

It is seen that the Cauchy number is maintained if the reduced velocity and mass
ratio is equal in model scale and full scale. For a section model, it is maintained
in an overall way, by pooling all straining and gravitational (geometric) stiffness
into EeffI [15].

As structural response depends on frequency content, mean wind velocity and
geometric scaling, it is common to analyse it as a function of reduced velocity.

Modal damping ratio is an important parameter in the prediction of structural re-
sponse [51]. It is, however, very difficult, if not impossible, to measure the damping
of a structure, not to say a structure that not yet exist. To simulate worst case con-
ditions, it is common to assume as low damping as possible, but additional damping
could be introduced by letting vanes connected to the model shear through e.g.
silicone oil [15].

In addition to the dimensionless quantities described above, the Scruton number, which
relates mass and damping of bluff and round sections, and the Strouhal number, which
is related to vortex shedding, is worth mentioning. However, these numbers will not be
focused on in the present work.
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2.1 MODEL SCALE EXPERIMENTS

2.1.3 Scaling

Based on the scaling laws described above, it is evident that Reynold numbers can not
be preserved. It is also seen that it is impossible to maintain Froude numbers, since it
is important to investigate the behaviour of the section model under various mean wind
velocities. Finally, modal damping ratios are hard to scale correctly. Instead, they are
usually chosen as small as possible, i.e. no additional damping is introduced into the
suspension rig.

What then remains, are the requirements regarding wind similarity, geometric scaling,
mass ratio and reduced wind velocity. Hence, the following full-scale quantities are
needed for designing the model and suspension rig [15]:

• Geometrical shape.

• Equivalent constant mass per unit length of span, calculated to give correct modal
mass if the distribution is non-uniform.

• Equivalent constant moment of inertia per unit length of span, calculated to give
correct modal moment of inertia if the distribution is non-uniform.

• Range of relevant mean wind velocities.

• Natural frequencies (and possibly modal damping ratios) of relevant modes.

• Turbulence properties of the wind, i.e. intensities, integral length scales, reduced
auto-spectra and normalised co-spectra of all components.

After deciding on a geometric scale factor λ and a wind velocity scale factor ν, the target
model properties are found by Table 2.1.

Quantity Full scale Scale factor Model scale

Length Lfs λ Lms = λ · Lfs
Mass per unit length mfs λ2 mms = λ2 ·mfs
Moment of inertia per unit length mI,fs λ4 mI,ms = λ4 ·mI,fs

Mean wind velocity Vfs ν Vms = ν · Vfs
Natural frequencies fk,fs ν/λ fk,ms = ν/λ · fk,fs
Modal damping ratios ζk,fs 1 ζk,ms = ζk,fs

Turbulence intensities In,fs 1 In,ms = In,fs
Integral length scales s

Ln,fs λ
s
Ln,ms = λ · s

Ln,fs
Reduced turbulence auto-spectra Ŝn,fs 1 Ŝn,ms = Ŝn,fs
Normalised turbulence co-spectra Ĉonn,fs 1 Ĉonn,ms = Ĉonn,fs

Table 2.1: Scaling of full scale quantities, where k is mode number, n refer to turbulence com-
ponent and s refer to flow direction.
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2 BASIC THEORY

2.1.4 Limitations

Results obtained by model tests will never be better than the model’s ability to represent
the full scale structure and the load conditions applied to it. Hence, the results from
section model tests are only directly applicable to a full scale structure with geometry,
frequency ratios, mode shapes, damping, modal mass and moment of inertia etc. equiv-
alent to that of the model [50], which for all practical purposes do not coincide with the
actual full scale properties.

Given that the scaling of the model is performed adequately, there is still one major
difference between a section model and the corresponding full scale structure. The
dimensionless shape-wise similarity ψ of two modes a and b is defined by

ψab =

∫
Lexp

φaφb dx∫
L
φ2
a dx ·

∫
Lexp

φaφb dx∫
L
φ2
b dx

(2.7)

where φa and φb represent the mode shapes of mode a and b, respectively. Here, ψab = 1
indicates that the modes match perfectly, i.e. they are shape-wise similar, and ψab = 0
indicates that they are shape-wise dissimilar [19].

Section models are practically rigid, implying that the more or less flexible modes of the
full scale structure must be represented by the rigid modes of the model. That is, the
mode shapes in model scale and full scale are not equal, and the shape-wise similarity
between all symmetric modes of the section model will be 1 – perfectly similar. On
the other hand, the Hardanger Bridge, for instance, has a shape-wise similarity of the
symmetric vertical and torsional mode shapes of ψzθ = 0.57 [19]. This implies that
flutter most likely will occur at a lower reduced wind speed for the section model tests
than for the full scale bridge, and thus gives conservative estimates on critical wind
velocity. Further, since aerodynamic parameters can not be identified beyond the critical
velocity, they have to be extrapolated to estimate the true critical velocity of the full
scale bridge. Finally, it also implies that a section model can represent the full scale
structure aerodynamically, but not dynamically.

There are also other important limitations of section model tests. First, only a section
of the bridge deck is modelled; features like suspension cables and hangers are ignored.
Second, it is nearly impossible to have the flow of air in the wind tunnel accurately rep-
resenting the natural wind that acts on the full scale bridge structure, and the response
tends to be extremely sensitive to a change in wind direction [51]. End effects may also
disturb the results, particularly if the section model is short. The latter may, however,
be reduced by attaching end plates, parallel to the flow, to each side of the section model.

For further information about wind tunnel testing, the reader is referred to [15] and the
manual prepared by the American Society of Civil Engineers [7].
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2.2 Aerodynamic derivatives

Even though determination of aerodynamic derivatives (ADs) itself is outside the scope
of this work, it is important to understand how they are identified, since it is the main
use of the suspension rig.

2.2.1 Definition

The concept of aerodynamic derivatives was introduced by Scanlan and Tomko [41] in
1971. They considered frequency dependency of response calculations by introducing
six frequency dependent coefficients: H∗i and A∗i , i =1-3. Singh et al. [42] extended the
analysis procedure described by Scanlan and Jones [40] to include the entire complement
of 18 aerodynamic derivatives: P ∗i , H∗i and A∗i , where i =1-6.

The three degrees of freedom relevant for determination of ADs are the horizontal de-
flection p, the vertical deflection h and the rotation α about the local shear centre.
The corresponding drag D, lift L and overturning moment M per unit span can be
represented by

D = Db +Dae (2.8a)
L = Lb + Lae (2.8b)
M = Mb +Mae (2.8c)

where the subscripts b and ae refer to buffeting and aeroelastic quantities, respectively.
The motion induced forces can be represented completely by

Dae = 1
2ρaV

2B

[
ω̂P ∗1

ṗ

V
+ ω̂P ∗2

Bα̇

V
+ ω̂2P ∗3α+ ω̂2P ∗4

p

B
+ ω̂P ∗5

ḣ

V
+ ω̂2P ∗6

h

B

]
(2.9a)

Lae = 1
2ρaV

2B

[
ω̂H∗1

ḣ

V
+ ω̂H∗2

Bα̇

V
+ ω̂2H∗3α+ ω̂2H∗4

h

B
+ ω̂H∗5

ṗ

V
+ ω̂2H∗6

p

B

]
(2.9b)

Mae = 1
2ρaV

2B2
[
ω̂A∗1

ḣ

V
+ ω̂A∗2

Bα̇

V
+ ω̂2A∗3α+ ω̂2A∗4

h

B
+ ω̂A∗5

ṗ

V
+ ω̂2A∗6

p

B

]
(2.9c)

where ρa is the air density, V is the mean wind velocity, B is the section model deck
width and ω̂ is the reduced circular frequency, defined by

ω̂ = Bω

V
= 1
V̂

where the reduced velocity V̂ is defined in (2.6).

A modal dynamic system may be expressed by

M0ÿ(t) + Ceffẏ(t) + Keffy(t) = p(t) (2.10)
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where

y(t) =
[
p h α

]T
(2.11a)

p(t) =
[
Db Lb Mb

]T
(2.11b)

Ceff = C0 + Cae (2.11c)
Keff = K0 + Kae (2.11d)

and where M0, C0 and K0 are the mass, damping and stiffness matrix, respectively, in
still air. The coefficients contained in Cae and Kae are functions of the frequency of
motion, the mean wind velocity and the type of cross section, as well as the turbulence
properties and angle of incidence of the oncoming flow [49].

By comparing (2.11) with (2.8) and (2.9), the following is obtained:

Cae = −1
2ρaB

2ωĈae (2.12a)

Kae = −1
2ρaB

2ω2K̂ae (2.12b)

where

Ĉae =

 P ∗1 P ∗5 BP ∗2
H∗5 H∗1 BH∗2
BA∗5 BA∗1 B2A∗2

 (2.13a)

K̂ae =

 P ∗4 P ∗6 BP ∗3
H∗6 H∗4 BH∗3
BA∗6 BA∗4 B2A∗3

 (2.13b)

and the aerodynamic derivatives are given by



P ∗1 H∗1 A∗1
P ∗2 H∗2 A∗2
P ∗3 H∗3 A∗3
P ∗4 H∗4 A∗4
P ∗5 H∗5 A∗5
P ∗6 H∗6 A∗6


= − 2

ρaB2ω2



ω
(
Ceff

11 − C0
11

)
ω
(
Ceff

22 − C0
22

)
ω
B

(
Ceff

32 − C0
32

)
ω
B

(
Ceff

13 − C0
13

)
ω
B

(
Ceff

23 − C0
23

)
ω
B2

(
Ceff

33 − C0
33

)
1
B

(
Keff

13 −K0
13

)
1
B

(
Keff

23 −K0
23

)
1
B2

(
Keff

33 −K0
33

)(
Keff

11 −K0
11

) (
Keff

22 −K0
22

)
1
B

(
Keff

32 −K0
32

)
ω
(
Ceff

12 − C0
12

)
ω
(
Ceff

21 − C0
21

)
ω
B

(
Ceff

31 − C0
31

)(
Keff

12 −K0
12

) (
Keff

21 −K0
21

)
1
B

(
Keff

31 −K0
31

)


(2.14)

It is assumed that the ADs evolve as functions of the reduced velocity, i.e.

P ∗i = P ∗i (V̂ ), H∗i = H∗i (V̂ ), A∗i = A∗i (V̂ ), i = 1-6

which implies an assumption of perfectly harmonic modal motion [12].
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2.2.2 Determination by section model tests

Equation (2.14) shows that the aerodynamic derivatives are determined by subtracting
the damping and stiffness matrix in still air from the corresponding matrices determined
under wind exposure.

Over the years, numerous methods have been developed to extract ADs from section
model tests in wind tunnels, see e.g. [3,10,13,21,38,41,42]. In general, ADs are obtained
by identifying the damping and stiffness matrix for a suitable range of reduced velocities,
possibly also for various angles of incident and frequency configurations. Although the
technical implementation varies, all methods either involve free vibration tests or forced
vibration tests [36].

Both approaches have their advantages. Free vibration tests do not force any prescribed
motion on the model, but rather allow the fluid-structure interaction to drive the motion.
The disadvantage is that the aerodynamic damping may be onerous for large reduced
velocities, rendering only a few cycles of oscillations before the motion is damped out –
making it difficult to obtain good estimates of the effective damping and stiffness. The
more technically demanding method of forced vibration, on the other hand, does not
dampen out, and can obtain the structural matrices even for large reduced velocities –
however at the cost of prescribed motion, which may distort modal coupling effects.

2.2.3 Limitations and error sources

Aerodynamic derivatives represent a linear form of the non-linear aerodynamic forces,
so they are approximations, at best [36]. Moreover, it is assumed that the ADs are
dependent on reduced velocity alone, but there is reason to suspect that they also are
amplitude dependent [39].

Further, Sarkar et al. have performed a comparative study [36], where inter-laboratory
data has been analysed. The study clearly shows presence of non-negligible dependence
on the laboratory equipment and operational conditions, as well as on the method used
to extract the ADs. It also emphasises the importance of uncertainty analysis of exper-
imentally extracted ADs in the context of aeroelastic simulations [6].

Error in the extracted ADs can depend on many sources, including number of degrees
of freedom, upstream turbulence, type of bridge section, sampling rate and sampling
duration [36]. The effect of sampling rate and duration will be investigated in section
4.3.2.
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2.3 System identification

System identification is the process of estimating the parameters of a mathematical
model based on measured input and output. It may be thought of as the dynamic
extent of curve fitting [54].

System identification methods can be considered in two categories: parametric and non-
parametric methods. Parametric methods are performed on a model with a certain
structure and which contains a parameter vector, while models determined by non-
parametric methods are given by functions, curves or tables [17].

There is a wide range of methods available, but this thesis focuses on two parametric
methods: the covariance block Hankel matrix (CBHM) method and an implementation
of a subspace (N4SID) method. The Iterative Least Squares (ILS) method presented
in [10] was implemented and tested, but the estimation of damping produced poor results;
hence, it will not be focused on in the following. In addition, a preliminary analysis using
non-parametric methods is described.

The CBHM method is a so-called stochastic realisation method, and is chosen because
it has been extensively tested and successfully applied to relevant problems, i.e. deter-
mination of aerodynamic derivatives, by Jakobsen [20]. It is also being used by Svend
Ole Hansen ApS, a Danish company that has performed several wind tunnel tests for
the Norwegian Public Roads Administration, see e.g. [50]. Finally, the N4SID method is
chosen because of it’s robustness and ease to use – and because it is implemented in the
System Identification Toolbox in MATLAB. Hence, it serves as a control for the CBHM
method.

2.3.1 Mathematical models

Mathematical models represents reality in an idealised way, and should never be consid-
ered to be the truth. However, by careful modelling and understanding of a problem,
mathematical models can provide valuable insight and information.

There are two different approaches of modelling [29]. Tailor-made models are constructed
from basic physical principles, and the unknown parameters have, at least in principle, a
physical interpretation. Ready-made models, or black-box models, are families of flexible
models of general applicability. The parameters of these models do not necessarily have
physical interpretations, but only describe the input-output relationships of the system.
The model parameters are estimated by system identification of data from experimen-
tation. The two approaches may very well be combined to enhance the understanding
of the problem and confidence in the models.

The parameters of a model may be classified according to [29]:
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Constants Quantities in the model that do not vary with time.

• System parameter : A constant that is given by the system.

• Design parameter : A constant that can be varied in order to give the system
different properties.

Variables/signals Quantities in the model that vary with time.

• Output: A variable whose behaviour is the primary interest. Denoted by y.

• External signal: A variable that affects the system without being affected by the
system’s other variables.

• Input: An external signal in the system whose time variations can be chosen.
Denoted by u.

• Disturbance signal/noise: An external signal in the system that cannot be influ-
enced. Denoted by w.

• Internal variable: A variable in the system that is neither an output nor an external
signal.

The block diagram of a basic model is shown in Figure 2.3.

u

w

y

Figure 2.3: Basic model.

2.3.1.1 Transfer function models

A well-known family of ready-made dynamic models are the so-called transfer function
models. They are parametric models constructed by assuming a rational transfer function
G of the input, and a rational function H of the disturbance signal:

G(q, θ) = B(q)
F (q) (2.15a)

H(q, θ) = C(q)
D(q) (2.15b)

Here, q is the time shift operator, and B, C, D and F are polynomials that comprises
the parameters θ of the model. By setting one or more of the polynomials equal to
unity, different model classes are defined. The Box-Jenkins (BJ) and the auto-regressive,
moving average (ARMA) models are frequently encountered examples of such classes.
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2.3.1.2 State space models

In the present work, a different family of parametric models will be used. Since dynamic
systems have memory, i.e. the output depends on all earlier input values, it is not possible
to calculate the output y(t) for t > t0 – even if the input u(t) for t > t0 is known.
It is necessary to know the state of the system at time t0. The state at any given
time t is described by state variables stored in the state vector x(t), and is in general
dependent not only on the dynamic properties of the system, but on all earlier input
values. The model order, the number of state variables in the model, should contain
enough information to describe the system unambiguously, i.e. to calculate the output
y(t) for t > t0 when the corresponding input is known.

A linear, time-invariant state space model in continuous time is described by the following
set of equations:

ẋ(t) = Acx(t) + Bcu(t) + wc(t) (2.16a)
y(t) = Cx(t) + Du(t) + v(t) (2.16b)

while the discrete-time counterpart is described by:

xk+1 = Adxk + Bduk + wd,k (2.17a)
yk = Cxk + Duk + vk (2.17b)

where uk = u(tk), xk = x(tk), yk = y(tk), vk = v(tk) and tk = k∆t, assuming
equidistant time spacing ∆t. Quantities that differ in continuous and discrete time
are subscripted with c and d, respectively. To obtain the relation between these two
versions of the model, the solution of the first order differential equation in continuous
time (2.16a), with initial conditions x(t0), is considered:

x(t) = eAc(t−t0)x(t0) +
t∫

t0

eAc(t−τ) (Bcu(τ) + wc(τ)) dτ (2.18)

Comparison with the discrete-time version (2.17a) gives

Ad = eAc∆t (2.19a)

Bd = Bc

∆t∫
0

eAc(∆t−τ) dτ (2.19b)

wd,k = wc(k∆t)
∆t∫
0

eAc(∆t−τ) dτ (2.19c)

To get a better understanding of the model, an introduction to the terms of the discrete-
time version, stated by Van Overschee and De Moor [54], is briefly summarised below.
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2.3 SYSTEM IDENTIFICATION

The vectors uk ∈ Rm and yk ∈ Rn are the measurements of respectively m inputs and
n outputs of a process at a given time instant k, and it is assumed that uk is available
without measurement noise. The vector xk ∈ Rl is the state vector of the process, and
contains the values of l state variables at time instant k. The state variables do not
necessarily have a direct physical interpretation.

The stochastic vectors wk ∈ Rl and vk ∈ Rn contains the unmeasurable input and
output noise, respectively, and are assumed to be zero mean, stationary, white noise
vector sequences. This implies that instantaneous correlation between the input and
output noise may occur, but the covariance is zero for any time lag τ > 0:

E
[[

wp

vp

] [
wT
q vTq

]]
=
[
Cww(p, q) Cwv(p, q)
CT

wv(p, q) Cvv(p, q)

]
δpq ≥ 0, δpq

{
1 if p = q

0 if p 6= q
(2.20)

where E is the expectation value operator, δpq is the Kronecker delta, and Cww ∈ Rl×l,
Cwv ∈ Rl×n and Cvv ∈ Rn×n are the covariance matrices of the noise sequences.

The dynamic system matrix Ad ∈ Rl×l completely describes the dynamics of the sys-
tem, which is characterised by its eigenvalues. The input matrix Bd ∈ Rl×m represents
a linear transformation which describes how the next state is influenced by the deter-
ministic input, while the output matrix C ∈ Rn×l describes the transformation of the
internal state to the output measurements yk. The direct feedthrough-matrix D ∈ Rn×m
represents any direct coupling between inputs and outputs of the system. In continuous
systems this is usually not the case, but it may be present in discrete systems due to the
sampling.

The matrix pair {Ad,C} is assumed to be observable, which implies that all modes
in the system can be observed, and thus identified, in the stochastic output yk. The
matrix pair

{
Ad,

[
Bd Q1/2

]}
is assumed to be controllable, which in turn implies that

all modes of the system are excited by either the deterministic input uk or the stochastic
input wk. The concepts of observability and controllability are briefly discussed below.

Figure 2.4 illustrates the discrete state space model. The symbol ∆ represents a delay,
and the feedback via the matrix Ad represents the dynamics of the system.

uk b Bd

wk

xk

∆

Ad

xk+1
b Cd

Dd

vk

yk

Figure 2.4: Discrete state space model [54].
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2.3.1.3 Observability and controllability

The concepts of observability and controllability, introduced above, are defined more
precisely by Chen [8].

Observability studies the possibility of estimating the state from the output, given that
A, B, C and D are known. The state equation is said to be observable if for any unknown
initial state x0, the knowledge of the input u and the output suffices to determine
uniquely the initial state x0 in a finite time. If the state equation is observable, the
observability matrix

Qo =
[
C CA CA2 · · · CAl−1

]T
(2.21)

where Qo ∈ Rnl×l, n being the number of outputs and l the number of state variables,
has full rank.

The concept of controllability is dual to that of observability. Hence, the state equation
is said to be controllable if for any initial state x0 and any final state x1, there exists
an input that transfers x0 to x1 in a finite time. If the state equation is observable, the
controllability matrix

Qc =
[
B AB A2B · · · Al−1B

]
(2.22)

where Qc ∈ Rl×ml, m being the number of inputs and l the number of state variables,
has full rank. When describing a transfer from the zero state, controllability is often
referred to as reachability.

2.3.1.4 Similarity transformation

A similarity transformation of the state space system may be introduced by a linear
transformation of the state vector [20,43], such that

x∗k = Txk (2.23)

where the number of state variables in the transformed system is the same as in the
original system, i.e. T is a square matrix. This renders the system matrices of the
transformed system:

A∗ = TAT−1 (2.24a)
B∗ = TB (2.24b)
C∗ = CT−1 (2.24c)
D∗ = D (2.24d)

It can be shown that eigenvalues are unaffected by a similarity transformation [43].
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2.3.2 Model of a dynamic structural system

2.3.2.1 State space model

A damped structural dynamic system of n degrees of freedom exposed to a stochastic
load, e.g. from a turbulent wind field, may be described by a system of n coupled second
order linear differential equations:

M0ÿ(t) + Ceffẏ(t) + Keffy(t) = p(t) (2.25)

where y(t) ∈ Rn contains the modal degrees of freedom, p(t) ∈ Rn is the time varying
load vector of the system, M0 ∈ Rn×n is the modal mass matrix, Ceff ∈ Rn×n is the
effective viscous damping matrix and Keff ∈ Rn×n is the effective stiffness matrix. The
modal mass matrix is assumed to be constant, while the effective damping and stiffness
matrix vary with motion induced wind forces, discussed in section 2.2.

The above system of second order differential equations can be rewritten to a system of
2n first order differential equations [17,20]:[

ẏ(t)
ÿ(t)

]
=
[

0 I
−M−1

0 Keff −M−1
0 Ceff

] [
y(t)
ẏ(t)

]
+
[

0
M−1

0

]
p(t) (2.26)

The rewritten system may now be interpreted as a continuous-time state space model:

ẋ(t) = Acx(t) + Bcp(t) (2.27a)
y(t) = Cx(t) + v(t) (2.27b)

where

x(t) =
[
y(t)
ẏ(t)

]
(2.28a)

Ac =
[

0 I
−M−1

0 Keff −M−1
0 Ceff

]
(2.28b)

Bc =
[

0
M−1

0

]
(2.28c)

C =
[
I 0

]
(2.28d)

and v ∈ Rn contains the stochastic output noise. From the description of state space
models above, it is now readily seen that x(t) ∈ R2n is the state vector, Ac ∈ R2n×2n

is the dynamic system matrix, Bc ∈ R2n×n is the input matrix and Cc ∈ Rn×2n is the
output matrix. There is no direct feedthrough in the model. The load vector p(t) ∈ Rn
has replaced the deterministic input u(t) and the stochastic noise w(t) in (2.16a). In wind
engineering, it is common to assume that the fluctuating wind load p(t) is a Gaussian,
zero mean, stationary white noise process [49].
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For all practical purposes, records of inputs and outputs are obtained by sampling a
continuous-time process, and hence a discrete-time model has to be applied:

xk+1 = Adxk + Bdpk (2.29a)
yk = Cxk + vk (2.29b)

If it is assumed that the recorded signal y has zero mean value, i.e. only contains the
fluctuating part of the dynamic response, the model in (2.29) describes a system driven
by a white noise process p. It also takes into account that the response is corrupted
by white measurement noise v, possibly instantaneously correlated with the excitation
process p, such that

E
[[

pk
vl

] [
pTk vTl

]]
=
[
Cpp(k, l) Cpv(k, l)
CT

pv(k, l) Cvv(k, l)

]
δkl ≥ 0 (2.30)

2.3.2.2 Impulse response

Successive application of (2.29a) relates sample k and k +m of the state vector:

xk+m = Am
d xk +

k+m−1∑
s=k

Ak+m−s−1
d Bdps (2.31)

and the output becomes

yk+m = CAm
d xk +

k+m−1∑
s=k

CAk+m−s−1
d Bdps + vk+m (2.32)

The matrix product under the summation sign is the impulse-response matrix:

R(k +m, s) = CAk+m−s−1
d Bd (2.33)

which gives the response of the system at the time instant (k + m)∆t due to the load
at the instant s∆t, where s = k, k + 1, . . . , k +m− 1. The influence of the load history
ps for s = 1, 2, . . . , k − 1 is contained in the state vector xk. R(k + m, s) is called the
Markov parameters of the system [17,20].

2.3.2.3 Eigenvalues and eigenvectors

The eigenvalues of the asymmetric continuous-time matrix Ac appears as complex con-
jugate pairs [17]:

λAc = −ξω0 ± iω0

√
1− ξ2 (2.34)

where ω0 are undamped natural frequencies of the system, and ξ the accompanying
modal damping ratios. The eigenvectors VAc appears as complex conjugate pairs of
mode shapes, containing displacement and velocity amplitudes and phase angles.
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The relationship between continuous-time and discrete-time models, established in equa-
tion (2.19), relates eigenvalues of Ac to eigenvalues of Ad by

λAc = 1
∆t lnλAd

(2.35)

The eigenvectors VAc are identical to VAd
.

2.3.2.4 Similarity transformation

As stated in section 2.3.1.4, the system can be transformed by a linear transformation of
the state vector, i.e. a shift in basis. This implies that matrices recovered by identification
only are one out of infinitely many possible solutions. Hence, if a system is represented
by A∗c , B∗c and C∗, where ∗ indicates one of infinitely many realisations of the system,
corresponding matrices with the specific structure of Ac and C given in (2.27) can be
found by a similarity transformation.

As stated in 2.3.1.2, the matrix pair {Ac,C} is assumed to be observable, and when
applied in (2.27), it has a minimum number of parameters. That is, it represents an
observability canonical realisation, where the observability matrix equals the identity
matrix:

Qo =
[

C
CAc

]
= I (2.36)

If A∗c and C∗ are system matrices of a similar system, this renders

Qo =
[

C∗
C∗A∗c

]
T = I (2.37)

and the transformation matrix becomes

T−1 =
[

C∗
C∗A∗c

]
(2.38)

It is here assumed that A∗c ∈ R2n×2n and C∗ ∈ Rn×2n, i.e. that T is a square matrix.
Finally, the particular set of system matrices becomes

Ac = T−1A∗T (2.39a)
Bc = T−1B∗ (2.39b)
C = C∗T (2.39c)
D = D∗ (2.39d)

It can be shown that similarity transformation does not change the system estimate
obtained by system identification [27].

Based on the expressions derived above, it is clear that identification of the continuous-
time system matrix Ac gives the undamped natural frequencies, modal damping ratios
and damped mode shapes. If the modal mass matrix M0 is known, the modal damping
and stiffness matrix can also be recovered.
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2.3.2.5 Normalisation

Excitation amplitudes of different modes in a system may vary with orders in magni-
tude, either because of loading, initial conditions or simply because of difference in phys-
ical units. Matrices containing elements widely spread in magnitude are often poorly
conditioned with respect to the numerical operations performed by the identification
methods [17]. Thus, a normalisation of the response data would be beneficial.

Normalisation may be introduced by the normalisation matrix N ∈ R2n×2n, such that
(2.29b) can be written

ỹk = Nyk = NCxk + Nvk (2.40)

where ỹk is the normalised response. If C̃ is the output matrix identified based on the
normalised response, the correct output matrix are then found by

C = N−1C̃ (2.41)

Hence, the transformation matrix given in (2.38) becomes

T−1 =
[

N−1C∗
N−1C∗A∗c

]
(2.42)

and the correct system matrices are found by (2.39).

Hoen [17] suggest to normalise the response to zero mean and unit standard deviation,
which also was adopted in identification performed in subsequent chapters.

2.3.3 Preliminary analysis

2.3.3.1 Spectral analysis

As a first step in the identification procedure, spectral analysis is a non-parametric
method that may produce valuable information about the system [17]. The power spectral
density S(ω) describes how the power of a signal time series is distributed with frequency.
For a discrete signal with N samples, sampled at a rate fs,

yk = y(k/fs), k = 0, 1, 2, 3, . . . , N (2.43)

the double-sided power spectrum is given by

S(±f) = |Y (±f)|2 (2.44)

where the discrete Fourier transform Y is defined by [24]:

Y (f) = 1
N

N−1∑
k=0

yke
−i2πfk/N (2.45)
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The total power of the signal is now given by

P =
∞∫
−∞

S(±f) df =
∞∫
0

S(f) df (2.46)

Since the double-sided spectrum S(±ω) is symmetric about ω = 0, the single-sided
spectrum S(ω) is given by

S(f) = 2S(±f) (2.47)

It should be noted that the DC component of the spectral density, where k = 0, is unique
and should not be multiplied by 2.

Figure 2.5 shows a noisy displacement record made up by three sine waves at 0.3, 0.7
and 1 Hz, sampled at 100 Hz. It is easy to see that the power spectrum provides useful
information about the frequency characteristics of a system, as both the number of
modes and natural frequencies are identified by the peaks of the spectrum.
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Figure 2.5: Power spectral density of noisy displacement record.
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2.3.3.2 Logarithmic decrement

An estimate of the modal damping ratio is found by investigating the logarithmic decre-
ment of the displacement record. Logarithmic decrement is the natural logarithm of the
ratio of the amplitudes of two successive peaks:

δ = 1
n

ln yk
yk+n

(2.48)

where yk is the amplitude of peak number k and yk+n is the amplitude of the peak n
periods away. The modal damping ratio is now given by

ζ = 1√
1 +

(
2π
δ

)2
(2.49)

2.3.4 Covariance Block Hankel Matrix (CBHM) identification

The covariance block Hankel matrix method is a parametric system identification method
based on the Markov block Hankel matrix (MBH) method, developed through the work
of Ho and Kalman [16], Staar [46], Moore [34] and Gawronski and Natke [11], who
considered the case where both the excitation and response data are available.

Aoki [2] and Henriksen [14] developed a modification of the MBH method, where the
Markov parameters were replaced by response covariance estimates. Hoen [17] exten-
sively tested the CBHM method by analysing both simulated and measured response
data of a deep-water offshore platform to obtain modal frequencies and damping ratios.
Jakobsen [20] extended the work of Hoen to recover full structural system matrices of a
structure exposed to natural wind.

The derivation of the method presented in the following is based on the work of Jakobsen
and Hoen. The expression

Cyy(k +m, k) = 1
N

N−k∑
k=1

yk+myTk (2.50)

where N is the number of output samples, is a consistent but biased estimate of the
output covariance matrix Cyy(k +m, k) [20] at time lag m, defined by

Cyy(k +m, k) = E
[
yk+myTk

]
(2.51)

where Cyy(k + m, k) ∈ Rn×n. For the system described in (2.29), which is driven by a
white noise process, the following expression is obtained by inserting (2.32) into (2.51):

Cyy(k +m, k) = CAm−1
d

[
AdCxx(k, k)CT + BdCpv(k, k)

]
(2.52)
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where Cxx(k, k) ∈ R2n×2n is the state vector covariance matrix and Cpv(k, k) ∈ Rn×n
is the load-measurement noise cross-covariance matrix defined in (2.30). It is in the
following assumed that p and v are stationary processes, i.e.

Cxx(k, k) = Cxx and Cpv(k, k) = Cpv

By introducing
M = AdCxxCT + BdCpv (2.53)

into (2.52), we get
Cyy(k +m, k) = CAm−1

d M (2.54)

Hence, the identification consists of a suitable decomposition of the covariance estimate
Cyy(k + m, k). The decomposition is performed indirectly on a block Hankel matrix,
where the blocks are the covariance estimates given above. Introducing the simplified
notation Cy(k)(m) to replace Cyy(k+m, k), the covariance block Hankel matrix is given
by

H1(l) =


Cy(k)(1) Cy(k)(2) · · · Cy(k)(l)
Cy(k)(2) Cy(k)(3) · · · Cy(k)(l + 1)

...
...

. . .
...

Cy(k)(l) Cy(k)(l + 1) · · · Cy(k)(2l − 1)

 (2.55)

where H1(l) ∈ Rnl×nl, and the number of covariance lags l corresponds to the maximum
order of the state space model. Therefore, the number of lags should be large enough
to encompass the largest realistic dimension of the state vector, i.e. l ≥ 2n – and in
any case the number of lags should correspond to at least one period of oscillation [17].
The procedure outlined in the following is also valid when the covariance matrices are
replaced by the Markov parameters defined in (2.33) [17].

Inserting (2.54) into (2.55) gives

H1(l) =


CM CAdM · · · CAl−1

d M
CAdM CA2

dM · · · CAl
dM

...
...

. . .
...

CAl−1
d M CAl

dM · · · CA2l−2
d M

 (2.56)

A block Hankel matrix can be expressed as a product of two matrices:

H1(l) = Qo(l)Qc(l) (2.57)

where Qo(l) is the observability matrix and Qc(l) is the controllability matrix of the
system:

Qo(l) =
[
C CAd CA2

d · · · CAl−1
d

]T
(2.58)

Qc(l) =
[
M AdM A2

dM · · · Al−1
d M

]
(2.59)
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An m-shifted version of the block Hankel matrix is defined by

Hm(l) =


Cy(k)(m) Cy(k)(m+ 1) · · · Cy(k)(m+ l − 1)

Cy(k)(m+ 1) Cy(k)(m+ 2) · · · Cy(k)(m+ l)
...

...
. . .

...
Cy(k)(m+ l − 1) Cy(k)(m+ l) · · · Cy(k)(m+ 2l − 2)

 (2.60)

The shifted version can also be expressed in terms of the observability and controllability
matrices:

Hm(l) = Qo(l)Am−1
d Qc(l) (2.61)

Another decomposition of H1(l) is also possible:

H1(l) = PR (2.62)

where P ∈ Rnl×r and R ∈ Rr×nl, r being the rank of H1(l). The corresponding pseu-
doinverse of H1(l) is given by

H+
1(l) = P+R+ (2.63)

where P+P = I and R+R = I. Gawronski and Natke [11] proved the following decom-
position of a m-shifted block Hankel matrix:

Hm(l) = P
[
P+Qo(l)AdQc(l)R

+]m−1
R (2.64)

Introducing the mask matrix

En =
[
In 0 0 · · · 0

]T
(2.65)

where En ∈ Rnl×n, enables the extraction of the covariance matrix Cy(k)(m):

Cy(k)(m) = ET
nP

[
P+Qo(l)AdQc(l)R

+]m−1
REn (2.66)

Comparison with (2.54) and (2.64) now renders

Ad = P+H2(l)R+ (2.67a)
C = ET

nP (2.67b)
M = REn (2.67c)

According to (2.67), only H1(l) and H2(l) are needed to estimate the matrices Ad, C and
M, but H1(l) still has to be factorised according to (2.62). One possibility, suggested
by e.g. Aoki [2] and Hoen [17], is the robust singular value decomposition (SVD):

H1(l) = UΓ2VT (2.68)
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where U ∈ Rnl×nl and V ∈ Rnl×nl are orthogonal matrices, such that UUT = I and
VTV = I. If P and R are chosen as

P = UΓ, P+ = Γ−1UT (2.69a)

R = ΓVT, R+ = VΓ−1 (2.69b)

and a suitable number of singular values are included in the decomposition, an internally
balanced realisation is recovered [17,20]. An internally balanced realisation is a minimal
realisation which is equally controllable and observable. The number of singular values
to include, and hence the choice of model order, is discussed in section 2.3.6.

The matrices given in (2.67) now become

A∗d = Γ−1UTH2(l)VΓ−1 (2.70a)
C∗ = ET

nUΓ (2.70b)
M∗ = ΓVTEn (2.70c)

where the asterisk stress that this is one of infinitely many solutions; i.e. they are only
determined up to a similarity transformation. Eigenvalues are invariant with respect to
similarity transformations, and an eigendecomposition of A∗d gives

A∗d = VA∗
d
ΛA∗

d
V−1

A∗
d

(2.71)

The eigenvalues of A∗c are now given by (2.35):

λA∗
c

= 1
∆t lnλA∗

d
(2.72)

and since VA∗
c

= VA∗
d
, a matrix similar to the particular matrix Ac is given by

A∗c = VA∗
d
ΛA∗

c
V−1

A∗
d

(2.73)

Finally, the linear, time-invariant state space system matrix in continuous time is found
by (2.39) and (2.42):

Ac = T−1A∗cT, T−1 =
[

N−1C∗
N−1C∗A∗c

]
(2.74)

It should be noted that if the order of the estimated state space model, here represented
by A∗c , is higher than 2n, this transformation is not a true similarity transformation. It
is rather a similarity transformation of a truncated internally balanced realisation, where
state variables corresponding to orders higher than 2n have been discarded [17]. This
corresponds to truncation of the SVD, which will be further discussed in section 2.3.6.
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2.3.5 Subspace State Space System Identification (N4SID)

Subspace identification methods constitute a fairly new class of parametric identification
methods. The mathematical framework, as we know it today, was mainly established by
Van Overschee and De Moor [52–54], where both deterministic and stochastic estima-
tion algorithms were unified by applying general mathematical tools. Larimore [25, 26],
Verhaegen [55] and Verhaegen and Dewilde [56] and also developed related ideas in their
work on the combined deterministic-stochastic identification problem. It has been used
by e.g. Boonyapinyo and Janesupasaeree [3] to identify aerodynamic derivatives.

Subspace methods translate the constructions of stochastic realisation theory into pro-
cedures for model building which work on measured data. The basic objects which are
constructed in the algorithms are subspaces generated by the data, and mathematical
geometric operations, such as orthogonal and oblique projections, are all that is needed
to estimate the system parameters, i.e. the system matrices [9].

There are several important differences between subspace methods and more classical
identification methods. First, the only parameter provided by the user is the model
order, which can be determined by inspection of the singular values from the SVD
performed by the method. Choice of model order is discussed in detail in the next
section. Second, subspace methods do not require iterative optimisation, only simple
and robust tools of linear algebra, like QR and SVD decompositions, are used. Hence,
there are no convergence problems.

If a subspace identification method is applied to a system driven by a stochastic process,
the estimation algorithm is essentially similar to the covariance-driven CBHM method
described above [4]. The major difference is that the covariance estimates are replaced
by a projection of the row space of future outputs onto the row space of past outputs,
computed by QR-factorisation [3]. Thus, it is a so-called data-driven method. An-
other important difference is the introduction of left and right weighting matrices in
the SVD [27]. In terms of the CBHM method, this corresponds to a pre- and post-
multiplication of H1(l), such that

H1(l) = W−1
1 UΓ2VTW−1

2 (2.75)

where W1 and W2 are the left and right weighting matrix, respectively. This renders

P = W−1
1 UΓ, P+ = Γ−1UTW1 (2.76a)

R = ΓVTW−1
2 , R+ = W2VΓ−1 (2.76b)

The weighting matrices is the main factor that differentiates various implementation of
the method.

The subspace algorithm will not be derived in this paper, as it’s complex theoretical
background are outside the scope of work. It is, however, a powerful and robust class of
identification methods, and the N4SID algorithm by Van Overschee and De Moor [53]
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implemented in the System Identification Toolbox [28, 32] in MATLAB will be used for
enhanced confidence in the identification results.

The MATLAB implementation gives the system matrix A∗c and the output matrix C∗.
To obtain the system matrix structure given in (2.29), the now familiar transformation

Ac = T−1A∗cT, T−1 =
[

N−1C∗
N−1C∗A∗c

]
(2.77)

is applied. As noted in 2.3.4, any state variable corresponding to orders higher than 2n
is truncated.

2.3.6 Model order

For parametric identification methods, the model order plays an important role.

The singular values γ of the block Hankel matrix H ∈ Rnl×nl gives information about
the effective rank of the system. If, for some order r < nl, the singular values are such
that γr � γr+1, then the state variables xi, i = r+1, r+2, . . . , nl of the balanced system
are either almost not observable, almost not controllable or almost neither observable
nor controllable at the same time [17]. Therefore, the system can be reduced to order r
by deleting the state variables xi, i = r+ 1, r+ 2, . . . , nl, resulting in a model with state
variables that are equally observable and controllable.

The singular values of the system estimated by using a filtered version of the noisy
displacement signal from Figure 2.5, is plotted in Figure 2.6. Filtering of signals will be
treated in section 2.4. From the plot in Figure 2.6a, the model order is not evident, but
the plot of relative singular values in Figure 2.6b makes it clear that an equally observable
and controllable state space model should be of order six. This agrees well with the power
spectrum in Figure 2.5, where it is evident that the displacement comprises three modes.
Since the state vector contains both displacement and velocities, this gives an order of
six.

To gain further confidence in the choice of order, estimated natural frequencies can be
plotted against model order. This is done in Figure 2.7, where the frequencies found
by spectral analysis in Figure 2.5 are indicated by vertical lines. The importance of
selecting the correct order is emphasised, as frequencies are missing and/or incorrect for
lower orders, and spurious frequencies occur for higher orders.

2.4 Signal processing

To enhance system identification based on experimental recordings, it may be benefi-
cial to preprocess the data. All data processing, in the following referred to as signal
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Figure 2.6: Singular values obtained by the CBHM method.
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processing, is in the context of this work performed with MATLAB [30]. The reader is
referred to e.g. [35], [45] and [18] for further studies on the subject.

2.4.1 Noise and disturbances

Noise is random fluctuations more or less inherent in any electrical signal. It may stem
from many sources, ranging from fundamental electrical sources on molecule level to
mechanical sources on macro level. The sources of electrical noise are outside the scope
of this work, but an important mechanical disturbance source is resonance in secondary
components of the experimental setup, e.g. springs and load cells.

Throughout this paper, an assumption of stationary Gaussian white measurement noise
is adopted, which implies that the noise has zero mean, no autocorrelation and a flat
power spectrum. Since the frequency content of a signal does not comprise frequencies
higher than the sampling rate, sampling rate of recorded measurements should be high
enough to justify this assumption. However, if e.g. spring resonance is present, the noise
may be coloured by mechanical disturbances, i.e. the power spectrum is not flat. This
is circumvented by low-pass filtering, discussed below.

A common measure of noise is the signal-to-noise ratio (SNR), which is defined as the
ratio of signal power to the noise power:

SNR = Psignal
Pnoise

(2.78)

where P is the average power. For a discrete-time signal

y =
[
y1 y2 y3 · · · yN

]T
power is defined as energy per sample [44], i.e.

Py = 1
N

yTy (2.79)

In this paper, the counterpart of SNR, noise-to-signal ratio (RNS), will be used as a
measure of noise:

SNR = Pnoise
Psignal

(2.80)

A clean signal contaminated with noise to obtain 10 % RNS is shown in Figure 2.8. The
sampling rate is 100 Hz.

2.4.2 Detrending

In most cases, only the fluctuations of a signal is interesting. Detrending is simply to
subtract the mean or a best fit line from the signal, to ensure that it has zero mean.
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Figure 2.8: Signal with 10 % RNS.

In the context of structural response to wind, the static part of the response renders
a non-zero mean (trend) of the signal. However, linear trends may also stem from e.g.
sensor drift.

The system identification methods presented herein only produce correct results if the
signal has zero mean.

2.4.3 Low-pass filtering

The vibration frequencies of structural systems focused on in this paper are low; usu-
ally only a small fraction of the Nyquist frequency. Hence, applying a low pass filter
with an appropriate cutoff frequency will cancel a major part of the (high frequency)
noise, including any resonance in secondary components. Even though the white noise
assumption no longer will be valid, the remaining noise will be negligible for most prac-
tical purposes. However, care must always be taken when manipulating experimental
data.

A low-pass filter attenuates the frequency content above a cutoff frequency, the stopband,
while the frequency content below it, the passband, ideally stays unchanged. The cutoff
frequency is determined based on e.g. spectral analysis, as described in section 2.3.3.
There are several types of low-pass filters available, but some of the most common
are Butterworth filters and Chebyshev filters. Both are recursive filters, for which the
filtering process is defined by

yk = a0xk + a1xk−1 + a2xk−2 + a3xk−3 + · · ·
+ b1yk−1 + b2yk−2 + b3yk−3 + · · ·

(2.81)

where yk is sample number k of the filtered signal and xk is sample number k of the
original signal [45]. The filter itself is simply a set of a and b-coefficients. The order of
the filter, n, is the number of time shifts included in the recursive process. Hence, the
coefficients written out in (2.81) constitutes a third order filter.
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2.4 SIGNAL PROCESSING

The frequency response of Butterworth filters is maximally flat in the passband, i.e. there
are no ripples, but the roll-off is quite slow and the gain is −3 dB at the cutoff frequency.
The Chebyshev Type I filters, however, allow ripples in the passband to achieve a faster
roll-off near the cutoff frequency [45], illustrated in Figure 2.9.

It is obvious that the low ripple Chebyshev Type I filter is well suited if a sharp transition
between the passband and the stopband is desired. However, in some cases it may not
be desirable, and a Butterworth filter may be more suitable.

The phase response is also important, as non-zero phase response shifts and distorts the
filtered signal. Hoen [17] emphasises that introduction of different phase distortion in
different response channels can cause trouble in the interpretation of a system identi-
fication. Figure 2.10 shows that the phase response of the filters indeed are non-zero,
but this problem is neatly overcome by filtering the signal twice; first forwards and then
backwards. The magnitude of the frequency response is the same in both directions,
but phases are of opposite sign. Thus, when the two directions are combined, the phase
shifts cancel to zero and the frequency response is squared, effectively doubling the order
of the filter [45].
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Figure 2.9: Magnitude of transfer functions of Butterworth and Chebyshev Type I filters of order
1-6, with a cutoff frequency of 1 rad/s.
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Figure 2.10: Phase response of Butterworth and Chebyshev Type I filters of order 1-6, with a
cutoff frequency of 1 rad/s.

Bidirectional zero-phase filtering is compared to conventional filtering in Figure 2.11.
The input signal is the contaminated signal from Figure 2.8. Several important aspects
should be noted. First of all, the signal is heavily shifted by conventional filtering, and
second, edge effects are evident. This is because the MATLAB procedure used to filter
the signal assumes that all values before and after the given time series are zero. Edge
effects might be overcome by applying a “windowing” method, where only a portion of
the time series is retained after filtering. Finally, it is observed that even though the
cutoff frequency is as low as 1.1 Hz, the attenuation of the harmonic at 1 Hz is negligible.

The details of the filters are outside the scope of this paper, but may be studied further
in e.g. [45] and [35].

2.4.4 Resampling

For most identification methods, it is important that the sampling rate is optimal with
respect to the dynamic content of the response. If the signal has no significant compo-
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Figure 2.11: Bidirectional filtering vs. conventional filtering with a Chebyshev Type I filter with
an effective order of 8 and a cutoff frequency of 1.1 Hz.

nents above a frequency that is an integer factor of the Nyquist frequency, the signal
should be decimated, i.e. resampled to a lower frequency [17]. The reason for this is
that only two samples per period are necessary to completely determine an harmonic
component; more samples do not enhance identification of high-frequency components,
but may distort estimation of low-frequency components because of numerical problems,
model over-fitting and high sensitivity during conversion of discrete poles to continuous
poles [27]. However, in the same way a cutoff frequency must be carefully chosen, a new
sampling rate must also be chosen with care.

A proper decimation is a two-step process which comprises low-pass filtering and down-
sampling. The default decimation implementation in the Signal Processing Toolbox in
MATLAB R2012a applies an 8th order Chebyshev Type I filter with 0.05 dB passband
ripple through bidirectional filtering, implying an effective order of 16, before the signal
is resampled by discarding samples from the smoothed signal. The cutoff frequency of
the low-pass filter is 40 % of the new sampling frequency [31].

Decimation of the noisy signal from Figure 2.8 is shown in Figure 2.12. The original
sampling rate is 100 Hz, giving a Nyquist frequency of 50 Hz, and the highest frequency
component of the signal is 1 Hz. Decimation to 5 Hz then implies a cutoff frequency
of 2 Hz, while decimation to 10 Hz implies a cutoff frequency of 4 Hz. It is seen that
the decimated signals are approximately equal to the original signal, i.e. periods are
preserved and no phase shift is present.
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Figure 2.12: Decimation of signal
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3 Design and experimental
setup

The prototype of the suspension rig is based on a traditional setup where the section
model is suspended in wires. It is designed for testing in still air, rather than in a wind
tunnel, since the present work focus on investigation of non-linear effects due to the
horizontal degree of freedom.

Since no aerodynamic properties are to be determined, it is not strictly necessary to use
a correctly scaled model. Nevertheless, to ensure short transition to wind tunnel testing,
a scale model of the Hardanger Bridge was made.

3.1 Model scaling

3.1.1 Geometry

Information about the geometric shape of the Hardanger Bridge is found in the design
basis [48]; see Figure 3.13 and Table 3.2. The geometric scale is set to λ = 1/50, since it
is the scale used in the wind tunnel report that was prepared during the design process
of the bridge [50].

Figure 3.13: Geometry of the Hardanger Bridge [48].
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Quantity Full scale Model scale (λ=1/50)

Full length Lfull 1310 m 26.2 m
Cross section width B 18.3 m 0.366 m
Cross section depth D 3.25 m 0.065 m

Centre of gravity CGz 1.953 m 0.039 m
Shear centre SCz 1.759 m 0.035 m

Table 3.2: Basic geometry dimensions of the Hardanger Bridge. The positions of CG and SC are
given by distance from the bottom of the cross section, and their x-coordinates are approximately
in the middle.

Drag CD 0.69
Lift CL −0.20
Moment CM −0.02

Drag slope at α = 0◦ dCD/dα 0.00
Lift slope at α = 0◦ dCL/dα 4.30
Moment slope at α = 0◦ dCM/dα 1.45

Table 3.3: Static load coefficients of the Hardanger Bridge. Coefficient slopes are determined as
the largest slope in the incident angle interval −6◦ to 6◦.

The static load coefficients of are also found in the design basis, but are there modified
to include the effect of hangers and suspension cables – which are not included in the
section model. However, they are based on the coefficients provided by the wind tunnel
report, which will be adopted herein. More specifically, the adopted coefficients, given
in Table 3.3, are obtained without vortex mitigation devices, and with the cycle path
downstream.

The section model in the present study will not include all features that was included
in the wind tunnel tests, e.g. railings and mitigation devices, but the coefficients should
still be representative. Their use is in any case restricted to Monte Carlo simulations of
the buffeting response (see Appendix B).

3.1.2 Mass

Equivalent distributed modal mass and moment of inertia of the bridge are given in [47,
48, 50], however with minor differences in the values. Since the natural frequencies will
be taken from the ALVSAT report [47], the mass data given in Table 3.4 has also been
taken from this report.
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Quantity Full scale Model scale (λ=1/50)

Distributed mass 13, 100 kg/m 5.240 kg/m
Distributed moment of inertia 434, 000 kg·m2/m 0.0694 kg·m2/m

Table 3.4: Equivalent distributed mass and moment of inertia of the Hardanger Bridge.

3.1.3 Natural frequencies

The natural frequencies given in Table 3.5 are taken from the ALVSAT report, and
corresponds to the lowest symmetric horizontal, vertical and torsional modes.

Scaling of frequencies depends on both geometric scaling and scaling of wind velocities.
The critical (flutter) mean wind velocity reported in [50] is Vcr ≈ 70 m/s. Thus, by
setting the velocity scale factor ν = 1/4, this corresponds to a mean wind velocity of
17.5 m/s in the wind tunnel, which is a suitable velocity in the tunnel at NTNU.

At high wind velocities, motion induced aerodynamic stiffness alters the natural frequen-
cies of the section model. If two or more frequencies are closing in on each other, the
corresponding modes begin to couple, possibly leading to instability of the system (e.g.
flutter). To model this effect correctly, it is important to maintain the ratios between
relevant frequencies. Even so, to understand the system’s sensitivity to frequency ratios,
it would be beneficial to determine the properties for a deviations in the estimated ratios.

Mode Full scale Model scale (λ=1/50, ν = 1/4)

Horizontal fp 0.0506 Hz 0.6325 Hz
Vertical fh 0.1416 Hz 1.7700 Hz
Torsional fα 0.3510 Hz 4.3875 Hz

(a) Natural frequencies

Modes Ratio

Torsional to vertical 2.48
Torsional to horizontal 6.94
Vertical to horizontal 2.80

(b) Frequency ratios

Table 3.5: Natural frequencies of the lowest symmetric modes of the Hardanger Bridge.
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3.2 Prototype design

The prototype is intended for measuring free vibration response of the section model in
still air, and will not be installed in a wind tunnel. It will, however, be designed to allow
a potential installation in the wind tunnel at NTNU to be as simple as possible.

The design turned out to be an iterative process, because the choice of one design
parameter often affect several others. Particularly, the selection of springs constituted
a challenge, as each spring has to match a set of criteria depending on other springs
used in the model. Hence, changing one spring may render the choice of other springs
incorrect.

Findings regarding this and other important parameters are discussed in the following.

3.2.1 Conceptual sketch

A sketch of the final suspension rig setup is shown in Figure 3.14. The section model,
including a setup at each end to allow attachment of wires, is suspended in wires attached
to one or two extension springs in series. A wire and the corresponding spring series will
in the following be referred to as a suspension. All together, there are twelve suspensions,
which may be grouped into six suspension pairs; four vertical and two horizontal. Each
pair is attached to a load cell at one end, and a hook at the other end. The load cell
measure the tensile force in the spring attached to it, which may be used to estimate
the deflection of the suspension. The motion of the section model can then be obtained
by simple calculations.

The torsional stiffness of the section model can easily be altered changing the distance
between the vertical wires.

3.2.2 Practical considerations

3.2.2.1 Wind tunnel

Considering future work with the experimental setup developed in this thesis, it is im-
portant that the suspension rig can be installed and tested in the wind tunnel at NTNU.
The largest wind tunnel in the Aerodynamic Laboratory has a test section of 2.7 m
width, 1.8 m height and 11 m length, and a maximum velocity of 30 m/s. There are
currently no system to generate turbulence. The exterior of the tunnel is shown in Fig-
ure 3.15, where the orange part is the test section. The wooden frame attached to the
test section, shown in Figure 3.15b, has previously been used to mount a traditional
two-degree-of-freedom suspension setup, but is currently not being used. Installation of
the setup investigated herein would require a new, considerably larger frame to reduce
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Figure 3.14: Sketch of the suspension rig.
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(a) Front side (b) Back side

Figure 3.15: Wind tunnel at NTNU.

non-linear effects. It should be noted that the floor and the upper air feed tunnel make
up definite boundaries for the height of the frame.

3.2.2.2 Springs

The choice of springs does not depend on stiffness alone. When the section model is
oscillating, the springs must allow enough deflection, both in extension and contraction.
Extension is limited by a maximum deflection recommendation from the spring man-
ufacturer, while contraction is limited by the pretension length of the spring, i.e. it’s
extension when the section model is at rest. If a spring has no extension, it does not
contribute to the stiffness of the system, and the estimated motion of the section model
will be distorted. Hence, it is important that the maximum permitted extension of each
spring is long enough to allow the necessary pretension length – which, according to the
manufacturer, should not exceed 60 % of the permitted extension.

The springs should be as light as possible, particularly to ensure that the suspensions
stays as straight as possible during motion, but also to reduce non-linear effects on the
mass matrix. That is, if the vertical springs have high mass, they will contribute to
the horizontal inertia, and opposite. Springs with large coil diameters also increase the
damping of the system [37].

According to the spring manufacturer, Lesjöfors AB, the springs can be considered bi-
linear, i.e. they must be loaded with an initial force before any deflection occurs, and
this force is approximately constant regardless of deflection.
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3.2.2.3 Geometric stiffness

A major part of the “horizontal stiffness”, i.e. stiffness of the horizontal mode, stems from
geometric stiffness due to tension in the vertical suspensions. This inherent stiffness may
impose a severe constraint on the natural frequency of the horizontal mode. Hence, the
initial force and pretension lengths of the vertical springs should be selected as low as
possible.

3.2.3 Frame

The frame of the rig should be as high as possible to reduce non-linear effects when
the section model is displaced laterally, but to allow future installation inn the wind
tunnel, the height is restricted to approximately 3-3.5 m. Therefore, it is in the following
assumed a height of 3 m. The width is less important with respect to non-linear effects,
and is in the following assumed to be 2 m.

3.2.4 Section model

The size of the wind tunnel restricts the length of the section model to L = 2.640 m. To
make the setup flexible, i.e. easy to reconfigure, it is in general desirable to make the
section model itself as light as possible. That way, extra masses can easily be added to
obtain the desired mass and moment of inertia.

A local tinsmith suggested to make the section model by using two 1.5 mm thick alu-
minium plates; one shaped to constitute the upper part of the profile, and the other one
to constitute the lower part. The plates were supposed to be welded together. However,
when the profile was to be manufactured, 1.5 mm plates were not available, so thicker
2 mm plates had to be used instead. This made the model considerably heavier (33 %)
than the original design. Also, rivets had to be used to connect the upper and lower
parts of the profile, as the plates warped during welding. This caused a small shape
distortion, as it had to be made a little wider.

Figure 3.16 shows the section model, including the extension and rotation arms, modelled
in Abaqus/CAE [1]. Figure 3.17 shows a drawing of the final profile, and exact positions
of arms and wire brackets are shown in Figure 3.18. The extension arms are attached
to the section model profile through pieces of wood attached at each end of it. The
distance from vertical wire brackets to the torsional rotation axis was chosen to achieve
the desired torsional frequency. The longitudinal axis of the extension arm is attached
approximately at the shear centre, 35 mm above the bottom of the profile.
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x
y

z

(a) Section model setup and axis definitions

(b) Extension arm (c) Rotation arm

Figure 3.16: Section model setup modelled in Abaqus/CAE.
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Figure 3.17: Section model profile. Dimensions are given in millimetres.
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Figure 3.18: Details of the section model setup. Wire brackets are represented by thick black
lines. Dimensions are given in millimetres.
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3.2.5 Springs

After the section model itself, the main design decision is that of selecting springs. To
maintain elastic symmetry of the model, all vertical springs (or spring series) should
have approximately equal effective stiffness, and the same applies to horizontal springs.

It is desirable to achieve the target frequencies from Table 3.5, but geometric stiffness
due to high tension in the vertical suspensions makes it difficult to maintain the ratio
of the horizontal to vertical frequency. The geometric stiffness stems from two parts;
pretensioning of vertical springs and weight of the section model. Thus, the problem
can be overcome by raising the vertical frequency, however at the cost of a stiffer system
and with lower maximum reduced velocity.

The wind tunnel report prepared for the Hardanger Bridge [50] indicates that the ampli-
tude of the vertical mode can be approximately as large as the height of the bridge deck
when flutter occurs, and torsional rotation can be up to 10◦. Assuming that the verti-
cal wires are attached 288 mm from the torsional rotation axis, the maximal deflection
of the vertical springs becomes 65 + 288 sin(10◦) = 115 mm. Hence, the lower vertical
springs should be pretensioned at least by this length. Since the upper vertical springs
must balance tension in the lower suspensions in addition to the weight of the section
model, they are automatically pretensioned enough to allow the required contraction.
The important issue is rather to allow enough extension.

By relaxing the deflection length requirement for the lower vertical springs, it was enough
with one small spring per suspension in place of two larger springs. Therefore, to save
mass and money, this alternative was chosen.

The horizontal springs should have as low stiffness as possible, since geometric stiffness
already contributes more than desirable. Low stiffness in general allow large deflections,
so this is not an issue in the horizontal direction. However, the springs need still to have
enough stiffness to provide a measurable change in force for a small change in deflection,
since this is used to estimate horizontal movement of the model. The horizontal springs
should be pretensioned as much as possible to avoid vertical deflections due to gravity.

To achieve the target frequencies, it was assumed correctly scaled mass and moment of
inertia, and springs were chosen based on the simplified expressions given in (A.135) in
Appendix A. However, due to manufacturing issues, the actual mass of the section model
ended up higher than expected, which implied that the chosen spring stiffness was too
low to achieve target frequencies.

Table 3.6 shows the properties, including chosen pretension lengths, of the three different
spring configurations used on the prototype. It also gives the maximum permitted
deflection of the springs after they have been mounted in the rig. It should be noted
that the recommended permitted deflections are smaller than the desired values, but
there was no problem with spring damage related to this during the laboratory tests.
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Spring 1 Spring 2 Series

Cat.no. (Lesjöfors AB) 3363 3363 -
Stiffness 20.0 20.0 10.0 N/m
Free length 0.160 0.160 0.320 m
Permitted extension 0.438 0.438 0.876 m
Initial force 1.8 1.8 1.8 N
Mass 0.019 0.019 0.038 kg

Pretension length 0.530 m
Permitted deflection after installation 0.346 m

(a) Horizontal spring series

Spring 1 Spring 2 Series

Cat.no. (Lesjöfors AB) 9602 9863 -
Stiffness 440.0 410.0 212.2 N/m
Free length 0.100 0.100 0.200 m
Permitted extension 0.167 0.167 0.323 m
Initial force 10.5 10.5 10.5 N
Mass 0.046 0.045 0.091 kg

Pretension length 0.235 m
Permitted deflection after installation 0.088 m

(b) Upper vertical spring series

Spring 1 Spring 2 Series

Cat.no. (Lesjöfors AB) 9565 - -
Stiffness 210.0 - 210.0 N/m
Free length 0.090 - 0.090 m
Permitted extension 0.168 - 0.168 m
Initial force 6.5 - 6.5 N
Mass 0.020 - 0.020 kg

Pretension length 0.090 m
Permitted deflection after installation 0.078 m

(c) Lower vertical spring series

Table 3.6: Spring configurations used on the prototype. Specifications are given by manufacturer.
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3.2.6 Mass and moment of inertia

The target mass and moment of inertia of the section model is given in Table 3.7.

Per unit length (kg/m) Total (kg)

Target mass mms = 5.240 Mms = L ·mms = 13.834
Target moment of inertia mI,ms = 0.0694 Iyy,ms = L ·mI,ms = 0.1833

Table 3.7: Target mass and moment of inertia. L = 2.640 m.

If the mass and/or moment of inertia of the section is lower than the target mass, this
can be accurately corrected by mounting weights to the rotation arm. However, since
the actual mass of the section model ended up higher than the target mass, no additional
weights were needed in the present setup.

The effective mass of springs is assumed to be the theoretical one third of the actual
mass. It is also assumed that a spring only contributes to the inertia of the system
along it’s longitudinal axis. Moment of inertia of the section model, extension arm and
rotation arm was determined by accurate modelling in Abaqus/CAE, and verified by
hand calculations and experiments in the laboratory.

Mass and moment of inertia about all axes are given in Table 3.8.

3.2.7 Mathematical models

To enhance the design process, two mathematical models have been developed: a FE-
model modelled in Abaqus/CAE [1] and a tailor-made, analytical model.

3.2.7.1 FE-model

To verify the dynamic properties of the section model, the whole rig was modelled as a
finite element model in Abaqus/CAE.

The section model, extension arms and rotation arms are modelled as beams are consti-
tuting a rigid body, giving a minimum number of DOFs and thereby allowing effective
simulations. Spring stiffness is modelled by linear spring elements and constant (initial)
spring forces are introduced to the section model through slip ring connectors, which
ensures that a force always follows the spring orientation. Mass and moment of inertia
are based on Table 3.8, and are specified as point inertias. Effective spring masses are
applied through the same connectors as the constant spring forces, ensuring that they
only contribute to inertia along their longitudinal axis.
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3 DESIGN AND EXPERIMENTAL SETUP

Quantity Mass (kg) Moment of inertia (kg·m2)

Ixx Iyy Izz

Section model 12.234 7.990 0.164 8.140
Extension arm 0.477 0.002 0.000 0.002
Rotation arm 0.508 0.000 0.010 0.010
Wire bracket, horizontal wire 0.020 - - -
Wire bracket, vertical wire 0.017 - - -
Horizontal spring 0.038 - - -
Upper vertical spring 0.091 - - -
Lower vertical spring 0.020 - - -

(a) Mass and and moment of inertia about local centre of gravity of all parts involved in
the setup.

Quantity Mass (kg) Moment of inertia (kg·m2)

Ixx Iyy Izz

Section model 12.234 7.990 0.164 8.140
Extension arms 0.954 1.982 0.000 1.982
Rotation arms 1.016 2.107 0.019 2.126
Wire brackets, horizontal wire 0.040 0.089 - 0.089
Wire brackets, vertical wire 0.068 0.141 0.006 0.141
Horizontal springs 0.025∗ - - 0.056
Upper vertical springs 0.121∗ 0.252 0.010 -
Lower vertical springs 0.027∗ 0.055 0.002 -

Mass of section model setup 14.312
Effective horizontal mass 14.337
Effective vertical mass 14.460
Effective moment of inertia 12.616 0.201 12.534

Target values 13.834 - 0.183 -
(b) Total mass and and moment of inertia of the section model setup. Spring masses are
marked with ∗ to indicate effective mass, i.e. a third of the actual mass.

Table 3.8: Mass and moment of inertia of the section model setup. Axis definitions are given in
Figure 3.16. The large deviations from the target values are due to manufacturing issues with
the section model.
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The Abaqus/CAE model file is designed to enhance modifications for future work. To
learn about the details of the model and how it can be modified, see Appendix C.

The rigid body modes of the system are illustrated in Figure 3.19. It is seen that
there are three uninteresting modes inherent in the model, “longitudinal translation”,
“horizontal rotation” and “vertical rotation”. Simulations of response to a turbulent wind
field accompanied with video of wind tunnel tests of the Hardanger Bridge, indicates
that the rotational modes will be present during tests, but the longitudinal translation
mode is not likely to get excited. If it is, it should be possible to constrain it with strings.
Thus, from now on, the mode concerning longitudinal translation will not be considered.

3.2.7.2 Analytical model

To be able to immediately evaluate the effect of a change of one or more design parame-
ters, it was necessary to develop an analytical model. Essentially, the model is all about
computing the mass and stiffness matrix of the system, including non-linear effects of
displacements, which then yields undamped natural frequencies and modes. The mass
matrix of this model is straightforward from Table 3.8b, but the stiffness matrix is very
complex. The derivation of the stiffness matrix is given in Appendix A. Calculations are
performed in MATLAB.

3.2.8 Natural frequencies

The natural frequencies of the model (at rest) serve as a measure of the scaling of
stiffness. It is seen from Table 3.9 that the values produced by the prototype design
deviates significantly from the target frequencies. However, it should be noted that the
torsional frequency has been adjusted to maintain the important frequency ratio related
to flutter.

3.2.8.1 Sensitivity to design parameters

The effect of changes in several design parameters are illustrated in Figure 3.20. It
is clear that the ratio between vertical and horizontal frequencies can be increased by
adjusting several of these parameters, but only increase of vertical stiffness would be fea-
sible in practice. It is also possible to decrease the horizontal frequency by removing the
horizontal springs, although that would require lasers or position transducers to obtain
measurements of horizontal displacements. This alternative has not been considered in
the present work, as the necessary equipment was not was available.

Figure 3.21 shows that an increase of vertical spring stiffness to approximately 300 N/m
would give correct frequency ratios. However, at the time springs had to be ordered,
it was focused on obtaining natural frequencies as close to the target frequencies as
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3 DESIGN AND EXPERIMENTAL SETUP

(a) “Longitudinal translation” (b) “Horizontal translation”

(c) “Horizontal rotation” (d) “Vertical translation”

(e) “Vertical rotation” (f) “Torsional rotation”

Figure 3.19: Rigid body modes of the section model.
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Mode Target (Hz) Abaqus/CAE (Hz) Analytical (Hz)

Longitudinal translation - 0.6566 -
Horizontal translation 0.6325 0.6710 0.6724
Horizontal rotation - 1.0548 1.0529
Vertical translation 1.7700 1.7017 1.7017
Vertical rotation - 2.6272 2.6235
Torsional rotation 4.3800 4.2151 4.2112

(a) Natural frequencies

Modes Target Design Deviation

Torsional rotation to vertical translation 2.48 2.48 0 %
Torsional rotation to horizontal translation 6.94 6.28 -9.5 %
Vertical translation to horizontal translation 2.80 2.53 -9.6 %

(b) Frequency ratios

Table 3.9: Natural frequencies of the section model.
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Figure 3.20: Change in natural frequencies as function of important design parameters. The
torsional rotation curve is approximately equal to that of vertical translation in all but the last
figure.
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Figure 3.21: Ratio of vertical to horizontal translational frequencies. The selected stiffness is
indicated by a vertical line, and the target ratio is indicated by a dashed horizontal line.

possible. Therefore, it was decided to go for lower stiffness – even though, in retrospect,
it still should have been higher, since the mass turned out to be larger than expected.

The effect of the pretension length of vertical springs also shows that a major part of
the horizontal stiffness stems from geometric stiffness due to tensile force in the vertical
wires. In fact, approximately 85 % of the horizontal stiffness is due to tensile force in
vertical suspensions.

The torsional frequency is linear with respect to the distance between vertical wires.

3.2.9 Static displacements

The average wind velocity pressure acting on the section model during wind tunnel tests
give rise to static displacements. Figure 3.22 gives horizontal (translational) displace-
ment due to a horizontal force acting on the section model at it’s centre of gravity, and
it is evident that the stiffness is non-linear.

Assuming that the load coefficients given in Table 3.3 are valid for the prototype setup,
simulation of a 20 m/s turbulent wind field in Abaqus/CAE (see Appendix B) gives
a horizontal static displacement of 154 mm and a vertical static displacement of 43
mm (downwards). The displacement downwards was unexpectedly large, but it should
be noted that the lift slope coefficient dCL/dα is highly conservative. However, if it
actually turns out to be this large in wind tunnel experiments, the effective pretension
length of the lower vertical springs will be significantly reduced – which in turn reduces
the maximum vertical and torsional amplitudes that can be represented. The horizontal
and vertical buffeting excitation amplitude was 42 and 11 mm, respectively.
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Figure 3.22: Force vs. horizontal translation of the section model.

3.3 Experimental setup

3.3.1 Frame

The frame was constructed by 48×98 mm spruce timber according to Figure 3.14, and the
final structure was stiff and heavy enough to allow large excitation of the section model
without vibrating. Final construction drawings of the frame is shown in Figure 3.23,
and a picture of the final prototype is shown in Figure 3.24.

Because of a last minute change of the load cell mounting setup, the total length of the
suspension pairs ended up 50 mm longer than the designed length. That is, the effective
inner frame height was 3050 mm rather than 3000 mm, and the effective width was
2050 mm instead of 2000 mm. This has of course been considered in computations in
subsequent chapters.

3.3.2 Section model

The section model profile was manufactured in aluminium by Blikkenslager Olaf Hansen
AS in Trondheim.

To allow the extension arms to be attached to the profile, 48 mm thick wooden pieces
was glued to the profile at each end, before the extension arms was screwed onto them.
Extension and rotation arms was manufactured by a former professor at NTNU. To allow
easy positioning of the wires, they was attached to the arms by custom-made brackets.

The final setup is shown in Figure 3.24.
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3.3 EXPERIMENTAL SETUP

(a) Front view (b) Side view

Figure 3.23: Final construction drawings of the suspension rig.

3.3.3 Load cells

To completely determine the motion of the model, it is enough to measure the force in
one out of the two springs in each suspension pair. Hence, six HBM Z6FC2 load cells
were installed. C2 is a quality measure according to OIML R 60 regulations, and means
that the maximal number of load cell verification intervals is 2000.

Two of the load cells have a maximum capacity of 10 kg, two of 20 kg and two of 50
kg. A lower maximum weight implies higher accuracy, since the number of verification
intervals is the same. Since the horizontal springs have a very low stiffness, the two with
10 kg maximum capacity were installed to measure horizontal forces. The remaining 20
and 50 kg cells were installed to measure forces in the vertical springs; the two with 20
kg capacity on one end of the section model, and the two with 50 kg capacity on the
other.

Calibration was performed by comparison to known weights, and the accuracy proved to
be high. The load cells with 10 and 20 kg maximum capacity were correct to a fraction
of a gram, while the 50 kg cells was correct to ±2 g.

The data acquisition was performed by a HBM Spider 8 unit, which amplify, filter and
digitalise signals from the load cells. The filter is a 10 Hz Butterworth-filter, and data
was sampled at 200 Hz to ensure a fairly white frequency distribution of any noise.
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3 DESIGN AND EXPERIMENTAL SETUP

3.3.4 Springs

The spring stiffness and corresponding initial forces were measured to verify the speci-
fications provided by the supplier. The measurements were obtained by measuring the
spring force at various deflections. It was found that the stiffness and initial forces
of the horizontal springs matched specifications well, while the stiffness of the vertical
springs on average was a approximately 1-2 % lower than specified, approximately 207-
209 N/m. It was also noted that the stiffness was not perfectly linear, but stiffer for
medium deflections than for long and short deflections.

Small deviations of stiffness and initial forces only matters when displacements are to
be estimated based on the forces. To ensure maximal accuracy of the estimation, the
measured stiffness and initial forces were calibrated such that the estimated deflection
(due to pretensioning) of each spring was correct after installed in the rig.

3.3.5 Wire

To connect the section model to the springs, high tension spring wire with a diameter
of 0.4 mm (Lesjöfors cat.no. 6415) was used. Attachment loops were made simply by
bending the wire and wrapping duct tape around it to keep it in place. To ensure the
integrity of the loop, the wire was bended and wrapped several times.
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(a) Rig prototype (b) Load cells

(c) Suspension setup

Figure 3.24: Pictures of the experimental setup.
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4 Results and discussion

An important part of this work is to determine the dynamic properties of the experi-
mental setup. To ensure reliable results, experiments must be carried out systematically
and the system identification quality has to be verified. Finally, non-linear effects of
static displacements and excitation amplitudes should be investigated.

4.1 Identification experiments

The prototype setup only allows experiments involving free vibration response in still
air. To investigate effects of static displacements and excitation amplitudes, simulations
had to be conducted in Abaqus/CAE.

Ideally, a mechanical setup, possibly based on magnetism, would have been installed to
produce the initial displacements. Such equipment was not available, but it was found
satisfactory to introduce displacements by hand, i.e. by forcing the section model into
a specific configuration before releasing it. By introducing displacements by hand, they
will necessarily not be exactly the same for each test. Since the identification itself
(in theory) is independent of signal amplitudes, this should not pose a problem, but to
enhance the reliability of the results, all experiments were repeated at least three times.

4.1.1 Structural properties

To ensure good identification of the structural properties of the prototype, the tests
described below were conducted. Small displacements means as small as possible while
still obtaining good data – due to damping, the torsional mode requires a relatively
larger displacement than the horizontal modes.

Test 1 All modes excited by small initial displacements.
This test produces free vibration response in still air with minimum non-linear
amplitude effects, and serves as a baseline for the other tests.

Test 2 All modes excited by small initial displacements, torsional inertia modified.
This test was also intended to confirm that the analytical model gives correct
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results if essential design parameters change.

Test 3 All modes excited by small initial displacements, torsional stiffness modified.
This test was intended to confirm that the analytical model gives correct results if
essential design parameters change.

4.1.2 Effect of excitation amplitudes

The amplitude dependency may be important, particularly considering the non-linear
horizontal stiffness. Analytical results indicate that horizontal displacement is the dom-
inating source of stiffness changes in the system.

To investigate this in the suspension rig, each mode was successively excited with a
large amplitude, and the displacements were record until dampened out. By performing
system identification on successive portions of the recorded signal (where the amplitude
decreases for each portion), the amplitude dependency was determined.

More specifically, the following tests were carried out:

Test 4a Horizontal translational mode excited by maximum initial displacement.
This test was intended to investigate how stiffness and damping of the horizontal
translational mode changes with it’s amplitude.

Test 4b Horizontal translational mode excited by maximum initial displacement, all
other modes excited by small initial displacements.
This test was intended to investigate how stiffness and damping of all modes
changes with horizontal amplitude.

Test 4c Horizontal translational mode excited by medium initial displacement, all other
modes excited by small initial displacements.
This test was intended to further investigate how stiffness and damping of all modes
changes with horizontal amplitude.

Test 5 Horizontal rotational mode excited by maximum initial displacement.
This test was intended to investigate how stiffness and damping of the horizontal
rotational mode changes with it’s amplitude.

Test 6 Vertical translational mode excited by maximum initial displacement.
This test was intended to investigate how stiffness and damping of the vertical
translational mode changes with it’s amplitude.

Test 7 Vertical rotational mode excited by maximum initial displacement.
This test was intended to investigate how stiffness and damping of the vertical
rotational mode changes with it’s amplitude.

Test 8 Torsional rotational mode excited by maximum initial displacement.
This test was intended to investigate how stiffness and damping of the torsional
rotational mode changes with it’s amplitude.
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4.1.3 Abaqus/CAE simulations

All tests performed on the prototype was also simulated in Abaqus/CAE. For infinitely
small amplitudes, natural frequencies was obtained directly by solving the eigenvalues
of the system, rather than performing system identification on simulated response.

In addition to the free vibration tests, it is desirable to investigate the behaviour of the
section model when exposed to turbulent wind. This was simulated by a Monte Carlo
simulation of the buffeting loads acting on the section model, followed by a response
simulation in Abaqus/CAE. It should be noted that frequency dependent motion induced
forces were not included in the simulation.

4.2 Response measurements

System identification is based on displacement records of the section model. The section
model has six rigid body modes, but the sixth mode, longitudinal translation, was barely
excited during the free vibration tests, and it was not observable in the recorded time
series. Hence, it is assumed to have five independent (modal) degrees of freedom; two
translational and three rotational.

Modes with very small excitation amplitudes can cause badly conditioned matrices and
numerical issues with the identification methods, even after normalisation of the signals.
This is overcome by performing identification on signals where each channel contains the
response of a single modal degree of freedom. Since each channel contains information
about one mode only, it does not affect the observability of the (reduced) system. Hence,
uninteresting or less excited modes can be omitted by discarding them from the output
signal.

There are several ways to measure the response of the section model, e.g. by laser,
position transducers or spring forces. Measuring by laser could be challenging, since the
suspension rig allow motion in five (six) degrees of freedom, and it would be hard to
ensure that the lasers kept track of the correct spatial points on the section model setup.
Position transducers were not available at NTNU, and it was also suspected that they
would have introduced damping and disturbed the force symmetry of the model (the
extension cables are subjected to a constant, non-negligible tension force). Hence, it was
decided to record displacement indirectly through spring forces, measured by load cells.

4.2.1 Computation of displacements

The displacement of a wire bracket from position P0 to P , illustrated in Figure 4.25, can
be computed from measured spring forces by the four step process described below. It
is assumed perfectly bilinear springs, infinitely stiff wires and that the measurement of
a spring force is independent of the spring direction (angle). Finally, rotation estimates
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are based on an assumption of small angles, which may be an incorrect simplification,
particularly when it comes to torsional rotation (which may be up to 10◦).

The four steps are:

1. Estimate the horizontal displacement p of the wire bracket directly from change
of tension in horizontal springs attached at the corresponding side of the section
model.

2. Remove the constant (initial) spring force from F and estimate the spring length l
by Hooke’s law. To improve accuracy, the spring stiffness should be combined with
the stiffness of the elastic wire into an effective stiffness of the suspension.

3. Estimate the vertical displacement h of the wire bracket by

h =
√

(l + w)2 + p2 − (l0 + w) (4.82)

where p is the horizontal displacement determined above and l0 is the initial spring
length. The initial length of a spring is it’s free length plus the pretension length
when the section model is at rest.

4. Transform the displacements of the six wire brackets into the five modal degrees
of freedom.
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Figure 4.25: Displacement of a wire bracket from P0 to P .
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Figure 4.26: Wire bracket positions.

Figure 4.26 identifies the six wire bracket positions and distances to corresponding
rotation axes, where

a = 0.288 m, bv = 1.440 m, bh = 1.490 m

The modal displacements can now be found by


r1
r2
r3
r4
r5

 = 1
4


2 2 0 0 0 0

−2/bh 2/bh 0 0 0 0
0 0 1 1 1 1
0 0 1/bv 1/bv −1/bv −1/bv
0 0 1/a −1/a −1/a 1/a





p1
p2
h1
h2
h3
h4


(4.83)

where r1-5 are the modal degrees of freedom; horizontal translation, horizontal
rotation, vertical translation, vertical rotation and torsional rotation, respectively.

Figure 4.27 shows the fluctuating components of the forces measured during a free vi-
bration test. It is evident that the frequency content of the forces is concentrated at
the five natural frequencies of the system, although the PSD of horizontal rotation is
much smaller than the PSD of horizontal translation. This implies that the system is
observable, which is an important requirement for system identification.

Figure 4.28 shows the computed displacement response, which agrees well with the
observed amplitudes (judged by eye) during the tests. It is clear that each channel
contains a single harmonic component, which is the free vibration response to the initial
excitation of that particular mode.

4.2.2 Preprocessing of data

In addition to the Butterworth filter applied to the force signals by the data acquisition
device, several processing steps are applied to enhance the system identification:

1. Detrend response signals to ensure zero mean, i.e. remove the static (mean) compo-
nent to isolate the fluctuating component. The static displacements are, however,
necessary for correction after the system identification.
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Figure 4.27: Fluctuating component of forces due to free vibration response. “H” and “LV” refer
to load cells connected to horizontal and lower vertical springs, respectively.
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Figure 4.28: Free vibration response and corresponding power spectra.
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2. Apply a zero-phase (bidirectional), low-pass Chebyshev Type I filter to remove
high frequency noise and spring resonance vibrations. The filter used herein has an
effective order of 16, i.e. 8 on each pass. To avoid significant amplitude distortion,
the cutoff-frequency should be 20-30 % higher than the natural frequency of the
torsional mode.

3. Resample (decimate) the signal to a suitable sampling rate. The choice of sampling
rate is discussed in detail in section 4.3.2.

4. Apply a “windowing” method to circumvent the misfit at the two extreme ends
of the time series, i.e. discard samples at the beginning and end of the signal that
may be inaccurate due to filtering and/or resampling. It was found that truncating
10 % of the beginning and end of the signal produced good and consistent results.

5. Normalise the response signals to unit standard deviation, to avoid numerical issues
with badly conditioned matrices.

It should be noted that a correct amplitude is more or less irrelevant, as long as frequency,
phase (relative to other modes) and logarithmic decrement are maintained.

4.3 System identification

The system identification methods will be tested on both measured and simulated data
to learn their ability to produce consistent and reliable results. It is also important to
find out how the identification is affected by sampling rate, signal duration etc.

In the following, the terms estimated and identified refer to quantities, e.g. stiffness ma-
trix or modal damping ratios, obtained by system identification, while the term analytical
refers to quantities obtained by the analytical stiffness matrix derived in appendix A.

4.3.1 Preliminary analysis

The power spectra in Figure 4.28 clearly indicates the natural frequencies of the system,
which are compared to analytical values in Table 4.10.

An estimate of the modal damping ratios is found by investigating the logarithmic decre-
ments of the displacement records in Figure 4.28. The values in Table 4.11 have been
estimated by measuring 7 equidistant peaks for each modal response, where the distance
is chosen to span as much of the record as possible. They correspond well to the
measured displacements, as illustrated in Figure 4.29.
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Mode Analytical (Hz) Estimated (Hz)

Horizontal translation 0.68 0.68
Horizontal rotation 1.06 1.07
Vertical translation 1.70 1.70
Vertical rotation 2.62 2.64
Torsional rotation 4.23 4.25

Table 4.10: Natural frequencies obtained analytically and estimated by spectral analysis.

Mode Peak interval Damping ratio (%)

Horizontal translation 5 0.06
Horizontal rotation 7 0.09
Vertical translation 12 0.19
Vertical rotation 19 0.12
Torsional rotation 31 0.25

Table 4.11: Modal damping ratios estimated by logarithmic decrements.

4.3.2 Identification parameters

To ensure good identification of the system, it is essential to adjust the parameters of
the respective methods adequately; they must produce good results both from measured
an simulated data. The most important parameters are model order, sampling rate
and maximum number of lags for covariance estimates in the CBHM method. The
parameters will be optimised based on measured data, and then verified on simulated
data.

4.3.2.1 Model order

Valuable information about the state-space order of the dynamic system can be obtained
by inspection of the singular values obtained by SVD in the CBHM (and N4SID) method,
which is shown in Figure 4.30. The identification is performed on data resampled to
10 Hz. It is clear that the state space model should be of order 10, which is reasonable,
since only five of the six rigid body modes of the section model are observable in the
output. The effect of altering the model order is shown in Figure 4.31, and it is seen
that an order of ten estimates the frequencies exactly. Higher orders introduce spurious
frequencies, while lower orders are missing frequencies. It should, however, be noted that
the spurious frequencies corresponds to singular values that would have been truncated
by the transformation to the final state space model; see section 2.3.4 and the note on
equation (2.74).
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Figure 4.29: Verification of modal damping ratios estimated by logarithmic decrements. Ampli-
tude limits due to estimated damping are indicated by black curves.
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Figure 4.30: Singular values obtained by the CBHM method.
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Figure 4.31: Estimated natural frequencies vs. model order. Frequencies estimated by spectral
analysis are indicated by vertical lines.
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4.3.2.2 Sampling rate

All time series are sampled over 60 seconds at 200 Hz, but resampling to an optimal
sampling rate is important to obtain good identifications.

Figure 4.32 and Figure 4.33 shows the effect of sampling rate on the modal quantities and
structural matrices, respectively, identified by the CBHM method. It is here assumed
a maximum time lag for covariance estimates corresponding to one period of horizontal
translation, which is the longest natural period. Based on the diagrams, it is evident that
the effect on the CBHM identification is negligible, although a minor reduction of some
of the (false) cross terms in the damping matrix occurs when the sampling frequency
increases. However, the identified modal damping ratios do not coincide well with the
preliminary estimates.

Major cross terms in the damping matrix are more or less present in all identifications
by the CBHM method. In this case, however, the effect on identification of aerodynamic
derivatives should be small, as they are mainly associated with vertical rotation.

On the contrary, the effect on the N4SID identification is highly present in Figure 4.34.
The damping matrix, particularly the terms that corresponds to horizontal motion,
proves to be sensitive to the sampling rate. The reason for this is that horizontal motion
occur at low frequencies that are determined by a large number of samples per oscillation
cycle, giving rise to inaccuracies in the conversion from discrete to continuous eigenvalues,
which is sensitive to number of samples per cycle. The effect is the same, if not worse, for
the displacement records from the other tests performed in the laboratory. One of them
peaked to approximately 100 % damping ratio if resampled to 120 Hz, but if resampled
to 110 or 130 Hz, the results were relatively good. The only sampling rates that gave
consistent, good results was 10–30 Hz. Hence, subsequent identifications will be based
on data decimated to 10 Hz, which corresponds to approximately two samples per period
of torsional rotation.

The N4SID identification seems to provide good estimates of both stiffness and damping
matrix, as the damping ratios coincides with those of the preliminary analysis, and both
matrices are approximately diagonal. A sampling rate of 10 Hz gives the smallest cross
terms in the damping matrix. As was the case for the damping matrix identified by the
CBHM method, the significant cross terms are associated with vertical rotation, which
is not included in the computation of aerodynamic derivatives.

The identifications performed in subsequent sections are based on data resampled to
10 Hz.
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Figure 4.32: Effect of sampling rate on CBHM identification.
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Figure 4.33: Relative changes of structural matrices identified by the CBHM method when
sampling rate is changed from 200 Hz to 10 Hz. Radius is proportional to value.
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Figure 4.34: Effect of sampling rate on N4SID identification.
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Figure 4.35: Relative changes of structural matrices identified by the N4SID method when
sampling rate is changed from 200 Hz to 10 Hz. Radius is proportional to value.
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4.3.2.3 Number of lags for covariance estimates

Figure 4.36 shows the natural frequencies and modal damping ratios for increasing num-
ber of lags, and it is evident that the damping ratios deviates more from the values
estimated by logarithmic decrements if the number of lags increases.

According to Hoen [17], at least one period of all natural periods should be encompassed
by the maximum number of lags for covariance estimates. Thus, that is the number of
lags used in CBHM identification in subsequent sections.

4.3.3 Verification based on simulated data

To verify the accuracy of the methods with the optimised parameters, they are tested
on simulated data where the stiffness and damping matrix are known.

Time series are sampled at 200 Hz, and initially excited by the initial displacements
summarised in Table 4.12.

Mode Initial displacement

Horizontal translation 0.100 m
Horizontal rotation 0.050 rad
Vertical translation 0.060 m
Vertical rotation 0.050 rad
Torsional rotation 0.200 rad

Table 4.12: Initial displacement for free vibration response simulations.

4.3.3.1 Record length

System identification based on free vibration response presents a challenge, since the
higher modes dampen out relatively fast. This effect is even more severe if the section
model is placed in a steady air flow, since motion induced aerodynamic damping can be
much stronger than structural damping inherent in the rig. Hence, it is imperative to
investigate the performance of the two methods for short displacement records.

Figure 4.38 clearly shows that the CBHM method need long time series to estimate
damping accurately. More precisely, the quality of damping estimates is dependent on
number of oscillation cycles. It is seen that the CBHM method eventually estimates the
damping of lower modes correctly, but the displacement records have to be 20 minutes
long to achieve that. Moreover, long records disturbs the identification of the torsional
mode, since free vibration response of this mode is more or less damped out after 30
seconds.
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Figure 4.36: Effect of maximum lag for covariance estimates on CBHM identification.
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Figure 4.37: Relative changes of structural matrices identified by the CBHM method when
maximum lag for covariance estimates is changed from 1 to 30 times the longest natural period.
Radius is proportional to value.
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Figure 4.38: Effect of displacement record length and number of oscillation cycles on modal
damping ratios. Exact values are indicated by dashed lines.
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According to the figure, the optimal free vibration record length to capture the dynamic
properties of the prototype is 10 minutes, but the identified damping ratios do not match
the true values perfectly. In contrast, the N4SID method identifies the damping ratios
of the simulated displacements with high accuracy based on a five seconds long record.

Because the torsional mode was completely dampened out after about 10 minutes, the
N4SID method encountered numerical issues for longer records.

4.3.3.2 Noise

By simulating 60 and 300 seconds time series based on the natural frequencies and
damping ratios estimated by the preliminary analysis, the natural frequencies, damping
ratios and damping matrices shown in Figure 4.39 was identified.

Introduction of white noise introduces major cross terms, as shown in Figure 4.40. It
is evident that the distortion is related to the lowest mode. Because lower modes are
(over)determined by more samples per period than the other modes, they are more
sensitive to noise; i.e. lower modes have a higher degree of distortion than higher modes.

4.4 Dynamic properties in still air

To determine the aerodynamic derivatives of the section model, it is necessary to obtain
accurate and consistent estimates of the damping and stiffness matrix. Thus, accurate
identification of the full structural matrices is important. Modal damping ratios and
natural frequencies reflects the main dynamic characteristics of the systems, but do not
provide any information on coupling between modes. It should be remembered that
system identification of full structural matrices requires a correct mass matrix.

In the previous section, it was evident that the performance of both the CBHM and
N4SID method decreases significantly when noise was present in the signal. It is, how-
ever, an important difference between the simulated and measured response; simulations
are contaminated with white noise, while the measured response mainly contains high
frequency noise – which is removed by filtering.

The high frequency noise in the recorded time series was estimated to be 0.0-0.2 % RNS,
primarily related to horizontal motion, and it was found that the main contribution is
vibration of horizontal springs. Electrical noise was extremely weak.

The recorded time series shows no indication that the sixth mode, longitudinal transla-
tion, is observable in the signal. Hence, the assumption of five modal degrees of freedom
seems justified.
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(c) Damping matrix. Radius is proportional to value.

Figure 4.39: Identification based on simulated noise-free displacement records of various lengths;
compared with each other and to exact values. Free vibration response.
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Figure 4.40: Identification based on simulated noisy (1% RNS) displacement records of various
lengths; compared with each other and to exact values. Free vibration response.
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4.4.1 Modal quantities

4.4.1.1 Natural frequencies

To ensure that the main characteristics of the section model is accurately recovered, the
identified natural frequencies of three independent records of free vibration response are
compared in Table 4.13 and Figure 4.41.

The results are extremely consistent regarding the estimated frequencies, and it is clear
that the analytical mass and stiffness matrix estimates represent the main dynamic
characteristics of the system accurately, as the mean deviation of natural frequencies is
as low as 0.5 % for all sets of recorded displacements. If the uninteresting horizontal
and vertical rotation modes are excluded, the mean deviation drops to 0.3 %.

The torsional moment of inertia can be altered by adding extra weights to the rotation
arms, and the rotational stiffness is nearly proportional to the wire distance squared
(geometric contributions are not proportional). To gain further confidence in the mass
and stiffness calculations, the torsional natural frequency was identified for two altered
configurations:

Mode Analytical CBHM N4SID

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Horizontal translation 0.68 0.68 0.68 0.68 0.68 0.68 0.68
Horizontal rotation 1.06 1.07 1.07 1.08 1.07 1.07 1.08
Vertical translation 1.70 1.70 1.70 1.70 1.70 1.70 1.70
Vertical rotation 2.62 2.64 2.64 2.64 2.64 2.64 2.64
Torsional rotation 4.23 4.25 4.25 4.25 4.25 4.25 4.25

(a) Analytical and identified natural frequencies, given in Hz.

Mode CBHM N4SID

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Horizontal translation 0.24 0.25 0.28 0.25 0.25 0.28
Horizontal rotation 1.02 1.02 1.20 1.01 1.02 1.19
Vertical translation −0.19 −0.18 −0.20 −0.17 −0.16 −0.18
Vertical rotation 0.61 0.60 0.57 0.61 0.61 0.58
Torsional rotation 0.44 0.49 0.44 0.50 0.54 0.49

Mean (absolute) deviation 0.50 0.51 0.54 0.51 0.52 0.55
(b) Deviation of identified frequencies with respect to analytical values, given in %.

Table 4.13: Natural frequencies identified from three sets of recorded displacements (small am-
plitudes) during 60 seconds of free vibration.
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Frequency (Hz)
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Figure 4.41: Natural frequencies identified from three sets of recorded displacements (small
amplitudes) during 60 seconds of free vibration. Compared to analytical values.

1. Additional weights of 43 g was added with their centre of gravity 367 mm from
the centre line of the extension arms; two on each arm, four in total. This gave
the following increase of moment of inertia:

Iadd = 4 · 0.043 kg · (0.367 m)2 = 0.023 kg·m2

2. The distance between the vertical wires was changed from 576 mm to 478 mm,
i.e. a decrease of 17 %. This mainly changes the torsional stiffness, but a minor
change of moment of inertia is also introduced, since the mass of springs and wire
brackets are moved closer to the rotation axis.

The analytical and identified natural frequencies of the default and two altered configu-
rations are shown in Table 4.14. It is clear that the analytical values also here matches
the identified values with a high degree of accuracy. It should be noted that the agree-
ment between analytical and estimated frequencies (particularly by the CBHM method)
is consistently better when only the torsional mode is excited than all modes excited –
although the improvement is small.

4.4.1.2 Modal damping ratios

In contrast to mass and stiffness, which are subject to well-defined (macro level) physical
laws, the damping of the system is much harder to predict. Damping stems from several
sources, where the most important structural source is internal friction in the spring and
wire material. This damping is difficult to predict; mainly because it is introduced by
complicated mechanisms within the material, and partially because it is simplified to be
represented as viscous (velocity proportional) damping

Table 4.15 and Figure 4.42 gives the identified damping ratios of the three sets of (small
amplitude) displacement records. Like in section 4.3.3.1, it is evident that damping
estimated by the CBHM method is dependent on number of recorded oscillations of
each mode, as the difference between estimates decreases for higher modes. Looking at

80



4.4 DYNAMIC PROPERTIES IN STILL AIR

the damping ratio of the vertical translation mode, where the amplitude of set 2 and 3 is
twice as big as the amplitude of set 1, another important source of damping reveals itself;
the (aerodynamic) damping of air increases when the amplitude is increased, because
higher velocity is required to maintain the frequency.

The differences between the damping estimates of the CBHM and N4SID method are
illustrated in Figure 4.43, and it is clear that the CBHMmethod produces poor estimates
of the modal damping ratios, particularly for lower modes. This is obviously because
fewer cycles of motion are recorded for lower modes than for higher modes.

Aerodynamic damping is also apparent, although barely, as the damping of the signal is

Mode Analytical CBHM N4SID

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Unmodified 4.23 4.24 4.24 4.24 4.24 4.25 4.25
Additional mass 4.00 4.02 4.02 4.02 4.02 4.02 4.02
Shorter wire distance 3.60 3.61 3.61 3.61 3.61 3.61 3.62

(a) Analytical and identified natural frequencies, given in Hz.

Mode CBHM N4SID

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Unmodified 0.33 0.36 0.33 0.41 0.43 0.42
Additional mass 0.38 0.39 0.34 0.48 0.49 0.45
Shorter wire distance 0.30 0.32 0.35 0.40 0.42 0.45

Mean (absolute) deviation 0.34 0.36 0.34 0.43 0.45 0.44
(b) Deviation of identified frequencies with respect to analytical values, given in %.

Table 4.14: Natural frequency of torsional rotation obtained for various configurations. Identifi-
cations are based recorded displacements (small amplitudes) during 60 seconds of free vibration
of the torsional mode only.

Mode CBHM N4SID

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Horizontal translation 0.50 0.50 0.50 0.06 0.05 0.06
Horizontal rotation 0.33 0.32 0.33 0.07 0.07 0.07
Vertical translation 0.29 0.36 0.37 0.19 0.27 0.27
Vertical rotation 0.18 0.20 0.21 0.12 0.14 0.15
Torsional rotation 0.31 0.34 0.36 0.29 0.32 0.33

Table 4.15: Modal damping ratios, given in %, identified from three sets of recorded displace-
ments (small amplitudes) during 60 seconds of free vibration.
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Damping ratio (%)
0 0.1 0.2 0.3 0.4 0.5

Set 3, N4SID

Set 3, CBHM

Set 2, N4SID
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Figure 4.42: Modal damping ratios identified from three sets of recorded displacements (small
amplitudes) during 60 seconds of free vibration. Compared to preliminary estimates.
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(b) N4SID method

Figure 4.43: Verification of damping ratios identified from set 1 of recorded displacements.
Amplitude limits due to estimated damping are indicated by black curves.
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stronger than estimated at the beginning, and weaker at the end; it is stronger for larger
amplitudes and lower for smaller amplitudes.

4.4.1.3 Mode shapes

The mode shapes are illustrated in Figure 4.44, and it is clear that they represent rigid
body motion. This is also confirmed by Table 4.16, where it is seen that each mode
comprise motion in virtually one degree of freedom only.

It is also seen that the identified mode shapes matches fairly well with the analytical
shapes. Due to the low damping, the imaginary components of the shapes are very small,
and the absolute values are approximately equal to the real values.
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Figure 4.44: Damped (complex) mode shapes estimated by the N4SID method. Because of low
damping and the rigidity of the section model, all modes are dominated by one real component.

4.4.2 Stiffness matrix

The analytical and identified modal stiffness matrices are given in Table 4.17, and it
is seen that the identification gives consistent results that are matching the analytical
matrix well. It is also observed that they are fairly symmetric, although not perfectly.
In general, cross terms below the diagonal are approximately zero, while cross terms
above the diagonal, particularly between horizontal translation and torsional rotation,
are more significant - although small compared to diagonal terms. The relation between
the horizontal and torsional mode was observed directly in the laboratory; due to im-
perfections in the setup, horizontal translation induces a small torsional rotation. This
may distort the determination of aerodynamic derivatives, particularly P ∗3 .
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Degree of freedom Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Horizontal translation 1.000 0.001 0.000 0.000 0,002
Horizontal rotation 0.001 1.000 0.000 0.000 0.000
Vertical translation 0.000 0.000 1.000 0.006 0.000
Vertical rotation 0.000 0.000 0.007 1.000 0.000
Torsional rotation 0.017 0.000 0.020 0.019 1.000

(a) Analytical (undamped shapes)

Degree of freedom Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Horizontal translation 1.000 0.002 0.002 0.003 0,002
Horizontal rotation 0.004 1.000 0.001 0.004 0.000
Vertical translation 0.001 0.000 1.000 0.008 0.001
Vertical rotation 0.000 0.001 0.004 1.000 0.001
Torsional rotation 0.015 0.003 0.007 0.022 1.000

(b) Record set 1

Degree of freedom Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Horizontal translation 1.000 0.003 0.003 0.007 0,001
Horizontal rotation 0.004 1.000 0.001 0.003 0.000
Vertical translation 0.001 0.001 1.000 0.003 0.001
Vertical rotation 0.000 0.001 0.003 1.000 0.002
Torsional rotation 0.015 0.002 0.006 0.025 1.000

(c) Record set 2

Degree of freedom Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Horizontal translation 1.000 0.004 0.002 0.003 0,001
Horizontal rotation 0.002 1.000 0.001 0.004 0.001
Vertical translation 0.001 0.001 1.000 0.003 0.001
Vertical rotation 0.000 0.001 0.003 1.000 0.002
Torsional rotation 0.015 0.003 0.006 0.027 1.000

(d) Record set 3

Table 4.16: Component magnitudes of the complex mode shapes, determined analytically and
identified from three sets of recorded displacements (small amplitudes) during 60 seconds of free
vibration.
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260.9 0 0 0 0

0 560.1 0 0 0
0 0 1651.4 0 0
0 0 0 3424.7 0
0 0 0 0 142.0


(a) Analytical

261.5 −4.5 5.4 −6.4 −15.5
2.0 570.7 −4.3 23.3 −1.3
−1.8 1.3 1645.0 6.5 4.0
0.3 1.8 7.0 3466.1 −7.0
2.1 0.4 −0.8 −2.1 143.2


(b) Set 1, CBHM


261.4 0.7 −3.1 −7.9 −20.0
1.0 570.7 −0.6 10.2 −1.4
−1.1 −0.1 1645.6 15.1 7.0
0.2 2.1 7.4 3466.5 −6.4
2.2 0.4 −0.8 −1.9 143.4


(c) Set 1, N4SID

261.6 −3.3 −7.6 −114.0 −9.8
2.0 570.7 −3.6 −39.4 3.4
−1.0 2.9 1645.7 23.7 −1.5
0.3 3.4 6.0 3466.2 −7.7
2.1 0.3 −0.7 −2.4 143.4


(d) Set 2, CBHM


261.6 1.3 −3.7 9.1 −9.4
1.1 570.7 −0.6 8.6 −0.5
−1.7 1.0 1646.0 1.0 −3.5
−0.1 3.0 5.8 3466.6 −8.3
2.1 0.3 −0.7 −2.2 143.5


(e) Set 2, N4SID

261.7 16.4 −5.6 −39.5 −14.2
0.6 572.7 0.6 14.3 5.3
−0.9 −3.5 1644.8 10.7 0.5
0.7 1.7 5.8 3464.0 −7.7
2.1 0.4 −0.7 −2.4 143.2


(f) Set 3, CBHM


261.8 1.4 −2.7 9.5 −11.5
0.8 572.7 −0.6 9.9 2.6
−1.1 1.0 1645.3 3.4 −5.0
0.6 3.3 6.3 3464.5 −8.4
2.1 0.3 −0.7 −2.4 143.3


(g) Set 3, N4SID

Table 4.17: Analytical and identified stiffness matrix, identified from three sets of recorded
displacements (small amplitudes) during 60 seconds of free vibration.
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4.4.3 Damping matrix

The analytical and identified modal damping matrices are given in Table 4.18. They are
not as consistent as the stiffness estimates, and they are less symmetric – particularly
those identified by the CBHM method. As seen in section 4.3.3, the CBHM method
needs long time series to produce decent estimates, but the response time series used
here are only 60 seconds long. Longer time series would decrease accuracy of estimates
related to torsional rotation.

To get a visual overview of the damping matrices, they are illustrated in Figure 4.45,
where false cross terms are evident. It is particularly interesting to see that the major
cross terms are related to the uninteresting rotational modes, although a coupling be-
tween the horizontal and torsional mode can be suspected. Aerodynamic damping of
the vertical translational mode in set 2 and 3 is evident, but it is clear that the CBHM
method over-estimates the damping of all modes.

It should be noted that identification where uninteresting modes have been removed from
the recorded output was found to produce the same result as by discarding uninteresting
terms from matrices identified from response of all modes.


0.615 −0.067 −0.342 2.006 0.238
0.284 0.548 −0.235 −1.916 −0.009
−0.151 −0.282 0.907 0.579 −0.175
−0.169 −0.057 −0.069 0.780 −0.011
0.046 0.011 0.006 0.017 0.033


(a) Set 1, CBHM


0.072 −0.028 −0.050 −0.344 0.142
0.201 0.114 −0.011 −0.121 0.104
0.038 −0.059 0.602 0.531 −0.154
−0.258 −0.018 −0.011 0.503 −0.007
0.047 0.006 0.000 0.013 0.031


(b) Set 1, N4SID

0.619 0.610 −0.506 −0.348 0.012
0.214 0.542 −0.193 0.337 −0.001
−0.248 −0.075 1.104 0.385 0.063
−0.223 0.017 0.087 0.853 0.029
0.039 −0.001 −0.011 −0.001 0.037


(c) Set 2, CBHM


0.060 0.036 0.104 1.531 −0.106
0.143 0.110 0.004 −0.029 −0.066
−0.029 −0.007 0.823 −0.357 0.158
−0.192 0.015 0.131 0.589 0.049
0.039 −0.008 −0.020 0.009 0.034


(d) Set 2, N4SID

0.614 −2.042 −0.830 1.625 0.197
−0.054 0.551 0.115 −0.667 −0.001
−0.244 0.241 1.108 −0.064 −0.187
−0.023 −0.176 0.008 0.866 −0.028
0.004 0.008 −0.001 0.009 0.038


(e) Set 3, CBHM


0.076 0.082 −0.076 −0.026 0.279
−0.028 0.119 −0.015 −0.147 0.188
−0.096 0.077 0.837 0.361 −0.086
0.022 0.028 0.064 0.609 0.007
0.005 −0.031 −0.001 0.011 0.035


(f) Set 3, N4SID

Table 4.18: Damping matrix identified from three sets of recorded displacements (small ampli-
tudes) during 60 seconds of free vibration.
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N4SID, set 3N4SID, set 2N4SID, set 1

CBHM, set 3CBHM, set 2CBHM, set 1

Estimated values (negative)Estimated values (positive)Preliminary analysis

(a) Full damping matrix

 

 

N4SID, set 3N4SID, set 2N4SID, set 1

CBHM, set 3CBHM, set 2CBHM, set 1

Estimated values (negative)Estimated values (positive)Preliminary analysis

(b) Reduced damping matrix (only modes relevant to determine ADs)

Figure 4.45: Damping matrix identified from three sets of recorded displacements (small ampli-
tudes) during 60 seconds of free vibration. Compared to values obtained from set 1 in preliminary
analysis. Radius is proportional to value.
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4.5 Effect of static displacements

A major issue with the experimental setup examined in this work, is that displacements
of the section model alters the stiffness of the system. The largest changes occurs for
horizontal displacements. When the section model is displaced horizontally, two things
happen: the vertical springs are elongated, which in turn increases the tension in the
vertical suspensions. Hence, the vertical springs contribute to the horizontal stiffness,
and the geometric stiffness increases.

4.5.1 Natural frequencies

Assuming (infinitely) small amplitudes, changes are induced by static displacements
due to mean wind velocity pressure acting on the model. Derivation of an analytical
stiffness matrix considering the effect of displacements is given in Appendix A, although
it suffer from some minor flaws regarding rotational displacements. To illustrate the
strengths and flaws of the analytical model, it is compared to results obtained from
the Abaqus/CAE model. However, the FE model does not provide the stiffness matrix
directly; only natural frequencies are given.

The comparisons in Figure 4.46 and Figure 4.47 give a good indication of the displace-
ment effects. Given that the FE model provides a good representation of the prototype,
it is clear that the effects of translational displacements are estimated correctly by the
derived analytical solution, but the effect of rotation on rotational modes are estimated
incorrectly. It should be noted that the effect of vertical translation is not symmetric
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Figure 4.46: Natural frequencies as function of static horizontal translation.
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Figure 4.47: Change in natural frequencies as function of static displacements. Analytical values
are indicated by solid lines, Abaqus/CAE simulations by dashed lines. Vertical translation is
positive downwards.
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about the resting position of the section model, because at rest, the tension in the upper
suspensions is higher than the tension in the lower suspensions, as they carry the weight
of the section model. An upwards displacement of approximately 50 mm gives equal
tension in all suspensions.

4.5.2 Correction

To determine the aerodynamic derivatives of the section model, it was in equation (2.11d)
assumed that

Keff = K0 + Kae

However, because of the effect of static displacements, this must now be rewritten to

Keff = Keff,0 −∆K(r̄) = K0 + Kae (4.84)

where Keff,0 is the identified stiffness matrix and ∆K represents the change in stiffness
induced by the static displacements r̄. Hence, to obtain the ADs of the section model,
it is necessary to determine ∆K(r̄).

It is proposed to estimate the change of stiffness by computing the modal stiffness matrix
corresponding to measured static displacements, and subtracting the matrix correspond-
ing to zero displacements. The modal matrices should be based on the mass matrix
derived from Table 3.8 and the analytical stiffness matrix derived in Appendix A. Thus,

∆K(r̄) = Kanalytical(r̄)−Kanalytical(0) (4.85)

To verify the correction procedure, a simulation was conducted in Abaqus/CAE, where
the section model was loaded with the buffeting wind velocity pressure of a Monte Carlo-
simulated turbulent wind field with mean velocity of 20 m/s. Properties of the wind
field were resembling the conditions described in [50], and the frequency content of the
simulated wind field does not fulfil the white noise assumption. The lack of motion
induced forces gives a conservative estimate, as no aerodynamic damping was included.
Theory behind the Monte Carlo simulation and details of the wind field are presented
in Appendix B.

The static (mean) displacements of the simulated response are given in Table 4.19. The
corresponding correction was estimated to be

∆K(r̄) =


23.3 0.0 0.0 0.0 0.0
0.0 49.8 0.0 0.0 0.0
0.0 0.0 −14.8 0.0 0.0
0.0 0.0 0.0 −30.6 0.0
0.0 0.0 0.0 0.0 −1.0
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4.5 EFFECT OF STATIC DISPLACEMENTS

Mode Static displacement

Horizontal translation 0.154 m
Horizontal rotation -0.002 rad
Vertical translation -0.043 m
Vertical rotation 0.005 rad
Torsional rotation -0.006 rad

Table 4.19: Static component of response obtained from simulated response of a turbulent wind
field acting on the section model.

The stiffness matrix identified by the CBHM method (which produced highest accuracy
in this case) was

Keff,0 =


275.1 −24.3 22.8 −4.0 −101.7
−1.5 588.4 0.8 −34.4 −7.1
14.0 16.7 1633.4 17.7 −43.9
−1.8 −23.9 −1.2 3390.6 29.0
−2.6 −0.2 2.7 0.1 138.7


and the corrected matrix becomes

Keff =


251.8 −24.3 22.8 −4.0 −101.7
−1.5 538.6 0.8 −34.4 −7.1
14.0 16.7 1648.1 17.7 −43.9
−1.8 −23.9 −1.2 3421.2 29.0
−2.6 −0.2 2.7 0.1 139.6



It is evident that the coupling between horizontal translation and torsional rotation,
particularly, is considerably higher than for free vibration response.

The identified and corrected natural frequencies are given in Figure 4.48 and Table 4.20,
and it is seen that the correction improves the identification significantly – although
horizontal translational and rotational stiffness estimates are slightly over-corrected.

Frequency (Hz)
0 1 2 3 4 5

Corrected

Identified

Figure 4.48: Identified and corrected natural frequencies obtained from simulated response of a
turbulent wind field acting on the section model. Compared to analytical values.

91



4 RESULTS AND DISCUSSION

Mode Analytical Identified Corrected

Horizontal translation 0.67 0.69 0.66
Horizontal rotation 1.05 1.09 1.04
Vertical translation 1.70 1.69 1.70
Vertical rotation 2.62 2.61 2.62
Torsional rotation 4.21 4.18 4.19

(a) Analytical, identified and corrected natural frequencies, given in Hz.

Mode Identified Corrected

Horizontal translation 3.23 -1.26
Horizontal rotation 3.54 -0.94
Vertical translation -0.56 -0.11
Vertical rotation -0.54 -0.09
Torsional rotation -0.83 -0.49

Mean (absolute) deviation 1.74 0.58
(b) Deviation of identified and corrected frequencies with re-
spect to analytical values, given in %.

Table 4.20: Identified and corrected natural frequencies obtained from simulated response of a
turbulent wind field acting on the section model.

4.6 Effect of excitation amplitudes

Since the stiffness of the system changes with displacements, it is obvious that the
excitation amplitudes of the modes will affect the effective stiffness of the system, i.e.
the stiffness identified by system identification. The effective stiffness can be considered
an average of the continuously changing instantaneous stiffness. Since the instantaneous
stiffness is non-linear with respect to static displacements, the effective stiffness is a
function of both excitation amplitudes and static displacements.

4.6.1 Abaqus/CAE simulations

To gain first insight into this highly non-linear problem, simulations in Abaqus/CEA
have been conducted. It is important to learn how large amplitudes in each degree of
freedom affects the stiffness of the system. The test was carried out by first exciting all
modes with small excitation amplitudes (0.01 meter or radians, whichever appropriate),
before each mode successively was excited with it’s maximum amplitude.

The maximum amplitudes of each degree of freedom are given in Table 4.21, and the
corresponding natural frequencies are given in Figure 4.49. It is clear that the horizontal
amplitude has the most impact on the modal stiffness – which was expected, given the
results regarding static displacements in the previous section. However, it should be kept
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4.6 EFFECT OF EXCITATION AMPLITUDES

Degree of freedom Amplitude

Horizontal translation 0.450 m
Horizontal rotation 0.150 rad
Vertical translation 0.080 m
Vertical rotation 0.050 rad
Torsional rotation 0.200 rad

Table 4.21: Maximum (physically feasible) excitation amplitudes of the prototype.

Frequency (Hz)
0 1 2 3 4 5

Max torsional rotation

Max vertical rotation

Max vertical translation

Max horizontal rotation

Max horizontal translation

Small amplitudes

Figure 4.49: Effect of maximum excitation amplitude on the corresponding natural frequencies.
Identified by the CBHM method, based on simulations performed by Abaqus/CAE.

in mind that the maximum horizontal amplitude is unduly large compared to amplitudes
that can be expected in a wind tunnel.

4.6.2 Horizontal translation

Having learned that the horizontal translation amplitude has the most significant effect
on the system stiffness, it was time to test it on the prototype. Three tests were carried
out with a large horizontal excitation amplitude of approximately 0.450 m, and three
tests with a smaller amplitude of approximately 0.250 m. The displacement record of a
large amplitude test is shown in Figure 4.50, and a strong coupling between horizontal
translation and torsional rotation is evident. This is most likely due to small imperfec-
tions in geometry and stiffness symmetry, which gives rise to torsional rotation for large
horizontal displacements.

A significant beating effect can also be observed in the vertical translation amplitude.
Beating occurs when two harmonics of slightly different frequencies interfere with each
other. In this case, it may be caused by the fact that the vertical frequency changes with
horizontal displacements; since the horizontal displacements at each end of the section
model generally differ, the instantaneous vertical stiffness also differ.

In general, it was observed that large amplitudes decreased the quality of both measure-
ments and identifications.

93



4 RESULTS AND DISCUSSION

P
SD

Frequency (Hz)

R
ot

.
(r

ad
)

Time (s)

P
SD

Frequency (Hz)

R
ot

.
(r

ad
)

Time (s)

P
SD

Frequency (Hz)

D
is

pl
.

(m
m

)

Time (s)
P

SD

Frequency (Hz)

R
ot

.
(r

ad
)

Time (s)

P
SD

Frequency (Hz)

D
is

pl
.

(m
m

)

Time (s)

Longitudinal (torsional) rotation

Vertical rotation

Vertical translation

Horizontal rotation

Horizontal translation

0 2 4 60 10 20 30 40

0 2 4 60 10 20 30 40

0 2 4 60 10 20 30 40

0 2 4 60 10 20 30 40

0 2 4 60 10 20 30 40

0
0.023
0.047
0.070

−0.045
−0.015

0.015
0.045

0
0.023
0.047
0.070

−0.020
−0.007

0.007
0.020

0
1.2 · 104
2.3 · 104
3.5 · 104

−15
−5

5
15

0
0.018
0.037
0.055

−0.015
−0.005

0.005
0.015

0
5.0 · 107
1.0 · 108
1.5 · 108

−450
−150

150
450

Figure 4.50: Free vibration response (large horizontal amplitude) and corresponding power spec-
tra.

The identified natural frequencies of the six tests are given in Figure 4.51. Identification
was performed with a sampling rate of 30 Hz instead of 10 Hz for these particular tests,
as the N4SID method produced poor quality results with 10 Hz sampling rate.

The most conspicuous difference from the Abaqus model, is the drop of the vertical trans-
lation frequency. Otherwise, the effects are smaller than predicted by the Abaqus/CAE
simulations. There are also signs of inconsistencies in the identified results; particularly
the third set gives small variations in the estimates produced by the two methods. This
is probably due to the increase in disturbances that follows the large amplitude.

Modal damping ratios of the tests are given in Table 4.22, but major cross terms
in the damping matrix give inconsistent results. The N4SID method has proved to
give good and consistent results for small amplitudes, but here it clearly produces low
accuracy – although the inconsistency may not stem from the identification alone. It is
possible that small differences between excitations in each tests (excitations are, after
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Frequency (Hz)
0 1 2 3 4 5

Set 3, N4SID

Set 3, CBHM

Set 2, N4SID

Set 2, CBHM

Set 1, N4SID

Set 1, CBHM

Abaqus simulation

(a) Maximum amplitude (≈ 0.450 m)

Frequency (Hz)
0 1 2 3 4 5

Set 3, N4SID

Set 3, CBHM

Set 2, N4SID

Set 2, CBHM

Set 1, N4SID

Set 1, CBHM

Abaqus simulation

(b) Medium amplitude (≈ 0.250 m)

Figure 4.51: Natural frequencies identified from recorded displacements with large and medium
amplitudes during 60 seconds of free vibration.

all, introduced by hand) are responsible for some of the variations. However, by com-
paring the estimates produced by the CBHM and N4SID method, it is clear that they
have negligible correlation, which indicates that the identification procedure is the main
source of the inconsistency.

4.6.3 Single mode effects

To gain further insight in the effect of excitation amplitudes, free vibration response of
each mode was recorded separately. The mode was initially excited by it’s maximum
amplitude, response was recorded until it was dampened out, and identification was
performed by the N4SID method on small portions of the time series. The resulting
graphs of frequency and damping plotted against amplitude are given in Figure 4.52 and
Figure 4.53, respectively.

When it comes to stiffness and natural frequencies, it is evident that the effect of excita-
tion amplitudes about the resting position of the section model (no static displacements)
is approximately proportional to the effect of corresponding static displacements. The
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Figure 4.52: Effect of excitation amplitude on the corresponding natural frequency, identified
by the N4SID method. Change in frequencies due to static displacements corresponding to the
excitation amplitudes are included for comparison.
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Figure 4.53: Effect of excitation amplitude on the corresponding damping ratio, identified by
the N4SID method.

97



4 RESULTS AND DISCUSSION

Mode CBHM N4SID

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Horizontal translation 0.49 0.49 0.50 0.10 0.02 0.61
Horizontal rotation 0.82 0.73 1.62 0.31 0.11 1.46
Vertical translation 0.70 0.73 0.64 0.61 0.41 1.30
Vertical rotation 0.37 0.26 0.27 0.34 0.00 0.25
Torsional rotation 0.39 0.37 0.40 0.98 0.17 0.70

(a) Maximum amplitude (≈ 0.450 m)

Mode CBHM N4SID

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Horizontal translation 0.50 0.50 0.50 0.10 0.71 0.07
Horizontal rotation 0.38 0.69 0.54 0.35 0.34 0.89
Vertical translation 2.32 1.53 2.40 0.21 1.19 2.77
Vertical rotation 0.20 0.21 0.22 0.06 0.22 0.39
Torsional rotation 0.37 0.39 0.40 0.37 0.35 0.92

(b) Medium amplitude (≈ 0.250 m)

Table 4.22: Modal damping ratios, given in %, obtained by identification based of recorded
displacements with medium and large amplitudes during 60 seconds of free vibration.

proportionality factor, however, seems to vary between modes.

The amplitude dependency of the damping is quite clear, as larger amplitude give larger
damping for all modes. This was an expected result, as aerodynamic damping depends
on the velocity, and maximum velocity is proportional to maximum excitation amplitude.
Since the wind velocity pressure is proportional to the velocity squared, the damping
ratio becomes proportional the the velocity, and thus also to the excitation amplitude.
This is reflected in the graphs, which are more or less linear.

Disturbances in the estimated damping ratios are most likely because they are identified
from short time series of data, but also because of a higher degree of disturbances in
response records obtained from large amplitudes.
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5 Concluding remarks

5.1 Summary and conclusions

A prototype of a suspension rig allowing for horizontal, vertical and torsional motion
of a section model has been developed and tested in the work described in this thesis.
Furthermore, dynamic properties of the model have been obtained analytically and by
two different methods of system identification, which have been compared to each other.

5.1.1 Experimental setup

The experimental setup proved to be simple and inexpensive to build, which is a major
advantage over the complicated three-degree-of-freedom setup presented in the introduc-
tion. However, several drawbacks of an experimental setup based on suspension wires
was revealed.

First, the suspension setup inherently introduces non-linear changes in stiffness when
the section model is displaced from it’s resting position. Consequently, to minimise
this effect, the rig has to be as high as possible – which may lead to practical issues
in a wind tunnel. Second, geometric stiffness due to tension in vertical suspensions
constitutes a major part of stiffness related to horizontal motion. This effectively sets a
lower bound on horizontal stiffness, which in turn sets an upper bound on the frequency
ratios involving the horizontal mode. This bound may be altered by increasing vertical
stiffness, although at the cost of increased natural frequencies – which in turn decreases
the upper limits of reduced velocities in a wind tunnel. Finally, three uninteresting rigid
body modes are inherent in the section model; one translational that was not observable
in the recorded response, and hence did not pose a problem, and two rotational that
can not be restrained during wind tunnel tests. It was found that they do not affect
the identification of dynamic properties, but it is unknown if they affect the aeroelastic
behaviour of the section model.

99



5 CONCLUDING REMARKS

5.1.2 System identification

The dynamic properties of the prototype was determined by system identification based
on free vibration response in still air. Determination of structural matrices requires
that the modal mass matrix of the system is known. Natural frequencies matched
the analytically derived frequencies closely, which indicates that the mass matrix was
correct. The stiffness matrix was also identified with high accuracy, although minor
cross terms was present. Identification of modal damping ratios and damping matrix,
however, depended on several factors – the most important being choice of identification
method. The N4SID method turned out to be sensitive to sampling rate of input data,
but produced reliable and consistent damping estimates with relatively small cross terms
in the damping matrix, even for short displacement records. The optimal sampling rate
of the response signal proved to be twice the highest natural frequency, which is the
theoretically ideal value. In contrast, the CBHM method required very long time series
to produce decent damping estimates. It can be concluded that the N4SID method
is much better suited for determination of dynamic properties based on free vibration
response in still air than the CBHM method, and it would probably be the best choice
for wind tunnel experiments.

5.1.3 Non-linear effects

A consequence of allowing horizontal motion of the section model, is that average wind
velocity pressure acting on it during wind tunnel tests give rise to static displacements,
which in turn alters the stiffness of the system. A correction procedure has been pro-
posed, where the change of the analytical stiffness matrix due to the static displacements
is subtracted from the identified stiffness matrix. It was tested by applying it to a stiffness
matrix identified from simulated response to a turbulent wind field, and it improved the
identification significantly. Minor stiffness effects of excitation amplitudes was observed,
but significant effects only occurred for extreme horizontal amplitudes that would never
take place in wind tunnel tests. Aerodynamic damping effects due to large amplitudes
were also observed, but they would be present in any type of section model setups.

5.2 Suggestions for further work

Even though several drawbacks and limitations have been mentioned above, the proposed
experimental setup seems promising for further research and development.

In this thesis, focus has been on dynamic properties in still air. Further work on the
concept should involve testing in a wind tunnel, to investigate both accuracy and ef-
fect of the horizontal degree of freedom on identified aerodynamic derivatives. Several
modifications of the setup are proposed:
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5.2 SUGGESTIONS FOR FURTHER WORK

• To maintain frequency ratios of the full scale model, vertical stiffness should be
increased, as it was chosen too low in the present setup. This may be important
when investigating coupling between modes.

• To decrease the lower bound on horizontal stiffness, horizontal springs may be
removed, and horizontal motion may instead be recorded by e.g. lasers or position
transducers. If position transducers are used, it should be investigated if they
affect the stiffness and/or damping of the system.

• To allow mass and moment of inertia to be configured by extra weights, a new,
lighter section model should be built. The current section model is too heavy and
provides no flexibility regarding mass configuration.

In addition, effects of static displacements and excitation amplitudes, both due to struc-
tural and aeroelastic causes, should be (further) investigated.

101





References

[1] Abaqus/CAE, version 6.10-2. Dassault Systèmes, 2010, software.

[2] M. Aoki, State space modelling of time series, ser. Universitext. Springer Verlag,
1987.

[3] V. Boonyapinyo and T. Janesupasaeree, “Data-driven stochastic subspace identi-
fication of flutter derivatives of bridge decks,” Journal of Wind Engineering and
Industrial Aerodynamics, vol. 98, no. 12, pp. 784–799, 2010.

[4] R. Brincker and P. Andersen, “Understanding stochastic subspace identification,”
in Proceedings of The 24th International Modal Analysis Conference (IMAC), 2006.

[5] E. Buckingham, “On physically similar systems; illustrations of the use of dimen-
sional equations,” Physical Review, vol. 4, pp. 345–376, 1914.

[6] L. Caracoglia, P. P. Sarkar, F. L. Haan, H. Sato, and J. Murakoshi, “Comparative
and sensitivity study of flutter derivatives of selected bridge deck sections, part
2: Implications on the aerodynamic stability of long-span bridges,” Engineering
Structures, vol. 31, no. 9, pp. 2194–2202, 2009.

[7] J. Cermak and N. Isyumov, Manual of Practice No. 67: Wind Tunnel Studies of
Buildings and Structures, ser. ASCE Manuals and Reports on Engineering Practice.
American Society of Civil Engineers, 1998.

[8] C.-T. Chen, Linear system theory and design, 3rd ed. Oxford University Press,
2009.

[9] A. Chiuso and G. Picci, “Some algorithmic aspects of subspace identification with
inputs,” International Journal of Applied Mathematics and Computer Science,
vol. 11, no. 1, pp. 55–75, 2001.

[10] A. G. Chowdhury and P. P. Sarkar, “A new technique for identification of eigh-
teen flutter derivatives using a three-degree-of-freedom section model,” Engineering
Structures, vol. 25, no. 14, pp. 1763–1772, 2003.

[11] W. Gawronski and H. G. Natke, “Realizations of the transfer-function matrix,”
International Journal of Systems Science, vol. 18, no. 2, pp. 229–236, 1987.

103



REFERENCES

[12] Y. Ge and H. Tanaka, “Aerodynamic flutter analysis of cable-supported bridges by
multi-mode and full-mode approaches,” Journal of Wind Engineering and Industrial
Aerodynamics, vol. 86, no. 2–3, pp. 123–153, 2000.

[13] M. Gu and X.-R. Qin, “Direct identification of flutter derivatives and aerodynamic
admittances of bridge decks,” Engineering Structures, vol. 26, no. 14, pp. 2161–2172,
2004.

[14] R. Henriksen, “Realization of linear systems,” Lecture notes, Division of Engineering
Cybernetics, The Norwegian Institute of Technology, Trondheim, 1990, report no.
90-01-W.

[15] E. Hjorth-Hansen, “Section model tests,” in Aerodynamics of Large Bridges: pro-
ceedings of the first International Symposium on Aerodynamics of Large Bridges,
Copenhagen, Denmark, A. Larsen, Ed. A.A. Balkema, 1992, pp. 95–112.

[16] B. L. Ho and R. E. Kalman, “Effective construction of linear state-variable models
from input/output functions,” Regelungstechnik, vol. 14, no. 12, pp. 545–548, 1966.

[17] C. Hoen, “System identification of structures excited by stochastic load processes,”
Ph.D. dissertation, The Norwegian Institute of Technology, Trondheim, 1991, NTH
1991:37.

[18] P. Horowitz and W. Hill, The art of electronics, 2nd ed. Cambridge University
Press, 1989.

[19] O. Øiseth and R. Sigbjörnsson, “An alternative analytical approach to prediction of
flutter stability limits of cable supported bridges,” Journal of Sound and Vibration,
vol. 330, no. 12, pp. 2784–2800, 2011.

[20] J. B. Jakobsen, “Fluctuating wind load and response of a line-like engineering struc-
ture with emphasis on motion-induced wind forces,” Ph.D. dissertation, The Nor-
wegian Institute of Technology, Trondheim, 1995, NTH 1995:62.

[21] J. B. Jakobsen and E. Hjorth-Hansen, “Determination of the aerodynamic deriva-
tives by a system identification method,” Journal of Wind Engineering and Indus-
trial Aerodynamics, vol. 57, no. 2–3, pp. 295–305, 1995.

[22] N. P. Jones, L. Singh, R. H. Scanlan, and O. Lorendeaux, “A force balance for
measurement of 3-D aeroelastic parameters,” Structures Congress - Proceedings,
vol. 2, pp. 1639–1642, 1995.

[23] H. Katsuchi, N. P. Jones, and R. H. Scanlan, “Multimode coupled flutter and buf-
feting analysis of the Akashi-Kaikyo bridge,” Journal of Structural Engineering, vol.
125, no. 1, pp. 60–70, 1999.

[24] E. Kreyszig, Advanced Engineering Mathematics, 9th ed. John Wiley & Sons, Inc.,
2006.

104



REFERENCES

[25] W. E. Larimore, “System identification, reduced order filtering and modeling via
canonical variate analysis,” in Proceedings of the American Control Conference,
vol. 2, 1983, pp. 445–451.

[26] W. E. Larimore, “Canonical variate analysis for system identification, filtering, and
adaptive control,” in Proceedings of the 29th IEEE Conference on Decision and
Control, Honolulu, Hawaii, vol. 1, 1990, pp. 635–639.

[27] L. Ljung, System identification: theory for the user, 2nd ed. Prentice Hall, 1999.

[28] L. Ljung, MATLAB R©R2012a: System Identification ToolboxTM: user’s guide, The
MathWorks, Inc., 2012.

[29] L. Ljung and T. Glad, Modeling of dynamic systems. Prentice Hall, 1994.

[30] MATLAB R©, version 7.14.0.739 (R2012a). The MathWorks Inc., 2012, software.

[31] MATLAB R©: Signal Processing ToolboxTM, version 6.17 (R2012a). The Math-
Works Inc., 2012, software.

[32] MATLAB R©: System Identification ToolboxTM, version 8.0 (R2012a). The Math-
Works Inc., 2012, software.

[33] S. S. Mishra, K. Kumar, and P. Krishna, “Relevance of eighteen flutter deriva-
tives in wind response of a long-span cable-stayed bridge,” Journal of Structural
Engineering, vol. 134, no. 5, pp. 769–781, 2008.

[34] B. C. Moore, “Principal component analysis in linear systems: controllability, ob-
servability and model reduction,” IEEE Transactions on Automatic Control, vol.
AC-26, no. 1, pp. 17–32, 1981.

[35] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, 3rd ed. Pear-
son, 2010.

[36] P. P. Sarkar, L. Caracoglia, F. L. Haan, H. Sato, and J. Murakoshi, “Comparative
and sensitivity study of flutter derivatives of selected bridge deck sections, part 1:
Analysis of inter-laboratory experimental data,” Engineering Structures, vol. 31,
no. 1, pp. 158–169, 2009.

[37] P. P. Sarkar, A. G. Chowdhury, and T. B. Gardner, “A novel elastic suspension
system for wind tunnel section model studies,” Journal of Wind Engineering and
Industrial Aerodynamics, vol. 92, no. 1, pp. 23–40, 2004.

[38] P. P. Sarkar, N. P. Jones, and R. H. Scanlan, “System identification for estimation
of flutter derivatives,” Journal of Wind Engineering and Industrial Aerodynamics,
vol. 41-44, pp. 1243–1254, 1992.

[39] R. H. Scanlan, “Amplitude and turbulence effects on bridge flutter derivatives,”
Journal of Structural Engineering, ASCE, vol. 123, no. 2, pp. 232–236, 1997.

105



REFERENCES

[40] R. H. Scanlan and N. P. Jones, “Aeroelastic analysis of cable-stayed bridges,” Jour-
nal of Structural Engineering, ASCE, vol. 116, no. 2, pp. 279–297, 1990.

[41] R. H. Scanlan and J. J. Tomko, “Airfoil and bridge deck flutter derivatives,” Journal
of the Engineering Mechanics Division, ASCE, vol. 97, no. EM6, pp. 1717–1737,
1971.

[42] L. Singh, N. P. Jones, R. H. Scanlan, and O. Lorendeaux, “Identification of lateral
flutter derivatives of bridge decks,” Journal of Wind Engineering and Industrial
Aerodynamics, vol. 60, pp. 81–89, 1996.

[43] J. O. Smith, Introduction to Digital Filters with Audio Applications .
http://ccrma.stanford.edu/~jos/filters/, accessed 17th May 2012, online book.

[44] J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT) .
http://ccrma.stanford.edu/~jos/mdft/, accessed 6th June 2012, online book.

[45] S. W. Smith, The scientist and engineer’s guide to digital signal processing. Cali-
fornia Technical Publishing, 1997.

[46] J. Staar, “A study of MBH-type realization algorithms,” Automatica, vol. 17, no. 3,
pp. 523–533, 1981.

[47] Statens vegvesen, “Hardangerbrua: Gr.lagsdata rev. 06.03.2007 (cy.path down-st),
analysed by ALVSAT,” March 2007, unpublished.

[48] Statens vegvesen, “Hardangerbrua: Beregninger, kapittel 1: Grunnlag,” November
2008, project 12-2950, revision 5.

[49] E. Strømmen, Theory of bridge aerodynamics, 2nd ed. Springer, 2010.

[50] Svend Ole Hansen ApS, “The Hardanger Bridge: Static and dynamic wind tunnel
tests with a section model,” December 2006, revision 1.

[51] H. Tanaka, “Similitude and modelling in wind tunnel testing of bridges,” Journal
of Wind Engineering and Industrial Aerodynamics, vol. 33, no. 1-2, pp. 283–300,
1990.

[52] P. Van Overschee and B. De Moor, “Subspace algorithms for the stochastic identi-
fication problem,” Automatica, vol. 29, no. 3, pp. 649–660, 1993.

[53] P. Van Overschee and B. De Moor, “N4SID: Subspace algorithms for the identifica-
tion of combined deterministic-stochastic systems,” Automatica, vol. 30, no. 1, pp.
75–93, 1994.

[54] P. Van Overschee and B. De Moor, Subspace identification for linear systems: the-
ory, implementation, applications. Kluwer Academic Pulishers, 1996.

[55] M. Verhaegen, “A novel non-iterative MIMO state space model identification tech-
nique,” in Proceedings of the 9th IFAC/IFORS Symposium on Identification and
System Parameter Estimation, Budapest, Hungary, 1991, p. 1453–1458.

106



REFERENCES

[56] M. Verhaegen and P. Dewilde, “Subspace model identification part 1: The output-
error state space model identification class of algorithms,” International Journal of
Control, vol. 56, no. 5, pp. 1187–1210, 1992.

[57] J.-J. Wu, “Prediction of the dynamic characteristics of an elastically supported
full-size flat plate from those of its complete-similitude scale model,” Computers &
Structures, vol. 84, no. 3–4, pp. 102–114, 2006.

107





Appendix A: Stiffness matrix

The stiffness matrix of the section model is rather complex, and depends on both initial
spring forces (due to self weight and pretensioning), static (mean) displacements and
dynamic excitation amplitudes. An idealised mathematical model will be obtained by
first considering each of the two basic suspension systems (one at each end of the section
model) individually, and establishing their respective stiffness matrices. These matrices
will then be combined and transformed into the stiffness matrix of the full system.

Inertia and damping forces are assumed to be independent of the stiffness, and are not
considered in the equilibrium calculations.

A.1 Stiffness matrix of the basic suspension system

Figure A.54 shows the basic suspension system, which essentially comprises a rotation
arm, six springs and six wires. It is considered two-dimensional, which is an adequate
approximation, such that static (r̄) and dynamic (r) displacements are defined in the
xz-plane. The local degrees of freedom, rx, rz and rθ, correspond to linear combinations
of the global degrees of freedom in the full system. This will be further discussed in
section A.2. It is important to note that the brackets used to mount the wires onto the
rotation arms give a small offset e between the centre line of the rotation arm and the
actual mounting point.

A direct approach will be taken to establish the matrix for an infinitesimal excitation
amplitude. In turn, each degree of freedom is given an infinitesimal displacement while
the others are restrained, and the equilibrium expression will then indirectly give the
stiffness relations sought for. Finally, it is a matter of reorganizing these expressions to
obtain the stiffness matrix.

It is in general assumed infinitely stiff wires and perfectly bilinear springs, i.e.

FS = F0 + kdl

where Fs is the spring force, F0 is a constant force due to internal stresses in the spring,
k is the stiffness and dl is the deflection. To incorporate the elasticity of the wires,
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Figure A.54: Definition of geometry and displacements of the basic suspension system.

an effective spring stiffness which accommodates the wire stiffness should be calculated.
It is also assumed that r̄θ is small enough to justify the approximation of cos(r̄θ) ≈ 1
and sin(r̄θ) ≈ r̄θ.

A.1.1 Effect of infinitesimal displacements

The reaction to a displacement of the end of a suspension comprises two parts. The first
part is a force induced by spring elongation, while the second part is a force induced
by tension in the suspension, referred to as geometric stiffness. Geometric stiffness
constitutes a major part of the horizontal stiffness of the section model.

Figure A.55 shows the loading situation for one of the vertical suspensions in the setup,
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(a) Horizontal displacement
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(b) Vertical displacement

Figure A.55: Effect of infinitesimal displacements (exaggerated).

but is also valid for horizontal suspensions. The infinitesimal displacements are ex-
aggerated, but it is assumed that they are so small that the deformed suspension is
approximately parallel to the undeformed suspension. It is loaded with a tensile force
fS̄ , and infinitesimal displacements dx and dz has been introduced by the forces dFx
and dFz. This has given rise to an increase of the tensile force, dfS , and a force due
to geometric stiffness, fG. Both forces are directed opposite to the displacement, i.e.
the x-components are directed opposite to dx in Figure A.55a, and the z-components
opposite to dz in Figure A.55b.

The static tensile force fS̄ is given by

fS̄ = fS0 + k
(
l̄ − l̄z

)
(A.86)

where fS0 is an initial force due to weight and pretensioning of springs. In Figure A.55a,
the assumption of bilinear springs gives

dfS = kdl = k
l̄x

l̄
dx (A.87)
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where k is the spring stiffness, and moment equilibrium about P gives

fG = fS̄
l̄z

l̄2 + l̄xdx
dx ≈ fS̄

l̄

l̄z

l̄
dx (A.88)

These forces may be decomposed into x and z-components, given by

fS,x = fS̄
l̄x

l̄
+ k

l̄2x
l̄2

dx and fS,z = fS̄
l̄z

l̄
+ k

l̄x l̄z

l̄2
dx (A.89)

fG,x = fS̄
l̄

l̄2z
l̄2

dx and fG,z = fS̄
l̄

l̄x l̄z

l̄2
dx (A.90)

Similarly, the force components of the situation in Figure A.55b is given by

fS,x = fS̄
l̄x

l̄
+ k

l̄x l̄z

l̄2
dx and fS,z = fS̄

l̄z

l̄
+ k

l̄2z
l̄2

dx (A.91)

fG,x = fS̄
l̄

l̄x l̄z

l̄2
dz and fG,z = fS̄

l̄

l̄2x
l̄2

dz (A.92)

A.1.2 Infinitesimal horizontal displacement

In Figure A.56, spring stiffness, displacements and forces acting on the rotation arm are
defined. Forces required to maintain the displacement are denoted R, spring forces fS
and forces due to geometric stiffness are denoted fG. The abbreviations h, uv and lv
indicate the main direction of a suspension, and stands for horizontal, upper vertical and
lower vertical, respectively. The subscripts 1 and 2 indicates the side, i.e. left or right.
Since the full system comprises two instances of this subsystem, the weight Mg should
be taken as half the total weight.

Equilibrium is now expressed by

Rx =

Rx,xRz,x
Rθ,x

 = RS,x + RG,x + RM,x (A.93)

where the subscript x indicates forces induced by a horizontal displacement. To enhance
readability, the forces has been divided into vectors based on their origin. These vectors
are established based on Figure A.56, and are given by

RS,x =



fS,h1,x − fS,h2,x + fS,uv1,x + fS,uv2,x + fS,lv1,x + fS,lv2,x

fS,h1,z + fS,h2,z + fS,uv1,z + fS,uv2,z − fS,lv1,z − fS,lv2,z

(fS,h1,x + fS,h2,x) r̄θe+ (fS,h1,z − fS,h2,z) e
+ (fS,lv1,x − fS,uv2,x) (r̄θa+ e) + (fS,uv1,x − fS,lv2,x) (r̄θa− e)
+ (fS,uv1,z + fS,lv2,z) (a+ r̄θe)− (fS,uv2,z + fS,lv1,z) (a− r̄θe)


(A.94)
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Figure A.56: Infinitesimal horizontal displacement (exaggerated).

RG,x =



fG,h1,x + fG,h2,x + fG,uv1,x + fG,uv2,x + fG,lv1,x + fG,lv2,x

−fG,h1,z + fG,h2,z − fG,uv1,z − fG,uv2,z + fG,lv1,z + fG,lv2,z

(fG,h1,x − fG,h2,x) r̄θe− (fG,h1,z + fG,h2,z) e
+ (fG,lv1,x − fG,uv2,x) (r̄θa+ e) + (fG,uv1,x − fG,lv2,x) (r̄θa− e)
− (fS,uv1,z + fS,lv2,z) (a+ r̄θe) + (fS,uv2,z + fS,lv1,z) (a− r̄θe)


(A.95)

RM,x =


0

−Mg

(x̄+ r̄θz̄)Mg

 (A.96)

To facilitate calculations, these expressions has to be systematised.
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To obtain compact vector expressions, it is necessary to introduce element-wise opera-
tors. The following notation will be adopted:

• denotes the dot product of two vectors.

� denotes element-wise multiplication of two vectors, i.e. the Hadamard product.

� denotes element-wise division of two vectors.

n denotes element-wise power of n of two vectors.

To accommodate for different directions of the forces, sign vectors are introduced:

sgnS,x =
[

1 −1 1 1 1 1
]T

(A.97a)

sgnS,z =
[

1 1 1 1 −1 −1
]T

(A.97b)

sgnG,xz =
[
−1 1 −1 −1 1 1

]T
(A.97c)

sgnsum =
[

1 1 1 1 1 1
]T

(A.97d)

Finally, to couple forces and moments, the following moment arm vectors are introduced:

ax =



r̄θe
r̄θe

r̄θa− e
−r̄θa− e
r̄θa+ e
−r̄θa+ e


and az =



e
−e
a+ r̄θe
−a+ r̄θe
−a+ r̄θe
a+ r̄θe


(A.98)

Suspension lengths

In the following, the combined length of springs and wire in each suspension is referred
to as suspension length. The initial suspension lengths are given by

l̄0 =
[
w w h h h h

]T
(A.99)

Figure A.56 gives the x and z-components of the suspension lengths after static displace-
ments:

l̄x =



l̄h1,x

l̄h2,x

l̄uv1,x

l̄uv2,x

l̄lv1,x

l̄lv2,x


=



|w + r̄x|

|w − r̄x|

|r̄x − r̄θe|

|r̄x − r̄θe|

|r̄x + r̄θe|

|r̄x + r̄θe|


and l̄z =



l̄h1,z

l̄h2,z

l̄uv1,z

l̄uv2,z

l̄lv1,z

l̄lv2,z


=



|r̄z + r̄θe|

|r̄z − r̄θe|

|h+ r̄z + r̄θa|

|h+ r̄z − r̄θa|

|h− r̄z − r̄θa|

|h− r̄z + r̄θa|


(A.100)
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The full lengths are then given by

l̄ =



l̄h1

l̄h2

l̄uv1

l̄uv2

l̄lv1

l̄lv2


=



√
l̄2h1,x

+ l̄2h1,z√
l̄2h2,x

+ l̄2h2,z√
l̄2uv1,x + l̄2uv1,z√
l̄2uv2,x + l̄2uv2,z√
l̄2lv1,x

+ l̄2lv1,z√
l̄2lv2,x

+ l̄2lv2,z



=



√
|w + r̄x|2 + |r̄z + r̄θe|2√
|w − r̄x|2 + |r̄z − r̄θe|2√

|r̄x − r̄θe|2 + |h+ r̄z + r̄θa|2√
|r̄x − r̄θe|2 + |h+ r̄z − r̄θa|2√
|r̄x + r̄θe|2 + |h− r̄z − r̄θa|2√
|r̄x + r̄θe|2 + |h− r̄z + r̄θa|2



(A.101)

Forces acting on the rotation arm

Initial forces are the tensile forces in the suspensions when the section model is at rest
in still air, i.e. forces due to self weight and pretensioning of springs. The initial forces
fS0,nni and spring stiffness knni may be vectorised by

fS0 =
[
fS0,h1 fS0,h2 fS0,uv1 fS0,uv2 fS0,lv1 fS0,lv2

]T
(A.102)

k =
[
kh1 kh2 kuv1 kuv2 klv1 klv2

]T
(A.103)

The static forces are now found by element-wise application of (A.86):

fS̄ = fS0 + k�
(̄
l− l̄0

)
(A.104)

and the spring forces are found from (A.89):

fSx,x = fS̄ �
(̄
lx � l̄

)
+ k�

(̄
l 2x � l̄ 2

)
� (sgnS,xdrx) (A.105a)

fSz,x = fS̄ �
(̄
lz � l̄

)
+ k�

[(̄
lx � l̄z

)
� l̄ 2

]
� (sgnS,xdrx) (A.105b)

where sgnS,x maps the displacement of the rotation arm drx to elongation or shortening
of the spring. The forces due to geometric stiffness are similarly found from (A.90):

fGx,x =
(
fS̄ � l̄

)
�
(̄

l 2z � l̄ 2
)

drx (A.106a)

fGz,x =
(
fS̄ � l̄

)
�
[(̄

lx � l̄z
)
� l̄ 2

]
drx (A.106b)
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The reaction forces defined in equation (A.94) and (A.95) may now be expressed by

RS,x =


fSx,x • sgnS,x

fSz,x • sgnS,z

fSx,x • ax + fSz,x • az

 (A.107)

RG,x =


fGx,x • sgnsum

fGz,x • sgnG,xz(
fGx,x � ax − fGz,x � az

)
• sgnS,x

 (A.108)

Stiffness relation

Equation A.93–A.96 may be reorganised to the formRx,xRz,x
Rθ,x

 =

Kxx

Kzx

Kθx

drx +

PxPz
Pθ

 (A.109)

where the stiffness vector Kmx (m = x, z, θ) constitutes the first column of the stiffness
matrix of the system. The force vector Pm contains the net forces required to maintain
the static displacement pattern. This relation will be used to establish the full stiffness
matrix in section A.2.

A.1.3 Infinitesimal vertical displacement

The effect of an infinitesimal vertical displacement, shown in Figure A.57, is derived in
the same manner as for a horizontal displacement. The reaction forces are now given by

Rz =

Rx,zRz,z
Rθ,z

 = RS,z + RG,z + RM,z (A.110)

where the subscript z indicates forces induced by a vertical displacement. The main spring
force directions are all the same as in Figure A.56; only magnitudes are different. Hence,
RS,z have the same structure as RS,x, but fS,nni now refers to the forces in Figure A.57:

RS,z =



fS,h1,x − fS,h2,x + fS,uv1,x + fS,uv2,x + fS,lv1,x + fS,lv2,x

fS,h1,z + fS,h2,z + fS,uv1,z + fS,uv2,z − fS,lv1,z − fS,lv2,z

(fS,h1,x + fS,h2,x) r̄θe+ (fS,h1,z − fS,h2,z) e
+ (fS,lv1,x − fS,uv2,x) (r̄θa+ e) + (fS,uv1,x − fS,lv2,x) (r̄θa− e)
+ (fS,uv1,z + fS,lv2,z) (a+ r̄θe)− (fS,uv2,z + fS,lv1,z) (a− r̄θe)


(A.111)
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Figure A.57: Infinitesimal vertical displacement (exaggerated).

The reaction forces induced by geometric stiffness are slightly different, since some of
the forces have changed direction:

RG,z =



−fG,h1,x + fG,h2,x − fG,uv1,x − fG,uv2,x + fG,lv1,x + fG,lv2,x

fG,h1,z + fG,h2,z + fG,uv1,z + fG,uv2,z + fG,lv1,z + fG,lv2,z

− (fG,h1,x + fG,h2,x) r̄θe+ (fG,h1,z − fG,h2,z) e
+ (fG,lv1,x + fG,uv2,x) (r̄θa+ e)− (fG,uv1,x + fG,lv2,x) (r̄θa− e)
+ (fS,uv1,z − fS,lv2,z) (a+ r̄θe)− (fS,uv2,z − fS,lv1,z) (a− r̄θe)


(A.112)

RM,z =

 0
−Mg

(x̄+ r̄θz̄)Mg

 (A.113)
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The static forces are invariant with respect to infinitesimal displacements, and are un-
changed. However, the forces acting on the rotation arm are now changed to

fSx,z = fS̄ �
(̄
lx � l̄

)
+ k�

[(̄
lx � l̄z

)
� l̄ 2

]
� (sgnS,zdrz) (A.114a)

fSz,z = fS̄ �
(̄
lz � l̄

)
+ k�

(̄
l 2z � l̄ 2

)
� (sgnS,zdrz) (A.114b)

and

fGx,z =
(
fS̄ � l̄

)
�
[(̄

lx � l̄z
)
� l̄ 2

]
drz (A.115a)

fGz,z =
(
fS̄ � l̄

)
�
(̄

l 2x � l̄ 2
)

drz (A.115b)

The reaction forces defined in equation (A.111) and (A.112) may now be expressed by

RS,x =


fSx,z • sgnS,x

fSz,z • sgnS,z

fSx,z • ax + fSz,z • az

 (A.116)

RG,x =


fGx,z • sgnG,xz

fGz,z • sgnsum(
fGz,z � az − fGx,z � ax

)
• sgnS,z

 (A.117)

and equation A.110–A.113 may be reorganised to the formRx,zRz,z
Rθ,z

 =

Kxz

Kzz

Kθz

drz +

PxPz
Pθ

 (A.118)

where the stiffness vectorKmz (m = x, z, θ) constitutes the second column of the stiffness
matrix of the system. The force vector Pm contains the forces, including the weight of
the section model, required to maintain the static displacement pattern. These forces
are obviously equal to the static forces defined in (A.109).

A.1.4 Infinitesimal rotation

The effect of an infinitesimal rotation, shown in Figure A.58, is derived in the same
manner as for a horizontal or vertical displacement, except that it gives rise to both
horizontal and vertical displacements simultaneously. Because of this, a small change in
rotation also changes the moment arm of the spring forces, which give rise to additional
geometric moment stiffness.
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Figure A.58: Infinitesimal rotation (exaggerated).

As usual

Rθ =

Rx,θRz,θ
Rθ,θ

 = RS,θ + RG,θ + RM,θ (A.119)

where

RS,θ =



fS,h1,x − fS,h2,x + fS,uv1,x + fS,uv2,x + fS,lv1,x + fS,lv2,x

fS,h1,z + fS,h2,z + fS,uv1,z + fS,uv2,z − fS,lv1,z − fS,lv2,z

(fS,h1,x+fS,h2,x) (r̄θ+drθ) e+ (fS,h1,z−fS,h2,z) e
+ (fS,lv1,x−fS,uv2,x) [(r̄θ+drθ) a+e] + (fS,uv1,x−fS,lv2,x) [(r̄θ+drθ) a−e]
+ (fS,uv1,z+fS,lv2,z) [a+ (r̄θ+drθ) e]− (fS,uv2,z+fS,lv1,z) [a− (r̄θ+drθ) e]


(A.120)
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Unlike the other cases of infinitesimal displacements, the sign of the geometric stiffness
induced by a small change of rotation is not equal to the sign of the change. Because a
rotation gives rise to both horizontal and vertical displacements, it is highly dependent
on the static displacements. It is, however, necessary to define positive directions, which
is done in Figure A.58. This gives

RG,θ =



fG,h1,x − fG,h2,x + fG,uv1,x + fG,uv2,x + fG,lv1,x + fG,lv2,x

−fG,h1,z − fG,h2,z − fG,uv1,z − fG,uv2,z + fG,lv1,z + fG,lv2,z

(fG,h1,x+fG,h2,x) (r̄θ+drθ) e− (fG,h1,z−fG,h2,z) e
+ (fG,lv1,x−fG,uv2,x) [(r̄θ+drθ) a+e] + (fG,uv1,x−fG,lv2,x) [(r̄θ+drθ) a−e]
− (fG,uv1,z+fG,lv2,z) [a+ (r̄θ+drθ) e] + (fG,uv2,z+fG,lv1,z) [a− (r̄θ+drθ) e]


(A.121)

RM,θ =

 0
−Mg

[x̄+ (r̄θ + drθ) z̄]Mg

 (A.122)

The forces acting on the rotation arm are now found by applying an infinitesimal hori-
zontal and a vertical displacement successively:

fSx,θ = fS̄ �
(̄
lx � l̄

)
+ k�

(̄
lx � l̄ 2

)
�
(̄
lx � ax + l̄z � az

)
drθ (A.123a)

fSz,θ = fS̄ �
(̄
lz � l̄

)
+ k�

(̄
lz � l̄ 2

)
�
(̄
lx � ax + l̄z � az

)
drθ (A.123b)

and

fGx,θ =
(
fS̄ � l̄

)
�
(̄

lz � l̄ 2
)
�
(̄
lz � ax − l̄x � az

)
drθ (A.124a)

fGz,θ =
(
fS̄ � l̄

)
�
(̄

lx � l̄ 2
)
�
(̄
lz � ax − l̄x � az

)
drθ (A.124b)

By introducing

adrθ,x =



e
e
a
−a
a
−a


drθ and adrθ,z =



0
0
e
e
e
e


drθ (A.125)

to include the change of rotation in moment equilibrium, the reaction forces defined in
equation (A.120) and (A.121) may now be expressed by

RS,θ =


fSx,θ • sgnS,x

fSz,θ • sgnS,z

fSx,θ • (ax + adrθ,x) + fSz,θ • (az + adrθ,z)

 (A.126)
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RG,θ =


fGx,θ • sgnS,x

−fGz,θ • sgnS,z(
fGx,θ � ax − fGz,θ � az

)
• sgnsum

 (A.127)

Changes in moment arms, adrθ,x and adrθ,z, are not included in (A.127) because all
higher order terms of drθ are discarded.

Equation A.119–A.122 may now be reorganised to the formRx,θRz,θ
Rθ,θ

 =

Kxθ

Kzθ

Kθθ

drθ +

PxPz
Pθ

 (A.128)

where the stiffness vector Kmθ (m = x, z, θ) constitutes the third column of the stiffness
matrix of the system. The force vector Pm contains the forces, including the weight of
the section model, required to maintain the static displacement pattern. These forces
are, as mentioned in A.1.3, equal to the static forces defined in (A.109).

A.1.5 Simplified stiffness matrix

The expressions given above, may be utilised to assemble the stiffness matrix of the
basic suspension system. Because of space considerations, an explicit assembly of the
full stiffness matrix is not appropriate, but a simplified version may easily be derived.
Assuming no static displacements,

r̄x = r̄z = r̄θ = 0

no wire bracket or mass centre deviation

e = x̄ = z̄ = 0

and

kh = kh1 = kh2

kuv = kuv1 = kuv2

klv = klv1 = klv2

fS0,h = fS0,h1 = fS0,h2

fS0,uv = fS0,uv1 = fS0,uv2

fS0,lv = fS0,lv1 = fS0,lv2

the stiffness matrix of each basic suspension system is found to be

Ksimplified =


2
(
kh + fS0,uv+fS0,lv

h

)
0 0

0 2
(
kuv + klv + fS0,h

w

)
0

0 0 2 (kuv + klv) a2


(A.129)
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A.2 Stiffness matrix of the full system
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(a) Top view
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(b) Side view
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(c) Front view

Figure A.59: Kinematic relations between full system and subsystems.

The stiffness matrix of the full system may now be assembled based on the expressions
derived above. Figure A.59 defines global degrees of freedom, r̄i, local degrees of freedom,
r̄m i , and reaction forces from the subsystems, Rm,n i . The encircled subscript i indicates
the subsystem, and the subscripts m and n represents directions, i.e. x, z or θ. The
lengths bh and bv are the distance from the centre of gravity of the section model to the
horizontal and vertical wire brackets, respectively.

The difference between bh and bv, combined with the rotations r̄2 and r̄4, give rise
to small differences in displacements of the horizontal and vertical suspensions within
each subsystem. It is assumed that these differences are small enough to justify the
two-dimensional approximation made in A.1.

Assuming small rotations, kinematic relations governing the relationship between the
two subsystems and the full system are readily derived from Figure A.59:

r 1 =

r̄x 1

r̄z 1

r̄θ 1

 =

r̄1 + r̄2bh
r̄3 + r̄4bv

r̄5

 (A.130)

r 2 =

r̄x 2

r̄z 2

r̄θ 2

 =

r̄1 − r̄2bh
r̄3 − r̄4bv

r̄5

 (A.131)

Next, the stiffness matrices of the two subsystems are established based on their respec-
tive static displacements:

K 1 = K(r 1 ) and K 2 = K(r 2 )
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where K(r) is the stiffness matrix derived in section A.1. For simplicity, the only param-
eter stated here is static displacement, although initial forces and spring stiffness may
differ between the two systems. In the MATLAB function calculating the matrix, the
small variations of these parameters have been included.

Since the stiffness is based on change in forces, a transformation matrix T may be
established by mapping reaction forces from the subsystems to the full system:


R1
R2
R3
R4
R5

 =


1 0 0 1 0 0
bh 0 0 −bh 0 0
0 1 0 0 1 0
0 bv 0 0 −bv 0
0 0 1 0 0 1





Rx,m 1

Rz,m 1

Rθ,m 1

Rx,m 2

Rz,m 2

Rθ,m 2


= T



Rx,m 1

Rz,m 1

Rθ,m 1

Rx,m 2

Rz,m 2

Rθ,m 2


(A.132)

where the subscriptm represents the origin of the reaction force, i.e. type of displacement.
The full stiffness matrix is then given by

K = T
[
K 1 0
0 K 2

]
TT (A.133)

and the stiffness matrix derived in (A.129) gives rise to the simplified global matrix:

Ksimplified =


K11 0 0 0 0

0 K22 0 0 0
0 0 K33 0 0
0 0 0 K44 0
0 0 0 0 K55

 (A.134)

where

K11 = 4
(
kh+fS0,uv+fS0,lv

h

)
(A.135a)

K22 = K11b
2
h (A.135b)

K33 = 4
(
kuv+klv+

fS0,h

w

)
(A.135c)

K44 = K33b
2
v (A.135d)

K55 = 4 (kuv+klv) a2 (A.135e)

Concluding remarks

The assumption of small rotations and two-dimensional subsystems may in some cases
give poor results. Horizontal rotation, in particular, gives rise to displacements out of
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the xy-plane of the subsystem, and the static forces in the suspensions lead to geometric
moment stiffness, as seen in (A.126).

The length bh should be considered carefully, since a major part of the horizontal stiffness
is geometric stiffness due to tension in the vertical suspensions. It may be a better
solution to replace bh with an effective length, such that

bv ≤ bh,eff ≤ bh

This length may be found from equilibrium, but it was observed that a mean value,
bh,eff = (bh + bv)/2 , gave good results in the experimental setup described in this pa-
per.
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Appendix B: Monte Carlo
simulation of a turbulent wind
field

B.1 Simulation of spatially coherent time series

The theory presented in this section is based on [49].

To simulate the horizontal along-wind and the vertical across-wind turbulence compo-
nents u and w of a turbulent wind field at N equidistant points along a line-like structure,
it is important to capture the fact that these time series represents simultaneous events,
and therefore, they must contain the appropriate spatial coherence properties.

Let Cmn(τ) be the covariance matrix and Smn(ω) the corresponding cross spectral den-
sity matrix between two arbitrary points m and n, given by

Smn(ω) =
[
Suu(ω,∆s) Suw(ω,∆s)
Swu(ω,∆s) Sww(ω,∆s)

]
(B.136)

where ∆s is the spatial distance between m and n. An N by N cross spectral density
block matrix may now be assembled:

S(ω) =



S11 · · · S1n · · · S1N
...

. . .
... . .

. ...
Sm1 · · · Smn · · · SmN
... . .

. ...
. . .

...
SN1 · · · SNn · · · SNN


(B.137)

This matrix contains all the space and frequency domain information that is necessary
for a time domain simulation with correct statistical properties for the turbulence com-
ponents.
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It is assumed that the turbulent wind field can be considered a stationary and homoge-
neous process, such that

Cmn(τ) = Cnm(τ) and Smn(ω) = S∗nm(ω)

This implies that S is Hermitian and non-negative definite. A Cholesky decomposition
of S will then render a lower triangular matrix

G(ω) =



G11 · · · 0 · · · 0
...

. . .
... . .

. ...
Gi1 · · · Gij · · · 0
... . .

. ...
. . .

...
G(2N)1 · · · G(2N)j · · · G(2N)(2N)


(B.138)

whose properties are such that
S(ω) = G(G∗)T (B.139)

Assuming a frequency segmentation of M equidistant points, the simulated time series

xi(t) =
√

2∆ω ·
i∑

j=1

M∑
k=1
|Gij(ωk)| cos(ωkt+ ψjk) (B.140)

where i = 1, 2, . . . , 2N , k is the frequency segment number and ψjk is an arbitrary phase
angle between zero and 2π, contains the turbulence components at m = 1, 2, . . . , N :

um(t) = x2m−1(t) (B.141a)
wm(t) = x2m(t) (B.141b)

B.2 Representative turbulence characteristics

Even though the wind tunnel described in [50] differs from the one at NTNU, turbulence
characteristics of the wind field generated in the tunnel have been used to simulate a
wind field for FEM-analysis in the present work.

Approximate turbulence intensities are given in Table B.23. Cross spectral densities
are described in the following. For simplicity, it is in the following assumed that cross
spectra between the u and w components are negligible, such that

Suw(ω,∆s) ≈ 0 (B.142)

where ∆s is the spatial separation along the line-like structure.

In most cases of a homogeneous wind field,

Snn(ω,∆s) = Sn(ω) · Ĉonn(ω,∆s) (B.143)
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B.2 REPRESENTATIVE TURBULENCE CHARACTERISTICS

where n is a turbulence component (u or w), Sn is the single point spectral density and
Ĉonn is the normalised co-spectrum. According to [50], the normalised co-spectra of the
wind tunnel used for section model tests of the Hardanger Bridge was approximated by

Ĉonn(ω,∆s) =
(

1− 1
2κn∆sLexp

Cn
2π

)
exp

(
−κn∆sLexp

Cn
2π

)
(B.144)

where Lexp is the length of the wind exposed part of the section model, which for most
cases equals the width of the wind tunnel, and

κn(ω) =

√(
ω

V

)2
+
( 1
Ln

)2
(B.145)

Estimates of the parameters Cn and Ln are given in Table B.23.

The reduced auto spectra was not provided explicitly in [50], but they have been resem-
bled by Kaimal auto spectra, defined by

f · Sn(f)
σ2
n

= Anf̂n(
1 + 1.5Anf̂n

)5/3 (B.146)

where the reduced frequency is defined by f̂n = f · sLn/V and sLn is the integral length
scale of the relevant turbulence component. Approximated values of the parameter An
are given in Table B.23. The auto-spectra and co-spectra are shown in Figure B.60.

Flow property Au Aw Lu (m) Lw (m) Cu Cw
Parameter value 19 3 1.2 0.2 5.5 2.4

Table B.23: Estimated parameters for determination of turbulence properties.
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Figure B.60: Turbulence characteristics applied in simulations.
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Appendix C: Abaqus/CAE model

The FE-model developed in Abaqus/CAE was an important part of the design process of
the suspension rig presented in this thesis. It proved to be a good representation of the
prototype, although differences were observed when investigating excitation amplitude
effects. The model is essentially undamped; only high-frequency α-damping to avoid
numerical instabilities is incorporated.

The complete FE-model is shown in Figure C.61. Details of it’s most important features
will be discussed in the following.

Figure C.61: FE-model in Abaqus/CAE.
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C ABAQUS/CAE MODEL

C.1 Section model

The section model, including extension and rotation arms, is modelled by beam elements
and defined as a rigid body through a “Rigid Body”-constraint. Hence, number of degrees
of freedom is minimised, improving simulation speeds dramatically.

C.2 Suspension system

The part named “Suspension”, illustrated in Figure C.62a is the main part of the FE-
model. It contains all information about the experimental configuration, e.g. spring
lengths, pretension lengths, wire brackets, additional weights etc., and it is crucial that
it matches reality as close as possible. To simplify the process of reconfiguring the
model for a new setup, all sketches have been parametrised as illustrated in Figure C.62.
Most of the parameters must be provided by the user, but wire lengths are computed
automatically.

It is important that the pretension length parameters matches that specified on the
boundary conditions, which are the actual pretension that will be applied to each spring.
If not, the final height and/or width of the model will differ from the specified values.
To ensure that the section model maintain it’s position during the pretension step of the
simulation, it is also important that “UpperPretensionLength” is estimated correctly.

C.3 Mass and moment of inertia

Mass and moment of inertia is introduced through “Inertia”-assignments to relevant
nodes. It is also simple to model extra weights on the rotation arm, even though it
was not done on the prototype. Relevant values are calculated in an Microsoft Excel
spreadsheet provided with the Abaqus/CAE model file.

C.4 Springs

To allow springs to be a part of the parametrised sketches, massless dummy truss ele-
ments with negligible stiffness defines the spring positions. Spring behaviour is modelled
with special spring elements, positioned on top of the dummy trusses, giving constant
stiffness regardless of deflection. Spring elements are coloured purple in Figure C.61.

To introduce mass and constant force to the springs, so-called “Slip Ring”-connectors
have been utilised. It allows material to flow through nodes, i.e. it allows modelling of a
wire with infinite axial stiffness (but no bending stiffness) that follows a path of nodes,
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C.4 SPRINGS

(a) Full suspension subsystem (b) Vertical sketch

(c) Parameters of the vertical sketch

Figure C.62: Parametrised sketch of the suspension system.
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C ABAQUS/CAE MODEL

where each node can be considered a pulley. Hence, displacement and tension force can
be transmitted from one end to the other along this path.Mass and initial force of a spring can now be assigned to an auxiliary datum point a
distance away from a fixed spring node. The fixed node represents the attachment point
on the rig frame. The auxiliary datum points are shown in Figure C.61 and C.62a; in
the former they are also labelled. The force must be oriented such that the fixed node
lies in the extension of the force vector. By attaching a “Slip Ring”-connector to the
rotation arm and letting it follow a path defined by the wire and spring elements of the
suspension before it is attached to the auxiliary node, the motion of the auxiliary node
will equal that at the end of the spring – but the direction of motion is independent
of the spring direction. Thus, the constant force will always follow the direction of the
suspension, and the mass will be accelerated with the acceleration experienced at the
end of the spring. Connectors are represented by yellow and orange dashed lines in
Figure C.61, although they are not visible behind the suspensions.

Pretensioning of springs is introduced by altering boundary conditions in the first step
of the simulation. The “fixed” nodes are moved a distance (equivalent to the corre-
sponding pretension length) further away from the section model. This is illustrated in
Figure C.63. Since the springs have no lateral stiffness before they are pretensioned,
they have to be supported laterally during this step.

C.5 Wire

The section model is connected to the springs through truss elements that represents
the wires in the suspension rig. Since the wires always are in tension, and thereby stays

(a) Before pretensioning (b) After pretensioning

Figure C.63: Pretensioning of springs.
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C.6 LOADS

straight, each wire is modelled by a single truss element. Section and material definitions
of the element are defined to match the stiffness properties of the elastic wire.

C.6 Loads

Static loads, e.g. due to mean wind acting on the section model, are applied to the
reference node at the mass centre, which is assumed to lie on the torsional rotation axis.

Fluctuating wind loads are calculated in MATLAB, based on a Monte Carlo simulated
wind field, and applied to the FE-model through “Equally Spaced”-type amplitudes,
where tabular data is loaded from delimited text files generated by MATLAB.

C.7 Simulation steps

The following steps are defined in the model:

Pretension Boundary conditions are altered to pretension the springs. Gravitation is
applied to the system.

ReleaseSpringSupport The lateral spring supports, that were necessary during pre-
tensioning, are deactivated.

MeanWind Possible static force components are introduced to the section model.

Frequencies Natural frequencies of the system (after static displacements have been
introduced) are computed by considering the eigenvalue problem.

FreeVibrationSetup The section model is forced into the desired initial configuration
for free vibration response simulation.

FreeVibration1 Forced displacements are released, and free vibration response is sim-
ulated by an implicit dynamic method.

DynamicWindLoad1 Dynamic response to the fluctuating wind load components (and
possibly initial displacements) is simulated by an implicit dynamic method.

1“FreeVibration” and “DynamicWindLoad” should not be enabled simultaneously.
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