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Abstract

The measurement of sound power from a car has traditionally been
done by taking the car to a test site and driving it past a microphone
several times. The use of microphone arrays and beamforming can
make the aperture able to single out one car and follow it, taking a
measurement of it, while suppressing the sound from the traffic around
it. This master thesis studies two algorithms that might be used in this
kind of set up: The Delay and Sum (DAS), and the Sparsity Constrained
- Deconvolution Approach for the Mapping of Acoustic Sources (SC-
DAMAS). This thesis tries to answer the questions: Is SC-DAMAS a
better beamforming algorithm than DAS? And are they viable for a real
time implementation for the measurement of cars in traffic?

The SC-DAMAS algorithm achieves a far better signal to noise ratio
than the DAS. In simulations with background noise levels that are 4
times higher than the source signal, the SC-DAMAS still achieved a
signal to noise ratio of 10 dB. SC-DAMAS also excels in low frequency
resolution: Where DAS results in a 4 m wide resolution at 400 Hz (for
a 2 m long array), the SC-DAMAS manages to pinpoint the source to
within one measurement field segment at 200 Hz. DAS on the other
hand uses far less resources computing the results from one simulation.
The SC-DAMAS used 270 times as much time concluding the simulation
compared to DAS. In light of this result it is questionable whether it is
possible to implement the SC-DAMAS in a way that lets it measure the
sound power levels from a car in real time.
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1 Introduction
To measure the sound power level from a car, the standardized method involves
taking the car to a deserted test area to avoid contamination of the measurement
from other sources, such as other cars. This is not a very efficient way of
characterizing traffic, and can’t really be used to identify the amount of noise
that come from each car along a road. One of the goals for the SINTEF project
for environmental surveillance of traffic, called MOVE, is to measure the sound
power level of each individual car in traffic. The use of microphone arrays and
beamforming can make the aperture able to single out one car and follow it,
measuring it, while suppressing the sound from the traffic around it.

Püschel et al [1] has done the same research for the ”Bundesanstalt für
Straßenwesen” (Federal Highway Research Institute), and have, according to
their article, made a set-up that can accurately measure the sound power of
each of the two test cars.

As the MOVE project is in its first year, the focus is mainly on simulation
of different algorithms. This master thesis is part of this work and studies the
algorithms Delay and Sum (DAS), and the Sparsity Constrained - Deconvolution
Approach for the Mapping of Acoustic Sources (SC-DAMAS). Trying to answer
the questions: Is SC-DAMAS a better beamforming algorithm than DAS? And
are they viable for a real time implementation for the measurement of cars in
traffic?
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2 Theory
In this chapter some of the basic theory needed to understand the report is
shown. Microphone array techniques will be the main focus, starting with the
simplest and most robust method Delay and Sum (DAS), then moving on to
the more advanced Sparsity Constrained - Deconvolution Approach for the
Mapping of Acoustic Sources (SC-DAMAS). At the end some of the problems
with microphone array techniques are presented.

2.1 Delay and Sum
The delay and sum (DAS) technique is one of the most basic techniques for
beamforming with microphone arrays, and is also the starting point for several
other techniques, as described by Yardibi et al [2]. These other techniques seek
to combat the drawbacks of the low resolution and high side-lobes that is the
weakness of the DAS.

The method can be implemented in both time and frequency domain. In
time domain a finite impulse response (FIR) filter is used on each microphone
in the array, before the signals are combined (added), as described by Ward et
al [3].

The method for frequency domain implementation is based on Yardibi et al
[2], an overview of the physical set-up can be seen in figure 1.

Figure 1: The measurement set-up that is then later processed

The incoming signal from each microphone in an array with M microphones,
is divided in I time windows, each 2L long. Then a discrete Fourier transform
is done on the time window, converting the data segment into L frequency
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bins. The output from a microphone array, in the presence of additive noise, is
assumed to be as seen in equation 1:

~yi(ωl) = ~A(x, ωl)~si(ωl) + ~ei(ωl) (1)
This is the case for each time window i = 1, ..., I, and frequency bin l =

1, ..., L. The ~A is the propagation matrix defined as ~A(x, ωl) , [a(x1, ωl), a(x2, ωl), ..
., a(xK , ωl)], where xk is the source three dimensional position of source
k = 1, ..., K. ~si(ωl) is the signal wave form from the sources. It is assumed
that the additive noise ~ei(ωl) and ~si(ωl) are independent zero mean random
variables.

The propagation vector for source k is:

~a(xk, ωl) = ā(xk, ωl)
C(k, l) = 1

C(k, l)


1
x1,k

e−jωlx1,k/c0

...
1

xM,k
e−jωlxM,k/c0

 (2)

Where xm,k is the distance between microphone m and source k, and
C(k, l) = ||ā(xK , ωl)||2, in other words C(k, l) is used to normalize ~A(x, ωl).

To find the source power, the autocorrelation is computed as in equation 3:

R̂(ωl) = 1
I

I∑
i=1

~yi(ωl)~yHi (ωl) (3)

Where ~yHi (ωl) denotes the conjugate transpose of y. ỹk(x, ωl) = 1
I

∑ |si,k(ωl)|2
is the source power, and can be found as part of the autocorrelation of ~yi(ωl).
This leads to the power from a source x′ being as seen in equation 4:

ỹk(x′, ωl) = 1
M2 ã

H(x, ωl)R̂(ωl)ã(x′, ωl) (4)

Where:

ã(xk, ωl) = C(k, l)


x1,ke

−jωlx1,k/c0

...
xM,ke

−jωlxM,k/c0

 (5)

2.2 DAMAS
The SC-DAMAS adds a sparsity constraint to the DAMAS, as such the DAMAS
needs explaining before adding the sparsity constraint. This implementation is
again based on Yardibi et al [2].

DAMAS tries to improve on DAS by using its results to obtain the decon-
volved source strengths. So starting with equation 4 and inserting the equations
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3 and 1, we obtain equation 6. As the analysis is done separately for each
frequency the ωl is dropped from the notation for simplicity.

ỹk(x′) = 1
M2 ã

H(x′)
[
~A(x)

(
1
I

I∑
i=1

sis
H
i

)
~AH(x) + σ2I

]
ã(x′) (6)

It is then assumed that the cross terms, in equation 6, together with the
noise term, can be neglected. The cross terms will be close to zero as long as
I � 1, the noise on the other hand depends on the signal and environment.
These assumption then give

ỹk(x′) = 1
M2 ã

H(x′)
[
K∑
k=1

1
I

I∑
i=1
|si,k|2~a(xk)~aH(xk)

]
ã(x′) =

K∑
k=1

Ãk(x′)x̃(xk) (7)

Where
x̃(xk) ,

1
I

I∑
i=1
|si,k|2 (8)

and
Ãk(x′) = 1

M2 |ã
H(x′)~a(xk)|2, k = 1, ..., K (9)

As the number of sources and their placement is unknown we replace K
with N scanning points in the measurement region. Naturally x and x′ is also
scanned over the same set of points. The number of points and the distance
between these simply depends on the desired minimum spacial accuracy of the
application. If the power at each scanning point is stacked up we find that the
power vector ỹ = Ãx̃, each term can be expressed as

ỹn = Ãn,1x̃1 + Ãn,2x̃2 + · · ·+ Ãn,N x̃N (10)
The solution for x̃ can be found by using the Gauss-Seidel method and

noting that Ãn,n = 1, resulting in equation 11

x̃n(k) = max

0, ỹn −
n−1∑
j=1

Ãn,jx̃
(k)
j +

N∑
j=n+1

Ãn,jx̃
(k−1)
j

 (11)

Here k is the current iteration number limited above by a user defined
maximum number of iterations, x̃0 = 0 and as x̃ represents power positivity is
ensured.

2.3 Diagonal Removal
The DAMAS algorithm, as described previously, has several drawbacks, one of
which is that it neglects the noise term. For a more complete list of drawbacks
see Yardibi et al article [2].
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The problem with neglecting the noise term in the implementation can
be overcome by diagonal removal of R̂, in other words setting the diagonal
elements of the matrix to zero. In this case the DAS output is calculated as:

ỹDR(x′) = 1
M2 −M

ãH(x′)R̃ã(x′) (12)

Where R̃ is R̂ with the diagonal elements removed. Then, ỹDR = ÃDRx̃ where

ÃDRk = 1
M2 −M

ãH(x′)[~a(xk)~aH(xk)]diag.=0ã
H(x′) (13)

for each position k=1,...,K. For notational simplicity ỹDR and ÃDR will be
denoted as ỹ and Ã from here on.

2.4 Sparsity Constrained DAMAS
As the name suggests, one of the main assumptions made to improve on the
DAMAS is that the problem is a sparse problem. As the source positions are
unknown, the sources were instead replaced by a measurement field or area,
thus the number of points N that are calculated should be larger than the
number of sources K. This means that one can assume that x̃ contains a few
non zero elements compared to its size. This makes it possible to apply a
slightly modified version of LASSO (Least absolute shrinkage and selection
operator) to this problem:

minimize ‖ ỹ − Ãx̃ ‖2
2,

subject to ‖ x̃ ‖1≤ λ, x̃n ≥ 0, n = 1, ..., N
(14)

As x̃ is power every element is forced to be positive. The new quantity
λ is here an unknown user parameter, that needs to be empirically found,
or calculated based on values of ỹ and Ã. Equation 14 is not very sensitive
to the selection of λ, setting λ → ∞ reduces the problem to a non-negative
least-squares problem. However prior knowledge will improve the estimate in
most cases.

In equation 14, λ constrains the l1 norm of x̃, which represents the total
power of the signal. There are several different methods of obtaining the total
power of the signal, one of the methods suggested by Yardibi et al [2] starts
with the estimate of the covariance matrix. Doing a eigendecomposition on the
covariance matrix gives: R̂ = Û Γ̂ÛH where Γ̂ is a diagonal matrix with the
eigenvalues of R̂, arranged in nonincreasing order. The user parameter is then
determined by:

λ = Tr(Γ̂− γ̂MI) (15)
Where γ̂M is the smallest diagonal element of R̂ and should consist of the

noise effect.
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2.5 Constant Directivity Beamforming
Using a microphone array with a set size gives a beam that expands towards
lower frequencies. Ward and colleagues [4] suggest that to get a constant beam
shape for an arbitrary frequency requires that the total size of the aperture
remains constant compared to the wavelength. Also the total aperture should
be larger than the wavelength, as the larger the total array is the better the
resolution becomes. In the ideal case an aperture with infinite number of
sensors is used, and for each frequency a subset is used so that the relationship
between wavelength and aperture size remains constant. In practice this is not
possible. Instead an array with total size constant compared to the wavelength
needs to be made for every frequency bin of interest. The problem with this
implementation is that if you want a measurement over a large frequency band,
then this will require a lot of microphones. Also at lower frequencies that gives
a large total size, 50 Hz gives a wavelength of 6.8m, making a rig that might
be impractical.

2.6 Grating Lobes
One of the problems that occur when using the DAS, and in extension SC-
DAMAS, is the occurrence of grating lobes. When delaying the incoming sound
at the different microphones most of the sound from other directions than the
main lobe will be dampened. If the array is poorly designed then grating lobes
will occur due to positive interference between neighbouring array elements.
The array response when using a far field assumption is according to Angelsen
[5] as seen in equation 16.

A(r, ω) = eikr

2πrM
sin[kd(sin θ − sin θ0)M/2]
M sin[kd(sin θ − sin θ0)/2] = M

sin(βM/2)
M sin(β/2) (16)

Here the β = kd(sin θ − sin θ0), M is the number of microphones, d the
distance between microphones, k is the wave number, θ0 is the angle of the
main lobe, in other words the direction that the array is focusing, and θ is the
response angle. The array response will have periodic peaks for βp = 2πp, p =
0,±1,±2, . . . , as sin(β/2) = 0. The peak for p = 0 is found for θ = θ0 and
is the main lobe in the steering direction. The other values of p can produce
grating lobes, if there exists a value θ which produces such a βp. The existence
of grating lobes is therefore dependent on the value of kd. Equation 17, shows
the formula for grating lobes.

sin θp − sin θ0 = p
λ

d
p = ±1,±2, . . . (17)

A requirement for such a p, is that
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| sin θ0 + pλ/d| ≤ 1 (18)
The limiting factor for grating lobes is the relationship between d and λ.

Depending on how far to each side the array will be focusing the conditions to
avoid grating lobes increases, table 1 shows a list of these requirements.

θmax[deg] 10 20 30 45 55 65 90
(d/λ)max 0.85 0.75 0.67 0.59 0.55 0.52 0.5

Table 1: Requirements to avoid grating lobes for various steering angles
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3 Method
This chapter describes the work that has been done to investigate the algorithms
described above and which values that have been used.

3.1 Implementation
The measurement set-up figure from the theory section is shown again for
convenience.

Figure 2: The measurement set-up that is then later processed

The algorithms for DAS and SC-DAMAS were implemented in Matlab, one
or more sources were simulated to propagate from point sources localized at
some point along the measurement field Xk, k = 1, ..., K. The sound effect
from each source was attenuated as if the sound was travelling as a plain wave,
giving a loss of 1

d
. The sources emit white noise. The total measurement

field is 20m long positioned from −10m to 10m, the distance between two
measurement positions, ∆x, is set to 0.2m, making a total of 101 points. A
background noise field is also simulated as a constant level of white noise at
each microphone, the amount of noise can be varied from none to several times
that of the signal strength. The noise field measured by one microphone is
assumed to be uncorrelated with the other microphones, this simulates noise
from the equipment, self noise, and to a certain extent a general background
noise field. The microphone array was positioned a distance d from the source
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measurement field, d is set to 7m. The microphones in the array are placed a
distance ∆m between each other, ∆m is not a fixed distance and may even vary
along the array, as with an expanding aperture. The total size of the aperture
varies from each implementation depending on number of microphones and
the distance, ∆m, between them, this size is set as Lm. For convenience these
numbers have been written in table 2.

Measurement field 20m, ∈ [−10m, 10m]
∆x 0.2m
Distance d 7m
∆m Constant or variable
Microphone array Lm Varies

Table 2: Set-up values

As a standard to compare the rest of the measurement against an array of
Lm = 2m is chosen with 11 evenly spaced microphones, ∆m = 0.2m. It is not
an ideal array, but gives room for improvement to show how different aspects
affect the result.

Of algorithm specific set-up the source is delayed and dampened as it would
due to wave propagation. The signal is then split in 0.04s windows, or segments,
before FFT. The source is white noise with standard deviation 1, so when
it is received it is dampened to about 1/7 of its initial value as the distance
from the source to the receiver is 7m. The sampling frequency is 22100 Hz,
making it high enough to support simulation up to just above 10 kHz. Each
simulation is 0.7s long. The speed of sound is set to 340m/s for all simulations
and calculations.

Equipment used for the simulation was one Acer laptop running on a Intel
Pentium T2390 - 1.86 GHz dual core, with 4 GB RAM running windows 7.
The laptop in question was 5 years of age and not the most powerful machine.
Matlab version R2010a, using functions from the signal processing toolbox and
the optimization toolbox.

3.2 Spatial Resolution
The first test of the algorithms is to see how well they are able to differentiate
between two sources that are close to each other, or in other words, how close
can two sources be and still be detected as two sources? To test this one source
is placed in the centre of the measurement field, the other source is moved away
until two sources are detected.
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3.3 Combating Grating Lobes
As the theory states the main way to avoid grating lobes is to have small
enough distance between microphones compared to the wavelength of the
signal. The problem is then when one is measuring up to 6000 Hz, that
corresponds to a wavelength of 0.057m. The set-up proposed above gives a
maximum measurement angle θmax = 55◦, making the relationship d

λ
= 0.55.

Making the largest distance between to microphones 0.0311m. The lowest
frequency of interest might be 50 Hz, which has a wavelength of 6.8m. The
total array size then depends on the quality of the measurement desired at the
lowest frequency, but should in any case be larger than the lowest wavelength
measured. Using a total array of 13.6m or two times the smallest wavelength
one ends up with 438 microphones. This is a number of microphones that is
impractical. But to see the result one simulation is done with a total array
size of Lm = 2m and a microphone spacing of ∆m = 0.03m, a total of 67
microphones.

A more practical approach is something like the one described in the
”constant directivity beamforming” chapter. Where instead of using the entire
microphone array for the entire measurement area, one uses a subset of the
array for the highest frequencies and then expand the array as the frequency
get lower. The set-up in table 3 follows this idea, but dividing in array sections
for each octave band rather than each frequency bin. This set-up uses 23
microphones.

Band [Hz] (Sub)Array size [m] ∆m [m] New microphones
>4000 0.12 0.02 ±0.6± 0.4± 0.2 0
4000 0.24 0.03 ±0.12± 0.9
2000 0.48 0.06 ±0.24± 0.18
1000 0.96 0.12 ±0.48± 0.36
500 1.92 0.24 ±0.96± 0.72

Table 3: Set-up for expanding aperture

3.4 Low Frequency Resolution
As the goal of the project is to measure the noise from the cars it is also
important to be able to measure low frequencies, as the engine noise is mainly
low frequency noise [6], around 50 Hz depending on the engine revolutions per
minute. Therefore there are experiments with wider total aperture to see how
large the array needs to be to get a result at lower frequencies.
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3.5 Background Noise
Noise is a problem for many different applications, and should also be simulated
to see how much this effects the measurements. Simulations are done with
one source and increasing amounts of noise. This should give a picture of this
effects the result. The amount of background noise is compared to the received
signal. It is also part of the analysis of the small segment variance testing.

3.6 Small Segment Variation
As the goal is to have a real time application, the ability to get an accurate
measurement without taking the average of several time segments is essential.
As the car is only in one measurement segment for a very short time, the question
arises: What happens when, instead of averaging over a long time segment as
the theory suggest, you only use one time segment? Each time segment in the
normal analysis is 0.04s or 40ms. Is there then any difference when decreasing
the segment size to 0.02s or 20ms. Only one source is used for the simulations.
Looking at the octave band results, from the small segment simulations, taking
the maximum point and comparing it with the other segments, that would
previously make one simulation. Both the position of the maximum point, and
the value is compared.

3.7 Performance
There has to be a trade-off with any algorithm, or else there would be no point
in having different algorithms. In the optimization that is done in the SC-
DAMAS more resources are used. How much more resources does SC-DAMAS
require, and is this significant?

It needs to be said that the algorithms used have not been implemented
in an ideal way. Then again using Matlab will not be nearly as effective as
implementing an algorithm in c++ of similar, so the point of this is mostly
to identify whether there is a big difference in the time and resource usage
between DAS and SC-DAMAS.

To get an idea of where and how much computer resources is used on the
different algorithms, the ”profile” function in Matlab is used, giving a detailed
view of the different functions and their time usage.
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4 Results
In this chapter the results from the simulations will be shown and briefly
commented. More comments and a discussion will follow in the discussion
chapter.

4.1 First Comparison
First we start with a general comparison of the DAS and SC-DAMAS beam-
former results. These results are like a basis to start improving from. In the
following sections, one new aspect of the array is changed to see the result
while holding the rest constant. This is done in order to have full control
over which aspects that are affected by changing one aspect of the array. The
first figure, 3, is from a simulation with a total aperture of 2m, with an equal
spacing between microphones of 0.2. The x-axis represents the frequencies, the
y-axis the position along the measurement field. The red colour indicates a
high energy, whereas dark blue indicates little or none energy. The dynamic
area of the colours is 40 dB between dark blue and dark red.

Figure 3: Comparison DAS and SC-DAMAS, Lm = 2m, ∆m = 0.2m

Studying figure 3 we see that both beamformers predict position correctly
as the source is placed in x=0. At the same time there are quite strong grating
lobes starting around 2000 Hz, especially in the DAS image. These kind of
images might be interesting and give a human some understanding of the
workings of the beamformer, but for a computer it is hard to interpret. Also as
the total power measurement that will be obtained often is A-weighted, dividing
the frequencies in octave bands is the first step. It also makes it easier to see
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details at lower frequencies. The octave band frequency plots are shown in
figure 4, there is no weighting applied to the different octave bands. The reason
for the difference in levels of the different octave bands is that the source signal
is white noise, and dividing in octave bands doubles the number of frequency
bins in each octave band.

Figure 4: Octave band power representation

Starting with the highest frequencies in figure 4, it is hard to distinguish
between the different curves, especially as we approach the source position.
The ideal beamformer should have a Dirac like plot for all frequencies, with
one top at the source location and nothing all other places. As the results at
the higher frequency bands come somewhat close to this the curves coincide
making them hard to read, but this is also a sign that the measurement is good.
Uniformity is in this respect positive. The lower frequencies on the other hand
show large main lobes, making them impractical for source location. Lobe
width is found by starting at the maximum value of the lobe, then moving to
each side till the level has decreased sufficiently, the physical distance between
these two parts of the lobe is then the lobe width. In this paper we use the
value -6 dB as the deciding value. With this we can characterize the resolution
in each band by its lobe width as seen in table 4.

The first thing that needs explaining from table 4 is the two lowest frequency
bands of DAS, the N/A is simply because a 6 dB drop from the maximum
level was not achieved within 10 m. The width of 12 m is also quite wide, and
as the application should be able to pinpoint the source, this falls short of the
criteria. It is also apparent that there is a very precise source location at the
highest octave bands with this set-up. The problem with the low frequencies
will be the next focus.
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Frequency band [Hz] DAS width [m] SC-DAMAS width [m]
32 N/A 12
63 N/A 5
125 8 1
250 3.5 0.4
500 2 0.2
1000 1 0.15
2000 0.4 0.1
4000 0.15 0.1

Table 4: Lobe widths. Lm = 2m, ∆m = 0.2m

4.2 Low Frequencies

Figure 5: Comparison at low frequencies [0-1000 Hz]

Figure 5 shows the same plots, as in figure 3, but with focus on the
frequencies 0-1000 Hz. The SC-DAMAS seems to work ok above 200 Hz, below
there is almost nothing. DAS depends on the required resolution, with a 4 m
wide source measurement at 400 Hz, and around 3 m wide at 600 Hz. Worth
noting is that locating the 6 dB drop is hard or impossible to do accurately
in figure 5, so the measured size is an estimate but gives a general idea of
the beam width. The wavelength at 200 Hz is 1.7 m, making the lowest
frequency measurable (in the SC-DAMAS case), having a wavelength of 1.2 of
the total aperture. If the relationship between the lowest frequency and the
total aperture size scales linearly then a total aperture size of 8.2 m is needed
to get a usable result at 50 Hz. Using an aperture with total size of 8.2 m,
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and using an even spacing between each of the 11 microphone (∆m = 0.82m),
results in the figure 6. Using this array and again assuming the scaling property
then the 3 m width of DAS should be at around 140 Hz, the 4 m should be at
around 100 Hz.

Figure 6: Low frequency test, Lm = 8.2m, ∆m = 0.82m, Range [0-500 Hz]

Starting with the DAS of figure 6, we find that the lobe is around 2 m wide
at 200 Hz and to compare to the last measurement: 4 m width is now 100 Hz,
and at 140 Hz the width is 2.8 m. In the SC-DAMAS case the lowest frequency
is around 50 Hz, as one would hope. The same tests have been done with an
array of length Lm = 4.1 and it seems that the low frequency resolution scales
linearly with array size, the result from the 4.1 m test is shown in the appendix
in figures 19 and 20.

Converting the results to octave band measurement gives figure 7. Since the
focus still is on the low frequencies only the 4 lowest octave bands calculated
are shown in the figure. Again starting with DAS, the 32 Hz frequency band
seems to be quite a lot flatter than the others, this is due to the wide lobe of
the lowest frequencies as seen in figure 6. Figure 7 also gives an indication that
the SC-DAMAS works better than DAS at lower frequencies, the fact that the
curves are more uniform points to more consistent results. On the other hand
the 32 Hz octave band seems to be a bit out of shape, this is understandable
as 50 Hz looked to be the lowest frequency with trustworthy result in figure 6.
The results are also clearly better when comparing the beam widths as seen in
tables 5 and 4. Just the fact that there is a measurable lobe width for the two
lowest frequency bands in DAS shows this.
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Figure 7: Octave band power representation, Lm = 8.2m, ∆m = 0.82m
32-250 Hz bands

Frequency band [Hz] DAS width [m] SC-DAMAS width [m]
32 10 1.5
63 4 0.8
125 2 0.3
250 1 0.2

Table 5: Lobe widths. Lm = 8.2m, ∆m = 0.82m
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4.3 Grating Lobes
The simplest implementation with 3cm between each microphone in a 2m long
array gives the results as seen in figure 8.

Figure 8: Implementation without grating lobes Lm = 2m ∆m = 0.03m

Using a spacing of ∆m = 0.03m should remove all grating lobes below 6500
Hz. The result also has good resolution at low frequencies, down to 50 Hz with
SC-DAMAS. Being just a 2 m wide array this is a very good result, as the
same result needed an array of 8.2m. There is an absolute downside to the
array, and that is the number of microphones. With 67 microphones the rig is
impractical, and not very cost efficient.

Following the set up from table 3, the result is seen in figure 9. When
comparing the SC-DAMAS of figure 8 with figure 9 we find that the source
detection is clearer when using 67 microphones, but other than that the results
are very similar. The DAS shows clearly that the measurement aperture is
expanding along the frequency range. There also seems to be a general noise
level, around 15-30 dB below the source level. This technique does give a
large lobe for all frequencies, but on the other hand there are no grating lobes
present.

17



Figure 9: Expanding array to combat grating lobes Lm = 1.92m ∆m =
expanding

4.4 Spacial Resolution
One of the fist questions that needs to be answered, is how much of the frequency
range that needs to measure two sources for the two sources to be detected.
When viewing figure 3 one might assume that above 4-5 kHz it is possible to
differentiate between two sources that are 40 cm apart (as the grid step size is
20 cm, 40 cm is the smallest distance between 2 sources before they become 1
large source). Then again at 1 kHz, considerably more space between sources
might be needed.

The first part of the analysis is supported by the data in figure 10 and figure
11. Even if almost all of the octave bands only show one source, the 5000 Hz
octave band still shows that there are two sources. The sources position have
been identified, but the power is not found as all of the lower octave bands are
non readable with respect to the different sources.

The second part of the analysis also works when looking at figures 12 and
figure 13. As the array is not built for low frequency resolution the lowest
bands are having problem with differentiating between the two sources, but it
works well from the 500 Hz octave band and above. The 250 Hz octave band
almost works in the SC-DAMAS case, and there are clear indications that it is
showing two sources. But then again the second source top is not 6 dB above
the lowest point between the two sources, and it would not be interpreted as a
source.
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Figure 10: Spacial resolution test, sources 2 segments apart. Lm = 2m, ∆m =
0.2m

Figure 11: Spacial resolution test, sources 2 segments apart. Lm = 2m, ∆m =
0.2m
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Figure 12: Spacial resolution test, sources 4 m apart. Lm = 2m, ∆m = 0.2m

Figure 13: Spacial resolution test, sources 4 m apart. Lm = 2m, ∆m = 0.2m
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4.5 Background Noise
Adding noise to the entire microphone array makes it harder to detect the
source position. As seen of the figures 14 and 15, the noise level around the
signal is higher than in the standard case figures 3 and 4. The noise level
around the sources has been increased by 6-10 dB, quite substantial but the
DAS estimates still have a SNR of 13 dB, and the SC-DAMAS a SNR of 23 dB.
And this is with a general noise level equal to the received source level. The
octave band plots are only showing the 125-4000 Hz octave bands as the two
lower has poor or no results even without noise added.

Figure 14: Noise set to equal the signal strength Lm = 2m, ∆m = 0.2m

The algorithms advantage is here that the noise is uncorrelated with each
other and the source, and the fact that there is a averaging over several time
segments. The algorithms noise suppression is in fact so high that a noise
level 3 times as high as the received signal still gives a SNR of 5-6 dB with
the DAS, and around 20 dB for SC-DAMAS, thou the low frequency band
source detection starts to get affected. See the appendix for these result, figures
21 and 22. The limit for the SC-DAMAS is at 4 times the amount of noise
compared to signal. In figure 16 we see that the SNR of the DAS is below 5 dB,
the SC-DAMAS on the other hand is still above 10 dB for the highest octave
bands, but the low frequency resolution is suffering.
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Figure 15: Noise set to equal the signal strength Lm = 2m, ∆m = 0.2m

Figure 16: Noise set to 4 times the signal strength Lm = 2m, ∆m = 0.2m
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4.6 Small Segment Variation
Figure 17 shows the maximum point of the different octave bands. A total of
15 segments are shown in the figure, the noise level is set to half the signal level.
As there are 101 points between −10m and 10m in the measurement grid the
maximum deviation from the centre is 50 positions, position 0 and 101. The
source is placed in position 51. The results from the simulation without noise
is shown in the appendix, figure 23.

Figure 17: Maximum for each 40ms segment and octaveband, noise= 1
2×signal

From figure 17 we see that the lower frequencies have a large spread, both
in position and in value, this decreases as we come to the higher octave band
levels. This can be due to the array being better for octave bands from 250 Hz
and above, but might also be due to the increased number of frequency bins in
the band which makes them less influenced by randomness in one frequency
bin. The total spread, in value, of the 4000 Hz octave band is around 2.5dB for
both DAS and SC-DAMAS, the spread in value of the 32 Hz frequency band
is 12.5dB, in the DAS case, and around 15dB for SC-DAMAS. The spread
in measured position is seen in table 6, for both the cases with and without
noise. The attentive reader might have noticed that the lower frequencies in
SC-DAMAS has a lower octave band power than DAS, this can be explained
by the way SC-DAMAS works. SC-DAMAS has an effect limiting factor, which
DAS does not have, at the low frequencies the main lobe of the DAS will be
very wide with almost full effect everywhere. For SC-DAMAS this then also
translates to effect over the entire measurement field, but the effect constraint
then makes the level lower.

Table 6 shows the variations that are in position. ∆pos is here as in equation
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noise = 0× signal noise = 1
2 × signal

DAS SC-DAMAS DAS SC-DAMAS
f [Hz] ∑ ∆pos

Ntot
N ∑ ∆pos

Ntot
N ∑ ∆pos

Ntot
N ∑ ∆pos

Ntot
N

32 0 0 0 0 11.56 15 41.63 15
63 0 0 0 0 2.63 12 11.88 15
125 0 0 0 0 0.938 9 1.0 10
250 0 0 0 0 0.312 5 0.813 10
500 0 0 0 0 0 0 0.0625 1
1000 0 0 0 0 0 0 0 0

Table 6: Position deviance for 40 ms segments

19, N is the number of samples that causes this number, in other words, how
many segments have their maximum level at another position than the source
position (position 51). As the measurement field grid has a spacing of 0.2m
between each point, a deviation of 1 is the same as miss-calculation of 0.2m.

∆Pos = 1
Nseg,tot

Nseg,tot∑
i=0
|xi − 51| (19)

As can be seen from table 6 the 40ms segments without noise has no misses
in position, adding noise then makes measurements much less stable, as was
also seen in figure 17. Also the deviation from the source position is larger
for the SC-DAMAS case. Thou none of the algorithms managed to measure
correct position (in any of the segments, with noise) in the 32 Hz octave band,
the DAS still had a closer estimate. The SC-DAMAS algorithm has a tendency
to collapse measurements to the extreme positions, in the 32 Hz measurement
only 3 of the 15 segments are measured to a position that is not 0 or 101, as
seen in figure 17. The high amount of misses at the lowest frequency bands
is to be expected when looking at former results. With the array used the 32
Hz band gives an almost totally flat response, as seen in figure 4, this makes it
easier for small deviations to make big impacts to the measurements.

Decreasing the size of the segments, from 40ms, to 20ms gives figures 18 and
24 (seen in the appendix). As the total length of the signal remains constant
the number of segments increases from 15 to 33 (rounding in Matlab gives
the reason for more than doubling). The total spread in values has increased
with the decreased segment time, the lowest octave band (32 Hz) now has
a difference of 20dB between the highest and lowest value in the DAS, and
around 21dB for the SC-DAMAS. The 4000 Hz octave band still seems to
have a spread of approximately 2.5dB for both algorithms. The reason for the
increased spread in the low frequencies might be due to the reduction in time
windows (segment size), but it might also be due to the increased number of
segments. With more segments, the number of extreme segments should also
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Figure 18: Maximum for each 40ms segment and octaveband, noise= 1
2×signal

increase, if we assume that random variations are somewhat normal distributed.
In other words, the extremes may be larger, but the average and standard
deviation may stay the same.

noise = 0× signal noise = 1
2 × signal

DAS SC-DAMAS DAS SC-DAMAS
f [Hz] ∆pos N ∆pos N ∆pos N ∆pos N
32 1 2 1.0606 1 13.56 33 33.52 33
63 0 0 0 0 4.42 29 7.33 30
125 0 0 0 0 1.15 20 1.606 24
250 0 0 0 0 0.4545 14 0.2121 18
500 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0

Table 7: Position deviance for 20 ms segments

Table 7 shows the position results for the 20ms segment simulation. The
first thing to note is that the simulation without noise no longer has the prefect
position prediction that it had in the 40ms segment simulation. With noise the
story is pretty much the same as with a 40ms segmentation. The SC-DAMAS
has more and larger deviations, with the exception being the 250Hz frequency
band where the number is higher, thou the general distance is shorter. The
percentage of deviations shows no clear tendency to which has the highest
number of deviations when comparing 40ms and 20ms. For DAS the maximum
difference is 9% occurring in the 63 Hz octave band (40ms 33%, 20ms 42%), the
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smallest difference is only 1% occurring in the 125 Hz octave band (40ms 60%,
20ms 61%). That being stated, every time there was a difference, the deviation
was largest with the 20ms DAS simulation, also the average missed distance
increases for the 20ms simulation compared to the 40ms. The SC-DAMAS
algorithm has different results, with only the 125 Hz frequency band having a
higher miss percentage at 20ms (40ms 67%, 20ms 72%). For all other octave
bands the 40ms simulations has a higher percentage segments deviating from
the source position, the highest difference is again 9% as in the 63 Hz band
(40ms 100%, 20ms 91%). The average deviation is also largest for the 40ms
simulation in all bands except the 125 Hz band.

4.7 Performance
The results from the ”profile” function in Matlab are shown in table 8. The
test is run on the normal set-up with Lm = 2m, ∆m = 0.2, one source and
no noise. All results are shown in seconds.

function name Calls [n] Total Time
sc-damas 1 510.25 s
das 1 1.892 s
fmincon 441 502.563 s
createA 1 397.408 s

Table 8: Performance results

As can be seen the SC-DAMAS implementation uses considerably more
resources than DAS. The ’fmincon’ function is a minimizing optimization
function, and is the main part of the SC-DAMAS resource use as can be seen
from table 8.

The creation of the A-matrix takes a while and the time increases as the
number of microphones and sources increases, as the generation is combining
all possible options of sources and receivers. The positive with this is then
that the A-matrix, once created can simply be stored and loaded when needed,
saving, in this case, almost 400 seconds.
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5 Discussion
This chapter discusses the results further, looking at weaknesses and strengths
of the results. Starting with the low frequencies, then going on to Grating lobes
and noise, the spatial resolution will be discussed as a part of the different
topics. At the end the small segment use and the performance of the algorithms
is the focus.

5.1 Low Frequencies
Using a total aperture of 8.2m it was possible to get results down to 50 Hz
using the SC-DAMAS algorithm, thou this result is not as clear as it is at 100
Hz, see figure 6. But there is little doubt that the SC-DAMAS improves well
on DAS when it comes to low frequencies. The ability to distinguish between
two sources might also be better, or at least clearer. Another problem with
achieving good low frequency resolution is the length of the time windows. As
the total frequency range is set by the sampling frequency, the size of each
frequency bin is decided by the number of samples in the FFT, or in other
words, the time slots. At 0.04s, each frequency bin represents 25Hz, not just
the centre frequency of the bin. When then dividing into octave bands the 32
Hz octave band will then contain only a one or two frequency bins, the 63 Hz
octave band 3-5 bins, making them more exposed to random variances that
might occur. Also it is common to divide the frequency range not only in octave
bands, but 1

3 octave bands, this would give problems at the lowest frequency
bands, as they would cover a smaller frequency range than the frequency bins.
According to Nordtest method NT ACOU 109 [7] the frequency range of interest
is the 1

3 octave band starting at 25 Hz and up to 10000 Hz.
Following this the question might be: Why not simply extend the time

window? The goal of the project is to measure noise from cars in traffic, in other
words moving cars. A car travelling at 80km/h, or 22m/s, will travel 0.88m in
one time segment. The measurement grid has a grid size of 0.2m, meaning that
the car will have moved through four segments in one time slot. Extending
the timeslot would only decrease the accuracy of the measurement more, one
might in fact, need to shorten the time windows to 0.02s or even shorter. A
measurement resolution of 0.2m might also be unrealistic. With a time window
of 0.02s, the car will travel 0.44m in one time frame, a measurement grid with
0.5m spacing might then be better.

The use of A-weighting does help the measurement. As the lowest frequencies
in any case are being suppressed by the weighting function the result at the
lower frequencies is less important. This may allow for a smaller array with
less microphones, and still getting a good difference between sources in the
A-weighted measurements. Then again the correct A-weighted value should also
be composed of correct values at low frequencies. One of the biggest problems
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with the lowest frequencies is the spacial resolution. As the main lobe widens
at lower frequencies, the ability to distinguish between two sources diminishes.
And if there isn’t a clear difference between the two sources, a measurement of
one might then contain data about the other. Say two cars drive along a road,
one car is an electric car, the other is a petrol car. The electric car will produce
almost no engine noise, and therefore little low frequency noise, while the petrol
car will have a low frequency noise from the engine. If the cars were to drive
4 m apart, and the aperture is 2 m long with 11 evenly spaced microphones,
as in figure 12, then the low frequency measurement of the electric car will be
dominated by the noise from the engine of the petrol car, as it is stronger, and
the beam width is too wide at these frequencies (50-100 Hz).

As the A-weighted level measurements is a sum of the octave band measure-
ments the A-weighted levels might be able to detect two sources in any cases
where one octave band shows two sources. As was the case in figure 10. If only
looking at the A-weighted levels for two sources that are nearby in space, you
can never be quite sure if the measurement is accurate or if most of the lower
frequency power is coming from the other source. To avoid this problem one
can look at each octave band measurement in addition, or have set limits to
how well array separates sources at lower frequencies.

5.2 Grating Lobes
When choosing microphone positions it is possible to eliminate the grating
lobes altogether, as seen in figure 8. Removing the grating lobes over a larger
frequency range does increase the number of microphones needed. Then again
the problem with grating lobes might not need fixing. When studying figure
3, one sees that for the DAS the grating lobe starting around 2000 Hz has
approximately the same level as the source measurement, making detecting a
true source a problem. For the SC-DAMAS there seems to be a level difference
between the source and grating lobe. In this case the grating lobe does not
hinder a clear source detection and characterization, it only increases the noise
level. Püschel et al [1] uses three different microphone set-ups, with 6, 10
or 20 microphones. The lengths of the arrays were 884, 1375 and 2264 mm.
With these apertures the grating lobes will not be eliminated. But as “the
microphones were spaced in a way to avoid to have the same distance inside
of one array twice”, this helps reduce the strength of the grating lobes, as the
distance varies more grating lobes will occur, but they will be weaker than
the main lobe. This because the grating lobes are generated by the distance
between two microphones, which only exists once in the array, thereby being
lower than the sum of all the microphones which you get by delaying correctly.
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5.3 Background Noise
The fact that it is possible to achieve results with a noise level that is higher
than the signal seems too good to be true, but checking the signal shows that it
is in fact true. The reason for it working so well is that the noise is uncorrelated
with the signal, making it possible to use correlation to our advantage, also the
signal is averaged over some time also reducing the impact from uncorrelated
noise. The problem in practice is that the background noise might not be
completely uncorrelated. Correlated noise might typically be reflections of
the car, that therefore have the same characteristics as the cars sound. If
the measurement is done along a open highway, there might not be too many
reflections, minimizing the correlated noise. Uncorrelated noise sources might
typically be noise generated in the equipment, by each microphone, by the
amplifiers, and so on, or wind noise. As the algorithms handle this kind of noise
well, it might be possible to save some money in buying cheaper equipment,
that might generate more noise, and still get satisfactory results.

5.4 Small Segment Variation
As discussed previously, the option of averaging over several time windows is a
privilege that we don’t have when measuring moving cars. From figures 17 and
18 it seems that the problems that the algorithms had previously are worsened
by the small segments and lack of averaging. This is especially the case at
lower frequencies. Then again at higher frequencies the maximum values do
improve in consistency. This might also be due to the increased number of
frequency bins that the octave band consist of, and therefore more results that
are added together. One problem that needs discussing is the splitting of the
signal in 0.02s time windows before FFT. A 50Hz sine wave will have one
period in 0.02s, the same as the segmentation time. The FFT is then done on
each segment without thought of previous or coming segments, the question is
then how well can one decompose into frequency bins when the frequency in
question barley has a whole wavelength of information in the FFT, that is if
we skip the part where the 50 Hz bin should contain frequency information for
more than just 50 Hz. A frequency resolution of 50 Hz (as is the case with 0.02s
windows) is also questionable if one desires a result at the 32 Hz frequency
band, or even if one desires 1

3 -octave band measurement below 200 Hz as the
bin size will be the same or larger than the frequency band size.

5.5 Performance
The most processor consuming part of the SC-DAMAS is the minimization
with constraints. Yardibi et al [2] propose the use of a Self-Dual Minimization
software package, this package was not used in the simulation, instead the
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optimization toolbox for Matlab was used with the ”fmincon” function. There
might be some advantage to using a more specialized algorithm, but the fact
still remains that the minimization requires a considerable amount of iteration,
Yardibi et al [2] used 10 000 iterations for one simulation of one frequency.
With a segment size of 0.02s the number of frequency bins reaches 220 (with a
sampling frequency of 22050 Hz). This makes the total number of iterations, for
optimizing all frequencies, 2 200 000. If the hope is for a real time application
then that number of iterations will have to be done every 0.02s. The pure
numbers of iterations makes for a large trade off. One thing that might help
the SC-DAMAS is the fact that multiple core processors are common. As
the optimization does not require any result from the other frequencies, the
algorithm can easily take advantage of multiple processor cores to reduce the
computation time. Another solution might be to stop the optimization before
a perfect result is reached, thereby reducing the accuracy of the measurement
but at the same time reducing the computation time.
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6 Conclusion
Starting with the first question in the introduction: Is SC-DAMAS a better
beamforming algorithm than DAS?

It seems that SC-DAMAS has a better signal to noise ratio in its simulation
than the DAS, and copes better with increasing background noise levels. The
SC-DAMAS simulations managed to achieve a signal to noise ratio of 10 dB
with a background noise that was four times higher than the source. The
SC-DAMAS also offers a higher suppression of grating lobes, making them less
of a problem. The measurement resolution is also increased as the SC-DAMAS
tries to reduce the number of sources to the smallest amount possible, this
enables octave band measurements at octave bands where DAS would not
manage to achieve results. The biggest advantage that DAS has, is efficiency
and stability. DAS is a fast algorithm and easy algorithm only using the
delay of incoming signals to acquire its result. SC-DAMAS tries to minimize
this result, a process that requires thousands of iterations consuming a lot
of resources. The SC-DAMAS used 270 times as much time concluding the
simulation compared to DAS. The DAS also has the upper hand when dealing
with shorter segments and less averaging, making it more stable. Less segments
were missing their mark making more stable measurements in the small segment
tests.

So to sum up, yes, SC-DAMAS is a superior algorithm when it comes to
noise suppression and source resolution, but falls fare short when it comes to
speed, and is not as stable as DAS.

Are the algorithms viable for a real time implementation for the measurement
of cars in traffic?

The DAS should have no problem in achieving computation times that are
faster than the speed at which data arrives at. For SC-DAMAS the problem is
bigger. The optimization is time consuming, and might be too consuming to
manage to get a real time implementation. One might accept a lower quality
result and stop the optimization early, and the question then becomes how few
iterations are needed to get a satisfactory result.

As DAS has quite good resolution at the highest frequencies one could use
the SC-DAMAS for only a limited part of the frequency range. Then again
it is at the lowest frequencies that the SC-DAMAS would most often miss its
target in the small segment resolution tests.

One might also accept that SC-DAMAS might not work in real time. Most
roads aren’t full of cars all the time. If the measurement equipment only turns
on when a car is approaching, then is could use the time in between cars to
calculate previous measurements, allowing the SC-DAMAS to give results, but
not in real time.

There are several parts of the analysis that require more research:
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• Finding an optimal optimization algorithm might improve the time used
calculating the results from SC-DAMAS.

• Testing the algorithms on real test signals.

• How much of an impact does stopping the optimization earlier have on
the SC-DAMAS results?
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A Appendix - Results

Figure 19: Low frequency test, Lm = 4.1m, ∆m = 0.41m, Range [0-500 Hz]
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Figure 20: Octave band power representation, Lm = 4.1m, ∆m = 0.41m
32-250 Hz bands

Figure 21: Noise set to 3 times the signal strength Lm = 2m, ∆m = 0.2m
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Figure 22: Octave band power, Noise set to 3 times the signal strength Lm =
2m, ∆m = 0.2m

Figure 23: Maximum for each 40ms segment and octaveband, no noise
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Figure 24: Maximum for each 20ms segment and octaveband, no noise

B Glossary

DAS = Delay and Sum
DAMAS = Deconvolution approach for the mapping of acoustic

sources
SC-DAMAS = sparsity constrained DAMAS

FFT = fast Fourier Transform
Lm = Total array size

∆m = Distance between neighbouring microphones in array
|| � ||1 = l1 norm: the absolute sum of the elements
|| � ||2 = l2 norm
SNR = Signal to Noise Ratio
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