
Design of a Snoop Filter for Snoop Based
Cache Coherency Protocols

Rasmus Ulfsnes

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Øystein Gjermundnes, ARM

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

Abstract (English)

Multi core architectures has become common in mobile SoCs; not only for CPUs,
but also for mobile GPUs. With the introduction of OpenCl for mobile GPU
architecture, the SoCs are able to become more powerful than before. Because
programs that were executed on the CPU before, can now be executed faster on
the GPU. Along with this the need for cache coherence protocols has also been
introduced. Snoop based cache coherence protocols inherently leads to extensive
coherence traffic on the bus in a multi core system. All this traffic leads to tag
lookups in remote data caches. However, recent research shows that these lookups
and coherency traffic, are by a large extent unnecessary. In other words a lot of
power is wasted by transmitting unnecessary snoop requests over a interconnect.
This project has explored one possible solution to reducing these requests: Snoop
Filters.

Previous research has been done for CPUs with SPLASH and other benchmark
suits. This thesis however, will look at coherence transactions and lookups from a
GPU perspective. To be able to thoroughly analyze coherence transactions from
OpenCl benchmarks, a parameterizable multi core model has been constructed.
The model is capable of replaying OpenCl benchmarks after executing on a ARM-
MALI T6xx GPU. The results show that similarly to CPU benchmarks, the co-
herency traffic induced by OpenCl benchmark also end up in cache misses. Recent
research also shows that CPU coherency protocols using the MESI states, instead
of just MSI, reduces the unwanted coherency traffic. The reduction is so big that
much that snoop filters and other coherence limiting approaches were unnecessary.
The research done for this thesis has shown that this is not the case for GPUs,
as the MESI protocol does not reduce power consumption in a multi core GPU.
Because of this, snoop filters based on the CSR(Ranganathan & Charbon 2012)
filter were explored.

The analysis in this thesis of the original destination based CSR filter, showed
that the filter reduced the unnecessary tag lookups to around 53% for the OpenCl
benchmarks. This means a great underlying potential in how the resources are
selected according to the address stream. The analysis also showed that a fair deal
of the snoop induced transactions also were unnecessary.

Based on the filter analysis two new filters were designed:

• Source-CSR

• Hashed-index CSR

I

Although source CSR represents more hardware overhead compared to the des-
tination filter, it is capable of reducing 30% of the snoop transactions. The source
filter is also capable of a 53% reduction of the tag lookups. The hashed index filter
was inspired by the potential in reducing the tag lookups further than 53%. The
filter was capable of a 56% reduction. Although this is only 3% improvement over
the normal filter, the filter performed remarkably for a number of benchmarks.
Unfortunately this was not the case for all benchmarks. It shows that dynamic
allocation of filter resources is capable of further reduction. The best case scenario
would have been to use the original resource selection on some of the benchmarks,
and the hashed index system on the others.

The source filter was also implemented in Verilog HDL, and formally verified in
JasperGold using SystemVerilog. The filter was supposed to be power simulated,
but some unknown error in the switching activity conversion halted any further
power estimation. A proper conclusion about the power saving potential for the
source filter can therefore not be made. This thesis does however include a power
estimation methodology in order for the power estimation to be completed in the
future.

II

Sammendrag (Norsk)

Flerkjerne arkitekturer har blitt standard i mobile SoCer, ikke bare for CPUer,
men ogs̊a for mobile GPUer. Med introduksjonen av OpenCl for mobile GPU
arkitekturer har SoCer blitt mer kraftige enn noen gang. Dette fordi programmer
som tidligere ble kjørt p̊a CPUen n̊a kan bli kjørt raskere p̊a GPUen. P̊a grunn av
dette kom ogs̊a behovet for cache coherency protokoller. Snoop baserte coherency
protokoller fører til voldsom coherency trafikk p̊a bussen i flerkjerne systemet.
All denne trafikken leder til tag oppslag i de andre nodene i systemet. Samtidig
har nyere forskning vist at disse oppslagene og derfor trafikken for det meste er
unødvendig. Detter fører da ogs̊a til at systemet bruker unødvendig mye energi.
Dette prosjektet har utforsket en mulig løsning p̊a dette: Snoop Filtre.

Tidligere forskning har kun blitt gjort for CPUer med SPLASH og lignende
benchmarker. Denne master oppgaven derimot vil studere coherency transaksjoner
og oppslag fra et GPU perspektiv. En parameteriserbar model ble konstruert
for å være istand til å grundig analysere transaksjonene som oppst̊ar ved kjøring
av OpenCl applikasjoner. Modellen er istand til å rekonstruere transaksjoner fra
OpenCl applikasjoner som ble kjørt p̊a en ARM Mali-T6xx GPU. Resultatene viser
at akkurat som for CPU applikasjoner ender de fleste transaksjonene for OpenCl
applikasjonene ogs̊a opp i en cache-bom. Nyere forskning har ogs̊a konkludert
med at CPUer med MESI coherency protokoller, reduserer denne unødvendige
traffiken i forhold til MSI protokollene. Reduksjonen er s̊a stor at snoop filtre og
andre systemer for strømreduksjon blir unødvendig. Denne master oppgaven vil
derimot vise at dette gjelder ikke for GPUer, og at MESI protokoller ikke har noen
positiv effekt p̊a strømforbruket. P̊a bakgrunn av dette ble snoop filtre basert p̊a
(Ranganathan & Charbon 2012) undersøkt.

Analyse av det orginale destinasjons baserte CSR filtret viste at filtret var istand
til å redusere oppslagene med 53% for OpenCl applikasjonene. Detter betyr at det
er et stort potensiale i hvordan filter velger ressurser avhengig av adresse strømmen.
Analysen viste ogs̊a at mange av snoop transaksjonene ogs̊a var unødvendig.

P̊a bakgrunn av filter analyse ble to nye filtre utviklet:

• Source-CSR

• Hashed-index CSR

Selv om source CSR representerer mere hardware kostnad sammenlignet med
destinasjons filteret, er det istand til å redusere snoop transaksjonene med 30% i

III

forhold til det orginale filteret. Samtidig er det ogs̊a istand til å redusere tag opp-
slagene med 53%. Hashed-index filteret var inspirert av potensialet til å redusere
oppslagene med mer enn 53%. Filteret er istand til å redusere oppslagene med
56%. Selv om dette er kun 3% mer enn det normale filteret var filteret utmerket
for noen av applikasjonene. Desverre s̊a var det mye d̊arligere enn det orginale p̊a
andre. Dette viser at en dynamisk allokering av ressursene er istand til å oppn̊a
høyere reduksjon. Det beste hadde vært om the orginale filteret system ble brukt
p̊a noen av applikasjonene, og at hashed-index filteret blir brukt p̊a de andre.

Source filteret ble ogs̊a implementert i Verilog, samt formelt verifisert i Jasper-
Gold ved hjelp av SystemVerilog. Det var ogs̊a meningen at filteret skulle effekt
simuleres, men en ukjent feil i svitsje aktivitet konversjonen stoppet dette forsøket.
P̊a grunn av dette kan ikke en skikkelig konklusjon ang̊aende effekt reduksjonen til
filteret bli gjort. Forøvrig har denne oppgaven utviklet en metode for å estimere
effekt forbruket, slikt at dette kan bli gjort senere.

IV

Contents

Abstract (English) I

Sammendrag (Norsk) II

Contents V

List of Figures IX

List of Tables XI

Abbreviations XIII

1 Introduction 1
1.1 Thesis Description . 2

2 Memory Systems in Multicore SoCs 5
2.1 Cache Coherence . 5

2.1.1 Coherence Protocols . 7
2.1.1.1 Snoop based protocols 7

2.2 Power Consumption in Multi-Core System 9
2.3 Snoop Filters . 10

2.3.1 Source Filter . 11
2.3.2 Destination Filter . 11
2.3.3 Exclusive/Inclusive . 12
2.3.4 MESI Protocols Make Filters Redundant 12

2.4 Summary . 12

3 Model for Evaluating Snooop Filters 15
3.1 Evaluation Criteria . 16

3.1.1 Tag Lookups . 16
3.1.2 Snoop Induced Transactions 16

3.2 Architecture . 16
3.2.1 Core . 17
3.2.2 L1 Cache . 18
3.2.3 L1 Cache Controller . 18

V

Contents

3.2.4 Bus Interface . 21
3.2.5 L2 Cache Controller . 22

3.3 Benchmarks . 22
3.4 Summary . 23

4 Snoop Filters and Performance 25
4.1 Related Work . 25

4.1.1 Stream Register Based Snoop Filters 25
4.1.2 Counting Stream Register Snoop Filter 27

4.2 Simulation and Results . 28
4.2.1 Comparing MESI and MSI 29
4.2.2 Destination CSR . 29

4.3 New CSR Filters . 33
4.3.1 Source CSR . 33
4.3.2 Source CSR Results . 34
4.3.3 Hashed-index CSR . 35
4.3.4 Hashed-index CSR Results 35

4.4 Filter Comparisons . 36
4.4.1 Tag Lookups . 36
4.4.2 Snoop Transactions . 40

4.5 Summary . 43

5 Design and Verification 45
5.1 Design and Specification . 45

5.1.1 Interconnect Surveillance Module 47
5.1.2 CSR Update Module . 48
5.1.3 CSR Check Address Module 51
5.1.4 CSR Register Bank . 52

5.2 Verification . 53
5.2.1 UVM . 54
5.2.2 Formal Verification . 55
5.2.3 Design Verification . 55

5.2.3.1 Toplevel Properties 55
5.2.3.2 Interconnect Surveillance Properties 57
5.2.3.3 Update Address Properties 59
5.2.3.4 Check Address Properties 62

5.3 Summary . 64

6 Power Consumption Analysis 65
6.1 Power Consumption . 65
6.2 CMOS Power . 65

6.2.1 Dynamic Power . 66
6.3 Power Estimation of Tag Lookups and Transactions 67

6.3.1 Tag Lookups . 67
6.3.2 Transactions . 67

6.4 Power Simulation of Filter . 67

VI

Contents

6.5 Power Estimation of Benchmarks . 68
6.6 Summary . 68

7 Conclusion 69
7.1 Future Work . 70

A Dynamic Multicore Model 71
A.1 L2 Controller: MSI FSM . 71
A.2 L1 Controller: MESI FSM . 72

B Verilog Code for Source CSR Filter 73
B.1 Toplevel for Source CSR Filter . 73
B.2 Interconnect Surveillance Module . 77
B.3 Update Address Module . 79
B.4 Check Address Module . 85

C SystemVerilog properties used to verify CSR Source Filter 89
C.1 Toplevel Properties . 89
C.2 Interconnect Surveillance Properties 92
C.3 Update Address Properties . 94
C.4 Check Address Properties . 99

References 102

References 103

VII

List of Figures

2.1 Multicore System with 4 cores connected through an interconnect . . . 5
2.2 Incoherent multi core system . 6
2.3 Snoop based protocol execution . 8
2.4 What is affected by broadcasting coherence requests 10
2.5 Source Filter . 11
2.6 Destination Filter . 12

3.1 Memory System Architecture . 15
3.2 Memory System Architecture with Filter 17
3.3 Core Module in Model . 17
3.4 L1 Controller Module . 19
3.5 FSM for MSI cache controller . 19
3.6 Sub-FSM for state I . 20
3.7 FSM for Bus Snooping . 20
3.8 Bus Transaction System . 21

4.1 Basic architecture for Stream Register (Salapura et al. 2007) 26
4.2 Basic architecture for Counting Stream Register (Ranganathan & Char-

bon 2012) . 28
4.3 Chunk test for CSR destination filter . 31
4.4 Heat map for necessary snoops, Atomic And(x = NUT ag, y= address) 31
4.5 Heat map for unnecessary snoops, no filter, Atomic And(x = NUT ag,

y= address) . 32
4.6 Heat map for unnecessary snoops, with CSR-32 destination filter, Atomic

And(x = NUT ag, y= address) . 32
4.7 Comparison of filters: Tag lookup . 38
4.8 Heat map for unnecessary snoops, CSR with hashed index, Atomic

And(x = NUT ag, y= address) . 39
4.9 Different Filter Sizes: Tag Lookups, Average improvement 39
4.10 Comparison of filters: Snoop Transactions 41
4.11 Different Source Filter Sizes: Snoop Transaction, avergage improvement 42

5.1 Source Filter Toplevel . 47
5.2 Source Filter Update Address Module 50
5.3 Source Filter Check Address Module . 51

IX

List of Figures

5.4 CSR Register . 52
5.5 CSR Register Bank . 53
5.6 UVM: Verification EnvironmentAccellera (n.d.) 54

6.1 CMOS inverter . 66

A.1 L2 Controller FSM for MSI Coherence Protocol 71
A.2 L1 Controller FSM for MESI Coherence Protocol 72

X

List of Tables

2.1 MOESI Protocol States . 9

3.1 Different Benchmarks Run on the Model 23

4.1 Necessary Tag Lookups . 28
4.2 MSI vs MESI . 29
4.3 CSR Results- Different Sizes . 30
4.4 Improvement vs. No-Filter: Destination-CSR 30
4.5 Source-CSR Results- Different Sizes . 34
4.6 Improvement vs. No-Filter: Source-CSR 34
4.7 Source-CSR Results- Different Setups 35
4.8 Improvement vs. No-Filter: Source-CSR, different setups 35
4.9 Hashed-index-CSR Results- Different Setups 36
4.10 Improvement vs. No-Filter: Hashed-index-CSR, different setups 36

XI

Abbreviations

SoC = System on Chip
SMP = Symmetric Multiprocessing
DST = Destination
SRC = Source

XIII

Chapter 1

Introduction

The number of transistors per chip has increased following Moore’s law since the
1960s. This ever increasing transistor count has made it harder for designers to
utilize the extra transistors in CPU architectures. Because of the increase in design
complexity the single core CPUs has evolved into multi core architectures. By
duplicating the single core architecture, the hardware designers are able to utilize
more of the available transistors on the silicon. Another reason for creating a
multi core CPU was because the instruction-level-parallelism (ILP) (Hennessy &
Patterson 2006) had been fully exploited. This paved the way for thread-level-
parallelism (TLP) where the CPUs are designed to utilize the parallelism between
program-threads. By using a multi-core desig the TLP can be further exploited,
because different threads can run in parallel on different cores instead of sharing
one single core.

While multi-core architectures has made it easier for designers to utilize the
increasing transistor count, and further exploit the increasing TLP in consumer
systems, it has also introduced some challenges in order to maintain coherence
among the caches in the system. This is also known as the cache coherence problem.

For mobile SoCs another problem has arisen, the solutions to the coherence
problem was aimed at maximum performance not conserving power, which is a big
problem for mobile SoCs. Recently the interaction between the modules on a single
mobile-SoC has increased. By introducing OpenCl for mobile GPUs it has been
possible for operations that has been normally executed on the CPU to be run on
the GPU. This of course has introduced the same cache coherence problem as for
the CPUs. The work done in (Ulfsnes 2012) showed that snoop filter was a possible
solution to reduce the power consumption in cache coherent systems. Especially
the CSR filter by (Ranganathan & Charbon 2012) was especially interesting.This
thesis will consist of four parts.

1. Theory:

• Cache coherence protocols will be presented, and an introduction to
snoop filters in chapter 2. The stream register and counting stream

1

1. Introduction

register filters will be presented in chapter 4. AMBA/ACE was investi-
gated, but deemed to time intensive to work on in this thesis.

2. Modeling and Evaluation:

• Chapter 3 presents a model created for evaluating different filters and
coherence protocols. The model is able to create synthetic benchmarks
as well as using OpenCl benchmarks from MALI-T6xx GPUs.

• Newly designed filters will be presented in 4.
• The old and new filters will be compared in 4.

3. Design and Verification:

• RTL design of a new filter will be presented in chapter 5.
• The RTL code will be verified in chapter 5.

4. Power Analysis: In addition to the thesis statement chapter 6 will analyze
the power consumption of the filters to figure out if the new filter are useful
for implementation.

The Python model used in this project can be provided by sending an email to
rasmus.ulfsnes@gmail.com.

1.1 Thesis Description

Design of a AMBA ACE snoop filter for snoop based cache coherency protocols
Introduction
A multiprocessor is a tightly coupled computer system having two or more pro-

cessing units each sharing main memory and pheriperals, in order to simultaneously
process programs.

The shared memory system in a multiprocessor usually contains a hierarchy of
caches where the lowest cache levels are private to each individual processing unit
and the last level cache is shared among all the processing units. In such a memory
system it is important to ensure the local caches are always in synch so that no
core ends up processing old data. In other words, we need some system that can
maintain cache coherency.

One popular class of cache coherency protocols is snoop based cache coherency
protocols. In short a memory system with a snoop based cache coherency protocol
will have infrastructure that allows each cache to monitor or snoop the shared bus
for addresses that it has cached. Based on this information the cache will take
actions to ensure coherency is maintained.

Each core in a snoop based system with N cores will have to monitor traffic
from the N-1 other cores. With N cores in a system the snoop traffic becomes
proportional to N(N-1). Much of this traffic is however wasted it is very rare that
a given cache line is shared among all the cores. In order to reduce the cache
coherency traffic it is possible to insert a snoop filter. A snoop filter has knowledge

2

mailto:rasmus.ulfsnes@gmail.com

1.1. Thesis Description

about which cores that has cached what, and uses this information to filter away
requests that is of no interest to the different cores.

Thesis statement
This master project aim to create a snoop filter for integration into an AMBA

ACE based memory system. The project can be divided into the following tasks:

• Literature study:

– Study the AMBA ACE and AMBA AXI4 protocols.
– Study typical snoop filtering techniques. Understand what the factors

are that affect the efficiency of snoop filter as well as well as how different
heuristics will affect the size, performance and power consumption of the
design.

• Architecture, Model and benchmark:

– Suggest filter strategy, create a model and measure the performance of
the filter.

– Create a synthetic benchmark that has a lot of shared data, and demon-
strates the performance of the filter for different scenarios.

– Retrieve buslogs from ARM for interesting real life benchmarks that you
test on your model.

• Design and test:

– Identify the core of the filter and create a spec for that.
– Write RTL code for the filter.
– Test that the filter works. Preferably using both assertion based verifi-

cation and creating a lightweight constrained random UVM based test-
bench.

3

Chapter 2

Memory Systems in Multicore
SoCs

2.1 Cache Coherence

Along with the introduction of the multi-core processer came the notion of shared
memory. In any multi-core system the different cores at some time or another will
share some memory. In figure 2.1, a typical multi-core system is depicted. There
are a number of cores which are all connected to a shared LLC(last-level-cache),
through some interconnect. The core consists of a CPU, a cache controller and a
L1-Cache.

Figure 2.1: Multicore System with 4 cores connected through an interconnect

When two or more cores share cache lines the coherence problem occurs when
one of the cache controllers wants to change one of the cache lines. If the other
controllers are not made aware of that alteration they may end up using stale data.

5

2. Memory Systems in Multicore SoCs

(a) Time: t=0: A cache line is loaded in two cores

(b) Time: t=1: One of the cores writes to the shared cache line, the system is incoherent

Figure 2.2: Incoherent multi core system

In figure 2.2a, at some time t=0, two of the cores has loaded the same address.
The cache line is unaltered, hence the yellow color. Consider that at time t=1,
the leftmost core will execute a write operation that particular cache line, figure
2.2b. The write changes the data hence the red color. After the doing the write
the two cores has two different versions of the same cache line, leaving the system
in an incoherent state. Then if at time t=2 the core with the yellow cache line do
some computations with those data it will in fact use old and incorrect data. This
is known as the coherence problem.

6

2.1. Cache Coherence

2.1.1 Coherence Protocols
The coherence problem is solved through coherence protocols. There are several
different protocols:

• Snoop based protocols

• Directory based protocols

• TokenB

• Snarfing

Snoop based protocol is the most popular protocol because of its simplicity and
influence in desktop and server solutions, as well as in recent SoCs. It relies on
broadcasts, and snooping of those broadcasts, to ensure coherence. Directory based
protocols employs a directory where information about each cache line is stored.
This way the directory has full control over which core has loaded which cache line.
TokenB is a protocol where each cache line has a number of tokens associated with
it. The number of tokens has to be at least as high as the number of cores. Any
core which possesses at least one token can read, any core that has all the tokens
for the cache line has write privileges. Snarfing directly updates local cache data
without going through a centralized memory.

2.1.1.1 Snoop based protocols

Snoop based coherence protocols has because of its simplicity and low overhead
become very popular in any multi-core system. The basic idea behind snooping
protocols is that every update to a cache line is broadcast to every other controller,
so they in turn can check the cache and see if the specific cache line is present in
the cache.

Consider the same scenario as in figure 2.2a where two of the cores has address
A loaded. Then consider figure 2.3a, which is an alternative version of figure 2.2b.
When a snoopy protocol is used, the core will send invalidate requests to all other
cores in the system. Then at time t=2 , figure 2.3b, if the core wants to use the
data from that particular cache line it will have to request the updated data from
the owner of the cache line. Which depending on the protocol will be either the
LLC or the controller that updated the line.

7

2. Memory Systems in Multicore SoCs

(a) Time: t=1: When the write occurs the controller issues invalidate requests to all the
other controllers

(b) Time: t=2: If the controller with the yellow cache line wants to read the data it has
to ask the owner of the cache line for the updated value.

Figure 2.3: Snoop based protocol execution

The most common protocols use a subset of the MOESI state model (Daniel
J. Sorin 2011). Here the MSI are the most basic states, E and O are additions
to the MSI state space. All of these states build on some basic characteristics;
validity,dirtiness, exclusivity and ownership (Daniel J. Sorin 2011)[p.89].

8

2.2. Power Consumption in Multi-Core System

Table 2.1: MOESI Protocol States

State: Description
M(odified): The line is exclusive, owned and valid. It can be read

from, or written to, at any time without notifying other
controllers. The line is therefore potentially dirty, meaning
that this is the only updated version of the line.

O(wned): The line is potentially dirty and valid. The line may be stale
in the LLC, meaning that the controller needs to respond
to requests. It is not exclusive as other cores may have
read-only privileges.

E(xclusive): This line is not dirty, but valid and exclusive. This line is
only present in one cache, and the LLC has an up to date
version.

S(hared): The line is valid, clean and not exclusive, other caches may
have the cache line for reading.

I(nvalid): The line is invalid, the cache line is not present in the cache.

The motivation for adding the exclusive state was in case a cache first reads to
an address, then a immediate write to the same address can be performed without
notifying other caches. Thus reducing coherence transactions.

The owned state was motivated by redundant updating of the LLC when a
cache needs to respond to a load snoop request. Instead of going from M or E to
S, the controller goes to O. The line will not be written to the LLC, and it also
avoids future writes to the LLC as the cache controller owns the data.

This project will focus on the basic MSI with the addition of the exclusive
state(E). A recent survey (Ulfsnes 2012)(Ulfsnes) offers more information about
states, transient states and specification of protocols.

2.2 Power Consumption in Multi-Core System

Snoop based protocols are very popular because of its simplicity and low-latency
coherence transactions, meaning that every core gets the invalidate request in par-
allel. This parallel handling of a request is very performance friendly if not very
power efficient. In (Ulfsnes 2012) a thorough analysis of power consumption in co-
herent multicore systems are given. One of the biggest problems with snoop based
coherence protocols from an energy perspective, is that even thought the perfor-
mance is better off with parallel broadcast to every node, the power consumption
will also be higher than necessary.

In any multicore system the amount of shared cache lines between cores will be
limited, only 10% needs coherence actions (Nilsson et al. 2003). This means that
most of the coherence requests will end up wasting power both in the interconnect

9

2. Memory Systems in Multicore SoCs

as well as in the caches. From (Ulfsnes 2012) 2-7% of the total energy consumption
can be reduced by removing unnecessary coherence requests.

Several solutions has been proposed to limit the unnecessary tag lookups. The
survey in (Ulfsnes 2012) describes the solutions in more detail, but the solutions
can be roughly divided into two camps:

1. Snoop Filters

2. Power Saving Protocol Design

Number 2. requires architectural changes to already designed systems, includ-
ing relaxed consistencies and different bus interface amongst others. Power saving
protocol design is therefore not that useful when trying to reduce power in archi-
tectures that already exists.

Snoop filters on the other hand requires less architectural changes. That is why
this thesis has focused on researching snoop filters for mobile GPU solutions.

2.3 Snoop Filters

In order to improve the energy consumption without sacrificing performance snoop
filters was introduced by Moshovos et al.(Moshovos et al. 2001). Snoop filters are
basically directory based structures that has less lookup costs than a cache lookup.
A snoopy system without filters can be seen in figure 2.4.

Figure 2.4: What is affected by broadcasting coherence requests

The red areas are the parts of the system that will consume power when subject
to any coherence requests. There are two types of filters, source and destination,
which can be subdivided into inclusive and exclusive as well.

10

2.3. Snoop Filters

2.3.1 Source Filter
Source filter is a type of snoop filter that filters the coherence requests before they
reach the interconnect. They will therefore reduce the energy consumption from
the interconnect as well as the tag lookups in remote caches.

Figure 2.5: Source Filter

Figure 2.5 shows that the source filter will limit the red areas compared to
figure 2.4. The introduction of the filter itself will introduce a new source of energy
consumption and therefore has to be considered when looking at the net energy
reduction.

2.3.2 Destination Filter
The destination filter sits on the destination side of the coherence transaction. It
will therefore only be able to filter transactions going through the TLB and into
the cache. Figure 2.6 shows that the red are expanded to include the interconnect.

11

2. Memory Systems in Multicore SoCs

Figure 2.6: Destination Filter

2.3.3 Exclusive/Inclusive

The filters can also be divided into exclusive and inclusive: Inclusive: An inclusive
filter holds a superset of all the addresses that is currently cached. Any miss
occurring in the filter will definitely occur in the cache.

Exclusive: An exclusive filter is a filter which holds a subset of all addresses
that is not currently cached, it will filter based on what is not in the cache. Any
hit in the filter will definitely not be in the cache.

2.3.4 MESI Protocols Make Filters Redundant

Recent research (Ranganathan & Charbon 2012) however has shown that the MESI
protocol as compared to the MSI, will to a great extent reduce the number of
coherence transaction, acting as a source filter. Making filters redundant. This
research was done for embedded CPUs, while this project will consider GPUs with
OpenCl application, which has different shared memory footprints. Where MESI
protocols does not have the same effect as for CPUs. This will be presented in
section 4.2.1.

2.4 Summary

The most popular snoopy coherence protocol has limitations when it comes to
preserving power, it has been optimized for performance on desktop and server
systems. The coherence protocol will broadcast requests to every remote core,
without knowing if the cache line associated with the request is in the cache. Recent
research into limiting snoop power consumption has introduced snoop filters. Late
research has shown that MESI has great effect on snoop induced power reduction

12

2.4. Summary

in SoCs. This project will focus on GPUs with OpenCl applications, where MESI
is not as effective as for CPUs.

13

Chapter 3

Model for Evaluating Snooop
Filters

In order to find out which filters are effective with GPU benchmarks a model
that can use GPU memory traces as stimulus had to be constructed. The model
overview can be seen in figure 3.1.

Figure 3.1: Memory System Architecture

The system supports 1 to N number of cores with separate cache-controllers
and L1 cache. All of the controllers and interface are interchangeable so that
different configurations are supported. The baseline model includes MSI and MESI
cache coherence protocols. The L1 cache controller can however be altered to any
coherence protocol.There may also be a need to change the interconnect and the
L2 cache controllers depending on the wanted protocol. The L1 caches are 32kb
4-way set associative by default.

15

3. Model for Evaluating Snooop Filters

All of the cores share one L2 cache, and the capacity of the L2 is infinite.
Meaning that whenever a L1 cache miss occurs, it will always find the missed
cache line in the L2. The reason for this is to avoid modeling higher levels of
memory. The stimulus for the model can be created randomly, using Pythons built
in random function. It can also replay memory operations from Mali-T600 GPUs.

3.1 Evaluation Criteria

The goal of the model is to measure the energy impact of coherence induced traffic
and snoop lookups. As stated earlier this can have a significant impact on the
overall power consumption.

3.1.1 Tag Lookups
There are two types of snoop induced tag lookups, both of which are counted in
the L1-controller:

• Necessary: These are the tag lookups that are necessary for maintaining
system coherence.

• Unnecessary: These are the tag lookups that miss in the cache, and there-
fore waste power.

The model returns both these numbers as:

• Necessary = Number of snoop induced hits in the cache.

• Unnecessary = Total number of snoops - number of necessary snoops.

3.1.2 Snoop Induced Transactions
In order to evaluate source filters, the snoop induced bus traffic also has to be
monitored. The model will report the total number of snoop induced transaction.
It can not however differentiate between unnecessary/necessary transactions

3.2 Architecture

The architecture of the model can then be changed to measure the performance.
This can be done with filters, as figure 3.2 illustrates, or without a filter structure
as shown in fig 3.1. The system consists of a dynamic number of cores with L1-
cache and cache-controllers. The highest level of memory is the L2 cache. All the
communication goes through a simple shared interconnect.

16

3.2. Architecture

Figure 3.2: Memory System Architecture with Filter

3.2.1 Core
The core is basically a transaction pusher. It will have a set of read or write instruc-
tions, which it will request the cache controller to perform. Whenever the cache
controller is busy, the core will wait until the controller is done before requesting
a new operation.

Figure 3.3: Core Module in Model

Figure 3.3 shows the interface of the core module. As long as the busy signal
is not high, the core will order a new load/store operation and stall. Whenever
WREADY or RVALID goes high a new operation can be started.

At the start of the simulation the core will get its instruction queue filled from
three possible sources:

1. UTLB Logs: The Mali-T600 GPU consist of a number of cores which all
have their own LSC (load-store-cache). The core uses virtual addresses,

17

3. Model for Evaluating Snooop Filters

while the LSC uses physical addresses. The address going to the LSC there-
fore needs to be translated using a UTLB(micro-translation-lookaside-buffer).
The operations going through the UTLB is captured in a log. The log is then
parsed by the model and converted into instructions for the core.

2. Random Stimuli Generation: The instructions for the core can also be
randomly created. The user can control different parameters of the created
stimuli:

• Length of Simulation: The user can define how many operations there
are per core.

• Address Range: The range of the address space can be defined.
• Sharing: The user can define the probability for multiple cores sharing

the same addresses by altering the ratio: nr operations
address range

• Chunk Size: The number of consecutive addresses can be changed
using this variable. If the size is set to 10 the generator will randomly
select an address and create 10 consecutive load/stores addresses from
the randomly selected address.

3. Playback: The randomly created stimuli will be stored in a log file, so that
the same stimuli can be tested on different architectural configurations.

3.2.2 L1 Cache
The L1 cache is a 32kb 4-way set associative data cache. Each cache line is 64 bytes,
and there are 128 sets in the cache. The cache controllers are dynamic in the sense
that it does not care about how many sets, or how many cache lines, there are in
the cache. The cache architecture can therefore be reconfigured without changing
the controller.

3.2.3 L1 Cache Controller
The L1 cache controller is the heart of the memory system. It handles requests
from the Core as well as snoop requests from remote controllers. The controller is
implemented using an FSM that represent the desired coherence protocol.

18

3.2. Architecture

Figure 3.4: L1 Controller Module

Figure 3.4 shows the controller module and its connections. The bottom part
is the connections to the bus and snoop interface. The access signals SACCESS
and ACCESS are signals sent to the interface asking for access to snoop and bus
interfaces respectively.

Figure 3.5: FSM for MSI cache controller

The MSI FSM can be seen in figure 3.5. The FSM for the controller was
implemented using the specifications given in (Daniel J. Sorin 2011)[p.107]. There
are three sub-FSMs in figure 3.5, covering the M, S and I state. Each sub-FSM
has two different paths depending on whether the operation is read or write.

Example: Consider that the cache line has not been loaded into the cache yet.
In other words the line is invalid. Figure 3.6 shows the sub-FSM for state I.

From an idle state the controller will enter state IW. IW will set the ACCESS
and SACCESS(section 3.2.4) signals high and move to IWM where the signals are
set low. If the controller uses a source filter ACCESS can be the only signal set
high if the filter says the address is not cached in any other node. When access

19

3. Model for Evaluating Snooop Filters

Figure 3.6: Sub-FSM for state I

to the bus has been granted the machine moves to IWMM. IWMM will set the
WREADY signal high, inform the core that the controller is now idle, and store
the cache line with state I.

The state machine can at any time enter the snoop-state machine(fig 3.7).

Figure 3.7: FSM for Bus Snooping

If the cache line is in state M or S and the snooped operation is a store, the
snoop controller will invalidate the cache line and return to the previous state. If the
operation is a load and the cache line is in state M, the controller has to provide the
data to the requesting node. It will therefore ask for prioritized access(PACCESS)
to the bus interface. As soon as the data has been shipped, the controller will

20

3.2. Architecture

return to the pre-snoop state.
FSM for L2-cache controller and MESI FSM for L1-cache controller can be

found in appendix A.

3.2.4 Bus Interface
The bus interface in the model is a single shared bus, which accepts one atomic
request each cycle. Modern CPUs and GPUs use more performance friendly in-
terconnects, which are able to serve one request from each core every clock cycle.
These interconnect systems are of course much more complex than a simple bus.
But for this project a single shared bus is sufficient. This is because the goal is only
to count the number of transactions on the interface and the tag lookups in the
cores. A single bus will use four cycles to complete four transactions. A bus which
is four times as big will use only one cycle, but the end result for the transaction
count is four in either case. Because of this and the reduced complexity a single
shared bus was implemented in the model.

Figure 3.8: Bus Transaction System

Figure 3.8 shows how transactions are handled by the bus interface. Each core
is connected to the check for access module. The check for access module checks
every cycle to see which cores wants to access the bus. The module will then update
a waiting list for the bus. The arbiter will then select one of the cores to access
the bus. The transaction handler will get information about the selected core from
the arbiter and grant the core access. If the destination of the transaction is the
L2 cache, it will not grant access until the L2 cache controller is no longer busy.
The transaction handler will also check if the core wants to inform the other cores
about the transaction. This is done by checking the SACCESS flag. If the system
uses a source filter this flag may be low, enabling the system to save power by not
informing the other cores.

21

3. Model for Evaluating Snooop Filters

Every transaction contains these items:

• OP: This is a operation specifier:

– Read: If the core wants to load a cache line. If a remote cache has the
cache line, it will snoop and respond instead of the L2 cache controller.

– Write: Load operation, other cores will get an invalidate request.
– Evict: The L1 cache controller will evict a cache line if it has to be

replaced and the data is in state M.
– Snoop Update: Whenever a cache needs to respond to a load request, it

will start a snoop update transaction.

• ADDR: The address where the operation is being performed.

• SOURCE: Who is the source of the transaction.

• DESTINATION: Which node is the destination of the transaction.

• DATA: Data needed at the destination.

3.2.5 L2 Cache Controller
The controller for the L2 cache will check the bus interface to see whether it is the
destination for the transaction. If it is it will capture the address and the operation
specifier and do a cache lookup. The cache lookup will give owner information
about the cache line. If the cache line is owned by the L2 cache it will in the case
of a store operation give ownership to the requesting core, or in the case of a write
operation give data back to the requesting core. If the cache line is not owned by
the L2 cache it will simply do nothing, just go to an idle state. The L2 cache is
given prioritized access to the bus interface in order to speed the simulation time.

3.3 Benchmarks

Six different OpenCl benchmarks were tested on the mode, tablel 3.1 has a short
description of them. The benchmarks use 4 cores if nothing else is stated.

22

3.4. Summary

Table 3.1: Different Benchmarks Run on the Model

Benchmark: Description:
Sobel: The Sobel operator is often used in image processing

for edge detection.
Atomic-Sum: This is a built in function in OpenCl. It will compute

the sum of a sequence using atomic operations.
Gauss Filter: The Gaussian filter is a filter with an Gaussian func-

tion as impulse response. It is often used to reduce
noise in images by blurring/smoothing the image.

Atomic-Logical-Xor: An atomic xor operation.
Histogram: OpenCl function that calculates the total number of

occurrences for gray-scales in an image. This bench-
mark uses only 2 cores.

Atomic-Logical-And: Atomic logical and operation. This benchmarks uses
8 cores.

GPGPU on mobile devices is not yet very common and the number of available
benchmarks and applications are few. That being said, the benchmarks used is a
good representation for possible applications that makes sense to run on GPUs

3.4 Summary

A dynamic multi core model was designed in order to evaluate different snoop filter
structures. The model is able to both randomly create stimul,i and use data from
Mali-T6xx executed benchmarks. The next chapter is going to present work related
to snoop filters as well comparing the performance of CSR and new proposed filter
designs.

23

Chapter 4

Snoop Filters and Performance

With the model presented in the previous chapter as basis, a OpenCl evaluation of
snoop filters could be performed. It was also interesting to find out what effect the
MESI protocol had on OpenCl benchmarks compared to the basic MSI protocol.
This chapter presents recent snoop filters, snoop filter results from the model, a
comparison between MESI and MSI and proposed new filters and their design.

4.1 Related Work

Based on the literature several filters are interesting. JETTY (Moshovos et al.
2001) was the first acknowledged snoop filter. It was design to reduce the L2
power consumption in large SMPs. For SoCs the JETTY is less interesting be-
cause of its major hardware overhead. More interesting solutions are the Stream
Registers(Salapura et al. 2007), and more recently the enhanced version Counting
Stream Registers(Ranganathan & Charbon 2012). All of the filters are inclusive
destination filters, with the exception of the JETTY. The JETTY has an exclusive
version, as well as a hybrid exclusive/inclusive version. From the survey in (Ulfsnes
2012) the most interesting solution was the Counting Stream Registers. For more
information about JETTY and other powers saving solutions, go to (Ulfsnes 2012).

4.1.1 Stream Register Based Snoop Filters

This section is recited from (Ulfsnes 2012).
Stream register(SR) based snoop filters is a snoop filtering technique that is

actually being used in the Blue Gene/P supercomputer. It was introduced by IBM
in (Salapura et al. 2007), the filter is inclusive and uses stream registers to keep
track of what is in the cache. The BlueGene uses single port caches in its L1. The
system also uses a write-through policy, which leads to a lot of broadcasting on the
interconnect. Because the L1 caches are single-port, IBM use SRs in order to avoid
performance degradation in L1 accesses. The SR is a destination filter, meaning
that it will reduce snoop induced tag lookups. The basic architecture for the SR
filter can be seen in figure 4.1.

25

4. Snoop Filters and Performance

Figure 4.1: Basic architecture for Stream Register (Salapura et al. 2007)

The register is updated every time the cache loads a new line. The SR update
logic selects the appropriate register based on the state of the stream register and
the address that is being loaded. Remote snoop accesses can be run in parallel,
and in this architecture there are 4 nodes in the system. The filter therefore has
3 port filters which can handle 3 remote requests simultaneously. The incoming
requests are compared to the current state of the registers, and notifies the cache
invalidate logic if the address is in the register.

The SR consists of two registers and a valid bit. The base register has infor-
mation about the address bits that are shared among all the cache lines, and the
mask knows which of these bits are shared. The behavior of the SR can be shown
with a simple example from (Salapura et al. 2007):

Consider two addresses being loaded into the cache, 0x1708FB1 and 0x1708FB2.
After these addresses has been loaded the stream register will be updated as such:

The mask register is initially initialized to all 1’s, while the base register loads
the first address:

base <= 0x1708FB1
mask <= 0x7FFFFFF

When the second address is loaded the registers are updated as such:

base <= 0x1708FB2
mask <= 0x7FFFFFc

Since the two addresses have two different LSBs, the last two bits are cleared in
the mask register. The SR will now indicate that addresses 0x1708FB0, 0x1708FB1,
0x1708FB2 and 0x1708FB3 can be in the cache. When a new address is loaded
into an empty SR the valid bit is set to 1, indicating that the register is in use.
The selection of which SR to choose when a new address is being loaded can be
selected by using one of two polices:

26

4.1. Related Work

• Choose the SR with the minimum Hamming distance. I.e. choosing the SR
that will change the minimum number of bits in the mask register.

• Choose the SR where the the highest number of MSB’s match the address
being loaded.

It is also necessary to set some fictitious distance for empty SRs; if the hamming
distance for a used SR is higher than the ”distance” for the empty SR, the empty
will be used. This implies that two small registers can filter a lot of addresses.
Though after a while, depending on how many SRs you have, they will eventually
be all 0’s. This makes the SR in turn unable to function any more.

Another issue with SR is that it is not possible to remove specific addresses
from the filter, for instance when a line is evicted. The SR will be reset when the
cache has been totally replaced since some initial state. This is also known as a
cache wrap. This forces the need of a history SR, where the contents of the active
SR are copied to a second register bank called history SR. The history SR is treated
as a second SR, and is updated the next time a cache wrap occurs.

The lack of functionality for removing addresses from the SR is the biggest
drawback with the filtering technique. The filter can be made very small depending
of how big your cache is, leading to minimal hardware and power overhead. Being
able to detect cache wraps is a non trivial challenge, which requires a lot of extra
hardware and storage. The SR can also be reset after a given time interval, but
the entire cache needs to be flushed to ensure that the SR does not filter blocks
that are present in the cache. This is very power intensive and will take away all
the power savings from filtering snoops.

4.1.2 Counting Stream Register Snoop Filter

Because of the cache wrap problem for the Streaming Registers, (Ranganathan &
Charbon 2012) proposes a new type of SR called the counting stream register(CSR)
filter. The motivation behind this filter is to remove the need for cache wrap logic
from the SR filter, making it usable for more power critical applications. This
because it does not need any cache wrap logic, and there is no need for a cache
flush.

The functionality of the snoop hit mechanism in the CSR can be seen in figure
4.2. The address is split into page tag index(idx) and offset. The index is used
to access the SR table. The MSBs of the address is used as a tag for the base
register. Initially when a new address is loaded into the CSR, the base register is
set to the new address and the mask is set to all 1’s. Simultaneously the counter
is incremented indicating that the CSR is used to filter one address, eliminating
the CSR valid bit. Each time a new address is loaded into the CSR the counter is
incremented. Any replacement, eviction or invalidation will decrement the counter.
It will not however alter the base and mask registers. When the counter reaches
0 the CSR will be reset, thus eliminating the need for cache wrap logic or cache
flushing.

27

4. Snoop Filters and Performance

Figure 4.2: Basic architecture for Counting Stream Register (Ranganathan & Char-
bon 2012)

4.2 Simulation and Results

The simulation were run using the model described in chapter 3. Every result
depicted in this report is the average of five simulation runs. Total number of
unnecessary tag lookups, total number of transactions on the snoop interface, and
total number of necessary tag lookups are given below:

• Total number of unnecessary tag lookups = NUT ag

• Total number of transactions on snoop interface = NST

• Total number of necessary tag lookups = NNT ag

Table 4.1 shows the necessary tag lookups for each benchmark.

Table 4.1: Necessary Tag Lookups

Benchmarks NNT ag

Sobel 3067.2
Atomic Sum 17.4

Gauss 16.8
Atomic Xor 136
Histogram 1

Atomic And 2384.4

The improvement are given as percentages by using this formulas:

• Improvement tag lookups = 100− NUT ag(filter)
NUT ag(nofilter) 100

28

4.2. Simulation and Results

• Improvement transactions = 100− NST (filter)
NST (nofilter) 100

While the tag lookup improvement can actually reach 100%, the improvement
of the transactions can only go as low as the number of necessary tag lookups
divided by the number of cores minus one: (NNT ag

N−1).

4.2.1 Comparing MESI and MSI

All the benchmarks were simulated without filter structures with MESI and MSI.
The reason was to investigate whether or not there is any effect by adding the exclu-
sive state to the basic protocol for OpenCl programs on GPUs. Table 4.2 contains
the total number of unnecessary snoop induced tag lookups,the total number of
transactions on the interface, and any improvements on the benchmarks for both
MSI and MESI.

Table 4.2: MSI vs MESI

MSI MESI Improvement
Benchmark NUT ag NST NUT ag NST NUT ag(%) NST (%)
Sobel 11545.8 4871 11555.2 4875 -0.081 -0.082
Atomic Sum 10603.2 3540.2 10590.6 3537 0.118 0.090
Gauss 4615.8 1544.2 4615.8 1544.2 0 0
Atomic Xor 2771.6 920 2763.8 920 0.281 0
Average 0.063 0.0016

The last two benchmarks, histogram and atomic and (2 and 8 core systems),
were not simulated with MESI because of a bug in the L2-cache controller when
simulating with a different setup than 4 cores.

The results in table 4.2 shows that extending MSI with the exclusive state has
close to no effect on the coherence induced power consumption. A reason for this
migth be that when the cores execute the OpenCl benchmarks, cache lines gets
loaded into multiple L1-caches. In other words the E state rarely gets used, and
therefore becomes redundant. Because of this, and a possible bug in the MESI
supported L2- controller, the snoop filters are only going to be compared to the
MSI protocol.

4.2.2 Destination CSR

The simulation show results for 16, 32, 64 and 128 stream registers per core.The
results can be seen in table 4.3

There was also done a random chunk test for the 32-register configuration of
the CSR filter. The goal was to figure out the sensitivity of the filter towards the
size of the address stream, and the probability of shared core addresses.

29

4. Snoop Filters and Performance

Table 4.3: CSR Results- Different Sizes

16-CSR 32-CSR 64-CSR 128-CSR
Benchmark NUT ag NST NUT ag NST NUT ag NST NUT ag NST

Sobel 8993.8 4869 5822.4 4869.2 5124.4 4870.4 3758 4875.2
Atomic Sum 8803.6 3537.4 7642.2 3535.8 4732 3536 2806.4 3535.6
Gauss 3557.8 1543.6 2473.2 1543.8 2473 1544.4 908 1544.4
Atomic Xor 1861.2 920 1258 920 691.2 920 163.8 920
Histogram 48.6 197 2 197 2 197 0 197
Atomic And 15792.4 3110.2 12650.8 3161 6804 3189 2801.8 3146.6

Table 4.4: Improvement vs. No-Filter: Destination-CSR

16-CSR(%) 32-CSR(%) 64-CSR(%) 128-CSR(%)
Benchmark NUT ag NST NUT ag NST NUT ag NST NUT ag NST

Sobel 22.103 0.041 49.57 0.037 55.616 0.012 67.451 -0.086
Atomic Sum 16.98 0.079 27.93 0.124 55.371 0.112 73.533 0.13
Gauss 22.921 0.038 46.42 0.026 46.23 -0.013 80.328 -0.013
Atomic Xor 32.85 0 54.61 0 75.061 0 94.09 0
Histogram 75.479 0 98.99 0 98.99 0 100 0
Atomic And 27.66 2.5 42.05 0.909 68.83 0.031 87.166 1.36
Average 32.99 0.44 53.262 0.183 66.72 0.025 83.761 0.23

Figure 4.3 shows that the CSR are much more sensitive to the size of the streams
than increasing the probability of cores sharing addresses. That means that the
CSR are prone to variations in how the compiler allocates memory at compile
time. This means that there might be a potential in how the CSR selects a specific
register to store the new address.

The model also has the capability of creating heat-maps for benchmarks, for
both unnecessary and necessary snoops. The point is to look at which address
range is shared most often among the cores.

30

4.2. Simulation and Results

Figure 4.3: Chunk test for CSR destination filter

Figure 4.4: Heat map for necessary snoops, Atomic And(x = NUT ag, y= address)

Figure 4.4 shows which addresses are snooped by all the nodes necessary. The
address range is offset to 0, and the snoop count is summed for all the cores.

Figure 4.5 shows the unnecessary snoops for the same benchmark. The address
ranges that has the most unnecessary and necessary snoops are within the same
range. The target of any inclusive filter is to only include the addresses that are in
the cache, or in other words addresses that are necessary to snoop. In the case of

31

4. Snoop Filters and Performance

Figure 4.5: Heat map for unnecessary snoops, no filter, Atomic And(x = NUT ag,
y= address)

a benchmark like the one in 4.4, the filter would be better of by using more of the
resources (registers) in the range with the highest count of necessary snoops, and
less resources for the rest of the address-space.

Figure 4.6: Heat map for unnecessary snoops, with CSR-32 destination filter,
Atomic And(x = NUT ag, y= address)

Figure 4.6 shows how well a CSR-32 reduces the unnecessary snoops for the
atomic and benchmark. It copes relatively well before and after the 500-600 range.
If more resources would have been used on that range, or if the resource had been
selected more carefully so that the CSR are filled with continues streams, maybe
the filter would be more accurate. The problem is that one cannot know how the
heat-maps will be for a specific benchmark without running it first. Some kind of

32

4.3. New CSR Filters

run-time adaptive filter structure might be a good solution, although constructing
a dynamic filter will add even more hardware to the system. Besides this is not a
trivial task. A system where the chosen CSR is not decided by the lowest bits of
the address but some other function. This might also improve the accuracy of the
filter, without adding the same amount of hardware as a dynamic filter.

4.3 New CSR Filters

Counting stream registers with 128 SR reaches 84% accuracy on the OpenCl bench-
marks, the CSR with 32 registers got 53% 4.4. They also do no reduce the number
of transactions on the snoop interface. Because of this, two new filters based on the
CSR was invented: Source-CSR and Hashed-index CSR. The goal of Source-CSR
is to reduce snoop induced transactions as well as snoop induced tag lookups. The
Hashed-index CSR will try to improve the accuracy of the CSR by hashing the
address instead of just using the lower bits of the address to find the index.

4.3.1 Source CSR

The results in table 4.3 shows potential for reducing the NST for OpenCl bench-
marks. The source filter has more hardware overhead than the destination filter,
but it also has more power reducing potential. The structure in figure 4.2 is en-
hanced by adding a similar structure for each remote node in the multi-core system.
For a system with N-cores the filter will be (N-1) times as big as a destination filter.

The basic concept of the source type filter is that it will observe the transactions
performed by the other cores on the interconnect. Based on the type of transaction
the filter will decide if an address should be added or removed from the registers.
This type of filter also needs some kind of notification line for invalidations caused
by store transactions. If a core wants to store some value to an address, other
cores might snoop and invalidate the same address. The filters in all of the cores
needs to be made aware of the invalidation. A solution to this is to construct 1-bit
invalidate lines going to and from all cores. At any time when a core needs to
invalidate a cache-line because of a store, it will set its invalidate line high; the
source-filters will observe the store, check the invalidate line for each core, and
remove the address from the corresponding register.

Whenever a controller wants to do a load/store from the L2-cache it will first
inquire the source filter about the address in hand. The source filter will then
respond with a hit or miss. This type of filter does not have any information about
which cores has the specific address, only that one or more cores has cached the
address. If just one core has cached the line in a 4-core system, two of the cores
will snoop the address unnecessarily. There are two methods of reducing these
unnecessary tag lookups:

1. Hybrid-Source-Destination

2. No-Broadcast-Source

33

4. Snoop Filters and Performance

The hybrid solution employs a destination CSR filter that works in parallel with
the source filter. It will however introduce even more hardware overhead, making
the total overhead N times the destination filter. The second solution requires the
same hardware as a normal source filter, but with the added functionality it will
inform the controller about which remote cores that might have cached the address.

4.3.2 Source CSR Results
The source CSR was simulated for the same size configurations as the destination
filter, table 4.5. The hybrid and the broadcasting-source filter was only simulated
for a 32-CSR configuration. Only the results are presented in this section, while
the comparison with the destination CSR comes in section 4.4.

Table 4.5: Source-CSR Results- Different Sizes

16-CSR 32-CSR 64-CSR 128-CSR
Benchmark NUT ag NST NUT ag NST NUT ag NST NUT ag NST

Sobel 8993.6 4654.2 5817.8 4418.6 5126 4219.2 3754.6 3874.2
Atomic Sum 8768.4 3171.4 7668.6 3063.8 4748.4 2574.2 2805 2002.8
Gauss 3551.2 1350.4 2466.8 1228.8 2467.4 1228.2 901.6 735.2
Atomic Xor 1843.8 749.2 1247.2 625.6 687.8 625.6 164.2 260
Histogram 47.8 48.8 2 3 2 3 0 1
Atomic And 16196.4 3066.4 12643.4 2913.8 6800.8 2765.5 2938.6 2630.4

Table 4.6: Improvement vs. No-Filter: Source-CSR

16-CSR(%) 32-CSR(%) 64-CSR(%) 128-CSR(%)
Benchmark NUT ag NST NUT ag NST NUT ag NST NUT ag NST

Sobel 22.105 4.45 49.61 9.287 55.60 13.381 67.48 20.463
Atomic Sum 17.135 10.417 27.676 13.457 55.22 27.287 73.545 43.427
Gauss 23.06 12.55 46.56 20.437 46.54 20.464 80.47 42.389
Atomic Xor 33.475 18.565 55.00 32 75.18 32 94.076 71.739
Histogram 75.88 75.228 98.99 98.477 98.99 98.477 100 99.492
Atomic And 25.81 3.87 42.088 8.658 68.85 13.31 86.54 17.542
Average 32.91 20.85 53.32 30.386 66.73 34.153 83.69 50.842

34

4.3. New CSR Filters

Table 4.7: Source-CSR Results- Different Setups

CSR-Broadcasting CSR-Hybrid
Benchmark NUT ag NST NUT ag NST

Sobel 10185.4 4417.6 5824.8 4421.2
Atomic Sum 9120 3046.2 7661.2 3056.6
Gauss 3674.4 1228 2466.8 1227.2
Atomic Xor 1821.2 624.8 1258.6 625.4
Histogram 2.4 3 2 3
Atomic And 19671.4 2930 12748.8 2929.6

Table 4.8: Improvement vs. No-Filter: Source-CSR, different setups

CSR-Broadcasting(%) CSR-Hybrid(%)
Benchmark NUT ag NST NUT ag NST

Sobel 11.78 9.308 49.55 9.234
Atomic Sum 13.988 13.95 27.746 13.66
Gauss 20.395 20.476 46.55 20.53
Atomic Xor 34.29 32.09 54.59 32.021
Histogram 98.79 98.477 98.99 98.477
Atomic And 9.89 8.16 41.61 8.16
Average 31.52 30.347 53.17 30.35

4.3.3 Hashed-index CSR

Inspired by the heat-maps in section 4.2.2, a different method was tested other
than just selecting the 5 lowest bits(32-CSR) for the index. Hashing is a method
where variable length data sets are mapped to fixed length data sets. The index
will be created by hashing the entire address, then using modulo to create the new
index:

index = hash(address)%(NCSR − 1)
Hashing something in hardware will of course cost more power and impose more

latency than a filter system that just uses the lower bits to select register. But if
the accuracy is sufficiently increased it may be worth the extra cost.

4.3.4 Hashed-index CSR Results

The hashed-index CSR was only simulated for 32-CSR configuration, simply be-
cause it was implemented quite late in the project and there was not enough time.
The model used the MD5 hash-function in python to hash the entire address.
Other cryptographic hash functions were tried without any noticeable effect on the

35

4. Snoop Filters and Performance

accuracy.

Table 4.9: Hashed-index-CSR Results- Different Setups

Hashed-index CSR
Benchmark NUT ag NST

Sobel 9706.2 4872.4
Atomic Sum 8281 3545.6
Gauss 2173.8 1542.6
Atomic Xor 629.8 920
Histogram 1 197
Atomic And 6703 3161

Table 4.10: Improvement vs. No-Filter: Hashed-index-CSR, different setups

Hash-index CSR(%)
Benchmark NUT ag NST

Sobel 15.933 -0.029
Atomic Sum 21.90 -0.152
Gauss 52.905 0.104
Atomic Xor 77.2766 0
Histogram 99.49 0
Atomic And 69.297 0.909
Average 56.13 0.1385

4.4 Filter Comparisons

This section will thoroughly discuss and compare the old destination filter with the
two new filters, both for tag lookups and snoop induced transactions.

4.4.1 Tag Lookups
Tag lookup comparison between the five different filter structures can be seen in
figure 4.7. The original source filter, which broadcasts invalidation/updates to
every core, performs considerably worse than any other filter for all benchmarks.
It has an improvement that is half or less in percentage compared to the other
structures. Both hybrid and the non-broadcasting source filter performs equally
to the original destination filter for all benchmarks. The hybrid filter does not
outperform the non-broadcasting filter however, making the non-broadcast filter a
better option as it has less hardware overhead.

36

4.4. Filter Comparisons

The hashed-index filter shows a little more performance variation. It is almost
as bad as the broadcasting source filter for the Sobel benchmark. For the Atomic
Sum benchmark the performance is a bit better than the broadcasting source.
The results are better for all other benchmarks, especially the atomic xor/and
benchmarks, getting 70-80% improvement over a non-filter solution. Not knowing
exactly which benchmarks are most representative, it is hard to know if the poor
performance in the Sobel benchmark should be taken more into account than the
excellent performance in the atomic benchmarks. The image processing bench-
marks are probably more useful than the atomic operations.

As for the original CSR destination filter, heat maps were captured for the
hashed index CSR. Figure 4.8 shows the heat map for unnecessary snoops for
the hashed filter. Figure 4.6 shows the unnecessary snoops for the regular filter.
Comparing the two maps it is easy to see that hashing the index has an incredible
effect for this benchmark. The unnecessary spikes are lower in figure 4.8, maxing
out at about 100. Whereas figure 4.6 has its maximum at about 150++. The
width of the region with the highest number of unnecessary snoops, are about the
same for both structures. These experiments show that altering how the resources
are allocated across the address space has a huge effect on the performance.

The non-broadcasting source and the destination CSR were also simulated using
different size configurations. Figure 4.9 shows that the tag lookup efficiency of the
filters are comparable for all configurations. A power analysis, as in chapter 6, has
to be performed before any conclusion about the size of the filter can be made.
However at this time, the CSR-32 seems like a good compromise.

37

4. Snoop Filters and Performance

—
(a) Atomic Global Sum (b) Sobel

—
(c) Gauss (d) Atomic Xor

—
(e) Histogram (f) Atomic An

Figure 4.7: Comparison of filters: Tag lookup

38

4.4. Filter Comparisons

Figure 4.8: Heat map for unnecessary snoops, CSR with hashed index, Atomic
And(x = NUT ag, y= address)

Figure 4.9: Different Filter Sizes: Tag Lookups, Average improvement

39

4. Snoop Filters and Performance

4.4.2 Snoop Transactions
Figure 4.10 shows snoop transaction comparisons between four different filter struc-
tures. The hashed-index filter is not in this figure because it is a destination filter.
As the results in section 4.3.4 shows, it has no effect on the snoop transactions
at all. As figure 4.10 shows, all of the source filters performs just about equally.
There are no discernible difference except for the Atomic And benchmark, but
that small difference might have been caused by randomness in the model1.

Figure 4.11 shows that for the 32-CSR configuration, about 30% of the snoop
transactions are removed. But as mentioned earlier it is hard to say how many
snoop transactions are actually needed to maintain coherency. Looking at table
4.5 for the Atomic And benchmark, the CSR-128 has reduced the number of
snoop transactions to 2630. This while the number of necessary snoops required
for that benchmark is 2384.4, so the smallest number of transactions possible for
that benchmark is 596. This is however a speculative number, and it might very
well be somewhat higher.

Again it looks like the best compromising configuration uses CSR-32. The 128
configuration has only 20% less snoop transactions, which may be hard to defend
from a power perspective.

1Arbiter selects random nodes for instance.

40

4.4. Filter Comparisons

—
(a) Atomic Global Sum (b) Sobel

—
(c) Gauss (d) Atomic Xor

—
(e) Histogram (f) Atomic An

Figure 4.10: Comparison of filters: Snoop Transactions

41

4. Snoop Filters and Performance

Figure 4.11: Different Source Filter Sizes: Snoop Transaction, avergage improve-
ment

42

4.5. Summary

4.5 Summary

This chapter has presented the CSR destination filter, along with two newly in-
vented filters: hashed-index CSR and source-CSR. Simulations on the model pre-
sented in chapter 3 using OpenCl benchmarks, has shown that the hashed-index
filter outperforms the old CSR filter in some benchmarks, while it is worse in oth-
ers. The take away from this should be that selection of resources has incredible
effect on the accuracy of the filter.

The source-CSR filters tag lookups just as good as any configuration of the
destination CSR. It also has the added bonus of removing on average 30% of snoop
induced transactions. Which size configurations to choose, or whether or not the
source-CSR is worth implemented, will be presented in the power analysis chapter
6.

Two different cache coherence protocols were also simulated on the model. The
results showed no effect of adding an exclusive state in the MESI protocol, compared
to the MSI protocol. Even though CPUs have great advantage by using MESI
(Ranganathan & Charbon 2012). From a power perspective for GPUs running
OpenCl benchmarks the choice of protocol is not that important. The reason for
this difference might be that the cores in GPU system loads most of the addresses
early, and write after some time, allowing other cores to load the same addresses.
This renders the exclusive state useless.

43

Chapter 5

Design and Verification

The analysis in chapter 4, showed that the CSR was fairly effective when it came
to limiting the number of snoop induced tag lookups. Hashing the address showed
that address selection had a positive effect on some benchmarks. The experiments
also showed that source CSRs had a positive effect on snoop transactions needed
to maintain coherence. Because of this the non-broadcast-source CSR was chosen
to be implemented in RTL. This mainly because it had the best of both worlds;
it was able to reduce the snoop induced tag lookups in remote caches just as well
as the destination version. It was also able to reduce the use of the snoop induced
transactions on the interconnect.

5.1 Design and Specification

The source filter compared to the destination requires more additional hardware,
as well as some additional communication between the cores, so that the remote
caches can update their CSRs. The different filters need to watch the transactions
every other core does in order to update the CSR. For a single shared bus this poses
no problems as there will only be one transaction on the bus at any given time.
For more complicated interconnect architectures, parallel buses, handshaking etc.,
the problem complexity increases. The net power gain will decrease because the
filter and the interconnect needs to be more inter-coupled in order for the CSRs to
be updated. The source filter also needs an invalidate line if the system employs
a single shared bus. It will consist of N 1-bit lines going to all filter controllers
from every cache-controller. If a cache writes to an address, every CSR needs to
be made aware of any snoop induced invalidations caused by that write.

By using an update policy to the filters which are not performed every clock
cycle, but where addresses are pooled together into packets of addresses, the system
can use other interconnect structures. This can possibly be done without increasing
the energy consumption to much.

A potential problem with packing address updates is that the memory consis-
tency might be compromised. This because it is possible for a core to use stale
data before it is notified about the invalidation. A possible solution to this is to

45

5. Design and Verification

employ an exclusive filter structure.This may again compromise the accuracy of
the filter, because an exclusive filter only adds missed addresses.

The source filter features:

• One CSR register file per remote node.

• Size of register file is configurable.

• The system requires invalidate notification on writes.

• Tightly coupled with L1-cache controller for low performance degradation.

The RTL for the source counting stream register filter was implemented using Vcs
as compiler and simulator. The filter system consists of 4 modules:

1. IC SURV: Monitors interconnect based on direct monitoring or packets of
updated addresses.

2. Check Addr: The check-address module gets requests from the L1 cache
controller when the controller wants to send a invalidate/update request.
Because of the pipeline the module needs to be delayed four cycles compared
to the update module.

3. Update Addr: The update-module gets orders from the IC SURV and up-
dates the register file.

4. CSR Register bank: The CSR register bank consist of N-1 different register
files, where N is the number of cores in the system. Each register file has maps
to one remote controller.

46

5.1. Design and Specification

Figure 5.1: Source Filter Toplevel

The toplevel module can be seen in figure 5.1. The interconnect connection is
also the invalidate line for writes, in order to simplify the construction of the filter.

5.1.1 Interconnect Surveillance Module

The task of the interconnect surveillance is to monitor any traffic from the other
cores. That means if a remote cache loads or evicts an address, the surveillance
monitor will ask the update logic to remove or add the address from the correct
CSR bank. The logic is easily understood by looking at the RTL source code 5.1:

47

5. Design and Verification

Verilog 5.1: IC SURV
1 always @(posedge c l k or negedge r e s e t n) begin //IC case
2 i f (! r e s e t n) begin // r e s e t
3 add en <= 1 ’ b0 ;
4 remove en <= 1 ’ b0 ;
5 end e l s e i f (v a l i d) begin
6 addr out <= addr ;
7 source <= i c [IC WIDTH−PAXI ADDR BITS−1:IC OP WIDTH] ;
8 case (op)
9 EVICT: begin

10 add en <= 1 ’ b0 ;
11 remove en <= 1 ’ b1 ;
12 end
13 READ: begin
14 add en <= 1 ’ b1 ;
15 remove en <= 1 ’ b0 ;
16 end
17 WRITE: begin
18 add en <= 1 ’ b1 ;
19 remove en <= 1 ’ b0 ;
20 end
21 NO OP: begin
22 add en <= 1 ’ b0 ;
23 remove en <= 1 ’ b0 ;
24 end
25 endcase
26 end e l s e i f (! v a l i d) begin
27 add en <= 0 ;
28 remove en <= 0 ;
29 end
30 end//IC case
31 endmodule

When a valid transaction is on the bus (and not from the local controller), the
surveillance module will decode the ongoing transaction. Either EVICT, READ,
WRITE or NO OP are supported by the module. The surveillance module will
have to be altered according to the bus protocol employed on the system.

5.1.2 CSR Update Module

The update address logic can be seen in figure 5.2. Basically whenever the IC SURV
wants to update addresses, it will enable the update pipeline. The pipeline has 4-
steps, which means that there will be a delay of 4-cycles from the surveillance
monitor issues an update, until the change is visible in the CSR register bank. For
this reason there will also be two levels of pipeline forwarding. The pipeline control

48

5.1. Design and Specification

will check if an address that has been received from the IC SURV is already in the
pipeline. It will then enable the forwarding logic, depending on whether or not the
address is one or two steps ahead. The forwarding logic will then snatch the most
recent data from the output of the update module, instead of asking the register
bank for data.

The IC SURV module will order the update logic to either remove or add an
address from the CSR register bank. The surveillance module will also provide
which sources has added or removed an address from its cache. The pipeline is as
follows:

• Stage 0: In this stage the module will access a CSR register depending on
the source which is given by the surveillance module. If the forward logic
detects that the index is in the pipeline, the data will not be fetched from
the registers but from the output of the module (not shown in the figure).

• Stage 1: This stage is a waiting stage, and at the end of the cycle the data
will be available from the CSRs. If data snatch from bus 1 is enabled at this
point, the data will be fetched from two steps ahead in the pipeline.

• Stage 2: This stage calculates the new CSR values based on the operation
and the values received from the register. If data snatch 2 is enabled, the
values used for calculation will be fetched from 1 step ahead in the pipeline.
If it is a remove operation the counter will be decremented and the old mask
and base will be stored unchanged. If it is an add operation however, a new
mask will be calculated.

• Stage 3:The new mask, base, and count will be stored.

49

5. Design and Verification

Figure 5.2: Source Filter Update Address Module

50

5.1. Design and Specification

5.1.3 CSR Check Address Module
The check address gets a request from the snoop controller in the L1-cache. The
check address will then read the corresponding data from all CSRs in the bank.
It will then compare the calculated address with the incoming address, and decide
which remote node has the line cached if any. The functionality can be seen in
figure 5.3.

Figure 5.3: Source Filter Check Address Module

The module consists of three stages. Stage 0 is initiated when the controller
wants to read or write to an address, and so wants to know whether to inform
remote controllers. The CSR register bank then provides the stream data for that
index. The stream data is then compared to the incoming address. The last stage
informs the controller about any remote controllers that may have cached that
particular address.

51

5. Design and Verification

5.1.4 CSR Register Bank

The register bank consists of N−1 (N = Cores) individual registers. Each register
maps to one remote node, and contains information about the node’s cache content.
Figure 5.4 shows the implementation of one of the register.

Figure 5.4: CSR Register

One register consists of:

• CSRSize × CSRW idth flip flops.

• The width of the CSR is defined as: base+mask + count.

• Where base and mask are both: Address Bits− log2(CSRSize). CSRSize is
the size of the register.

52

5.2. Verification

Each of these registers are then pooled together in a register bank, as figure5.5
depicts.

Figure 5.5: CSR Register Bank

Each of the CSR register in that bank maps directly to one remote core. The
update logic takes hand of the maintaining the registers.

5.2 Verification

In any hardware design process, the verification is the most time consuming and
important task. This design has been verified using formal verification, SystemVer-
ilogAssertions(SVA) and JasperGold. Another possible method would have been to
use UVM (Universal Verification Methodology). Using two methodologies enables
the design to be tested for more cases than just using one. Which means that the

53

5. Design and Verification

probability of the design fail decreases. A third possible verification method could
be to actually plug the filter in to a GPU and see how it works. Because of the
time limit only formal verification was done. UVM will be described in the next
section.

5.2.1 UVM

Universal verification methodology is a standardized method for verifying, designed
by (Accellera n.d.). UVM provides a framework to achieve coverage-driven veri-
fication (CDV), which uses automatic test generation, self-checking testbenches
and coverage to reduce the verification time of a design. A UVM testbench con-
sists of reusable verification components. A verification component is a verification
environment used to verify your device under test (DUT). The environment has
elements for stimulating, checking and coverage collecting for the DUT.

Figure 5.6: UVM: Verification EnvironmentAccellera (n.d.)

Figure 5.6 shows a typical verification environment. Components in a verifica-
tion component are:

• Data Item: Data items are inputs to the DUT, like bus transactions and
instructions.

54

5.2. Verification

• Driver: The driver emulates logic that drives the DUT; it typically receives
a data item and drives it to the DUT.

• Sequencer: The sequencer is an advanced stimuli generator which controls
the data items provided for the driver.

• Monitor: The monitor passively samples DUT signals, handles coverage
information, and perform checking.

5.2.2 Formal Verification

There are three requiremens to formally prove how correct a system is (Raman
2012):

1. A mathematical model of the system with sufficient accuracy.

2. A language that supports property creation.

3. Some method of checking the property against the model.

The methods for formal verification usually involves exhaustive state space ex-
ploration. For this reason the memory requirements and verification time increases
quickly when the complexity of the design increases. There are several methods for
doing this, details can be found in (Raman 2012). SystemVerilog was used to cre-
ate properties for this design. SystemVerilog is an extension to Verilog; it extends
functionality to create properties. The properties can be asserted and formally
tested using JasperGold.

5.2.3 Design Verification

The verification of the design was done in steps for each sub-module, as well as for
the toplevel.

5.2.3.1 Toplevel Properties

1. Property ”Valid transaction leads to execution”: This property checks
that if there is a valid transaction on the bus interface, the interconnect
surveillance module should set either add en or remove en high.

property p r v a l i d c h e c k ;
d i s a b l e i f f (! r e s e t n)
(v a l i d & (op != NO OP)) |=> (add en | remove en

) ;
endproperty
a s v a l i d c h e c k : a s s e r t property (p r v a l i d c h e c k) ;

55

5. Design and Verification

2. Property ”Valid transaction leads to CSR write: This property checks
when there is a valid transaction on the bus interface; the system should write
the CSR register bank after 4 clock cycles. Initially JasperGold reported a
counter example for this property, implying that there might be a bug in the
system. When going through the source code a bug was found in stage 2 and
3 of the pipeline. The chip-enable signal for write (ce1) was set in stage 3,
but it used data from stage 2 to calculate which register file to write to.

property p r c h e c k a d d r w r i t e r e a d ;
d i s a b l e i f f (! r e s e t n)
(v a l i d & (op != NO OP) & (source > 0)) |=> ##3

(ce1 > 0) ;
endproperty
a s c h e c k a d d r w r i t e r e a d : a s s e r t property (

p r c h e c k a d d r w r i t e r e a d) ;

endmodule

Results:

Total Tasks : 1
Total P r o p e r t i e s : 4

assumptions : 0
− approved : 0
− temporary : 0

a s s e r t i o n s : 2
− proven : 2 (100.0%)
− marked proven : 0 (0.0%)
− cex : 0 (0.0%)
− ar cex : 0 (0.0%)
− undetermined : 0 (0.0%)
− unprocessed : 0 (0.0%)
− e r r o r : 0 (0.0%)

cover s : 2
− unreachable : 0 (0.0%)
− covered : 2 (100.0%)
− ar cove red : 0 (0.0%)
− undetermined : 0 (0.0%)
− unprocessed : 0 (0.0%)
− e r r o r : 0 (0.0%)

After the bug found by property 2 was fixed, JasperGold reported no counter-
examples.

56

5.2. Verification

5.2.3.2 Interconnect Surveillance Properties

1. Property ”No valid transaction does not lead to execution”: This
property checks that if there is no valid transaction on the bus interface, the
interconnect surveillance module should not set add en or remove en high.

property p r c h e c k v a l i d 0 ;
d i s a b l e i f f (! r e s e t n)
(! v a l i d) |=> (! (add en | remove en)) ;

endproperty
a s c h e c k v a l i d 0 : a s s e r t property (p r c h e c k v a l i d 0

) ;

2. Property ”Onehot remove en and add en ”: Output ports add en and
remove en high should never be high simultaneously.

property pr onehot add remove ;
d i s a b l e i f f (! r e s e t n)
$onehot0 ({ remove en , add en }) ;

endproperty
as onehot add remove : a s s e r t property (

pr onehot add remove) ;

3. Property ”Remote node equal transaction source ”: The remote node
signal (r node) should be the same as the source of the transaction.

// r node = source
property p r s o u r c e r n o d e ;

d i s a b l e i f f (! r e s e t n)
(r node == source) ;

endproperty
a s s o u r c e r n o d e : a s s e r t property (p r s o u r c e r n o d e

) ;

4. Property ”Correct address sampling ”: If the transaction is valid the
sampled addr out should be equal to the transaction address (addr) at the
time of sampling.

property pr addr addr out ;
d i s a b l e i f f (! r e s e t n)
(v a l i d) |=>($past (addr) == addr out) ;

endproperty
as addr addr out : a s s e r t property (pr addr addr out

) ;

57

5. Design and Verification

5. Property ”Evict leads to removal of address”: If the bus transaction is
an evict, the remove en should be set. This indicates that the update module
should remove the address from the CSRs.

property p r e v i c t ;
d i s a b l e i f f (! r e s e t n)
(v a l i d & (op==EVICT)) |=> (remove en) ;

endproperty
a s e v i c t : a s s e r t property (p r e v i c t) ;

6. Property ”Read or Write leads to adding of address”: If the bus
transaction is read/write the add en should be set. This indicates that the
update module should add that particular address.

property p r w r i t e r e a d ;
d i s a b l e i f f (! r e s e t n)
(v a l i d & ((op == READ) | (op == WRITE))) |=> (

add en) ;
endproperty
a s w r i t e r e a d : a s s e r t property (p r w r i t e r e a d) ;

7. Property ”Reset test”: If reset is asserted no operation should be started.

property p r r e s e t n ;
(r e s e t n) |−> (! (remove en & add en)) ;

endproperty
a s r e s e t n : a s s e r t property (p r r e s e t n) ;

58

5.2. Verification

Results:

Total Tasks : 1
Total P r o p e r t i e s : 14

assumptions : 0
− approved : 0
− temporary : 0

a s s e r t i o n s : 8
− proven : 8 (100.0%)
− marked proven : 0 (0.0%)
− cex : 0 (0.0%)
− ar cex : 0 (0.0%)
− undetermined : 0 (0.0%)
− unprocessed : 0 (0.0%)
− e r r o r : 0 (0.0%)

cover s : 6
− unreachable : 0 (0.0%)
− covered : 6 (100.0%)
− ar cove red : 0 (0.0%)
− undetermined : 0 (0.0%)
− unprocessed : 0 (0.0%)
− e r r o r : 0 (0.0%)

The results show that all properties pass and no counter examples (cex) are
found.

5.2.3.3 Update Address Properties

1. Property ”Any operation ends after 3-cycles”: After a operation has
started is should be written to the CSR after three cycles.

property p r f i n i s h t e s t ;
d i s a b l e i f f (! r e s e t n)
(p0 enable & (r node [0] > 0)) |=> ##2 (ce1 > 0)

;
endproperty
a s f i n i s h t e s t : a s s e r t property (p r f i n i s h t e s t) ;

2. Property ”If read, address should be valid”: If chip-enable for the
read-port-0 is enabled the address to read from should be valid.

// I f ce0 , the read l i n e s to the CSR should not be
x

property p r x r e a d l i n e ;
d i s a b l e i f f (! r e s e t n)
ce0 |−> (! $isunknown (a0)) ;

endproperty

59

5. Design and Verification

a s x r e a d l i n e : a s s e r t property (p r x r e a d l i n e) ;

3. Property ”Data forwarding check”: If the pipeline is enabled and the
address is similar to the address in stage two, the forwarding data snatch
signal should be set high.

// I f p0 enable and p1 , and a1 == a1 1 , snatch data
==1;

property pr sna t ch data en ;
d i s a b l e i f f (! r e s e t n)
(p0 enable & p1 enable & (a1 == a1 1)) |−>

snatch data en ;
endproperty
a s sna t ch data en : a s s e r t property (

p r sna t ch data en) ;

4. Property ”Pipeline stage 1 enable”: If stage 0 in the pipeline is enabled
stage 1 should also be enabled.

property pr p1 enab l e ;
d i s a b l e i f f (! r e s e t n)
p0 enable |=> p1 enable ;

endproperty
a s p1 enab l e : a s s e r t property (pr p1 enab l e) ;

5. Property ”Stage 1 data forwarding”: When stage 1 is enabled and 2-
stage data forwarding is enabled, the data should be taken from the output
registers in this state.

property pr sna t ch data bus ba s e ;
d i s a b l e i f f (! r e s e t n)
(p1 enable & snatch data f rom bus 1) |=> (

b a s e i r e g == $past (baseo)) ;
endproperty
a s sna t ch da ta bus ba s e : a s s e r t property (

p r sna t ch data bus bas e) ;

6. Property ”Stage 1 no data forwarding”: If data forwarding for stage 1
is not set, data should come from the CSR bank.

property p r no t sna t ch da ta bus ba s e ;
d i s a b l e i f f (! r e s e t n)
(p1 enable & ! snatch data f rom bus 1) |=> (

b a s e i r e g == $past (ba s e i)) ;
endproperty
a s no t sn a t ch da ta bu s ba s e : a s s e r t property (

p r no t sna t ch da ta bus ba s e) ;

60

5.2. Verification

7. Property ”Pipeline stage 2 enable”: If stage 1 in the pipeline is enabled
stage 2 should also be enabled.

property pr p2 enab l e ;
d i s a b l e i f f (! r e s e t n)
p1 enable |=> p2 enable ;

endproperty
a s p2 enab l e : a s s e r t property (pr p2 enab l e) ;

8. Property ”Stage 2 data forwarding”: When data forwarding for stage
2 is enabled the data used for computation should be taken from output
registers.

property pr snatch data ;
d i s a b l e i f f (! r e s e t n)
(snatch data en) |=> ##1 (b a s e s e l == baseo) ;

endproperty
a s sna t ch data : a s s e r t property (pr snatch data) ;

9. Property ”Stage 2 no data forwarding”: When data forwarding for
stage 2 is not enabled data should be taken from input registers.

property pr no t sna t ch data ;
d i s a b l e i f f (! r e s e t n)
(! snatch data en) |=> ##1 (b a s e s e l ==

b a s e i r e g) ;
endproperty
a s no t sna t ch da ta : a s s e r t property (

p r no t sna t ch data) ;

10. Property ”Pipeline stage 3 enable”: If stage 2 in the pipeline is enabled
stage 3 should also be enabled.

property pr p3 enab l e ;
d i s a b l e i f f (! r e s e t n)
p2 enable |=> p3 enable ;

endproperty
a s p3 enab l e : a s s e r t property (pr p3 enab l e) ;

61

5. Design and Verification

Results:

Total Tasks : 1
Total P r o p e r t i e s : 21

assumptions : 1
− approved : 0 (0.0%)
− temporary : 1 (100.0%)

a s s e r t i o n s : 10
− proven : 10 (100.0%)
− marked proven : 0 (0.0%)
− cex : 0 (0.0%)
− ar cex : 0 (0.0%)
− undetermined : 0 (0.0%)
− unprocessed : 0 (0.0%)
− e r r o r : 0 (0.0%)

cover s : 10
− unreachable : 0 (0.0%)
− covered : 10 (100.0%)
− ar cove red : 0 (0.0%)
− undetermined : 0 (0.0%)
− unprocessed : 0 (0.0%)
− e r r o r : 0 (0.0%)

The results show that all properties pass and no counter examples (cex) are
found.

5.2.3.4 Check Address Properties

1. Property ”Any operation ends after 2-cycles”: After a operation has
started the controller should be notified after two cycles.

property p r c h e c k f i n i s h ;
d i s a b l e i f f (! r e s e t n)
check en |=> ##1 f i n i s h e d ;

endproperty
a s c h e c k f i n i s h : a s s e r t property (p r c h e c k f i n i s h) ;

2. Property ”Stage 1 enable”: If the pipeline has started, stage 1 should
also be enabled.

property pr p1 enab l e ;
d i s a b l e i f f (! r e s e t n)
p0 enable |=> p1 enable ;

endproperty
a s check p1 enab l e : a s s e r t property (pr p1 enab l e) ;

3. Property ”Stage 2 enable”: If stage 1 is enabled, stage 2 should also be
enabled.

62

5.2. Verification

property pr p2 enab l e ;
d i s a b l e i f f (! r e s e t n)
p1 enable |=> p2 enable ;

endproperty
a s check p2 enab l e : a s s e r t property (pr p2 enab l e) ;

4. Property ”Correct calculation of CSR data”: Given the data from each
CSR in the register bank, the correct outputs should be set.

property pr check comb log i c (i) ;
d i s a b l e i f f (! r e s e t n)

(((b a s e i r e g [i] & maski reg [i]) ==
addr to compare [i]) & (c n t i r e g [i] > 0)
) |−> h i t s o u t [i] ;

endproperty
generate

f o r (genvar i = 0 ; i < NR CORES−1; i = i + 1)
begin : l o g i c a s s
a s ch e c k co m l og i c : a s s e r t property (

pr check comb log i c (i)) ;
end

endgenerate

Results:

Total Tasks : 1
Total P r o p e r t i e s : 12

assumptions : 0
− approved : 0
− temporary : 0

a s s e r t i o n s : 6
− proven : 6 (100.0%)
− marked proven : 0 (0.0%)
− cex : 0 (0.0%)
− ar cex : 0 (0.0%)
− undetermined : 0 (0.0%)
− unprocessed : 0 (0.0%)
− e r r o r : 0 (0.0%)

cover s : 6
− unreachable : 0 (0.0%)
− covered : 6 (100.0%)
− ar cove red : 0 (0.0%)
− undetermined : 0 (0.0%)
− unprocessed : 0 (0.0%)
− e r r o r : 0 (0.0%)

63

5. Design and Verification

The results show that all properties pass and no counter examples (cex) are
found.

5.3 Summary

A non broadcasting-source-CSR filter was designed in Verilog HDL, using Vcs as
compiler and simulator. The design was then verified using JasperGold, which is
a formal verification tool. The tool takes the RTL source code, and compares it
to defined rules written in SystemVerilog. JasperGold reported no rule violation.
Even though the tool did not report any rule violations the design is still not
completely verified. It has to be tested even more thoroughly using UVM or other
methods to be sure that it is working as intended. But the filter is still so far
formally verified.

In the next chapter I will discuss power simulations and estimations, in order
to see whether the design actually has a net positive power effect on a multi-core
system.

64

Chapter 6

Power Consumption Analysis

In order to decide whether the source filter is worth implementing, the power of the
structure has to be analyzed. The extra hardware the filter represents costs power
because it has to be updated regularly. It also costs power to lookup in the filter
every time a transaction is about to be sent across the interconnect. The filter has
to use less power than it can save (in interconnect and tag lookups), so that the net
power after the filter installation is lower than before the filter implementation. If
not the system will actually use more power than without the filter, which is kind
of useless. This chapter is unfortunately going to be a lot shorter than intended
because the power simulation of the designed filter encountered some unknown
error.

6.1 Power Consumption

Power is simply the current multiplied with the voltage across a given element:
P (t) = I(t)V (t), the energy consumed by the same device is the integral over a
given time T:

∫ T

0 P (t)dt. The average power over this interval is:

Pavg = E

T
= 1
T

∫ T

0
P (t)dt (6.1)

This is the simple definition of power, but it can also be expanded to include
capacitance. Which is very important when we talk about digital circuitry. Dig-
ital circuitry is driven by gates, which basically means charging and discharging
capacitors.

6.2 CMOS Power

There are basically two sources of power dissipation in CMOS:

• Dynamic dissipation: Due to discharging the load capacitance of the gates.
And short circuiting while the p and nmos are on at the same time

65

6. Power Consumption Analysis

• Static dissipation: Due to various leakage.

Figure 6.1: CMOS inverter

Figure 6.1 shows a basic digital inverter. The inverter is driven by some VDD

and the input is driven by some voltage VIN . The energy stored in a capacitor is:

EC =
∫ ∞

0
I(t)V (t)dt =

∫ ∞
0

C
dV

dt
V (t)dt = C

∫ VC

0
V (t)dv = 1

2CV
2

C (6.2)

While the energy provided from the supply to the same capacitor will be:

EC =
∫ ∞

0
I(t)VDDdt =

∫ ∞
0

C
dV

dt
VDDdt = CVDD

∫ VDD

0
dv = CV 2

DD (6.3)

6.2.1 Dynamic Power

As you can see the energy actually stored in the capacitor is half of what the power
supply is delivering. The rest is dissipated through heat. When the capacitance
is discharged the rest of the energy will also be dissipated into heat. So let us say
that the inverter switches at some frequency f over some time T the load will be
charged and discharged Tf . The average power dissipation will then from (6.1) be
:

Pswitch = E

T
= TfCV 2

DD

T
= CV 2

DDf (6.4)

This can further be refined using the activity factor α, which is multiplied with
the frequency. The activity factor takes into account that every gate does not
change value every clock cycle.

Pswitch = CV 2
DDf = αCV 2

DDf (6.5)

66

6.3. Power Estimation of Tag Lookups and Transactions

6.3 Power Estimation of Tag Lookups and Transactions

In order to see if the filter will lower the power consumption of the system, it has
to be compared to the power consumption with and without the filter. The first
step is to estimate the cost of a tag lookup and a snoop transaction. The next step
is to find the cost of a filter lookup and updating. The third step is to compare
the two previous steps with the benchmark results to see if the filter saves power.

6.3.1 Tag Lookups
A simple dual-port tag ram was created1. Read current and voltage was provided
by the synthesis tool. This along with the clock frequency can be used to calculate
the read energy:

EUT ag = VDDI

f
(6.6)

Using the benchmark results for unnecessary snoops, the total energy spent
with and without the filter can be calculated.

6.3.2 Transactions
The energy needed to perform one transaction can be estimated using the process
library’s wire model, which provides the capacitance and resistance per micrometer.
By estimating the length between the cores, the total capacitance of the wire needed
to connect two cores together can be estimated. Then using (6.3), the energy
needed to send one bit can be estimated:

EST = CW ire

µm
lW ireV

2
DD (6.7)

Knowing that you have to send; address, transaction type, source and destination,
the total transaction energy can be estimated. This number will be a lower bound
of the energy needed for one transaction, as the switching logic involved in the
transaction is not estimated. The results from this estimation would have been
combined with the snoop induced transaction results to give energy consumption
per benchmark with or without filter.

6.4 Power Simulation of Filter

The power of the filter is estimated using this method: The filter is simulated using
generated stimuli. The stimuli has around 5,000 filter lookups which will give a
good average power estimate. These generated stimuli are dumped to a waveform
file(.vpd/.vps) using Vcs as simulator. The waveform is then converted to a SAIF
format, which contains switching information for all the nodes and nets. This is
where the power simulation went wrong; the SAIF creation failed and reported no

1Process library28 nm

67

6. Power Consumption Analysis

switching activity. After the SAIF has been created, the design will be synthesized
using DesignCompiler, and a net list will be created. The net list together with
the SAIF will then be used to estimate average power consumption. Then by using
the clock frequency an estimation of one filter lookup can done. The energy for the
filter has these symbols:

• Update energy: EF Update

• Lookup energy: EF Lookup

6.5 Power Estimation of Benchmarks

After the energy consumption of the different parts in the system has been esti-
mated, the total energy consumption with or without filters can be estimated. By
looking at the benchmark results in table 4.5 where the results for the different
source filter configurations the filter energy can be estimated using equation (6.8).
BF means before filter, and AF means after filter.

ET otal(AF) = (EF Update + EF Lookup)NST (BF) + ESTNST (AF) + EUT agNUT ag(AF)
(6.8)

The energy consumption before the filter can be estimated using (6.9)

ET otal(BF) = ESTNST (BF) + EUT agNUT ag(BF) (6.9)

If the filter is successful in reducing the consumption for a benchmark, ET otal(AF) >
ET otal(BF) should hold.

6.6 Summary

This section is unfortunately very short since an error occurred when the switching
activity of the filter was about to be estimated, but a method for estimating the
consumption has been presented. Regardless of the error in the analysis, the filter
saves a lot of transactions and tag lookups. This will probably decrease the power
consumption of the system. However a more thorough power analysis has to be
completed before a proper conclusion can be made.

68

Chapter 7

Conclusion

This project has successfully modeled and designed snoop filters for use in GPUs
for mobile SoCs. Two new promising filters has been invented during my work with
this thesis. These filters perform better than previous filters based on the SR/CSR
filter, at the cost of additional hardware. The source CSR has the highest cost,
but also the highest power saving potential. It does not only decrease tag lookups
in remote nodes, it also decreases the needed transaction count for maintaining
coherence. The source filter may involve some architectural changes on systems
that does not use a single shared bus. The needed architecture for such a system has
to be thoroughly explored, to ensure that the filter will not compromise coherence
and consistency while still reducing power in the system.

The hashed-index CSR shows that filter resource selection has tremendous effect
on the accuracy of the filter. Sadly the hashed filter does not perform well for all
benchmarks. An ideal solution could have been to alternate between the new
hashed method, and the old method where the index is selected by the lower bits.
Then, depending on the benchmark, even higher accuracy could have been reached.

The project also showed that benchmarks for GPUs have different memory foot-
prints than benchmarks used for CPUs. In CPUs running embedded benchmarks,
the MESI protocol has a tremendous effect on the power consumption acting as
a source filter. For GPUs running OpenCl benchmarks the MESI protocol had
virtually no effect on the power consumption of the system.

The source filter design was also implemented in Verilog HDL, then simulated
using Vcs as compiler and simulator. The design was then formally verified using
JasperGold and SystemVerilog assertions. In order to perform power analysis of the
filer, the waveform from the RTL code was dumped to a waveform file, which was
then converted to a SAIF file. The conversion however did not go as planned, and
consequently did not report any switching activity in the design. Sadly this meant
that I did not get any power estimates for the filter, which means that the total
power saving is unknown. This thesis does however include a full power estimating
methodology in chapter 6. Still the results in this thesis show that the source filter
has huge potential in limiting both transactions and tag lookups in GPUs running
OpenCl benchmarks.

69

7. Conclusion

7.1 Future Work

In order for the filter to be implemented in a real system these steps need to be
taken.

1. Proper power simulation of the source filter in order to figure out if the filter
is actually able to save power.

2. Explore needed architectural changes for the filter to work properly on a
modern multi core system.

3. Test that the filter works on GPUs.

4. Explore further on the Hashed-index design. Combining the hashed-index
with the source filter for instance.

70

Appendix A

Dynamic Multicore Model

A.1 L2 Controller: MSI FSM

Figure A.1: L2 Controller FSM for MSI Coherence Protocol

71

A. Dynamic Multicore Model

A.2 L1 Controller: MESI FSM

Figure A.2: L1 Controller FSM for MESI Coherence Protocol

72

Appendix B

Verilog Code for Source CSR
Filter

B.1 Toplevel for Source CSR Filter

Verilog B.1: Toplevel Module for Source Filter
1 //===
2 // Function : Topleve l f o r CSR source f i l t e r .
3 // Coder : Rasmus Ul f sne s
4 // Date : 2013
5 //===
6
7 module s r c c s r t o p l e v e l (/∗AUTOARG∗/
8 // Outputs
9 f i n i s h e d , addr out , h i t s ou t ,

10 // Inputs
11 clk , r e s e t n , i c , va l id , check en , addr in
12) ;
13 ‘ i n c l u d e ” f i l t e r c o n s t a n t s . v”
14
15 parameter IC WIDTH = PAXI ADDR BITS + NR CORES−1 +

IC OP WIDTH;
16
17 //GLOBAL INPUTS:
18 //

==

19 input c l k ;
20 input r e s e t n ;
21
22 // Global connec t i ons to i c s u r v

73

B. Verilog Code for Source CSR Filter

23 //
==

24 input [IC WIDTH−1:0] i c ;
25 input v a l i d ;
26 //OUTPUTS:
27
28
29 //GLOBAL connect ions to check addr :
30 //

==

31 // Inputs :
32 input check en ;
33 input [PAXI ADDR BITS−1:0] addr in ;
34 // Outputs :
35 output f i n i s h e d ;
36 output [PAXI ADDR BITS−1:0] addr out ;
37 output [NR CORES−2:0] h i t s o u t ;
38
39 // COMM Between i c s u r v and update l o g i c :
40 //

==

41 wire add en ;
42 wire remove en ;
43 wire [NR CORES−2:0] r node ;
44
45
46 // COMM between update addr and r e g i s t e r f i l e and i c s u r v
47 //

==

48 //CSR:
49 wire [(NR CORES−1)∗CSR REG WIDTH−1:0] c s r t o a d d b ;
50 wire [(NR CORES−1)∗CSR O WIDTH−1:0] a d d t o c s r b ;
51 wire [CSR REG WIDTH−1:0] c s r t o a d d [NR CORES

−2 : 0] ;
52 wire [CSR O WIDTH−1:0] a d d t o c s r [NR CORES

−2 : 0] ;
53
54 wire [NR CORES−2:0] ce0 ;
55 wire [NR CORES−2:0] ce1 ;
56 wire [NR CORES−2:0] we1 ;
57 wire [CSR INDEX BITS−1:0] a0 [NR CORES−2 : 0] ;

74

B.1. Toplevel for Source CSR Filter

58 wire [CSR INDEX BITS−1:0] a1 [NR CORES−2 : 0] ;
59 wire [2∗CSR BM BITS+CSR CNT BITS−1:0] d i1 [NR CORES−2 : 0] ;
60
61 // i c s u r v
62 wire [PAXI ADDR BITS−1:0] addr i c update ;
63
64 //

==

65
66
67 // Generate connect i ons Between update and CSR:
68 genvar i ;
69 generate
70 f o r (i = 0 ; i < NR CORES−1; i = i + 1) begin : i l o o p
71 a s s i g n c s r t o a d d b [(i +1)∗CSR REG WIDTH−1:CSR REG WIDTH

∗ i] = c s r t o a d d [i] ;
72 a s s i g n a d d t o c s r [i] = a d d t o c s r b [(i +1)∗CSR O WIDTH

−1:CSR O WIDTH∗ i] ;
73 a s s i g n di1 [i] = a d d t o c s r [i] [CSR O WIDTH−1:CSR O WIDTH

−CSR REG WIDTH] ;
74 a s s i g n ce0 [i] = a d d t o c s r [i] [2 ∗CSR INDEX BITS+2] ;
75 a s s i g n ce1 [i] = a d d t o c s r [i] [2 ∗CSR INDEX BITS+1] ;
76 a s s i g n we1 [i] = a d d t o c s r [i] [2 ∗CSR INDEX BITS] ;
77 a s s i g n a0 [i] = a d d t o c s r [i] [2 ∗CSR INDEX BITS−1:

CSR INDEX BITS] ;
78 a s s i g n a1 [i] = a d d t o c s r [i] [CSR INDEX BITS−1 : 0] ;
79 end
80 endgenerate
81 //==
82
83 //Communication between check l o g i c and CSRs :
84 //==
85 wire ce2 ;
86 wire [CSR INDEX BITS−1:0] a2 ;
87 wire [(NR CORES−1)∗CSR REG WIDTH−1:0] c s r t o c h e c k b ;
88 wire [CSR REG WIDTH−1:0] c s r t o c h e c k [NR CORES

−2 : 0] ;
89 // Generate connect ion between check addr and CSR
90 //==
91
92 generate
93 f o r (i = 0 ; i < NR CORES−1; i = i + 1) begin : i l o o p 1
94 a s s i g n c s r t o c h e c k b [(i +1)∗CSR REG WIDTH−1:

CSR REG WIDTH∗ i] = c s r t o c h e c k [i] ;

75

B. Verilog Code for Source CSR Filter

95 end
96 endgenerate
97 // I n s t a n t i a t e i c s u r v :
98 s r c c s r i c s u r v i c s u r v (
99 . c l k (c l k) ,

100 . r e s e t n (r e s e t n) ,
101 . v a l i d (v a l i d) ,
102 . i c (i c) ,
103 . addr out (addr i c update) ,
104 . add en (add en) ,
105 . remove en (remove en) ,
106 . r node (r node)
107) ;
108
109
110 // I n s t a n t i a t e add module
111 s r c c s r u p d a t e a d d r update addr (
112 . c l k (c l k) ,
113 . r e s e t n (r e s e t n) ,
114 . remove en (remove en) ,
115 . add en (add en) ,
116 . addr in (addr i c update) ,
117 . r node (r node) ,
118 . c s r i b (c s r t o a d d b) ,
119 . c s r o b (a d d t o c s r b)
120) ;
121
122 // I n s t a n t i a t e check module
123 s r c c s r c h e c k a d d r check addr (
124 . c l k (c l k) ,
125 . r e s e t n (r e s e t n) ,
126 . check en (check en) ,
127 . addr in (addr in) ,
128 . f i n i s h e d (f i n i s h e d) ,
129 . addr out (addr out) ,
130 . h i t s o u t (h i t s o u t) ,
131 . c s r i b c h e c k (c s r t o c h e c k b) ,
132 . ce2 (ce2) ,
133 . a2 (a2)
134) ;
135 // I n s t a n t i a t e r e g i s t e r f i l e
136 genvar k ;
137 generate
138 f o r (i = 0 ; i < NR CORES−1; i = i + 1) begin :

ins tant iate CSR

76

B.2. Interconnect Surveillance Module

139
140 sim mem 3p #(.NAME(i)) r e g f i l e (
141 . c l k (c l k) ,
142 . r e s e t n (r e s e t n) ,
143 . ce0 (ce0 [i]) ,
144 . a0 (a0 [i]) ,
145 . do0 (c s r t o a d d [i]) ,
146 . ce1 (ce1 [i]) ,
147 . we1 (we1 [i]) ,
148 . a1 (a1 [i]) ,
149 . d i1 (d i1 [i]) ,
150 . a2 (a2) ,
151 . ce2 (ce2) ,
152 . do2 (c s r t o c h e c k [i])
153) ;
154 end
155 endgenerate
156
157
158
159
160
161
162
163 endmodule

B.2 Interconnect Surveillance Module

Verilog B.2: Interconnect Surveillance Module
1 //===
2 // Function : Ver i l og module capable o f monitor ing

in te r connec t ,
3 // dec id ing which source the opera t i on i s from
4 // Coder : Rasmus Ul f sne s
5 // Date : 2013
6 //===
7 //
8
9 module s r c c s r i c s u r v (/∗AUTOARG∗/

10 // Outputs
11 addr out , add en , remove en ,
12 // Inputs
13 clk , r e s e t n , va l id , i c , r node
14) ;
15 ‘ i n c l u d e ” f i l t e r c o n s t a n t s . v”

77

B. Verilog Code for Source CSR Filter

16
17 parameter IC WIDTH = PAXI ADDR BITS + NR CORES−1 +

IC OP WIDTH;
18
19 input c l k ;
20 input r e s e t n ;
21 input v a l i d ;
22
23 // i c [IC WIDTH−1:IC WIDTH−

PAXI ADDR BITS | IC WIDTH−PAXI ADDR BITS−1:IC OP WIDTH |
IC OP WIDTH−1:0]

24 // [addr
| source

| op]
25 input [IC WIDTH−1:0] i c ;
26
27 output [PAXI ADDR BITS−1:0] addr out ;
28 output add en ;
29 output remove en ;
30 output [NR CORES−2:0] r node ;
31
32 // Se t t i ng output r e g i s t e r s :
33
34 wire [PAXI ADDR BITS−1:0] addr ;
35 reg add en ;
36 reg remove en ;
37
38 wire [IC OP WIDTH−1:0] op ;
39 reg [NR CORES−2:0] source ;
40 reg [PAXI ADDR BITS−1:0] addr out ;
41
42 a s s i g n addr = i c [IC WIDTH−1:IC WIDTH−PAXI ADDR BITS] ;
43 a s s i g n r node = source ;
44 a s s i g n op = i c [IC OP WIDTH−1 : 0] ;
45
46 // Logic check i f the re i s a t r a n s a c t i o n on the bus
47 // Operat ions parameters :
48
49 parameter EVICT = 2 ’ b11 , WRITE = 2 ’ b01 , READ = 2 ’ b10 , NO OP

= 2 ’ b00 ;
50 always @(posedge c l k or negedge r e s e t n) begin //IC case
51 i f (! r e s e t n) begin // r e s e t
52 add en <= 1 ’ b0 ;
53 remove en <= 1 ’ b0 ;
54 end e l s e i f (v a l i d) begin

78

B.3. Update Address Module

55 addr out <= addr ;
56 source <= i c [IC WIDTH−PAXI ADDR BITS−1:IC OP WIDTH] ;
57 case (op)
58 EVICT: begin
59 add en <= 1 ’ b0 ;
60 remove en <= 1 ’ b1 ;
61 end
62 READ: begin
63 add en <= 1 ’ b1 ;
64 remove en <= 1 ’ b0 ;
65 end
66 WRITE: begin
67 add en <= 1 ’ b1 ;
68 remove en <= 1 ’ b0 ;
69 end
70 NO OP: begin
71 add en <= 1 ’ b0 ;
72 remove en <= 1 ’ b0 ;
73 end
74 endcase
75 end e l s e i f (! v a l i d) begin
76 add en <= 0 ;
77 remove en <= 0 ;
78 end
79 end//IC case
80 endmodule

B.3 Update Address Module

Verilog B.3: RTL Code for Updating and Address in the CSR Register Bank Mod-
ule

1 //===
2 // Function : Module conta in ing v e r i l o g code to update an

address in
3 // the source Counting Stream R e g i s t e r s f i l t e r .
4 // May need to enable s t a l l f unc t i on
5 // Coder : Rasmus Ul f sne s
6 // Date : 2013
7 //===
8
9

10 module s r c c s r u p d a t e a d d r (c lk , r e s e t n , remove en , add en ,
11 addr in , r node , c s r i b , c s r o b) ;
12 ‘ i n c l u d e ” f i l t e r c o n s t a n t s . v”
13

79

B. Verilog Code for Source CSR Filter

14 input c l k ;
15 input r e s e t n ;
16 input remove en ;
17 input add en ;
18 input [PAXI ADDR BITS−1:0] addr in ;
19 input [NR CORES−2:0] r node ;
20 // output f i n i s h e d ;
21 // output [PAXI ADDR BITS−1:0] addr out ;
22 // output op out ;
23
24 //Output from r e g i s t e r f i l e s :
25 // [BASE:MASK:COUNT]
26 input [(NR CORES−1)∗CSR REG WIDTH−1:0] c s r i b

;
27 // c s r o : [CSR O WIDTH:2∗CSR INDEX BITS+3|2∗

CSR INDEX BITS+2|2∗CSR INDEX BITS+1|2∗CSR INDEX BITS |2∗
CSR INDEX BITS−1:CSR INDEX BITS |CSR INDEX BITS−1:0]

28 // Input to r e g i s t e r f i l e : [d i1 |
ce0 | ce1 | we1 |

a0 | a1]
29 output [(NR CORES−1)∗CSR O WIDTH−1:0] c s r o b

;
30
31
32
33 // Ports
34 wire [(NR CORES−1)∗CSR O WIDTH−1:0] c s r o b ;
35 wire [(NR CORES−1)∗CSR REG WIDTH−1:0] c s r i b ;
36
37 //Output r e g i s t e r s :
38 reg [CSR BM BITS−1:0] baseo [NR CORES−2 : 0] ;
39 reg [CSR BM BITS−1:0] masko [NR CORES−2 : 0] ;
40 reg [CSR CNT BITS−1:0] cnto [NR CORES−2 : 0] ;
41
42 // Input wi re s
43 wire [CSR BM BITS−1:0] ba s e i [NR CORES−2 : 0] ;
44 wire [CSR BM BITS−1:0] maski [NR CORES−2 : 0] ;
45 wire [CSR CNT BITS−1:0] c n t i [NR CORES−2 : 0] ;
46
47 // Input data r e g i s t e r s
48 reg [CSR BM BITS−1:0] b a s e i r e g [NR CORES−2 : 0] ;
49 reg [CSR BM BITS−1:0] mask i reg [NR CORES−2 : 0] ;
50 reg [CSR CNT BITS−1:0] c n t i r e g [NR CORES−2 : 0] ;
51
52 // Combinational w i r e s

80

B.3. Update Address Module

53 wire [CSR BM BITS−1:0] b a s e s e l [NR CORES−2 : 0] ;
54 wire [CSR BM BITS−1:0] base [NR CORES−2 : 0] ;
55 wire [CSR BM BITS−1:0] mask [NR CORES−2 : 0] ;
56 wire [CSR BM BITS−1:0] mask se l [NR CORES−2 : 0] ;
57 wire [CSR BM BITS−1:0] mask bits [NR CORES−2 : 0] ;
58 wire [CSR CNT BITS−1:0] cnt add [NR CORES−2 : 0] ;
59 wire [CSR CNT BITS−1:0] cnt rm [NR CORES−2 : 0] ;
60 wire [CSR CNT BITS−1:0] cnt [NR CORES−2 : 0] ;
61 wire [CSR CNT BITS−1:0] c n t s e l [NR CORES−2 : 0] ;
62 //
63 // I n t e r n a l r e g i s t e r s , used in p i p e l i n e , e t c .
64 reg p1 enable ;
65 reg p2 enable ;
66 reg p3 enable ;
67 wire p0 enable ;
68 reg op 1 ;
69 reg op 2 ;
70 // reg op 3 ;
71 reg [NR CORES−2:0] r node 1 ;
72 reg [NR CORES−2:0] r node 2 ;
73 reg [PAXI ADDR BITS−1:0] addr in 1 ;
74 reg [PAXI ADDR BITS−1:0] addr in 2 ;
75 reg [PAXI ADDR BITS−1:0] addr in 3 ;
76 wire snatch data en ;
77 reg snatch data 1 ;
78 reg snatch data 2 ;
79 wire snatch data f rom bus en ;
80 reg snatch data f rom bus 1 ;
81
82 wire [CSR BM BITS−1:0] b i t s to compare [NR CORES−2 : 0] ;
83
84 wire [NR CORES−2:0] ce0 ;
85 wire [NR CORES−2:0] ce1 ;
86 wire [NR CORES−2:0] we1 ;
87 wire [CSR INDEX BITS−1:0] a0 ;
88 wire [CSR INDEX BITS−1:0] a1 ;
89 reg [CSR INDEX BITS−1:0] a1 1 ;
90 reg [CSR INDEX BITS−1:0] a1 2 ;
91 reg [CSR INDEX BITS−1:0] a1 3 ;
92 wire [CSR REG WIDTH−1:0] d i1 [NR CORES−2 : 0] ;
93
94 wire [CSR REG WIDTH−1:0] c s r i [NR CORES−2 : 0] ;
95 wire [CSR O WIDTH−1:0] c s r o [NR CORES−2 : 0] ;
96
97

81

B. Verilog Code for Source CSR Filter

98 // Assign statements :
99 genvar i ;

100 generate
101 f o r (i = 0 ; i < NR CORES−1; i = i + 1) begin : a s s i g n l o o p
102 //BUSES
103 a s s i g n c s r i [i] = c s r i b [(i +1)∗CSR REG WIDTH−1:

CSR REG WIDTH∗ i] ;
104 a s s i g n c s r o b [(i +1)∗CSR O WIDTH−1:CSR O WIDTH∗ i] =

c s r o [i] ;
105 // Packing o f output bus
106 a s s i g n c s r o [i] [2 ∗CSR INDEX BITS+2] = ce0 [i] ;
107 a s s i g n c s r o [i] [2 ∗CSR INDEX BITS+1] = ce1 [i] ;
108 a s s i g n c s r o [i] [2 ∗CSR INDEX BITS] = we1 [i] ;
109 a s s i g n c s r o [i] [2 ∗CSR INDEX BITS−1:CSR INDEX BITS] = a0

;
110 a s s i g n c s r o [i] [CSR INDEX BITS−1:0] = a1 3 ;
111 a s s i g n c s r o [i] [CSR O WIDTH−1:CSR O WIDTH−CSR REG WIDTH

] = di1 [i] ;
112 a s s i g n di1 [i] [CSR REG WIDTH−1:CSR REG WIDTH−CSR BM BITS

] = baseo [i] ;
113 a s s i g n di1 [i] [CSR REG WIDTH−CSR BM BITS−1:CSR CNT BITS

]= masko [i] ;
114 a s s i g n di1 [i] [CSR CNT BITS−1:0] = cnto [i] ;
115
116 // Unpacking o f input bus
117 a s s i g n ba s e i [i] = c s r i [i] [CSR REG WIDTH−1:

CSR REG WIDTH−CSR BM BITS] ;
118 a s s i g n maski [i] = c s r i [i] [CSR REG WIDTH−CSR BM BITS−1:

CSR CNT BITS] ;
119 a s s i g n c n t i [i] = c s r i [i] [CSR CNT BITS−1 : 0] ;
120 end
121 endgenerate
122 // ∗∗∗
123 // Stage 0 Sequent i a l :
124 always @(posedge c l k or negedge r e s e t n) begin
125 i f (! r e s e t n) begin
126 p1 enable <= 1 ’ b0 ;
127 op 1 <= 1 ’ b0 ;
128 end e l s e begin
129 // Enable pipe
130 p1 enable <= p0 enable ;
131 snatch data 1 <= snatch data en ;
132 snatch data f rom bus 1 <= snatch data f rom bus en ;
133 //Data pipe
134 //Which nodes to s e l e c t

82

B.3. Update Address Module

135 op 1 <= remove en ;
136 a1 1 <= a1 ;
137 r node 1 <= r node ;
138 addr in 1 <= addr in ;
139 end
140 end
141
142
143 // Stage 0 , Combinatorics : 7 f f f f f f f f
144 a s s i g n snatch data en = (a1 == a1 1) & p0 enable &

p1 enable ;
145 a s s i g n snatch data f rom bus en = (a1 == a1 2) & p0 enable &

p2 enable ;
146 a s s i g n p0 enable = (add en | | remove en) ;
147 a s s i g n a0 = a1 ; // (addr in & CSR INDEX MASK) ;
148 a s s i g n a1 = addr in [CSR INDEX BITS−1 : 0] ;
149 generate
150 f o r (i = 0 ; i < NR CORES−1; i = i + 1) begin : c e0 l oop
151 a s s i g n ce0 [i] = (p0 enable & ! snatch data en & !

snatch data f rom bus en) ? (r node [i]) : 1 ’ b0 ;
152 end
153 endgenerate
154
155
156 // ∗∗∗
157 // Stage 1 , get data from memory .
158 // Just wait ing , moving the pipe f u r t h e r .
159 i n t e g e r l ;
160 always @(posedge c l k) begin
161 i f (! r e s e t n) begin
162 p2 enable <= 1 ’ b0 ;
163 op 2 <= 1 ’ b0 ;
164 a1 2 <= 5 ’ b00000 ;
165 snatch data 2 <= 1 ’ b0 ;
166 end e l s e begin //Move pipe
167 p2 enable <= p1 enable ;
168 r node 2 <= r node 1 ;
169 op 2 <= op 1 ;
170 a1 2 <= a1 1 ;
171 addr in 2 <= addr in 1 ;
172 snatch data 2 <= snatch data 1 ;
173 i f (p1 enable) begin
174 i f (snatch data f rom bus 1) begin
175 f o r (l = 0 ; l < NR CORES−1; l = l + 1) begin
176 b a s e i r e g [l] <= baseo [l] ;

83

B. Verilog Code for Source CSR Filter

177 maski reg [l] <= masko [l] ;
178 c n t i r e g [l] <= cnto [l] ;
179 end
180 end e l s e i f (! snatch data f rom bus 1) begin
181 f o r (l = 0 ; l < NR CORES−1; l = l + 1) begin
182 b a s e i r e g [l] <= base i [l] ;
183 maski reg [l] <= maski [l] ;
184 c n t i r e g [l] <= c n t i [l] ;
185 end
186 end
187 end
188 end
189 end
190 // ∗∗∗
191 // Stage 2 , c a l c u l a t e new va lue s :
192 // Combinational
193
194 generate
195 f o r (i = 0 ; i < NR CORES−1; i = i + 1) begin : comb loop
196 // Ca l cu l a t i on
197 a s s i g n base [i] = addr in 2 [PAXI ADDR BITS−1:

CSR INDEX BITS] ;
198 a s s i g n c n t s e l [i] = (snatch data 2) ? cnto [i] :

c n t i r e g [i] ;
199 a s s i g n mask se l [i] = (snatch data 2) ? masko [i] :

mask i reg [i] ;
200 a s s i g n b a s e s e l [i] = (snatch data 2) ? baseo [i] :

b a s e i r e g [i] ;
201 a s s i g n cnt add [i] = c n t s e l [i] + 1 ’ b1 ;
202 a s s i g n cnt rm [i] = c n t s e l [i] − 1 ’ b1 ;
203 a s s i g n b i t s to compare [i] = ˜(b a s e s e l [i] ˆ addr in 2 [

PAXI ADDR BITS−1:CSR INDEX BITS]) ;
204 a s s i g n cnt [i] = (op 2) ? cnt rm [i] : cnt add [i] ;
205 a s s i g n mask bits [i] = b i t s to compare [i] & mask se l [i] ;
206 //Which data to snatch :
207 a s s i g n mask [i] = (op 2) ? mask se l [i] : ((c n t s e l [i] ==

0) ? 35 ’h7FFFFFFFF : mask bits [i] & mask se l [i]) ;
208 end
209 endgenerate
210 // Sequent i a l part o f Stage 2
211 i n t e g e r k ;
212 always @(posedge c l k) begin
213 // Stage 2 s t o r e s the c a l c u l a t e d c s r data
214 i f (! r e s e t n) begin
215 p3 enable <= 1 ’ b0 ;

84

B.4. Check Address Module

216 a1 3 <= 5 ’ b00000 ;
217 end e l s e begin
218 p3 enable <= p2 enable ;
219 a1 3 <= a1 2 ;
220 // op 3 <= op 2 ;
221 addr in 3 <= addr in 2 ;
222 i f (p2 enable) begin
223 //Push completed index in to r e g i s t e r to a l low check .
224 f o r (k = 0 ; k < NR CORES−1; k = k +1) begin
225 i f (r node 2 [k]) begin // Store the c a l c u l a t e d CSR

r e s u l t s :
226 cnto [k] <= cnt [k] ;
227 masko [k] <= mask [k] ;
228 baseo [k] <= base [k] ;
229 end
230 end
231 end
232 end
233 end// stage2
234 // ∗∗∗
235 // Stage 3 t e l l the CSR Reg i s t e r to s t o r e the data :
236 a s s i g n ce1 = (p3 enable) ? r node 2 : 1 ’ b0 ;
237 a s s i g n we1 = ce1 ;
238 // a s s i g n f i n i s h e d = p3 enable ;
239 // a s s i g n addr out = addr in 3 ;
240 // a s s i g n op out = op 3 ;
241
242 // stage3
243 endmodule// s r c c s r u p d a t e a d d r

B.4 Check Address Module

Verilog B.4: Module to check the register bank whether or not a certain address is
cached, and in wich remote nodes.

1 //===
2 // Function : Ver i l og module that checks whether an
3 // address maybe cached or not . This module w i l l

check the wr i t e / read bus to the CSR
4 // to see whether or not someon i s w r i t i n /

read ing to the same index as the check wants to
5 // read . I f i t matches a read i t w i l l s imply

wait f o r the data to appear . I f the
6 // data i s a l e r eady on the bus , i t w i l l

immidiate ly f e t c h the data .
7 // e l s e i t w i l l s t a l l the update addr module

from execut ing any more updates .

85

B. Verilog Code for Source CSR Filter

8 // Coder : Rasmus Ul f sne s
9 // Date : 2013

10 //===
11
12
13 module s r c c s r c h e c k a d d r (/∗AUTOARG∗/
14 // Outputs
15 f i n i s h e d , addr out , h i t s ou t , ce2 , a2 ,
16 // Inputs
17 clk , r e s e t n , check en , addr in , c s r i b c h e c k
18) ;
19 ‘ i n c l u d e ” f i l t e r c o n s t a n t s . v”
20
21 parameter NAME = ” s r c c s r a d d a d d r ” ;
22 // Parameter Cores can be 5 ,13 ,11 ,7 f o r the d i f f e r e n t

combinat ions o f remote nodes
23 parameter CORES=5;
24
25 input c l k ;
26 input r e s e t n ;
27 input check en ;
28 input [PAXI ADDR BITS−1:0] addr in ;
29 // Inputs from the update l og i c , to enable f e t c h i n g data

be f o r e i t i s saved
30 // in to the CSR
31
32 output f i n i s h e d ;
33 output [PAXI ADDR BITS−1:0] addr out ;
34 output [NR CORES−2:0] h i t s o u t ;
35
36 //Output from r e g i s t e r f i l e s :
37 // [BASE:MASK:COUNT]
38 input [(NR CORES−1)∗CSR REG WIDTH−1:0]

c s r i b c h e c k ;
39 output [CSR INDEX BITS−1:0] a2 ;
40 output ce2 ;
41
42 // Input wi re s
43 wire [CSR BM BITS−1:0] ba s e i [NR CORES−2 : 0] ;
44 wire [CSR BM BITS−1:0] maski [NR CORES−2 : 0] ;
45 wire [CSR CNT BITS−1:0] c n t i [NR CORES−2 : 0] ;
46
47 // Input data r e g i s t e r s
48 reg [CSR BM BITS−1:0] b a s e i r e g [NR CORES−2 : 0] ;
49 reg [CSR BM BITS−1:0] mask i reg [NR CORES−2 : 0] ;

86

B.4. Check Address Module

50 reg [CSR CNT BITS−1:0] c n t i r e g [NR CORES−2 : 0] ;
51
52 // I n t e r n a l r e g i s t e r s , used in p i p e l i n e , e t c .
53 wire p0 enable ;
54 reg p1 enable ;
55 reg p2 enable ;
56
57 reg [PAXI ADDR BITS−1:0] addr in 1 ;
58 reg [PAXI ADDR BITS−1:0] addr in 2 ;
59
60
61 wire [CSR BM BITS−1:0] b i t s to compare [NR CORES−2 : 0] ;
62 wire [CSR BM BITS−1:0] addr to compare ;
63
64
65 wire [CSR REG WIDTH−1:0] c s r i [NR CORES−2 : 0] ;
66
67
68 // Assign statements :
69 genvar i ;
70 generate
71 f o r (i = 0 ; i < NR CORES−1; i = i + 1) begin : a s s i g n l o o p
72 //BUSES
73 a s s i g n c s r i [i] = c s r i b c h e c k [(i +1)∗CSR REG WIDTH−1:

CSR REG WIDTH∗ i] ;
74 // Unpacking o f input bus
75 a s s i g n ba s e i [i] = c s r i [i] [CSR REG WIDTH−1:

CSR REG WIDTH−CSR BM BITS] ;
76 a s s i g n maski [i] = c s r i [i] [CSR REG WIDTH−CSR BM BITS−1:

CSR CNT BITS] ;
77 a s s i g n c n t i [i] = c s r i [i] [CSR CNT BITS−1 : 0] ;
78 end
79 endgenerate
80
81 // Logic
82
83 // Stage 0 , Combinatorics : Ask the CSR r e g i s t e r f i l e f o r

data .
84 a s s i g n p0 enable = (check en) ;
85 a s s i g n a2 = addr in [CSR INDEX BITS−1 : 0] ;
86 a s s i g n ce2 = (p0 enable) ? 1 ’ b1 : 1 ’ b0 ;
87
88
89
90 // Stage 0 Sequent i a l : Move the pipe to next s tage

87

B. Verilog Code for Source CSR Filter

91 always @(posedge c l k or negedge r e s e t n) begin
92 i f (! r e s e t n) begin
93 p1 enable <= 1 ’ b0 ;
94 end e l s e begin
95 // Enable pipe
96 p1 enable <= p0 enable ;
97 //Data pipe
98 addr in 1 <= addr in ;
99 end

100 end
101
102 // Stage 1 : Capture data in to input r e g i s t e r s
103 i n t e g e r l ;
104 always @(posedge c l k) begin
105 i f (! r e s e t n) begin
106 p2 enable <= 1 ’ b0 ;
107 end e l s e begin //Move pipe
108 p2 enable <= p1 enable ;
109 addr in 2 <= addr in 1 ;
110 i f (p1 enable) begin
111 f o r (l = 0 ; l < NR CORES−1; l = l + 1) begin
112 b a s e i r e g [l] <= base i [l] ;
113 maski reg [l] <= maski [l] ;
114 c n t i r e g [l] <= c n t i [l] ;
115 end
116 end
117 end
118 end
119 // Stage 2 : Ca l cu la t e data and n o t i f y r eque s to r about h i t s :
120 a s s i g n addr to compare = addr in 2 [PAXI ADDR BITS−1:

CSR INDEX BITS] ;
121 a s s i g n f i n i s h e d = p2 enable ;
122 a s s i g n addr out = addr in 2 ;
123 generate
124 f o r (i = 0 ; i < NR CORES−1; i = i + 1) begin : h i t l o o p
125 a s s i g n b i t s to compare [i] = b a s e i r e g [i] & maski reg [i

] ;
126 a s s i g n h i t s o u t [i] =(b i t s to compare [i] ==

addr to compare) & (c n t i r e g [i] > 0) ;
127 end
128 endgenerate
129
130
131 endmodule

88

Appendix C

SystemVerilog properties used to
verify CSR Source Filter

C.1 Toplevel Properties

SystemVerilog C.1: Toplevel verification properties.
1 //

∗∗

2 // This f i l e conta in s p r o p e r t i e s and such f o r formal
v e r i f i c a t i o n

3 // o f update addr module in source f i l t e r
4 //
5 //
6 //
7 //
8 //
9 //

10
11 module s r c c s r t o p l e v e l p r o p (/∗AUTOARG∗/
12 // Inputs
13 clk , r e s e t n , i c , va l id , check en , addr in , f i n i s h e d ,

addr out ,
14 h i t s ou t , add en , remove en , r node , c s r to add b ,

add to c s r b ,
15 c s r to add , add to c s r , ce0 , ce1 , we1 , a0 , a1 , di1 , ce2 ,

a2 ,
16 c s r t o c h e c k b , c s r t o c h e c k
17) ;
18
19 ‘ i n c l u d e ” f i l t e r c o n s t a n t s . v”

89

C. SystemVerilog properties used to verify CSR Source Filter

20
21 parameter IC WIDTH = PAXI ADDR BITS + NR CORES−1 +

IC OP WIDTH;
22 parameter EVICT = 2 ’ b11 , WRITE = 2 ’ b01 , READ = 2 ’ b10 , NO OP

= 2 ’ b00 ;
23
24 //GLOBAL INPUTS:
25 //

==

26 input wire c l k ;
27 input wire r e s e t n ;
28
29 // Global connec t i ons to i c s u r v
30 //

==

31 input wire [IC WIDTH−1:0] i c ;
32 input wire v a l i d ;
33 //OUTPUTS:
34
35
36 //GLOBAL connect ions to check addr :
37 //

==

38 // Inputs :
39 input wire check en ;
40 // Outputs :
41 input wire f i n i s h e d ;
42 input wire [PAXI ADDR BITS−1:0] addr out ;
43 input wire [NR CORES−2:0] h i t s o u t ;
44
45 // COMM Between i c s u r v and update l o g i c :
46 //

==

47 input wire add en ;
48 input wire remove en ;
49 input wire [PAXI ADDR BITS−1:0] addr in ;
50 input wire [NR CORES−2:0] r node ;
51
52
53 // COMM between update addr and r e g i s t e r f i l e and i c s u r v

90

C.1. Toplevel Properties

54 //
==

55 //CSR:
56 input wire [(NR CORES−1)∗CSR REG WIDTH−1:0] c s r t o a d d b ;
57 input wire [(NR CORES−1)∗CSR O WIDTH−1:0] a d d t o c s r b ;
58 input wire [CSR REG WIDTH−1:0] c s r t o a d d [

NR CORES−2 : 0] ;
59 input wire [CSR O WIDTH−1:0] a d d t o c s r [

NR CORES−2 : 0] ;
60
61 input wire [NR CORES−2:0] ce0 ;
62 input wire [NR CORES−2:0] ce1 ;
63 input wire [NR CORES−2:0] we1 ;
64 input wire [CSR INDEX BITS−1:0] a0 [NR CORES−2 : 0] ;
65 input wire [CSR INDEX BITS−1:0] a1 [NR CORES−2 : 0] ;
66 input wire [2∗CSR BM BITS+CSR CNT BITS−1:0] d i1 [NR CORES

−2 : 0] ;
67
68 //Communication between check l o g i c and CSRs :
69 //==
70 input wire ce2 ;
71 input wire [CSR INDEX BITS−1:0] a2 ;
72 input wire [(NR CORES−1)∗CSR REG WIDTH−1:0] c s r t o c h e c k b ;
73 input wire [CSR REG WIDTH−1:0] c s r t o c h e c k [

NR CORES−2 : 0] ;
74 // Generate connect ion between check addr and CSR
75 //==
76
77
78 wire [IC OP WIDTH−1:0] op ;
79 wire [PAXI ADDR BITS−1:0] addr ;
80 wire [NR CORES−2:0] source ;
81
82 a s s i g n op = i c [IC OP WIDTH−1 : 0] ;
83 a s s i g n addr = i c [IC WIDTH−1:IC WIDTH−PAXI ADDR BITS] ;
84 a s s i g n source = i c [IC WIDTH−PAXI ADDR BITS−1:IC OP WIDTH

] ;
85
86 d e f a u l t c l o c k i n g cb @(posedge c l k) ; endc lock ing
87
88 property p r v a l i d c h e c k ;
89 d i s a b l e i f f (! r e s e t n)
90 (v a l i d & (op != NO OP)) |=> (add en | remove en) ;
91 endproperty

91

C. SystemVerilog properties used to verify CSR Source Filter

92 a s v a l i d c h e c k : a s s e r t property (p r v a l i d c h e c k) ;
93
94 property p r c h e c k a d d r w r i t e r e a d ;
95 d i s a b l e i f f (! r e s e t n)
96 (v a l i d & (op != NO OP) & (source > 0)) |=> ##3 (ce1

> 0) ;
97 endproperty
98 a s c h e c k a d d r w r i t e r e a d : a s s e r t property (

p r c h e c k a d d r w r i t e r e a d) ;
99

100 endmodule

C.2 Interconnect Surveillance Properties

SystemVerilog C.2: Interconnect surveillance properties.
1 //

∗∗

2 // This f i l e conta in s p r o p e r t i e s and such f o r formal
v e r i f i c a t i o n

3 // o f update addr module in source f i l t e r
4 //
5 //
6 //
7 //
8 //
9 //

10
11 module s r c c s r i c s u r v p r o p (/∗AUTOARG∗/
12 // Inputs
13 clk , r e s e t n , va l id , i c , addr out , add en , remove en ,

r node , op ,
14 source , addr
15) ;
16
17 ‘ i n c l u d e ” f i l t e r c o n s t a n t s . v”
18
19 parameter IC WIDTH = PAXI ADDR BITS + NR CORES−1 +

IC OP WIDTH;
20 parameter EVICT = 2 ’ b11 , WRITE = 2 ’ b01 , READ = 2 ’ b10 , NO OP

= 2 ’ b00 ;
21
22 input wire c l k ;
23 input wire r e s e t n ;
24 input wire v a l i d ;

92

C.2. Interconnect Surveillance Properties

25
26 // i c [IC WIDTH−1:IC WIDTH−

PAXI ADDR BITS | IC WIDTH−PAXI ADDR BITS−1:IC OP WIDTH |
IC OP WIDTH−1:0]

27 // [addr
| source

| op]
28 input wire [IC WIDTH−1:0] i c ;
29
30 input wire [PAXI ADDR BITS−1:0] addr ;
31 input wire [PAXI ADDR BITS−1:0] addr out ;
32 input wire add en ;
33 input wire remove en ;
34 input wire [NR CORES−2:0] r node ;
35
36 input wire [IC OP WIDTH−1:0] op ;
37 input wire [NR CORES−2:0] source ;
38
39
40
41 d e f a u l t c l o c k i n g cb @(posedge c l k) ; endc lock ing
42
43 // No operat i on should be s t a r t e d i f ! v a l i d
44 property p r c h e c k v a l i d 0 ;
45 d i s a b l e i f f (! r e s e t n)
46 (! v a l i d) |=> (! (add en | remove en)) ;
47 endproperty
48 a s c h e c k v a l i d 0 : a s s e r t property (p r c h e c k v a l i d 0) ;
49
50 // I f a v a l i d s i g n a l has been set , e i t h e r remove en or

add en should be s e t 1 c y c l e l a t e r , i f there ’ s an
opera t ion on the bus

51 property p r c h e c k v a l i d 1 ;
52 d i s a b l e i f f (! r e s e t n)
53 (v a l i d & (op != NO OP)) |=> (add en | remove en) ;
54 endproperty
55 a s c h e c k v a l i d 1 : a s s e r t property (p r c h e c k v a l i d 1) ;
56
57 // remove en and add en should not be high

s imul taneous ly
58 property pr onehot add remove ;
59 d i s a b l e i f f (! r e s e t n)
60 $onehot0 ({ remove en , add en }) ;
61 endproperty

93

C. SystemVerilog properties used to verify CSR Source Filter

62 as onehot add remove : a s s e r t property (
pr onehot add remove) ;

63
64 // r node = source
65 property p r s o u r c e r n o d e ;
66 d i s a b l e i f f (! r e s e t n)
67 (r node == source) ;
68 endproperty
69 a s s o u r c e r n o d e : a s s e r t property (p r s o u r c e r n o d e) ;
70
71 // I f v a l i d addr out should be addr
72 property pr addr addr out ;
73 d i s a b l e i f f (! r e s e t n)
74 (v a l i d) |=>($past (addr) == addr out) ;
75 endproperty
76 as addr addr out : a s s e r t property (pr addr addr out) ;
77
78 // Evict should l ead to remove en<=1;
79 property p r e v i c t ;
80 d i s a b l e i f f (! r e s e t n)
81 (v a l i d & (op==EVICT)) |=> (remove en) ;
82 endproperty
83 a s e v i c t : a s s e r t property (p r e v i c t) ;
84
85 // Write or read should l ead to add en <=1;
86 property p r w r i t e r e a d ;
87 d i s a b l e i f f (! r e s e t n)
88 (v a l i d & ((op == READ) | (op == WRITE))) |=> (

add en) ;
89 endproperty
90 a s w r i t e r e a d : a s s e r t property (p r w r i t e r e a d) ;
91
92 // r e s e t
93 property p r r e s e t n ;
94 (r e s e t n) |−> (! (remove en & add en)) ;
95 endproperty
96 a s r e s e t n : a s s e r t property (p r r e s e t n) ;
97 endmodule

C.3 Update Address Properties

SystemVerilog C.3: Update address Properties.
1 //

∗∗

94

C.3. Update Address Properties

2 // This f i l e conta in s p r o p e r t i e s and such f o r formal
v e r i f i c a t i o n

3 // o f update addr module in source f i l t e r
4 //
5 //
6 //
7 //
8 //
9 //

10
11 module s r c c s r u p d a t e a d d r p r o p (/∗AUTOARG∗/
12 // Inputs
13 clk , r e s e t n , remove en , add en , addr in , r node ,
14 c s r i b , c s r o b , baseo , masko , cnto , base i ,
15 maski , cnt i , b a s e i r e g , maski reg , c n t i r e g , b a s e s e l ,

base , mask ,
16 mask sel , mask bits , cnt add , cnt rm , cnt , c n t s e l ,

p1 enable ,
17 p2 enable , p3 enable , p0 enable , op 1 , op 2 , r node 1 ,

r node 2 , addr in 1 ,
18 addr in 2 , snatch data en , snatch data 1 , snatch data 2 ,
19 snatch data f rom bus en , snatch data f rom bus 1 ,

b i t s to compare ,
20 ce0 , ce1 , we1 , a0 , a1 , a1 1 , a1 2 , a1 3 , di1 , c s r i ,

c s r o
21) ;
22
23 ‘ i n c l u d e ” f i l t e r c o n s t a n t s . v”
24
25 parameter NAME = ” s r c c s r a d d a d d r ” ;
26 // Parameter Cores can be 5 ,13 ,11 ,7 f o r the d i f f e r e n t

combinat ions o f remote nodes
27 parameter CORES=5;
28
29 input wire c l k ;
30 input wire r e s e t n ;
31 input wire remove en ;
32 input wire add en ;
33 input wire [PAXI ADDR BITS−1:0] addr in ;
34 input wire [NR CORES−2:0] r node ;
35
36 //Output from r e g i s t e r f i l e s :
37 // [BASE:MASK:COUNT]
38 input wire [(NR CORES−1)∗CSR REG WIDTH−1:0]

c s r i b ;

95

C. SystemVerilog properties used to verify CSR Source Filter

39 // c s r o : [CSR O WIDTH:2∗CSR INDEX BITS+3|2∗
CSR INDEX BITS+2|2∗CSR INDEX BITS+1|2∗CSR INDEX BITS |2∗
CSR INDEX BITS−1:CSR INDEX BITS |CSR INDEX BITS−1:0]

40 // Input to r e g i s t e r f i l e : [d i1 |
ce0 | ce1 | we1 |

a0 | a1]
41 input wire [(NR CORES−1)∗CSR O WIDTH−1:0]

c s r o b ;
42
43
44
45 // Ports
46
47 //Reg and wi re s used to pack bus :
48 input wire [CSR BM BITS−1:0] baseo [NR CORES−2 : 0] ;
49 input wire [CSR BM BITS−1:0] masko [NR CORES−2 : 0] ;
50 input wire [CSR CNT BITS−1:0] cnto [NR CORES−2 : 0] ;
51
52 input wire [CSR BM BITS−1:0] ba s e i [NR CORES−2 : 0] ;
53 input wire [CSR BM BITS−1:0] maski [NR CORES−2 : 0] ;
54 input wire [CSR CNT BITS−1:0] c n t i [NR CORES−2 : 0] ;
55
56 // Input data r e g i s t e r s
57 input wire [CSR BM BITS−1:0] b a s e i r e g [NR CORES−2 : 0] ;
58 input wire [CSR BM BITS−1:0] mask i reg [NR CORES−2 : 0] ;
59 input wire [CSR CNT BITS−1:0] c n t i r e g [NR CORES−2 : 0] ;
60
61 // Combinational w i r e s
62 input wire [CSR BM BITS−1:0] b a s e s e l [NR CORES−2 : 0] ;
63 input wire [CSR BM BITS−1:0] base [NR CORES−2 : 0] ;
64 input wire [CSR BM BITS−1:0] mask [NR CORES−2 : 0] ;
65 input wire [CSR BM BITS−1:0] mask se l [NR CORES−2 : 0] ;
66 input wire [CSR BM BITS−1:0] mask bits [NR CORES−2 : 0] ;
67 input wire [CSR CNT BITS−1:0] cnt add [NR CORES−2 : 0] ;
68 input wire [CSR CNT BITS−1:0] cnt rm [NR CORES−2 : 0] ;
69 input wire [CSR CNT BITS−1:0] cnt [NR CORES−2 : 0] ;
70 input wire [CSR CNT BITS−1:0] c n t s e l [NR CORES−2 : 0] ;
71 //
72 // I n t e r n a l r e g i s t e r s , used in p i p e l i n e , e t c .
73 input wire p1 enable ;
74 input wire p2 enable ;
75 input wire p3 enable ;
76 input wire p0 enable ;
77 input wire op 1 ;
78 input wire op 2 ;

96

C.3. Update Address Properties

79 input wire [NR CORES−2:0] r node 1 ;
80 input wire [NR CORES−2:0] r node 2 ;
81 input wire [PAXI ADDR BITS−1:0] addr in 1 ;
82 input wire [PAXI ADDR BITS−1:0] addr in 2 ;
83 input wire snatch data en ;
84 input wire snatch data 1 ;
85 input wire snatch data 2 ;
86 input wire snatch data f rom bus en ;
87 input wire snatch data f rom bus 1 ;
88 input wire [CSR BM BITS−1:0] b i t s to compare [NR CORES

−2 : 0] ;
89
90 input wire [NR CORES−2:0] ce0 ;
91 input wire [NR CORES−2:0] ce1 ;
92 input wire [NR CORES−2:0] we1 ;
93 input wire [CSR INDEX BITS−1:0] a0 ;
94 input wire [CSR INDEX BITS−1:0] a1 ;
95 input wire [CSR INDEX BITS−1:0] a1 1 ;
96 input wire [CSR INDEX BITS−1:0] a1 2 ;
97 input wire [CSR INDEX BITS−1:0] a1 3 ;
98 input wire [CSR REG WIDTH−1:0] d i1 [NR CORES

−2 : 0] ;
99

100 input wire [CSR REG WIDTH−1:0] c s r i [NR CORES−2 : 0] ;
101 input wire [CSR O WIDTH−1:0] c s r o [NR CORES−2 : 0] ;
102
103
104
105 d e f a u l t c l o c k i n g cb @(posedge c l k) ; endc lock ing
106
107 // Three c y c l e s a f t e r an operat i on has s t a r t e d i t

should end .
108 property p r f i n i s h t e s t ;
109 d i s a b l e i f f (! r e s e t n)
110 (p0 enable & (r node [0] > 0)) |=> ##2 (ce1 > 0) ;
111 endproperty
112 a s f i n i s h t e s t : a s s e r t property (p r f i n i s h t e s t) ;
113
114 //Only one o f add en , remove en should be one .
115 property pr one hot add rm ;
116 d i s a b l e i f f (! r e s e t n)
117 $onehot0 ({ add en , remove en }) ;
118 endproperty
119 am one hot add rm : assume property (pr one hot add rm) ;
120

97

C. SystemVerilog properties used to verify CSR Source Filter

121 // I f ce0 , the read l i n e s to the CSR should not be x
122 property p r x r e a d l i n e ;
123 d i s a b l e i f f (! r e s e t n)
124 ce0 |−> (! $isunknown (a0)) ;
125 endproperty
126 a s x r e a d l i n e : a s s e r t property (p r x r e a d l i n e) ;
127
128 // I f p0 enable and p1 , and a1 == a1 1 , snatch data==1;
129 property pr sna t ch data en ;
130 d i s a b l e i f f (! r e s e t n)
131 (p0 enable & p1 enable & (a1 == a1 1)) |−>

snatch data en ;
132 endproperty
133 a s sna t ch data en : a s s e r t property (pr sna t ch data en) ;
134 // Stage 1 a s s e r t i o n s :
135 property pr p1 enab l e ;
136 d i s a b l e i f f (! r e s e t n)
137 p0 enable |=> p1 enable ;
138 endproperty
139 a s p1 enab l e : a s s e r t property (pr p1 enab l e) ;
140
141 // I f the p1 and snatch data i s enabled the data should

be snatched from the output
142 // r e g i s t e r s .
143 property pr sna t ch data bus bas e ;
144 d i s a b l e i f f (! r e s e t n)
145 (p1 enable & snatch data f rom bus 1) |=> (b a s e i r e g

== $past (baseo)) ;
146 endproperty
147 a s sna t ch da ta bus ba s e : a s s e r t property (

p r sna t ch data bus ba s e) ;
148
149 // I f s tage 1 i s enabled and the snatch i s not s e t the

data should come
150 // from the r e g i s t e r f i l e .
151 property p r no t sna t ch da ta bus ba s e ;
152 d i s a b l e i f f (! r e s e t n)
153 (p1 enable & ! snatch data f rom bus 1) |=> (

b a s e i r e g == $past (ba s e i)) ;
154 endproperty
155 a s no t sn a t ch da ta bu s ba s e : a s s e r t property (

p r no t sna t ch da ta bus ba s e) ;
156
157
158 // Stage 2 a s s e r t i o n s

98

C.4. Check Address Properties

159 property pr p2 enab l e ;
160 d i s a b l e i f f (! r e s e t n)
161 p1 enable |=> p2 enable ;
162 endproperty
163 a s p2 enab l e : a s s e r t property (pr p2 enab l e) ;
164
165 // I f data snatch i s enabled , the s e l e c t e d data should

be taken from output r e g i s t e r s
166 property pr snatch data ;
167 d i s a b l e i f f (! r e s e t n)
168 (snatch data en) |=> ##1 (b a s e s e l == baseo) ;
169 endproperty
170 a s sna t ch data : a s s e r t property (pr snatch data) ;
171
172 // I f data snatch i s not enabled , the s e l e c t e d data

should be taken from input r e g i s t e r s
173 property pr no t sna t ch data ;
174 d i s a b l e i f f (! r e s e t n)
175 (! snatch data en) |=> ##1 (b a s e s e l == b a s e i r e g) ;
176 endproperty
177 a s no t sna t ch da ta : a s s e r t property (p r no t sna t ch data

) ;
178
179 // Stage 3 a s s e r t i o n s
180 property pr p3 enab l e ;
181 d i s a b l e i f f (! r e s e t n)
182 p2 enable |=> p3 enable ;
183 endproperty
184 a s p3 enab l e : a s s e r t property (pr p3 enab l e) ;
185 endmodule

C.4 Check Address Properties

SystemVerilog C.4: Properties used to verify check addr module.
1 //

∗∗

2 // This f i l e conta in s p r o p e r t i e s and such f o r formal
v e r i f i c a t i o n

3 // o f update addr module in source f i l t e r
4 //
5 //
6 //
7 //
8 //

99

C. SystemVerilog properties used to verify CSR Source Filter

9 //
10
11 module s r c c s r c h e c k a d d r p r o p (/∗AUTOARG∗/
12 // Inputs
13 clk , r e s e t n , check en , addr in , f i n i s h e d , addr out ,

h i t s ou t ,
14 c s r i b c h e c k , a2 , ce2 , b a s e i r e g , maski reg , c n t i r e g ,

p0 enable ,
15 p1 enable , p2 enable , addr in 1 , addr in 2 ,

b i t s to compare ,
16 addr to compare , c s r i
17) ;
18
19 ‘ i n c l u d e ” f i l t e r c o n s t a n t s . v”
20
21 input wire c l k ;
22 input wire r e s e t n ;
23 input wire check en ;
24 input wire [PAXI ADDR BITS−1:0] addr in ;
25 // Inputs from the update l og i c , to enable f e t c h i n g data

be f o r e i t i s saved
26 // in to the CSR
27
28 input wire f i n i s h e d ;
29 input wire [PAXI ADDR BITS−1:0] addr out ;
30 input wire [NR CORES−2:0] h i t s o u t ;
31
32 //Output from r e g i s t e r f i l e s :
33 // [BASE:MASK:COUNT]
34 input wire [(NR CORES−1)∗CSR REG WIDTH−1:0]

c s r i b c h e c k ;
35 input wire [CSR INDEX BITS−1:0] a2 ;
36 input wire ce2 ;
37
38 // Input wi re s
39 wire [CSR BM BITS−1:0] ba s e i [NR CORES−2 : 0] ;
40 wire [CSR BM BITS−1:0] maski [NR CORES−2 : 0] ;
41 wire [CSR CNT BITS−1:0] c n t i [NR CORES−2 : 0] ;
42
43 // Input data r e g i s t e r s
44 input wire [CSR BM BITS−1:0] b a s e i r e g [NR CORES−2 : 0] ;
45 input wire [CSR BM BITS−1:0] mask i reg [NR CORES−2 : 0] ;
46 input wire [CSR CNT BITS−1:0] c n t i r e g [NR CORES−2 : 0] ;
47
48 // I n t e r n a l r e g i s t e r s , used in p i p e l i n e , e t c .

100

C.4. Check Address Properties

49 input wire p0 enable ;
50 input wire p1 enable ;
51 input wire p2 enable ;
52
53 input wire [PAXI ADDR BITS−1:0] addr in 1 ;
54 input wire [PAXI ADDR BITS−1:0] addr in 2 ;
55
56
57 input wire [CSR BM BITS−1:0] b i t s to compare [NR CORES

−2 : 0] ;
58 input wire [CSR BM BITS−1:0] addr to compare [NR CORES

−2 : 0] ;
59
60
61 input wire [CSR REG WIDTH−1:0] c s r i [NR CORES−2 : 0] ;
62
63
64
65 d e f a u l t c l o c k i n g cb @(posedge c l k) ; endc lock ing
66
67 // Stage 0 a s s e r t i o n s
68 // Check that module f i n i s h e s
69 property p r c h e c k f i n i s h ;
70 d i s a b l e i f f (! r e s e t n)
71 check en |=> ##1 f i n i s h e d ;
72 endproperty
73 a s c h e c k f i n i s h : a s s e r t property (p r c h e c k f i n i s h) ;
74
75 // Stage 1 a s s e r t i o n s
76 // P1 should be s e t i f p0
77 property pr p1 enab l e ;
78 d i s a b l e i f f (! r e s e t n)
79 p0 enable |=> p1 enable ;
80 endproperty
81 a s check p1 enab l e : a s s e r t property (pr p1 enab l e) ;
82 // Stage 2 :
83
84 // P2 should be s e t i f p1
85 property pr p2 enab l e ;
86 d i s a b l e i f f (! r e s e t n)
87 p1 enable |=> p2 enable ;
88 endproperty
89 a s check p2 enab l e : a s s e r t property (pr p2 enab l e) ;
90

101

C. SystemVerilog properties used to verify CSR Source Filter

91 // Check that f o r every CSR i f i t s a h i t the input wire
ge t s s e t

92 property pr check comb log i c (i) ;
93 d i s a b l e i f f (! r e s e t n)
94 (((b a s e i r e g [i] & maski reg [i]) ==

addr to compare [i]) & (c n t i r e g [i] > 0))
|−> h i t s o u t [i] ;

95 endproperty
96 generate
97 f o r (genvar i = 0 ; i < NR CORES−1; i = i + 1) begin :

l o g i c a s s
98 a s ch e c k co m lo g i c : a s s e r t property (

pr check comb log i c (i)) ;
99 end

100 endgenerate
101 endmodule

102

References

Accellera (n.d.), Universal verification methodology (uvm) 1.1 user’s guide, Tech-
nical report, Accellera.
URL: http://www.accellera.org/downloads/standards/uvm/

Daniel J. Sorin, Mark D. Hill, D. A. W. (2011), A Primer on Memory Consistency
and Cache Coherence, Morgan & Claypool Publishers.

Hennessy, J. L. & Patterson, D. A. (2006), Computer Architecture: A Quantitative
Approach, Morgan Kaufmann.

Moshovos, A., Memik, G., Falsafi, B. & Choudhary, A. (2001), Jetty: filtering
snoops for reduced energy consumption in smp servers, in ‘High-Performance
Computer Architecture, 2001. HPCA. The Seventh International Symposium
on’, pp. 85 –96.

Nilsson, J., Landin, A. & Stenstrom, P. (2003), The coherence predictor cache:
a resource-efficient and accurate coherence prediction infrastructure, in ‘Parallel
and Distributed Processing Symposium, 2003. Proceedings. International’, pp. 10
–17.

Raman, R. (2012), Cache coherence protocol verifications, Semester project,
NTNU.

Ranganathan, Aanjhan, B. A. G. K. T. B. P. I. P. & Charbon, E. (2012), ‘Counting
stream registers: an efficient and effective snoop filter architecture’.

Salapura, V., Blumrich, M. & Gara, A. (2007), Improving the accuracy of snoop
filtering using stream registers, in ‘Proceedings of the 2007 workshop on MEmory
performance: DEaling with Applications, systems and architecture’, MEDEA
’07, ACM, New York, NY, USA, pp. 25–32.
URL: http://doi.acm.org/10.1145/1327171.1327174

Ulfsnes, R. (2012), A survey of low power design techniques for cache coherency in
multiprocessor memory systems, Semester project, NTNU.

103

	Abstract (English)
	Sammendrag (Norsk)
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Thesis Description

	Memory Systems in Multicore SoCs
	Cache Coherence
	Coherence Protocols
	Snoop based protocols

	Power Consumption in Multi-Core System
	Snoop Filters
	Source Filter
	Destination Filter
	Exclusive/Inclusive
	MESI Protocols Make Filters Redundant

	Summary

	Model for Evaluating Snooop Filters
	Evaluation Criteria
	Tag Lookups
	Snoop Induced Transactions

	Architecture
	Core
	L1 Cache
	L1 Cache Controller
	Bus Interface
	L2 Cache Controller

	Benchmarks
	Summary

	Snoop Filters and Performance
	Related Work
	Stream Register Based Snoop Filters
	Counting Stream Register Snoop Filter

	Simulation and Results
	Comparing MESI and MSI
	Destination CSR

	New CSR Filters
	Source CSR
	Source CSR Results
	Hashed-index CSR
	Hashed-index CSR Results

	Filter Comparisons
	Tag Lookups
	Snoop Transactions

	Summary

	Design and Verification
	Design and Specification
	Interconnect Surveillance Module
	CSR Update Module
	CSR Check Address Module
	CSR Register Bank

	Verification
	UVM
	Formal Verification
	Design Verification
	Toplevel Properties
	Interconnect Surveillance Properties
	Update Address Properties
	Check Address Properties

	Summary

	Power Consumption Analysis
	Power Consumption
	CMOS Power
	Dynamic Power

	Power Estimation of Tag Lookups and Transactions
	Tag Lookups
	Transactions

	Power Simulation of Filter
	Power Estimation of Benchmarks
	Summary

	Conclusion
	Future Work

	Dynamic Multicore Model
	L2 Controller: MSI FSM
	L1 Controller: MESI FSM

	Verilog Code for Source CSR Filter
	Toplevel for Source CSR Filter
	Interconnect Surveillance Module
	Update Address Module
	Check Address Module

	SystemVerilog properties used to verify CSR Source Filter
	Toplevel Properties
	Interconnect Surveillance Properties
	Update Address Properties
	Check Address Properties

	References
	References

