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Project description

It is the purpose to design a state representation on FPGA that can be used
to construct State Machines that should be able to clone themselves. This
is an interesting operation for representation of non-determinism in run time
reconfiguration.





Abstract

The purpose of this thesis is to continue development of a single state rep-
resentation for use in a Self-Cloning State Machine. The Self-Cloning State
Machine can be used to represent Non-Deterministic Finite State Machines on
a FPGA. NFSMs can be used to for instance match regular expressions and
the Self-Cloning State Machine is a run-time reconfiguration based approach to
this problem. Previous work has been performed on design tool experiments,
choosing a FPGA vendor, and creating a definition of the singular state rep-
resentation. This continuation focuses on further development of the singular
state and creating a system around it for experimentation.

A system is designed to be used as an example model of a Self-Cloning State
Machine for the Virtex-4 FPGA. This system consists of several finite-state
machines built up by several singular states, a control system, and a result
management module. The FSMs are connected together in order to model a
previously defined NFSM. To model the NFSM a control system is made to
enable and disable the different FSMs as the transitions happen in the NFSM.
Each of these FSMs have their own data path used for computing a simple
operation based on a Multiply-Accumulate Circuit. The data path uses one-hot
coded state vectors from the FSM as its internal state machine. A deterministic
version is also created to be able to compare the area and functional differences.
A comparison between the Self-Cloning State Machine and another method of
implementing a NFSM is made. There is also a brief comparison of two different
implementation methods for run-time reconfiguration with respect to ease of
implementation. The two methods are a framework for run-time reconfiguration
and a Virtual FPGA system.

The modifications made to the singular state representation are found to be
appropriate for allowing the singular state to represent any state in any FSM.
A problem was discovered with the size of the configuration register but the
problem can be solved. The control system, data path and result management
system functioned correctly and they were well suited to show the functionality
of a system like this one. Comparing the Self-Cloning State Machine to another
implementation method for NFSMs shows that this implementation demands
much more physical area which is a disadvantage, but the Self-Cloning State
Machine may be more flexible than the other method. The V-FPGA method
of performing run-time reconfiguration is found to be superior to another type
of framework created specifically for the Virtex-4 FPGA.





Sammendrag

Hensikten med denne oppgaven er aa viderefoere utviklingen av en enkelttil-
standsrepresentasjon til bruk i en selv-klonende tilstandsmaskin. En selvklo-
nende tilstandsmaskin kan brukes til aa representere ikke-deterministiske til-
standsmaskiner (NFSMs) paa en FPGA. NFSMs kan brukes til for eksempel
matche regular expressions og selvklonende tilstandsmaskiner er en kjoeretid-
srekonfigureringstilnaerming til dette problemet. Tidligere arbeid har blitt ut-
foert innenfor designverktoeyeksperimenter, det aa velge en FPGA leverandoer,
og det aa skape en definisjon av enkelttilstandsrepresentasjon. Denne fortset-
telsen fokuserer paa videreutvikling av enkelttilstanden og det aa lage et system
rundt den for eksperimentering.

Et system er konstruert for aa bli brukt som et eksempel paa modell av en selv-
klonende tilstandsmaskin for en Virtex-4 FPGA. Dette systemet bestaar av
flere tilstandsmaskiner bygget opp av flere enkelttilstander, et kontrollsystem,
og en modul for resultatbehandling. De tilstandsmaskinene er koblet sammen
for aa modellere en tidligere definert NFSM. For aa modellere en NFSM er et
kontrollsystem laget for aa aktivere og deaktivere de forskjellige tilstandsmask-
inene ettersom overgangene skjer i NFSM. Hver av disse tilstandsmaskinene
har sine egne dataveier som brukes for aa beregne en enkel operasjon basert paa
en multiply-accumulatekrets. Dataveien bruker one-hot kodede tilstandsvek-
torer fra en tilstandsmaskin som deres interne tilstandsmaskin. En determin-
istisk versjon er ogsaa laget for aa kunne sammenligne areal og funksjonelle
forskjeller. En sammenligning mellom den selvklonende tilstandsmaskinen og
en annen metode for aa implementere en NFSM er gjort. Det er ogsaa gjort
en kort sammenligning av to forskjellige metoder for aa gjennomfoering kjo-
eretidsrekonfigurering med hensyn til enkel implementasjon. De to metodene er
et rammeverk for kjoeretidsrekonfigurering og et system for design av virtuelle
FPGAer.

Endringene som er gjort i enkelttilstandsrepresentasjonen er funnet aa vaere
hensiktsmessig for aa la enkelttilstanden representere hvilken som helst tilstand
i hvilken som helst tilstandsmaksin. Et problem ble paavist med stoerrelsen paa
konfigurasjonensregisteret, men problemet kan loeses. Kontrollsystemet, data-
banen og resultatstyringssystemet fungerte korrekt og de var godt egnet til aa
vise funksjonaliteten til et system som dette. Sammenligningen av en selvklo-
nende tilstandsmaskin med en annen implementeringsmetode for NFSMer viser
at denne implementeringen krever mye mer areal, noe som er en ulempe, men
selvklonende tilstandsmaskiner kan vaere mer fleksibel enn den andre metoden.
V-FPGA-metoden for aa utfoere kjoeretidsrekonfigurasjon er funnet aa vaere
overlegen i forhold til en annen type rammeverk laget spesielt for en Virtex-4
FPGA.
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Chapter 1

Introduction

1.1 Problem Clarification

Previously a singular state representation for a self-cloning state machine has
been investigated in a project [Blomkvist, 2012]. This thesis is a continuation
of that work. The point of this thesis is to further investigate whether or not a
self-cloning state machine is a viable solution for representing Non-Deterministic
Finite State Machines on FPGAs. While the project was very detail oriented
with respect to the implementation methods this thesis will try to have a broader
perspective and address system-relevant issues related to this subject. Seeing
as this is a very large subject area, and very little work has been done before,
small incremental steps are taken in the design. The scope of this work is:

• To make a system level analysis to determine system requirements for
control and result management.

• To implement a model of a NFSM on an FPGA in VHDL and compare this
to a straight-forward DFSM implementation with a few different metrics,
e.g. speed and area.

• To review different implementation methods for a true NFSM based on
the implementation examples.

The run-time reconfiguration itself will not be implemented here, different pos-
sible methods will simply be discussed with regards to the results from the
implementation of the model.
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2 Motivation

1.2 Motivation

Traditionally there has always been a clear distinction between the hardware
approach of the application-specific integrated circuit and the software approach
of the microprocessor. With the rise of the field-programmable gate array the
line between hardware and software is becoming more and more blurry. The
reconfigurability of the FPGA allows bug-fixing and shorter time-to-customer
than ASICs, while still being faster than the microprocessor. Many applications
use FPGA modules as hardware accelerators for microprocessors and many
FPGAs include microprocessors embedded on-chip. Since the FPGA can offer
some of the flexibility of software and the speed and parallel computing of
hardware it helps bridge the gap between hardware and software.

Run-time reconfiguration of FPGAs can further bridge the hardware/software
gap by enabling the FPGA to change functionality in run-time and react to the
run-time conditions of the system. This can bring very high levels of flexibility
to a system but the design complexity is severe at the moment. To simplify run-
time reconfiguration new methods can be developed. One such method is the
Self-Cloning State machine. Provided that a good work flow can be developed
the Self-Cloning State machine can turn out to be an easier way to perform
run-time reconfiguration which is device independent and excellent for use with
any application that requires an unknown pattern to be matched.

The motivation for this work is finding out if self-cloning state machines are
a viable alternative for designing run-time reconfigurable systems. Not all ap-
plications will be suited for this kind of system but some applications which
require patterns to be recognized (e.g. regular expression matching) could pos-
sibly produce faster results by using NFSMs in general ([Sidhu and Prasanna,
2001])and self-cloning state machines in particular.

The contribution to this subject area by this thesis is a redefinition and re-
implementation of a singular state representation for use in a Self-Cloning State
Machine, a framework for testing this state beginning with a systems presenta-
tion and analysis, and comparing this with the same concept implemented in a
normal DFSM. Further it moves on to a brief comparison with another method
of implementing Non-deterministic State Machines and another brief analysis
of what kind of reconfiguration solution to choose for the Self-Cloning State
Machine.

1.3 Report structure

The thesis is structured as follows. Chapter two gives some background infor-
mation about what this thesis is built on. Chapter three is the theory chapter
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where the field-programmable gate array, run-time reconfiguration, the non-
deterministic state machine, and virtual hardware is explained. Chapter four
analyses and defines the demands and limitations of the self-cloning state ma-
chine model created here. Chapter five is the chapter where implementation
examples are explained. A modified multiply-accumulate operation is imple-
mented in both a normal straight-forward deterministic finite-state machine
and in a model of a self-cloning non-deterministic finite state machine. Chapter
six is the results chapter. Chapter seven is a discussion of the results. Chapter
nine is the conclusion.





Chapter 2

Background

2.1 Compiling Regular Expressions into Non-
Deterministic State Machines for Simulation
in SystemC

This Master’s Thesis written by Kjetil Volden in 2010 [Volden, 2011] models
regular expression matching on FPGAs using SystemC by first defining a specific
regular expression syntax for that purpose, and then creating a system for
compiling regular expressions into non-deterministic finite state machines. Since
SystemC does not allow for creation and deletion of modules during run-time
he chose to model it by activating and deactivating modules depending on what
regular expression was sent into the system. The thesis ends by suggesting
further work on trying to implement non-deterministic finite state machines on
FPGA.

2.2 Self-Cloning State Machines on FPGA spe-
cialization project

The project report [Blomkvist, 2012] consisted of an initial survey into which
vendor would be the best suited for this application. Following that were ex-
periments regarding what kind of synthesis parameters would be the best for
an initial singular state representation, i.e., whether to choose one-hot or Gray
coding for the internal state machine of the singular state and whether to opti-
mize for area or speed. Manually designing a state machine by hand in a Xilinx
tool called FPGA Editor was performed to learn more about both the FPGA

5



6 Fast Regular Expression Matching using FPGAs

Editor tool and the architecture of the Xilinx Virtex-series FPGA. Finally a
preliminary definition of a singular state was made. A limited investigation
into how the copy operation could be performed was also made. The projects
concludes that using Xilinx as the vendor is the best choice since Xilinx sup-
ports run-time reconfiguration, one-hot coding and optimizing for area is the
best starting point when designing the singular state, and that the singular
state needs more work to make it generic.

2.3 Fast Regular Expression Matching using FP-
GAs

Some work has been carried out previously on implementing a Non-deterministic
Finite State Machine on an FPGA [Sidhu and Prasanna, 2001]. According to
the article this was the first practical use of a NFSM on programmable logic.
An algorithm was made that quickly constructs a NFSM in run-time based
on a regular expression which is to be matched by input data. Each state
in the NFSM is set to be one flip-flop using the one-hot encoding scheme.
The non-deterministic transitions are made by simply connecting the output
from a source state to the input of all the destination states. ε-moves are
made by connecting the input signal of a source state to the input signal of the
destination state, allowing a transition to the destination state without waiting
for the symbol to be processed. The NFSM is constructed using predefined
building blocks representing the different operators of the regular expression
syntax. Their system showed good performance compared with serial regular
expression matching algorithms.

Figure 2.1 shows the regular expression modules of this approach. The single
character module in (a) takes in a text character and a value from the previous
module. If the character is present in the regular expression the character
register will be set high, and if the i signal is also high because the NFSM is in
the previous state this state will be set high. This can be seen in (c) where N1
has to come before N2, so N1 will be checked first, and will be set high before
N2 is checked. The structure in (b) shows how two single character modules are
connected to form an OR-operation in the regular expression by connecting the
i signal to the inputs of both single characters and the outputs to an OR-gate.
The last structure is the one in (d) where zero or more of the same character is
accepted as a valid string because of the connections with the OR-gates. The
initial input to the i signal is always set high to allow the circuit to function.

This is relevant as a comparison since it gives an alternative approach to design-
ing NFSMs and can be a comparison to using the Self-Cloning State Machine,
especially with regards to area usage.
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Figure 2.1: Logic structures for (a) single character, (b)r1|r2, (c) r1 · r2,
(d) r1∗ [Sidhu and Prasanna, 2001]





Chapter 3

Theory

3.1 Field-Programmable Gate Arrays

The Field-Programmable Gate Array (FPGA) is an electronic circuit that can
be reconfigured several times [Compton and Hauck, 2002]. Usually the configu-
ration memory of an FPGA is volatile so that it needs to be reconfigured every
time it’s powered on, but other types of memory exist. The advantage of the
volatile type of memory is that it is faster. Figure 3.1 shows the architecture of
interconnect and logic cells in a typical FPGA. The Logic Blocks are the part
of the FPGA doing the actual computations and are built up of look-up tables
(LUTs), flip-flops, multiplexers and sometimes carry chains. The definition of
what a logic block is varies between different FPGA vendors but the smallest
logic cell (figure 3.2) usually consists of a LUT, a D-type flip-flop and a 2-to-1
multiplexer used for bypassing the flip-flop when needed. The LUTs are 1-bit
asynchronous RAMs [Ashenden, 2008] which can be configured to do a high
number of operations. All input combinations are passed through AND-gates
and then the programmable memory cell chooses which of the signals from the
AND-gates to accept and sets the LUT to be high when that combination is ac-
tive on the inputs [Bailey, 2011]. The number of operations a LUT can perform

depends on the number of inputs. The equation n = 22
k

describes the relation-
ship between the k number of inputs and n number of possible operations. So
for a 3-input LUT the number of operations possible is 256, for a 4-input LUT
the number is 65536 and so forth. This means that the area required for imple-
menting a LUT increases more than exponentially with the number of inputs.
The other types of blocks are connect blocks and switching blocks. Connect
blocks is the interface between the global routing network and the logic blocks.
The switching blocks are used for changing routing direction between horizontal
and vertical lines.

9



10 Field-Programmable Gate Arrays

Figure 3.1: FPGA top level architecture schematic [Compton and Hauck,
2002]

Figure 3.2: A typical logic cell [Compton and Hauck, 2002]

FPGAs offer advantages that other types of electronic circuits do not. Application-
Specific Integrated Circuits are fast and use low amounts of energy, but they
are inflexible since they can’t be changed after production. In addition they are
very expensive to manufacture and thus an FPGA can often be a better choice in
low-volume production. Microprocessors are flexible but lack the speed and of-
ten the parallel computing capabilities of an FPGA. The FPGA can be changed
after the product has been shipped to a customer if an error is discovered, and
many FPGA vendors provide a microprocessor for the FPGA either as a soft
core processor or actual embedded hardware embedded in the FPGA. In that
way the FPGA can provide both the serial processing of the microprocessor
and the parallel processing of the FPGA structure. Fully utilizing this requires
that developers know how to partition the system into software and hardware
components.
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Designing for an FPGA usually requires that the designer describes the func-
tionality in a hardware description language (HDL) and then takes advantage
of the tools offered by the FPGA manufacturer used in the design. The tools
are usually specific for that particular vendor, and sometimes for a particular
device family.

3.2 Run-Time Reconfiguration

An FPGA is usually configured before it is activated in a system, however, in
certain applications it can be useful to change the configuration of an FPGA
when it’s running. Run-time reconfiguration allows this to happen [Compton
and Hauck, 2002]. In order to change the functionality of the FPGA in run-time
the operation has to be halted before swapping the old configuration with the
new one. Useful applications for run-time reconfiguration are any applications
where optimizations can be done in run-time, new and updated standards are
frequent, or other applications where there is a high chance of needing something
to be changed [Koch et al., 2012]. Run-time reconfiguration is closely related
to the concept of virtual hardware explained in the next section.

There are a few different types of run-time reconfiguration. Single-context de-
vices need to change the whole configuration serially every time a context-switch
needs to happen. This takes several milliseconds to complete and should happen
very rarely. Multi-context devices can save multiple contexts on the FPGA to
make the context switch happen in several orders of magnitude faster. Partially
reconfigurable devices is able to halt only parts of the FPGA while letting the
rest of the FPGA run as normal in order to change the configuration. Address-
ing the correct configuration bits in the configuration memory lets the system
change only the exact parts that need to be changed. When using partial re-
configuration the FPGA is divided into a static part which should never be
changed, and a dynamic part which can be changed in run-time.

Self-reconfiguration is a subcategory of run-time reconfiguration where the FPGA
does the reconfiguration itself. Some FPGAs support this by allowing on-chip
logic to connect to the configuration logic. This can be useful where it is not
practical to organize the run-time reconfiguration from the outside world be-
cause of overhead or space limitations. The control logic needs to be in the
static part since it must remain unchanged and has to be able to keep running
at all times.

3.3 Virtual FPGA Architectures

Hardware virtualization means that an application executes on virtual hardware
as opposed to physical hardware [Plessl and Platzner, 2004]. That means that



12 Virtual FPGA Architectures

an abstraction layer is put on top of the physical hardware to separate the
design process so that the designer does not need to worry about the physical
structure of the hardware. Virtual design units are made up of several hardware
design units (i.e. CLBs) to create the abstraction like in figure 3.3.

Physical

Virtual
layer

Layer

Figure 3.3: Physical and virtual layers [Lagadec et al., 2001]

Virtual hardware is analogous to virtual memory which is used to allow appli-
cations to address a larger memory than physically exists. Similarly a system
using virtual hardware can swap configurations in and out of the physical hard-
ware in run-time allowing the system to use a larger amount of hardware than
physically exists. Using virtual hardware increased independence between the
mapped architectures and the capacity of the target architecture can be ob-
tained in exchange for speed. Lower speed can however be remedied by special-
izing the virtual layer towards a particular application by making fast specific
virtual hardware for that application [Lagadec et al., 2001].

There are several different approaches to virtualization of hardware. Temporal
partitioning splits the application into several smaller parts which fit on the
physical architecture and execute the parts sequentially. Virtualized execution
is another method. The goal of Virtualized execution is to gain a large level
of independence within a device family. The application is divided into atomic
units of computation. The whole system is then described by these tasks and
the interactions between them. All the devices in the family support the task
and interaction definitions, so all the devices in the family can implement these
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abstractions. The difference is how many tasks can run concurrently depending
on the size of the FPGA the application is implemented on. Task scheduling
is one of the challenges using this method. The third option is the Virtual
Machine method. A higher level of device independence is provided by the
virtual machine method since the application is mapped to abstract computing
architecture instead of being mapped for a particular family. This can be done
in two ways. Either remap the application to the native application code of the
target architecture, or the hardware architecture can run an interpreter that
executes the abstract application code.

A way of implementing a virtual FPGA architecture is by coupling an FPGA
with a microprocessor [Hubner et al., 2011]. This has previously been im-
plemented in order to use virtual FPGAs as hardware accelerators serving a
microprocessor. Figure 3.4 shows the architecture of the whole system. The
system is built up of the microprocessor, one or more virtual FPGA cores, a
configuration controller, en external memory used for storing configuration and
other data, and an AMBA bus ([ARM, n.d.]) used for on-chip communication.
The processor used is an ARM Cortex-M1 inside the FPGA itself and is used
for serial execution including control and interfacing. Memory read and write is
done through the AMBA High-speed Bus (AHB) which both the processor and
the configuration controller are masters of. The processor communicates with
both the configuration controller and the V-FPGA cores through the AMBA
Peripheral Bus (APB). The processor tells the configuration controller which
configuration to load into which V-FPGA via the APB. So the configuration
controller is a slave of the APB but a master of the AHB. The V-FPGA cores
are slaves of both the APB and the configuration bus. The configuration bus
out of the configuration controller is used in combination with chip select signals
to control which of the V-FPGAs are configured with the data on the bus. That
means that any number of V-FPGAs can be configured at the same time with
the same configuration enabling dynamic and partial reconfiguration. The archi-
tecture of the V-FPGAs themselves uses a uniform 2-dimensional grid structure
with Programmable Switch Matrices (PSMs) and Complex Logic Blocks (CLBs)
with I/O Blocks (IOBs) at the borders. A CLB consists of a 4-input LUT, a
D-type flip-flop, a configuration register and some other logic. The PSMs are
used for routing between the CLBs, and the IOBs are used to connect to the
outside world. A custom tool-chain is needed for this type of implementation
because none of the vendors support it natively.

3.4 The Non-deterministic Finite State Machine

Automata theory is the theory about the properties of problems that are solvable
by computers [Harvey, 1997]. The purpose of automata theory is to provide a
general model of computing that is independent of the implementation method.
One such model is the Finite State Machine (FSM). The finite state machine
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Figure 3.4: Overview of the virtualization system architecture [Hubner
et al., 2011]

is often described deterministically, i.e. given a known current state and/or a
known input the next state in the computation is also known because all of
the state transitions are given. This type of finite state machine is called a
Deterministic Finite State Machine (DFSM).

The Non-deterministic Finite State Machine (NFSM), however, is not uniquely
defined for each state and each input. The NFSM is a state machine which
can have several state transitions from the same state triggered by the same
input going to different destination states. The NFSM cannot solve any more
complex problems than an ordinary DFSM, it can in fact be converted to a
DFSM by use of powerset construction, but it can be more practical in use for
some applications. An example is a string matcher like the one in figure 3.5.
The string in the figure should start with an ”A” and end with a ”C” but any
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number of ”A”, ”B” or ”C” can be in between the first ”A” and the last ”C”.
When the first ”A” has been received the NFSM will transition from the first
state to the second and then it will be able to receive all symbols indefinitely.
As long as an ”A” or a ”B” is received the machine will stay in the second state,
but if a ”C” is received it can either transition further to the last state or stay
in the second state. Since the string can end with a ”C”, but not necessarily
does, the machine can end up in both states and the outside world cannot know
which one it ended up in. A way to solve this is to copy the state machine every
time a ”C” arrives and then let one of the machines be in the second state and
one be in the third state. That way the string will be detected but the machine
will still keep looking for more strings.

1 2 3A C

ABC

START

Figure 3.5: String matcher in a NFSM [Harvey, 1997]

Figure 3.6 shows how it would be done in a DFSM. The difference is that when
a ”C” arrives the machine transitions to the thirds state regardless. Here the
third state is an accept state, but the machine can and will transition away from
the third state when a new character arrives. That means that the machine isn’t
done even if it ends in the accept state. Both types need to accept sub-strings
in run-time since they can’t know if the last ”C” has arrived, but the NFSM has
the advantage of fewer transitions and better separation between the different
stages of the machine since it’s done when it ends up in the third state. In
the NFSM there is a clear distinction between the first character, the middle
characters and the last character, while in the DFSM there is a larger number
of transitions and there is no separation between the second and last stages of
the string.

The definition of a NFSM is given by the following five-tuple [Svarstad and
Volden, 2011]:

• Q is the set of states

• Σ is the finite alphabet

• q0 is the initial state, q0 ∈ Q
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1 2 3A C

AB

START

C
AB

Figure 3.6: String matcher in a DFSM [Harvey, 1997]

• A is the set of final states, A ⊆ Q
• δ is the state transition relation: δ : Q× Σ→ 2Q

The definition is similar to the DFSM except for the state transition relation
which transitions to all subsets (the power set) of Q instead of just Q. The reason
is that the NFSM can transition to several states given the same conditions and
it is impossible to know which one it is in. The NFSM can also have ε-moves,
moves which do not require that an input symbol is consumed to transition to
the next state [Sidhu and Prasanna, 2001].
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A system level view

Viewing a self-cloning state machine from a system perspective is useful for
understanding how it can be of practical use. System perspective means that
the implementation details are less important than the overhead system con-
siderations that need to be made. The broader, more abstract concepts are
considered to determine some system requirements. To determine these system
requirements a circuit based on a multiply-accumulate (MAC) circuit combined
with both a deterministic finite-state machine (DFSM) and a model of a non-
deterministic finite-state machine (NFSM) will be considered.

The internal state machine of the MAC operation will be controlled by values
coming from the detector in [Svarstad and Volden, 2011], which detects three-
length sub-strings of ones in a continuous stream of values. This is used as an
example because the concept of the detector is already explained in the paper
and is simple enough to understand but still complicated enough to model most
of what is needed for a system discussion. Figure 4.1 shows the state machine
diagram of the substring detector. The only non-deterministic state transition
here happens when a ”1” is received in the initial state and the transition can
either go to S1 again or to S2. Further, if a ”1” is received continuously the
state machine will eventually end up in S4, the accept state. The way the self-
cloning state machine will cope with the non-deterministic transition is to clone
itself every time it occurs. Every time a ”1” arrives on the input a new clone
will be made which explores one of the possibilities, i.e, that the transition went
to S2. The other state machine will explore the other possibility, i.e., that the
transition went back to S1. This will continue every time a new ”1” arrives. For
this particular NFSM, however, the maximum number of state machines active
at any time will be four. The reason is that the state machines will be pruned
when they reach the accept state since the operation then will be done, freeing
the area of the FPGA for a new clone. If a ”0” arrives on the input all of the
currently active clones except one should be pruned and the last clone should
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be active in the initial state waiting for another ”1” to arrive on the input and
the operation to start from the beginning again.

S1
Initial S2 S4

AcceptS31

0,1

11

Figure 4.1: The modeled NFSM [Svarstad and Volden, 2011]

4.1 Multiply-Accumulate

The MAC operation is quite simple as shown in figure 4.2. The operation con-
sists of first multiplying two numbers and then adding it to an accumulating
sum. For this particular application a few changes need to be made to the
concept of a MAC circuit. Instead of multiplying two variables and then accu-
mulating it in a register, two variables can be multiplied and then add the result
to a third variable. The point of this change is to create a relatively simple data
path for use with the non-deterministic state machine previously defined. The
modified MAC-circuit (MMAC) has the same number of steps for completion
as the NFSM we have chosen to model. The modified circuit is shown in figure
4.3.

R
EG

*

+

A B

Figure 4.2: A MAC circuit

REG

*

+

A B

C

Figure 4.3: The modified MAC circuit structure
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4.2 Non-deterministic model

The data flow of the MMAC circuit in the NFSM model is shown in figure 4.4.
Since there will only exist a maximum of four state machines in this implemen-
tation only four are shown in the figure. The input data is accompanied by a
high state transition signal to the state machine. Letters are used in the figure
only to indicate different data values, for instance different values of an integer,
not actual letters. When the ”a” arrives the first machine is activated and the
”a” is set in the register of the first machine, rI. When the ”b” arrives the first
machine multiplies it with the previously received ”a” and again sends it back
to rI. The second machine will just load ”b” into rII. This will continue as
long as there is input data with a high transition signal coming into the system
with results starting to arrive after four clock cycles and then arriving every
clock cycle, sort of like a pipeline except none of the machines will be sharing
computing resources. When the result is ready the machine can be deactivated
as shown by using an ”X” in the figure. What will actually happen is that
the machine will become active again but start from the beginning as the next
machine in the chain, i.e., machine ”I” will become machine ”V” and so forth.

4.2.1 The singular state

Cloning a state machine requires all of the physical logic in the state machine
to be defined and have clear boundaries. The reason is that it simplifies run-
time reconfiguration. A control system needs to be able to determine where
each of the clones are physically on the FPGA in order to determine if there is
room enough for another clone and where on the FPGA there is room. Having
exact information about how large a clone is helps with that. A previously
defined singular state can be used to create a fully functional state machine
which in turn can be used as a NFSM [Blomkvist, 2012]. This singular state
can represent one bit in a one-hot coded FSM.

The previously defined singular state was not generic, and work needs to be
done to change that. Another problem with the previous definition is that it is
very complicated in the sense that it includes a lot of functionality which is not
necessarily useful to have in the singular state itself. Redefining it after having
built a rudimentary system around it will allow for a definition which is more
accurate. Stripping away some things from the previous definition the system
demands for the singular state are:

• It should be minimal. That is, it should use as few logic elements as
possible.

• It should have clear boundaries for reasons explained previously.

• It should be generic, which means it should be usable as any state in any
FSM.
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Figure 4.4: NFSM MMAC flow
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These demands are very concrete and a better starting point than the scatter-
gun approach from the specialization project.

4.2.2 Data path

Any state machine needs to be connected to a data path. Since the data path
needs to be connected to the state machine there is an issue with how to deal
with the data path when cloning the machine. Since all of the operations in
the different state machines happen concurrently each state machine needs its
own separate data path. To solve this issue one could determine the maximum
number of state machines active in the particular application and then imple-
ment that number of data paths in the system. The advantage is having a fixed
area used for data path logic only and more predictability regarding how much
space is needed. The disadvantage would be that the physical resources will
be occupied at all times, even if there aren’t enough state machines to use all
of the data paths. Also this solution would require a more complicated com-
munication infrastructure on the FPGA, but since this will be required anyway
research is needed to determine just how much more complicated it would be.

A simpler solution to the data path issue is to create a data path for each state
machine active at a particular time instead of creating the maximum at design
time. This method ensures that the physical logic isn’t occupied before it’s
needed. The communication between each state machine and its data path is
determined during design time which makes it easier to design.

The system demands for the data path are:

• Must be directly connected to a NFSM clone.

• Needs to be able to interpret the state signal from the FSM made up of
singular states.

• The calculations needs to be performed without being able to affect the
FSM. The state transitions can’t be adapted directly from the data path
based on the intermediate results, it needs to go through a control system
if that is needed.

• Needs to be compatible with one-hot coding.

• Needs to have adequate space to save the data during the calculation

• Must send out status signals flagging the state of the operation.

4.2.3 The Control Unit

The NFSM needs a control system to keep track of which state machine clones
should be active at any time. The control system should monitor the transitions
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in the NFSM and based on that make a decision on whether to activate a FSM
or not.

The system demands for the control unit are:

• Has to receive the state transition signal along with the FSM clones.

• Based on the transition signal it should activate or deactivate FSMs.

• Needs to be aware of the maximum number of clones needed/available.

4.2.4 Managing Output Data

Managing the output data of the NFSM model requires some sort of mecha-
nism for determining when the result is ready, and then receive the data. The
demands of the result management system are:

• Detecting when an output is ready from a clone.

• Organizing the outputs so that they can be sent to the outside world in
an orderly fashion.

Detecting when the output is ready can be solved by receiving a status signal
from the data path of the FSM that is finished with the calculation. Since the
FSM in this system will be detecting substrings of ones, the results of the data
path will be sent to the result manager every single clock cycle.

4.3 Deterministic model

The point of this system is to create the same kind of operation as in the NFSM
but without using several state machines. The DFSM implementation is quite
straightforward. Simply shifting in data values continuously on an input port
and using a control signal to let the state machine know when to transition
could be a reasonable solution. An advantage of creating the circuit in this
manner is the simplicity. Low amount of logic can also be assumed to be an
advantage. The main system level challenge is coordinating the input of the
control signal with the data input so that the state machine transitions at the
correct time.

Figure 4.5 shows the input shift register of the data path for the DFSM version
and how it is used. When the system is initialized and ready the shift register
is completely empty (filled with zeros). As the input data is shifted in the
values will be used in the calculations. When the ”a” value is in the first stage
of the register, the result will simply be ”a” since the system then will try
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to compute result = a + 0 · 0. In the next cycle the result will be ”b” since
result = b+a ·0. The first full calculation will happen when the ”c” is shifted in
and the result will be result = c+ b ·a. This will continue as long as the system
is running. Different from the NFSM since this will produce a result every clock
cycle instead of waiting until all of the variables are in before outputting the
first result.

Figure 4.5: Input value shift register, two clock cycles
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Implementation examples

To get some insight into possible system-wise design issues some practical ex-
amples can be useful. Comparing the two types of implementations will also
give information about space usage and timings which in turn can be interest-
ing to compare the differences between the Deterministic Finite-State Machine
version and the the Non-deterministic Finite-State Machine version. The fol-
lowing examples are based on the data paths defined in the previous chapter
and they are written in VHDL. First a DFSM version of the modified MAC
circuit can be made as an example of a traditional, simple way of implementing
this kind of system. The next step is to create a model of a possible NFSM
implementation. This model will not actually have the cloning capabilities that
a true self-cloning state machine would have, but it will be modeled as a set of
state machines that are implemented on the FPGA during design time. During
run-time only the state machine ”clones” that are needed will be active and the
rest of the state machines will be sleeping.

5.1 Equipment and software

The software used for this project is Xilinx Integrated Software Environment
(ISE) Webpack version 14.4. ISE features various tools used for designing and
analyzing designs made in hardware description languages, like HDL synthesis
tools, place and route tools and other FPGA configuration tools. Among these
tools are a project navigator, a simulator called ISim and an FPGA Editor
usually used for manually changing designs after place and route has been run.
The project navigator will be used for coding both modules and test benches in
VHDL, and for synthesis and place and route. ISim will be used for functional
simulation and verification by observing waveforms. FPGA Editor will be used
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for observing the circuits after place and route and for moving the logic around
with the purpose of creating Xilinx Hard Macros.

This system will be designed for the Xilinx Virtex-4 xc4vfx12-12sf363 [Xilinx,
2008]. The FX version of the Virtex-4 has a PowerPC 405 RISC core. Accord-
ing to Xilinx the FX series is a ”High-performance, full-featured solution for
embedded platform applications.” In the project the various components were
designed for a Virtex-II Pro, but here it will be changed since the Virtex-4 is
larger but still not too complex. Also there is no support for the Virtex-II in
the newest versions of the Xilinx software. The Virtex-4 FPGA building blocks
are improvements of those found in Virtex, Virtex-E, Virtex-II, Virtex-II Pro
and Virtex-II Pro X product families, so the work done in the project is still
relevant for this thesis. Like in the Virtex-II the Virtex-4 has four slices in
a Configurable Logic Block (CLB) with fast interconnect, which again is con-
nected to the global routing network through a switch matrix. There are 64
rows and 24 columns of CLBs in the Virtex-4, but the PowerPC takes up a sig-
nificant amount of area so the number of CLBs is not as high as 64 · 24. Some
specifications are given in table 5.1.

Table 5.1: Xilinx Virtex-4 Pro XC4VFX12 specifications [Xilinx, n.d.]

Resources Number
Logic cells 12312
Slices 5,472
PowerPC Processor Blocks 1
Maximum user I/O pads 320

5.2 Deterministic model

Figure 5.1 shows the top level of the MMAC circuit when designing it in a
straight-forward DFSM implementation. Table 5.2 shows an overview of the
signal interface to the module. Input data is the main computation data input
which is a 8 bit integer that can hold values from 0 to 255. The transition signal
b tells the module that the next part of the computation is to be performed.
The two last input signals are a reset and a clock signal.

Output signals are acc, cnt, done and valid. acc is an integer used for repre-
senting the result of the computation inside the module. When the system is
in the accept state a new result will be sent out via this signal each clock cycle.
The cnt signals counts the number of times a full computation has been made.
The reason for adding this signal is to make it easy to keep track of how many
results we need to take care of. The done signal tells the outside world that the
system has reach a final state, which will happen when b is set to zero, and the
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system will start from the initial state in the next clock cycle. Whether or not
a valid result is ready on the output is flagged by the valid signal. valid is high
from the first time a result has been produced until the system is restarted. It
is of interest to know that the system has started over from the beginning, and
that is the reason why there is a separation between valid and done.

Table 5.2: MMAC DFSM signals

Name Direction Type bits
Input data In Integer 8

b In std logic 1
rst In std logic 1
clk In std logic 1
cnt Out Integer 256
acc Out Integer 65280

done Out std logic 1
valid Out std logic 1

Input_data

b

rst

clk

Cnt

Acc

Done

Valid

Figure 5.1: Top level block diagram of the MMAC circuit DFSM imple-
mentation

As can be seen in figure 5.2 the rst signal sets the state machine to the initial
state at startup. As long as the transition signal b is low the FSM will remains
in S0. However, if the transition signals becomes high the computation will start
and will continue as long as the transition signal is high. From the computation
state S1 there are three possible transitions. The first choice is to go back
to itself which like mentioned means that the transition signal is high and the
computations should continue. If the transition signal becomes low there are
two choices, ether go to the accept state S2 or go to the fail state S3. The
accept state sets the done signal high and then transitions to the initial state
to prepare to receive another set of input data. The fail state sets all output
signals low before preparing for more input. Table 5.3 shows how the output
signals are set when in different states.
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Table 5.3: MMAC DFSM states

State Purpose Acc Cnt Done Valid
S0 Initial 0 0 0 0
S1 Run Result No. of results 0 1
S2 Final Result No. of results 1 1
S3 Final 0 0 1 0

S0

Rst = ‘1’

S1

S2

S3

b = ‘1’

b = ‘1’

b = ‘0’ & substr_cnt = 0

b = ‘0’ & substr_cnt > 0

Figure 5.2: State transition diagram for the MMAC circuit DFSM imple-
mentation

5.3 Non-deterministic model

5.3.1 The singular state

The design of the NFSM model system starts by re-using the singular state
defined in [Blomkvist, 2012]. Previously the singular state was defined and
written in VHDL and then a Xilinx Hard Macro was created from the placed
and routed singular state for it for it to be reused. When designing this system,
however, implementing a previously designed Hard Macro could be very difficult
and inflexible if the Hard Macro has not been designed with this particular
system in mind. When the singular state was defined and designed previously
it was designed for the same NFSM as it is designed for here, but it was designed
to be the initial state of this NFSM exclusively and so it was very non-generic.
Therefore, using the VHDL source code of the macro is a better starting point
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when designing a whole system. This allows easy redesign of the state when
an issue occurs, which is a great part of making the singular state as generic
as possible. One could argue that if a redesign of the singular state is needed
every time a new system is to be made could get tedious, but the point is to
take small incremental steps in designing the singular state so that it eventually
will be generic and no more redesign will be needed.

Originally the singular state was thought to need the following internal states:

• init - Determine if this is an initial or accept state

• active - The NFSM is now in this state. Should perform some action.

• not active - The NFSM is not in this state. Should be idle.

• copy activate - Prepare for copy, notify control that this singular state
should be active in the copy.

• copy deactivate - Prepare for copy, this singular state should not be active
in the copy.

This previous implementation was made such that it needed to be changed
for every state in every configuration since it did not have any way of being
configured in run-time. This is highly impractical since each singular state then
needs to be redesigned every single time in VHDL to change the enable signal
logic, and then made into a new Xilinx Hard Macro. The advantage of doing
it in this manner is that the singular state representation will be smaller than
a more generic one. The reason the generic one will use more space is that the
configuration logic will take up more space than the predetermined relations
between enable signals and output status signal.

The original had states used for signaling to a control system that the singular
state wanted the FSM it belonged to to be replicated. These states also had
output signals associated with them which complicated the singular state inter-
face. Simplifying the singular state makes it easier to fit it into a larger system,
that is why the states copy activate and copy deactivate with accompanying
signals is removed in this newer version. After having designed a functioning
model adding some more signals to the interface can be considered.

The redesigned singular state has the following states.

• init

• read config

• active - The FSM is in this state. Should be active.

• not active - The FSM is in some other state. This state should not be
active.
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An overview of the states and transitions of the singular state can be found in
figure 5.3. The init state waits for a signal called conf en to become high for
one clock cycle. When conf en is detected high the internal FSM of the singular
state will transition to the read config state. When in the read config state the
singular state will receive a series of configuration vectors on the following clock
cycles. The exact number of configuration vectors that will be received can be
set in a constant as will be shown later. The configuration vectors contain the
information required for the singular state to decide if it should be active or not
at any time. What that means is that the configuration vector tells the singular
state which combination of signals from other singular states connected to it
and the external input/transition signal that will be required for it to transition
to the active mode. So the configuration vectors contain data for each of the
singular states in a FSM about which transitions are directed at the states. Each
clock cycle a new configuration vector is shifted in, and a counter keeps track of
how many cycles have passed to be able to know when the configuration is done.
The alternative method of solving the configuration is to keep a conf en signal
high as long as the configuration is to happen, but that will cause problems
with managing even more signals and timing the configuration signal correctly
several times. If the configuration shift register is not entirely filled with valid
configuration data more than one of the singular states will assume that it is
an initial state and the FSM will oscillate between enabling all states at once,
and disabling all states in the following clock cycle. Not all singular states in a
FSM will need the same amount of configuration data since they perhaps won’t
have an equal amount of transitions to it. If the method of holding the conf en
signal high until configuration is done is used then extreme caution must be
used during configuration to ensure that the configuration signal is held high
just long enough, or else the previously mentioned oscillation problem will occur
since more than one singular state perhaps will contain a configuration vector
of only zeros in its configuration register. Using the method of counting clock
cycles makes design easier since the outside world only needs to know how many
spaces there are in the singular state’s configuration register and don’t need to
worry about the timing of the conf en signal except knowing to start sending in
the data in the following clock cycle. If a singular states need less configuration
data than there are spaces in the register then simply adding the same vector
multiple times is a good way to avoid potential problems with oscillation.

Table 5.4 shows the signal interface of the singular state. The Input signal is
an external signal which is used together with the enable signals from other
singular states to determine whether or not to enable this state, which means
it’s the transitions signal for the FSM. The fsm en signal is included to be able
to suspend the operation of a FSM using singular states. Simply using the reset
signal would require that the singular state is configured for operation again
before it would be of any use, so instead the fsm en is used so that the FSM
can be reset while not requiring configuration. The consequence of using fsm en
to reset by setting it low is that all states except the initial state are set to be
disabled, which in practice means that the FSM will return to the initial state
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init

Rst = ‘1’

Read config

active

Not active

Conf_en = ‘1’

Count_done = ‘0’

Count_done = ‘1’ & initial_state = ‘0’

Count_done = ‘1’ & initial_state = ‘1’

NOT [( Check_config() = ‘1’ & fsm_en = ‘1’ ) 
OR ( initial_state = ‘1’ & fsm_en = ‘0’ )]

Conf_en = ‘0’

( Check_config() = ‘1’ & fsm_en = ‘1’ ) 
OR ( initial_state = ‘1’ & fsm_en = ‘0’ )

NOT [( Check_config() = ‘1’ & fsm_en = ‘1’ ) 
OR ( initial_state = ‘1’ & fsm_en = ‘0’ )]

( Check_config() = ‘1’ & fsm_en = ‘1’ ) 
OR ( initial_state = ‘1’ & fsm_en = ‘0’ )

Figure 5.3: State transition diagram for the singular state used

and stay there ready resume operation the moment fsm en is set high. The
signals en0 - en3 are the enable signals connected to the ext enable signal of
other singular states. conf en is used for triggering the configuration.

Table 5.4: Singular state signals

Name Direction Type bits
Input In std logic 1
fsm en In std logic 1
reset In std logic 1
clk In std logic 1
en0 In std logic 1
en1 In std logic 1
en2 In std logic 1
en3 In std logic 1

conf en In std logic 1
conf bits In std logic vector FSM size + ext. inputs

ext enable Out std logic 1

The active and not active states are quite similar to each other as can be seen
in table 5.5. The only difference is the output value of the ext enable signal.
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The decision of whether to be active or not is made by using a function called
check config combined with detecting if the singular state is supposed to be an
initial state. If a configuration vector of only zeros is detected in the read config
state the singular state will be enabled as soon as the configuration is done since
it will either have the fsm en input signal high and then use the check config
function to detect that no other states are active which will cause it to enable
itself, or it will have the fsm en input signal low but the initial state internal
signal high since the configuration vector was detected during configuration.
Either way it will enable itself and start the running of the FSM if the fsm en
signal is high.

Table 5.5: Singular state internal states

State Purpose ext enable
Init Wait for config 0

Read config Config 0
Active Enable 1

Not active Disable 0

The check config function is part of a VHDL package called sing stat package
which has been defined specifically for this purpose (Appendix A). Other than
the function it has constants defining the size of the FSM the singular state
is to be a part of, the names of the internal states of the singular state, the
number of external input signals needed and the size of the configuration data
register. These constants makes it easier to design and test the singular state
since the values only need to be changed in the package file. The check config
function itself is supposed to match the values of the input enable signals with
the vectors saved in the configuration register. A for loop iterates through the
configuration register and compares the vectors with the enable signals at that
time. This is a very simple albeit time consuming way of comparing the signals.
An alternative could be checking the register in parallel to get a faster result,
but that would require more area.

5.3.2 Interconnecting the states

The process of interconnecting the states consists of connecting the appropriate
ext enable output signals to the correct enable signals in the other singular
states in the FSM. Since there are only four enable signals there is a limit of
four states that can transition to any given state. This should be sufficient for
many applications. If it isn’t sufficient it’s a small task to increase the number
by edition the VHDL file of the singular state. After connecting the correct
ext enable signals to the correct enable inputs of the other singular states the
configuration vectors need to be designed accordingly.
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In this system it is also possible to only connect the neighboring states’ ext enable
signals to the next state in the chain and leave the rest of the enable signals
connected to either VCC or ground. The configuration vectors then need to
reflect this by either using ones or zeros in the positions of the correct enable
signals.

Table 5.6 shows the signal interface of a final state machine consisting of four
singular states. All input signals are similar to the stand-alone singular state
except for the configuration vectors which need to be unique for each state.
The state vector signal is a gathering of the ext enable signals from the different
states. If configured correctly via the configuration vectors this module will be
a fully functional FSM.

Table 5.6: The signal interface of the connected states

Name Direction Type bits
Input In std logic 1
fsm en In std logic 1
reset In std logic 1
clk In std logic 1

conf en In std logic 1
conf vec 0 In std logic vector 5
conf vec 1 In std logic vector 5
conf vec 2 In std logic vector 5
conf vec 3 In std logic vector 5

state vector Out std logic vector 4

5.3.3 Creating and connecting the data path

The data path must be designed to perform the operation of the Modified
Multiply-Accumulate concept correctly using state machine input from an ex-
ternal state machine. Depending on a state vector input it should progress
through the MMAC operation with no control over the state machine itself.

Table 5.7 shows the signal interface of the standalone data path module. state vector
is the signal taking in the current state from the FSM. i is the data input integer
used in the operations which is continuously sent into the data path regardless
of what value the state vector has. This is because of the definition of the sys-
tem where a transition signal always accompanies the input data so that the
operation can be done in steps, combined with the ability to always be ready for
the next step in the calculation. acc is the output result integer which receives
its value from an output register that is updated in every step in the calcula-
tion. Since two 8-bit integers should be multiplied and a 8-bit integer should be
added afterwards, the maximum value should be 255 · 255 + 255 = 65280 which



34 Non-deterministic model

means it needs to be a 16-bit integer. There is no reset signal since going back
to the initial state is the way to set the done and valid signals low, and the
FSM controls that.

Table 5.7: Data path signals

Name Direction Type bits
state vector In std logic vector 4

i In integer(0 to 255) 8
clk In std logic 1

done Out std logic 1
valid Out std logic 1
acc Out integer(0 to 65280) 16

Depending on the state vector different operations are performed and different
values are set on the output signals. An overview can been seen in table 5.8.
When a value of ”0001” is detected on the state vector it means that the FSM
is in its initial state. In the initial state the input integer will simply be shifted
into the input shift register, transferred to the output register, and then output
as the result. Since the calculation has not started yet the valid signal is held
low in this state. The done signal is also low since the operation is not done.
When the FSM transitions to the next state and outputs the value ”0010” the
calculations begin. The output register is set to the product of the previous
value of the output register and the new value of the input register. The valid
signal is now set high to indicate that the calculation is active. The done signal
is still low. In the next state, ”0100”, the new value in the input register is
added to the value of the output register. The rest of the signals are the same
as in the addition state. Finally in the ”1000” state the value of the output
register is just set to be what it was previously. Now both done and valid are
set high so that the outside world can know that a valid result is ready. When
the state vector has any other value than these all of the output signals will
always be zero.

Table 5.8: Data path states

State Purpose done valid acc
0001 (S1) Idle 0 0 input
0010 (S2) Multiply 0 1 input · acc
0100 (S3) Add 0 1 input+ acc
1000 (S4) Result 1 1 acc

Table 5.9 shows the signal interface for the whole FSM connected with the data
path. This is the interface for the module that the control logic will connect
to. The signal interface is a combination of the interfaces of the interconnected
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states and the data path. The state vector signal is not interfaced with the out-
side world, it is only needed for internal control. The result signal is connected
to the acc signal of the data path, so it’s the exact same signal with a changed
name for clarification.

Table 5.9: Signal interface for FSM with data path connected

Name Direction Type bits
transition sig In std logic 1

input data In integer(0 to 255) 8
fsm en In std logic 1
reset In std logic 1
clk In std logic 1

conf en In std logic 1
conf vec 0 In std logic vector 5
conf vec 1 In std logic vector 5
conf vec 2 In std logic vector 5
conf vec 3 In std logic vector 5

result Out integer(0 to 65280) 16
done In std logic 1
valid In std logic 1

Figure 5.4 shows the four states connected with the data path. The ext enable
signals out of each of the states will connect between the states, but also to the
data path. Since the FSM is of the one-hot type all of the state signals must be
connected to the data path.

5.3.4 Making the control module and result register

Table 5.10 shows the signal interface of the control module. Since the FSMs
the control module is supposed to control are quite simple, the control module
in this system is very primitive. The control module functions by using the
transition signal to determine which of the FSMs should be active and setting
the values to the en vec signal. By detecting if the transition signal is high or
low it goes between an internal initial state and an active state. In the initial
state it will just keep the first FSM enabled. In the active state it will keep
enabling the next available FSM as long as there is a high transition signal by
shifting in ones into a four-length shift register. If the transition signal goes low
the register is cleared.

There are two processes reacting to both a change in the current state and a
change in the transition signal. The first is the process controlling the next
state logic, which sets the control module in the correct state depending on the
transition signal. The second is the register load process which controls the
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Figure 5.4: Top level diagram of a FSM with data path

register that enables and disables the FSMs in the system. This process needs
to be able to ”see the future” in the initial state in the sense that it starts
shifting the register before actually being in the active state if a high transition
signal is detected. That was done to make the system able to shift in values
without pause and reducing timing issues with some FSMs losing an input value
and several FSMs being done at the same time.

Table 5.10: Control module signals

Name Direction Type bits
transition sig In std logic 1

done vec In std logic vector 4
reset In std logic 1
clk In std logic 1

en vec out std logic vector 4

Originally the control system was though to need the FSMs’ done signals to
determine which FSM should be active, and that is why there is a done vec
signal in the interface. However, for this simple design the transition signal
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alone is enough information for the control system to decide when a FSM should
be activated. For other (more complex) systems this might be different. Also,
if the result management register is included as part of the control module the
module will need to know when a result is ready to be shifted in.

Figure 5.5 shows an overview of the whole system with the four FSMs and data
paths connected with the control module and the result shift register. The result
register is not a part of the control module at this time, but part of the top
level module connecting control with the FSMs. The register shifts in a value
every clock cycle from the FSM which is in the final state at that time. The
way that works is that the result from each FSM is set every clock cycle in a
separate register, and when a done signal from one of the FSMs is set high, the
value currently in the corresponding register is shifted into the result register.
If none are done in a clock cycle it simply shifts in a zero. The register is filled
with zeros when the system is reset.
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Figure 5.5: Top level diagram of the system

Table 5.11 shows the signal interface of the whole system. The only signal not
explained before is the conf vecs signal which is of type conf vecs. The conf vecs
type is defined in the sing stat package VHDL package file and is a FSM size-
length array of a std logic vector. The std logic vector size is the sum of all
external inputs and the defined number of enable signals to the singular state,
i.e., the size of the configuration register for the singular states. So by using the
conf vecs type all of the configuration vectors for the different singular states in
the different FSMs can be sent into that vector.
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Table 5.11: Signal interface for the whole system

Name Direction Type bits
transition sig In std logic 1

input data In integer(0 to 255) 8
fsm en In std logic 1
reset In std logic 1
clk In std logic 1

conf en In std logic 1
conf vecs In conf vecs 20
result out Out integer(0 to 65280) 16

5.3.5 Creating Xilinx Macros

Xilinx Hard Macros are predefined circuit blocks that can be used in a design
like a black box. When creating a Hard Macro one can expect that the circuit
will be exactly represented in the larger system it is to be part of. The LUT
configurations and other internal slice configurations, the routing, and all other
aspects of the circuit will have the exact same relative position and configuration
every time it’s instantiated.

The reason for creating Xilinx Hard Macros is that it gives very good control
over how the singular state, the whole FSM, and the FSM connected to a data
path as a design unit are placed on the FPGA. Placing by hand can lead to
a poorer result with regards to optimal area usage. However, making each
design element as compact as possible should be a priority since they will take
up a lot of space nonetheless, and having the design elements take up as little
space as possible will enable more of them fit on the FPGA at the same time.
Making the modules into macros will also make them easier to reuse for further
development. The downsides of using Hard Macros in your design are:

• Lack of good documentation on how to design a Hard Macro both in broad
terms and, more importantly, what issues one can come across and how
to deal with them.

• The tools will have fewer options when trying to optimize placement and
routing. What is optimal for the Hard Macro will perhaps not be optimal
for the larger system it is to be a part of.

• Routing can be problematic. Clocking nets, power and ground nets can’t
be implemented directly in the FPGA Editor.

• The design of Hard Macros in general is very time consuming.

• The macro can be limited in how transferable it is between devices and
especially between device families.
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The Hard Macros are made using the Xilinx FPGA Editor and guided by a
previously made tutorial [Blomkvist, 2012]. The steps taken to create a macro
are:

1. Create VHDL code for the module.

2. Run synthesis and place and route.

3. Open the ncd file of the placed and routed design in the FPGA Editor.

4. Make needed changes and save as a Hard Macro nmc file.

5. Instantiate by using port mapping in the top level.

Writing the wanted behavior of the module in a HDL language is the first step.
No special special steps need to be taken except perhaps making the module
as small as possible to simplify later steps. Step two is running the automated
synthesis and place and route tools thereby laying out the module on the FPGA.
Depending on the options set in the tools this will cause the module to be spread
out and use some components that are unnecessary for the Hard Macro.

Modifying the design after place and route is the most time consuming step.
After performing step three and setting the design to read/write mode the
modifications can begin. This task can start by removing the IOBs and replacing
them with Hard Macro Ports (HMP). HMPs will be the interface to the black
box, i.e., the ports the port map will connect to. Especially vectors can be
tricky and it is perhaps easiest to map each individual signal in the vector to
its own HMP, and then connect the individual signals to a vector outside the
black box. Caution must be taken in removing the IOBs and the routing since
it is easy to lose track of where the different nets were connected and what
components have been removed. Clock nets cannot be manually placed and
need to have a HMP at one of the clk pins of a component, and then an internal
net to rest of the clk pins in the Hard Macro. In that way the external clock
signal can connect to the port and clock the macro. Ground and power nets
can’t be placed manually either, so constant LUTs can be used to set signals
constantly high or low.

5.4 Verification

Verification is, like the design itself, done step wise. The straight-forward DFSM
design is verified by enabling and disabling signals on the input and sending in
data. The NFSM model needs more thorough verification. Verification starts
with the configuration of the singular state, then moving on to verifying that
it enters the correct internal state when the correct signals are set on the in-
puts, connecting several of the singular states together and verifying that they
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transition from one state to another correctly, connecting a data path and ver-
ifying that the registers and output data is correct, before finally connecting
the control module and results register and observing if they behave correctly.
Verifying the macros is done in the same manner, and the test benches of the
macros use the same input signals as the test benches for the VHDL modules.
All of the test benches used a clock period of 10 nanoseconds and starts off by
resetting the circuit. The input data and result for the data path are written as
integers in VHDL, but it is impossible to change the radix of integers in Xilinx
ISim so they will always be shown as binary.

The verification of the DFSM method is done by enabling and disabling the
transition signal and at the same time sending in data values. If the module
sends out the correct output value it is seen to be working good enough.

The singular state is configured by setting the configuration enable signal high
for one clock period. The cycle after it is set high the first configuration vector
is sent in, followed by two more vectors. Filling the register with five different
values is not necessary since a counter will keep the singular state in the internal
state used for configuration until the configuration is done, and that means the
the last value set will be taking up the last values in the configuration register
and the singular state is supposed to react only to the inputs represented by
those three values. When the configuration is done the singular state is to be
inactive unless there is a valid input signal, or it has detected a configuration
vector of only zeros in the register which means it is an initial state. Enabling
different combinations of input signals lets us know if the singular state is react-
ing correctly. The vectors used here are ”00100” (only en1 enabled), ”10000”
(only external input enabled) and ”10010” (both external input and en2 en-
abled). To verify that this works correctly only 32 values need to be checked, so
incrementing a vector of enable signals from 0 to 32 ensures that all possibilities
are verified.

Verifying that the states transition from one another correctly is done by creat-
ing a state machine that increments from the initial state to the final state and
then starts over again, like in figure 5.6. If the singular states work correctly
during these simple conditions it is fine to assume that they will work for the
application they are being developed for here. They are supposed to be con-
nected as an FSM that will transition in a similar manner, but if they are to be
used in a more complex FSM maybe more thorough testing should be done.

The next step is to interconnect the singular states in the same way as the
NFSM model requires, and then connect a data path and see if the output
values correspond to what is expected. Table 5.12 shows the configuration
vectors sent into the different singular states. The vectors of State 0 makes it
enable itself when there are no other states enabled, when it is enabled itself
and a zero arrives on the transition input, or when the FSM has reached its final
state. The last point is done for this particular application so that the FSM is
”reset” and ready to yet again be enabled in the next clock cycle. The other
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Figure 5.6: State transition diagram for the verification FSM for the sin-
gular states

states only need one vector, namely the vector that says it should enable itself
when the previous state is enabled and a one is set on the transition signal.
After the states are configured the data path is tested in the same way as the
DFSM version, i.e., by toggling the transition signal and observing that the
FSM goes back to the initial state and that it outputs the expected values when
it reaches the final state.

Table 5.12: Singular state configuration vectors

State 0 State 1 State 2 State 3
Vector 0 00000 11000 10100 10010
Vector 1 10000 11000 10100 10010
Vector 2 01000 11000 10100 10010
Vector 3 00001 11000 10100 10010
Vector 4 10001 11000 10100 10010

The last step is connecting the control module and results register to observe
that the whole system works correctly. This is in large part similar to the
previous step since the FSMs with data paths will function exactly the same.
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The information gained now will be that the control module and result shift
register functions as it should, which means that depending on the transition
signal it will deactivate and activate the FSMs in the correct order. The result
shift register should shift in the result from the FSM that sends out a done
signal every clock cycle.

5.5 Implementation alternatives for a true NFSM

Reviewing a couple of different possible implementation alternatives can be
useful to further assess whether or not this is a viable system. Specific de-
tails regarding the implementation will not be discussed, but determining how
much area is available compared to the area usage of the circuit is especially
interesting.

5.5.1 Virtual FPGA architecture

A virtual FPGA architecture was briefly presented in Chapter 3 [Hubner et al.,
2011]. The architecture presented was hosted on another FPGA than the one
designed for here, but a general idea of how much physical area is needed on
any FPGA can be seen from the implementation results provided. For a 2-by-2
array of V-FPGA CLBs the physical requirements are over a thousand logic
cells. For a 10-by-10 size V-FPGA the physical size used is about 21 thousand
logic cells.

5.5.2 Framework for run-time reconfiguration

Sverre Hamre wrote a Master’s Thesis in 2009 about a framework for run-
time reconfiguration on Xilinx FPGAs [Hamre, 2009]. The logic needed for
running the run-time reconfiguration framework takes up a very large portion
of the FPGA and the reconfigurable area is only 16 · 3 = 48 CLBs large. Since
every CLB in a Virtex-4 contains four slices, a maximum of 192 slices could be
available if the routing allowed it.
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Results

6.1 Non-deterministic model

6.1.1 The singular state

Figure 6.1 shows the configuration of the singular state. The circuit is reset,
then the fsm en signal is held high to allow internal state transitions, then
the conf en signal is held high for one clock cycle. In the following clock cycles,
starting at 235ns, the configuration vectors are sent in serially, with the singular
state ending up with being configured for ”10000”, ”00100” and ”10010”. On
the fifth clock cycle after conf en has been toggled the singular state starts
functioning.

200 ns 220 ns 240 ns 260 ns 280 ns

Figure 6.1: Singular state waveform 1

43
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Figure 6.2 shows the singular state after configuration is done. At this point
the singular state is not connected to any other states, so the enable signals are
controlled by the testbench. At time 285ns the state is enabled when a ”10010”
is set on the inputs, at time 305ns it is enable when a ”00100” is put on the
inputs and finally it is enabled at time 325ns when a ”10000” is set as input.
In the clock cycles where the inputs have other values than the ones set in the
configuration register the singular state ext enable signal is low.

280 ns 290 ns 300 ns 310 ns 320 ns 330 ns 340 ns

Figure 6.2: Singular state waveform 2

Figure 6.3 shows four singular states configured according to figure 5.6 in chapter
5. When the transition signal is low the state vector decreases and similarly
when the transition signal is high the state vector increases.

420 ns 440 ns 460 ns 480 ns 500 ns 520 ns

Figure 6.3: Singular state waveform 3

Table 6.1 shows how the physical size of the singular state increases with the
an increase in the room of the configuration register. The singular state is
synthesised with one-hot coding and is optimized for area.

The four states connected uses 129 flip-flops, 212 LUTs, and 108 slices.

6.1.2 Data path connected

Figure 6.4 shows the behavior of a FSM built with singular states connected
as Figure 4.1 in Chapter 4 with the designed data path. The transition signal
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Table 6.1: Logic elements compared to config reg size

Config reg size Flip-flops LUTs Slices
5 33 49 28
6 38 57 32
7 43 64 36
8 48 72 41
9 54 82 46
10 59 90 50
11 64 97 54

is accompanied by input data used for the calculation. When the FSM is in
the initial state the valid signal is low to indicate that the calculation is not
running. When in the initial state the input register just stores new input data
every clock cycle. The first result produced is a binary ”10”. This follows from
that the input register contains a ”0” the clock cycle before the transition signal
goes high, so the first result is 0 · 1 + 2 = 2. The second result is 4 · 5 + 6 = 26,
”11010” in binary. The result output register is not cleared when the data
path goes back to the initial state which could be confusing, but it doesn’t
matter since both valid and done needs to be high for the result to be finished.
After two calculations the transition signal goes low and the calculations stop.
Figure 6.5 shows the same functionality with higher data values and continuous
operation.

280 ns 300 ns 320 ns 340 ns 360 ns 380 ns

Figure 6.4: Data path waveform 1

430 ns 440 ns 450 ns 460 ns 470 ns 480 ns 490 ns 500 ns 510 ns 520 ns

Figure 6.5: Data path waveform 2

Using 153 flip-flops, 298 LUTs and 155 slices, and a digital signal processing
block. Removing the ability to use DSP48s causes it to use 145 flip-flops, 378
LUTs and 197 slices. Optimizing for area using one-hot.
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6.1.3 Full system

Figure 6.6 shows the initialization of the whole system connected together with
four FSMs including data paths for each, the control system and the result
management system. The vector en vec controls the enabling of the different
FSMs. It starts by only having one FSM enabled and then gradually enabling
one by one as long as the transition signal is high. The done vec vector indicates
at what time the data paths are finished processing. When the first data path is
finished at time 305ns it will restart in the next clock cycle, and it has processed
another result at time 345ns. The results out reg register shifts in the individual
results from the different data paths and further out to the result out signal.
Figure 6.7 shows the result out signal changing when the result register is full
and starts shifting out the first result produced earlier. When the transition
signal goes low all of the FSMs are disabled for one clock cycle before continuing
the calculation. This is a bug related to the size of the configuration register in
the singular state which will be discussed in the next chapter.

270 ns 280 ns 290 ns 300 ns 310 ns 320 ns 330 ns 340 ns

Figure 6.6: Full system waveform 1

340 ns 350 ns 360 ns 370 ns 380 ns 390 ns 400 ns 410 ns

Figure 6.7: Full system waveform 2

Figure 6.8 shows the whole system working after having extended the configura-
tion register of the singular state from five to seven spaces. This has eliminated
the problem with having to disable all of the FSMs for one clock cycle when the
transition signal goes low, and there are no timing issues.
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420 ns 430 ns 440 ns 450 ns 460 ns 470 ns 480 ns

Figure 6.8: Full system waveform 3

6.2 Macros

The singular state macros use as many physical components as listed in Table
6.1 with perhaps very small deviations. Connecting four singular states together
as a FSM will require four times as many logical components. Figure 6.9 shows
a FSM with data path placed on the Virtex-4 in the FPGA Editor. This single
FSM clone uses 205 slices with the data path connected.

6.3 Deterministic model

Figure 6.10 and figure 6.11 shows the waveforms of the DFSM version of the
circuit. b is the transition signal and i is the input data signal. Figure 6.10
starts by showing that if the transition signal is set high for only one clock cycle,
the calculation will not be completed and the system will enter the state S3.
When the transition signal is high for two clock cycles the calculation will finish
by entering state S2. At time 160ns the contents of the input register reg i is
”4,3,2”. In the next clock cycle the result is 2 · 3 + 4 = 10 which is correct. The
same is true for the next clock cycle, 3 · 4 + 5 = 17. So the DFSM version needs
two clock cycles to start the process of enabling the results to come every clock
cycle. Figure 6.11 shows the progress of the system when the transition signal
is held high for a longer period.

Overview of the components for the DFSM version. Uses 34 flip-flops, 59 LUTs
and 34 slices when optimized for area and using gray coding.
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Figure 6.9: FPGA Editor view of a single FSM with data path
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100 ns 120 ns 140 ns 160 ns 180 ns 200 ns

Figure 6.10: DFSM waveform 1

160 ns 170 ns 180 ns 190 ns 200 ns 210 ns 220 ns 230 ns 240 ns 250 ns

Figure 6.11: DFSM waveform 2





Chapter 7

Discussion

The Deterministic Model and the Non-Deterministic Model gives out the same
results given the same data. The difference in functionality between the two
methods is the time it takes for the data to start being output. The deterministic
finite-state machine version spends two clock cycles to start outputting data
while the non-deterministic version spends three clock cycles to give out the
first result. After start-up they both give out one new result every clock cycle.
Comparing the DFSM and the NFSM model in terms of area shows that the
DFSM is clearly the better choice for this application. After creating Xilinx
Hard Macros of the singular state, connecting four of those macros together as
one and making a macro of the whole FSM and then connecting the proposed
data path using VHDL, the NFSM model used 205 slices. That is for one
single clone in a true NFSM. For the application used in this thesis four of
these clones are needed to model a NFSM. That means that the circuit uses
approximately four times as many components, 820 slices, not including the
control system and result management system. Since the Virtex-4 designed
for only has 5472 slices the NFSM model takes up a very large portion of the
FPGA. The DFSM version uses 34 slices. This may not come as a surprise since
letting the Xilinx tools optimize a circuit and use other types of on-chip logic
like for instance digital signal processors always will be better than defining
circuit elements as large blocks and simply connecting them together, but the
point is to compare the scale of the difference. The MMAC is not a realistic
choice of application anyway since the operation is so simple, and more complex
applications like regular expression matching can give more of an advantage to
the NFSM depending on the regular expression to be matched.

51



52 The singular state

7.1 The singular state

The redefined singular state is a lot more generic and reusable than the one
made in previous work. The flexibility comes at the price of area used for stor-
ing configuration vectors and other logic. It is now possible to use the singular
state as any state in any finite-state machine with certain caveats. The first
caveat is that the singular state has a limited number of enable signals, so only
a limited number of other states may have transitions to the state. The second
caveat is that the configuration register has a limited size. Not all possible
transitions from all the connected states are possible unless the size of the con-
figuration register is 2 to the power of the configuration vector length, and the
configuration vector length is number of enables + number of external inputs.
Increasing the size of the configuration register and the number of enable sig-
nals will approximately linearly increase area of the singular state, shown in
Table 6.1. Given that one of the demands set in Chapter 4 was that the state
should use as few logic elements as possible a careful consideration must be
done during design time about how many spaces one needs in the configuration
register. The configuration time increases linearly with the size of the configu-
ration register. Loading the configuration vectors in parallel could be an option
but that would increase the amount of logic further and would go against the
demand that the state should be minimal. Previously the singular state needed
a separate signal to determine if it was an initial state. This was changed to
simplify the interface and worked well using a function checking for all zeros
in the configuration vector. The simplification of the interface outweighs the
area used for determining this inside the state. Determining if the FSM is in
an accept state was determined to be a task better suited for the data path.

There is an error in this system related to when the transition signal goes low
in the middle of a calculation. The state of the FSM will then go to ”0000”
since the configuration vectors for the initial states haven’t accounted for a zero
on the inputs when the FSM is in the second or third state (Table 5.12) , which
leads to none of the states activating themselves. This is always a risk when
the configuration register is not large enough to account for all possibilities. In
this design the configuration register was thought to only need five spaces in
the register, but it turns out it needed two more values to account for this. In
a true NFSM where the clones are pruned if a zero is received this problem can
possibly be avoided depending on how the pruning and cloning works, but in
this model it was a problem since the intention was that one FSM should simply
transition to the initial state if it detected a zero on the inputs. A method of
fixing this is to design a system for flagging one or more of the enable and input
signals as ”don’t care”. In the case of this NFSM model a practical method of
setting a FSM to the initial state would be to flag all of the enable signals as
”don’t care” when a zero arrives on the external input. What would require
more area, expanding the configuration register to support all combinations of
inputs or creating the ”don’t care” logic needs experimentation. For this model
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a fix could have been making the control module more complex and adding
a fifth FSM to instantly be activated when a calculation is finished in another
FSM, allowing the finished FSM to prepare for one clock cycle and then putting
that FSM on stand-by and so forth.

Macros were created both for a singular state and four singular states connected
as FSMs to show more clearly the area usage. The singular state macro was
created so that it takes up only one row of slices. Likewise when connecting
the four singular states together they were placed in the same row. The reason
is that one configuration frame in the Xilinx Virtex-4 is one row of 16 CLBs
[Hamre, 2009], and if it is an alternative to use the on-chip reconfiguration logic
fitting the macro for one clone into a single reconfiguration frame could be an
advantage.

7.2 The data path

The data path performed as it should and the demands set initially was appro-
priate. Since the operations are so simple very few optimizations can be made.
Depending on the data requirements the data register sizes can be changed.
The data path has the responsibility of letting the control and result manage-
ment system know that the calculation is finished. The reason is again the
demand that the singular state be kept as simple as possible in addition to
giving flexibility in designing different data paths for different applications.

For some reason synthesising the non-macro based singular states with the data
path made it use a very large number of components compared to synthesising
the whole system consisting of four times as many components. The reason was
never discovered.

7.3 Control module and result register

The control module was designed according to the demands set. The only
information the control module needs is the transition signal. Based on that
it can enable and disable the FSMs without tracking the internal states of the
FSMs. The only module that needs to track the internal states of the FSMs
in this implementation is the result management shift register, which needs to
know when a FSM is in the final state and therefore is ready to output a result.
Actually the FSMs internal state is not directly tracked, but a signal from the
data path is used to indicate that a result is ready and valid. Detecting an accept
state in this manner seems like the simplest choice, letting the data path take
care of the more advanced status reporting. Whether or not to integrate result
management into the control module depends on the overall system structure.
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In this system they were made separately with the result being in a higher level
module than the control, but it is fine to do it in any other manner.

The system does not actually disable the FSMs that are finished, it simply
restarts them. That would not happen in a true NFSM but it is useful here
because of the way the system is designed by using a shift register to control
the FSMs. If the system had used five FSMs instead of four to remedy the
problem with a FSM being deactivated for one clock cycle the control system
would need to handle that. In this system it could be handled by extending
the control shift register in the control module and shifting in a zero every five
clock cycles which would let the fifth FSM be activated at the same time as the
first FSM was finished. If the system had been made in that manner it would
probably represent the true NFSM better.

How to perform ε-moves has not been examined in this thesis. This would
require a much more complicated control module which would need to be able
to detect when one of the FSMs were in a state that has an ε-move and then
clone another machine starting in the state the ε-move goes to. Another scenario
which has not been examined is what would happen if the system is to produce
additional clones going in two different directions.

7.4 Comparison with previous methods

Comparing the Self-Cloning State machine to the regular-expression matching
system of Sidhu and Prasanna reviewed in Chapter 2 one can see that their
method uses much less area than the Self-Cloning State Machine. Both methods
use one-hot encoding to create the NFSM, but the area usage difference between
the two methods is very large. They use only a 1-bit register to represent a state
in the state machine, while the self-cloning state machine singular state uses at
least 33 flip-flops and 49 LUTs. Clearly Sidhu and Prasannas method is better
in terms of area usage.

The Sidhu and Prasanna version needs to be constructed in run-time for use
with a particular regular expression. If the Self-Cloning State Machine was to
be used for regular expression matching it would also need to be constructed in
run-time for the same application. Configuring the states in run-time can be
done in a linear amount of time depending on the configuration register size and
should not have a large impact on the total construction time. Once the system
is up and running they will solve the regular expression in the same amount of
time given that one symbol is received every clock cycle.

Sidhu and Prasannas version is made specifically for regular expression match-
ing and it it unclear how it would be adapted to other applications. In this
thesis it has been shown that the Self-Cloning State Machine can be used for
other applications, and previous work has shown that it can be used for regular
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expression matching in SystemC. Nonetheless, it is difficult to say if the Sidhu
and Prasanna version is any less adaptable than the Self-Cloning State Machine.

7.5 Choosing the run-time reconfiguration solu-
tion

The two run-time reconfiguration options, the V-FPGA and the framework
made by Sverre Hamre, both have very little area available. Assuming the area
is plentiful on a FPGA the methods can be compared in other ways. Both
methods lack tool support so it is difficult to implement the system on both of
them. Because the V-FPGA will be much slower in execution than the FPGA
it is implemented on the method of Hamre may be the fastest in the execution
itself. However, reconfiguring the Xilinx FPGA in run-time may not be much
faster than doing it on the V-FPGA. More research is needed to compare the
reconfiguration times of the two methods.

The main advantage of using the V-FPGA architecture is that it can be device
independent. The advantage from device independence is not only from the
time consumed for developing the Self-Cloning State Machine for each individual
FPGA, but also that it can bring run-time reconfiguration to devices that do not
support it and from avoiding device-specific primitives which otherwise must be
avoided. Among the problems eliminated are; interfacing between multiple clock
networks, avoiding the mirroring of logic between the top and bottom halves in
the Virtex-4 architecture, avoiding having to design around other types of logic
like DSPs and RAMs. These are all taken care of by the new abstraction layer.
An additional advantage is a smaller chance of ruining the FPGA if an error
is made during reconfiguration, which can happen if the on-chip primitives are
used.





Chapter 8

Conclusion

Comparing a deterministic and non-deterministic state machine implementation
of the modified multiply-accumulate circuit shows that the DFSM implementa-
tion is vastly superior in terms of area, slightly quicker to give outputs and does
not require any initial configuration. Comparing these two implementations is
not really fair since the application developed for here was chosen because of the
simplicity in detecting errors, but nonetheless it shows the scale of the difference
between an ordinary DFSM implementation and a NFSM implementation.

A new definition of the singular state for use in a Self-Cloning State machine
has been made. This new definition has been shown to be able to be set into
any position in any one-hot coded finite-state machine. The configuration of the
singular state is relatively easy to perform by using a vector representing the
individual external inputs and enable signals from other singular states. This
singular state takes up a large area on the FPGA comparing to a state in normal
one-hot coded state machine because of the configuration logic added. The state
can determine if it is an initial state in a state machine by using the configuration
vectors alone. Problems were discovered related to the configuration register
and two different methods of fixing those were discussed.

The data path, control module and result register of the NFSM implementation
performed the task as expected. The data path was well suited to show how the
NFSM data flow will be in a true implementation. The control system using
a shift register was an effective and simple way of enabling and disabling the
state-machines in run-time. Using a fifth state machine as a stand-by for when a
result was ready could have been an alternative to expanding the configuration
register when addressing the issue of the FSM not restarting immediately when
finished with a result. Using status signals from the data path connected to a
FSM was a good way to control the flow of results.
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Comparing the Self-Cloning State Machine to the Sidhu and Prashanna im-
plementation of a NFSM for regular expression matching shows that the Self-
Cloning State Machine uses a lot more area. Given that the other implementa-
tion aspects are quite similar, i.e., having to construct the NFSM in run-time
and performing the regular expression matching itself, the area is the most im-
portant factor to use to determine if this is viable. Therefore the Sidhu and
Prasanna method of implementing this is determined to be better than the
current implementation model of the Self-Cloning State Machine.

The V-FPGA method of implementation for a true NFSM seems to be the best
solution. The reason is the low chance of destroying the FPGA during recon-
figuration, the device independence that can be achieved by using V-FPGAs,
and not having to worry about the low level physical architecture of the FPGA
chosen. The macros created are specific for the Virtex-4 family of FPGAs so
they will not work here and some other solution must be chosen to restrain the
area.

8.1 Future work

• More experiments on balancing the area of the singular state with the
number of needed enable signals.

• Expanding the singular state with ”don’t care” logic.

• Research into how to handle ε-moves.

• General research into more complex NFSMs than the one modeled here
to determine more system requirements.

• Implement a virtual FPGA architecture on a very large FPGA and at-
tempt to create a true Self-Cloning State Machine by using the singular
state.
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Appendix A

Code

A.1 Package file

1 l i b r a r y IEEE ;
use IEEE . STD LOGIC 1164 . a l l ;

3

package s i n g s t a t pa ckag e i s
5 constant FSM SIZE : i n t e g e r := 4 ; −− S i z e o f FSM

constant EXT INPUT NUM : i n t e g e r := 1 ; −− Number o f ex t e rna l
inputs

7 constant ENNUM: i n t e g e r := FSM SIZE + EXT INPUT NUM; −− number
o f enable s i g n a l s in the s i n gu l a r s t a t e

constant CONF DATA LEN: i n t e g e r := 5 ; −− S i z e o f c on f i g data
r e g i s t e r in each s i n gu l a r s t a t e .

9

type s t a t e t yp e i s ( i n i t , r e ad con f i g , ac t ive , n o t a c t i v e ) ;
11

subtype c o n f i n f o i s s t d l o g i c v e c t o r (ENNUM − 1 downto 0) ;
13 type con f data i s array ( i n t e g e r range 0 to CONF DATA LEN−1) o f

c o n f i n f o ;
type con f v e c s i s array ( i n t e g e r range 0 to FSM SIZE − 1) o f

c o n f i n f o ;
15

f unc t i on che ck con f i g ( s i g n a l va l i d : con f data ; s i g n a l input :
c o n f i n f o ) re turn s t d l o g i c ;

17

end s i n g s t a t pa ckag e ;
19

package body s i n g s t a t pa ckag e i s
21 f unc t i on che ck con f i g ( s i g n a l va l i d : con f data ; s i g n a l input :

c o n f i n f o ) re turn s t d l o g i c i s
v a r i ab l e h i t : s t d l o g i c ;

23 begin
h i t := ’ 0 ’ ;

25 f o r i in 0 to (CONF DATA LEN − 1) loop
i f ( v a l i d ( i ) = input ) then
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27 h i t := ’ 1 ’ ;
end i f ;

29 end loop ;
re turn h i t ;

31 end che ck con f i g ;

33 end s i n g s t a t pa ckag e ;

./Appendices/code/sing stat package.vhd
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