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Abstract

A common way to construct a large vocabulary continuous speech recog-
niser LVCSR is to use 3 state HMMs to model phonemic units. In this
dissertation the focus is to improve this standard phone model. To this
end three alternative phone recognition systems will be proposed. Central
in the first two systems is a set of Acoustic SubWord Units (ASWUs),
which are used in order to train phone models with an extended state
topology. This extended topology contains several parallel paths and al-
lows the model to vary the amount of states that are employed for each
realisation of the phones.

In the first system this topology is fixed with four parallel paths which
contains one, two, three or four states. A novel training algorithm is
developed in order to train each of the states properly. In the second
system the number of paths and the number of states in each of the states
are derived in a data driven manner using an algorithm for pronunciation
variation modelling (PVM). This algorithm is applied to the set of ASWUs
in order to find variations for each phones, variations which are used to
decide the topologies.

The final system is a hybrid system that employs non-negative matrix
factorisation (NMF), an algorithm capable of extracting latent units in a
data driven manner to model the acoustic observations. This hybrid was
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proposed before in the literature for modelling audio mixtures. In this
dissertation modifications to this original hybrid, the non-negative HMM
(N-HMM), are suggested for it to be used on the speech recognition task.
The main contribution is to introduce dependency on state duration for
the output probability distribution functions. This modified structure is
referred to as the non-negative durational HMM (NdHMM).
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) has been an area of research for
some decades and the performance of the systems has improved consid-
erably. The technology is being more and more introduced into the daily
life of the humans, for instance in cell phones, customer service systems,
TV sets etc. Unfortunately, as many have discovered, the performance is
still significantly below the human auditory system. Humans have an im-
pressive ability to recognise speech even in very noisy conditions. Human
word recognition itself is far from perfect, but combined with extensive
knowledge about language redundancy, context and history, the level of
performance has proven difficult to match by a computer. Today the
state of the art ASR systems still perform one order of magnitude below
humans, and therefore more research is a necessity.

One of the most important factors for the advances that have been made
in the field of speech recognition, is the Hidden Markov Model (HMM). It
has shown to be a strong and efficient model with low complexity, and it
is a key part of many state of the art ASR system. Hence, improvements
to the HMM framework could have great impact on ASR systems. In the
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2 Introduction

search for improved speech recognition performance, the objective of this
dissertation is to investigate the HMM and see if enhancements can be
achieved by introducing some modification to the HMM.

1.1 HMM Based Speech Recognition

The design of an ASR system is dependent on the task of the recogniser.
A system that is to recognise and discriminate between a few keywords
only is significantly simpler than a system for transcribing spontaneous
speech. One of the first decisions to make is which basic units the recog-
niser should employ. A recogniser can be designed to recognise words
directly, or smaller units, like syllables or phones. This choice strongly de-
pends on the task the recogniser should solve. In a keyword ASR system,
using words as the smallest unit may be the best choice. The number
of words the system encounters is restricted, which makes it feasible to
train models for all the words. For a general purpose Large Vocabulary
Continuous Speech Recognition (LVCSR), however, the situation is differ-
ent: using words as units would result in a high number of models to be
trained, and in any given training database, there would be a significant
number of words with a small number of occurrences, making it difficult
to train the corresponding word models. However, the major issue would
be how to handle words that do not occur in the training database at
all. This is a problem that must be handled, because it is impossible to
construct a database with all the existing words. Even if such a database
was created, the set of words in a language is not constant. New words
appear continuously which guarantees that an LVCSR system will be ex-
posed to words which were not encountered during training. All words
(both existing and future) can be described using an appropriate - finite
and constant - set of subword units, which is much easier to train once
and for all. Unfortunately, smaller units are more affected by the context.
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Figure 1.1: Example of an HMM based LVCSR system.

A phone can be realised quite differently in various contexts. For instance
the “t” in “data” is placed in a voiced context and is often pronounced as
a “d”. Because of this, it is common to use context dependent (CD) phone
models, as for instance the triphone models, which models a phone in the
immediate left and right phonemic context.

An example of a conventional HMM based LVCSR system is shown in
Figure 1.1. The input waveform is first presented to a feature extractor
which produces feature vectors at fixed time intervals. Each feature vector
contains relevant information about the input signal that can be used by
the recognition unit to make a hypothesised text representation. The
sequence of feature vectors is then sent to the recogniser which consists
of a large network of HMMs. This large HMM network is made up of
several small HMMs that models the phones (or the unit of choice). The
pronunciation dictionary dictates how these small HMMs are combined
into a model for all the words in the library, before the language model
further combines the words into sentences.



4 Introduction

The main focus of this dissertation will be to improve the phone modelling
capability of the HMM. Improving the phone recognition capability of the
ASR system, should lead to better conditions for also improving the word
recognition. Although context dependent (CD) models performs better
CI models are simpler which makes it more convenient to explore novel
systems. Hence, the systems presented in this dissertation are all context
independent.

1.2 This Dissertation

In this dissertation three HMM based phone recognition systems will be
proposed. Two of the systems will utilise a set of Acoustic Sub-Word
Units (ASWUs) in order to compose an extended phone model topol-
ogy, designed in an effort to increase the modelling of the variation of
phone pronunciation. In the final system the sub-phonetic units were ex-
tracted by the use of non-negative matrix factorisation (NMF) which was
combined with the HMM. Thereby allowing the capability of the NMF
for extracting latent units to be used with the modelling abilities of the
HMM. This has been done before and resulted in the non-negative HMM
(N-HMM). However, in this dissertation significant modifications are pro-
posed in order to get a model that can be used for speech recognition.

1.2.1 Contributions

The contributions of this dissertation are:

• A definition of a set of Acoustic Sub-Word Units (ASWUs) based
on clustering of acoustic segments (Chapter 3)

• A proposal of how to use the ASWUs to train a phone HMM with
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parallel paths for realisations with different number of acoustic events
(Chapter 3)

• A suggestion of how to use the ASWUs with a Pronunciation Varia-
tion Modelling (PVM) approach to compose the phone HMM topol-
ogy in a data driven manner (Chapter 4).

• A set of modifications to the non-negative HMM (N-HMM) in order
for it to generalise to unseen data, and thereby be a viable option
for ASR (Chapter 5).

1.2.2 Outline

The dissertation will provide a description of three different HMM based
phone recognition systems. However, first an introduction to the HMM
in the context of ASR will be given in Chapter 2. In Chapter 3 a set of
Acoustic Sub-Word Units (ASWUs) will be defined. These are given a
phonetic interpretation before they are used for training a phone HMM
with several parallel paths, each with a number of states ranging from 1 to
4. In Chapter 4, a system with a similar extended topology is proposed. A
Pronunciation Variation Modelling (PVM) approach is employed to find
the optimal phone model topology using the inventory of ASWUs defined
in Chapter 3. In Chapter 5 the N-HMM is explored and modifications
to make the system feasible for ASR are proposed. Finally, Chapter 6
provides a summary along with some concluding remarks.





Chapter 2

HMM Based Automatic
Speech Recognition

The Hidden Markov Model (HMM) is a simple, yet powerful model widely
used in the ASR community as a statistical model of speech generation.
The model has a low complexity and, as will be described, the parame-
ters can be effectively estimated with the Baum-Welch algorithm. Before
the HMM is presented in Section 2.2, a brief overview of the input to the
model, the feature vectors, will be given in Section 2.1. Then, in Sec-
tion 2.3, the HMM based phone models are explained. Sections 2.4, 2.5
and 2.6 describe how to evaluate the HMM, how to use the HMM for de-
coding (Viterbi algorithm) and how to train the HMM parameters (Baum-
Welch), respectively.

7



8 HMM Based Automatic Speech Recognition

2.1 Feature Extraction - The Mel-Frequency Cep-
stral Coefficients

The first step in the ASR system is to extract features from the input
waveform signal. This process is performed in order to extract the prop-
erties that are important to the recognition task, and might also include
techniques to make the feature extraction robust to background noise.

One of the most used feature representation of speech in ASR, is Mel-
Frequency Cepstral Coefficients (MFCCs), which were proven to be bene-
ficial for speech recognition by Davis and Mermelstein in [1]. The MFCCs
are extracted using a filterbank of triangular bandpass filters separated
uniformly on the Mel-Frequency Scale; a non-linear perceptually moti-
vated frequency scale.

Figure 2.1 summarises the steps in extracting MFCC features from a
speech signal. Input to the extractor is a short part of the speech sig-
nal, isolated from the complete input signal by a window. A sequence
of contiguous feature vectors are extracted by repeating the process after
shifting the window with a small distance. Usually the shift is shorter than
the window length, resulting in overlapping frames. A common choice is
to use 25 ms wide Hamming windows shifted by 10 ms.

The first block uses the FFT to find the DFT of a short part of the input
signal, followed by the aforementioned filterbank with triangular bandpass
filters uniformly distributed on the mel-frequency scale. The output from
the filterbank block is a vector of the energy output from each filter, which

Figure 2.1: Block Diagram for MFCC Feature Extraction.
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is converted to the log-energy in the next block. Finally, the discrete cosine
transform (DCT) is applied to the vector, a process which reduces the
dimensionality of the vector and decorrelates the vector elements. Usually,
in speech with 8-10 kHz bandwidth the filterbank consists of 24 filters of
which the outputs are reduced to 13 MFCCs.

Energy carries important information for the ASR system. After the DCT
the 0thcoefficient in the MFCC vector equals the sum of the log-energy fil-
terbank outputs, and thus represent the log-energy of the extracted frame.
It is also possible to use other energy measures, as for instance the log en-
ergy of the input signal.

Temporal changes in the speech signal play an important role in human
perception ([2]). The MFCCs contain information of the current analy-
sis frame only, so to include information about surrounding frames, the
delta coefficients, also called dynamic features, are usually appended. The
dynamic features are estimates of the time derivative of the feature vec-
tors, and are calculated using the surrounding frames. Adding both first
and second order derivatives to the MFCC vectors greatly enhances the
performance of the HMM based ASR system [3, 4, 5, 6].

2.2 The Hidden Markov Model (HMM)

The foundation of the HMM is the Markov Chain, a discrete stochastic
process that takes on a finite or countable number of possible states, {S =
i; i = 1, 2, . . . , N} [7]. In ASR the first order Markov model is usually
employed. This has the important property that it is memoryless: the
conditional distribution of any future state given the past and the present
state depends only on the present state. This is also called the Markov
property and can be expressed by:

P (St+1 = j|St = i, St−1 = it−1, . . . ) = P (St+1 = j|St = i) = aij (2.1)
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where aij is the transition probability from state i to state j. Assuming
that the number of states in the Markov chain is N , the transition prob-
abilities may be described by an N × N matrix, the transition matrix. In
addition to the transition matrix, the Markov chain also has a set of initial
state probabilities. Hence the parameters of the Markov chain are:

aij = P (St = i|St−1 = j) 1 ≤ i ≤ N, 1 ≤ j ≤ N (2.2)
πi = P (S1 = i) 1 ≤ i ≤ N (2.3)

In an HMM, the observations (feature vectors) are assumed to be depen-
dent on an underlying unobservable (hidden) state sequence. For each
time frame, the model makes a state transition according to the hidden
Markov chain, and an output feature vector is generated from the out-
put probability density function associated with the current state. The
model is well suited for speech as the hidden state sequence can be associ-
ated with the various shapes the vocal tract takes during speech produc-
tion. The ASR system is thus searching for the optimal state sequence
S̄ = {S1, S2, . . . , ST } to describe the input sequence x̄ = {x1, x2, . . . , xT }.
The state sequence can be mapped to a sequence of phones (or another
unit of choice) and subsequently to words or sentences.

In addition to the state transition probabilities and the initial state prob-
abilities in Equations (2.2) and (2.3), the HMM also needs an output
probability density function for each state:

bi(xt) = P (xt = x|St = i) (2.4)

which is commonly modelled by a Gaussian Mixture Model (GMM).

2.3 The Phone HMM

The model topology, that is the number of states and the transitions
allowed to be performed in the underlying Markov chain, is an important
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property for the modelling capability of the HMM. For modelling phones
a popular choice is to use a left-to-right topology with about 3 - 5 states.
The 3 state topology is shown in Figure 2.2:

Figure 2.2: A standard 3 state left to right topology.

All the states have a transition to itself and to the next state and are
thus modelling contiguous feature vectors that describes the same quasi-
stationary segment. In a 3-state HMM, the three states can be viewed as
modelling the beginning, middle and end of a phone realisation. It is also
possible to allow the model to skip states by introducing more transitions,
at the cost of more parameters. Skips are especially important if the
model employs many states. Consider for instance that the features are
extracted at 10 ms intervals. 5 states without skips would then require
all phones to last at least 50 ms. Considering that the realisation of some
phones may have duration shorter than 10 ms, it is clear that this might
lead to a model mismatch resulting in improper modelling of short phone
realisations.

Another crucial decision, is choosing the type of probability distribution
bi(xt) for modelling the observation vectors. A common choice is to use
the Gaussian Mixture Model (GMM), which is versatile and yields good
performance. A drawback of the GMM is the number of parameters,
which is a factor that needs attention in ASR due to limited access to
training data. Employing a full covariance matrix for all Gaussians in an
HMM system requires a large number of parameters to be estimated. An
often used approximation is to assume that the feature vector components
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are uncorrelated and use non-zero elements only on the diagonal. This
gives a considerable reduction in the amount of parameters, at the cost
of introducing a possible error source. The DCT used in the last step of
the extraction process of the MFCCs has decorrelation properties, which
means that vector elements have low correlation, reducing error introduced
by using diagonal covariance matrices.

2.4 Evaluation of the HMM

Given an HMM Φ and an observation sequence X̄ = x1, x2, . . . , xT , the
probability that the model generates the observations, P (X̄|Φ), describes
how well the model fits the observations. The brute force solution to this
problem is to enumerate all possible state sequences S̄ = S1, S2, · · · , ST

and sum the probabilities:

P (X̄|Φ) =
∑

S̄
P (S̄|Φ)P (X̄|S̄, Φ) (2.5)

Unfortunately, there are in the order of O(NT ) state sequences, N being
the number of states, yielding an exponential computational complexity.
The Forward Algorithm, however, utilises the independence properties and
the similarities between possible state sequences. This is done by defining
a set of forward probabilities:

αt(i) = P (X̄t
1, St = i|Φ) (2.6)

where X̄t
1 = x1, x2, . . . , xt. The forward probability, αt(i), is the proba-

bility that the HMM is in state i at time t and have produced the output
vectors Xt

1. This probability can be calculated iteratively:

αt(j) =
(

N∑
i=1

αt−1(i)aij

)
bj(xt), t = 2, . . . , T (2.7)
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with the initialisation:
α1(i) = πibi(x1). (2.8)

In ASR it is common to require the model to end in a special final state
(which is non-emitting) at time T + 1. The likelihood P (X̄|Φ) in Equa-
tion (2.5) can then be found by using the calculated forward probabilities:

P (X̄|Φ) = αT +1(N) (2.9)

The forward algorithm thus calculates the probability in Equation (2.5)
with a complexity of O(T · N2), which is a significant improvement com-
pared to the brute-force solution.

2.5 Decoding the Input Sequence

The main problem in an HMM based speech recogniser is to find the
best state sequence for a given utterance. The state sequence corresponds
to the sequence of recognised units subsequently translated into phonetic
labels. The most widely used criterion for the best state sequence is the
sequence that has the highest probability of being taken while producing
the observation sequence. In other words: given an HMM Φ and a set of
input vectors X̄ = x1, x2, . . . , xT , the problem is to find the state sequence
S̄ = S1, S2, . . . , ST that maximises P (S̄, X̄|Φ).

The problem is solved efficiently using the Viterbi Algorithm which is
based on dynamic programming. The Viterbi algorithm is similar to the
forward algorithm used for evaluating the HMM, but searches for the best
state sequence rather than summing over all the possible paths. Hence,
the summation in Equation (2.7) is replaced with a max operator:

Vt(j) = max
1≤i≤N

[Vt−1(i)aij ] bj(xt) (2.10)
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where Vt(i) = P (Xt
1, St−1

1 , st = i|Φ) is the probability of the most likely
state sequence that generated the observations X̄t

1 = x1, x2, . . . , xt and
ends in state i. The initialisation is the same as the initialisation of the
forward algorithm:

V1(i) = πibi(x1) (2.11)

The most likely state sequence is found by saving the argument yielding
the maximum value in Equation (2.10) for each state at each time instance,
and then perform back tracking from the state with the highest value at
the final time frame.

Instead of remembering only the best state sequence for every state at
every time instance, it is possible to remember more alternatives, at the
cost of a significant increase in memory usage. The advantage is that a
list of the most promising sentence hypotheses can be given, instead of
only the one in a normal decoding. This is referred to as N-Best decoding,
N being the number of hypotheses.

2.6 Training of the HMM Parameters - Baum-
Welch

In order to use the HMM for ASR, the parameters of the model have to be
estimated. The most common method for training an HMM is the Baum-
Welch algorithm [8], which is based on the Expectation-Maximisation al-
gorithm (EM algorithm). A tutorial of the EM algorithm is given in [9].
The Baum-Welch algorithm is an iterative method, which for each itera-
tion maximises the likelihood of the data given the model P (X̄|Φ). The
new set of parameters Φ̂ is found according to the EM algorithm, by first
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taking the conditional expectation of the complete data log likelihood:

EΦ
[
log(X̄, S̄|Φ̂)

]
S̄|X̄ =

∑
S̄

P (S̄|X̄, Φ) log(P (X̄, S̄|Φ̂)) (2.12)

with the current parameters Φ, before finding the Φ̂ that yields the max-
imum.

To avoid summing over all possible state sequences the Baum-Welch algo-
rithm utilises the forward probabilities defined in Section 2.4 and a set of
backward probabilities:

βt(i) = P (X̄T
t+1|st = i, Φ). (2.13)

Similar to the forward probabilities, these are computed inductively over
t with initialisation:

βT +1(N) = 1 (2.14)

where the HMM is required to end in the final state, and then the induc-
tion:

βt(i) =

⎡
⎣ N∑

j=1
aijbj(Xt+1)βt+1(j)

⎤
⎦ , t = T, . . . , 1 (2.15)

which is performed in the time-reversed direction. Hence, the summation
in Equation (2.12) may be replaced by a summation over time, previous
and current state. The complete data log likelihood can then be expressed
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in terms of the α and β:

EΦ
[
log(X̄, S̄|Φ̂)

]
S̄|X̄ =

∑
S̄

P (S̄|X̄, Φ) log(P (X̄, S̄|Φ̂))

=
∑

S̄

P (S̄, X̄|Φ)
P (X̄|Φ)

log(P (X̄, S̄|Φ̂))

=
∑

i

∑
j

∑
t

P (St−1 = i, St = j, X̄T
1 |Φ)

P (X̄|Φ)
log(P (X̄, S̄|Φ̂))

=
∑

i

∑
j

∑
t

αt−1(i)aijbj(xt)βt(j)∑N
k=1 αT (k)

log(P (X̄, S̄|Φ̂))

=
∑

i

∑
j

∑
t

γt(i, j) log(P (X̄, S̄|Φ̂)) (2.16)

where γt(i, j) is the probability of taking the transition from state i to
state j at time t given the model and the observation sequence. The
optimal parameters are then found by adding Lagrange multipliers and
maximising with respect to each parameter individually.

The Baum-Welch algorithm guarantees a non decreasing likelihood. How-
ever, this is not the same as non decreasing performance as the discrim-
inative capabilities of the HMM is not trained explicitly. Discriminative
training of the HMM can be done using methods like maximum mutual
information (MMI), minimum classification error (MCE), minimum word
error (MWE) and minimum phone error (MPE) (see e.g. [10]). However,
these require significantly more computational power. In this dissertation
discriminative training was not used.
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2.7 Performance Evaluation

The performance of a given ASR system can be evaluated by using a
labelled test set and compare the recognised words with the spoken words.
In the comparison there are three types of word recognition errors that
can occur:

Substitution (S): A correct word was substituted by an incorrect word

Insertion (I): A new incorrect word was inserted

Deletion (D): A correct word was removed

In order to find these errors the two word sequences are aligned by dynamic
time warping (DTW). The word error rate (WER) is defined as:

WER =
S + I + D

N
· 100% (2.17)

where S, I and D is the number of substitutions, insertions and deletions
respectively, while N is the number of spoken words. The performance of
the recogniser can also be expressed by the accuracy, defined as:

Accuracy = 100% − WER (2.18)

The performance of a large vocabulary speech recogniser LVCSR is de-
pendent on the accuracy of the recognised units. Although some errors
made by the phone recognition step in an LVCSR are corrected by the
dictionary and language models, it is a fair assumption that improving
the phone recognition performance also improves the LVCSR.

Evaluating an ASR system on the phone level can be done in exactly the
same manner as for words. This requires a labelling of the test utterances
on the phone level.
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2.8 HMM Variations

As mentioned, the HMM has been widely used in the ASR community.
Naturally, several modifications and variations of the HMM have been
proposed in the literature, some more successful than others. An overview
of many of the variations is given in [11] and [12]. Because of its popularity,
the research performed on the HMM is extensive. In this section some of
the models derived from the HMM are presented.

Today, the computational time for training HMMs with continuous emis-
sion densities is low. However, a couple of decades ago, the computational
complexity of such models was a concern. The discrete HMM, where a
vector quantisation (VQ) was applied to the input in order to use discrete
output probability functions, offered faster training and decoding times at
the cost of introducing VQ distortion. In [13, 14] a compromise between
the continuous HMM and the discrete model, the semi-continuous HMM
was proposed. The semi-continuous HMM was trained using a discrete
HMM, but included the training of a probability density function for each
entry in the VQ codebook. During decoding weighted sums of the pdfs in
the VQ codebook were used as emission densities.

The emission densities of the HMM are dependent on the current state
only, and are independent of the previous (or succeeding) output vectors.
Since speech is created by a relatively slowly moving vocal tract, this
is clearly an incorrect assumption, specially when dynamic features are
used, as they are directly dependent on the surrounding frames. In [11]
an overview of different approaches for segmental HMM are given. In
segmental HMM each state outputs a sequence of feature vectors, called
a segment. The length of the segment is a random variable. This way
it is possible to model the dependencies between the observation vectors
in one segment. Similar to the segmental HMM the trajectory HMM
(e.g.[15, 16, 17]) allows the the gaussian components in the GMMs to
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change during a state, and adds dependencies on neighbouring states as
well.

Another shortcoming of the conventional HMM is that the state durations
are modelled implicitly by a geometric distribution. In [18, 19, 20, 21] ap-
proaches to implement more appropriate distributions are proposed. In the
Hidden Semi-Markov Model (HSMM), the duration is explicitly modelled.
Unfortunately, this leads to the Markov assumption becoming invalid, an
assumption which the Baum-Welch and Viterbi algorithms are dependent
on. The problem is investigated in [20], where the computational burden is
reduced by imposing a limit to the number of frames allowed in each state.
In the Expanded State HMM (ESHMM) [22], the duration is modelled by
a Markov chain.

Several efforts have been made to improve the acoustic models of the
HMM. The standard is to employ GMMs as emission densities. However,
other approaches have also been tried. For instance the Linear predictive
HMM [23] or the AR HMM [8, 24], use output probability distributions
derived from the souce-filter model which assumes that speech can be
modelled as noise filtered by an all-pole filter. In the source-filter model
the filter models the vocal tract, which shapes the airflow from the lungs
into speech sounds. Another approach has been to combine the HMM
with Artificial Neural Networks (ANNs), known as Hybrid HMM/ANN
approaches [25, 26, 27], where the ANNs represents the emission densities
of the states. Recently, hybrids with Deep Belief Networks (DBNs), which
is a layered network composed of stochastic variables, have proven to be
successful [28, 29, 30].





Chapter 3

HMM Based on
Phonetically Interpreted
Acoustic Subword Units
(ASWUs)

Conventional HMM-based speech recognisers normally employ 3-state phone
models to handle the acoustic modelling. When training the phone mod-
els, speech data and an associated phonemic transcription are used. The
model topology is normally identical for all phone units. If there is a need
for reducing the number of model parameters, e.g. for context dependent
phone modelling, or if there is insufficient training data available, data
sharing strategies such as state tying are employed.

Training phonetically defined units like phones puts restrictions on the
use of the available training data. Even though similar acoustic events
may occur in different phonetic units, conventional training strategies are

21
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unable to exploit this. Recognition strategies based on sub-phonemic units
may be able to better utilise similar acoustic events regardless of phonetic
membership.

In the conventional phone models, the uniform 3-state left-to-right model
topology can limit the capability of modelling diverse acoustic realisations
of the phones. Depending on factors like speaking style and rate, phonetic
and syllabic context as well as the prosodic structure, phone realisations
may exhibit variation in the number of distinct acoustic events. A richer
phone model topology may be able to provide a more accurate represen-
tation of natural pronunciation variation at the phone level.

In this chapter a phone recognition system that utilises a set of acoustic
subword units (ASWUs) to model the phones is proposed. The ASWUs
are defined as a set of short units with stable acoustic properties and are
used as building blocks in the phone models. A phone is assumed to be
produced as a sequence of one or more acoustical events which in turn is
modelled by the ASWUs. In the next section, an overview of the proposed
system will be given, before the acoustic subword units are introduced in
Section 3.2. Further, in Section 3.3 the training scheme for the proposed
system is described. Finally, the experiments conducted with the system
are presented in Section 3.4, followed by a discussion of the results in
Section 3.5 and a concluding summary in Section 3.6

3.1 System Overview

The phone recognition system proposed in this chapter differs from the
conventional 3 state left-to-right HMM by extending the topology of the
phone HMM. Instead of only using a single path with 3 states, it is offering
alternatives for the number of states to use for a phone realisation. This
is done by introducing several parallel paths, where each path is a left to
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Figure 3.1: An example of the proposed phone HMM topology.

right model with different number of states. An example of this is shown
in Figure 3.1 where 4 paths with 1, 2, 3 and 4 states are available to the
model. The hypothesis is that this will better cope with the great variation
in which a phone may be realised, dependent on e.g. speaker, context and
stress. A phone may be realised using a variable amount of acoustic events
and extending the phone model in this manner will give better terms for
modelling each acoustic event accurately by a state. Variability in phone
pronunciation can thus be better modeled with this topology than the
standard left-right topology which relies on a rich formulation of the state
emission densities to accommodate a reasonable degree of variability.

A standard training procedure using the Baum-Welch algorithm described
in Chapter 2.6, can lead to data sparsity problems and result in poor
performance because of the increase in parameters used by each phone
model. Therefore, an alternate approach is required to train the models
robustly. As indicated, the training procedure will define and utilise a set
of ASWUs to alleviate the data sparsity problems. The ASWUs are, as
will be discussed in detail in Section 3.2, found by first dividing the input
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utterances into segments with stable acoustic properties, before clustering
the segments. Each cluster then corresponds to an ASWU which can be
linked to the states in the HMM topology by a linguistic interpretation.
In the next section the ASWUs will be presented before a more detailed
description of the training scheme is given in Section 3.3.

3.2 Acoustic Subword Units

In a traditional speech recogniser the input signal is segmented by a lin-
guistic interpretation of the acoustic signal. The HMM both performs
segmentation of the signal and links each segment to a unit during the
Viterbi decoding described in Section 2.5. The result is a sequence of
units (e.g. phones) that can be converted to words.

Another approach is to define units purely based on the acoustic properties
of the signal. In [31, 32] acoustic subword units, or fenones, were defined
by first performing a vector quantisation of the input sequence. The VQ
codebook is then used to label the input sequence, where each label corre-
sponds to a fenone. The fenones describes very short acoustic events, often
as short as one frame, and they are modelled by 1 state HMMs. Finally,
word models were constructed as a sequence of fenones. In [33, 34] an
ASR system based on segment models or acoustic segment units (ASU)
was proposed. The segment models were created by a maximum likeli-
hood segmentation, where the frames of a segment were assumed to be
generated from a single AR model. These segments were then clustered or
quantised into groups of acoustically similar clusters, which were modelled
by simple HMMs. Finally, word models were created by concatenating the
units through an acoustic lexicon.

In this chapter a set of acoustic subword units (ASWUs) similar to the
ASUs in [33, 34, 35] will be used. The input speech signal is first divided
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into short segments by a constrained clustering approach described in Sec-
tion 3.2.1, before each segment is clustered or quantised by the approach
presented in Section 3.2.2.

3.2.1 Automatic Acoustic Segmentation

Automatic acoustic segmentation of speech is the task of finding a set of
boundaries {b1, b2, . . . , bJ} based on the acoustic properties of the signal.
When recognising speech using HMMs, the HMM is performing segmen-
tation as part of the recognition process. However some research has also
been conducted on the task of segmenting the speech signal separately.
In [36, 37, 38] the authors proposed a procedure where each frame was
compared to its near neighbours by calculating the Euclidean distance
between the feature vectors. The procedure moves from left to right and
associates each frame with either the past or the future, whichever has
the greatest similarity. Boundaries are inserted when the direction of the
current frames association changes from past to future.

A segmentation approach based on dynamic programming (DP) was pro-
posed in [39], and used later in [35, 40, 41, 42, 43]. The approach ap-
proximates each segment with a polynomial, and finds the segmentation
that yields the best approximations. In [44] each feature dimension of the
acoustic segments was modelled with a trajectory approximation. Each
dimension was assumed to be a noisy representation of a quadratic poly-
nomial. In [41, 42, 45] the DP approach and the trajectory models were
combined.

In this dissertation, the DP approach will be employed with a constant
approximation of the segments. The DP approach is a procedure which
iteratively increases the number of segments until a stopping criterium
is met. For a given number of segments J and the input utterance
{x1, x2, · · · , xT }, the algorithm finds the segmentation {S1, S2, · · · , SJ}
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with boundaries {b0, b1, . . . , bJ} that minimises:

D(J) =
1
T

J∑
j=1

∑
∀i∈Sj

d(xi, cj(i)) (3.1)

where d(·) is a distortion measure, Sj is the jth segment of consecutive
speech feature vectors {xi; bj−1 < i ≤ bj} and cj(i) is the vector that rep-
resents the ith frame of the jth segment. In this dissertation a constant
segment representation has been used, and cj(i) is replaced by cj . Note
that b0 = 0, while bJ = T .

The algorithm initiates with only two segments, and iteratively increases
the number of segments until one of the terminating conditions:

J = Jmax ∨ D(J) ≤ θ (3.2)

is fulfilled. These constraints limit the algorithm to maximally produce a
predetermined number of segments Jmax, or to stop when the segmentation
yields a piecewise constant approximation which deviates less than the
given threshold θ from the original signal. As seen in Equation (3.1)
the distortion of a segmentation is scaled with the number of frames T .
This way the distortion threshold θ is not dependent of the length of the
utterance, and may be fixed for all utterances. When the phone sequence
of the input is available it is possible to disable the distortion criterion
(θ = 0) and instead fix the number of segments based on the number
of phones. A simple choice is to multiply the number of phones in the
utterance with a fixed factor, ρ:

Jmax = ρ ∗ Nphones (3.3)

Since there are generally more acoustic incidents than phones in an utter-
ance, this factor should be larger than 1, i.e an over-segmentation.

The distortion measure d(·) in Equation (3.1) and the segment representa-
tion function cj(i) controls the properties of the segments produced by the
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segmentation. In [44] segments were modelled using polynomial trajecto-
ries, which is a reasonable representation function for this segmentation
algorithm. However, since segments with approximately constant acoustic
properties are desired, only the constant term in the polynomial is used in
this dissertation. In other words, the frames are compared to the centroid
of the segment and thus ensures that the intra-segment variation is kept
at a minimum. The distance measure that has been chosen is simply the
Euclidean distance of the two argument vectors.

3.2.2 Segment Clustering

After the automatic acoustic segmentation, where a set of boundaries has
been assigned to the input data, the acoustic segments are clustered. By
collecting acoustically similar segments together, the result will be a set
of clusters with low acoustic variability that covers the output space. It
is therefore a fair assumption that these clusters are describing various
acoustic events that occur in the speech data set. Each of these clusters
defines one Acoustic Subword Unit (ASWU).

Since the choice of a 0thorder segment approximation in the acoustic seg-
mentation algorithm results in segments with low intra-segment variability,
the centroid is a reasonable representation of each segment. The clustering
of the segments can then be performed by clustering the centroid vectors.
This can be done using the HMM Toolkit HTK [46] which performs the
vector quantisation “by a top-down clustering process where clusters are
iteratively split until the desired number of clusters are found”. Also for
the clustering the Euclidean distance metric was chosen.
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3.3 Parameter Estimation

Since the number of states in the phone models has been increased com-
pared to the standard topology for context independent phone HMMs (10
vs 3 states) standard training procedures can be sensitive to data sparsity.
In addition, similar acoustic events may occur in different phone reali-
sations, or even in different phones, something that could be utilised to
share training data. Hence, a training scheme inspired by the procedure
described in [43] is proposed in this section. The scheme consists of several
steps:

1. Automatic acoustic segmentation

2. Create the ASWUs by clustering the acoustic segments

3. Training of a GMM for each ASWU

4. Linguistic interpretation of the acoustic segments

5. Combining ASWU GMMs into state GMMs

6. Final embedded re-estimation

The first two steps, which have already been explained, results in an in-
ventory of ASWUs based on acoustic segments. Each ASWU consists of
a collection of acoustic segments which can be used to train GMMs. The
linguistic interpretation, which will be described in the next section, as-
signs each of the acoustic segments to one of the states in the HMM. Each
acoustic segment is then assigned both to an ASWU and an HMM state.
This creates a link from the states of the HMM to the ASWUs through the
acoustic segments. In Section 3.3.2 a description of how this link can be
used to construct the state GMMs as a linear combination of the ASWU
GMMs will be given.
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3.3.1 Linguistic Interpretation of Acoustic Segments

After the acoustic segmentation, the segments are aligned with a phone-
mic labelling. This labelling may be produced manually as in e.g. the
TIMIT database, or automatically with a standard speech recogniser and
forced alignment. The aligned labels are then compared and the acoustic
segments are assigned to a manual segment. Based on this assignment, the
acoustic segments are given a linguistic label, which creates a link between
the acoustic segments and the states in the HMM.

In Figure 3.2 four examples of possible alignments are shown. The out-
come of the comparison between an acoustic segment with the manual
labels can be one of the three cases:

1. the acoustic segment is fully contained in a manual segment (Fig-
ure 3.2(a))

2. the acoustic segment spans one manual boundary (segment “ae_31”
in Figure 3.2(b))

3. the acoustic segment spans multiple manual boundaries (Figure 3.2(c)
and Figure 3.2(d))

For the first case, the phonemic assignment is straightforward as Fig-
ure 3.2(a) shows. In all other cases, a membership function is employed:
for an acoustic segment “A” with boundaries at t = ab, t = ae and a man-
ual segment “M” with boundaries at t = mb, t = me, the membership
function f is given by the portion of the phonemic segment covered by the
acoustic segment. I.e. the length of the intersection between the manual
and the acoustic segments divided by the length of the manual segment:

f(A, M) =
{

me−max(ab,mb)
me−mb

if ab < me < ae
min(ae,me)−mb

me−mb
if ab < mb < ae

(3.4)
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(a) Example with acoustic labels fully contained in a manual segment.

(b) Example with an acoustic label that covers a manual label.

(c) Example with an acoustic label that spans an entire manual segment

(d) Example with an acoustic label that covers several manual segments

Figure 3.2: Four example cases of labelling acoustic segments (lower) after com-
parison with phonetic labels (upper). In (a) the simple case where all the acous-
tic labels are fully contained in a manual segment. (b) shows the case where an
acoustic segment (ae_31) contains a manual boundary. (c) shows an example
where the acoustic segment covers two manual boundaries. Finally, in (d) is an
example of the unfortunate case where the acoustic segment covers more than
one manual segment.
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which will be equal to 1 if both conditions are fulfilled, i.e. the phonemic
segment is fully contained within the acoustic segment.

For the second of the three cases above, the acoustic segment will simply be
assigned to the manual segment yielding the highest membership measure.
For the segment “ae_31” in Figure 3.2(b) the membership measure will
be highest for “/ae/” compared to the preceding manual segment. The
relative overlap of “/ae/” is higher.

In the third case the acoustic segment is assigned to all manual segments
with membership measure higher than 40%. This implies that some of
these segments will be assigned to more than one manual segment. The
third case can thus be divided into two subcases: one where the acous-
tic segment is assigned to one manual label and one where the acoustic
segment is assigned to multiple manual labels. In Figure 3.2(c) an exam-
ple of an acoustic segment that spans two manual boundaries are shown.
Since the membership measure will be less than 40% for both the pre-
ceding and succeeding manual segments, the acoustic segment is assigned
to “/ah/” only. If the segment had covered more of either neighbour of
“/ah/”, the segment had been assigned to both. This is the case in Fig-
ure 3.2(d), where the acoustic segment covers two entire phone segments,
and is assigned to both.

It is desired to use the acoustic segments to provide a systematic descrip-
tion of the variability of the phone realisations. The number of acoustic
segments associated with a specific phone segment is an indication of the
manner in which the phone is realised. Also, the position of an acoustic
segment in a multi-segment realisation of the phone points to a specific
acoustic event in the phone realisation. Thus, information about the num-
ber of acoustic segments and the position of the segment is included in
the linguistic label. All the acoustic segments are labelled according to
three properties: name of the phone the segment is assigned to, the num-
ber of acoustic segments assigned to that specific phone instance and the
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position of the acoustic segment. In Figure 3.2, the labelling of the previ-
ous mentioned cases is shown. Note that for the case where the acoustic
segment is assigned to multiple phones, as in Figure 3.2(d), the proposed
labelling convention is inadequate. Instead the segment is named based
on the phones it is assigned to. These segments are not considered in
the next step, where the linguistic labels are used to map the acoustic
segments to a state in the HMM. Since there is no limit to how many
acoustic segments that can be assigned to a manual segment, it is possi-
ble that too many acoustic segments are assigned to a manual segment.
Each segment corresponds to a state in the HMM, and as the topology in
Figure 3.1 shows, there is a maximum number of states a given realisation
can be modelled with. In this dissertation the maximum number of states
was 4, hence all phones assigned more than 4 acoustic segments yield a
problem. A simple solution is to merge the segments down to 4 states.
This was done by merging the two consecutive segments with lowest Eu-
clidean distance between the centroids, until the number of segments is 4.
The solution is not optimal as the other boundaries are not moved and the
resulting segmentation is not likely to be the best in terms of maximum
likelihood. Hence, the automatic acoustic segmentation algorithm needs
to be adjusted carefully in terms of how many segments it produces. This
will be investigated further in Section 3.4.1.

3.3.2 HMM Training

The ASWUs, which are modelled by GMMs, are created by clustering the
acoustic segments. Therefore, there is a link from each acoustic segment to
an ASWU. During the linguistic interpretation of the acoustic segments,
the acoustic segments were also linked with HMM states. Hence, through
the acoustic segments, each HMM state is linked to several ASWUs. An
example of the situation is shown in Figure 3.3. In this example the state
“S1” is assigned to only one ASWU, whereas the state “S2” has one link
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to each ASWU. The links from an HMM state to the different ASWUs
can be used to represent the emission density of the state as a weighted
sum of the ASWU GMMs. The weights in the sum can be determined by
counting the number of links from the HMM state to each ASWU. Let the
set of acoustic segments assigned to the state “s” be denoted by Us and
the set of acoustic segments assigned to ASWU number i be denoted Ci,
then the weight ws

i of the cluster GMM i for the state “s” is given by:

ws
i =

|Us
⋂ Ci|

|Us| (3.5)

where | · | denotes cardinality. The emission density of state “s” is thus
given by:

p(x|s) =
C∑

i=1
ws

i

M∑
j=1

cijN (x|μij , Σij) (3.6)

where C is the total number of clusters and M is the number of mix-
ture components in each cluster GMM which is represented by the last
summation.

In Equation (3.6), the state output density functions are expressed by a
linear combination of the ASWU GMMs. Only the weights of the com-
bination differ between the states, while all the Gaussian components are
shared. The situation is similar to the semi-continuous HMM (SC-HMM)
where the state output probability functions was created as a weighted
sum of pdfs from a VQ codebook (see [13, 14]). This makes it possible to
have larger GMMs without the increase in parameters. In addition to us-
ing the GMMs defined by Equation (3.6) as state emission densities, there
are two other alternatives that will be tested in this dissertation. First,
it is possible to collect all the shared Gaussian components in a shared
pool, and allow a Baum-Welch re-estimation to update the weights for
each state. I.e a tied Gaussians system. The other is to treat the GMMs
from Equation (3.6) separately for all the states, and allow a Baum-Welch
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Figure 3.3: Example of links from HMM states to ASWUs through acoustic
segments.

re-estimation to update both the weights and Gaussian components. This
increases the freedom for the state to change its GMM during a succeed-
ing Baum-Welch re-estimation. Unfortunately, this freedom comes at the
cost of a considerable growth in the number of distinct parameters in the
HMM system. To alleviate the problem, the number of mixture compo-
nents in the state GMMs is reduced by a pruning approach. The pruning
is conducted in two steps:

1. All GMM components with a weight lower than a threshold given
by the largest mixture weight are removed. For instance remove
components with weights lower than 15% of the largest weights,
which is the threshold used in this dissertation.
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2. Iteratively locate and merge the two components that results in the
lowest log-likelihood cost when replaced with one component [47],
until the a target GMM size is reached.

The first step is a fast pruning of the mixture components, while the second
step is considerably slower. Hence, the number of mixture components
after the first step should be small to avoid using too much time in step
two. On the other hand: since the pruning does not consider coverage
of the output space, too coarse pruning may result in poor modelling of
some parts of the output space.

To summarise, three different approaches have been suggested:

1. Use the GMMs defined by Equation (3.6) directly, and only update
the transition probabilities, including the probability of each path
given the phone (the leftmost transitions in Figure 3.1).

2. Put the Gaussian components from Equation (3.6) into a shared
pool of mixtures and employ a tied mixture system. The final Baum-
Welch re-estimation process then updates the weights in the GMMs,
in addition to the transition probabilities as before.

3. Allow the states to have individual GMMs which can be fully up-
dated by a Baum-Welch re-estimation procedure. This enforces
pruning of the GMMs to avoid a blow up in the parameter count.

3.4 Experiments

In this section, experiments conducted with the segmentation algorithm
and the proposed HMM system will be presented. The experiments have
been performed with the TIMIT database described in more detail in Ap-
pendix A. The training set consists of 3296 utterances, and the test set
contains 1344 utterances. The models were trained with a 48 phone set
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which was mapped down to a 39 phone set during testing (see Appendix
A). Two different set of features were used; one for the segmentation pro-
cedure and one for training the HMMs. The segmentation was performed
with 13 MFCCs, including C0, extracted with a 15 ms window and a 5
ms shift. The HMMs were trained using 13 MFCCs including C0, and the
delta and acceleration coefficients, making a feature vector dimension of
39.

There are several aspects to the proposed system and training scheme that
needs investigation. First, the impact of the segmentation algorithm will
be explored, before the parameters of the training scheme and the model
itself will be tested.

3.4.1 Adjusting the Segmentation Algorithm

When manual labels are present, the number of segments can be con-
trolled by either the over-segmentation factor or the distortion threshold.
The over-segmentation factor limits the number of acoustic segments to a
constant factor multiplied with the number of manual labels. The result is
a predictable number of segments, but the over-segmentation factor can-
not be used when the manual labels are not present. In such cases one has
to use a comparable transcribed data set, and find a threshold that yields
the desired over-segmentation on average. That threshold can then be
used for the untranscribed data. Anyway, as TIMIT is manually labelled,
the over-segmentation factor was used, and the distortion threshold was
set to zero in all the experiments.

In Figure 3.4 and Figure 3.5 the distribution of the number of segments
per phone is shown for a selection of phones when the over-segmentation
factor is varied between 2 and 5. A complete overview of all the phones
is given in Appendix B. The figures have a separate category for the case
where a phone is assigned more than 4 segments. However, in later steps
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Figure 3.4: Distribution of number of segments per phone when the over-
segmentation factor is 2 (upper figure) and 3 (lower figure).
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these instances will be merged down to 4 segments. Acoustic segments
covering more than one phone are not contributing to the figure nor in
the later training steps (except the final Baum-Welch re-estimation proce-
dure). Thus, a low over-segmentation factor will result in less data to train
the cluster GMMs, whereas a high over-segmentation factor will naturally
lead to an increased number of segments being merged. The figures show
this expected relation: low over-segmentation factor moves the ratios to
the left, while higher over-segmentation moves them to the right. Another
observation that can be made from the figures is the difference between the
phone classes: short phones like stops tend to have more instances with
few segments compared to longer phones like diphthongs. In Table 3.1 the
ratios of segments that cover more than one phone (multisegments) for
the various over-segmentation factors are shown. The ratio of multiseg-
ments decreases from 5.16% to 0.30% when the over-segmentation factor
is increased from 2 to 5. This means that there is a significant higher
number of segments not being exploited in the ASWU creation when the
over-segmentation factor is 2.

Table 3.1: Ratio of segments that cover more than one phone (Multisegments).

Over-segmentation Ratio of
Factor multisegments

2 5.16%
3 1.73%
4 0.69%
5 0.30%

In Table 3.2, the phone recognition results using different over-segmentation
factors are shown. The system was trained using 256 clusters, each mod-
elled by 8 component GMMs, and the GMMs in the final HMM states were
reduced to a size of 32 (see Section 3.3 for description of these parameters
and Section3.4.2 for an overview of the system performance for different
settings). The results show that the over-segmentation factor should be
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Table 3.2: Experiments with different over-segmentation factors. The experi-
ments were performed with cluster size of 256 each with 8 component GMMs,
and the final HMM GMM size was reduced to 32.

Over-segmentation Recognition
Factor Accuracy

2 61.6 %
3 64.9 %
4 66.2 %
5 66.1 %

set fairly high. With an over-segmentation factor of 5, one sentence had to
be removed from the training set because the ratio of number of segments
to number of frames was too high. The resulting acoustic segments would
have had an average length less than 2 frames, which is the minimum
segment length.

During the training procedure, the acoustic segments are compared to
the manual labelling in order to give the acoustic segments a linguistic
interpretation. It is therefore possible to get an overview of which phones
the segments in a cluster belongs to. By counting how many segments
that are assigned to each phone for a given cluster or ASWU, histograms
like the ones in Figure 3.6 and Figure 3.7 can be constructed. These
histograms give some characteristics of the ASWU. For the ASWU in
Figure 3.6 most of the segments originate from only a few of the phones:
the /k/ has by far the largest frequency of coinciding with the cluster
(note that the scale on the y-axis is different for the two histograms in
the figure), while /g/ and /cl/ (unvoiced closure) are the two next on
the list. The /g/ is the voiced variant of the /k/, however in unvoiced
context it might be pronounced unvoiced and thus identical to the /k/.
Hence, all the three phones with highest frequency of co-occurring with
this ASWU can be related to the /k/. This is a strong indication that this
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Figure 3.6: Example of phone assignment of ASWU
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Figure 3.7: Example of phone assignment of ASWU
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ASWU describes an acoustic event associated to the /k/. In Figure 3.7
the situation is a bit different: nearly all the phones contribute to the
cluster. It is therefore reasonable to assume that the ASWU represents an
acoustic event that has neutral characteristics and thus fits different types
of sounds. Perhaps it often occurs between the phones. Nevertheless, since
the ASWU describes parts of quite different phones, it is likely to have
poor discriminative properties.

3.4.2 Varying Number of Clusters and GMM sizes

Table 3.3: ASWU HMM Results. Both the number of clusters and the cluster
GMM size are varied. Alternative 1 is to use the GMMs from Equation (3.6)
directly, while Alternative 2 employs Baum-Welch re-estimation to update the
weights. For the third alternative also the final GMM size decided by the pruning
was varied. All the experiments were conducted with an oversegmentation factor
of 4.

Alt. 3
Number of Size of Size HMM GMM
Clusters Cluster GMM Alt. 1 Alt. 2 16 32

Baseline HMM - % - % 65.0 % 66.7 %
128 8 23.3 % 31.6 % 64.9 % 66.3 %
128 16 23.2 % 31.6 % 64.6 % 65.9 %
128 32 22.6 % 32.0 % 64.8 % 66.0 %
256 8 17.8 % 22.9 % 64.7 % 66.2 %
256 16 17.6 % 23.2 % 64.7 % 66.0 %
256 32 17.5 % 23.6 % 64.6 % 65.6 %

In Table 3.3 the results of the experiments conducted with the three sug-
gested alternatives are presented (see Section 3.3.2). For all the three al-
ternatives the oversegmentation factor was set to 4 while both the number
of clusters and size of cluster GMMs were varied. For the third alternative



44 HMM Based on Phonetically Interpreted ASWUs

also two different sizes of the GMMs resulting from the pruning step were
tried.

The most obvious observation that can be made from the table is which
of the three alternatives that is most successful: alternative 3. It is quite
clear that allowing each of the states to update its GMM components indi-
vidually in a Baum-Welch re-estimation procedure is superior in this case.
Another observation is the relatively low variation in the performances for
the alternative 3 systems. While varying the number of clusters and their
GMM size for the alternative 1 and 2 systems yields significant changes
in the performance, these parameters have small or no impact on the per-
formance of the alternative 3 systems. Only the number of components in
the GMMs after the pruning step seem to have influence on the results.
This is expected as increasing the state GMM size from 16 to 32 improves
the modelling capability of the state, something that can also be observed
with the baseline HMM systems. The baseline results are achieved using
standard 3-state HMMs trained with a conventional training scheme.

3.5 Discussion

In Section 3.4.1 different over-segmentation factors were tried for the seg-
mentation algorithm. This factor controls how many segments the algo-
rithm produces compared to the number of manual labels in the data. A
reasonable hypothesis would be to adjust the algorithm to divide most of
the phone realisations in about 2-3 segments, and have less realisations
with 1, 4 or more segments. However, the experiments showed that the
best value for the over-segmentation factor was about 4-5. This is a bit
unexpected, but it indicates that the segments that cover more than one
phone hurts the performance more than phones segmented into more than
4 segments. When considering how these two cases are handled by the
training algorithm, it may seem as a more reasonable result: the segments



3.5 Discussion 45

that cover more than one phone are not used further in the training,
whereas more than 4 segments assigned to a phone results in the segments
to be merged down to 4 segments. Hence, the first case results in unused
training data (at least until the final Baum-Welch procedure), which is a
loss that should be kept to a minimum.

In an effort to avoid the cases where an acoustic segment covers more
than one phone, it could be tempting to consider segmenting each phone
separately. This is possible to accomplish by using the manual labels and
segment each phone. To get diversity in the number of segments to use for
each phone, a distortion threshold should be used as stopping criterium.
Unfortunately, this means that either the phones have approximately the
same average number of segments, or this average needs to be decided in-
dividually for each phone. How to decide the average number of segments
to use for a phone is not trivial, while having the same average number
of segments is probably not optimal. As Figure 3.4 and Figure 3.5 (see
Appendix B for full overview) show, the different phones naturally have
quite different average number of segments assigned to them. Diphthongs
like /ay/ and /oy/, for instance, have in general more segments assigned
to them, compared to shorter phones like for instance /d/ (plosive).

The results of the phone recognition experiments show surprisingly small
variations for the best alternative: alternative 3, where the state GMMs
are pruned and re-estimated individually. The largest difference is less
than 1 %, which makes it difficult to conclude which setting is the better.
However, the results for alternative 1 and 2, where the Gaussian com-
ponents were untouched after the construction of state GMMs according
to Equation (3.6), show larger variations. In fact, the number of clus-
ters seem to have a significant impact on the performance for these two
alternatives. A difference which vanishes after the pruning and Baum-
Welch re-estimation for the alternative 3 systems. It should be mentioned
that there is another natural alternative to the three systems described
in this chapter: instead of using a shared pool of Gaussian components
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as in alternative 2, it is possible to employ a shared pool of GMMs. I.e.
let cij and N (x|μij , Σij) in Equation (3.6) on page 33 be shared among
the states, and only allow the transition probabilities and the ws

i weights
to be updated in the Baum-Welch re-estimation. This will reduce the
amount of parameters compared to alternative 2, but also reduce the flex-
ibility. However, this alternative is expected to be close to alternative 2
in terms of performance, and considering the rather poor results achieved
with alternative 2, this alternative was not implemented and tested.

A parameter that is influencing the result is the size of the GMMs in the
final HMM states. Increasing from 16 to 32 components in the GMMs is
consistently giving an increase in the performance of about 1-1.5%, which
is about the same as for the baseline. Since the phones are modelled by
10 states, instead of 3 states like the baseline, the number of parameters
is more than three times higher for the proposed system. In ASR the
number of parameters is always a concern, as the size of the training data
is limited. Fortunately, based on the presented results, the number of
parameters does not seem to have a significant negative impact of the
performance. Although, as mentioned earlier the number of parameters
might have reached the limit for the setting with 256 clusters and 32
components in the GMMs.

A comparison between the proposed alternative 3 system and the baseline,
shows that the two systems seem to perform at the same level: when using
GMMs with 16 components both systems have an accuracy of about 65%,
while for the case of 32 components in the GMMs, the baseline perform
about 0.5% better. The baseline system thus performs marginally better
than the proposed system in the experiments presented. In Appendix A.2
an approximation of confidence intervals for the TIMIT phone recognition
experiments suggests that a 95% confidence interval for the PER has a
size of about 0.7%, when the true PER is about 35% (i.e. an accuracy
of about 65%). Hence, the difference is too small to be able to make any
confident conclusions about which is the better system in terms of perfor-
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mance, however the conventional HMM has a slight lead. Nevertheless,
the number of components should also be considered. Each parameter
needs a certain amount of training data to be sufficiently trained. A
higher parameter count, thus means that a larger amount of training data
is needed. In addition, the number of parameters is an indicator for the
complexity of the system. Higher complexity leads to a slower system,
which requires more resources for training and decoding. This cost needs
to be justified with better performance. Unfortunately, this is not the case
in the experiments reported in this chapter.

3.6 Concluding Summary

In this chapter an alternative to the conventional topology of the phone
HMMs has been proposed. Instead of using 3-state in a left-to-right man-
ner, the proposed system used several parallel left-to-right paths, each
with a different number of states ranging from 1 to 4. The intention was
to give the model more accurate modelling of the different acoustic events
occurring within the phones. A special training algorithm utilising an au-
tomatic acoustic segmentation algorithm was designed to accommodate
the increased number of states and parameters. The acoustic segmenta-
tion algorithm finds the segmentation that minimises the intra-segment
variation, leading to a segmentation where each segment may be approx-
imated by the centroid. A clustering procedure is then performed by the
use of the segment centroids, yielding a set of ASWUs. By comparing
the acoustic segments with a manual phonetic labelling of the data, links
between the HMM states and the acoustic segments were created. These
links were used to construct each state GMM by a linear combination
of ASWUs, before a final embedded Baum-Welch re-estimation procedure
was performed. The proposed system provides recognition performance at
the same level as the baseline 3-state HMM system. However, the signifi-
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cant increase of parameters and complexity makes the conventional HMM
system seem like a better choice.



Chapter 4

Construction of HMM by
Pronunciation Variation
Modelling of ASWUs

In the previous chapter a phone recognition HMM system with an ex-
panded topology compared to the standard 3 state HMM was proposed.
Acoustic Subword Units (ASWUs) were derived in the training scheme
which was needed to estimate the parameters of the enlarged system prop-
erly. In this chapter the expanded HMM topology will be revisited, but
with a significant difference: now, the topology of the phone HMMs will be
derived individually in a data driven manner, allowing the phone HMMs
to be custom made for each phone automatically. The ASWUs defined
in the previous chapter will be employed by a Pronunciation Variation
Modelling (PVM) algorithm for this purpose. PVM is normally used in
ASR to allow more than one pronunciation of words. In this chapter PVM
will be operated on the phone level to produce pronunciation variations
of phones.

49
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The Acoustic Subword Units (ASWUs) were defined in Section 3.2 (see
page 24) in the previous chapter. In this chapter an overview of the new
HMM system will be given first, before Pronunciation Variation Modelling
is discussed in Section 4.2. In Section 4.3 the final re-estimation procedure
of the HMM system will be described. Finally, the experimental results
will be presented in Section 4.4, followed by a discussion in Section 4.5
and a concluding summary in Section 4.6.

4.1 System Overview

In this chapter an HMM based phone recognition system, where the topol-
ogy is derived in a data-driven manner, will be presented. The HMM
system resembles the system presented in the previous chapter where the
topology was expanded to consist of several parallel left-to-right HMM
paths with different number of states. However, instead of using a fixed
topology for all the phones, the number of paths and the number of states
in each path will be automatically derived. Customising the topology of
each phone allows the system to adjust the number of paths according to
the variation seen in the training data of the phone in question. Also the
number of states in each path will be adapted to better match the dura-
tions of the realisations in the training set. This is an advantage as some
phones, like diphthongs, often have longer duration than other phones,
like for instance stops. Thus such phones are probably better modelled
using a higher number of states.

In Figure 4.1 an example of the proposed phone HMM is shown. The
example shows a topology of four parallel paths with a varying number of
states. Both the number of paths and the number of states are derived
automatically and may therefore vary between phones. In the previous
chapter a set of ASWUs were defined and used to train phone HMMs with
similar topology. A linguistic interpretation of the ASWUs was made in
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Figure 4.1: An example of the phone HMM topology.

order to construct the emission densities of the states as a linear combi-
nation of the ASWU GMMs. In this chapter the approach will be quite
different. Instead of using linguistic knowledge, the ASWU GMMs will
be used by a Pronunciation Variation Modelling (PVM) algorithm to find
the optimal sequences of ASWUs for each phone. Each phone realisa-
tion is assumed to consist of one or more acoustic events described by the
ASWUs. The PVM algorithm uses the training data to optimise the se-
lection of such ASWU sequences to use for each phone. Finally, the result
is a mapping between each state in the phone HMM and one ASWU. This
is different from the system described in the previous chapter where each
state GMM was defined as a linear combination of all the ASWU GMMs.

The next section will introduce PVM and describe the algorithm used,
along with a description of modifications made to adjust the algorithm for
phone level PVM.
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4.2 Pronunciation Variation Modelling (PVM)

In speech recognition, modelling of pronunciation variations is performed
to handle the differences in the pronunciation of words. Pronunciation
variation modelling (PVM) is usually performed by including several pro-
nunciation alternatives in the lexical dictionary. Each pronunciation alter-
native consists of a possible sequence of units, referred to as a baseform,
to make up a word. Since the pronunciation of words can vary depen-
dent on various factors like speaking style [48], degree of formality [49],
environment [50], speech disability, accent or dialect [49], and emotional
status [51], PVM is important in many ASR tasks. The amount of litera-
ture on the topic is large, however overviews may be found in for instance
[52, 53, 54, 55, 56]. In [52] Strik and Cucchiarini divide the different ap-
proaches based on the source of information that the modelling is based
on: in knowledge based pronunciation modelling it is assumed that the
information on pronunciation variation is known in the literature, see e.g.
[57, 58, 59]. Whereas in data driven pronunciation modelling this informa-
tion is obtained from the data, see e.g. [60, 61, 62, 63, 64, 65, 66, 67, 68].
In this work PVM is used on acoustic units without a linguistic connec-
tion, and knowledge about the pronunciation of phones in terms of these
acoustic units is not available. Hence, knowledge based PVM is not pos-
sible.

PVM is usually performed in two steps: baseform generation and baseform
selection. In [53] the approaches for baseform generation is divided into
several categories: rules [69, 64], artificial neural networks [70], grapheme-
to-phoneme converters [71], phone recognisers [72] and decision trees [73,
74].

In [75] and [76] it was shown that when the average number of pronuncia-
tion variants per word exceeds about 2.5, the system performs worse than
a system with only one variant per word. Hence, the selection process of
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the candidate baseforms needs to be done carefully. The literature pro-
poses several criteria for selecting which baseforms to use: frequency of
occurrence of the variants [76], confidence measures [72], the degree of con-
fusability between the variants [72, 62] and an ML criterion [77, 78, 79, 56].

In this dissertation, the data driven Maximum Likelihood approach pre-
sented in [77, 78, 79, 56] was chosen. The baseform candidates are found
by performing an N-best decoding of a set of realisations, or tokens of each
word. The ML approach, which will be described in Section 4.2.1, then
performs the baseform selection in a two stage procedure. In the first stage,
which is performed individually on each word, the tokens of the word are
clustered by the use of a special iterative K-Means based scheme, where
each cluster is represented by one of the candidate baseforms. Thus, each
cluster represents one pronunciation variation. At each iteration of the
K-Means clustering approach the optimal clusters are stored for use in
the second stage which finds the baseform candidates that maximises the
joint likelihood of all the words given an average number of baseforms per
word.

The approach is completely data driven, which is a prerequisite for mod-
elling the phone level pronunciation variations with the use of the ASWUs.
Another advantage is the joint optimisation, which leads to a varying num-
ber of pronunciation variants for the different phones. Thus, phones with
more variation in the realisations may be modelled with more pronun-
ciation variants than phones with less variation. However, to apply the
approach on the phone PVM task, some modifications had to be per-
formed. These modifications will be discussed in Section 4.2.2, but first,
the original approach from [77] will be presented.



54 Construction of HMM by PVM of ASWUs

4.2.1 The Pronunciation Variation Modelling Algorithm

The pronunciation variation modelling algorithm was used in [77] for word
level PVM. It employs an ML criterion in order to find the optimal lex-
icon for all the words W in the training data. For each word w a set
of K randomly drawn realisations or tokens are used to find the optimal
baseforms. The number of baseforms Jw for the word w is found un-
der the constraint that the total number of baseforms is JT . For each
word, a list of candidate baseforms is created by conducting an N-best
Viterbi search on the K tokens. For each word w with baseform can-
didates {Bw,j |w ∈ W, j ∈ [1 . . . Jw]} the likelihood of the K tokens is
calculated as:

Lw =
K∏

k=1
max

j∈[1...Jw]
p(x̄w,k|Bw,j , θ), (4.1)

where x̄w,k are the feature vectors for the kth token of the word w, and θ
is the set of HMM parameters (which are kept constant for all tokens and
words). The PVM searches for the baseform candidates that optimise the
total likelihood L:

L =
∏

w∈W
Lw

=
∏

w∈W

K∏
k=1

max
j∈[1...Jw]

p(x̄w,k|Bw,j , θ) (4.2)

under the constraint
∑

w∈W
Jw = Jt ≤ JT . (4.3)

The process of finding the ML lexicon is divided into two stages: in Stage
1 the algorithm handles each word individually and finds the optimal
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baseforms for different values of Jw, which is limited by the parameter
Jmax. Stage 2 uses these results to find the optimal set of pronunciation
variants which will comprise the lexicon.

The search for the optimal baseforms for each word can be viewed as a
clustering problem, where the tokens of the word are clustered and each
cluster is represented by a baseform. This is conducted by a clustering
approach based on the K-Means algorithm. The clustering approach is
divisive, i.e. it initialises with one large cluster and iteratively divides the
clusters. Since each cluster is represented by the optimal baseform de-
scribing the cluster, the result in each iteration is the optimal baseforms
for a given number of baseforms. In each iteration, the cluster with the
lowest likelihood is located and divided into two clusters. The division is
performed by comparing the baseform candidates in each cluster. Each
baseform is a sequence of one or more units, and thus Levenshtein dis-
tance is possible to use as a measure for distance between two baseform
candidates. The Levenshtein distance is a string metric for measuring the
distance between two strings. It is the minimum number of insertions (I),
deletions (D) and substitutions (S) needed to convert one string into the
other. Stage 1 can be summarised as follows:

1. Set the number of clusters Jw = 1 and assign all the K tokens of
word w to the initial cluster K1.

2. Find the ML-estimate that describes the initial cluster:

B̂K1
w (Jw = 1) = argmax

Bw,i ∀i

∏
k∈K1

p(x̄w,k|Bw,i, θ) (4.4)

lK1
w (Jw) =

∏
k∈K1

p(x̄w,k|B̂K1
w (Jw = 1), θ) (4.5)

(4.6)

3. Find the cluster Ki with the lowest total likelihood lKi
w (Jw), and

within the cluster identify the two baseforms spaced furthest apart
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with regard to string distance. Let the corresponding baseforms be
the initial baseforms for cluster Ki and a new cluster KJw+1.

4. Increase the number of clusters Jw = Jw + 1.

5. For each token k: re-assign the token to the cluster K′
j which max-

imises the likelihood:

K′
j = argmax

Kj∈{K1...KJw }
p(x̄w,k|B̂Kj

w (Jw)) (4.7)

6. Find the new baseforms to represent each cluster:

B̂
Kj
w (Jw) = argmax

Bw,i ∀i

∏
k∈Kj

p(x̄w,k|Bw,i, θ) j ∈ [1 . . . Jw] (4.8)

7. Calculate the data likelihood for each cluster and the total likelihood:

l
Kj
w (Jw) =

∏
k∈Kj

p(x̄w,k|B̂Kj
w (Jw), θ) (4.9)

lw(Jw) =
Jw∏
j=1

l
Kj
w (Jw) (4.10)

8. If the token assignment has changed, go to step 5.

9. If Jw < Jmax, increment Jw and go to step 3.

Stage 1 results in a list of optimal baseforms for each value of Jw ∈
[1 . . . Jmax], and the corresponding likelihoods, for all the words. In Stage
2 this list is used to find the number of baseforms to use for each word
by maximising the joint likelihood of the entire training set, while the to-
tal number of baseforms for all words combined is fixed to the limit JT .
The optimisation is performed in an iterative manner, where each word is
initiated with 1 baseform, and for each step one baseform is added to the
word yielding the maximum likelihood gain. Thus, Stage 2:
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1. Initialise Jw = 1 for all words w, and set the counter for the total
number of baseforms equal to the number of words: Jt = W .

2. Find the word that yields the highest gain in likelihood when in-
creasing the number of baseforms by one:

w′ = argmax
w∈[1...W ]

lw(Jw + 1)
lw(Jw)

(4.11)

3. Increment Jw′ and Jt.

4. If Jt < JT go to step 2.

Stage 2 results in the desired lexicon with the given average number of
baseforms per word.

4.2.2 Modifications to the PVM algorithm

The algorithm described in the previous Section was mainly used for word
modeling using phonemic baseforms. In this dissertation, it is desired to
use the approach on phone level modeling using ASWUs. Although the
algorithm was successfully applied on ASWUs for constructing the word
level lexicon with the best baseform for each word in [43], some modifica-
tions are necessary for the PVM algorithm to be suitable for phone level
modelling. The phones are shorter than the words, leading to short base-
forms. They are also more dependent on the context, which means that a
higher number of tokens should be used in order to cover the variation in
pronunciation. The baseform candidates are found by performing N-Best
Viterbi decoding on all the K tokens. When K is high, this leads to a
significant number of candidate baseforms. Processing all the candidates
is time consuming and requires a lot of memory. To remedy this, the
candidate baseform list was pruned by sorting on frequency of occurrence
and likelihood, and keeping the most promising baseforms.
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Another problem is related to the duration of the phones. Since the du-
ration is generally quite short, the length of the baseforms is about 2-4
units. In Stage 1, the string distance is used as a distance measure be-
tween two baseforms. Because of the short baseform length, the string
distance with unit penalty for insertion, deletion and substitution results
in small distances with low variation. A way of improving the measure is to
use a penalty dependent on the acoustical distance between the ASWUs.
Remember that all the ASWUs are derived using clusters of acoustic seg-
ments, which makes it possible to assign a centroid to represent the acous-
tic properties of each ASWU. Hence, in this work the Euclidean distance
between the centroids has been chosen as the cost of substituting one
ASWU with another. Using such a penalty is better, because knowledge
about the acoustic space is introduced. Substituting an ASWU with a
nearby ASWU, will yield a low distance compared to substituting with an
ASWU further apart in the acoustic space.

The insertion and deletion costs need to be comparable to the substitution
cost. One possible cost that was tried is the average substitution cost of
the ASWU to be inserted or deleted. I.e., the average distance to all the
other ASWU centroids. A problem that appeared, was that ASWUs far
away have a large influence on this cost. Experiments showed that using
a nearest neighbour approach with only the 50% nearest ASWUs was a
better measure and was therefore used in the experiments presented in
this dissertation.

The PVM approach does not take into account that the same baseform
might be a candidate for more than one word. This probably becomes a
larger problem when modelling pronunciation variations for phones, since
the baseforms are generally shorter. When a baseform candidate has been
suggested as a candidate for more than one word, that baseform is likely
to cause confusion if used by either of the words. Experiments have also
shown that better performance is achieved by simply removing such base-
forms from the candidate list before presenting them to the PVM algo-
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rithm. There might be instances where this approach removes a good can-
didate from a phone because it is a (poor) candidate for another phone,
a situation that might affect the performance. This can be avoided by
finding a threshold for when to remove the candidate. However, such an
approach introduces yet another parameter which needs to be adjusted.
Hence, the solution of simply removing such baseforms was used in the
experiments presented in this dissertation.

4.3 Final Re-estimation

After the PVM algorithm has found the optimal baseforms to use for each
phone, the phone HMMs can be constructed by using the ASWU GMMs
as states. By performing forced alignment on the training data using the
manual labels and the full HMM system, a labelling on the state level can
be produced. These state level labels contain the optimal path to use for
each phone realisation, which makes it possible to run the Baum-Welch
algorithm to re-estimate the HMM parameters. The two steps can be
repeated several times for improved estimates.

4.4 Experiments

In this section the experiments performed with the proposed system will
be presented. Again, the TIMIT database described in Appendix A was
utilised. The ASWUs were trained in the same way as in the previous
chapter, where the acoustic segmentation was performed with 13 static
MFCC features (including C0) extracted with a 15 ms window with a 5
ms shift. For the training of the ASWU GMMs, 13 MFCCs (including C0)
were extracted using a 25 ms window with a 10 ms shift, and in addition,
the dynamic features (Δ + ΔΔ) were appended. Experiments were run
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with a varying number of ASWUs and components in the GMMs. The
number of ASWUs were varied from 128 to 512, while both 16 and 32
GMM components were tested. All the training was performed with the
48 phone set, which was mapped to the 39 phone set during testing (see
Appendix A).

For the PVM algorithm both the average and the maximum number of
baseforms per phone can be adjusted. For the word level PVM task,
the literature suggests to have the number of pronunciation variants per
word less than 2.5 [75, 76], to avoid the confusability to become large. A
similar effect is probably true for the case of phone level PVM, and thus
the number of baseforms should be kept low. In the results presented in
Table 4.1 the average number of baseforms were varied between 1.0 and
2.0, while the maximum number of baseforms were set to 3 (obviously,
for experiments where the average number were 1.0 or 1.25 the maximum
number of baseforms seen were 1 and 2, respectively). These results also
indicate that the average number of baseforms needs to be low. However,
that the best performance seems to be achieved with only one baseform
per phone, seems odd. This intuitively contradicts to the observation that
context dependent models improve the performance. In Table 4.2 the
final re-estimation step, which is performed on the system proposed by
the PVM algorithm, is skipped. I.e the ASWU GMMs are used directly
without any further re-estimation, and thus some of the GMMs are shared.
The table shows the performance for the system created with 512 clusters
and 32 components in each ASWU GMM. First of all: it is clear that the
re-estimation procedure has big impact on the performance, which is quite
weak for this system. Secondly: the performance now has a positive trend
when the number of baseforms is increased.

The baseline performance, which was also presented in the previous chap-
ter, is given in Table 4.3. These results were derived using a conventional
3 state HMM with Gaussian mixtures. In Table 4.4 the number of states
used by the final HMM system are presented. This shows that the best
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Table 4.1: Phone recognition results (accuracy) on the TIMIT test set. The
average number of baseforms per phone varies from 1.0 to 2.0, while the maximum
number of baseforms is kept at 3.

Number of GMM Average Number of Baseforms
ASWUs Size 1.0 1.25 1.5 1.75 2.0

128 16 64.3 % 63.2 % 62.7 % 62.9 % 62.6 %
128 32 65.1 % 64.7 % 64.4 % 64.5 % 64.0 %
256 16 63.6 % 62.9 % 62.8 % 63.1% 62.8 %
256 32 64.8 % 64.4 % 64.5 % 64.2 % 63.9 %
512 16 63.1 % 62.7 % 62.3 % 62.6 % 62.4 %
512 32 65.2 % 64.8 % 64.2 % 64.1 % 64.0 %

Table 4.2: Phone recognition accuracy when the final re-estimation step is
skipped.

Number of GMM Average Number of Baseforms
ASWUs Size 1.0 1.25 1.5 1.75 2.0

512 32 26.7 % 27.3 % 29.1 % 28.7 % 31.4 %

Table 4.3: Baseline phone recognition results on the TIMIT test set.

GMM Size Accuracy
16 65.0 %
32 66.7 %
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Table 4.4: Statistics for number of states used per phone.

Number of GMM Average Number of Baseforms
ASWUs Size 1.0 1.25 1.5 1.75 2.0

128 16 2.7 3.3 3.8 4.4 4.9
128 32 2.6 3.1 3.7 4.3 4.9
256 16 2.6 3.4 3.9 4.5 5.0
256 32 2.5 3.3 3.8 4.5 5.0
512 16 2.6 3.4 3.8 4.4 4.9
512 32 2.7 3.4 3.8 4.4 5.1

Table 4.5: Average number of states per baseform for the different phone classes
for the experiment with 512 ASWUs, GMM size of 32 and 1 baseform per phone.

Class Phones Min Max Avg
Vowels aa ae ah ax eh er ih ix iy uh 2 4 2.7

Diphthongs ao aw ay ey ow oy 2 5 3.7
Stops b d dx g k p t 2 3 2.3

Closure cl vcl 3 4 3.5
Affricative ch jh 3 3 3.0
Fricative dh f s sh th v z zh 2 4 2.8

Semivowel/Glide el hh l r w y 2 3 2.2
Nasal en m n ng 2 2 2.0
Other epi sil 2 3 2.5
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systems have about 2.7 states per phone, which is slightly less than the
baseline. Finally, Table 4.5 present some statistics of the number of states
per baseform for the setup with highest accuracy: the system with 512
ASWUs, 32 GMM components and 1.0 baseform per phone. The table
shows that the different classes indeed have a variation in the baseform
length. Diphthongs are phones which often is longer in duration and have
large acoustic variations. In the table it is apparent that these require
more states (average of 3.7 states) than phones with relatively short du-
rations like for instance stops (average of 2.3 states).

4.5 Discussion

In the previous section the proposed system was tested on the TIMIT
phone recognition task. Both the number of ASWUs, GMM size and the
average number of baseforms were varied. There are several noteworthy
tendencies in the performance results presented in Table 4.1. The most
obvious is probably the impact of the average number of pronunciation
variants for the phones: for all the settings the best performance was
achieved with only one variant for every phone. Isolated, these results
might suggest that adding pronunciation variation to the phones increases
the confusion more than it benefits the modelling of the variations in the
realisations of the phones. However, the results presented in Table 4.2
shows the opposite behaviour with the best performance with an average
number of baseforms of 2.0, which was the highest number in these ex-
periments. This suggests that the PVM algorithm works as intended and
yields better systems when the average number of baseforms per phone
is higher than one. Unfortunately, this advantage is not retained through
the Baum Welch Re-estimation procedure, which according to Table 4.2
has a huge impact on the phone recognition performance.

One reason for the reduction in accuracy for systems with a higher number
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of baseforms, might be the increase in the average number of states per
phone shown in Table 4.4. Because the final re-estimation step removes
the sharing of parameters between the states, a higher number of states
leads to a higher number of parameters to train, which again requires
more training data to be estimated properly. As the table shows the total
number of states becomes almost twice as high when doubling the average
number of baseforms. This is a significant increase in parameters, which
might lead to the parameters in the system not being trained properly. It is
also interesting that the best performance is achieved with approximately
3 states per phone, which is the same as the baseline.

Another property worth mentioning is the impact of the number of ASWUs.
Although the differences are small, it seems there is an advantage with a
low number of ASWUs when using a GMM size of 16. Whereas for the
case of 32 Gaussian components the number of ASWUs seems to have no
impact on the performance of the phone recogniser.

A somewhat strange behaviour is found by observing the tendency of the
performance when increasing the number of baseforms for the case of 16
Gaussian components. The general trend is a lower performance when the
number of baseforms is increased. However, for this case there is a small
local maximum in the accuracy when the average number of baseforms
is 1.75. This is consistent for all the three chosen values for the number
of ASWUs. The increase in performance at this point is probably too
small to be of any statistical significance, and thus might be a coincidence.
However, the peculiar behaviour is present for three different settings, and
should therefore be noted.

Compared to the baseline system, the performance of the proposed system
is slightly worse, especially for the case of 32 Gaussian components where
the difference is 1.5%. Although the number of parameters used in the
best variants of the proposed system is lower than the baseline system,
the difference is probably too small to have any impact when the training



4.6 Concluding Summary 65

data is sparse.

4.6 Concluding Summary

In this chapter the topology of the phone HMMs were adapted automat-
ically by using a PVM algorithm on the ASWUs defined in the previous
chapter. The phone realisations were modelled as a sequence of ASWUs,
or baseforms, and several baseforms were found for each phone by N-Best
Viterbi decoding. The PVM algorithm then employed an ML criterion
to jointly optimise which and how many baseforms to use for each phone
model. The result was an HMM topology similar to the one in the pre-
vious chapter, but with the main difference that the number and lengths
of the parallel paths were automatically derived in a data driven manner.
The intention was to allow the HMM to model phones with high variation
in their realisations with more paths. In addition phones with generally
more acoustic events in their realisations could be modelled using longer
baseforms. Phone recognition experiments were carried out on the TIMIT
database, showing several interesting properties of the proposed system.
Unfortunately, the performance of the proposed system was slightly lower
than the baseline system. In addition the best performance was achieved
when only one single pronunciation variant was used for all the phones.
Hence, based on the experiments presented in this chapter and the pre-
vious, it might seem that using several paths in the HMM topology does
not improve the systems modelling capabilities. In any case the baseline
system seems like a simpler and more attractive choice.





Chapter 5

The Non-Negative
Durational HMM

In the two previous chapters the HMM systems have been based upon a set
of ASWUs, defined in a data driven manner without the use of phonetic
knowledge. In this chapter an HMM system based on another algorithm
able to extract units in a data driven manner will be investigated. The
system presented in this chapter combines Non-negative Matrix Factori-
sation (NMF) with the HMM framework. NMF is similar to Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD),
a matrix factorisation technique, but it requires the input matrix to be
non-negative. The result is an approximation of each column in the input
matrix by a linear combination of latent units. These latent units are re-
current patterns and are extracted without any knowledge not contained
in the matrix. However, they often turn out to have some sort of meaning,
like representing a nose or an eye [80] when NMF is performed on images.
Combining this technique with the HMM allows the modelling of the non-
stationarity of the speech signal by means of the Markov chain, while the
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NMF provides for discovery and modelling of the latent units. This was
done in [81, 82, 83] which resulted in the non-negative HMM (N-HMM).
Originally this model was used to approximate a specific input matrix.
However in order for it to be useful for speech recognition it needs to gen-
eralise to unseen data. In this chapter a modified version of the N-HMM,
the NdHMM, is presented. Unlike the N-HMM, the NdHMM can be used
for recognition on unseen data.

5.1 NMF and the N-HMM

Non-negative matrix factorisation (NMF) has been shown to be useful in
various disciplines in the recent years. One of the key properties of NMF
is the ability to extract latent components from data, and represent the
non-negative matrix as a linear combination of the latent components.
In NMF a non-negative matrix V is approximated by two non-negative
matrices W and H:

V
N×M

≈ W
N×R

· H
R×M

, R � N, M. (5.1)

Since the matrices are non-negative, the factorisation represents the columns
of V as an additive linear combination of the latent components, where
the latent components are in the columns of H and the linear combination
weights are in the rows of W.

Although the above decomposition is inexact, the reduced rank approxi-
mation has been shown to be useful in many applications. In [84], NMF
has been successfully used to discover phone patterns by representing each
utterance in the database using weighted phone lattice transition proba-
bilities in the columns of V. Further, in [85] convolutional NMF (cNMF)
[86] was used on the spectrogram of the utterances to discover phone
structures. The spectrogram is represented as a matrix where column di-
mension reflects frequency and row dimension reflects time. Unlike NMF
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which restricts the latent units to describe one column in the spectrogram,
the cNMF utilises a fixed temporal duration of the latent units. This al-
lows the factorisation to discover latent units with a duration, like the
phones, which is exactly what is done in[85].

Probabilistic extensions for NMF allow the use of sophisticated statistical
techniques while still using the general ideas of NMF. In [87], a probabilis-
tic extension of NMF was presented for modelling sound spectrograms.
The probabilistic extension models the columns of a spectrogram V as
histograms filled by “sound quanta”. The amount of sound quanta in a
given time-frequency bin is indicated by the Fourier magnitude of that
bin. Once normalised, the spectrogram can be considered as a joint prob-
ability distribution Pt(f) over time and frequency and is represented in
the NMF framework as follows:

Pt(f) =
∑

z

P (f |z)Pt(z). (5.2)

The above equation states the distribution which is used to generate
a quantised version of the spectrogram by performing multiple random
draws. Each draw results in adding a sound energy quantum to the cor-
responding time-frequency bin. The distribution, Pt(f), is defined as a
linear combination of a set of time independent dictionary components
(P (f |z)) weighted with time dependent weights (Pt(z)), and is represented
using multinomial distributions1. Thus, each time frame of the spectro-
gram is generated by performing multiple draws. Each draw includes two
steps: first a dictionary component is chosen according to Pt(z), before
the frequency is drawn according to P (f |z). The draws are repeated until

1A multinomial distribution is the distribution of the outcome when N draws are
made from a categorical distribution. When the number of outcomes of the categorical
distribution is 2, these become the binomial and Bernoulli distributions. Since the
categorical distribution is a multinomial distribution with one draw, “multinomial” will
in this dissertation refer to both the multinomial and the categorical distribution.
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the frame is filled with the total number of observed sound quanta. The
mixture weights of the model therefore capture the temporal variation in
the input signal. The formulation in Equation (5.2) is also referred to as
probabilistic latent semantic analysis (pLSA) in the literature [88].

A major limitation in using the above formulation for modelling speech
is that a single set of dictionary components, P (f |z), are derived to rep-
resent the entire spectrogram. This limits the expressive power of the
model as the speech spectrum is non-stationary. In [81, 82] and [83] it has
been shown that HMMs can be combined with NMF to incorporate the
non-stationary component as a Markov model and thereby changing the
dictionary components with time. This model is called non-negative HMM
(N-HMM) and employs the probabilistic NMF to model the emission den-
sities of the states. Each state q of the N-HMM has a fixed set of dictionary
components P (f |z, q) with time varying weights Pt(z|q). Thus an N-HMM
is able to describe different parts of the input signal with different states.
For a speech signal the states may correspond to different phones. In fact,
in[81], the model was applied to a speech signal represented by the spec-
trogram, and the dictionary components were demonstrated to contain
phone-like structures.

Although the N-HMM has been reported to be successful for separating
mixture signals, such as music or speech and noise in [81], it is not suited
for modelling components of a speech recognition system (ASR); this is
because the weights Pt(z|q) are dependent on the absolute time t of the
utterance. The dependence on the weights Pt(z|q) means that the model
does not generalise to unseen data. In this chapter, a set of modifications
to the N-HMM is proposed, in order for it to be viable for ASR. The
main change to the N-HMM is to make the weights dependent on the
state occupancy duration, i.e. the number of frames since the process
entered the state. Thus the modified model is referred to as non-negative
durational HMM (NdHMM).
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5.2 Detailed Description

The N-HMM combines NMF and HMM, thereby allowing the speech signal
to be expressed with time varying dictionary components. The N-HMM
described in [81] is a hidden Markov model which models a matrix with
the use of the probabilistic NMF. It was designed for use on a spectrogram
represented as a matrix where column dimensions reflects frequency and
row dimensions reflects time. Each column represents a time frame and is
modelled by the multinomial probability distribution

Pt(f |q) =
∑

z

P (f |z, q)Pt(z|q), (5.3)

where f is the frequency dimension, q is the state, P (f |z, q) is the dic-
tionary components and Pt(z|q) are the weights. This is similar to the
model in Equation (5.2), except from the dependency on the current state
q. Thus, each time frame can be generated by performing multiple draws
from the distribution Pt(f |q), where each draw results in adding a sound
energy quantum to the corresponding time-frequency bin. The number
of draws vt is explicitly modelled using a Gaussian2 distribution P (vt|qt),
also called the energy distribution of the state. This is because the num-
ber of draws intuitively corresponds to the energy of the spectrogram at
that time frame. Each state contains a dictionary of probability distribu-
tions P (f |z, q) which reflects a variation of the sound (e.g. phone) that is
modelled by the state. The degree of which a given dictionary component
P (f |z, q) contributes to the time frame at time t is controlled by the time
dependent weights Pt(z|q).

In addition to the hidden state sequence q̄, the sequence of dictionary
components z̄ is also hidden. Thus, the likelihood for the model to produce

2The use of a continuous distribution for the number of draws, which is discrete, is
inherited from the original N-HMM formulation.
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Algorithm 5.1 Generative process of N-HMM
Draw q1 from P (q1)
for t = 1 → T do

Draw vt from P (vt|qt)
for v = 1 → vt do

Draw zt,v from Pt(z|qt)
Draw f from P (f |qt, zt,v)
xt[f ] = xt[f ] + 1 	 Add the sound quantum to the frequency bin

end for
Draw qt+1 from P (qt+1|qt)

end for

an observation sequence x̄ is given by:

P (x̄) =
∑

q̄

∑
z̄

P (q1)
(

T −1∏
t=1

P (qt+1|qt)
) (

T∏
t=1

P (vt|qt)
)

(
T∏

t=1

vt∏
v=1

Pt(zt,v|qt)P (ft,v|vt, zt,v, qt)
)

, (5.4)

where T is the number of observation vectors and ft,v is the vth frequency
bin drawn to produce xt. The generative process for creating the ob-
servation sequence by filling each vector with sound quanta is shown in
Algorithm 5.1. It is important to note that the weights Pt(z|q) are time
dependent and vary for each time frame. The variation of weights for each
time frame captures the temporal variations in the input signal though the
dictionary components are time invariant, only conditioned on the state.
Hence, the weights trained on a particular utterance cannot be used for
another one, which makes it impossible to decode an unknown utterance
using Viterbi search. This greatly reduces the generalisation capacity of
the model to unseen data. For the intended use of the N-HMM as a
representation of the input matrix, where the capabilities of uncovering
recurrent events were the focus, this is not a problem. However, for the
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task of speech recognition, generalisation is important.

The time dependency of the weights cannot be removed as they capture the
temporal dynamics. Further, having constant weights for all time frames,
will collapse the multinomial mixture models to a single multinomial for
each state and will result in a poor model. In order to overcome the above
problem, a model where the weights are dependent on the state occupancy
duration is proposed. I.e. the weights of the model are dependent on the
number of frames encountered since the process entered the state. Thus,
the same set of weights are used every time the state is visited. By denoting
the duration of the current state qt as dt, the weight distribution for the
state is changed to P (zt|qt, dt). This modification does not introduce any
duration modelling, but the distribution of the latent variable zt is now
dependent on both the state and the contiguous occupancy of the state
at time t. The number of self transitions is still only dependent on the
transition probabilities as before and dt is simply keeping track of how
many self transitions that have occurred at any given time.

However, to estimate P (zt|qt, dt) as a discrete distribution, each state q
is assigned a threshold Dq for the duration variable d. The weights for
the state durations exceeding Dq are then assumed to be constant. It is
important to note that this modification does not restrict the number of
self transitions to a particular state. The process may be in a specific state
for an infinite number of time frames, however P (zt|qt, dt) will not change
when dt exceeds Dq:

P (zt|qt, dt + 1) = P (zt|qt, dt) if dt ≥ Dq (5.5)

Making this modification not only helps in removing the time dependency
problem of the weights, but also significantly reduces the number of param-
eters to be estimated. This is because the original formulation requires
the calculation of weights for every time instance for every state. The
modified structure will be referred to as Non-negative durational HMM
(NdHMM).
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Figure 5.1: Example of multinomial mixture problem. The clusters are repre-
sented by blue and green marks, while the means of each cluster and the total
mean are represented by black circles. The original formulation will result in a
distribution describing the area around the total mean in the middle, whereas
the new formulation will result in a distribution describing the area around both
the cluster means.

The output space of a state in the model is defined by the multinomial
distributions that constitute the dictionary. In the original N-HMM model
the output probability density function for a given time frame was one sin-
gle multinomial created by a combination of the dictionary components.
For every time frame, the model was allowed to fine tune the output prob-
ability function by adjusting the weights, which were only used for that
time frame. Thus, the probability function could be designed to describe
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a freely chosen subspace of the space defined by the dictionary. Whereas
in the new NdHMM formulation, the weights are reused for every visit to
a state, and thus the model loses the freedom to adjust the output density
function for each frame separately. Consider the example shown in Fig-
ure 5.1. The data to be modelled is distributed into two clusters, one with
mean [25, 75]T and one with mean [75, 25]T which are represented by black
circles in the figure. If the data is modelled by two dictionary components,
it is fair to assume that the two components will be given by the distri-
butions P (f |z1, q) = M({0.25, 0.75}) and P (f |z2, q) = M({0.75, 0.25}),
where M({p, 1 − p}) denotes the multinomial distribution with probabili-
ties p and 1−p. The mean of the energy distribution will be 100. Since the
two clusters have the same quantity, the weights will be equal to 0.5 for
both: P (z1|q, d) = 0.5 and P (z2|q, d) = 0.5. Hence, the output probability
density function will be:

P (f |q) =
∑

z

P (z|q, d)P (f |z, q)

= P (z1|q, d)P (f |z, q) + P (z2|q, d)P (f |z, q)
= 0.5M({0.25, 0.75}) + 0.5M({0.75, 0.25})
= M({0.5, 0.5}) (5.6)

The model is therefore modelling the area around the middle black circle
in the figure, and most of the training data points will be unlikely to occur
according to the model. By forcing the model to draw all the frequency
bins from one dictionary component when generating an output vector,
the model would be able to handle such cases. The model in the example
would then for every output vector either draw from M({0.25, 0.75}) or
M({0.75, 0.25}), which would better fit the training data. The modifica-
tion that is proposed is therefore to: for every output vector, first draw
one of the dictionary components, and then fill the entire output vector
with “sound quanta” by drawing frequency bins from only that dictionary
component.
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Algorithm 5.2 Generative process of NdHMM
Draw q1 from P (q1)
Set d1 = 0
for t = 1 → T do

Draw vt from P (vt|qt)
Draw zt from P (zt|qt, dt)
for v = 1 → vt do

Draw f from P (f |qt, zt)
xt[f ] = xt[f ] + 1 	 Add the sound quantum to the frequency bin

end for
Draw qt+1 from P (qt+1|qt)
if qt+1 = qt then

dt+1 = min(dt + 1, Dqt
)

else
dt+1 = 0

end if
end for

The likelihood for the NdHMM to produce an observation sequence is then
given by:

P (x̄) =
∑

q̄

∑
z̄

P (q1)
(

T −1∏
t=1

P (qt+1|qt)
) (

T∏
t=1

P (vt|qt)
)

(
T∏

t=1
P (zt|qt, dt)

) (
T∏

t=1
P (xt|vt, zt, qt)

)
(5.7)

where T is the number of observation vectors. Note that dt is given by
the state sequence q̄, and therefore it is not necessary to sum over all
possible values of dt. The generative process of the NdHMM for creating
the output sequence x̄ = {x1, x2, · · · , xT } is given in Algorithm 5.2. As an
example of how to draw an output vector, consider the process entering the
state shown in Figure 5.2. The “energy” vt is first drawn from the energy
distribution, and a dictionary component zt is drawn by using the weights
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Figure 5.2: Content of a NdHMM state for an example with dictionary size of 3
and a maximum duration of 3.

P (z|d) corresponding to d = 0. Then the output vector is generated by
drawing vt times from the multinomial distribution P (f |zt).

5.2.1 NdHMM vs HMM

The key difference between the conventional Gaussian HMM and the pro-
posed NdHMM is the output probability distribution. Instead of Gaussian
mixture models the NdHMM uses multinomial probability distributions.
The output probability functions of the NdHMM are time varying, while
they are fixed for the conventional HMM. Thus, the NdHMM is able to
model the evolution of the unit to be recognised by a single state, while the
conventional HMM has to use several states. The NdHMM also explicitly
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models the “energy”, which helps in discriminating between states. The
original N-HMM shares these differences, but instead of reusing weights
for each visit to a state, it has a separate set of weights for each time
instance for each state. This enables it to adjust the weights for each time
frame individually and thus gives better modelling capability. Unfortu-
nately, this limits the N-HMM from describing unseen data, which is a
problem for applications like ASR.

It follows from the independence between each draw that the observations
are assumed to be independent in terms of both time and frequency. The
assumption of independence between time frames is clearly not correct,
and if the input is a spectrogram, the assumed independence between
frequencies is also incorrect. An assumption of conditional independence
between the time frames is also made for the conventional HMM, and
often GMMs with a diagonal covariance matrix are used for the output
observations leading to the same assumptions as for N-HMM. In order to
alleviate the problem with the assumption of independence between fea-
ture components transforms with decorrelation properties are often used.
For instance the cosine transform is used as the last step in the extraction
process for the MFCCs.

At first glance it might seem that the N-HMM is using a lot of parameters
because of all the multinomial distributions. However, the multinomials
are replacing the GMMs in the standard HMM. A GMM consists of a
set of weights, mean vectors and covariance matrices. Assuming that
diagonal covariance matrices are used each mean vector and covariance
matrix consists of a number of parameter equal to the dimension of the
observation vectors. If the dimension of the input vectors for the two
systems are the same, each mixture component in the GMM consists of
twice the amount of parameters compared to a dictionary component from
the N-HMM. The number of weights is higher for the N-HMM as each
state has several sets. However for the conventional HMM each phone in
a phone recognition system is represented by several states, usually 3-5
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states, while the N-HMM is designed to use only one.

5.3 Parameter Estimation

In this section the equations used for estimating the parameters of the
NdHMM will be derived. The procedure is similar to the one presented
in [81], which in turn is based on the Baum-Welch algorithm which was
discussed in Section 2.6. Although the basis of the derivation is similar to
the one in [81], most of the equations have significant changes in order to
accomodate the modifications applied to the N-HMM.

The complete set of parameters in the NdHMM are:

The dictionaries: multinomial distributions: P (f |z, q)

The weights: multinomial distributions P (z|q, d)

Energy distributions: gaussian distributions P (v|q)

Transition probabilities: Markov model P (qt+1|qt)

Initial state probabilities: P (q1)

As in standard HMM, the input vectors are assumed to be conditionally
independent, and the transition probabilities are only dependent on the
current state.

Before the EM-algorithm can be applied the model needs to be initialised.
This may be done by dividing the training data onto the states before
conducting a simple K-Means clustering of the data for each state.

In order to find the new parameters of the NdHMM, the EM algorithm
maximises the expected data log-likelihood Ez̄,q̄|x̄,v̄

[
log P̂ (x̄, z̄, q̄, v̄)

]
. The

first step, the E-step, is therefore to calculate the expression for the ex-
pected log likelihood. In the Baum-Welch procedure for the conventional
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HMM this step is conducted by introducing forward and backward prob-
abilities (see Section 2.6). For the NdHMM the same approach will be
used in order to compute the values of the expectation expression. The
next step, the M-step, is to maximise the expectation expression with re-
gard to the new parameters. This is done by partial differentiation of the
expectation expression. To ensure that the probability distributions fulfil
the requirement of summing to one, Lagrange multipliers are used in the
differentiation.

5.3.1 E-Step

In the expectation step (E-Step) the expression for the expected data log-
likelihood Ez̄,q̄|x̄,v̄

[
log P̂ (x̄, z̄, q̄, v̄)

]
of the NdHMM is derived. Since each

time frame of the input is assumed dependent on the current state only,
the complete data log-likelihood is found by summing the log-likelihood
of all the state transitions and the observation vectors:

log P (x̄, z̄, q̄, v̄) = log P (q1) +
T −1∑
t=1

log P (qt+1|qt)

+
T∑

t=1
log P (vt|qt) +

T∑
t=1

log P (zt|qt, dt)

+
T∑

t=1
log P (xt|vt, zt, qt), (5.8)

where x̄, z̄, q̄ and v̄ denotes the sequence of feature vectors, dictionary
components, states and energy respectively. Let P̂ (·) denote the new prob-
abilities, while P (·) denote the current probabilities. The EM-algorithm
dictates that the new parameters are found by first using the current pa-
rameters to find the conditional expectation of the log likelihood which is
calculated with the new parameters:
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L = Ez̄,q̄|x̄,v̄
[
log P̂ (x̄, z̄, q̄, v̄)

]
=

∑
q̄

∑
z̄

P (z̄, q̄|x̄, v̄) log P̂ (q1)

+
T −1∑
t=1

∑
q̄

∑
z̄

P (z̄, q̄|x̄, v̄) log P̂ (qt+1|qt)

+
T∑

t=1

∑
q̄

∑
z̄

P (z̄, q̄|x̄, v̄) log P̂ (vt|qt)

+
T∑

t=1

∑
q̄

∑
z̄

P (z̄, q̄|x̄, v̄) log P̂ (zt|qt, dt)

+
T∑

t=1

∑
q̄

∑
z̄

P (z̄, q̄|x̄, v̄) log P̂ (xt|vt, zt, qt). (5.9)

The sum over all possible sequences can be changed to be a sum over
all possible states and dictionary components for all time frames. Then
realising that variables not present inside the log are marginalised, results
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in:

L = Ez̄,q̄|x̄,v̄
[
log P̂ (x̄, z̄, q̄, v̄)

]
=

∑
q1

P (q1|x̄, v̄) log P̂ (q1)

+
T −1∑
t=1

∑
qt

∑
qt+1

P (qt, qt+1|x̄, v̄) log P̂ (qt+1|qt)

+
T∑

t=1

∑
qt

P (qt|x̄, v̄) log P̂ (vt|qt)

+
T∑

t=1

∑
qt

Dqt∑
dt=0

∑
zt

P (zt, qt, dt|x̄, v̄) log P̂ (zt|qt, dt)

+
T∑

t=1

∑
qt

∑
zt

P (zt, qt|x̄, v̄) log P̂ (xt|vt, zt, qt)

+ κ

(
1 −

∑
q1

P̂ (q1)
)

+
∑
qt

ηqt

⎛
⎝1 −

∑
qt+1

P̂ (qt+1|qt)

⎞
⎠

+
∑

q

∑
d

τd,q

(
1 −

∑
z

P̂ (z|q, d)
)

+
∑

q

∑
z

ρz,q

⎛
⎝1 −

∑
f

P̂ (f |z, q)

⎞
⎠ , (5.10)

where also the Lagrange multipliers have been added in order for the
probability distributions to have a sum equal to one. Note that each of
the terms consist of only one of the updated distributions. Hence, the
expression may be maximised with regard to each of the new distributions
individually. In order to find the expression for the new probabilities
that maximises the log likelihood, the posteriors in the equation have to
be calculated. The posteriors are computed using the forward-backward
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algorithm by defining the forward-backward probabilities:

α(qt, dt) = P (x̄t
1, v̄t

1, qt, dt) (5.11)
β(qt, dt) = P (x̄T

t+1, v̄T
t+1|qt, dt) (5.12)

γ(qt, dt) = P (qt, dt|x̄, v̄) (5.13)

where x̄t
1 = x1, x2, · · · , xt.

In order to compute the forward-backward probabilities, the probability
of a sample given the state and duration is needed:

P (xt, vt|qt, dt) =P (vt|qt, dt)P (xt|qt, dt)

=P (vt|qt, dt)
∑
zt

P (xt, zt|vt, qt, dt)

=P (vt|qt, dt)
∑
zt

P (xt|vt, zt, qt)P (zt|vt, qt, dt), (5.14)

where the probability P (xt|vt, zt, qt) is given by the definition of the multi-
nomial probability density function:

P (xt|vt, zt, qt) =
(

vt

xt[1], xt[2], · · · , xt[F ]

) ∏
f

P (f |zt, qt)xt[f ] (5.15)

thus:

P (xt, vt|qt, dt) = P (vt|qt)
∑
zt

P (zt|qt, dt)
(

vt

xt[1], xt[2], · · · , xt[F ]

) ∏
f

P (f |zt, qt)xt[f ] (5.16)

The α and β probabilities may then be calculated by a recursive procedure.
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First, the α probabilities are initialised by:

α1(q1, d1 = 0) = P (x1, v1, q1, d1 = 0)
= P (x1, v1|q1, d1 = 0) · P (d1 = 0|q1) · P (q1)
= P (x1, v1|q1) · P (q1), (5.17)

and the recursive computation is done by:

αt+1(qt+1, dt+1) =P (x̄t+1
1 , v̄t+1

1 , qt+1, dt+1)
=P (xt+1, vt+1|x̄t

1, v̄t
1, qt+1, dt+1)P (x̄t

1, v̄t
1, qt+1, dt+1)

=P (xt+1, vt+1|qt+1, dt+1)∑
qt

∑
dt

P (x̄t
1, v̄t

1, qt, dt, qt+1, dt+1)

=P (xt+1, vt+1|qt+1, dt+1)∑
qt

∑
dt

P (qt+1, dt+1|x̄t
1, v̄t

1, qt, dt)P (x̄t
1, v̄t

1, qt, dt)

=P (xt+1, vt+1|qt+1, dt+1)∑
qt

∑
dt

P (dt+1|qt+1, qt, dt)P (qt+1|qt)αt(qt, dt), (5.18)

where P (dt+1|qt+1, qt, dt) ensures that only valid combinations of qt+1,
dt+1, qt and dt are included in the summation.

For the β probabilities the initialisation is:

βT (qT , dT ) = 1, (5.19)
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and the recursive computation becomes:

βt(qt, dt) =P (x̄T
t+1, v̄T

t+1|qt, dt)

=
∑
qt+1

∑
dt+1

P (x̄T
t+1, v̄T

t+1, qt+1, dt+1|qt, dt)

=
∑
qt+1

∑
dt+1

P (x̄T
t+2, v̄T

t+2|xt+1, vt+1, qt+1, dt+1, qt, dt)

P (xt+1, vt+1, qt+1, dt+1|qt, dt)

=
∑
qt+1

∑
dt+1

P (x̄T
t+2, v̄T

t+2|qt+1, dt+1)

P (xt+1, vt+1|qt+1, dt+1, qt, dt)P (qt+1, dt+1|qt, dt)

=
∑
qt+1

∑
dt+1

βt+1(qt+1, dt+1)P (xt+1, vt+1|qt+1, dt+1)

P (dt+1|qt+1, qt, dt)P (qt+1|qt), (5.20)

where, once again, P (dt+1|qt+1, qt, dt) ensures that only valid combinations
of qt+1, dt+1, qt and dt are included in the summation.

Now, γt(qt, dt) can be calculated by:

γt(qt, dt) = P (qt, dt|x̄, v̄)

=
P (x̄, v̄, qt, dt)∑

qt

∑
dt

P (x̄, v̄, qt, dt)

=
P (x̄T

t+1, v̄T
t+1|x̄t

1, v̄t
1, qt, dt)P (x̄t

1, v̄t
1, qt, dt)∑

qt

∑
dt

P (x̄T
t+1, v̄T

t+1|x̄t
1, v̄t

1, qt, dt)P (x̄t
1, v̄t

1, qt, dt)

=
αt(qt, dt) · βt(qt, dt)∑

qt

∑
dt

αt(qt, dt) · βt(qt, dt)
(5.21)

After computing the forward-backward probabilities, the posteriors in
Equation (5.10) may be computed. The posterior for the initial transi-
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tion probability is simply:

P (q1|x̄, v̄) = P (q1, d1 = 0|x̄, v̄) = γ1(q1, d1 = 0). (5.22)

The distribution needed for calculating transition probabilities is some-
what more complex:

P (qt, qt+1|x̄, v̄) =
P (x̄, v̄, qt, qt+1)∑

qt

∑
qt+1 P (x̄, v̄, qt, qt+1)

(5.23)

where

P (x̄, v̄, qt, qt+1) =
∑
dt+1

∑
dt

P (x̄, v̄, qt, dt, qt+1, dt+1)

=
∑
dt

∑
dt+1

P (x̄T
t+1, v̄T

t+1|x̄t
1, v̄t

1, qt, dt, qt+1, dt+1)

P (x̄t
1, v̄t

1, qt, dt, qt+1dt+1)

=
∑
dt

∑
dt+1

P (x̄T
t+1, v̄T

t+1|qt+1, dt+1)

P (x̄t
1, v̄t

1|qt, dt, qt+1, dt+1)P (qt, dt, qt+1, dt+1)

=
∑
dt

∑
dt+1

P (x̄T
t+2, v̄T

t+2|xt+1, vt+1, qt+1, dt+1)

P (xt+1, vt+1|qt+1, dt+1)P (x̄t
1, v̄t

1|qt, dt)
P (qt, dt, qt+1, dt+1)

=
∑
dt

∑
dt+1

αt(qt, dt)βt+1(qt+1, dt+1)P (qt+1|qt)

P (xt+1, vt+1|qt+1, dt+1)P (dt+1|qt+1, qt, dt), (5.24)

where the P (dt+1|qt+1, qt, dt) again ensures that only valid combinations
of qt+1, dt+1, qt and dt are included in the summation.
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Next, the probability distribution of the states which is needed for the
energy distribution:

P (qt|x̄, v̄) =
∑
dt

P (qt, dt|x̄, v̄) =
∑
dt

γt(qt, dt), (5.25)

and finally the distributions needed for the weights and dictionary com-
ponents:

P (zt, qt|x̄, v̄) =
∑
dt

P (zt, qt, dt|x̄, v̄) (5.26)

P (zt, qt, dt|x̄, v̄) =P (zt|qt, dt, x̄, v̄)P (qt, dt|x̄, v̄)
=P (zt|qt, dt, xt)γt(qt, dt)

=γt(qt, dt)
P (xt, zt|qt, dt)

P (xt|qt, dt)

=γt(qt, dt)
P (xt|zt, qt, dt)P (zt|qt, dt)∑
zt

P (xt|zt, qt, dt)P (zt|qt, dt)

=γt(qt, dt)
P (xt|zt, qt)P (zt|qt, dt)∑
zt

P (xt|zt, qt)P (zt|qt, dt)
(5.27)

(5.28)

5.3.2 M-Step

With all the needed distributions calculated, it is possible to find the
derivatives of Equation (5.10) with respect to each of the parameters.
This is referred to as the M-step in the EM-algorithm. For the case of the
initial state probabilities, the derivative is:

∂ L
∂P̂ (q1)

=
P (q1|x̄, v̄)

P̂ (q1)
− κ. (5.29)
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Using the requirement that
∑

q1 P̂ (q1) = 1 and set the derivative to zero,
gives κ =

∑
q1 P (q1|x̄, v̄). Hence:

P̂ (q1) =
P (q1|x̄, v̄)∑
q1 P (q1|x̄, v̄)

=
γ1(q1, d1 = 0)∑
q1 γ1(q1, d1 = 0)

(5.30)

For the transition from state q to state q∗, the derivative is:

∂ L
∂P̂ (q∗|q)

=
∑

t

P (qt = q, qt+1 = q∗|x̄, v̄)
P̂ (q∗|q)

− ηq (5.31)

Eliminating ηq gives:

P̂ (q∗|q) =
∑

t P (qt = q, qt+1 = q∗|x̄, v̄)∑
t

∑
q∗ P (qt = q, qt+1 = q∗|x̄, v̄)

(5.32)

The state energy distributions are Gaussian distributions, which means
each of them contains two parameters: a mean (μq) and a variance (σ2

q ),
and thus:

P̂ (v|q) =
1√

2πσ2
q

exp
(

−(v − μq)2

2σ2
q

)
(5.33)

The derivate of Equation (5.10) with respect to the mean (μq) of the state
q is:

∂ L
∂μq

=
∑

t

P (qt = q|x̄, v̄)
P̂ (vt|q)

∂

∂μq
P̂ (vt|q), (5.34)
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where

∂

∂μq
P̂ (vt|q) =

1√
2πσ2

μ

2(vt − μq)
2σ2

q

exp
(

−(vt − μq)2

2σ2
q

)

=
(vt − μq)

σ2
q

P̂ (vt|q) (5.35)

Setting ∂ L
∂μq

and solving for μq yields:

μq =
∑

t vtP (qt = q|x̄, v̄)∑
t P (qt = q|x̄, v̄)

=
∑

t

∑
d vtγt(q, dt)∑

t

∑
d γt(q, dt)

(5.36)

Similarly, the derivate of Equation (5.10) with respect to the variance σ2
q

is:

∂ L
∂σ2

q

=
∑

t

P (qt = q|x̄, v̄)
P̂ (vt|q)

∂

∂σ2
q

P̂ (vt|q), (5.37)

where

∂

∂σ2
q

P̂ (vt|q) =
(

(vt − μq)2

2σ2·2
q

− 1
2σ2

q

)
P̂ (vt|q) (5.38)

Setting ∂ L
∂σ2

q
= 0 and solve for σ2

q results in:

σ2
q =

∑
t P (qt = q|x̄, v̄)(vt − μq)2∑

t P (qt = q|x̄, v̄)

=
∑

t

∑
dt

γt(q, dt)(vt − μq)2∑
t

∑
dt

γt(q, dt)
(5.39)
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In order to find the update equation for the weights for the state q and
duration d, the Equation (5.10) has to be differentiated with respect to
P̂ (z|q, d):

∂ L
∂P̂ (z|q, d)

=
∑

t

P (zt = z, qt = q, dt = d|x̄, v̄)
P̂ (z|q, d)

− τq,d (5.40)

and, again, setting to zero and eliminating the Lagrange constant reveals:

P̂ (z|q, d) =
∑

t P (zt = z, qt = q, dt = d|x̄, v̄)∑
t

∑
z P (zt = z, qt = q, dt = d|x̄, v̄)

(5.41)

Finally, the derivative of Equation (5.10) with respect to P̂ (f |z, q) is:

∂ L
∂P̂ (f |z, q)

=
∑

t

P (zt = z, qt = q|x̄, v̄)
P̂ (xt|vt, z, q)

∂

∂P̂ (f |z, q)
P̂ (xt|vt, z, q) − ρz,q,

(5.42)

where P̂ (xt|vt, z, q) is given by Equation (5.15) and the derivative is:

∂

∂P̂ (f |z, q)
P̂ (xt|vt, z, q) =

(
vt

xt[1], xt[2], · · · , xt[F ]

)
xt[f ]P̂ (f |z, q)xt[f ]−1

∏
f∗ �=f

P̂ (f∗|z, q)xt[f∗]

=xt[f ]
P̂ (xt|vt, z, q)

P̂ (f |z, q)
, (5.43)

and consequently:

∂ L
∂P̂ (f |z, q)

=
∑

t

xt[f ]
P (zt = z, qt = q|x̄, v̄)

P̂ (f |z, q)
− ρz,q. (5.44)
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As before, the derivative is set equal to zero and the Lagrange constant is
eliminated, which results in:

P̂ (f |z, q) =
∑

t xt[f ]P (zt = z, qt = q|x̄, v̄)∑
t vtP (zt = z, qt = q|x̄, v̄)

(5.45)

The update equations are derived based on one observation sequence.
However, it is easy to extend the equations to several observation se-
quences. This is done by changing the summations over time t in the
equations to also include a summation over the sequences. Note that most
of the equations have the summation over all possible outcomes of the dis-
tribution to be updated in the denominator. Hence, in practice only the
numerators are calculated for each sentence, and only after all sentences
have been processed, the denominators are calculated. The exception is
the energy distribution, where the denominator has to be calculated sep-
arately.

5.4 Viterbi Decoding

The decoding of an unseen utterance using the NdHMM is performed using
the Viterbi algorithm. However, there is an important difference from the
Viterbi algorithm for the conventional HMM: since the output probability
density function of the model is both dependent on the state q and the
duration counter d, the best path probability needs to be remembered for
all the combinations of q and d. Hence, the trellis network illustrating the
Viterbi algorithm will have a separate node for each time, state and dura-
tion, in contrast to separate nodes for time and state for the conventional
HMM. The best path probability may then be defined as:

Vt(q, d) =P (x̄T
1 , q̄t−1

1 , d̄t−1
1 , qt = q, dt = d), (5.46)
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which is the probability of the most likely state sequence at time t, which
has generated the observations until time t and ends in state q with dura-
tion counter d. As for the conventional HMM, this probability is calculated
in an inductive manner. First the initialisation:

V1(q1, 0) =P (q1)P (x1, v1|q1, d1 = 0) (5.47)
B1(q1, 0) =(0, 0), (5.48)

where P (x1, v1|q1, d1 = 0) is found by using Equation (5.16) (see page 83)
and Bt(qt, dt) keeps track of the previous state and duration. Further the
inductive step is:

Vt(qt, dt) = max
qt−1,dt−1

[Vt−1(qt−1, dt−1)P (qt, dt|qt−1, dt−1)] P (xt, vt|qt, dt)

= max
qt−1,dt−1

[Vt−1(qt−1, dt−1)P (dt|qt, qt−1, dt−1)P (qt|qt−1)]

P (xt, vt|qt, dt) (5.49)
Bt(qt, dt) = argmax

qt−1,dt−1
[Vt−1(qt−1, dt−1)P (dt|qt, qt−1, dt−1)P (qt|qt−1)] ,

(5.50)

where P (dt|qt, qt−1, dt−1) ensures that only valid combinations of qt, dt,
qt+1 and dt+1 are considered.

After the inductive procedure is finished the path with the highest score
may be found by first:

q∗
T , d∗

T = argmax
qT ,dT

[VT (qT , dT )] (5.51)

and then perform a backtracking procedure:

q∗
t , d∗

t =Bt+1(q∗
t+1, d∗

t+1). (5.52)

to find the recognised state sequence: (q∗
1, q∗

2, · · · , q∗
T ).
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5.5 Experiments

In this section experiments conducted with the NdHMM will be presented.
Again, the TIMIT database, which is described in Appendix A, has been
chosen for the experiments. The parameter estimation (Baum-Welch)
procedure and Viterbi decoding were both implemented in Python for
convenience without much emphasis on time efficiency. Hence, some of
the experiments require a significant number of hours to complete. Par-
ticularly the dimension of the input vectors is a factor that is costly to
increase in the current implementation. However, the time consumption
is likely to be reduced significantly by a more efficient implementation.

Since the model is designed for non-negative data, the choice of features
has to be carefully considered. This is a topic that will be discussed next,
followed by some small scale experiments that will give some insight in
how the model works in Section 5.5.2. Finally in Section 5.5.3, full scale
phone recognition experiments will be presented.

5.5.1 Feature Extraction

In [81] the original N-HMM was used on the spectrogram of the input
signal. From the NMF perspective this is a good alternative, as the spec-
trogram is an image of the signal in both time and frequency containing
only non-negative values. Hence, it is easy to imagine that the model
would find recurring patterns in the image. Unfortunately, the dimension
of the spectrogram is usually high, leading to a high number of param-
eters that needs to be estimated. Using a narrow window would reduce
the dimension, but the frequency resolution would be compromised, which
would lead to poorer performance. The spectrogram may therefore not
be the best choice of features for the NdHMM when performing phone
recognition.
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The most used features in ASR are the MFCCs. Unfortunately, the
MFCCs are not non-negative in their original formulation. However, it
is possible to apply a transformation on the features to make them non-
negative, and thereby a viable option for the NdHMM. The sigmoid func-
tion could be a good alternative for such a transformation:

f(x) =
1

1 − exp(−α(x − μx))
, (5.53)

where μx is the mean of the input and α is a constant controlling the slope
of the function. The sigmoid is depicted in Figure 5.3 for a few different
values of the slope factor. From the figure it is possible to envision that
the transform is scaling and shifting the input signal to ensure that all
the values are between zero and one. Unfortunately, very high or very low
values are truncated which entails distortion. The amount of distortion is
dependent on the dynamic range of the input signal and the slope factor.
Thus, the slope factor has to be adjusted to fit the input data. Some
experimentation showed that a slope factor of 0.05 results in low distortion,
and was chosen for the experiments presented in this chapter.

Another set of possible features can be found by inspecting the extrac-
tion process of the MFCCs: the final step of the process is the discrete
cosine transform (DCT). This is applied to the log-energy of the output
of the Mel filterbank. Hence, by omitting the DCT, the features would be
the log-energy of the filterbank output. Since energy is non-negative, the
log-energy can be ensured to be non-negative by adding 1 before the log
operation. In the MFCC extraction process the DCT is applied to reduce
the dimensionality and for decorrelation purposes. Thus, by leaving this
step out of the generation process, the dimensionality will be higher and
the features will have higher correlation. However, they would not require
any transformation. Also, compared to the original spectrogram, the di-
mensionality would be lower. The log-energy of the Mel filterbank output
is therefore another possibility in the choice of features.
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Figure 5.3: The Sigmoid Function

Since the NdHMM uses multinomial distributions to model the output
vectors, the variances of the individual dimensions are not included. For
a multinomial distribution the variance of each outcome is dependent on
the number of draws N and the probability of that particular outcome p:
σ2 = N · p(1 − p). Whereas, in the conventional HMM the variances are
modelled with separate parameters. Thus if one of the dimensions have
very low variance, a small deviation from the mean would have greater
impact for the NdHMM compared to the HMM. If the input features are
normalised with respect to the variance before they are presented to the
NdHMM, the different dimensions would be emphasised more equally in
the discrimination process.
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The original N-HMM was designed for use on spectrograms, and were
therefore interpreting the sum of the input feature vectors as energy. For
the transformed MFCCs discussed above this is incorrect. After the DCT
most of the energy information is placed in the 0thcoefficient. Hence, it
would be reasonable to exclude the 0thcoefficient and make the sum of the
rest of the non-negative vector equal to this energy coefficient. By doing
so, the energy of the input signal is modelled by the energy distribution
of the NdHMM, instead of as a part of the multinomial distributions.

5.5.2 Small Scale Experiments

In order to see if the model behaves as expected it has been trained on
a small set of training data. This allows the parts of the NdHMM to
easily be plotted along with some of the data. In the first experiment,
the NdHMM was trained on isolated phone data. Both the dictionary
components (solid lines) and the phone data (dotted lines) are shown in
Figure 5.4 for the phones /ao/ and /er/. The log-energy of the output of a
26 channel Mel filterbank was used as features, and the original data were
normalised to represent probability distributions before plotting. From
the figure it is possible to observe that the dictionary components learn
different variations in the data, though the frequency distributions have
similar structure. For frequencies where the data have larger variation,
the components are more different. For instance at the area around 1100
Hz in the lower figure, it seems the data have two variations which are
covered by the two components. These dictionaries might be represent-
ing different contexts or sub-units of the phone under consideration. A
comparison of the two plots in the figure shows how the NdHMM have
captured the general structure of the data. The area around 1200-2500
Hz is quite different for the two cases, and both the components in both
the states model the two general structures while covering the variations.
In Figure 5.5 a similar plot is made for a conventional HMM, where each
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Figure 5.4: Illustrating the dictionary components (solid line) learned using
NdHMM on phone data (dotted line) from TIMIT.
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Figure 5.5: Normalised GMM means (solid line) of a single state conventional
HMM trained on phone data (dotted line) from TIMIT.
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phone was modelled by a single state with 2 component GMMs. The
GMMs are represented by the normalised mean vectors. This is probably
not a fair comparison as the HMM is not employed in a standard way.
In addition the energy is completely ignored. Nevertheless it seems like
the NdHMM is capturing the shape of the input in a better way than the
HMM.

Another experiment was performed by only using the “sx70” and “sx231”
sentences in the training set of the TIMIT corpus. In the entire training
set there are 14 such sentences which consist of only 17 of the 39 phone
set (see Appendix A). The NdHMM had 4 dictionary components for each
state and the state durations were set individually to cover at least 90% of
the durations in the data. As input to the model, the sigmoid transformed
MFCCs discussed in Section 5.5.1 have been used. In Figure 5.6 and Fig-
ure 5.7 the dictionary components and the weights are shown for the two
phones /er/ and /ay/. Compared to the previous experiment, the dimen-
sion is lower and the shape of the dictionary components is different, but
they seem to have the same behaviour. The weights of the two phones show
that they are modelling the temporal evolution of the phones as expected.
In Figure 5.8 the transition matrix of the NdHMM and the parameters
of the state energy distributions are plotted. The transition matrix is as
expected: All the elements on the diagonal have high probabilities except
for the first row which represent the initial state probabilities. Since all
the sentences begins with the /h#/ which is mapped to /sil/ (state 13
in Figure 5.8), the initial state probabilities have only one non-zero com-
ponent. High values on the diagonal means that self-transitions is very
likely, something which is natural as most phones lasts for more than one
frame. All the state energy distributions are represented by their mean
(blue circle) plus/minus the standard deviation (red triangles). From the
figure it is easy to imagine that the energy distributions supports the dis-
criminative power of the model as several of the phones are seperated with
more than one standard deviation.
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Figure 5.6: Weights and Dictionary for the phone /er/ learnt on the sx70 and
sx231 files of TIMIT.
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Figure 5.7: Weights and Dictionary for the phone /ay/ learnt on the sx70 and
sx231 files of TIMIT
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Figure 5.8: Transition matrix and state energy distribution for the NdHMM
learned on the sx70 and sx231 files of TIMIT. The initial state probabilities are
included in the first row of the matrix. The energy distributions are represented
by their means (blue circles) plus/minus one standard deviation (red triangles).
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5.5.3 TIMIT Phone Recognition

The phone recognition experiments were performed on the TIMIT database
(see Appendix A). For baseline comparison a standard context indepen-
dent 3-state left-to-right HMM with GMMs as emission densities was em-
ployed. In order to reduce the run time of the experiments, both training
and testing were conducted with the use of the 39 phone set of TIMIT.

A set of non-negative 26 Mel-filterbank log-energy features was extracted
using a 25 ms window with 10 ms shift and with 26 channels. In addi-
tion a separate set of 13 MFCCs including the C0 was extracted. The
baseline model was trained and tested on the latter 13 MFCCs, whereas
the NdHMM was tried on both the Mel features and the MFCCs. When
the MFCCs were combined with the NdHMM the sigmoid transform was
applied to make them non-negative, and the C0 coefficient was excluded
before the vectors were scaled to have a sum equal to the C0. These are de-
noted 12MFCC+S. In addition both sets of features were tried both with
and without a variance normalisation (VN) (see Section 5.5.1). Hence,
the NdHMM were presented with 4 different set of features: “MEL”,
“MEL+VN”, “12MFCC+S” and “12MFCC+S+VN”.

The maximum durations of the states in the NdHMM were set individually
to cover 90% of the durations seen in the training data. The number
of components in the GMMs for the HMM and the dictionaries for the
NdHMM varied between 8, 16 and 32. An overview of the parameter usage
for a single phone when the number of components in the emission densities
are 16 for both models, is displayed in Table 5.1. Since the amount of
weight sets in the NdHMM states are varying, the mean number, 9.44, is
used in the overview. In Table 5.2 the results, in terms of accuracy, of the
phone recognition experiments are shown. The relatively poor baseline
performance is due to the fact that the dynamic features are not used. As
mentioned the experiments have been conducted with only 39 models, not
48 as usual. This was because of the longer run-time of training 48 models
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Table 5.1: Comparing the parameter usage in conventional HMM and NdHMM
for a single phone. The conventional HMM uses 13 MFCCs and 16 gaussians per
state, while the NdHMM employs 12 MFCCs and 16 dictionary components per
state. The average number of maximum state duration for the NdHMM is 9.44.
Note that this make the total parameter count to become a decimal, which might
seem strange. This is however the average parameter usage for each phone.

HMM NdHMM
Means 16·13=208 Dictionary 16·12=192
Variances 16·13=208 Weights 16·9.44=151.0
Weights 16 Energy 2 (μq and σ2

q )
Single state 432 Single state 345.0
States 3 States 1
Total 1296 Total 345.0

Table 5.2: The accuracy of the models in the phone recognition experiments on
the TIMIT database. Three experiments performed on each setup: 8, 16 and
32 components in output emission density. Two set of features were tried with
the NdHMM: Sigmoid transformed MFCCs (MFCC-S) and Sigmoid transformed
MFCCs with variance normalisation (MFCC-S-VN)

Components
System Features 8 16 32
HMM MFCC 46.7 % 48.0 % 48.8 %

NdHMM MEL - 36.9 % -
NdHMM MEL+VN - 37.2 % -
NdHMM 12MFCC+S 44.1 % 47.1 % 48.6 %
NdHMM 12MFCC+S+VN 44.9 % 47.3 % 48.9 %
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in the current implementation. In order to assure that the system yields
the expected performance gain when the number of models is increased to
48, the experiment with the 12MFCC+S+VN feature set and 16 dictionary
components has also been run by training models for the 48 TIMIT phone
set and reduce the result to 39 phones. This yielded a performance of
49.6%, which is an increase of about 2-2.5%. For the conventional HMM
with 16 components in the GMMs the performance went from 48.0% to
50.2%, which is about the same increase in accuracy.

Because the Mel-filterbank output features have a dimension twice the
size of the MFCCs, the run-time for these experiments were considerably
longer. Hence, combined with the poor performance, these features were
only tried with a single setting for the number of dictionary components.
Table 5.2 shows that the proposed system performs at the same level as the
conventional HMM when both systems use 32 components in the emission
densities, while for 8 components the conventional HMM performs better.
However, these results should be considered with the parameter usage
in Table 3.2 in mind: the parameter usage of the NdHMM system with
32 components is approximately the same as the parameter usage of the
conventional HMM with 8 components (688.08 vs 648).

5.5.4 Dynamic Features

The experiments that have been presented in this Chapter are all without
the use of dynamic features. According to [2] the information contained
in the dynamic features would give a relative reduction in error rate of
about 20%. Hence, it is important for any speech recogniser to accom-
modate this information. To that end two approaches have been tried:
adding the dynamic features to the MFCC vector before sigmoid transfor-
mation and concatenating surrounding static vectors before reducing the
dimensionality.
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The first approach is similar to how the dynamic features are used in the
conventional HMM. Since the NdHMM demands non-negative features,
which is not the case for the dynamic features, they were appended to the
feature vectors before the sigmoid transform. The experiment yielding the
best performance using this method was conducted with a set of 13 MFCCs
(including C0). These coefficients were extracted with 25 ms windows and
10 ms shifts. The Δ and ΔΔ parameters were then added before the
sigmoid transform was applied to each dimension. As for the experiments
with only static features the best performance was achieved by normalising
the feature vectors to have a sum equal to the C0 coefficient, which was
removed. The 38 dimension feature vectors were then presented to the
NdHMM which yielded about 49% accuracy, which is marginally, but not
significantly, better than using static information alone.

The second approach consist of concatenating a sequence of the static in-
put vectors for each time frame. An equal amount of the preceding and
the succeeding feature vectors are concatenated with the current frame.
This results in a large dimensional input vector, which is reduced by prin-
cipal component analysis (PCA) or linear discriminant analysis (LDA).
Again the sigmoid transform needs to be applied in order for the non
negativity constraint to be fulfilled. The procedure was also tested with
the Mel-frequency features and a non-negative variant of the PCA algo-
rithm [89]. The best performance was achieved by using 9 frames of the
non-negative Mel-filterbank log-energies described in Section 5.5.3 yield-
ing a total dimension of 234, which was reduced to 39 by non-negative
PCA. Unfortunately, the performance was about 40% accuracy, which is
significantly inferior to the performance using static information alone. If
this is because of the non-negative constraint on the PCA/LDA or the
combination of such features with the NdHMM is unknown.
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5.6 Discussion

The experiments presented in Section 5.5.2 indicate that the proposed
model is behaving as expected after the modifications have been done:
the model seems to be able to learn different spectral components in the
training data, while the time varying weights indeed creates time variation
in the emission density of the states. Figure 5.6 and Figure 5.7 are nice
examples of how the weights vary along with the duration counter. As an
interesting point; notice that the weights for the phone /er/ in Figure 5.6
make one of the dictionary components unavailable after 5 frames. This
component, and thereby the corresponding acoustic event, can therefore
be assumed to only occur in the beginning of the realisations of the phone.

In Figure 5.8 both the transition matrix, including the initial state prob-
abilities, and the energy distribution are displayed. The transition matrix
is of the expected form with high values on the diagonal, which represents
the self transitions of the states. The initial state probabilities are also as
expected with only one non-zero component. In TIMIT all the sentences
begins with /h#/ which is mapped to the silence model /sil/. The “en-
ergy” distributions also appear to comply with what was expected. At
least for this small scale experiment the “energy” seems quite important
for the discriminability of the NdHMM.

Considering the performance reported in Table 5.2 of the NdHMM, it
seems that the NdHMM formulation successfully combines the advantages
of NMF and HMM on the task. The NdHMM performs on the same
level as the standard 3-state HMM, but with only a third of the number
of parameters. When training an ASR system, the parameter count is
always something that needs to be considered, as the size of the training
database is never as large as desired. A high parameter count requires
more training data in order for all the parameters to be trained properly.
Thus, achieving the same performance by using only a third of the number
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of parameters is an advantage.

Both the Mel-filterbank output and the MFCCs have been tried as fea-
tures on the TIMIT phone recognition task, where the latter was made
non-negative using a sigmoid transform. In the experiments, the NdHMM
performs significantly better when using the sigmoid transformed MFCCs
instead of the Mel-filterbank output. Thus, it might be reasonable to
assume that the sigmoid transform does not hurt the performance signif-
icantly. In any case, based on the experiments presented, it is possible
to conclude that the DCT in combination with the sigmoid transform
increases the performance of the NdHMM. The influence of normalising
features with regard to the variance is consistently positive for all the
experiments.

The NdHMM has in this dissertation been used solely for phone recogni-
tion. However, as the model is able to generalise for unseen data, it may
be considered for other areas of speech modelling or perhaps other pattern
recognition problems.

5.6.1 Suggestions for Future Work

Although the model performs well on the experiments that are presented in
this chapter, there are still some issues that need to be resolved. The most
obvious is the lack of support for the dynamic features. In Section 5.5.4
two general approaches to accessing this problem were presented. Unfortu-
nately, neither of the experiments were successful. The dynamic features
contain important information for the phone recogniser. Thus, without
the ability to accommodate such features, the use of the NdHMM is re-
stricted. One reason for the deficiency of the standard approach of adding
the dynamic features to the static feature vectors, may be ascribed to the
fact that the NdHMM models the entire feature vector with the same dic-
tionary, weights and energy distributions. It is probable that this makes



5.6 Discussion 109

the NdHMM better suited for cases where all the dimensions have similar
properties. When the feature vectors contains both 1stand 2ndorder delta
coefficients in addition to the static features, there might be a mismatch.
This could be avoided if the NdHMM supported parallel input streams, by
using separate output distributions for each of the streams. The static fea-
ture vector, the 1storder delta features and the 2nd order delta coefficients
could then be modelled by individual streams. Since this change enforces
major changes to the current implementation, it is left as a suggestion for
future work.

Another possible weakness of the proposed model is the mismatch when
modelling units with large variation in duration, like some of the phones
that might vary from 10 ms to 500 ms. This mismatch is due to the de-
pendency of the number of frames since the state was entered. Consider
for instance two realisations of a unit with durations of 3 and 9 frames.
Assuming that the maximum duration in the model is higher than 9, the
3 frame realisation would be modelled by the same emission densities as
the 3 first frames of the 9 frame realisation. The entire first realisation
is thereby modelled by the same emission densities as the first third of
the second realisation. The intuitively best way of modelling these two
realisations would be to align the realisations so that the first frame of
the first realisation is aligned with one of the first 3 frames of the second
realisation, the second frame with one of the 3 frames in the middle, and
finally the last frame with one of the last 3 frames. A remedy to this
problem could be to change the duration counter to be able to increment
with more than one, i.e. allow skips in the duration counter. In addition
the counter should probably also have the permission to not increment at
all, and thus let the model use the same emission densities for more than
one consecutive frame. Note that according to the equations presented in
Section 5.3 this change can be implemented by changing the probability
distribution P (dt+1|qt, dt, qt+1) to have more than one non-zero compo-
nent. Although the resulting model would have an increase in complexity,
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the maximum duration of the states could probably be decreased because
of the re-use of emission densities. Thus, the total number of parameters
would not necessarily increase significantly. Nevertheless, the implemen-
tation of this change needs to be performed while carefully evaluating its
impact on the system. This is left as a suggestion for future work.

Finally, it might also be worthwhile to perform a study concerning the
choice of features. The model is designed for non-negative features, there-
fore it might be advantageous to use features that are naturally non-
negative, eliminating the need to apply a transformation which influence
on the performance is unknown.

5.7 Concluding Summary

In this Chapter the N-HMM has been reviewed and several modifications
have been suggested in order for it to be useful for ASR. The main modi-
fication was to make the weights of the states dependent of the number of
frames since the state was entered. This modification allowed the model to
generalise to unseen data, but came with a cost: the freedom of modelling
each frame with individual weights was removed. Instead the weights are
reused for every visit to the state. In order for the model to properly
model the variation of the input signal, the generative process had to be
slightly modified: instead of drawing both a dictionary component and a
frequency bin, the model is only allowed to draw from one dictionary com-
ponent for the entire frame. The experiments that have been performed
with the modified model, the NdHMM, show that the model still is able
to discover variations in the data that might represent different contexts
or sub-phonetic units. Even though the model performs at the same level
as the baseline with fewer parameters, the work on the model cannot be
considered as completed. Several topics have been suggested for further
investigation before the model may be used for ASR.
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Concluding Summary

In this dissertation the HMM has been investigated. The HMM has been
widely used the past decades and good performance has been reported.
However, there is still need for improvements in order to achieve satisfac-
tory performance in the more difficult ASR tasks. To that end, three al-
ternative HMM based phone recognition systems have been proposed and
tested. The first system expanded the topology of the phone HMMs in or-
der for it to explicitly model different variations of the phone realisations.
In addition to the conventional 3 state left-to-right HMM, the system also
allowed parallel variants with 1, 2 or 4 states. To train the model prop-
erly, despite the significant increase of parameters, a specially adopted
technique was proposed. A set of Acoustic Sub-Word Units (ASWUs) was
defined by first performing an automatic acoustic segmentation and then
cluster the acoustic segments. The ASWUs were then given a linguistic
interpretation in order to link each to one state in the HMM. Finally,
the states were constructed as a linear combination of all the ASWUs.
The phone recognition experiments showed performance comparable to
the baseline model, albeit with a significant increase of parameter usage.

111



112 Concluding Summary

Also for the second system the idea of an expanded topology was central.
However, instead of using a fixed topology for all the phone models, the
topologies were customised for each phone individually. A data driven
pronunciation variation modelling (PVM) algorithm was used to auto-
matically derive the topologies. The phone realisations were modelled as
a sequence of the ASWUs used in the first system, and thus the ASWUs
were employed as input to the PVM algorithm. Each pronunciation varia-
tion from the PVM algorithm was used to construct one path in the HMM.
The phone recognition experiments again proved the system to be inferior
to the 3-state baseline system in terms of parameter usage. In addition
the system yielded the best performance when only a single pronunciation
variation was used for each phone, thereby impairing the hypothesis of the
extended topology which both the two first systems were built on.

In the third and final system that was proposed, the focus was moved from
the topology to the emission densities. A system previously employed for
source separation by Mysore [81], the non-negative HMM (N-HMM), was
examined. The N-HMM is a model that combines the pattern recognition
capabilities of non-negative matrix factorisation (NMF) with the temporal
modelling power of the HMM. In the N-HMM, the emission densities of
the states are dependent on the absolute time, which restricts the model
from being generalisable to unseen data, a requirement for it to be used
in ASR. A remedy was proposed by instead making the emission densities
dependent on the number of frames since the state was entered. The
modified model was called NdHMM and tested on the TIMIT database
for phone recognition, yielding comparable performance with the baseline
system. In addition to the promising recognition results, it was shown
that the model also used significantly less parameters compared to the
conventional HMM. Several topics have been suggested for future research,
like the compatibility with the dynamic parameters. Nevertheless, the
experiments show an interesting system which might have a future, both
in ASR and similar fields of research.
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The HMM has been a natural part of most ASR systems the past decades.
It is a powerful, yet simple and efficient model. Through the experiments
carried out in this dissertation, the power of the conventional HMM have
been demonstrated. The efforts in using a topology believed to be better
suited for the phones, did not result in any improvements of the recogni-
tion accuracy. Neither did the NdHMM, although the results there were
promising in terms of parameter usage and several suggestions for possible
improvements were made.





Appendix A

The TIMIT Database

All systems in this dissertation were evaluated on the DARPA TIMIT
Acoustic-Phonetic Continuous Speech Corpus [90]. TIMIT includes a
manual transcription on the phone level, which makes it convenient to
perform phone recognition experiments. The corpus consist of read speech
spoken by 630 speakers from 8 major dialect regions of the United States.
Each speaker read 10 sentences, totaling to 6300 read sentences. Of the 10
sentences 2 were spoken by all the speakers, and were therefore not used
in this dissertation. The corpus is divided into a test set and training
set, where no sentence text appear in both sets. The test set consist of
1344 sentences spoken by 168 speakers. In this dissertation the data of
50 speakser (400 sentences) in the training set were used as developement
data. The list of the 50 speakers is given in Table A.1.
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A.1 Phone Sets

The TIMIT phone label set consist of 61 different phones. In [91] a map-
ping of the 61 phones to 48 phones were proposed. Among the 48 phones,
7 groups were defined where within-group confusions were not counted,
resulting in a test set of 39 phones. The command files for performing
the mapping with the HTK tool HLEd ([46]) is given in Table A.2 and
Table A.3. With the exception of the experiments with the NdHMM in
Chapter 5 where only the set containing 39 phones was used, the experi-
ments in this dissertation were performed by training models for 48 phones
and only count confusions between the 39 phones during testing.

Table A.1: List of speakers in the development set.

mbsb0 mvrw0 mtwh1 mrlj1 mklr0
mwrp0 mtcs0 msdb0 mrmg0 mmlm0
mpar0 mbcg0 mkdb0 mpfu0 fpls0
mjra0 mrem0 fclt0 mntw0 mmea0

mrdm0 mrlk0 mkrg0 mkag0 mrmh0
mtmn0 fjrb0 mtml0 mcxm0 mmpm0
fklh0 fnkl0 mmws1 fceg0 mses0

mwre0 fbcg1 mmws0 mtlc0 msah1
mrpc1 mmdg0 mkdd0 mtpr0 mrre0
mter0 mtkd0 mtab0 mejs0 fmbg0

A.2 Confidence Intervals

The test set can be viewed as a collection of segments, where each segment
is either recognised correctly or incorrectly during phone recognition. By
assuming that:
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Table A.2: HHEd command file for mapping from 61 to 48 symbols

DE q
RE m em
RE n nx
RE ng eng
RE hh hv
RE uw ux
RE ax ax-h
RE er axr
RE sil h# pau
RE vcl bcl dcl gcl
RE cl pcl tcl kcl

Table A.3: HHEd command file for mapping from 61 to 39 symbols

DE q
RE sh zh
RE m em
RE n en nx
RE ng eng
RE hh hv
RE l el
RE aa ao
RE uw ux
RE ah ax ax-h
RE ih ix
RE er axr
RE sil h# pau epi bcl dcl gcl pcl tcl kcl
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1. the probability of recognising a segment correctly is equal for all the
segments,

2. the probability of recognising a given segment correctly is indepen-
dent of the other segments,

the phone recognition process can be viewed as a series of Bernoulli trials.
Both of the two assumptions are incorrect, but viewing the number of
phone errors as having a binomial distribution simplifies the calculation of
confidence intervals for the true PER. By denoting the estimate of PER
as p̂ the confidence intervals can be found by[92]:

p̂ ± zα/2

√
p̂(1 − p̂)

n
(A.1)

where α is the desired significance level, zα/2 is the corresponding tail of the
standard normal distribution and n is the number of trials. This method
approximates the binomial distribution with a normal distribution, and for
this approximation to be considered reliable, n should to be “sufficiently
large” while p should not be close to 0 or 1. In [92] np ≥ 5 and n(1−p) ≥ 5
is used as a requirement for the validity of the method. In the TIMIT test
set there are 50754 segments, so both conditions are met as long as p is
not close to 0 or 1. In Figure A.1 the size of the confidence interval is
plotted as a function of PER for three values of the significance level α.
Note that the approximation of the PER to be binomial distributed is
questionable. However, the confidence interval sizes gives an indication of
the significance level of the phone recognition results.
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Figure A.1: Confidence interval sizes as a function of PER for three values of the
significance level α.





Appendix B

Acoustic Segmentation
Statistics

In Chapter 3 the acoustic segments were compared to the manual pho-
netic labels of TIMIT. This resulted in a linguistic interpretation of the
ASWUs. However, with different choices for the over-segmentation factor,
the assignment changes. In Figure B.1 to B.10 the distribution of the
number of segments assigned to the realisations of each phone is shown.
See Section 3.4.1 for a detailed explanation.
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Figure B.1: Distribution of number of segments per phone when the over-
segmentation factor is 2.
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Figure B.2: Distribution of number of segments per phone when the over-
segmentation factor is 2.
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Figure B.3: Distribution of number of segments per phone when the over-
segmentation factor is 2 (upper) and 3 (lower).
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Figure B.4: Distribution of number of segments per phone when the over-
segmentation factor is 3.
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Figure B.5: Distribution of number of segments per phone when the over-
segmentation factor is 3.
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Figure B.6: Distribution of number of segments per phone when the over-
segmentation factor is 4.
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Figure B.7: Distribution of number of segments per phone when the over-
segmentation factor is 4.
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Figure B.8: Distribution of number of segments per phone when the over-
segmentation factor is 4 (upper) and 5 (lower).



130 Acoustic Segmentation Statistics

d dh dx eh el en epi er ey f
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Phones

R
at

io

Segment Distribution with Over−Segmentation Factor 5

 

 
1 Segment
2 Segments
3 Segments
4 Segments
>4 Segments

g hh ih ix iy jh k l m n
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Phones

R
at

io

Segment Distribution with Over−Segmentation Factor 5

 

 
1 Segment
2 Segments
3 Segments
4 Segments
>4 Segments

Figure B.9: Distribution of number of segments per phone when the over-
segmentation factor is 5.
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Figure B.10: Distribution of number of segments per phone when the over-
segmentation factor is 5.
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