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Abstract

Put in the most general terms, this dissertation addresses the problem of
automatic recognition of non-native proper names. Proper names in them-
selves tend to pose a severe challenge to speech recognition engines, as these
names can typically be pronounced in a variety of ways, and do not necessar-
ily follow generally governing pronunciation conventions. Non-native proper
names add still further levels of complication, caused by such variables as
the speaker’s familiarity with the foreign name, proficiency in the foreign
language, and tendency to adapt pronunciation of the name to the native
language or, obversely, to adopt foreign speech characteristics in order to
pronounce the name as faithfully as possible. When confronted with non-
native proper names, it is therefore particularly important for an automatic
speech recognition system to be able to handle a considerable amount of
pronunciation variety. Traditionally, the more or less self-evident approach
to cope with this variety has been simply to add pronunciation variants to
the recognition lexicon. However, introducing such variants typically en-
tails the risk of increasing confusability between different lexicon entries, as
new variants of previously more distinct units are likely to augment pho-
netic similarities within the lexicon. It would seem crucial for recognition
success, then, to optimize the balance between lexical coverage and con-
fusability. In this work, we strive to attain such a balance by submitting
pronunciation variants to selection procedures rather than adding variants
to the recognition lexicon indiscriminately.

The selective addition of pronunciation variants to a recognition lexicon
has a clear intuitive appeal. It is the objective of this dissertation to confirm
that intuition experimentally by measuring the improvements in recognition
accuracy yielded by various selection methods. Particularly, we propose a
new pronunciation variant selection criterion that is directly related to the
effective recognition error rate. To estimate the number of errors corrected
by a particular variant, scores based on the Minimum Classification Error
framework are calculated before and after the addition of the variant to the

iii



iv Abstract

lexicon. Using this criterion, three different variant selection procedures are
proposed in this work: a single-pass approach, an iterative approach and a
tree-search approach. These selection methods aim to optimize the recogni-
tion lexicon in terms of size and recognition performance by adding to the
lexicon only those pronunciation variants that effect an actual decrease in
the error rate. We contrast these selection methods with more traditional
approaches to populate the recognition lexicon, such as using all available
variants indiscriminately, and selecting on the basis of the probabilities ob-
tained during the generation of possible new pronunciation variants. Our
experiments show that we can significantly reduce the error rate and the
required number of variants per name by applying our proposed selection
approaches.
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Chapter 1

Introduction

Automatic speech recognition (ASR) may be defined as the process of re-
trieving the most probable word sequence from an acoustic speech signal by
means of a computer, or, simpler still, as the conversion of speech to text.
Even though it is probably fair to say that state-of-the-art ASR systems do
not as yet perform on a par with the natural capability of most humans to
understand spoken language, a vast amount of research over the past decades
has resulted in a number of successful real-world ASR applications. Many
of these applications, such as car navigation, travel assistance and directory
assistance applications, rely on accurate recognition of proper names. Many
proper names, however, pose a severe challenge to the recognition engine
because of a considerable mismatch between the way the proper name is
pronounced by the user and the way the name is represented in the ASR
system through acoustic models and phonetic transcription lexicons. The
main reason for this is that proper names have a tendency to deviate from
conventional pronunciation rules, and often allow for a variety of valid pro-
nunciations. As those pronunciation rules are used to populate the lexicons
that are employed by the ASR engine, the irregularly pronounced proper
names are at an instant disadvantage.

It is true that this disadvantage can be partially remedied by invest-
ing additional manual effort, viz. by constructing proper name dictionaries.
However, while this can be extremely beneficial for relatively limited do-
mains such as medical terminology (which also tends to diverge from generic
pronunciation rules), the vast number of existing proper names makes it dif-
ficult to attain sufficient coverage for all possible user inputs in that domain.
Furthermore, while domains such as medical terminology are typically gov-
erned by pronunciation conventions, proper names are quite likely to be
pronounced in a variety of ways, making the manual dictionary construc-
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2 Introduction

tion effort even greater and more costly. The acoustic realization of a proper
name is dependent not only on speaker characteristics such as gender, age
and dialect, which may be said to influence all natural speech, but also
on the speaker’s familiarity with the name and the specific entity it refers
to. To give but one example, only speakers who are in some way familiar
with Cambridge University’s Magdalen College will correctly pronounce the
name as “maudlin”.

Those observations are a fortiori true for non-native names, which are
part and parcel of many real-life ASR applications. Referring back to the
examples mentioned above: a navigation device will be of limited use if its
ASR breaks down as soon as the car crosses a language border, a travel
assistance application should cover more destinations than those in its own
language area, and a directory assistance application should be able to han-
dle the names of immigrants as well as native names. Such names are
singularly challenging to ASR engines since they have an even larger vari-
ety of possible pronunciations. Over and above the speaker characteristics
listed above, the acoustic realization of non-native proper names will depend
on such factors as the speaker’s proficiency in the non-native language, the
speaker’s tendency to adopt speech patterns from the non-native language,
and the similarity of the native language and the non-native language.

An intuitive method to enable an ASR engine to handle such large-scale
variation would be to add more variants to the recognition lexicon. Gener-
ating the variants manually might give the greatest increase in recognition
performance, but such an effort is extremely costly and, given the amount
of speaker-dependent variability, nigh on infinite. It may therefore be de-
sirable to predict plausible pronunciations automatically, e.g. by allowing
some controlled deviations from standard phonetic transcriptions. Such an
approach has a foreseeable disadvantage, however: indiscriminately adding
automatically generated transcriptions to a recognition lexicon is likely to
increase the level of confusability within that lexicon. Newly introduced
variants of previously distinct entries may be more phonetically similar,
which effectively makes it harder for the recognition engine to tell the one
from the other, so to speak. A method to optimize proper name lexicons is
therefore in order: the ideal is to build lexicons that allow for the greatest
degree of variation, at the lowest level of confusability.

The main objective of the present dissertation is to model the pronuncia-
tion variation observed when native Norwegian speakers pronounce English
proper names. In an attempt to model this variation at the lexical level,
we will investigate various methods to optimize our proper name lexicons.
Our first approach will be to consider the population of our lexicon as a
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decision problem, where the decision criterion is directly associated with
the system’s recognition error rate. This approach allows us to add the
variants that correct the most errors to the lexicon first. In our second ap-
proach a similar decision strategy will be employed in an iterative manner
in order to evaluate the net effect of a lexicon change. Effectively, only
variants that correct more recognition errors than they introduce are added
to the dictionary when using this approach. A third approach will employ a
tree-search algorithm to decide the order in which variants are added to the
lexicon. In this way, we will prioritize the names where additional variation
in the lexicon has the highest potential to improve recognition performance.
The upshot of these approaches is a recognition lexicon that is optimized in
terms of recognition performance as well as lexicon size. In the remainder
of this introduction we will give a short summary of the main contributions
of this work and outline the organization of this dissertation.

1.1 Contributions of this dissertation

This dissertation aims to improve pronunciation variation modeling in au-
tomatic speech recognition. We investigate the problem of pronunciation
variation and highlight problematic areas in existing modeling techniques.
To provide solutions to some of these problems, we define a set of crite-
ria to determine a lexicon’s effect on recognition performance, and propose
some approaches to generating a lexicon with a positive effect. The main
contributions of this dissertation are summarized below.

A new language resource for Norwegian containing annotated
speech utterances of non-native names

This dissertation is specifically concerned with the pronunciation varia-
tion in English proper names as pronounced by native Norwegian speakers.
When this work was started, no suitable language resource containing this
kind of utterances was available. We have therefore compiled a new resource
containing annotated speech utterances of English names spoken by Norwe-
gians. This resource is used in our experiments, where we attempt to model
the variation that is present in the speech data. A detailed description of
the construction of this resource was published at the LREC conference in
2010 [1].
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An initial study of pronunciation variation of non-native proper
names

In an initial study on the nature of pronunciation variation in non-native
proper names, we attempt to get a better understanding of the properties
we might expect in a lexicon, and more generally in a pronunciation varia-
tion modeling scheme, that allows for good recognition performance. This
study contains threshold and “cheating” experiments as well as two base-
line experiments, and highlights several problem areas frequently observed
in traditional pronunciation variation modeling methods.

A comparative study of different variant selection criteria

One of the most challenging tasks of lexical pronunciation variation model-
ing is to identify which pronunciation variants to include in the recognition
lexicon. A particular pronunciation variant might correct a number of recog-
nition errors, but if it is phonetically similar to a variant of another lexicon
entry, it might also introduce new recognition errors. We perform a detailed
comparative analysis of four different variant selection criteria, in order to
find the criterion best suited for optimal variant selection. These four selec-
tion criteria are based on: probabilities obtained during variant generation,
the acoustic log likelihood of the variant, the Maximum Entropy frame-
work and the Minimum Classification Error framework. The analysis shows
that the Minimum Classification Error (MCE) framework yields the most
promising results, and we therefore develop this selection criterion further
into a “breadth-first” approach and a “best-first” approach. This compara-
tive study was published in an article presented at the IEEE Workshop on
Spoken Language Technology in 2010 [2].

A breadth-first variant selection approach

The selection criterion in our “breadth-first” variant selection algorithm is
directly related to the recognition performance: variants are only added to
the lexicon on the condition that they correct recognition errors left unhan-
dled by the initial lexicon. We start with a lexicon containing one variant
per name, and use this lexicon to perform a recognition pass. For each vari-
ant in this lexicon, we calculate an MCE-score, which can be understood
as a measure of the risk of misrecognizing a speech utterance. The larger
this measure is, the larger the risk for an incorrect classification. In the
next iteration, we successively add one variant to the lexicon, run a recog-
nition pass with the extended lexicon, and calculate a new MCE-score for
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that variant. This process is then repeated for all available variants. When
this iteration is done, we rank all variants per name by their MCE-scores.
Applying our “breadth-first” approach, we then add the top-ranked variant
for each name to the lexicon, provided its MCE-score is lower than that
of the variant added for the same name in the previous iteration. In this
way, we continue to iterate over the available variants, until we find we can
no longer improve the recognition performance by adding variants to the
lexicon. The breadth-first variant selection approach was presented at the
Interspeech conference in 2010 [3]

A best-first variant selection approach

At the end of each iteration loop, our “breadth-first” approach evaluates
for each name in the lexicon whether it is beneficial to add its top-ranked
pronunciation variant. However, since the level of observed pronunciation
variation strongly differs from name to name, we might do better with a
“best-first” variant selection algorithm that prioritizes inclusion of variants
for names where most variation is expected. To that end, the pronunci-
ation variant selection task is recast as a tree search problem where the
optimal recognition lexicon corresponds with the optimal path through a
search tree. To guide the search algorithm, we again define an MCE-based
discriminative evaluation function. In this approach, the evaluation func-
tion can be understood as a measure for the ratio of errors corrected by
the addition of a variant versus errors still remaining unaddressed by the
lexicon. This selection approach is described in an article published at the
ICASP conference in 2011 [4].

1.2 Outline of this dissertation

This dissertation is organized as follows. Chapter 2 gives an overview of
a typical ASR system and its basic components. It also contains a short
description of the statistical framework on which a typical ASR engine is
based, as well as an introduction of two alternative discriminative frame-
works. Chapter 3 consists of three main parts. In the first part, the problem
of accurate name recognition is described in greater detail. The second part
of the chapter consists of a comprehensive survey of some of the methods re-
ported in the literature to remedy these problems, whereby special emphasis
is placed on lexical pronunciation variation modeling methods. The final
part presents a general outline of the methods proposed in this dissertation.
Chapter 4 describes the design and collection of the Norwegian NameDat
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corpus and gives an overview of the experimental set-up used in this work.
This chapter starts the experimental part of this dissertation with an initial
study, investigating the limitations of some existing lexical pronunciation
variation modeling approaches. Chapter 5 contains an evaluation of four
different criteria for variant selection. Chapter 6 describes a more sophisti-
cated variant selection algorithm that amounts to a “breadth-first” approach
to populate the recognition lexicon. In Chapter 7, the pronunciation vari-
ant selection problem is recast as a “best-first” tree search problem. Finally,
Chapter 8 contains overall conclusions and some thoughts regarding future
research within the field of lexical pronunciation modeling.



Chapter 2

Automatic Speech
Recognition

This chapter presents an overview of a typical Automatic Speech Recogni-
tion (ASR) system. In the first section, the basic components of the ASR
system will be described in some detail. In the second section, the statistical
formulation of the speech recognition problem, based on the classical Bayes’
decision theory, will be examined more closely. In this section, the speech
recognition problem will first be redefined as a classification problem and
then again as a simple distribution estimation problem. The classification
problem will then be expanded to incorporate the case when a lexicon entry
is represented by multiple alternative pronunciation variants. In the final
part of this chapter, two discriminative alternatives to the classical Bayes’
decision rule will be described.

2.1 The Automatic Speech Recognition system

Automatic speech recognition may be described as the process of retrieving
the most probable word or word sequence Ŵ from an acoustic observation x.
Most ASR systems today achieve this by implementing a procedure similar
to the one illustrated in the block diagram in Figure 2.1. In this block
diagram the preprocessing step maps the acoustic speech signal x to an
alternative vector representation of the speech signal, which is called X.
This mapping reduces the variability of the speech signal, making it better
suited for ASR. This vector representation is then given as input to the
decoder, which is the heart of the ASR engine. The decoder, then, retains
the most probable word sequence from the speech vector by utilizing three
different knowledge sources: a language model, a pronunciation lexicon and

7



8 Automatic Speech Recognition

a set of acoustic models. These knowledge sources and the other components
of the block diagram in Figure 2.1 will be described in further detail in this
section.

Figure 2.1: Block diagram of an Automatic Speech Recognition system.

2.1.1 The preprocessor

A speech signal usually contains a vast amount of variation due to vari-
ous factors such as different acoustic environments, different speakers and
different speaking styles. The main purpose of the preprocessing block in
Figure 2.1 is to reduce this variation by extracting only the information that
is relevant for the speech recognizer to retrieve the underlying sequence of
words from the speech signal. This information is represented in a compact
form as a sequence of feature vectors. By discarding irrelevant information
such as speaker and environmental characteristics, the amount of training
data needed to model the speech signal can be drastically reduced.

The extraction of feature vectors is typically performed by dividing the
speech signal into a sequence of overlapping segments usually referred to as
frames. The most common frame length is 25 milliseconds and the frame
shift is normally around 10 milliseconds. A feature extraction procedure
is then performed on each speech frame under the assumption that the
speech signal is a stationary random process within this frame. This short-
time stationarity assumption means that we assume that the statistical
characteristics within this frame do not vary with time. The validity of
this assumption, however, depends on several factors such as the speech
sound and the relative placement of the frame. Vowels, for example, can be
said to be fairly stationary sounds. Plosives, on the other hand, are highly
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non-stationary. If the frame is placed between two different sounds, the
speech signal will also most likely be non-stationary within this frame. The
result of this procedure is a sequence of feature vectors with a much lower
dimension than the original speech signal.

To enhance the performance of the ASR system, temporal information,
in the form of time derivatives of the feature parameters, is normally added
to the set of feature parameters. The most common temporal parameters
are the first order derivative (delta) and the second order derivative (delta-
delta or acceleration). To further enhance the performance, a measure of
the energy within a frame can also be added to the feature set to augment
the spectral parameters derived during feature extraction.

There are several different kinds of feature extraction algorithms. The
most commonly used algorithms are: the Mel-Frequency Cepstral Coeffi-
cients (MFCC) [5] algorithm, the Linear Predictive Coding (LPC) [6] algo-
rithm and the Perceptual Linear Predictive (PLP) [7] algorithm. As these
algorithms are all based on the estimation of the spectral envelope, they
rely heavily on the stationary assumption to be valid for all frames. This is
not always the case for frames containing speech segments, however, which
poses a limitation for all the above-mentioned algorithms.

2.1.2 The language model

The language model has two main tasks in a speech recognition system,
namely to define which words the recognizer should be able to recognize,
the vocabulary of the system, and to constrain the numerous ways in which
these words can be combined into word sequences. By introducing con-
straints on the way in which words can be combined into sentences, the
language model simplifies the task of the decoder and thereby increases
recognition performance. The downside of this is that putting constraints
on sentence formation actively restricts the user’s freedom of expression.
The best compromise between the recognition performance and the user’s
freedom of expression is highly dependent of the application. For instance,
when composing a personal letter, the complexity of the word sequences is
fairly high and the user therefore needs a high degree of freedom. In a travel
assistance application where the task is to recognize which train station the
speaker wants to travel to and from, on the other hand, the complexity of
the word sequence is low, allowing for a more restrictive language model.

Generally, language models are divided in two main categories; deter-
ministic language models and probabilistic language models. The determin-
istic models (also known as grammar-based models) are the simplest form of
language models and are normally employed when the number of sentences
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to be recognized is small and of low complexity. In these models, all words
are typically deemed equally likely, as is the probability of any one word
following any other word. Isolated word recognition tasks employ the most
basic form of deterministic language models, allowing only a single word to
be recognized and assuming all the words in the vocabulary to be equally
likely.

A probabilistic language model aims to model the probability of an
entire word sequence by estimating the probability of a certain word given
the presence of the preceding words in the sequence. In principle, this
means that any word can follow any other word in the vocabulary, but
with a certain probability. This probability is calculated using the count
of the particular word sequence in some given training text. The most
common probabilistic language model is the N -gram model, which assigns
a probability to a certain word given the N − 1 previous words in the word
sequence. The probability of the word sequence W = w1, w2, . . . , wm is
estimated by the N -gram model as

P̂ (w1, w2, . . . , wm) "
m∏

i=1

P̂ (wi|wi−n+1, . . . , wi−1), (2.1)

where the conditional probabilities are usually estimated using the count C(W)
of a certain word sequence W in the training text

P̂ (wi|wi−n+1, . . . , wi−1) =
C(wi−n+1, . . . , wi)

C(wi−n+1, . . . , wi−1)
. (2.2)

Obviously, the amount of probabilities that need to be estimated is depen-
dent the size of N . Given that the probabilities are normally estimated
from a bank of text data, it is currently deemed unfeasible to collect enough
text data to satisfactorily train N -gram models of a higher complexity than
three or four.

A problem that is common in language modeling is the case when no
N -gram samples can be found in the training text. According to Equa-
tion (2.2), these N -grams will be given a probability of zero, although the
actual probability should be higher. This is usually solved by redistribut-
ing a small probability mass from N -grams observed in the training data
to N -grams not observed in the training data. This method is called dis-
counting. The most commonly used discounting method is the Good-Turing
discounting method [8].

Another common problem in language modeling is the lack of relevant
training material (which is especially the case if N is large). If there is not
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enough evidence of a particular N -gram in the training texts, the probabil-
ity estimation of this N -gram is likely to be somewhat unreliable. One way
of solving this is to introduce a back-off scheme. Using a back-off scheme
means that if an observed N -gram count is less than a predefined cutoff,
the scaled probability of the shorter context (the (N−1)-gram) will be used
instead and the N -gram will be deleted form the model. This method en-
sures that the language model always contains reliable N -gram probability
estimates, in addition to making the model more compact.

2.1.3 The pronunciation lexicon

The main task of the pronunciation lexicon is to inform the recognizer of
the most typical pronunciations of every word in the vocabulary. To achieve
this, the pronunciation lexicon lists all the words in the vocabulary with at
least one phonetic transcription describing the pronunciation of the word.
A phonetic transcription is a sequence of phonetic symbols, each of which is
a written representation of a particular predefined sound. These phonetic
symbols can be sub-word units such as phones, diphones, triphones, syllables
or larger units such as words, syllables and phrases. The small sub-word
units have the benefit that the number of unique units necessary to model
all the words in the vocabulary is significantly smaller compared to the
larger units. This is a good property because it means that less training
data is needed to get a satisfactory acoustic representation of the unit.
The disadvantage of the small sub-word units, however, is that they do not
contain as much contextual information as is comprised in the larger units.
The pronunciation lexicon can contain several phonetic transcriptions for
each word in the vocabulary. In this dissertation, we will refer to these
phonetic transcriptions as pronunciation variants of a particular word.

2.1.4 The acoustic model

The objective of the acoustic model is to model the relation between the
preprocessed speech signal and the underlying sequence of words represented
by a string of phonetic symbols. Due to the high variability within the
segment, the acoustic model must be able to handle both temporal and
spectral variation within a speech segment, as well as differentiate between
different speech segments.

A popular and well-suited statistical model that can model a series of
discrete observations, as well as handle both temporal and spectral varia-
tions, is the hidden Markov model (HMM) illustrated in Figure 2.2. The
HMM is commonly viewed as an extension of the Markov chain. The Markov
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chain is a model that consists of a set of states, S = {1, . . . , S}, a set of
probabilities of starting in one of these states, π = πi, i ∈ S, and a set
of probabilities of moving between those states, A = aij where i, j ∈ S.
The number of states in S is largely dependent on the size of the sub-word
units used by the recognizer. Most state-of-the-art ASR systems employ
context-dependent acoustic models, where each sub-word unit is modeled
using the unit’s left and right context. For phone-based context-dependent
systems, a three-state topology is typically employed, where the first state
is used to model the beginning of the phone, the second state to model
the middle part of the phone and third state to model the last part of the
phone. These systems also normally employ a left-to-right topology which
does not allow revisits to previous states, as indicated by the arrows in Fig-
ure 2.2. At every time unit t, the Markov chain changes state and generates
an observation Xt. The observations generated from a Markov chain are
deterministic in the sense that the exact same observation will be generated
every time a given state is entered.

In the hidden Markov model, however, that is no longer the case. In
this model, every time state i is entered, an observation vector Xt is gen-
erated from a probability distribution b = bi(Xt), as illustrated in Fig-
ure 2.2. This means that the same state can generate different observa-
tion vectors each time it is entered. It is therefore not possible to say
with certainty which state sequence generated the observed vector, i.e.
the state sequence is hidden. For example, in Figure 2.2 the observa-
tion sequence X = {X1, X2, X3, X4} was generated by the state sequence
S = {1, 2, 2, 3}. By looking only at the observation sequence, there is no way
of knowing whether the observations were generated by the state sequence
Q = {1, 2, 2, 3}, Q = {1, 1, 2, 3} or Q = {1, 2, 3, 3}.

In automatic speech recognition it is generally assumed that the observed
feature vector, X = {X1, X2, . . . , XT }, is generated by an HMM defined
by the parameters Φ = (A,b,π). In such a system, each state is usually
defined to represent either a sub-word unit or a part of a sub-word unit. The
goal, then, becomes to retrieve the hidden state sequence in order to reveal
the underlying sequence of sub-word units that represents word W . Before
describing how we can find this state sequence, let us first define the event
of being in a state at time t as qt and the probability of this event as P (qt).
A state sequence of length T can then be given as Q = {q1, q2, . . . , qT }.
The acoustic likelihood of the observed feature vector can now be found by
summing over all possible state sequences
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Figure 2.2: The hidden Markov model.

P (X|W,Φ) =
∑

Q
πq1bq1(X1)

T∏

t=2

bqt(Xt)aqtqt+1 . (2.3)

As calculating the likelihood in this manner can be computationally quite
expensive, most ASR engines approximate the likelihood calculation by con-
sidering only the most likely state sequence

P̂ (X|W,Φ) ≈ max
Q

{
πq1bq1(X1)

T∏

t=2

bqt(Xt)aqtqt+1

}
. (2.4)

Using the same state sequence definitions used above, we can define the
probability for starting in state i, the initial state distribution πi, as

πi = P (q0 = i).

The state transition probability aij is the probability of going from state i
to state j and is defined as

aij = P (qt = j|qt−1 = i).

This simple equation assumes that the transition probability at time t is
only dependent on the previous state and not on any state sequences prior
to t = t− 1. This assumption is also known as the Markov assumption

P (qt|qt−1, qt−2, . . . , q0) = P (qt|qt−1)
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and any state sequence following this assumption is called a first order
Markov chain.

Finally, in most HMM systems the output probability densities, b, are
represented by the Gaussian Mixture Model (GMM). The GMM is a proba-
bility density function comprising several Gaussian mixture component den-
sities combined together in a weighted sum. Given that the GMM contains
M mixture components for all states, and that each of these components
are weighted with a weight cim, the output probability density for state j
at time t can be defined as

bj(Xt) =
M∑

m=1

cjmN (Xt;µjm,Σjm)

where N is a multivariate normal distribution with mean vector µjm and
covariance matrix Σjm.

Before the HMM model can be employed in any useful task, the param-
eters π, A and b need to be estimated. An elegant solution to this problem
is the Baum-Welch re-estimation algorithm [9][8]. This algorithm estimates
the model parameters by choosing the parameters that maximize the likeli-
hood of the training utterances. To make this selection, the algorithm first
estimates some initial parameter values by making a rough guess of what
the parameters might be. The likelihood of the training data is then cal-
culated using these initial parameters. More accurate parameter values are
then found by re-estimating the parameters iteratively using the likelihoods
calculated in the previous step.

Limitations of the hidden Markov model

Although hidden Markov models have shown to be very well-suited for auto-
matic speech recognition, there are some limitations of using this statistical
framework to model the speech signal.

The HMM framework assumes that an observation is conditionally inde-
pendent from its neighboring observations, which is clearly not true in the
case of the speech signal, since most speech signals contain a large amount of
correlation from one frame to the next. Furthermore, the Markov assump-
tion stating that the probability of moving from one state to another is
dependent only on the previous state, is also an approximation, since these
dependancies normally extend over several states in a speech segment.
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2.1.5 The decoder

The heart of an ASR system is the decoder. The decoder combines infor-
mation from all the knowledge sources (i.e. the lexicon, the acoustic models
and the language model) to create a recognition network of HMM states,
connected with transitions. For an unknown speech utterance, each path
trough this network represents a hypothesis of what was actually said. It is
then the task of the decoder to identify the most likely path through this
network. Perhaps the most obvious way to do this would be by calculating
the likelihood of every path in the network and then simply choosing the
most likely path. This, however, is unfeasible in practice due to the large
amount of computations expected to be performed in close to real-time.
A computationally efficient search algorithm, called the Viterbi algorithm,
was therefore designed [9][8]. The Viterbi algorithm solves this problem by
exploring only the most promising path using dynamic programming. After
finding the most likely path, the algorithm backtracks trough the network
and finds the corresponding word or word sequence.

N-best lists

In many cases, it is desirable to generate a list of the N most probable
hypotheses, rather than just the most probable one. This list is called an
N -best list and contains the N hypotheses deemed most likely by the de-
coder and their corresponding likelihood scores. The N -best list provides us
with additional information about the recognition performance. Not only
does it tell us whether an utterance was correctly recognized or not, it also
tells us whether a misrecognized utterance was close to being correctly rec-
ognized or not. In most speech recognition systems, N is a user-defined pa-
rameter. Most state-of-the-art speech decoders, however, employ some sort
of pruning technique to reduce the search space. In the HTK toolkit [10],
which is used in this dissertation, the pruning is implemented by keeping
a record of the log likelihood of this path through the recognition network,
and excluding from the search any path with a log likelihood score that
differs significantly from that of the best path. As a consequence, the ac-
tual value of N may vary from utterance to utterance. For example, if the
recognizer is fairly confident in the recognition result, the N -best list will
most likely contain relatively few hypotheses for the recognized utterance.
An unreliable recognition result, however, will produce longer N -best lists,
containing a relatively high number of hypotheses.
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2.2 Bayes’ decision theory

As mentioned in the beginning of this chapter, the task of an ASR system
can be defined as retrieving the most probable word or word sequence Ŵ
given an acoustic observation X. In this section, we will focus on finding
the optimal word hypothesis in the case of isolated word recognition, by
utilizing probabilities derived from the knowledge sources described in the
previous section and Bayes’ decision theory.

If W = {W1, W2, . . . ,WK} is the set of possible words from which the
optimal word hypothesis Ŵ is to be selected, the problem of finding Ŵ can
be redefined as the classification of the acoustic observation X into one of K
predefined classes. The classifier must identify a mapping, C(X), from the
parameter space to the discrete word space W, that minimizes the number
of misclassifications. This mapping is generally referred to as the speech
recognizer’s decision rule. Using this decision rule, it is possible to estimate
the word Ŵ most likely to have been spoken in utterance X

Ŵ = C(X).

To find the decision rule that minimizes the number of misclassification
events, a measure of the classifier’s performance must be defined. This per-
formance measure is most commonly represented by a loss function, mod-
eling the cost of classifying the incorrect word W as Ŵ . For most speech
recognition systems, this loss function is a zero-one function assigning equal
loss to all misclassifications

l(Ŵ , W ) =
{

0 Ŵ = W
1 otherwise.

Assuming that the true joint distribution P (W, X) is known, it can be shown
that the optimal classifier that minimizes the expectation of this loss func-
tion is the one that employs the following decision rule [11]:

C(X) = argmax
W∈W

P (W |X),

better known as the maximum a posteriori (MAP) decision rule. Thus, to
implement the optimal MAP classifier, knowledge is required about the a
posteriori probabilities P (W |X). In practice, however, these probabilities
are never exactly known, and they need to be estimated from a set of training
examples. Since the a posteriori probabilities are relatively hard to estimate,
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the decision rule above can be rewritten using Bayes’ rule

C(X) = argmax
W∈W

P (W |X)

= argmax
W∈W

P (X|W )P (W )
P (X)

= argmax
W∈W

P (X|W )P (W ).

The last simplification can be done without loss of generality, since the
distribution P (X) is not dependent on the word sequence and is therefore
not affecting the maximization operation. The likelihood, P (X|W ), and
the prior probability, P (W ), are far less complicated to estimate than the
posterior probability. In most classification problems, estimating the prior
probabilities amounts to a straightforward computation. Estimating condi-
tional likelihoods, on the other hand, tends to be a more difficult problem,
especially when the dimensionality of the observation vector X is large. For
that reason, the conditional likelihood function is often represented in a
parametric form. For example, suppose that the true data distribution of
the conditional likelihood is a normal density with mean µ and covariance Σ.
This single piece of information reduces our estimation problem from esti-
mating an unknown function P (X|W ) to estimating only two parameters,
µ and Σ.

There are several ways in which to solve this estimation problem. The
most common procedure is the maximum-likelihood estimation procedure.
The general principle of the maximum likelihood procedure is to choose the
distribution that maximizes the likelihood of obtaining the observed train-
ing samples. An attractive feature of the maximum likelihood estimation is
its simplicity. Let us assume that a conditional likelihood function is in fact
a normal density function described by the parameter vector θ = {µ,Σ}. To
indicate the dependency of P (X|W ) on θ, we rewrite P (X|W ) as P (X|W, θ).
Assuming that the parameters for each class (i.e. word) are functionally in-
dependent, we can further simplify the notation by removing the indications
of class distinction. P (X|W, θ) then becomes P (X|θ). The problem, then,
is to estimate the parameter vector θ using the information provided in the
training samples. To illustrate, suppose we have a set of training samples
X = {X1, X2, . . . , XN} which are independently drawn from the density
P (X|θ). The likelihood function P (X|θ) can then be defined as

P (X|θ) =
N∏

n=1

P (Xn|θ)
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and the log likelihood function as

LLH(θ) = lnP (X|θ) =
N∑

n=1

lnP (Xn|θ).

The solution to the maximum likelihood estimation problem can now for-
mally be written as

θ̂ = argmax
θ

LLH(θ).

The maximum likelihood estimate for θ can then be obtained by solving the
equations

∇θLLH(θ) = 0.

More details on maximum likelihood estimation may be found in [12].
In most present-day automatic speech recognition systems, the para-

metric form chosen to represent the speech signal is the hidden Markov
model introduced in Section 2.1.4. The likelihood function most commonly
used in ASR is therefore the one described by Equation (2.4). In this
model, the parameters to be estimated are the initial states π, the state
transition probabilities A and the output probability densities b. As men-
tioned in Section 2.1.4, these parameters are usually estimated using the
Forward-Backward estimation algorithm also known as the Baum-Welch
re-estimation algorithm. More details of these algorithms can be found
in [9][12]. The prior probabilities P (W ) are typically modeled by means of
the N -gram model (Equation (2.1)). In isolated word tasks, however, where
the prior probabilities are assumed to be uniformly distributed, the prior
probabilities can be dropped without affecting the maximization operation.

2.2.1 Expanding the MAP decision rule to exploit alterna-
tive pronunciations

In many speech recognition applications, it is desirable to have several al-
ternative pronunciation variants for every entry in the lexicon, in order to
cover more than one possible pronunciation of the corresponding words. Let
the set of words in the vocabulary be defined as W = {W1, W2, . . . ,WK}.
Then, for every word Wk ∈ W there are I(k) pronunciation variants Vk =
{Vk1, Vk2, . . . , VkI(k)} representing Wk in the lexicon. These alternative pro-
nunciation variants can be incorporated into the MAP decision rule as fol-
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lows:

Ŵ = argmax
Wk∈W

P (X|Wk)P (Wk)

= argmax
Wk∈W

I(k)∑

i=1

P (X;Vki|Wk)P (Wk)

= argmax
Wk∈W

I(k)∑

i=1

P (X;Vki;Wk)
P (Wk)

P (Wk)

= argmax
Wk∈W

I(k)∑

i=1

P (X|Vki;Wk)P (Vki|Wk)P (Wk). (2.5)

Here, P (X|Vki;Wk) is the acoustic likelihood of the observation X given
word Wk and the pronunciation variant Vki, and P (Vki|Wk) is the prob-
ability of pronunciation variant Vki being selected to represent word Wk.
In the remainder of this dissertation, this probability will be referred to as
the pronunciation prior probability. Both of these distributions are typi-
cally unknown and need to be estimated from training data. P (Wk) is the
probability of word Wk, which is generally uniformly distributed.

2.3 Discriminative approaches in ASR

As described in the previous section, the theoretical optimality of the MAP
decision rule relies on the basic assumption that the posterior probability or,
equivalently, the class conditional likelihood and the prior probability, are
precisely known. This assumption, however, is often not valid in practical
applications. There are three main reasons why this is so. Firstly, for
computational reasons, the class conditional likelihood P (X|W ) often needs
to be represented in a parametric form. This parametric form is normally
limited by tractable computation and is therefore only an approximation of
the true data distribution. Secondly, the estimation of the parameter set
describing the data distribution might not always be optimal. Finally, lack
of training data may result in a further mismatch between the estimated
parameters and the true data distribution.

For these reasons, indirect learning of model parameters through Bayes’
rule is in fact rarely optimal in practice. Discriminative classifiers aim to
circumvent these problems by learning model parameters directly through
maximizing the posterior probability or some other discriminative function.
In the remainder of this chapter, two such discriminative classifiers will be
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described, namely the Maximum Entropy (ME) classifier and the Minimum
Classification Error (MCE) classifier.

2.3.1 The Maximum Entropy Classifier

Maximum Entropy (ME) modeling was first proposed by Jaynes [13] in 1957
and has since been successfully applied in several areas within the field of
speech technology. It has proved particularly effective in natural language
processing where the ME model has been employed in areas such as language
modeling (e.g. [14] and [15]), part of speech tagging, machine translation
and language understanding (e.g. [16]). Some efforts have also been made
to use Maximum Entropy to discriminatively train the acoustic parameters
of automatic speech recognizers (e.g. [17] and [18]).

Most discriminative classifiers attempt to maximize the posterior prob-
ability

C(X) = argmax
W∈W

P (W |X)

directly. In the Maximum Entropy classifier, the posterior probability P (W |X)
is modeled to satisfy the maximum entropy principle [19]. This principle
states that, given a set of distributions, we should always choose the dis-
tribution with the maximum entropy (the most uniform distribution) that
satisfies a set of constraints. Entropy is defined as a measure of the uncer-
tainty of a probabilistic distribution. The higher the entropy is, the more
uncertain a distribution is, and the more information it contains. The max-
imum entropy principle ensures that by always choosing the distribution
with the maximum uncertainty, the ME model makes as few assumptions
about the true distribution as possible.

To introduce domain-specific knowledge into the model, a set of feature
values can be extracted from a training set. The feature constraints are
usually formulated using a set of binary feature functions. These feature
functions return the value 1 if the predicted word Ŵ corresponds with the
actual word W , and if the observation X satisfies some condition b(X)

fi(X, W ) =
{

1 W = Ŵ and b(X) is true
0 otherwise.

It can be shown [19] that the parametric model that satisfies the feature
constraints while maximizing the entropy is a well-defined log-linear model
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given by

P̃Λ(W |X) =
1

Z(X)
exp

[
F∑

i=1

λifi(X, W )

]

where fi(X, W ) are the feature constraints, F is the number of features in
the set, Λ = {λi} is a set of feature weights and Z(X) is a normalization
factor used to ensure that

∑
W∈W P̃Λ(W |X) = 1

Z(X) =
∑

W∈W
exp

[
F∑

i=1

λifi(X, W )

]
. (2.6)

The feature weights λi are found by maximizing the log likelihood of the
model PΛ(W |X)

λ∗i = argmax
λ

LLH(PΛ).

Given a set of labeled training samples (Xn, Wn), the log likelihood of the
model predicting the real distribution is defined by

LLH(PΛ) =
N∑

n=1

ln P̃Λ(Wn|Xn) =
∑

X,W

P̃Λ(X, W ) ln P̃Λ(W |X)

where the probability distribution P̃Λ(X, W ) is the normalized number of
occurrences of the pair (X, W) in the training samples.

For non-trivial problems, numerical methods need to be employed to
find the optimal parameter set. The most commonly used algorithms are
the Generalized Iterative Scaling (GIS) algorithm [20] and the faster Im-
proved Iterative Scaling (IIS) training algorithm [21]. Recently, the Limited-
Memory Variable Metric (L-BFGS) method [22] has also been found to be
effective for optimizing maximum entropy parameters [23].

2.3.2 The Minimum Classification Error Classifier

The Minimum Classification Error (MCE) classifier was first proposed by
Juang and Katagiri [24] to overcome the fundamental limitations of clas-
sifiers based on distribution-estimation described earlier. While the MCE
method has proven to be effective within several areas of ASR (such as
language model training [25][26], pronunciation variation modeling [27] and
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speaker identification and verification [28][29]), it has mainly been used to
estimate the acoustic parameters of the speech recognizer. Juang et al. ar-
gued in [30] that although the HMM model is a reasonable model for speech
observations, it cannot be explicitly proven that it is the true distribution
form for speech, and for this reason using the discriminative MCE method
for training HMM parameters is the most appropriate choice. Their study
showed that training HMM parameters using the MCE method gave a su-
perior performance over the traditional distribution-estimation method.

In the MCE framework, the classifier design is directly linked to the
actual classification error rate. The goal of the classifier is therefore to cor-
rectly discriminate observations for the best recognition result, rather than
to fit distributions to the observations. The main difference between con-
ventional classifiers and the Minimum Classification Error classifier is that
the latter is based on discriminant functions rather than distribution esti-
mation. In theory, these discriminant functions may or may not be related
to posterior probabilities or conditional probabilities. In many practical
speech applications, however, these functions are often related to the log
likelihood scores of class C(X). The main purpose of the discriminant func-
tion is to determine the classifier’s decision rule. For example, using a set
of discriminant functions, gl(X; Λ), defined by the parameters Λ, a general
form of the word classifier can be defined as

C(X) = Wk if gk(X; Λ) = max
l

gl(X; Λ) (2.7)

where word Wk is recognized if the k-th discriminant function is the largest
one for utterance X. The MCE classifier design is then performed in such
a way that minimizing the expected loss of recognition accuracy directly
relates to the minimization of the classification error rate. To achieve this,
a three-step estimation procedure is employed.

In the first step, an error criterion expressing the decision rule of Equa-
tion (2.7) in a functional form is specified. To that end, there exist many
possible functions. Juang et al. [30] used the class misclassification measure,
dk(Xkn; Λ), defined as

dk(X; Λ) = −gk(X; Λ) + log

[∑
j,j $=k egj(X;Λ)η

K − 1

] 1
η

(2.8)

where K is the number of classes. This misclassification measure compares
the discriminant function of the correct class (k) with that of the competing
classes. A positive misclassification measure, therefore, indicates that the
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chance of a misclassification is higher than the chance of a correct decision
and a misclassification measure less than zero indicates the reversed situa-
tion. In Equation (2.8), the parameter η is a positive number and acts as
a tuning parameter. Increasing this parameter gives preference to competi-
tors with higher likelihood scores, and setting this parameter to infinity will
force the misclassification measure to only consider the best competitor.

In the second step, a loss function is defined by mapping the misclas-
sification measure to a zero-to-one continuum, making it more suitable for
optimization

lk(X; Λ) =
1

1 + e−dk(X;Λ)
. (2.9)

If the loss is close to zero, the utterance is likely to be correctly recognized
given the parameters Λ. The larger the measure is, the larger the risk for
an incorrect recognition of the utterance.

Finally, to estimate the parameters of the classifier, the overall perfor-
mance of the classifier needs to be defined. The expected loss of an arbitrary
model Λ is generally used for this purpose. The expected loss is calculated
as the sum of contributions from all classes l(Xn; Λ) emerging from the
available training utterances Xn ∈ X :

L(X ; Λ) =
1
N

N∑

n=1

l(Xn; Λ) (2.10)

Following this three-step procedure results in a classifier design where
the classifier parameters, Λ, can be optimized in terms of minimum expected
loss. Various minimization algorithms can be used to minimize this function.
Most studies rely on the powerful generalized probabilistic descent (GPD)
algorithm to perform this task. More details concerning this algorithm may
be found in [24].
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Chapter 3

Proper name recognition

One of the most difficult and complex problems in Automatic Speech Recog-
nition (ASR) today is posed by proper names. Many ASR applications,
such as car navigation, travel assistance and directory assistance applica-
tions, rely on accurate recognition of proper names. In this chapter, we will
describe several elements that can have a detrimental effect on the perfor-
mance of these applications and give an overview of some of the methods
reported to improve the performance of similar applications in the litera-
ture. In the first part of this chapter (Section 3.1), the problem of accurately
recognizing proper names, and non-native names in particular, will be in-
troduced. In Section 3.2-3.5, an overview of methods previously reported to
solve some of these challenges will be discussed. These methods are divided
into four main categories namely; methods that reduce the perplexity of the
ASR system (Section 3.2), methods that model pronunciation variation at
the lexical level (Section 3.3), methods that model pronunciation variation
at the language model level (Section 3.4) and methods that model pronun-
ciation variation at the acoustic level (Section 3.5). In the final part of this
chapter (Section 3.6), an introduction and a general outline of the name
recognition approach proposed in this dissertation will be given.

3.1 The challenge of accurately recognizing proper
names

A common problem for most name recognition systems is that there often
tends to be a mismatch between the way a proper name is pronounced by
the user and the way the name is represented in the ASR system through
acoustic models and phonetic transcriptions.

25
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There are several reasons for this mismatch. The first reason is related
to inaccurate name transcriptions at the lexical level. This is due to the
fact that many proper names do not follow conventional pronunciation rules,
which makes the prediction of reasonable name pronunciations a challenging
task. This problem can be solved by incorporating manually constructed
transcriptions into the lexicon. This, however, not only tends to be infeasible
from a budgetary perspective, but it also requires expert knowledge in both
the native language and languages of other origins present in the name set.

A second reason for this mismatch is that proper names usually have a
large number of valid pronunciations. This pronunciation variation can be
attributed to several factors such as; the origin of the name, the speaker’s
familiarity with the name, linguistic background of the speaker and the
name, among other factors. This means that even if the lexicon contains an
accurate representation of the name in question, the system will still fail to
recognize the name if the speaker is not familiar with the name and chooses
a different name pronunciation.

A third reason for the mismatch between the ASR system and the actual
pronunciation of a name, is that many name recognition systems contain
a considerable number of non-native names. Non-native proper names are
singularly challenging since they have an even larger variety of valid pro-
nunciations. An individual speaker’s pronunciation of a non-native name is
likely to be influenced by several sociocultural factors. Eklund and Lind-
ström [31] mention regional background, gender, education and age as im-
portant in this regard. Other underlying factors mentioned by the same
authors are: the speaker’s knowledge of the target language and other for-
eign languages, the speaker’s expectations of the listener’s knowledge of the
target language, the social status of the speaker and listener, the time and
the place the name first appeared, the familiarity of the name through me-
dia and travel, the population of name bearers and the similarities between
the languages involved. Both Fitt [32] and Eklund and Lindström [31] point
out that speakers also tend to use non-native sounds to a varying degree,
depending among other things on their knowledge of the name’s origin and
the origin language. Trancoso et al. [33] found that speakers actually can
alter their pronunciation of a name towards the target language, or towards
another foreign language they know well, even with a limited knowledge of
the language in question.

Another problem one often comes across in name recognition applica-
tions is that the number of names to be recognized can be very large. Many
name recognition systems can effectively contain several hundred thousand
name entries, which makes the name recognition task a high perplexity
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problem. It is a well known fact that when the vocabulary of an ASR sys-
tem increases, lexical entries start to resemble each other which decreases
the recognizer’s chance of selecting the phonetic transcription of the correct
word. This was illustrated by Kamm et al. in [34] where they investigated
the feasibility of having 1.5 million names in a directory assistance appli-
cation. The study showed that the name recognition accuracy decreases
logarithmically with the increasing number of names in the vocabulary.

Inaccurate lexical representations, variations in pronunciation, the use
of non-native sounds and high perplexity pose severe challenges to the ASR
engine. These issues can be partially remedied by either reducing the per-
plexity of the system or by modeling the pronunciation variation within
the ASR system. This pronunciation modeling can be done either at the
lexical level, at the acoustic level or at the language model level. Lexical
pronunciation variation modeling has been thoroughly investigated the last
decades and is still regarded as an important problem. The topic was given
special attention in 1998 to 2002 through workshops organized in Rolduc
(the Netherlands) in 1998, Sophia-Antipolis (France) in 2001 and Estes Park
(Colorado, USA) in 2002, and will also be the main focus of the literature
overview given in this chapter.

In the following sections we will give an overview of some of the lexical,
acoustic and language model approaches to pronunciation variation model-
ing given in the literature. Although special attention will be given to the
modeling of variation seen in proper names and non-native speech, relevant
work in lexical pronunciation variation modeling will also be surveyed. Some
attention will also be given to studies attempting to reduce the perplexity
of large vocabulary name recognition tasks.

3.2 Reducing the perplexity of large vocabulary
systems

As mentioned in the previous section, Kamm et al. [34] showed that the
name recognition accuracy decreases logarithmically with increasing num-
ber of names in the vocabulary. Gao et al. [35] observed the same decrease
in performance when they studied the performance of their directory assis-
tance system which contained about 280,000 names. This study also showed
that having more pronunciation variants in the lexicon (without changing
the vocabulary size) can be beneficial. An error analysis of unsuccessful calls
performed in this study revealed that over half of the errors made in their
system was attributed to names either not in the vocabulary or to names
which were hard to pronounce (many of which were of foreign origin). The
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authors tried to tackle these issues using techniques such as speaker clus-
tering, massive acoustic adaptation of previous calls, unsupervised sentence
adaptation and pronunciation modeling methods.

Other studies have tried to introduce restrictions on the user in order to
improve the performance of large vocabulary directory assistance applica-
tions. In both Meyer and Hild [36] and Hild and Waibel [37], the caller was
restricted to spell the first names and/or last names in a telephone-based
name recognition system. Kellner et al. [38] attempted to circumvent the
perplexity problem by introducing restrictions on the vocabulary using a
hierarchical dialog structure which reduced the vocabulary considerably in
every step of the dialog. Another approach to tackle the high confusability
in directory assistance applications has been to use meta data such as caller
ID [39] and available data such as lists of friends and relatives, place names
and other relevant information [40], to attain prior information on which
names are likely to appear. Both approaches reported large performance
improvements on the name recognition task. Béchet et al. [41] [42] attained
a noticeable improvement in name recognition performance by re-scoring
N-best hypotheses generated by a directory assistance system developed at
France Telecom R&D. In this approach, alternative word hypotheses were
found by traversing a phoneme lattices generated from the re-scored N -best
lists.

3.3 Modeling pronunciation variation at the lexi-
cal level

Modeling pronunciation variation at the lexical level usually entails adding
multiple phonetic transcriptions of all the words in the vocabulary to the
base lexicon. The rationale behind this is that having several pronunciation
variants for each word in the lexicon considerably increases the recognizer’s
chance of selecting a variant corresponding to the correct word. When a lex-
icon covers a high amount of observed pronunciation variation, the lexicon
is said to have a high phonetic coverage. Having too many pronunciation
variants in the lexicon, however, can also introduce new errors since pro-
nunciations of different words start to resemble each other. This effect is
commonly referred to as lexical confusability. Several studies have confirmed
that having a high lexical confusability will introduce more recognition er-
rors and increase the decoding time ([43], [34], [44], [35] and [45]). Studies
performed by Yang and Martens [44] and Kessens et al. [45] showed that
adding multiple pronunciation variants to the lexicon is only beneficial up
to a certain point. In fact, both studies showed that when the number of
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variants per word exceeds 2.5, the system starts performing worse than a
system using only one variant per word.

A successful lexical modeling scheme should therefore construct a lexicon
that contains a good balance between phonetic coverage and confusability.
In an attempt to simulate such a lexicon, McAllaster et al. [46] conducted a
“cheating” experiment where they added all the phonetic transcriptions of
the test set to the base lexicon. When tested on data fabricated from acous-
tic models, the experiment showed a considerable performance increase of
when compared to using only the base lexicon. In a similar experiment,
Saraçlar et al. [47] achieved a relative performance improvement of 43%
by using a lexicon comprising phonetic transcriptions extracted from per-
forming phoneme recognition on the test set. These experiments show that
having the correct variants in the recognition can improve the performance
substantially given that there is a match between the acoustic models and
the pronunciations in the lexicon.

To optimize the recognition lexicon, most lexical modeling schemes to-
day employ a two-phase optimization process comprising a generation phase
which generates a set of pronunciation candidates and a selection phase
which selects the pronunciation candidates most likely to correct more er-
rors than they introduce. The generation phase is often divided into three
sub-phases. In the first phase, linguistic evidence is retrieved from either
existing knowledge sources or from actual speech data. In the second phase,
formalizations are usually derived from the information obtained in the pre-
vious phase. These formalizations are then used in the third sub-phase to
generate a set of pronunciation variants. The selection phase then aims to
retrieve from this set the variants most likely to perform well. In the work
described in this dissertation we will mainly focus on this last phase; the
selection phase. In the remainder of this section we will therefore only give
a brief overview of the literature regarding the generation phase and give
more attention to the selection phase.

3.3.1 Generation phase

Gathering information

To model pronunciation variation accurately it is necessary to obtain some
evidence of the variation that is most likely to occur. This information
can either be collected from existing knowledge sources (knowledge-based
approaches) or from actual speech data (data-driven approaches). Both
of these approaches can be divided into direct approaches and indirect ap-
proaches. The direct approaches extract new pronunciations for the words
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in the vocabulary directly from available data sources. Indirect approaches,
on the other hand, aim to infer a set of formalizations from the data and use
these to generate pronunciation variants for both seen and unseen words.

In direct knowledge-based methods, alternative pronunciations can be
extracted from several existing lexical and linguistic resources. One di-
rect knowledge-based approach is to simply retrieve pronunciation variants
from existing electronic pronunciation lexicons. Obviously, this approach
is limited in that it will not be able to model pronunciation variation for
words not in these lexicons. An example of an indirect knowledge-based
approach, is to generate pronunciation variants from a set of pronunciation
rules derived from linguistic knowledge. These rules can be built manually
or extracted from existing knowledge sources using techniques such as Clas-
sification And Regression Trees (CART). Knowledge-based approaches to
pronunciation variation modeling are often criticized for being expensive in
terms of human resources, having an insufficient coverage of pronunciation
variation and being unable to model the frequency of the variations found.
Rules derived from knowledge sources are also commonly known to be quite
ill-suited for modeling non-standard speech e.g. dialect, conversational and
non-native speech. Moreover, for many languages (such as Norwegian) not
many suitable lexical and linguistic resources are available.

Data-driven approaches to pronunciation variation modeling aim to ex-
ploit real speech data by extracting the pronunciations observed in a data
set. These transcriptions can then either be used directly in recognition lex-
icons or indirectly by deriving a set of formalizations from them. Indirect
approaches often rely on smaller segments than words and will therefore
also give more reliable estimates and generalize better. One advantage of
data-driven approaches, as opposed to knowledge-based approaches, is that
they enable us to compute probabilities for the variants. A disadvantage of
these approaches is that they can suffer from generalization problems and
produce variants that are too specific for the employed data set.

Deriving formalizations

As discussed above, when employing indirect pronunciation variation mod-
eling, pronunciation variants are generated using a set of formalizations.
These formalizations are usually derived by aligning a set of reference tran-
scriptions with a set of alternative transcriptions. These alternative tran-
scriptions can be derived either from existing knowledge bases or from
speech data. The reference transcriptions can be manually derived translit-
erations of a speech utterance or a phonetic transcription retrieved from an
available pronunciation dictionary. The alignments are usually performed
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by means of some form of dynamic programming algorithm. After the
alignment, differences between the reference transcription and the alterna-
tive transcription, such as substitutions, insertions and deletions, will be
used to derive pronunciation rules, train neural networks, train decision
trees and calculate confusion matrices [48]. Of these approaches, the most
common procedure is to derive a set of rules. These pronunciation rules are
normally phone-to-phone mappings as well as phone insertion and deletion
rules. The phone mappings can also be associated with a cost based on
the statistical co-occurrence of phones, as introduced in [49]. The rules are
typically defined in a certain context and most approaches use the left and
right neighboring phones of the target phone. Rule probabilities are often
calculated using frequency counts and help to assess the accuracy of the
rule and to later calculate probabilities for the variants generated using a
specific set of rules. Finally, a pruning step can be performed to exclude
rules with a probability under a predefined threshold.

Generating pronunciation variants

Pronunciation variants can be generated manually, extracted from various
available lexical resources or generated automatically using one of the for-
malisms described above. There are many different strategies for variant
generation reported in the literature (see [48] for an overview), many of
which use one of the following procedures; rules, artificial neural networks,
phoneme recognizers, decision trees, grapheme-to-phoneme (g2p) converters
or Finite-State Transducers (FST).

Several studies rely on context-dependent decision trees to generate a
set of pronunciation variants (e.g. [50], [51], [52], [53], [54], [55], [56]). These
trees are used on a phone-by-phone basis to generate alternative pronuncia-
tion variants from canonical pronunciations. The canonical pronunciations
can be hand-labeled phoneme sequences [55], phoneme sequences emerging
from a phoneme recognizer ([50], [51], [52] and [56]) or a sequence of articu-
latory features obtained using articulatory feature models [54] and [53]. An
approach using decision trees to generate foreign accented pronunciation
variants, was proposed by Goronzy et al. in [56]. In this study, English-
accented variants were generated for German words by decoding German
speech with an English phoneme recognizer and training a decision tree on a
set of standard German reference transcriptions and the variants emerging
from the phoneme recognizer. The resulting decision tree was then used
to find English-accented variants from German transcriptions which later
were added to a German base lexicon. Experiments with native English
speakers uttering German words, showed that this procedure achieved bet-
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ter results than the base lexicon comprising only German base variants.
The study further suggested that even better results might be achieved if
speaker-dependent decision trees were to be used.

Grapheme-to-phoneme (g2p) conversion, also commonly referred to as
letter-to-sound (l2s) conversion, is an important component of many ASR
and text-to-speech applications for predicting pronunciations of lexicon en-
tries. Traditionally, these converters have been created manually using a
set of phonological rules derived from linguistic knowledge. Today, many
state-of-the-art g2p converters are based on statistical models representing
the relationship between graphemes and phonemes, and the relationship
between different graphemes (usually modeled by N -gram models). These
statistical models can be trained using available pronunciation lexicons that
contain large amounts of word-pronunciation pairs. Most g2p converters,
however, are not able to predict accurate pronunciations for words that do
not follow conventional pronunciation rules (e.g. proper names and accented
or non-native speech). Some studies have tried to solve this problem by re-
training the g2p converters (e.g. [57], [58]). Badr et al. [59] recently proposed
a way of learning new pronunciations from a set of spoken utterances by
integrating a known g2p conversion technique with acoustic examples. De-
spite the fact that the acoustic material was quite noisy (it was collected
using an Internet-based crowdsourcing method), this technique achieved a
performance surpassing a lexicon comprising manually created baseforms.

Recently, several efforts have been made to implement phonological rules
using Finite-State Transducers (e.g. [60], [61], [62], [63]). In these studies,
phonological rules were used to transform baseform pronunciations into a
graph of alternative pronunciations which were then incorporated into an
FST-based recognition system. These rules described phonological varia-
tions such as place and voicing assimilation, gemination, silence insertion,
alveolar stop flapping, schwa deletion, vowel devoicing, etc. ([60], [62]) and
were mainly derived on the basis of expert knowledge. Hazen et al. [61]
derived rules using information from various levels in the linguistic hierar-
chy such as morphology, part-of-speech, tense, lexical stress, syllable struc-
ture and phonemic content. Livescu and Glass [63] derived simple context-
independent rules from a limited set of training data to model phonetic con-
fusions in non-native speech. A non-native pronunciation graph was then
generated using these rules, and incorporated as an additional resource in
an FST recognizer. Using simple rules and a limited set of training material,
an absolute word error rate reduction of 2.1% was achieved in this study.
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3.3.2 Selection phase

Many of the variant generation approaches described in the previous sub-
section result in an exceedingly large number of new pronunciation variants.
As discussed in the beginning of this section, adding multiple pronunciation
variants to the lexicon increases the recognizer’s chance of selecting the cor-
rect word at the risk of introducing unwanted confusion between lexicon
entries. Over the past few decades, many studies have been conducted to
reduce this confusability. These methods can usually be divided into two
groups; indirect selection methods and direct selection methods. The in-
direct selection methods assess the pronunciation rules used to generate a
pronunciation variant whereas the direct selection methods assess the vari-
ant directly.

Indirect selection methods aim to prune out unlikely pronunciation rules
during variant generation hence reducing the number of variants generated.
One indirect method of reducing confusability in this way was proposed by
Cremelie and Martens [64] and was later used with some success by Yang
and Martens [65]. In this approach rules were organized in a hierarchi-
cal manner and frequency counts were used to eliminate specific rules that
could be covered by more general rules. Another approach using frequency
of occurrence to select the best performing rules was described by Kessens
et al. in [45]. Amdal [49] used improvement in log likelihood scores as a
measure to assess the performance of a set of pronunciation rules. This
measure compared the acoustic log likelihood scores of phonetic transcrip-
tions affected by a pronunciation rule with the corresponding score for the
reference transcription. The resulting log likelihood ratio score was then
used as a rule pruning measure. Applying this rule pruning measure in the
generation of new variants, yielded a result outperforming a traditional rule
pruning method based on rule probability, using even fewer rules.

Many studies have employed a direct method to determine which pro-
nunciation variants to include in the lexicon and consequently various vari-
ant selection criteria have been proposed. In the selection approach pro-
posed by Riley et al. in [55], a forced alignment procedure was used on a set
of training utterances and the pronunciation variants that were chosen often
by the recognizer were then included in the lexicon. Slobada and Waibel [66]
used a phone confusion matrix to eliminate the variants that only differed
in confusable phones from the lexicon. In Torre et al. [67], a confusabil-
ity matrix was used in combination with word confusions to reject highly
confusable variants. Confidence measures have been used by many authors
(e.g. [50] and [68]) to select the variants most likely to cause the least confu-
sion. In Holter and Svendsen [69], a maximum likelihood criterion was used
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to assess the pronunciations generated from a phoneme recognizer. While
several approaches have been based on the maximum likelihood criterion,
this study aimed to maximize the joint likelihood of the training data. This
approach resulted in an error rate reduction of up to 18.4% relative.

Some efforts have also been made to define metrics that can calculate
the confusability of a lexicon. Wester and Fosler-Lussier [70] defined such a
metric by using a forced alignment procedure on a set of training utterances
and a lexicon comprising the phonetic transcriptions under evaluation. This
procedure resulted in a phone transcription for every utterance in the train-
ing data. This phone transcription was then used to obtain every sequence
of variants in the lexicon that matched any substring in this phone tran-
scription, producing a lattice of possible word sequences. Finally, the con-
fusability was calculated by summing all “confused” phones for each phone
and dividing this number by the total number of phones in the alignment.
Although there was no direct correlation between this confusion metric and
the error rate, it was useful as a variant selection criterion, providing an 8%
relative reduction in word error rate and a substantial decrease in decoding
time. This confusability metric was later used by Fosler-Lussier et al. [71]
to create a framework for predicting and simulating speech recognition er-
rors of unseen words in an isolated word task. The authors’ goal was that
this framework could help predict what phonological variations are likely
to increase the lexical confusability and to train new and better pronun-
ciation and language models in the future. A recent approach employing
this framework to simulate recognition errors to be used in discriminative
language model training was proposed by Jyothi and Fosler-Lussier [72].

It has been shown that pronunciation variation is highly dependent on
prosodic factors (such as speaking rate, phone duration, fundamental fre-
quency, signal-to-noise ratio, etc.) in addition to phonetic context [73]. This
dependency is often used to argue for the use of dynamic lexicons, where
the pronunciation of a word is determined dynamically during recognition
using linguistic context information. Finke and Waibel [74] proposed a dy-
namic lexicon where the pronunciation prior probability varied as a function
of the speaking style. In this study, phone duration was found to be the
most important cue to pronunciation variability. Fosler-Lussier and collab-
orators have done a great deal of work on building dynamic lexicons using
decision trees to select the pronunciation variants that are most likely to
perform well in the current linguistic context ([75], [50], [51] and [52]). In
this work, the linguistic context is modeled by building one decision tree
for every basic recognition unit. In phone-based decision tree systems, each
decision tree is related to a particular phone and predicts how the phone is
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realized in context. These trees use context cues such as the identity of the
neighboring units, duration of a unit, speaking rate and word predictability
to generate a finite-state grammar for the unit. These grammars are then
concatenated during recognition to form one large grammar for the entire
utterance. The best pronunciation is then found dynamically by employing
this model in an acoustic re-scoring decoder which re-scores the initial list
of hypotheses.

However, there are some problems with the approaches mentioned above.
Firstly, in many of these approaches the number of variants per lexicon en-
try is pre-determined and equal for all entries. This does not seem to be
the best approach for the name recognition task, where the variation in pro-
nunciation varies substantially depending on which name is being uttered.
Secondly, to select the best performing pronunciation variants from a set of
candidates it is desirable to have a way of measuring the effect a particular
pronunciation variant will have on the error rate. In most variant selection
approaches there is no direct relationship between the selection criterion
and the actual recognition error rate, which makes it hard to measure this
effect. Finally, it can be argued that the optimal lexicon should not only
contain pronunciation variants that correct more errors than they introduce,
it should also contain complementary pronunciation variants, correcting dif-
ferent types of recognition errors. The optimal variant selection criterion
is therefore a criterion that identifies the pronunciation variants that both
corrects the most recognition errors and corrects different recognition errors
than the variants already in the lexicon.

Vinyals et al. [27] proposed to adopt the Minimum Classification Er-
ror (MCE) criterion for selecting the most distinctive pronunciation vari-
ants. In this study a phone recognizer was employed to generate a set of
pronunciation candidates. These candidates were then evaluated by calcu-
lating a MCE score for every candidate on the basis of likelihood scores
emerging from the phone recognizer. By using the MCE criterion to select
variants, this approach uses a selection criterion that is directly related to
the recognition performance. This procedure was tested in a large vocabu-
lary setting using short utterances, many containing proper names such as
street and city names, yielding an overall sentence error rate reduction of
2.6% absolute.
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3.3.3 Lexical pronunciation variation modeling: the case for
proper names

Automatic recognition of native and non-native proper names is a noto-
riously difficult problem due to the large amount of variation seen in the
pronunciation of these names. It can therefore be especially beneficial to
model this variation at the lexical level, as described in the preceding sec-
tions. The majority of the studies on this topic in the literature concentrate
on generating new, or improving existing, phonetic transcriptions to accu-
rately represent names in the recognition lexicon.

A knowledge-based approach, generating a set of additional phonetic
variants for city names from five European languages, was proposed by
Schaden ([76] and [77]). In these studies, foreign accented phonetic tran-
scriptions were obtained by applying a set of phonological rewrite rules to
available native canonical transcriptions. These rules were context-based
phoneme/allophone mapping tables that modeled systematic mispronunci-
ations commonly occurring when non-native speakers uttered native city
names.

A data-driven approach to modeling the variation seen in proper names,
is to generate a set of alternative pronunciations from audio samples. Ram-
abhadran et al. [78] described an algorithm that automatically generated
speaker-dependent pronunciation variants from acoustic samples of names
in a name dialing application. In this algorithm, the variants were gener-
ated from the audio samples using an HMM-based ballistic labeler which
constructed a lattice of sub-phone units from the speech utterance. The
probability of moving from one node (phone) to another in this lattice was
then determined by weighting the probability stored in a phone transition
model (trained on a database of names) with the score obtained from the
HMM. Adding the newly created variants to the recognition lexicon resulted
in a performance surpassing that of a lexicon comprising hand-written vari-
ants. The same approach was later reused in another large vocabulary name
recognition task in Gao et al. [35]. In this study, adding the derived pro-
nunciations to the recognition lexicon gave an improvement in error rate
of 2.28% absolute when tested in a large vocabulary setting on a test set
comprising 5,700 native and non-native name utterances.

Several studies over the last years have relied on general purpose grapheme-
to-phoneme (g2p) transcriptions, or modified versions of these transcrip-
tions, to represent native and non-native proper names in the lexicon. A
pronunciation-learning algorithm utilizing both audio samples and linguistic
information contained in g2p transcriptions was reported in Beaufays et al.
[79]. In this algorithm, alternative proper name pronunciations were gen-
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erated from a set of audio samples using a speech recognizer and acquired
linguistic knowledge. The algorithm started by applying a g2p converter to
all the names in the vocabulary. These variants were then forced aligned
with training utterances of that name and posterior probabilities were calcu-
lated for each phone. The phone which had the lowest posterior probability
was then successively replaced by each phone in the phone set to form a set
of alternative pronunciation variants. To select the most promising variants
among these variants a joint optimization procedure was employed. This
procedure simultaneously maximized the acoustic likelihood of the variant
as well as its linguistic probability, which was calculated using the initial
pronunciation probability and a linguistic model derived from an existing
ASR dictionary. Adding the resulting variants to the recognition lexicon
yielded an error rate reduction of up to 44% relative compared to a refer-
ence g2p lexicon.

In [33], Trancoso et al. were faced with the problem of decoding French
place names spoken by German speakers (and vice versa) in a car naviga-
tion system. They noticed that their general purpose German and French
g2p converters covered only a small portion of the pronunciation variation
observed in their database. To solve this problem, alternative “nativized”
pronunciations for the non-native names were generated using special g2p
rewrite rules derived statistically from data and previous know-how from
the ONOMASTICA project [80].

In another study, performed by Cremelie and ten Bosch [81], the task
of accurately recognizing non-native proper names was solved by using
state-of-the-art g2p converters for multiple languages (Dutch, English and
French). Using these converters, three g2p transcriptions were generated for
each of the 500 names in the vocabulary and added to a pronunciation lex-
icon. Using optimized language-dependent transcription probabilities the
authors achieved a considerable relative reduction in name error rate (40%
for native Dutch speakers, 45% for English speakers and 70% for French
speakers). Réveil et al. [82] achieved similar results when including En-
glish and French g2p transcriptions to a native Dutch g2p lexicon. This
lexicon was then evaluated on three different test sets comprising English
and French name utterances spoken by; native Dutch speakers, English and
French speakers and finally Turkish and Moroccan speakers. All three test
sets achieved a substantial gain of over 20% with respect to a baseline system
containing only Dutch g2p transcriptions.

A similar approach, using eight g2p converters trained on eight different
languages and a language identification scheme, was employed by Maison
et al. in [83]. In this study, alternative pronunciations were generated for
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all the names in the vocabulary using these g2p converters. A language
identification scheme was then used on each of these names to find the
two languages most likely to be the source of the name. Then, the two
most probable g2p transcriptions generated by the g2p converters of these
two languages were added to two different baseline lexicons; one containing
manually generated transcriptions for each name and one containing native
US English g2p transcriptions for each name. The method was evaluated
in a large vocabulary setting (44k names) on three different test sets; US
names spoken by US speakers, foreign names spoken by US speakers and
foreign names spoken by native speakers of the language in question. For
the first test set the reduction in sentence error rate was not significant. For
the second and the third test set, however, this method resulted in a 10%
and 25% absolute reduction in the sentence error rate respectively.

Although g2p converters contain valuable linguistic knowledge for most
words, they naturally perform rather poorly on word pronunciations that
deviate from what conventional pronunciation rules would predict. Much
effort has therefore been invested in adapting the g2p transcriptions to han-
dle category-specific pronunciation variation, such as that seen in proper
names. One example of this is the grapheme-to-phoneme (g2p) phoneme-
to-phoneme (p2p) tandem proposed by Yang et al. [84]. This approach
aims to correct the mistakes made by the g2p converter by using a category
specific phoneme-to-phoneme converter trained on target transcriptions of
actual proper name pronunciations. The p2p converter is trained using a
four step training procedure. First, the target transcriptions are automati-
cally aligned with the corresponding g2p transcription and the orthographic
transcription of the name. In the second step, phone transformations ac-
counting for the systematic errors made by the g2p converter are derived
from the discrepancies observed in the alignment. These transformations are
then used in the third step to generate a set of training samples from which
general pronunciation rules are learned. Finally, pronunciation rules are
induced from these training examples. In the variant generation phase, the
p2p converter takes the initial g2p transcription and the orthographic tran-
scription as input and aligns these transcriptions. This alignment is then
searched for a phonemic or orthographic context in which one of the learned
rules applies. If such a context is found, the corresponding stochastic rule is
applied and the converter continues searching the alignment for other con-
text for which a rule can be applied. Preliminary experiments using three
p2p converters trained on first names, last names and geographical names
showed significant improvements in both word error rate and the number of
improved erroneous initial transcriptions. Using the same g2p-p2p tandem
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on a set of names of foreign origin, van den Heuvel et al. [85] were able to
automatically generate pronunciation variants for Dutch, English, French
and Moroccan proper names which yielded a better performance than the
initial g2p variants.

In an effort to adapt the grapheme-to-phoneme conversion of names in
a name recognition system, Li et al. [58] employed a set of acoustic name
samples. In this work, the original g2p converter was based on a N-gram
graphoneme model, where a graphoneme unit was defined to be a pattern of
graphemes connected with the corresponding pattern of phonemes. Acous-
tic likelihood scores calculated by a speech recognizer when decoding the
adaptation data was then used to adopt the original n-gram parameters.
Two different training strategies were employed in this study: a maximum
likelihood approach (ML) and a discriminative approach (DT). In the max-
imum likelihood approach, the most likely phoneme sequence was found
by maximizing the likelihood that the phoneme sequence was generated
from the given grapheme sequence and acoustic sample. This phoneme se-
quence was then used together with the corresponding grapheme sequence
to re-estimate the graphoneme model. This procedure was repeated until
convergence. In the discriminative training approach, the goal was to model
the graphoneme parameters in such way that the variants generated using
the updated g2p converter minimized the actual error rate. To that end, the
conditional likelihood of the grapheme sequence given the acoustic samples
was maximized. When tested in a large vocabulary setting (58k names) us-
ing a test set containing 2844 name utterances (first name, last name), the
ML training approach resulted in a 7% relative reduction in sentence error
rate (SER), whereas the DT training approach yielded a 12% reduction in
SER.

3.4 Modeling pronunciation variation at the lan-
guage model level

As described above, pronunciation variation is often handled at the lexical
level by adding multiple pronunciation variants to the recognition lexicon.
After adding these variants in the lexicon the question becomes how to
handle these variations in the language model. Strik and Cucchiarini [86]
describe three ways of handling this in their survey on pronunciation vari-
ation modeling. The first approach is to do nothing and leave the language
models unchanged. This entails using the same word probability for all
pronunciations of that word. The second approach is to treat the variants
themselves as words and use them directly to calculate new N-gram scores,
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an approach employed by Kessens et al. [87], among others. The third
approach is to introduce pronunciation variant probabilities in addition to
word N-gram probabilities in the decoding process.

A common strategy to calculate this probability is to give word pro-
nunciations that occur frequently in some training set a higher probability
than pronunciations that occur infrequently. The rationale behind this is
that words that occur frequently are more important for the overall recogni-
tion performance than infrequent words, but also that frequent words often
contain more variation [73]. Probabilities for rule-generated pronunciation
variants can easily be obtained by utilizing the probabilities of the rules in-
volved in generating the variant, as was done by Cremelie and Martens [64].
An alternative approach, optimizing the pronunciation prior probabilities
in respect to the word error rate, rather than estimating priors by rela-
tive pronunciation frequencies observed in training data, was proposed by
Schramm and Beyerlein [88]. In this approach the pronunciation priors
were optimized discriminatively using the Discriminative Model Combina-
tion (DMC) framework. Incorporating these pronunciation weights into the
lexicon gave a relative error rate reduction of 7.9%.

3.5 Modeling pronunciation variation at the acous-
tic level

Most state-of-the-art ASR systems today employ phones and context-dependent
phones as basic recognition units. In these systems pronunciation variation
is usually modeled by introducing additional pronunciation variants in the
lexicon. These additional variants are commonly generated by applying
some form of substitution, insertion or deletion rules to a baseform pronun-
ciation. This pronunciation modeling strategy is often referred to as explicit
modeling. An alternative pronunciation modeling approach is to model the
variation implicitly, within the acoustic model. In this section we will give
a brief overview of the most common implicit modeling approaches.

3.5.1 Modeling pronunciation variation implicitly

An implicit pronunciation variation modeling approach was proposed by
Hain in [89]. In this study, Hain argued that by stepwise reducing the num-
ber of pronunciation variants per word to one representative variant, it is
possible to model most types of pronunciation variation within the acoustic
model. A lexicon compiled in this way, containing one single pronunciation
per word, was tested on read and conversational speech and the results were
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compared to that of the full lexicon, containing multiple pronunciation vari-
ants per word.1 The results showed that the proposed lexicon performed
equally well or better than the lexicon using multiple pronunciations per
word, given that the starting lexicon is of good quality.

It is often argued, however, that modeling pronunciation variation at the
phonemic level is suboptimal due to the fact that pronunciation variation
often is a result of coarticulation and assimilation effects between different
phones. Sethy et al. argued in [90] that using syllables as the basic acoustic
unit can reduce the need for multiple pronunciation variants, as pronun-
ciation variation observed across multiple phones can be modeled within
the acoustic unit. This study compared a system using context-dependent
phones with a system constructed using syllables for the task of English
proper name recognition. The authors argued that modeling larger con-
texts within the acoustic model could reduce the need of having multiple
pronunciation variants of each word. A performance analysis comparing the
two systems showed that increasing the number of names in the vocabulary
had a much smaller effect on the syllable-based system compared to the
system using context-dependent phones. In fact, the study reported a sub-
stantial increase in name recognition accuracy, on a large vocabulary task
(10k names), when using syllables instead of context-dependent phones as
the basic recognition unit. The downside of using longer recognition units,
however, is that the number of basic models increases with the vocabulary
size, which can often lead to a low coverage in the training data, especially
for larger vocabularies. For the particular case of proper name recognition,
some languages have the advantage that the number of names actually used
is relatively small. In Korean, for example, the 50 most frequent surnames
covers 95% of the population. For these languages, whole word models can
have a significant effect on the error rate, as was shown in a study by Kim
et al. [91]. This is unfeasible for most languages, however, as the number of
commonly used proper names tends to be tens of thousands.

Recent studies (e.g. [54], [53], [92], [93]) have looked into represent-
ing word pronunciations as a sequence of underlying articulatory feature
streams rather than as a sequence of phones. The argument behind this is to
avoid the notion that words are realized as “beads-on-a-string”, i.e. as a se-
quence of non-overlapping phones and that pronunciation variation is just a
series of phoneme-level insertions, deletions and substitutions [94]. Saraçlar
argues in [95] that some types of pronunciation variation are the result of
more continuous and gradual changes rather than just a simple replacement
of one phone with another. Some studies further argue that pronuncia-

1Context-dependent phones were used in this study.
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tion variation can be better modeled by using articulatory features which
are a more fine-grained representation of a word pronunciation. Livescu
and Glass describe in [54] a feature-based pronunciation model where each
baseform in the lexicon is represented by multiple streams of underlying fea-
ture values. These context-independent features were described as linguistic
properties such as degree of lip opening and lip rounding, the location of
the tongue tip along the palate. Dynamic Bayesian networks (DBN) were
then used to model the relationship between these linguistic features and
words. In this pronunciation model, pronunciation variation can be seen as
a result of an asynchrony between different features, e.g. the situation where
one feature transitions to the next state before all the remaining features.
Pronunciation effects such as vowel nasalization, for example, is typically
a result of the velum feature changing state before the other articulatory
features. In experiments recently performed by Bowman and Livescu [53]
and Jyothi et al. [93], the context-independent features of [54] were replaced
with context-dependent features, modeled using decision trees. In the latter
of these studies, context-dependent models based on articulatory features
were evaluated on a lexical access task and compared with the performance
of context-dependent phone models on the same task. The result of this
experiment showed that the feature-based models performed significantly
better than the phone-based models. Furthermore, with the inclusion of
context, the best feature model generally ranks the correct word hypothesis
higher in the hypothesis list compared to the baseline phone-based models.

3.5.2 Iterative adaptation of existing models

An acoustic adaptation technique that is often used in conjunction with a
lexical pronunciation variation modeling scheme, is the iterative re-training
of existing acoustic models (e.g. [96],[55], [66], [97], [98]). In this approach,
new, and hopefully improved, pronunciation variants from the lexical mod-
eling scheme are used to re-train the acoustic models used a previous iter-
ation. The rationale behind this is that by using these improved variants,
a better match between the basic acoustic units and the speech signal can
be achieved, which will most likely lead to more accurate acoustic models.
In the next iteration, the new set of acoustic models are used in the lexi-
cal modeling scheme to generate new and improved pronunciation variants,
which are again used to re-train the acoustic models. This procedure is
iterated until no further gain is observed. The success of this scheme has
been variable. Some studies have reported increased performance ([96],[55],
[66]), whereas other studies such as [97] and [98] observed only a limited or
no improvement at all.
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3.5.3 Modeling non-native speech

As discussed previously in this chapter, non-native speakers tend to use
non-native sounds to a varying degree. Speakers with a high proficiency
in the target language may have a near-perfect realization of non-native
sounds whereas other speakers might have a heavily “nativized” realization
of the same sounds. Several methods for handling non-native speech have
been proposed in the automatic speech recognition literature. Perhaps the
most intuitive approach has been simply to train the acoustic models us-
ing relevant non-native speech. Réveil et al. showed in their comparative
study [82] that substantial gains could be achieved by using acoustic models
trained on multilingual speech data. In this study, the authors compared
the performance of standard monolingual acoustic models models trained
on native (Dutch) speech and state-of-the-art multilingual acoustic models
trained on Dutch, UK English, French and German speech. The under-
lying phoneme set of the monolingual models consisted of 45 phonemes,
while 80 phonemes were used in the multilingual case. These models were
tested on the recognition of Dutch, English, French, Moroccan and Turkish
proper names spoken by native speakers of the same five languages. The
experiments showed substantial performance gains for all non-native names
spoken by all speakers. These gains were, as could be expected, at the
expense of the recognition performance of native names uttered by native
speakers.

In many cases, however, training multilingual models is not an option
since non-native speech is rarely available in the quantities necessary to
train accurate acoustic models. Another approach successfully employed
by a number of studies (e.g. [35], [99] and [100]), is to model the acoustic
variation in non-native speech by applying well-known acoustic adaptation
schemes such as the MLLR approach and the MAP approach.

A comparative study of different acoustic adaptation techniques was per-
formed by Wang et al. [99] for the task of recognizing English words spoken
by German native speakers. In the first approach described in this study,
acoustic models were trained using 34 hours of native English speech pooled
together with 52 minutes of German speech. This approach resulted in a
slight performance gain of 0.8% absolute compared to the baseline English
models (WER 43.5%). The authors argued that this result most likely was
an effect of the moderate amount of non-native training data compared to
the extensive amount of native training data. In the second approach, na-
tive English models were adapted using a MAP adaptation technique and
52 minutes of non-native speech. This resulted in a performance gain of 6%
absolute compared to using the native English models. The third approach
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explored an interpolation technique using the weighted average of the prob-
ability density functions of the native and the non-native acoustic models.
Using this technique the authors achieved a considerable gain of 7.5% ab-
solute. In the final approach, a Polyphone Decision Tree Specialization
method [101] was adopted to port the native decision tree to the non-native
language to represent the context of the non-native speech more accurately.
Preliminary experiments using this approach showed a performance gain of
8% absolute compared to using the baseline English models.

A different, well proven approach to model the variation observed in
non-native sounds, is to extend the native phone set with phones specific
to the non-native language. Stemmer et. al [102] used such an approach to
model native German speakers uttering English movie titles. In this study,
phones shared by the non-native language (English) and the native lan-
guage (German) were trained using both English and German speech data.
Phones unique to only one of the two languages were trained using only
language specific data. This approach improved the recognition accuracy
by 16.5% absolute. Extending the phone set, however, may in some cases
reduce the discriminative power of the models and will augment the number
of pronunciation variants needed in the lexicon, which will in turn increase
the confusability between lexicon entries. A common way to avoid expand-
ing the phone set is to map all foreign phonemes to the best native phone
equivalent. The downside of this approach is that foreign phonemes may
have quite different phonological characteristics than their native equiva-
lent, which means that these phonemes may be inaccurately represented by
the native acoustic model. Stouten and Martens [103] and [104] aimed to
avoid this by introducing the concept of “foreignizable” phonemes, which
effectively are native phonemes attached to a foreign phoneme. In this
study, the phonemes were modeled acoustically by combining scores from
a standard acoustic model with scores from a phonological inspired back-
off acoustic model which was trained on native speech. Since these scores
also were trained purely on native data, this method entirely eliminates the
need for non-native training data. In a small-scale test experiment, this
approach yielded a relative improvement of 11% compared to using purely
native acoustic models.

Gao et al. [35] showed that speaker clustering can be effective to im-
prove recognition accuracy of a speaker independent telephone-based name
dialing system. By clustering speakers with similar acoustic characteristics,
speaker dependent characteristics as well as channel and noise conditions,
the authors managed to reduce both the word error rate and the sentence
error rate in a preliminary large vocabulary experiment.
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3.6 Novel discriminative approaches to variant se-
lection in lexical modeling

Proper names pose a severe challenge to the ASR engine and the reasons
for this are manifold, as discussed in the beginning of this chapter. One
successful solution to this problem has been to include a set of alterna-
tive pronunciation variants in the recognition lexicon. However, this entails
the risk of introducing unwanted confusion between lexicon entries. In the
work described in this dissertation, we aim to increase the recognition per-
formance of non-native proper names by optimizing the lexicon in such a
way that the lexical confusion is minimized. To achieve this, several novel
variant selection approaches will be proposed. This section gives a general
outline of the basic steps common to all the proposed approaches as well as
an introduction to some general concepts and frameworks relevant to the
interpretation of the proposed algorithms.

3.6.1 Main steps of the proposed variant selection approaches

We assume that we have a set of names W = {W1, . . . ,WK}, and that for
any name Wk ∈ W we have a set of training utterances Xk = {Xk1, . . . , XkN},
a grapheme-to-phoneme transcription Gk and a set of auditorily verified
transcriptions Tk = {Tk1, . . . , TkN} of the utterances in Xk.2 Using these
auditorily verified transcriptions and the grapheme-to-phoneme transcrip-
tion Gk, we generate a set of pronunciation candidates, Vk = {Vk1, . . . , VkI}.
An initial lexicon Λc, comprising one general-purpose g2p variant for each
name in W, is then constructed. By replacing the variant corresponding to
name Wk in Λc with variant Vki, we form the temporary lexicon Λki. To
obtain some evidence of the performance of this temporary lexicon, a recog-
nition pass is executed using Λki and the training utterances Xkn ∈ Xk.
This procedure is then repeated for all variants Vki ∈ V. The goal, then, is
to find the optimal set of pronunciation variants for name Wk based on the
evidence observed in the training material. The five main steps of the pro-
posed variant selection approaches are illustrated in Figure 3.1. In some of
the later selection approaches proposed in this thesis (specifically in Chap-
ter 6 and Chapter 7), the optimized lexicon is used in an iterative manner
as input to the selection algorithm. This iterative behavior is indicated by
the dashed line in Figure 3.1.

In the work described in this dissertation, we will mainly focus on the

2These transcriptions are manually created transliterations of what a human expert
actually heard when listening to the individual training utterances.



46 Proper name recognition

Select optimal 
variants

Generate variants
Training data 

{T ,X}

Extract N-best lists 
from ASR engine

Make temporary 
lexicon !ki

Pronunciation 
candidates V 

Initial G2P 
lexicon !c

Optimized
 lexicon

1

2

5

Repeat for all
 Vki ! V

X

T

Perform 
recognition on X 

3

4

Figure 3.1: Basic steps of the proposed pronunciation variation modeling
approaches.

variant selection phase (step 5) of Figure 3.1. We will do this by consid-
ering the variant selection problem as a decision problem, where the most
promising variant V ∗

k can be found by maximizing a decision rule S(Xk,Λki)

V ∗
k = argmax

Vki∈Vk

S(Xk,Λki). (3.1)

Since we aim to optimize recognition lexicons by selecting a minimal amount
of maximally effective variants, the decision rule S should be designed in
such a way that the resulting recognition lexicon contains a good balance
between phonetic coverage and lexical confusability. To achieve this, the
decision rule must be composed of a variant selection criterion that reflects
a variant’s potential to correct recognition errors. To that end, several cri-
teria have been proposed in the literature, as discussed in Section 3.3.2. In
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the remainder of this section, we will introduce three such variant selec-
tion criteria which will form the basis of the variant selection approaches
proposed in this dissertation.

3.6.2 A Maximum Likelihood variant selection criterion

One conventional way of assessing the performance of a speech recognition
system is to utilize the acoustic log likelihood scores calculated by the recog-
nition engine. This score is the likelihood of a path through the recogni-
tion network when recognizing utterance Xkn, calculated using probabilities
stored in the HMM model and in the language model. The likelihoods scores
for the most likely paths (name hypotheses in our case) are then given in
the N -best list, Hkn, by the recognizer. If name Wk is in this list, the log
likelihood score of the name can be directly extracted from Hkn. If it is not
in this list, the name is given a fixed score much lower than the score of
the least likely hypothesis in Hkn. The total log likelihood score (LLH) for
name Wk, is then defined as the sum of the log likelihood scores calculated
for all the training utterances Xkn ∈ Xk of name Wk:

LLH(Xk,Λki) =
N∑

n=1

LLH(Xkn,Λki). (3.2)

Since the log likelihood score gives an indication of the expected recognition
performance of a variant, it seems like a good candidate for our variant
selection criterion. By prioritizing the selection of the variants with the
maximum likelihood scores, we may achieve a considerable level of lexicon
optimization.

3.6.3 A discriminative Maximum Entropy (ME) variant se-
lection criterion

A discriminative way of assessing the performance of a pronunciation vari-
ant Vki ∈ Vk, is to model the probability of an utterance of name Wk being
correctly recognized by the recognition engine when using lexicon Λki (com-
prising variant Vki). A well-suited framework for modeling this probability,
is the Maximum Entropy framework described in Section 2.3.1. As described
in this section, the Maximum Entropy principle states that we should choose
the most uniform distribution that satisfies a set of constraints. Applying
this principle to the pronunciation variation modeling task, the problem can
be defined as finding the probability distribution P (Λki|ck) of lexicon Λki

that maximizes the entropy under a set of constraints ck. In this work we
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will use one single constraint, namely whether or not an utterance xk ∈ Xk

is recognized correctly when the lexicon Λki is employed. Using this con-
straint, the Maximum Entropy model, P (Λki|Wk), for a particular lexicon
will estimate the probability that the lexicon resulted in a correct classifi-
cation given name Wk. This probability is calculated using the number of
times a lexicon resulted in a correct classification in the training material

P̂ (Λki|Wk) = P (Λki|ck) = P (Λki|xk is recognized correctly)

To train the ME model, P (Λki|ck), we define a set of I binary features, one
for every pronunciation variant. These features represent the constraint
described above and can be defined as

fj(ck,Λki) =
{

1 Λkj = Λki and ck is true
0 otherwise (3.3)

where the feature of variant Vkj is given a value of 1 if the variant Vki under
evaluation is equal to variant Vkj and if this variant resulted in a correct
classification of utterance xk. In this way, we also constrain the ME model
to model ck with the same frequency as was observed in the training data.

The pronunciation prior distribution that satisfies the feature constraints
while maximizing the entropy is then given by

P (Λki|ck) =
1

Z(ck)
exp




F∑

j=1

λjfj(ck,Λki)



 (3.4)

where fj(ck,Λki) are the feature constraints, F is the number of features
in the set (equal to I in our case), λj are the feature weights and Z(ck) is
a normalization factor Z(ck) =

∑I
i=1 exp[

∑F
j=1 λjfj(ck,Λki)]. The feature

weights λj are found by employing the Improved Iterative Scaling training
algorithm [21].

After training this parametric model for every name Wk using the con-
straints ck, the probability of every variant Vki ∈ Vk can be extracted from
the model. The probability of variant Vki is then directly correlated with
the number of correctly recognized name utterances in the training set when
lexicon Λki is employed. Selecting the variants with the highest probability
for lexicon inclusion, is thus the same as selecting the variants proven to
correct many recognition errors in the training set.

3.6.4 A discriminative Minimum Classification Error (MCE)
variant selection criterion

Another discriminative way of assessing the performance of a pronunciation
variant Vki is to calculate the expected loss of recognition accuracy observed
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for a set of training utterances Xk when using a lexicon Λki comprising
variant Vki. There are several ways of defining this loss, one of which is to
use the expected loss function defined in the Minimum Classification Error
framework described in Chapter 2.3.2.

Using this function to model the performance of lexicon Λki, we get the
following expected loss function

Lk(Xk; Λki) =
1
N

N∑

n=1

lk(Xkn; Λki). (3.5)

The loss function, lk(Xkn; Λki), can be defined by means of a set of discrim-
inant functions gl(X; Λki) with l = 1, . . . ,K. Most modern speech recog-
nition applications rely on log likelihood scores to make a decision, and
consequently, these scores will act as discriminant functions in this work. If
Hkn is the set of likely name hypotheses proposed by the recognizer for ut-
terance Xkn when employing lexicon Λki, one can define a misclassification
measure dk(Xkn; Λki) as

dk(Xkn; Λki) = −gk(Xkn; Λki) + log

[∑
j,j $=k egj(Xkn;Λki)η

card(Hkn)− 1

] 1
η

(3.6)

where η is a positive number. In order to map the misclassification measure
of Equation (3.6) to a zero-to-one continuum, the loss function is defined as

lk(Xkn; Λki) =
1

1 + e−dk(Xkn;Λki)
. (3.7)

If the loss is close to zero, it means that the utterance is likely to be correctly
recognized using lexicon Λki. The larger the measure is, the larger the risk
for an incorrect recognition of the utterance.

The expected loss function Lk can then be used to extract the variants
that have, on average, the largest difference between the log likelihood score
of the correct hypothesis and the log likelihood of the competing hypotheses,
i.e. the variants that have the smallest risk of being misrecognized. Thus,
selecting the variants with the lowest expected loss, is equivalent to selecting
the variants proven to have the best recognition performance on the training
set and posing the smallest risk of causing a misrecognition.
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Chapter 4

Experimental set-up and
baseline experiments

To improve the recognition performance of proper names by modeling the
pronunciation of the names the lexicon, several language-specific resources
are required. Firstly, it is crucial to have access to a corpus that contains the
type of variation to be modeled. Secondly, since it is our goal to investigate
different methods to select optimal pronunciation variants, we must have
a pool of candidate variants from which to select. Finally, a recognition
system is needed to evaluate the performance of the candidate variants and
of the final lexicons.

In the first section of this chapter, the creation of these three language-
specific resources is described in detail. The second section describes the
experimental set-up adopted in all the experiments conducted in this dis-
sertation. The final section of this chapter presents the results of initial
threshold experiments and two baseline experiments conducted using the
resources described in this chapter.

4.1 The NameDat corpus

When we started to work on this dissertation, the only available resource
concerning Norwegian pronunciation of non-native names was the Onomas-
tica [80] corpus. Unfortunately, this is a purely lexical resource that includes
only a single “nativized” transcription for each name in the lexicon, and no
recorded speech. These limitations of the Onomastica corpus make it un-
usable for either lexical or acoustic pronunciation variation modeling. It
was therefore deemed necessary to collect a new resource for Norwegian
containing annotated speech utterances of non-native names.

51



52 Experimental set-up and baseline experiments

This section will describe the design, recording and annotation of the
NameDat database, a small-scale database containing English proper names
spoken by native Norwegians. The database was designed as an additional
resource to the large vocabulary speech recognition engine SVoG1 and its
main purpose was to reveal which typical phonetic patterns appear when
native Norwegians pronounce English proper names. For additional details
on the collection of this corpus, the reader is referred to [1].

4.1.1 Corpus design

The speech data presented in the NameDat corpus was collected from 33
native Norwegian speakers of between 18 and 60 years of age. The speak-
ers were recruited among colleagues, friends and family. The quality of the
recordings is highly dependent on the speakers and their ability and expe-
rience with reading aloud. An effort was made to cover some distribution
in terms of speaker gender, education and age. As for the parameter of
provenance, for such a limited amount of speakers it was unfortunately un-
feasible to cover the numerous dialectal regions in Norway. The last design
parameter presented in the database is language proficiency, which was de-
termined by means of a self-assessment poll of the speakers. Table 4.1 gives
an overview of the speakers following these parameters.

Criterion Speakers

Age Over 40 Under 40
12 21

Gender Male Female
17 16

Higher education Yes No
26 7

English proficiency
Intermediate Good

10 9
Very good Fluent

11 3

Table 4.1: Speaker distribution of the NameDat corpus.

Each of the 33 speakers read a manuscript consisting of 125 sentences
where each sentence contained one, two or three names of English origin.

1 http://www.sintef.org/Home/Information-and-Communication-Technology-ICT/
Acoustics/Communication-acoustics/ Speech-technology/
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There were five different manuscripts in the corpus, each containing 221
names, yielding a total of 1105 unique names. The first four manuscripts
were read by seven speakers, while the fifth was read by the remaining
five speakers. The manuscripts contained mostly place names from English
speaking areas and a smaller amount of common US and UK person names.

Three features were especially emphasized in the corpus design. Firstly,
it was deemed desirable that the corpus contained both well-known names
and names unknown to the speaker. In order to achieve this, two selection
criteria were applied, viz. the name’s frequency of occurrence in a large
text corpus from the news domain, and in the case of city names, the city’s
number of inhabitants. These criteria were taken as a rough indication of
the familiarity of the names through the media and travel. The second
feature was to have a considerable amount of “difficult” names in the cor-
pus, where a “difficult” name was intended to be a name that a general
automatic speech recognizer would have trouble classifying correctly. The
Levenshtein distance between a transcription generated automatically by
an English grapheme-to-phoneme converter and a transcription made by a
human expert was used to identify these names. Finally, the third desirable
feature was to have a good coverage of non-native sounds in the corpus.
Therefore, a special effort was made to include names that feature English
phonemes in their pronunciation which are not part of the native Norwegian
phoneme alphabet. As such, these particular names supply a good coverage
of English sounds that typically have a large pronunciation variation when
uttered by Norwegian speakers.

4.1.2 Recordings

Due to logistic reasons, the recordings were made in two different acous-
tic environments. The recordings with the majority of the speakers were
made in a soundproof acoustic laboratory, while the recordings of the other
speakers were made in an office environment.2 Prior to the recording ses-
sion the speakers were briefed about the purpose of the project and what
was expected of them. They were informed that they would be asked to
read 125 Norwegian sentences, all of which contained at least one English
name. They were explained that the purpose was not to record the “cor-
rect” English pronunciations, but rather to record how they would actually
pronounce the names in everyday speech. They were instructed to try to
pronounce all names, even if they had no idea how to pronounce them.

2The choice was made out of necessity: 14 speakers were located in the Oslo area,
where we had no acoustic laboratory at our disposal.
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The recording script was presented to the speakers using the audio
recording software Speechrecorder3. In order to avoid hesitations, the speak-
ers were instructed to read through the sentence presented on the screen
and decide how to pronounce the names in the sentence prior to making a
recording.

The recording chain consisted of a Sennheiser HMD 25-1 dynamic head-
set microphone and Shure FP23 microphone amplifier connected to the line-
in port on a MacBook Pro. The signal-to-noise ratio of the recording chain
was measured to be 51 dB and the frequency response of the chain was
measured and found to be reasonably flat.

The MacBook Pro was used to digitize the speech. For all recordings a
sample rate of 48kHz was used and the samples were stored in 16-bit linear
PCM wav format.

4.1.3 Broad phonetic annotation

The purpose of the broad phonetic annotation was to document all the
different name pronunciations perceived in the recordings and to detect
common linguistic features in English proper names spoken by Norwegians.
The annotations were later to be used in pronunciation modeling of English
names, so consistency and accuracy were naturally essential qualities in the
annotation process. Due to budgetary reasons, names from 125 sentences
were manually annotated for 19 out of the 33 speakers.

Annotation format and tools

The phoneme set used for the annotations was in the SAMPA4 format,
with the Norwegian phoneme inventory as the core set. In order to repre-
sent phonemes occurring in English names and loan words which lack an
equivalent in the Norwegian inventory, the Norwegian phoneme set was ex-
tended with symbols from the British English SAMPA phoneme inventory.
These phonemes are listed in Table 4.2.

The annotations were made in Praat5 and consisted of five tiers: auto,
phone, phone comment, word, and utterance. Provisional annotations were
available for the whole sentence. For the carrier sentence, the annotations
were automatically generated using a Norwegian Text-to-Speech front-end,
and for most of the English names, expert transcriptions were available from

3http://www.phonetik.uni-muenchen.de/Bas/software/speechrecorder/
4http://www.phon.ucl.ac.uk/home/sampa
5Version 5.0.46, available at http://www.praat.org/
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Symbol Example word
eI raise
aU rouse
@U nose
r wrong
w wasp
z zing
Z measure
D this
T thin
tS chin
dZ gin

Table 4.2: Non-native phoneme extensions.

the Onomastica Consortium [80] and an in-house pronunciation dictionary.
The alignments were obtained using forced alignment.

The provisional annotations were presented to the annotator in the auto
tier and the corrections were made in the phone tier. The annotation was
mainly phonetic, but boundaries were corrected where the alignments were
clearly misplaced in the provisional annotation. Only the names and name
boundaries were corrected. The phone comment tier was aligned with the
phone tier and was used to comment on frequently occurring variations6.

In the word tier, names could be marked as unusable or as mispronunci-
ations. A name was marked as unusable if it contained long pauses or was
corrupted by background noise. A name was marked as a mispronunciation
if the realization of the name was clearly a reading mistake. For instance,
pronouncing the name ‘Gilmilnscroft’ as ‘Gilmilnsoft’ is obviously a mis-
reading and would be marked as a mispronunciation. However, articulation
errors and errors made due to the speaker’s insufficient knowledge of English
were not marked as mispronunciations. A log file and a pre-defined set of
tags were available to the annotator to comment on any uncertainties. The
log file can easily be queried by means of the tags.

6Typical comments were e.g. devoicing of voiced phone, uncertain phone identity,
phone is realized as an approximant, missing or unknown phone, typical “nativized”
pronunciation of an English phone.
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Annotation procedure

For consistency reasons, the annotations were performed by one single ex-
pert annotator. The annotator was given a set of guidelines and a test
session was performed where the annotator received feedback on his anno-
tations. The annotator was instructed to check the provisional transcrip-
tions of the names in the carrier sentences and modify them if necessary.
Corrections were made according to general guidelines for Norwegian anno-
tation. In addition, the annotator was instructed to pay special attention
to non-native sounds and decide whether or not they were pronounced in a
“nativized” manner.

4.2 Experimental set-up

In this section, the experimental set-up used throughout this dissertation
is described in detail. The section is divided in three parts: the first part
describes the data set extracted from the NameDat corpus, the second part
describes the generation of transcription variants and the third part de-
scribes the employed recognition engine.

4.2.1 Data set

For our experimental study, we extracted annotated name utterances from
19 of the 33 speakers in the NameDat corpus. Name utterances from the
remaining 14 speakers were not used in our study. The choice of speakers was
made out of necessity as only the names spoken by 19 of the speakers in the
corpus were manually annotated. The name utterances were obtained from
three different manuscripts, each containing 221 unique names. The two
first manuscripts were read by seven speakers, while the third manuscript
was read by five speakers. For each speaker, 16 sentences were withheld
from the data set and used to form an adaptation set. Removing the name
utterances used in the adaptation set and name utterances deemed unusable
by the annotator yielded the final data set illustrated in Table 4.3.

4.2.2 The recognition engine

The recognition engine used in this dissertation was the large vocabulary
continuous speech recognizer SVoG which is based on the Hidden Markov
Toolkit (HTK) [10]. This engine employs word-internal tri-state, left-right
triphone models without skips where each state uses 2-64 Gaussian mix-
ture components. Additionally, context-independent models with matching
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Manuscript Names Speakers Name utterances
Manuscript 1 206 7 1436
Manuscript 2 202 7 1400
Manuscript 3 209 5 1039

Total 617 19 3875

Table 4.3: The final data set.

topology and a three state silence model (with feedback from the third
to the first state) are available to the recognition engine. The monophone
models use 32 Gaussian mixture components for each state. The feature vec-
tors used by the SVoG recognizer are traditional MFFCs with 13 cepstral
coefficients (including C0) plus the corresponding delta and acceleration co-
efficients. When extracting these features, the frame length was set to 25ms
and the frame shift was 10ms.

To compensate for acoustic dissimilarities from the recording environ-
ment and to “tune” the acoustic models to the NameDat speakers, speaker
adaptation was performed on the model parameters. For this purpose, a
standard Maximum likelihood linear regression (MLLR) algorithm was ap-
plied to the mean values of the gaussian mixture components. The MLLR
algorithm aims to adapt the model parameters by applying a parametric
transformation to the parameters. In this work, instead of applying the
same transform to all the mixture component mean values, a regression
class tree was used to apply different transforms to different parts of the
model. This enables the adaptation algorithm to dynamically specify the
number of transformations to be generated depending on the amount of
available adaptation data. The regression class tree was generated using
32 leaf nodes and an unsupervised clustering technique incorporated in the
HTK tool HHEd. The transform was then estimated in a maximum likeli-
hood sense using this regression tree and the withheld adaptation data.

Two different grammars were used in the experiments described in this
thesis. For our controlled environment experiments, a small vocabulary
grammar containing a loop of the 617 names comprised in the NameDat
corpus was used. For our open environment experiments, a large vocabulary
grammar containing a loop of the same 617 names plus 15,428 other English
proper names was used. These 15,428 names were simply “filler names”
included to extend the vocabulary size.



58 Experimental set-up and baseline experiments

4.2.3 Three-fold cross validation procedure

Due to the limited size of our data set, a three-fold cross validation strat-
egy was employed for all the experiments in this dissertation, rather than
the more commonly used five- or ten-fold cross validation. This strategy
entailed dividing the full data set in a test set and a training set three times
so that the three test sets each comprised utterances by different speakers.
Since we plan to use discriminative measures for variant selection, which can
only be calculated for names for which we have training utterances, we can
only assess the positive effect of the selected variants on the recognition of
these names if the test set also contains utterances of these names. There-
fore, the full data set was divided so that each test set comprised one third
of the utterances of each unique name and the corresponding training set
comprised the remaining utterances. The division was made in such a way
that there was also no overlap in speakers between a test set and the cor-
responding training set. Table 4.4 shows the number of unique names, the
average number of utterances per name and the total number of name ut-
terances for each test and training set. Since the first two manuscripts were
read by seven speakers while the remaining manuscript was only read by
five speakers, the average number of utterances per name varies somewhat
between the three test and training sets.

Data set Names Avg. utterances Name
per name utterances

Test set 1 617 2.32 1430
Train set 1 617 3.96 2445

Total 617 6.28 3875
Test set 2 617 2.01 1239
Train set 2 617 4.27 2636

Total 617 6.28 3875
Test set 3 617 1.95 1206
Train set 3 617 4.33 2669

Total 617 6.28 3875

Table 4.4: Test and training sets used in the three-fold cross validation
scheme.

Each training procedure was then performed three times, once for every
training set, and the result of every procedure was tested using the corre-
sponding test set. The average of the three test results was taken as the final
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result. This holds for all experimental results presented in this dissertation:
the numbers should always be understood as averages over three folds.

4.2.4 Transcription variants

Most current large vocabulary speech recognition systems rely on automat-
ically generated transcriptions to model the pronunciation of proper names
in the lexicon. These general purpose transcriptions are commonly gen-
erated from language specific grapheme-to-phoneme (g2p) converters. As
the name indicates, a g2p converter converts a grapheme string into a se-
quence of phoneme symbols using a set of language-specific rules. However,
since the pronunciation of proper names often deviates from what conven-
tional pronunciation rules would predict, g2p transcriptions are normally
not very accurate descriptions of the actual pronunciation. As described in
Section 3.3, several efforts have been made to solve this problem by auto-
matically generating a large set of transcriptions in order to cover a wider
range of pronunciation variation. This strategy, however, has been found
to introduce unwanted confusion between lexicon entries which often intro-
duces new recognition errors. In the work described in this dissertation, we
aim to address this problem by investigating several methods of identifying
the optimal set of pronunciation variants from a large pool of pronunciation
candidates. But before we can do so we need to create a pool of candidate
transcription variants from which we can choose.

As described in Section 3.3, there are several ways to generate a pool
of pronunciation variants, depending on the desired type of variants and
the available data. In this work, we have two types of transcriptions at our
disposal: Norwegian and English g2p transcriptions on the one hand, and
manual annotations of the utterances in our data set on the other. These
manual annotations are the best nativized transliterations of what a human
expert actually heard when listening to the utterances. In the remainder
of this dissertation, these transcriptions will be referred to as auditorily
verified (AV) transcriptions. The English g2p transcriptions were created
using the English g2p-converter embedded in the Nuance RealSpeak text-
to-speech system7, and the Norwegian g2p transcriptions were created using
the Norwegian TTS engine Arne R©8. Having these resources available to us,
we decided to create an additional pool of transcription variants that should
be more robust to the pronunciation variation inherent in non-native proper
names. We therefore trained a set of phoneme-to-phoneme-converters.

7http://www.nuance.com/realspeak/
8http://www.lingit.no
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Generating transcriptions using a Phoneme-to-Phoneme converter

The phoneme-to-phoneme (p2p) converter is a publicly available9 tool de-
veloped by Qian Yang and her colleagues when she was a PhD student at
Ghent University [105]. The tool was specifically developed to enhance the
performance of proper name transcriptions.

The p2p converter aims to automatically correct the mistakes made by
the g2p converter by learning conversion rules on the basis of auditorily veri-
fied transcriptions, g2p transcriptions, and orthographic transcriptions. The
p2p converter focuses primarily on modeling pronunciation effects which are
typical for proper names and is therefore not dependent on large amounts of
training material. As illustrated in Figure 4.1, the p2p converter employs a
two-step procedure: the g2p converter first generates an initial transcription,
and the p2p converter subsequently tries to correct this initial transcription.
The result of this procedure is a set of alternative transcriptions, each de-
scribing plausible variants of the initial g2p transcription. The rationale be-
hind this approach is that the p2p converter can benefit from the knowledge
of the g2p converter and can therefore attain a good performance without
having access to large amounts of manually corrected transcriptions.

p2p 
converter

Name 
Orthographies

g2p 
converter

p2p 
transcriptions

g2p 
transcriptions

Name 
orthography

g2p transcription p2p 
transcriptions

g2p 
converter

p2p 
converter

Figure 4.1: p2p variant generation.

When applied, the p2p converter aligns the initial g2p transcription with
the orthographic transcription and examines where one of the learned con-
version rules can be applied. Each conversion rule expresses the following:
if a particular phonemic pattern (rule input) occurs in the initial transcrip-
tion in a particular phonemic and orthographic context (rule condition),
then transform the rule input to an alternative phonemic pattern (rule out-
put) and assign a certain probability to the transformation. More detailed
information about the p2p converter and the training of the converter can
be found in [105] and [84].

For the experiments described in this thesis, three Norwegian and three
English phoneme-to-phoneme converters were trained, one English and one

9http://www.inl.nl/en/tools/autonomata-g2p-toolkit
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Norwegian converter for each training set. Conventionally, p2p convert-
ers are trained on g2p and AV transcription pairs of names not present in
the test set, but since the same names occur both in our test sets and in
our training sets, we were forced to train the p2p converters using names
included in the test set. It should be noted, however, that only AV tran-
scriptions of name utterances in the training set were used to train the p2p
converters. This set-up is likely to produce somewhat more accurate p2p
transcriptions than in the case of using unseen data exclusively. Never-
theless, since the main objective of this dissertation was not to assess the
quality of these variants nor the variant creation process, this was consid-
ered to be of minor importance, although it should be kept in mind when
interpreting the results. During the variant generation stage, each p2p con-
verter was allowed to generate up to 10 variants per name, but only if their
probability exceeded a threshold which was specified as a fraction (we used
0.02) of the probability of the best variant. If the input g2p transcription
was not among the created variants, it was added to the candidate pool a
posteriori with a probability equal to the above threshold.

To create p2p variants for the 15,428 filler names used in our open vo-
cabulary experiments, one Norwegian and one English p2p converter was
trained using g2p and AV transcription pairs for all name utterances in the
three training sets. Applying these converters to Norwegian and English g2p
transcriptions for the filler names yielded a set of 149,973 p2p transcriptions.

Lexicon Train 1 Train 2 Train 3 Avg
NO g2p 617 617 617 617
EN g2p 617 617 617 617
NOEN g2p 1227 1227 1227 1227
NOEN p2p-g2p 5486 5458 5720 5555
AV 1686 1860 1870 1805
AV NOEN p2p-g2p 5917 6001 6257 6058

Table 4.5: Number of pronunciation variants for different lexicons.

Table 4.5 shows the lexicon size of six different lexicons containing
the following variants: Norwegian g2p transcriptions (NO g2p), English
g2p transcriptions (EN g2p), unique Norwegian and English g2p transcrip-
tions (NOEN g2p) pooled together, unique p2p and g2p transcriptions
generated using the p2p converters described in this section (NOEN g2p-
p2p), unique AV transcriptions encountered in the three different training
sets (AV) and finally non-overlapping AV transcriptions pooled together
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with NOEN p2p-g2p transcriptions (AV NOEN p2p-g2p).

4.3 Initial threshold and baseline experiments

In this section, preliminary experiments using lexicons comprising variants
generated by the g2p and p2p converters and auditorily verified transcrip-
tions will be described. These experiments aim to assess the quality of the
automatically generated transcriptions and to set some performance thresh-
olds for the experiments conducted in this dissertation. We will also evaluate
two different pronunciation variant selection strategies. The performance of
these selection strategies will serve as a baseline for our work.

As previously discussed, the confusability between lexicon entries gen-
erally increases with the vocabulary size. To evaluate our variant selection
approaches in environments with different levels of lexical confusion, all ex-
periments described in this dissertation will be conducted in two different
environments: in a controlled setting of 617 names and in an open setting,
using a much larger vocabulary of 16,045 names. In the large vocabulary
experiments, 15,428 of the names will be “filler names” while the remain-
ing 617 names will be the same names as in the controlled experiments.
Since our variant selection methods can only select pronunciation variants
of names for which we have training utterances, the variants selected for
the filler names will not be optimized in terms of recognition performance.
The number of variants generated for each filler name will, however, equal
the average number of variants for the 617 names in the data set so as to
simulate the behavior of the evaluated variant selection approach. For the
same reason, the performance of the large vocabulary lexicons will only be
evaluated on a subset of the names in the lexicon. Moreover, since the p2p
converters generating variants for the filler names were trained on unseen
names (as opposed to the names in the data set), the variants generated for
the filler names are likely to be somewhat less accurate than the variants
generated for the 617 names in the data set. For these reasons one should
be very careful when interpreting the large vocabulary results. However,
when put in context, these experiments can give a fairly good indication of
the effect an increased vocabulary can have on the recognition performance.

Although it may be clear that this is a somewhat artificial set-up, there
are some real-life applications. For instance, if a large vocabulary recogni-
tion lexicon contains an identifiable subset of “difficult” entries, improving
the recognition performance for these words specifically will increase the
performance of the entire system considerably. By using only a modest
amount of training examples and a lexicon optimization algorithm simi-
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lar to the ones described in this dissertation, a system-wide performance
increase can be achieved with limited cost.

Throughout this dissertation, recognition performances will be given in
terms of the Name Error Rate (NER). In this performance measure, a name
(e.g. New York) is only considered correct if all of its constituents (words)
are correctly recognized. When comparing the NER of speech recognition
system A with the NER of speech recognition system B in this dissertation,
the term “significant” is only used when system A achieves an NER that
is outside the 95% confidence interval calculated for the NER of system
B. The confidence intervals for selected name error rates are calculated in
Appendix A.

4.3.1 Threshold experiments

In order to set some performance thresholds, we conducted recognition tests
in both a controlled and open environment using the lexicons given in Ta-
ble 4.5. This section describes the results of these experiments.

Testing in a controlled environment

The results of the three-fold cross validation procedure conducted in a small
vocabulary environment are displayed in Table 4.6. This table shows for
each lexicon the average NER as well as the average lexicon size, defined
as the average number of pronunciation variants contained in the three
lexicons.

Lexicon Size NER
NO g2p 617 34.44%
EN g2p 617 23.79%
NOEN g2p 1,227 15.74%
NOEN g2p-p2p 5,555 12.50%
AV 1,805 10.66%
AV NOEN g2p-p2p 6,058 10.17%

Table 4.6: Lexicon size and NER for the reference lexicons in a controlled
environment.

As the results in this table illustrate, the Norwegian g2p transcriptions
perform quite poorly. This is mainly due to the fact that the pronunciation
of English proper names deviates significantly from what Norwegian pro-
nunciation rules predict. Moreover, the Norwegian g2p converter is not a
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state-of-the-art converter, such as the English g2p converter which performs
considerably better. The English and Norwegian g2p lexicons do, however,
correct different recognition errors, as illustrated by the recognition result
for the NOEN g2p lexicon. Since the experiments described in this thesis
aim to select variants from the pool of g2p-p2p variants, it is interesting to
note the performance of simply adding all available pronunciation variants
to the lexicon (NOEN g2p-p2p). Using this lexicon further reduced the
NER, but the lexicon now contained over four times as many pronuncia-
tion variants as the NOEN g2p lexicon. The last two recognition tests (AV
and AV NOEN g2p-p2p) are “cheating” experiments performed to attain
some reference performances when using ideal lexicons comprising manually
corrected transcriptions of the utterances in the training set.

Testing in an open environment

To obtain threshold performances in the case of an open environment, we
created six new lexicons in the same way as before. For the Norwegian
and English g2p and g2p-p2p lexicons, Norwegian and English g2p and
g2p-p2p variants were added for the filler names. Since there were no AV
transcriptions available for the filler names, the three most probable g2p-
p2p transcriptions were included for each filler name when testing the AV
lexicon. The reason why we selected three variants to represent every filler
name was that there are, on average, three unique AV variants representing
each name in the data set. The lexicons were tested using the same three-
fold test procedure as in the case of the small vocabulary experiment. The
results are given in Table 4.7.

Lexicon Size NER
NO g2p 16,045 55,21%
EN g2p 16,045 39,01%
NOEN g2p 32,072 29,11%
NOEN g2p-p2p 155,141 22.40%
AV 47,928 19.29%
AV NOEN g2p-p2p 156,516 18.40%

Table 4.7: Lexicon size and Name Error Rate (NER) for the reference
lexicons in case of a 16k vocabulary.

Table 4.7 confirms that the general performance of the recognition sys-
tem deteriorates when the vocabulary size increases and that the differences
in performance between the lexicons are larger than in the case of a small
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vocabulary. As in the controlled experiment, the NOEN g2p lexicon con-
siderably outperforms both the Norwegian and the English g2p lexicons.
Adding p2p variants to this lexicon (NOEN g2p-p2p) resulted in a further
performance increase, in spite of containing almost five times as many vari-
ants as the NOEN g2p lexicon. The AV lexicon decreased the NER even
more, which illustrates the positive effect of having a lexicon consisting of
a few high quality pronunciation variants rather than many less accurate
variants. A somewhat more surprising result was the performance improve-
ment observed when adding AV variants to the g2p-p2p lexicon (AV NOEN
g2p-p2p). Although this experiment is rather artificial in the sense that
we only add AV variants to the names that we are testing on, we expected
the performance of the last experiment to be closer to that of the NOEN
g2p-p2p lexicon due to the large number of variants in the lexicon. A closer
inspection of the small vocabulary results shows that the same effect is in
fact also present in small vocabulary settings, though this is not equally
surprising as the number of variants in the lexicon is much smaller. In any
case, both of these results do seem to indicate that having accurate tran-
scriptions in the lexicon is more important than having a compact lexicon
with minimal lexical confusion.

To investigate this further, we performed an additional experiment using
a lexicon comprising all the g2p-p2p variants of the filler names (149,973
variants) and only the AV variants for the 617 names in our data set (1805
variants). We will refer to this lexicon as the “AV + Filler” lexicon. Test-
ing this lexicon in a large vocabulary environment resulted in an NER of
23.36%. Puzzled by this, we inspected the errors made by this lexicon and
compared them with the errors made by the NOEN g2p-p2p lexicon and
by the AV NOEN g2p-p2p lexicon. The first thing we noticed was that the
chance of a name utterance being incorrectly recognized as a filler name was
considerably reduced when using a lexicon containing g2p-p2p and AV vari-
ants for the names in the data set. To investigate this further, we compared
the N -best lists produced by the recognizer when decoding the name ut-
terances that resulted in different recognition results for the three lexicons.
This confirmed our suspicion that in many cases where the “AV + Filler”
lexicon resulted in a misclassification, the correct name was somewhere in
the top part of the N -best list, with an acoustic likelihood score close to that
of the best hypothesis. In the AV NOEN g2p-p2p lexicon, then, these names
were represented by a slightly more accurate variant, which was enough to
outperform the main (incorrect) competitor.

Even though it is difficult to draw definite conclusions from this exper-
iment, we would like to put forward some tentative observations. It seems
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that lexicons with a high level of lexical confusion generally benefit more
from having a larger set of high quality transcriptions, as the chance of
getting a good acoustic match between these variants and a name utter-
ance is higher than if the lexicon contained fewer variants of lower quality.
An optimal recognition lexicon should therefore contain as few pronuncia-
tion variants as possible, but at the same time contain enough high quality
variants to accurately describe different pronunciation effects. These contra-
dictory lexicon properties must be at the heart of our considerations when
designing improved variant selection criteria in the next chapters.

4.3.2 Baseline experiments

In order to assess the performance of different variant selection methods,
we evaluated the performance of two baseline selection approaches. The
first selection approach simply consisted of adding a predefined number of
randomly selected pronunciation variants to the recognition lexicon. The
second selection approach used the variant probabilities generated by the
p2p converters to decide in which order variants should be added to the
lexicon. In both approaches, the variants were selected from our pool of
automatically generated p2p-g2p pronunciation candidates.

Random variant selection

In this baseline experiment, the lexicons were constructed by randomly se-
lecting variants from the pool of p2p-g2p pronunciation variants. In order
to prevent outlier selections, the experiment was repeated five times. We
started each of these five experiments with a lexicon comprising one ran-
domly selected variant per name. This variant was then removed from the
candidate pool. In each subsequent iteration, the lexicon was supplemented
with another randomly selected variant for each name still present in the
candidate pool, until there were no more variants available.10

This selection method was tested in a controlled and in an open envi-
ronment. In Figure 4.2 and Figure 4.3, the obtained recognition results are
illustrated as a function of M , the maximum allowed number of variants
per name.11 The five random experiments are illustrated in blue, while the

10As the number of variants generated by the p2p converters is name-dependent, the
total amount of iterations differed from name to name. The amount of available variants
ranged from 1 to 22.

11As the candidate pool does not contain the same number of variants for each name, not
all lexicon entries are represented with M transcription variants in the lexicons evaluated
here.
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average performance of these experiments is illustrated in red.
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Figure 4.2: Random variant selection in a controlled environment.
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Figure 4.3: Random variant selection in an open environment.
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As might be expected, these results show a drastic reduction in name er-
ror rate in each iteration for the first few variants. After iteration M=4, the
steepness of the curve is gradually reduced until it becomes completely flat
after around 10 variants per name. Moreover, no gain could be observed in
favor of the lexicons containing fewer variants (i.e. the lexicons expected to
have low lexical confusion) compared to simply using all available variants.
A reasonable hypothesis of why this is the case is that when adding variants
randomly, some of the added variants correct errors and some introduce er-
rors. The lexical confusion is therefore more or less uniformly distributed
across the variant space. However, if we were able to identify which vari-
ants correct errors and which variants introduce errors we could prioritize
adding the former. The result of this would probably be a curve that begins
at a much lower NER and where the NER decreases further until we start
adding the variants that introduce more errors than they correct. At this
point, we would expect the NER to start increasing again and the curve to
bend upwards. In order to test this hypothesis, we need to find a variant
selection criterion that reflects a variant’s potential to correct recognition
errors.

Probability-based variant selection

One interesting feature of the p2p converter is that it associates a prob-
ability with every new variant it generates. This numerical value can be
interpreted as an indication of the expected quality of the variant. As such,
it might be interesting to test the probabilities as a first approximation of
the variant selection criterion we are trying to develop in this dissertation.
We would expect that the variants with the higher probabilities have the
greater potential to correct recognition errors, and that lexicons contain-
ing only variants with high probabilities will lead to increased recognition
performance. We investigated this hypothesis in our second baseline exper-
iment.

As in the random baseline experiment, our starting point was a lexicon
containing only one variant per name, but now we specifically selected the
variants for which the p2p converter estimated the highest probabilities.
In the subsequent iterations, we added one variant per name in decreasing
order of probability. For the large vocabulary lexicons the procedure was
the same, only this time the selection was made from the extended pool of
g2p-p2p variants. The recognition results obtained with this method in a
controlled and in an open setting are illustrated in blue in Figure 4.4 and
Figure 4.5 respectively. Again we see the Name Error Rate as a function of
M , the maximum number of variants per name. For reference, the average
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result of the five random selection experiments performed in the previous
section is illustrated by the red curve.
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Figure 4.4: Probability-based variant selection in a controlled environment.

These figures show that the probability-based variant selection method
performs better than the random selection method for M less than four.
The main benefit from using this method compared to the random selection
method seems to be its ability to make a better selection for the first vari-
ants. As in the case of the random experiment, no gain could be observed in
favor of the lexicons containing a small number of variants compared to the
lexicon comprising all available variants. This result is somewhat surprising,
as previous experiments reported in the literature (e.g. [44] and [45]) state
that increasing the number of variants in the lexicon is helpful only up to
a certain point (typically around 2-3 variants per lexicon entry). After this
point the increased lexical confusion tends to counteract the performance
gain obtained from having more accurate variants in the lexicon. According
to these findings, we expected to find a dip in performance in Figure 4.4
and Figure 4.5 around this point, which is obviously not the case.

One plausible reason why this expected performance dip does not occur,
is that the probabilities generated from the p2p converter are not sufficiently
accurate, or at least not sufficiently correlated with the actual recognition
performance. A closer inspection of the probabilities generated by the p2p
converter reveals that the less probable variants seem to have very similar
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Figure 4.5: Probability-based variant selection in an open environment.

probabilities. This usually happens after the third or fourth most probable
variant. This can signify that the p2p converter does not have enough evi-
dence to adequately estimate probabilities for these variants, making their
internal ranking subject to random effects. Another factor which may in-
fluence the probability-based selection method is the fact that the g2p-p2p
variant pool contains variants generated both by English and Norwegian
g2p-p2p tandems. The most probable variants in this pool are therefore
likely to be one or two variants from the English converter and one or two
variants from the Norwegian converter. In cases where the pronunciation of
a name is similar in English and in Norwegian, the two (or even the four)
most probable pronunciation variants in the pool are likely to represent the
same pronunciation effects, and are thus likely to correct the same recogni-
tion errors. In this way, selecting variants according to their predetermined
probability can result in a lexicon containing many overlapping variants. For
these reasons, it was deemed necessary to define a new selection criterion,
which is more closely related to the actual recognition performance.
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4.4 Conclusion

In this chapter we have described the design and collection of the NameDat
database as well as the generation of alternative name transcriptions using
Norwegian and English g2p and p2p converters. Together with the manu-
ally corrected transcriptions from the NameDat database, these alternative
transcriptions were used in a set of preliminary experiments in order to get
some performance thresholds. As expected, these experiments showed that
the general system performance decreased considerably when we increased
the vocabulary from 617 names to 16,045 names. Furthermore, the exper-
iments illustrated the positive effect of adding more transcription variants
to the lexicon to supplement the automatically generated g2p variants. The
“cheating” experiments (using manually corrected transcription variants)
showed that lexical confusability can in fact be reduced by the presence of
accurate transcription variants in the lexicon. This means that having high
quality transcription variants in the lexicon can be just as important, or
even more important, than reducing the number of variants when it comes
to reducing confusability and achieving high performance rates.

The baseline experiments showed that the selection criterion used for
variant selection (which determines the order in which the variants are
added) has a considerable effect on the performance, especially when the
maximum number of variants per name is small. These experiments fur-
ther showed that neither of the baseline selection criteria investigated in
this chapter were able to create a lexicon performing better than a lexicon
comprising all available transcription variants, which is somewhat surpris-
ing considering similar studies reported in the literature. This is likely to
be attributed to the poor ability of our baseline selection criteria to select
the variants yielding optimal performance.

These findings inspired a search for a new variant selection criterion that
identifies and selects only the transcription variants that effectively reduce
the Name Error Rate. It is our working hypothesis that such a selection
criterion can result in a lexicon that is doubly optimized, both in terms of its
size and in terms of its recognition performance. In the following chapters
we therefore aspire to create a variant selection criterion that:

• identifies the most accurate pronunciation variants;

• identifies variants that correct more errors than they introduce;

• identifies pronunciation variants covering different pronunciation phe-
nomena;
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• optimizes the order in which variants are added to the lexicon;

• optimizes the number of variants in the lexicon.



Chapter 5

Finding the optimal variant
selection criterion

In the previous chapter, two baseline variant selection approaches were eval-
uated. In the first approach, pronunciation variants were selected randomly
from a pool of candidate transcriptions. In the second approach, variants
were selected on the basis of probabilities learned during variant genera-
tion. The evaluation of the two selection approaches revealed that both
approaches performed quite poorly. This was not very surprising in case
of the random selection approach, but for the probability-based approach
we expected a somewhat better performance. This lack of performance
gain was attributed to inaccurate variant probabilities and low correlation
between the variant probabilities and the actual recognition performance.

In this chapter, we propose two different discriminative selection cri-
teria both of which are directly related to the recognition performance.
The two criteria are based on a set of prior probabilities which are esti-
mated by means of scores calculated using the discriminative Maximum
Entropy (ME) framework and the Minimum Classification Error (MCE)
framework. To compare the performance of these selection criteria to that
of the probability-based approach, we estimate a third set of prior proba-
bilities using the probabilities generated by the p2p converter (P2P). The
three different sets of pronunciation priors are then evaluated in isolation
(prior selection) and together with acoustic log likelihood scores generated
by the recognizer (posterior selection). Parts of the work described in this
chapter was also presented in [2].

73
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5.1 Decision rules and variant selection algorithm

In this chapter we will consider the variant selection problem as a decision
problem, where the task is to decide which pronunciation variants result
in the best performing recognition lexicon. In Section 5.1.1, we define the
decision rule to be used in this selection algorithm and Section 5.1.2, then,
describes the actual variant selection algorithm.

5.1.1 Decision rule

Again, let us assume that we have a set of names W = {W1, . . . ,WK},
and that for some name Wk ∈ W we have a set of training utterances
Xk = {Xk1, . . . , XkN} and a set of candidate pronunciation variants Vk =
{Vk1, . . . , VkI}. Additionally, we construct a start lexicon Λs containing
English g2p transcriptions for all items in our set of names W. As we
aim to find variant selection approaches that are directly related to the
actual recognition performance, evidence of the performance of all available
variants is needed. To that end, we create a temporary lexicon Λki for each
candidate pronunciation variant Vki in the candidate pool. This temporary
lexicon is constructed by copying our start lexicon Λs and replacing the g2p
transcription of name Wk by the candidate pronunciation variant Vki.

From Section 2.2.1 we know that the optimal word hypothesis according
to the MAP decision rule is

Ŵ = argmax
Wk∈W

I∑

i=1

P (Xk|Λki;Wk)P (Λki|Wk)P (Wk).

Assuming that the contribution from the best performing pronunciation
variant will be considerably larger than the remaining contributions, this
sum can be approximated by

Ŵ ∼= argmax
Wk∈W

argmax
Vki∈V

P (Xk|Λki;Wk)P (Λki|Wk)P (Wk).

Suppose, then, that we already know that word W = Wk. Then we can use
this decision rule to find the optimal pronunciation variant V ∗

k by selecting
the variant that maximizes

V ∗
k
∼= argmax

Vki∈Vk

P (Xk|Λki;Wk)P (Λki|Wk)P (Wk). (5.1)

Here, P (Xk|Λki;Wk) is the acoustic likelihood of the training utterances of
name Wk, P (Λki|Wk) is the pronunciation prior probability of the temporary
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lexicon Λki and P (Wk) is the probability of word Wk. In this chapter we
evaluate two different versions of this decision rule: a simplified version,
which we will refer to as the prior variant selection approach, and a full
version, which we will call the posterior variant selection approach. In the
prior variant selection approach, the pronunciation prior probabilities are
used alone to select which variants to include in the lexicon:

V ∗
k = argmax

Vki∈Vk

P̂ (Λki|Wk). (5.2)

In the posterior variant selection approach, the pronunciation variants are
selected by means of a combination of the prior probabilities and the total
acousthic log likelihood scores generated by the recognizer

V ∗
k = argmax

Vki∈Vk

{
N∑

n=1

log P (Xkn|Λki;Wk) + γ log P̂ (Λki|Wk)

}
. (5.3)

Again, P (Xkn|Λki;Wk) is the acoustic likelihood of name utterance Xkn

given that variant Vki is in the lexicon, γ is a scaling factor and P (Λki|Wk)
is the pronunciation prior probability. The scaling factor was determined
using a systematic trial and error procedure on the training set. This is
a suboptimal approach, which may have influenced the results to a small
extent, but was deemed necessary as our data set was too small to contain
an independent development set. The scaling factor was determined to be
20 for the small vocabulary experiments and 2.5 for the large vocabulary
experiments. This rather large difference in scaling factors can be attributed
to the fact that the difference in acoustic likelihood between different hy-
potheses in the N -best list tends to be smaller in the large vocabulary case
compared to the small vocabulary case, due to the increased confusability.

In both the prior and the posterior decision rules, we have disregarded
the word probability distribution P (Wk) since every word in our corpus is
assumed to be equally likely.

5.1.2 Variant selection algorithm

To find the optimal pronunciation variants to represent name Wk in the
end lexicon, we extracted a pronunciation candidate set Vk and a set of
training utterances Xk from the training data and performed the following
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single-pass selection procedure for each name Wk ∈ W:

1. for each candidate Vki ∈ Vk:

(a) create a temporary lexicon Λki by replacing the g2p transcription
in the start lexicon Λs by the candidate Vki

(b) create an empty set Hki to be used as a storage container for
recognition hypotheses

(c) for each training utterance Xkn ∈ Xk:

i. perform an isolated word recognition on Xkn using the tem-
porary lexicon Λki,

ii. add the N -best list Hkn of the most likely name hypothe-
ses1 together with their normalized likelihood scores to the
set Hki,

(d) retrieve the likelihood scores for name Wk from the N -best lists
in Hki and take the logarithm2

(e) calculate the total log likelihood score of name Wk given lexi-
con Λki by summing these log likelihood scores

(f) estimate the prior probability P̂ (Λki|Wk) by using one of the
methods proposed in the following subsection

2. select for each name the M variants maximizing

(a) Equation (5.2) (prior variant selection) and add these variants to
the prior end lexicon3

(b) Equation (5.3) (posterior variant selection) and add these vari-
ants to the posterior end lexicon3

In the next subsection we propose three different ways of estimating the
pronunciation prior probabilities namely using variant probabilities, Maxi-
mum Entropy scores and Minimum Classification Error scores.

1The maximum number of hypotheses in Hkn was set to 20.
2If Wk was not in Hkn, it was given a likelihood score of −200. This value was lower

than any of the likelihood scores in the N -best lists, but not so low as to skew the total
likelihood score computed in the next step.

3If two variants have equal values, choose the variant with the highest total log likeli-
hood score.
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5.1.3 Estimating pronunciation priors

In this subsection the pronunciation prior probability, P (Λki|Wk), will be
estimated in three different ways using variant information based on: prob-
abilities learned during variant generation, calculated Maximum Entropy
scores and calculated Minimum Classification Error scores.

Using variant probabilities as pronunciation priors

In the experiments conducted in this thesis, the pool of candidate pronunci-
ation variants V = (V1, . . . ,VK) was generated using phoneme-to-phoneme
(p2p) converters (as described in Section 4.2.4). These p2p converters were
trained using an automatically generated grapheme-to-phoneme transcrip-
tion Gk of every name Wk and a set of auditorily verified transcriptions
Tk = {Tk1, . . . , TkN} of the utterances in the training set Xk. The p2p
converter assigns a probability, P (Vki|Tk;Gk), to every pronunciation vari-
ant Vki ∈ V by utilizing probabilities learned during training. Using this
variant probability as an estimate of the pronunciation prior probability,
P̂ (Λki|Wk), will serve as a direct reference to the probability-based baseline
experiment conducted in the previous chapter

P̂ (Λki|Wk) = P (Vki|Tk;Gk).

Obtaining prior probabilities for the p2p approach was exceedingly straight-
forward, as they were taken to be the probabilities generated by the p2p
converters during variant generation. A detailed description on the genera-
tion of these probabilities can be found in [105] and [84].

Using Maximum Entropy scores as pronunciation priors

Entropy is defined as a measure of the uncertainty of a probabilistic dis-
tribution. As discussed in Section 3.6.3, the maximum entropy principle
states that we should choose the distribution with the maximum entropy
(the most uniform distribution) that satisfies a set of constraints.

In this work we use one single constraint namely whether an utterance
xk is recognized correctly or not when the lexicon Λki is being used. Em-
ploying the Maximum Entropy model to estimate the pronunciation prior
probability we get

P̂ (Λki|Wk) = P (Λki|ck) =
1

Z(ck)
exp




F∑

j=1

λjfj(ck,Λki)



 (5.4)
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as described in Section 3.6.3. Now, if we have a set of training utterances
Xk for each name Wk, we expect this pronunciation prior probability to
reflect the number of correct classifications when using lexicon Λki. To
incorporate this into the Maximum Entropy model, the best hypothesis in
the hypothesis list Hkn was extracted for all the name utterances Xkn ∈ Xk.
When one of these hypotheses was equal to name Wk, the binary feature in
Equation (3.3) was set to 1 for variant Vki and name utterance Xkn. In this
way, the Maximum Entropy model was constrained to model ck with the
same frequency as was observed in the training data. The parametric model
in Equation (5.4) was then trained for every name using these features. The
pronunciation prior probabilities were finally extracted from this model for
every variant Vki ∈ Vk.

Using MCE scores as pronunciation priors

Another discriminative framework that can be used to estimate the pronun-
ciation prior probability, is the Minimum Classification Error framework
described in Section 3.6.4. In this framework, the performance of lexicon
Λki is modeled using the expected loss of recognition accuracy given in
Equation (3.5). This value is the expectation of the zero-one loss values
lk(Xkn; Λ) (Equation (3.7)) calculated for the available training utterances
Xkn ∈ Xk.

The pronunciation prior probability was then estimated by simply taking
the complement of the loss function lk(Xkn; Λki)

P̂ (Λki|Wk) = P (Λki|xk is correctly recognized)

=
1
N

N∑

n=1

(1− lk(Xkn; Λki)). (5.5)

In the work described in this thesis, acoustic log likelihoods extracted from
the hypothesis list Hkn were used as discriminant functions g(Xkn; Λ) for
utterance Xkn. As a consequence of the pruning parameter employed by the
HTK recognizer (see Section 2.1.5 for details), the number of hypotheses in
the list Hkn varies for each utterance in the training set. A long list means
high confusability whereas a short list means a lower level of confusability
between lexicon entries. Since long Hkn lists normally entail a lower average
likelihood score among the competitors when calculating the misclassifica-
tion measure in Equation (3.6) compared to shorter Hkn lists, we carefully
tuned the η parameter in Equation (3.6) using a systematic trial and error
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procedure on the training set.4 The value that was found to give a good
competitor weight was η = 6.

To calculate the total loss value for lexicon Λki, Equation (3.7) was
calculated for every name utterance Xkn ∈ Xk using the corresponding list
of hypotheses Hkn. If name Wk did not appear in Hkn, it was given a
loss value equal to 1 for that utterance. Finally, the pronunciation prior
probability was retained by using these loss values and Equation (5.5).

5.2 Experiments and results

In the experiments described in this section we compare three prior and four
posterior selection criteria and evaluate their ability to select the best per-
forming pronunciation variants for inclusion in the recognition lexicon. The
experiments were conducted in two different environments: in a controlled
setting of 617 names and in an open setting, using a much larger vocabu-
lary of 16,045 names. The three-fold cross-validation procedure described in
Section 4.2.3, using data extracted from the NameDat database, was used
in both experiments. The results in this section are presented as the average
name error rate (NER) of the three test sets and are given as a function of
M , the maximum allowed number of variants per name. Since virtually no
variation in performance was observed in the baseline experiments for large
values of M , the results in this chapter are given for up to ten variants per
name (M = 10).

5.2.1 Testing in a controlled environment

The prior and posterior selection criteria described in the previous section
were first tested in a controlled environment, using a single-word grammar
containing only the 617 names of the NameDat corpus. By using only the
pronunciation prior probabilities as the selection criterion (Equation (5.2)),
we obtained the results listed in the columns on the left-hand side of Ta-
ble 5.1. The right-hand side of the table shows the results obtained using the
posterior probabilities as the selection criterion (Equation (5.3)). In both
cases, the p2p variant probabilities (P2P), the Maximum Entropy score
(ME) and the Minimum Classification Error score (MCE) described above
were used as estimates of the pronunciation prior probability. The addi-
tional column on the posterior selection side of the table shows the results

4As previously noted, this is a suboptimal approach which may have influenced the
results to some small extent, but considered necessary due to the limited size of our data
set.
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obtained using only the acoustic log likelihood scores: NPP stands for no
prior probability.

Prior selection Posterior selection
M P2P ME MCE NPP P2P ME MCE
1 21.51% 13.77% 13.53% 13.67% 16.16% 13.73% 13.67%
2 15.64% 13.22% 12.85% 13.12% 13.95% 13.25% 12.99%
3 14.08% 12.37% 12.26% 12.43% 13.38% 12.35% 12.44%
4 13.45% 12.33% 12.22% 12.27% 12.86% 12.23% 12.24%
5 13.07% 12.20% 12.23% 12.29% 12.74% 12.20% 12.23%
6 12.66% 12.30% 12.20% 12.33% 12.60% 12.33% 12.33%
7 12.71% 12.34% 12.25% 12.33% 12.60% 12.34% 12.33%
8 12.68% 12.34% 12.31% 12.37% 12.60% 12.34% 12.39%
9 12.61% 12.34% 12.37% 12.37% 12.55% 12.37% 12.42%
10 12.63% 12.47% 12.34% 12.42% 12.58% 12.47% 12.40%

Table 5.1: NER of lexicons created with the prior selection method and the
posterior selection method (γ = 20).

The figures on the left-hand side of Table 5.1 reveal that the discrimina-
tive prior selection approaches (ME and MCE) significantly outperformed
the probability-based P2P method for the first three values of M . For values
of M larger than four, the discriminative selection approaches also outper-
formed the P2P method, but with a somewhat smaller margin. To better
demonstrate the differences in performance between the various selection
approaches, the results of Table 5.1 are illustrated in Figure 5.1 and 5.2 as
a function of the lexicon size. In these figures the x-axis is represented on
a logarithmic scale, as will be the case for all performance graphs through-
out this dissertation. Figure 5.1 shows the results of the prior selection
approaches and Figure 5.2 illustrates the results of the posterior selection
approaches.

When studying Figure 5.1, we observe a marginal performance gain in
favor of the MCE approach. Figure 5.2 shows that when compared to an
approach using no prior probabilities (NPP), none of the posterior selection
approaches seems able to exploit the additional information contained in
the priors. In fact, the differences in performance are so small as to be
virtually invisible in Figure 5.2. When compared to their respective prior
approaches, the P2P posterior approach shows some improvement, whereas
the ME and MCE posterior approaches stay at the same performance level.

Interestingly, when comparing the results illustrated in Figure 5.1 and
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Figure 5.1: NER of lexicons created with the prior selection method.
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Figure 5.2: NER of lexicons created with the posterior selection method.

Figure 5.2 with that of the threshold experiments given in Section 4.3.1
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(marked as asterisks in these figures), we observe that it sufficed for all
selection approaches, except for the probability-based approaches, to se-
lect no more than three pronunciations per name to attain a performance
equivalent to that of a much larger lexicon comprising all g2p and p2p tran-
scriptions (G2P-P2P 12.5% NER). However, none of the proposed selection
approaches were able to attain a performance comparable to that of a lexi-
con containing only auditorily verified transcriptions (AV 10.66% NER).

Including AV variants in the candidate set

Since the pronunciation candidates generated by the P2P converters are
created using an automatic procedure, they are far from optimal. It is
therefore interesting to investigate how the proposed selection criteria be-
have when the pool of pronunciation candidates also contains variants of a
higher quality. Therefore, we repeated the experiment, adding the auditorily
verified transcriptions of the training utterances to the pool of pronuncia-
tion candidates. Since there is no accurate way of assigning probabilities
to AV variants, the P2P prior and the P2P posterior selection approaches
were not evaluated in this experiment. Table 5.2 shows the results of this
experiment.

Prior selection Posterior selection
M ME MCE NPP ME MCE
1 13.05% 12.54% 12.62% 12.82% 12.57%
2 11.70% 11.58% 11.77% 11.64% 11.59%
3 10.90% 11.15% 11.10% 10.94% 11.18%
4 10.77% 10.65% 10.86% 10.72% 10.66%
5 10.51% 10.37% 10.43% 10.41% 10.45%
6 10.39% 10.34% 10.46% 10.34% 10.42%
7 10.40% 10.27% 10.45% 10.35% 10.27%
8 10.27% 10.23% 10.40% 10.32% 10.37%
9 10.25% 10.19% 10.25% 10.22% 10.27%
10 10.35% 10.18% 10.37% 10.37% 10.35%

Table 5.2: NER of lexicons created with the prior selection method and the
posterior selection method when using AV transcriptions in the candidate
set (γ = 20).

This table shows that the differences in performance between the five
selection approaches is still vanishingly small. It is worth noticing, however,
that the best performing lexicons reach name error rates comparable to that
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of a lexicon comprising all variants generated by the g2p and p2p converters
and all AV variants (G2P-P2P-AV 10.17% NER), using fewer variants in
the lexicon (M = 9). Still, as in the original experiment, none of the
selection approaches were able to outperform a lexicon comprising only the
AV variants (AV 10.66% NER) when using the same amount of variants in
the lexicon (M = 3). As opposed to the original experiment, however, none
of the lexicons generated in this experiment were significantly outperformed
by the AV lexicon.

5.2.2 Testing in an open environment

In an attempt to simulate an environment where the discriminative poten-
tial of the prior probabilities might be more fully exploited, we repeated
the previous recognition experiment in a large vocabulary setting of 16,045
names. The results of this experiment are given in Table 5.3 and illustrated
in Figure 5.3 and Figure 5.4.

Since the proposed variant selection methods could only be applied on
names for which training utterances were available, we conducted exper-
iments where only the variants selected for the original 617 names were
optimized in terms of recognition performance. The filler names were left
with their M most probable variants according to the Norwegian and En-
glish p2p converters.

Prior selection Posterior selection
M P2P ME MCE NPP P2P ME MCE
1 34.32% 22.65% 22.78% 22.56% 24.04% 22.57% 22.64%
2 26.13% 22.00% 21.50% 21.79% 22.24% 21.86% 21.78%
3 24.11% 20.93% 21.00% 21.06% 21.52% 21.11% 21.06%
4 23.30% 21.02% 21.09% 21.06% 21.51% 20.99% 21.09%
5 22.86% 21.15% 21.17% 21.30% 21.37% 21.31% 21.25%
6 22.47% 21.35% 21.46% 21.51% 21.57% 21.43% 21.43%
7 22.30% 21.59% 21.54% 21.62% 21.54% 21.56% 21.57%
8 22.39% 21.81% 21.77% 21.85% 21.87% 21.82% 21.79%
9 22.40% 22.14% 22.43% 22.10% 22.15% 22.14% 22.10%
10 22.48% 22.27% 22.27% 22.25% 22.32% 22.27% 22.25%

Table 5.3: NER of lexicons created with the prior and posterior selection
methods in the case of a 16k vocabulary (γ = 2.5).

Table 5.3 shows that the P2P prior selection method was again sig-
nificantly outperformed by the discriminative ME- and MCE-based prior
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selection methods for the first four values of M . Moreover, the performance
gain was relatively larger than in the case of a small vocabulary. However,
still virtually no performance gain could be observed for the posterior ME-
and MCE-based selection approaches when compared to the NPP posterior
approach, as illustrated in Figures 5.3 and 5.4. Furthermore, none of these
results give any evidence as to which of the discriminative selection ap-
proaches is the better performing one. The difference between the methods
actually seems to decrease compared to the results obtained using a small
vocabulary.5

These figures also reveal that the recognition performances no longer
seem to improve with higher values of M . In fact, for lexicons generated
by one of the discriminative approaches, three or four variants per name
were sufficient to obtain a better recognition performance than using ten
variants per name, which is more in agreement with other results reported
in the literature (e.g. [44] and [45]). Moreover, for all lexicons but the prior
P2P lexicon, no more than two variants per name were needed to achieve
a performance surpassing that of a lexicon comprising all variants in the
candidate set (G2P-P2P 22.40% NER).

Including AV variants in the candidate set

As in the controlled recognition experiment, we added the auditorily verified
transcriptions of the training set to the pool of pronunciation candidates in
order to observe what effect high quality variants would have on the perfor-
mance of the different selection approaches. The results of this experiment
are shown in Table 5.4.

As in the other experiments conducted in this chapter, there is no clear
evidence which of the proposed selection approaches generates the best per-
forming lexicon. Nevertheless, all the proposed selection approaches needed
to select no more than four or five variants per name to obtain a performance
equal to that of a lexicon comprising all g2p-p2p variants and all auditorily
verified variants (G2P-P2P-AV 18.40% NER). Testing in an open environ-
ment, where the lexical confusion is higher, all selection approaches even
performed somewhat better than a lexicon containing all auditorily veri-
fied variants (AV 19.29% NER) using approximately the same number of
variants per name (M = 3).

5The differences between the posterior approaches are so minute that the corresponding
graphs in Figure 5.4 are effectively indistinguishable.
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Figure 5.3: NER of lexicons created with the prior selection method in the
case of a 16k vocabulary.
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Prior selection Posterior selection
M ME MCE NPP ME MCE
1 21.26% 20.94% 20.65% 21.16% 20.83%
2 19.88% 19.41% 19.72% 19.88% 19.41%
3 18.56% 18.55% 18.75% 18.72% 18.60%
4 18.36% 18.41% 18.34% 18.47% 18.26%
5 18.02% 18.17% 17.98% 18.07% 18.18%
6 18.15% 18.23% 18.23% 18.21% 18.15%
7 18.12% 18.06% 18.16% 18.14% 18.05%
8 18.24% 18.18% 18.34% 18.31% 18.32%
9 18.29% 18.29% 18.24% 18.29% 18.32%
10 18.42% 18.39% 18.41% 18.42% 18.42%

Table 5.4: NER of lexicons created with the prior and posterior selection
methods in the case of a 16k vocabulary when using AV transcriptions in
the candidate set (γ = 2.5).

5.3 Discussion

In this chapter, we have proposed two discriminative variant selection crite-
ria and evaluated them using both prior and posterior decision rules. The
performance of the proposed selection criteria was compared to that of an
approach using p2p probabilities as prior probabilities and to that of an
approach using no prior probabilities at all. The experiments performed in
the previous section showed that the p2p prior selection method was sig-
nificantly outperformed, both in a controlled and in an open environment,
by all the evaluated prior and poste rior selection criteria, when using a
lexicon containing fewer than three variants per name. Moreover, the pro-
posed selection approaches needed to select no more than three (in case of
a controlled experiment) or two (in case of an open experiment) variants
per name to attain a performance surpassing that of a lexicon containing
all p2p and g2p transcriptions. There was no clear evidence, however, of
which of the decision rules performed best, nor was there enough evidence
to determine the most suitable selection criterion.

In order to identify potential areas of further improvement for our pro-
posed variant selection approaches, then, we require a better understanding
of the behavior of our decision rules and the characteristics of our selection
criteria. In Section 5.3.1, we therefore analyze the proposed decision rules
in greater detail. This analysis contains an in-depth comparison of the prior
and posterior decision rules, where we take a closer look at the individual
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variants selected by the prior decision rule compared to the NPP posterior
criterion. In Section 5.3.2, we describe a number of limitations that our
single-pass selection procedure is faced with, and identify some prerequi-
site characteristics of a more successful approach, which we will investigate
further in the following chapters. In Section 5.3.3, we reflect on the spe-
cific characteristics of our selection criteria, and the differences in selection
behavior these entail. Based on these considerations, then, we are able to
determine which of our decision rules and selection criteria are best suited
for use in our further work.

5.3.1 Choosing the most suitable decision rule

One of the most striking observations to be made from the experimental
results presented in this chapter is that there seems to be virtually no differ-
ence in performance between the discriminative posterior selection criteria
and the NPP posterior selection criterion. To be fair, these three criteria
have their posterior factor, viz. log likelihood scores from the recognition
engine, in common, so we might expect that their performance is similar.
Nevertheless, it seems surprising that the differences are so insignificantly
small, and that the additional information contained in the MCE and ME
prior probabilities does not amount to any gain in performance. In order
to investigate to what extent the prior probabilities effectively overlap with
the NPP’s log likelihood information, we examined whether or not the prior
approaches corrected different recognition errors than the posterior NPP
approach. We therefore performed two detailed error analyses on the small
vocabulary results, comparing the variants selected by each of the discrimi-
native prior criteria on the one hand with the variants selected in the NPP
posterior approach on the other. We considered all cases where the two ap-
proaches selected different pronunciation variants for name Wk and where
at least one test utterance of this name was misrecognized by at least one
of the two approaches.

In our first error analysis, we compared the variants selected by the
ME prior approach to those selected by the NPP posterior approach in
a controlled environment for M = 1. Strikingly, we observed that these
two approaches selected different variants for no more than 5% of the 617
names in the lexicon, indicating a very strong correspondence between the
ME approach and the NPP approach. These variants accounted for 16%
of the errors made by the two approaches. Of these errors, 34% occurred
exclusively in the ME approach, and 30% occurred exclusively in the NPP
approach. The observed overlap between ME and NPP may be explained
as follows. The ME criterion is designed in such a way that it selects the
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candidate variants with the highest number of correctly recognized training
utterances. However, if two or more variants of a name share the highest
number of correct recognitions, the ME criterion has no basis to choose be-
tween them. In those cases, the ME approach effectively selects the variant
that has the highest log likelihood, which is of course the same selection
criterion used in the NPP approach. In the cases where there is a single
variant yielding the highest number of correctly recognized training utter-
ances, that variant also tends to have the highest log likelihood, so it need
perhaps not have surprised us that the ME criterion and the NPP criterion
behave so similarly.

In our second error analysis, we compared the variants selected by the
MCE prior approach to those selected by the NPP posterior approach, again
in a controlled environment for M = 1. We found that these two approaches
behaved somewhat more divergently, selecting different variants for 13% of
the 617 names in the lexicon. These variants accounted for one fifth of
the errors made by the two approaches. Of these errors, 23% occurred ex-
clusively in the MCE approach, and 29% occurred exclusively in the NPP
approach. A closer inspection of these errors revealed that the NPP ap-
proach generally seems to prefer variants where the number of competitors
in the N -best list is higher compared to the variants selected by the MCE
prior approach. This effect can be largely attributed to the η parameter
in the misclassification measure of the MCE framework (Equation (3.6) of
Section 3.6.4) which makes the MCE criterion less dependent on the number
of hypotheses in the N -best list. There is no clear evidence, however, that
this effect has a notable impact on the recognition performance. Neverthe-
less, in those cases where both approaches selected variants corresponding
with long N -best lists, signifying high confusion, we generally observed that
the variant selected by the MCE prior approach seemed to be the better
variant.

It seems, then, that the errors occurring exclusively in the ME prior
approach were caused by giving too much weight to the number of correctly
recognized training utterances, while the errors occurring only in the NPP
approach were caused by relying too heavily on the acoustic alignment. The
MCE prior approach combines these two components, taking into account
both log likelihood scores and the amount of correct recognitions. This
should result in a fairer balance between errors made on account of either of
these factors, although we must note that the results for the MCE approach
presented in this chapter are not particularly better than the results for the
other approaches.

When we consider the question of prior versus posterior decision rule,
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however, it may be clear that the latter will only upset the balance that
might exist in the prior ME and MCE approaches, as it will give even
more weight to the acoustic alignment than is already built into the prior
decision rules. The upshot of this is that our proposed selection criteria
come to behave almost identically to the NPP approach, where we use only
log likelihood scores from the recognition engine. Indeed, we have seen
that the prior approaches already overwhelmingly select the same variants
as the NPP approach, so it may be clear that no further bias in favor
of acoustic alignment is desirable. In our attempt to identify a method
to optimize recognition lexicons, we will therefore abandon the posterior
selection approaches in the remainder of this dissertation, and focus instead
on improving our application of the prior decision rule.

5.3.2 Limitations of the single-pass selection approach

As we strive to refine our utilization of the prior decision rule, we might
do well to take a step back and reflect on some of the weaknesses of the
approaches proposed in this chapter. In this section, we highlight two main
limitations, and attempt to formulate some potential areas of further im-
provement these entail.

One major weakness of the selection approaches proposed in this chapter
is their tendency to select multiple equivalent variants. The evaluation of
whether or not a pronunciation variant of a given name should be included
in the recognition lexicon does not take into account which variants of that
name might already be present in the lexicon. This makes it impossible
to favor the selection of alternative variants that are capable of correcting
recognition errors that were not previously handled by the variants already
in the lexicon. Indeed, including variants correcting the same errors is ex-
ceedingly likely, since two similar pronunciation variants are likely to get
similar scores, making them equally ranked for inclusion in the lexicon. For
instance, if our data set contains utterances of a particular name that are
pronounced more or less consistently, but with a small amount of outlier
pronunciations, the optimal population of the lexicon would contain one
single variant covering the uniform majority of the pronunciations and a
number of additional variants covering the anomalous utterances. The se-
lection approaches proposed in this chapter, however, would prioritize the
selection of a number of functionally equivalent variants, all of which cover
only those utterances that are pronounced in the standard way. The up-
shot of this would be a lexicon inflated with a considerable proportion of
effectively redundant variants, which are so similar to each other as to be
virtually interchangeable. Variants that are capable of correcting the outlier
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pronunciations might not be added until a much later iteration, when the
lexicon has already become bogged down with superfluous variants.

Another limitation of the prior decision rule is that it does not con-
sider whether or not a lexicon entry actually benefits from the availability
of an additional variant in the lexicon. It simply adds one variant in every
iteration until there are no variants left in the pool of pronunciation candi-
dates, regardless of the quality of the individual variant that is being added.
Given enough iterations, all variants in the candidate pool will eventually
be added to the lexicon, even if a particular candidate might be entirely
unsuitable. In the hypothetical case that our data set contains a particular
name that has an absolutely uniform pronunciation across all utterances,
and there is a candidate variant which matches that standard pronunciation
perfectly, then it would be meaningless and potentially counterproductive
to add more variants to the recognition lexicon. This problem will make
itself more felt for every iteration, as the variants that are being added for
that name presumably become less and less well-matched to the standard
pronunciation.

As we have seen in Section 4.3.1, lexical confusability is influenced by
the size of the lexicon and the quality of the variants in the lexicon. It
seems, then, that our present decision rule can have a negative effect on
both of these factors, potentially causing an oversized lexicon containing
substandard variants. In order to clarify the effect of these two limita-
tions, Figure 5.5 provides a visual representation of the development of the
lexicons constructed using the P2P, ME and MCE prior approaches. For
each iteration (M), the respective columns represent the number of variants
selected for inclusion into the lexicon by each of the selection algorithms.

The division of the columns into red and blue sections should be inter-
preted as follows. After the 10th iteration, we ran a recognition pass on all
the utterances in our test set, using the end lexicons obtained from all 10
iterations of the various selection algorithms. The sections marked in blue
in Figure 5.5 correspond to the successful variants: those variants that were
effectively used by the recognizer and which resulted in an utterance being
recognized correctly. The red sections correspond to unsuccessful variants:
either these variants resulted in misrecognitions, or they were not used by
the recognizer at all during this recognition pass with the respective end
lexicons. The “blue” variants, then, are particularly valuable for recogni-
tion success, and in an optimal lexicon, we would want these variants to
be selected during the earliest iterations. The “red” variants are not only
likely to contain a substantial proportion of redundancy, but since some of
these variants result in recognition errors, they also cause an increase of
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Figure 5.5: The number of variants selected in each iteration (M) by the
P2P, ME and MCE prior approaches.

lexical confusion. It may be clear, then, that we would do well to limit
the amount of red variants in our optimized lexicon. However, it should
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be noted that it would be wrong to assume that the blue variants are the
only variants worthy of inclusion in the recognition lexicon: we must also
be able to handle a certain amount of variation that may not be present in
the particular set of utterances we have at our disposal while constructing
the lexicon. Therefore, the lexicon should contain more variants than the
ones used by any given recognition pass.

The first limitation described above is illustrated by the amount of blue
variants selected in the later iterations of the selection algorithms. Presum-
ably, these are variants used by the recognizer to correct outlier pronun-
ciations for which no suitable variant was present in the earlier iterations.
The second limitation is illustrated by the large proportions of red variants
selected throughout the iterations: as long as there are candidate variables
available, the selection algorithms select them. Although it is good to have
a certain amount of variation in the recognition lexicon over and above what
is observed in the available speech data, it may be clear that an optimized
lexicon will need to minimize the amount of redundant variants.

One solution for these limitations is to design a decision rule that re-
flects the effect of a lexicon change rather than just the performance of the
individual variants. Measuring the effect of adding a single variant to the
recognition lexicon enables us to take the variants that are already in the
lexicon into consideration when deciding whether or not to include a vari-
ant in the lexicon. It allows us to assess if a lexicon entry actually benefits
from having this variant in the lexicon, and in this way it can prevent the
inclusion of superfluous variants. Such a decision rule, however, requires
an objective performance measure that is able to differentiate between the
performance of a lexicon before and after the addition of a particular vari-
ant. In the following section, we will evaluate whether any of the variant
selection criteria proposed in this chapter might be a suitable candidate for
that role of performance measure.

5.3.3 Choosing the most suitable selection criterion

Not only did we find no substantial difference in performance between the
prior and posterior decision rules, we also found that none of the proposed
selection criteria significantly outperformed any other. We therefore con-
sidered the criteria more closely, inferring some main characteristics which
might help us to decide on how to proceed in our further work.

The No Prior Probability selection criterion (NPP) selects the variants
that on average align best acoustically with the name utterances in the
training set. This selection criterion does not, however, consider whether or
not the utterances were correctly recognized, nor does it consider the relative
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position of the correct hypothesis in the N -best list. As noted previously in
this section, this approach also tends to select variants with a high number
of competitors in the N -best list. These effects can in some cases result in
poor variant selection, especially when the lexical confusion is high. A major
disadvantage of the NPP selection criterion is that the log likelihood value
is highly dependent on the specific utterances in the training set, making
it unfeasible to compare lexicon performance for different data sets. For
our purposes, however, the most crucial deficiency of an approach using log
likelihood as a selection criterion is that it is not lexicon-dependent. By this
we mean that the log likelihood score does not reflect the adverse effects that
variants of other names that are already present in the lexicon may have on
the recognition of a particular set of utterances. Comparing log likelihood
scores before and after the addition of a new variant will therefore only tell
us if the new variant aligns better acoustically with the training utterances
than the variants already in the lexicon. Given that it is our objective to
devise a procedure to optimize recognition lexicons by selecting a minimal
amount of maximally effective variants, we require a selection criterion that
takes the pre-existing context of the lexicon into account.

The Maximum Entropy selection criterion (ME) selects the variants that
have the highest number of correctly recognized name utterances in the
training set. If two variants result in an equal amount of correctly recognized
utterances, the variant with the highest log likelihood score is chosen. In
this way, the ME criterion incorporates information related to both the
recognition performance and to the acoustic alignment of a variant with
the training utterances. However, a selection based on the ME criterion is
quite crude in the sense that it will always select variants proven to correct
the highest number of recognition errors first, even if there might be other
variants available that have a better overall acoustic match with the training
data. This entails that a variant which has a perfect match with one single
utterance will always be selected over variants that have a good (although
not perfect) acoustic match with all utterances. The latter variant might
well be more generally appropriate, and would in many cases be the better
choice for lexical inclusion, even though it does not necessarily result in
any utterances from a particular training set being recognized correctly.
Incorporating additional features into the training of the ME model could
reduce this effect to some extent and improve the performance of the ME
criterion. However, the only features available to us during the development
of this procedure were related to the recognizer’s N -best list. Given that we
make extensive use of the N -best list in the MCE criterion, such a redesign
of the ME criterion would only make its selection behavior more similar to
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the MCE criterion. We therefore decided not to pursue this path further.
The Minimum Classification Error criterion (MCE) utilizes the N -best

list proposed by the recognizer to select which pronunciation variants to
include in the lexicon. The selection is done by choosing the variants that
have, on average, the largest difference between the log likelihood score of
the correct hypothesis and the average log likelihood of the competing hy-
potheses. In this way, the MCE criterion incorporates information about
the recognition performance and the acoustic alignment of a certain variant,
as well as the relative distance in performance between the correct hypoth-
esis and all the other hypotheses in the N -best list. It therefore offers a
more accurate prior probability than both the ME criterion and the acous-
tic likelihood. The MCE criterion is lexicon-dependent in the sense that it
considers all the other variants in the lexicon. Additionally, as the MCE
criterion constitutes a measure of recognition success on a zero-to-one con-
tinuum, it is more suitable for optimization than the ME criterion, which
is a probability based on a discrete factor (viz. number of correctly recog-
nized training utterances). For these reasons, the difference in MCE-score
before and after a lexicon change can give an adequate reflection of the
performance effects of the newly added variant.

All of these factors make us confident that the MCE criterion is the
most suitable criterion to select the best performing pronunciation variants.
In the remainder of this work, we will therefore abandon the NPP and ME
approaches, and focus on investigating how we can exploit the potential of
the MCE selection criterion more fully.

5.4 Conclusion

In this chapter we have evaluated two discriminative variant selection cri-
teria using a prior and a posterior decision rule. The performance of each
of the discriminative criteria was compared to that of a selection method
using variant probabilities (P2P) and plain log likelihood scores (NPP) as
a selection criterion. The experiments conducted in this chapter showed
that both the discriminative selection criteria and the NPP criterion con-
siderably outperformed the probability-based selection criterion when the
number of variants in the lexicon was small. However, the experiments nei-
ther revealed which decision rule might be preferable, nor did they show
any of the remaining selection criteria to perform better than the others.

Given that the experimental results were so inconclusive, we performed
an in-depth analysis of the proposed decision rules and selection criteria.
When investigating the decision rules, we found that the ME and MCE
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prior approaches overwhelmingly selected the same variants as the NPP
approach. As the posterior decision rule only gives additional weight to the
acoustic alignment, over and above the extent to which this is already built
into the selection criteria, and the NPP approach selects variants purely
on the basis of their acoustic alignment, it may be clear that applying the
posterior decision rule to the ME and MCE criteria only serves to make their
selection behavior resemble that of the NPP approach even more. This is
illustrated well by the graphs of NPP, ME and MCE posterior in Figures 5.2
and 5.4, which are so similar as to be more or less indistinguishable: the
selection behavior of the posterior selection approaches is all but identical.

In order to determine the most promising direction for our further re-
search, we then reflected on the shortcomings of the proposed selection ap-
proaches, and found that lexical confusability was being augmented in the
following two ways. Firstly, we observed that the selection approaches were
unable to identify mutually compatible variants, and as a result they se-
lected a large proportion of functionally equivalent and therefore effectively
redundant variants. Secondly, there was no way to disqualify potentially
harmful variants, and given a sufficient amount of iterations, all variants
were included in the lexicon. The resulting lexicons were suboptimal both
in terms of size and quality, in the sense that they contained an overly large
amount of variants, some of which were of inferior quality.

We concluded that, in order to remedy these weaknesses, we might be
better served with a method of measuring the effect of a lexicon change on
recognition performance. By comparing the recognition success before and
after the addition of a variant to the recognition lexicon, we could prevent
the addition of redundant and inferior variants. We found the NPP and ME
criterions to be less well-suited for this task than the MCE criterion.

In the next chapters, we aim to improve the prior selection rule. In
this way, we hope to create a selection method that can generate a lexicon
comprising variants that correct different recognition errors. Due to its
ability to compare lexicons in a meaningful and optimizable way, the MCE
score will be used to estimate the number of errors made by a lexicon before
and after the addition of a particular variant.
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Chapter 6

Selecting variants using an
iterative approach

Although the MCE prior approach proposed in the previous chapter per-
formed much better than the probability-based baseline approach, it was
still not able to select variants correcting different types of recognition er-
rors. This problem is caused by the fact that two similar pronunciation
variants are likely to get similar MCE scores, making them equally ranked
for lexical inclusion. To overcome this problem, we abandon the MCE prior
approach and switch to a multi-pass iterative approach where variants are
selected based on an estimate of the error rate reduction rather than simply
using an estimate of the error rate. In this chapter we will describe the
multi-pass iterative approach in detail. In the remainder of this disserta-
tion the prior MCE approach will be referred to as the single-pass MCE
approach. This work has also been presented in part in [3].

6.1 Decision rule and variant selection algorithm

In the iterative selection approach proposed in this chapter, a variant is only
included in the recognition lexicon if it corrects errors that are left unhandled
by the initial lexicon. To estimate the number of errors corrected by a
particular variant, MCE scores calculated before and after the inclusion of
the variant in the recognition lexicon, are compared. In the following section
we define the variant selection criterion used in this selection algorithm.
Section 6.1.2 clarifies some terminological conventions adhered to in this
chapter. Section 6.1.3, then, describes the variant selection algorithm.

97
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6.1.1 Decision rule

As in the previous chapter, we assume that we have a set of names, W =
{W1, W2, . . . ,WK }, and that for some name Wk ∈ W a set of training
utterances Xk = {Xk1, Xk2, . . . , XkN} and a set of candidate pronunciation
variants Vk = {Vk1, Vk2, . . . , VkI} are available. Furthermore, we define an
initial lexicon Λinit where each name in W is represented by its single best
performing variant. The goal, then, is to expand the lexicon with the variant
V ∗

k ∈ Vk that minimizes the risk of recognition errors. If Lk(Xk; Λinit) rep-
resents the expected loss of recognition accuracy for the training utterances
in Xk when using the initial lexicon Λinit and Lk(Xk; Λki) is the correspond-
ing loss when using the initial lexicon extended with variant Vki, then the
variant selection criterion can be defined as

V ∗
k = argmax

Vk

(Lk(Xk; Λinit)− Lk(Xk; Λki)) . (6.1)

The expected loss of an arbitrary model Λ is obtained as the accumulation
of contributions lk(Xkn; Λ) emerging from the available training utterances
Xkn ∈ Xk of name Wk:

Lk(Xk; Λ) =
1
N

N∑

n=1

lk(Xkn; Λ). (6.2)

The loss function lk(Xkn; Λ) used in the experiments conducted in this chap-
ter is the MCE loss function described in Equation (3.7) in Section 3.6.4.

6.1.2 Terminology for lexicon types

Before we describe the implementation of the selection algorithm, we must
define a fixed terminology for the different types of lexicons that will be em-
ployed in this section. We will be using five different terms for our lexicons,
dependent on which role they play and during which step of our selection
procedure they are used. Two of these terms are preserved for lexicons that
are essentially static, viz. they present the very begin and end state of our
lexicon. For the former we will employ the term start lexicon while the
latter will be called the end lexicon. To transform our start lexicon into our
end lexicon, we use an iterative procedure, and in each iteration, we create
three further lexicons, which we will call the iteration-initial, the temporary
and the iteration-final lexicon respectively. These three lexicons are actively
used throughout our procedure, and are therefore constantly changed.

With every iteration in this procedure we aim to augment our lexicon
with the optimal available variants. The iteration-initial lexicon provides
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our starting point for an iteration. The temporary lexicon, then, is all but
identical to the iteration-initial lexicon at any given point in the iteration
The only exception is a single added pronunciation variant, namely vari-
ant Vki. This temporary lexicon is used to evaluate the effect that this
single lexicon change has on the recognition accuracy. In this way, we iden-
tify the optimal variants to be included in the iteration-final lexicon at the
end of the iteration. Perhaps, unsurprisingly, this iteration-final lexicon will
serve as the iteration-initial lexicon during the following iteration.

6.1.3 Variant selection algorithm

In this section we describe an iterative variant selection algorithm which in
every iteration (m = 1, . . . ,M) only selects variants which actually reduce
the expected number of recognition errors. As a starting point we take
a start lexicon Λs which comprises one English g2p transcription for each
name. In the first iteration (m = 1) we then perform a procedure equivalent
to that of the single-pass MCE approach:

1. create an iteration-initial lexicon lexicon by copying the variants con-
tained in the start lexicon Λs, then, create an empty iteration-final
lexicon

2. for each name Wk ∈ W, extract the pronunciation candidate set Vk

and perform the following steps for each candidate Vki ∈ Vk:

(a) create a temporary lexicon, Λki, by replacing the g2p transcrip-
tion in the iteration-initial lexicon by the candidate pronuncia-
tion Vki

(b) perform a recognition pass on all the training utterances in Xk

using this temporary lexicon and an isolated word grammar, and
collect the most likely name hypotheses1 proposed by the recog-
nizer together with their likelihood scores

(c) calculate the expected loss Lk(Xk; Λki) of the examined name
according to Equation (6.2)

3. after performing the above procedure for all names in W, select for
each name the variant V ∗

k yielding the lowest expected loss and add
it to the iteration-final lexicon. If two or more variants have equal
loss values, choose the variant with the highest average acoustic log
likelihood score

1The maximum number of hypotheses in the N -best list was set to be 20.
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The procedure in the subsequent iterations (m = 2, ...,M) is analo-
gous, but with four differences: 1) we take as our iteration-initial lexicon
the iteration-final lexicon emerging from the previous iteration; 2) when
investigating variant Vki of name Wk, a temporary lexicon is created by
adding Vki to the iteration-initial lexicon; 3) while in iteration m = 1 we
selected variants with the lowest expected loss, in subsequent iterations we
select variants causing the greatest reduction in expected loss, i.e. the vari-
ants maximizing Equation (6.1); 4) we no longer necessarily add a variant
for each name: if none of the variants of name Wk cause a reduction in ex-
pected loss, we do not add any variants of Wk to the iteration-final lexicon.

This results in the following procedure performed for every iteration
until the algorithm converges:

1. create an iteration-final and an iteration-initial lexicon Λiterinit, by
collecting the variants contained in the iteration-final lexicon of the
previous iteration

2. for each name Wk ∈ W, extract the pronunciation candidate set Vk

and perform the following steps for each candidate Vki ∈ Vk not al-
ready contained in the iteration-initial lexicon:

(a) create a temporary lexicon Λki by adding the candidate pronun-
ciation Vki to the iteration-initial lexicon

(b) perform a recognition pass on all the training utterances in Xk,
using this temporary lexicon and an isolated word grammar, and
collect the most likely name hypotheses2 proposed by the recog-
nizer together with their likelihood scores

(c) calculate the expected loss Lk(Xk; Λki) of the examined name
according to Equation (6.2)3

3. after performing the above procedure for all names in W, select for
each name the variant V ∗

k maximizing the decision rule in Equa-
tion (6.1) and add it to the iteration-final lexicon. If two or more
variants have equal loss values, choose the variant with the highest
average acoustic log likelihood score. If none of the variants can re-
duce the expected loss further, then no variant is added to the lexicon
and no further attempts to add variants for that name are made

After a number of iterations, no more pronunciation variants that reduce
the expected loss are available; the algorithm converges. In this way, the

2The maximum number of hypotheses in the N -best list was set to be 20.
3As of iteration m = 2, Λinit is of course to be understood as Λiterinit.
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iteration-final lexicon of the last iteration becomes our end lexicon.

6.2 Experiments and results

The multi-pass iterative approach was tested in two different environments:
in a controlled setting of 617 names and in an open setting, using a much
larger vocabulary of 16,045 names. As in the previous chapter, the three-fold
cross-validation procedure described in Section 4.2.3, using data extracted
from the NameDat database, was used in the two experiments. The re-
sults in this section are presented as the average NER of the three test sets
and are given as a function of M , the maximum allowed number of vari-
ants per name. The average lexicon size, defined as the average number
of pronunciations in the three final lexicons, is also presented for every M .
The results are compared with the results of the probability-based base-
line method (P2P) and the single-pass MCE approach given in Section 5.2.
The multi-pass selection algorithm described in the previous section has
also been evaluated on the Autonomata Spoken Name corpus [106], as was
described in [3].

6.2.1 Testing in a controlled environment

First, the multi-pass iterative MCE approach was tested in a controlled
environment, using an isolated-word grammar containing the 617 names
of the NameDat corpus. The right-hand column of Table 6.1 shows the
results of this experiment as a function of M . The two middle columns
summarize the results for the P2P baseline approach and the MCE single-
pass approach.

This table reveals several interesting properties of the multi-pass MCE
approach. Firstly, it shows that the proposed approach significantly out-
performed the baseline P2P method for the first three values of M . For
higher values of M , the performance of the two approaches became more
similar as the performance of the multi-pass approach converged (as did
the size of the lexicons generated using this approach). Secondly, the table
shows that the iterative approach needed to select no more than 2 variants
per name to attain a performance equal to that of a lexicon comprising
all available pronunciation candidates (12.5% NER). Finally, when compar-
ing the results of the multi-pass MCE approach with that of the single-pass
MCE approach, the table shows a slight performance increase in favor of the
multi-pass approach. It should be noted however, that this performance in-
crease is achieved using a recognition lexicon containing considerably fewer
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Iteration Baseline P2P MCE Single-pass MCE Multi-pass
M Size NER Size NER Size NER
1 617 21.51% 617 13.53% 617 13.53%
2 1229 15.64% 1229 12.85% 1184 12.42%
3 1806 14,08% 1806 12.26% 1571 12.02%
4 2315 13.45% 2315 12.22% 1749 12.08%
5 2761 13.07% 2761 12.23% 1802 12.13%
6 3147 12.66% 3147 12.20% 1811 12.13%
7 3479 12.71% 3479 12.25% 1811 12.13%
8 3771 12.68% 3771 12.31% 1811 12.13%
9 4027 12.61% 4027 12.37% 1811 12.13%
10 4256 12.63% 4256 12.34% 1811 12.13%

Table 6.1: Size and NER of lexicons created using different variant selection
approaches in case of a small vocabulary.

pronunciation variants. To demonstrate this effect, the performances of the
three approaches are illustrated in Figure 6.1 as a function of the lexicon
size on a logarithmic scale. In this figure, the results of the initial experi-
ments conducted in Section 4.3.1 are also given for reference (marked with
asterisks) in Figure 6.1. The figure illustrates that the multi-pass MCE
approach generally seems to perform somewhat better than the single-pass
MCE approach when using the same number of variants in the lexicon.

Including AV variants in the candidate set

Somewhat more disappointingly, the iterative MCE approach does not seem
to perform as well as a lexicon comprising all auditorily verified transcrip-
tions found in the training set (10.66% NER). One reason for this might
be that the pronunciation candidates in our candidate set are automatically
generated and of varying quality. To investigate this further, we repeated the
experiment, now adding the auditorily verified transcriptions of the training
set to the pool of pronunciation candidates. Since there is no accurate way
of assigning probabilities to AV variants, the P2P baseline approach was not
evaluated. Table 6.2 and Figure 6.2 illustrate the results of this experiment.

This table shows that the iterative MCE approach is able to achieve a
slightly better performance than a lexicon containing all AV variants when
using the same number of pronunciation variants in the lexicon (10.66%
NER at M = 3). This means that, given a pool of pronunciation candi-
dates containing some high quality and some lower quality variants, the
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Figure 6.1: NER of lexicons created using different variant selection ap-
proaches in case of a small vocabulary.

Iteration MCE Single-pass MCE Multi-pass
M Size NER Size NER
1 617 12.54% 617 12.54%
2 1234 11.58% 1203 10.80%
3 1851 11.15% 1615 10.07%
4 2452 10.65% 1841 9.97%
5 3029 10.37% 1979 9.90%
6 3578 10.34% 2026 9.87%
7 4084 10.27% 2031 9.87%
8 4528 10.23% 2031 9.87%
9 4918 10.19% 2032 9.87%
10 5270 10.18% 2032 9.87%

Table 6.2: Size and NER in the small vocabulary case of lexicons created
with different variant selection methods when having AV transcriptions in
the candidate set.
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iterative MCE approach is in fact able to select some of the highest quality
variants. Figure 6.2 illustrates that the performance gap between the single-
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Figure 6.2: NER in the small vocabulary case of lexicons created with dif-
ferent variant selection methods when having AV transcriptions in the can-
didate set.

pass approach and the multi-pass approach is effectively larger when having
high quality variants in the candidate set. This implies that the multi-pass
MCE approach potentially performs better when the quality of the variants
in the candidate set is higher.

6.2.2 Testing in an open environment

The iterative MCE approach tested in a controlled setting gave a significant
NER reduction compared to the baseline P2P method for the first three
values of M . Nevertheless, the positive effect of reducing the lexicon size
was not really apparent in this experiment. This is most likely an effect of
the vocabulary size, since the vocabulary is too small to expose the increased
lexical confusion caused by the inclusion of too many variants. Therefore,
we repeated the recognition experiment, now using the extended vocabulary
of 16,045 names. The procedure for this experiment was identical to that
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of the controlled experiment, but with one difference. In this experiment
pronunciation variants for the filler names were added to the lexicon at the
same rate as for the 617 names in our data set. By increasing the number of
variants for all the names at the same rate, we aspired to gain some insight
on the effect of the proposed selection algorithm when the vocabulary grew
larger.

The procedure for adding variants to the filler names was as follows.
In the first iteration, the recognition lexicon was augmented with a single
variant for all the 617 names in the data set and a single variant for all
the 15,428 filler names. Since no training data are available for the filler
names, the most probable variant for each name was selected for lexicon
inclusion. In the second iteration of the open experiment, the proposed
algorithm selected 580 of the 617 names in the data set to be represented
with a second variant in the lexicon. As a consequence, 580

617 ·15, 428 = 14, 503
filler names “survived” the iteration and were also represented with a second
variant. To decide which filler names should survive, we used the probability
score of their second most probable variant. In other words, the 14,503
filler names which had the highest probability score for their second most
probable variant survived the iteration. In the third iteration, 370 of the
617 names were selected by the proposed algorithm to be represented with
a third variant. Hence, 370

617 · 15, 428 = 9, 252 of the 14,503 filler names
surviving the second iteration were represented with a third variant in the
recognition lexicon. These were the 9,252 filler names surviving the second
iteration with the highest probability score for their third most probable
variant. This procedure was repeated until the proposed algorithm no longer
could find any variants for the 617 names in the data set that could increase
the recognition performance.

It may be clear that is an artificial setup, and we must bear this in mind
when interpreting the results of this scheme. However, it seems a reasonable
test of our hypothesis that a more careful variant selection could reduce the
lexicon size considerably, which could be expected to lead to a decrease in
lexical confusion. Table 6.3 shows the results for the iterative approach
compared to the result of the probability-based baseline method and the
single-pass MCE selection method as a function of M .

This table shows that the baseline (probability-based) selection method
was again significantly outperformed by the multi-pass MCE-based selec-
tion method for all values of M . The proposed approach also performed
significantly better than the MCE single-pass approach for M = 2. For M
larger than 2, the iterative approach performed better than the single-pass
approach as well, but with a somewhat smaller margin. Furthermore, the
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Iteration Baseline P2P MCE Single-pass MCE Multi-pass
M Size NER Size NER Size NER
1 16045 34.32% 16045 22.78% 16045 22.78%
2 32067 26.13% 32067 21.78% 30755 20.49%
3 47929 24.11% 47929 21.06% 40672 20.59%
4 63250 23.30% 63250 21.09% 45258 20.70%
5 77563 22.86% 77563 21.25% 46567 20.73%
6 90574 22.47% 90574 21.43% 46828 20.73%
7 102157 22.30% 102151 21.57% 46838 20.73%
8 112208 22.23% 112208 21.79% 46839 20.73%
9 120930 22.40% 120930 22.10% 46839 20.73%
10 128284 22.48% 128284 22.25% 46839 20.73%

Table 6.3: Size and NER of lexicons created by different variant selection
approaches in case of a 16k vocabulary.
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Figure 6.3: NER as a function of lexicon size for lexicons created by different
variant selection approaches in case of a 16k vocabulary.

table shows that these performance gains were obtained using lexicons com-
prising considerably fewer variants compared to the corresponding lexicons
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generated with either the P2P approach or the MCE single-pass approach.
This effect is illustrated in Figure 6.3 where the results of Table 6.3 are
illustrated as a function of the lexicon size. In this figure, the AV lexicon
contains the AV transcriptions for all the 617 names in the data set (on av-
erage 3 AV transcriptions per name) and the three most probable variants
of the remaining 15,428 filler names. The results of the initial experiments
conducted in Section 4.3.1 are also given for reference.

As this figure illustrates, the MCE multi-pass approach needed to select
fewer than two variants per name on average to achieve a lower NER than
every other lexicon used in this experiment4, including the lexicon compris-
ing all g2p and p2p variants (G2P-P2P 22.40% NER). Moreover, comparing
this figure with Figure 6.1 shows that the performance gain achieved by the
proposed approach in a large vocabulary setting is relatively larger than in
the case of a small vocabulary.

Including AV variants in the candidate set

As in the controlled experiment, we wanted to investigate the effect of having
high quality transcriptions in the pool of pronunciation candidates. To
examine this, we added auditorily verified transcriptions to the pool and
repeated the experiment. The results of this experiment are illustrated in
Table 6.4 and in Figure 6.4. The AV lexicon in Figure 6.4 contains AV
transcriptions for all the 617 names in the data set as well as the three most
probable filler variants for the remaining 15,428 filler names.

Figure 6.4 shows that the multi-pass MCE approach, when tested in a
large vocabulary setting, was able to surpass the performance of a lexicon
containing all AV variants (AV 19.26% NER) as well as the performance of
a lexicon comprising all AV variants and all g2p and p2p variants (G2P-
P2P-AV 18.40% NER). Moreover, the best performing lexicon contained
on average 3.1 variants per name which is only one third of the variants
comprised in the G2P-P2P-AV lexicon. Another interesting observation is
that the performance gain obtained in each iteration (until the procedure
converged) was relatively larger compared to when using a candidate pool
comprising only g2p and p2p transcriptions. It is also worth noticing that
the proposed approach no longer seems to add variants that introduce new
errors to the same extent as when using the g2p-p2p candidate pool. Both
of these observations suggest that the proposed approach is in fact able to
select the higher quality variants from the pool of transcription candidates.

4With the exception of the “cheating” experiment which employ a lexicon comprising
transcriptions verified by an human expert.
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Iteration MCE Single-pass MCE Multi-pass
M Size NER Size NER
1 16045 20.94% 16045 20.94%
2 32068 19.41% 31267 18.09%
3 47941 18.55% 42996 17.52%
4 63301 18.41% 49506 17.44%
5 77671 18.17% 52038 17.50%
6 90741 18.23% 52620 17.55%
7 102386 18.06% 53479 17.55%
8 112496 18.18% 52700 17.55%
9 121273 18.29% 52700 17.55%
10 128676 18.39% 52700 17.55%

Table 6.4: Size and NER in case of a 16k vocabulary for lexicons created
by different variant selection approaches after adding AV transcriptions to
the candidate pool.
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Figure 6.4: NER in case of a 16k vocabulary for lexicons created by different
variant selection approaches after adding AV transcriptions to the candidate
pool.
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As in the small vocabulary experiment, the performance gap between the
single-pass approach and the multi-pass approach effectively seems to be
larger when having high quality variants in the candidate set. These obser-
vations confirm the results of the small vocabulary experiments and support
our hypothesis that the multi-pass MCE approach is likely to perform better
when the variants in the candidate set are of higher quality.

6.3 Discussion

6.3.1 Observations

The pronunciation variant selection algorithm proposed in this chapter aims
to select only the variants that effectively reduce the error rate. The algo-
rithm was implemented in such a way that the variants most likely to correct
the most recognition errors were added to the lexicon first. By adding these
variants early in the lexicon generation process, we could identify the point
where no further gain could be achieved by adding more variants. In this
way, we were able to prevent the addition of redundant variants to the lex-
icon. The upshot of this approach is a lexicon that is doubly optimized:
we have at once attempted to minimize its size and maximize its perfor-
mance. As discussed in Section 4.3.1, we have found that confusability can
be counteracted to some degree by the presence of high quality transcription
variants (which align better with the individual training utterances) in the
lexicon. The algorithm presented in this chapter, then, aims to minimize
confusability by selecting an optimally low number of strictly high quality
pronunciation variants.

The multi-pass selection algorithm was evaluated in a controlled and
in an open environment. In both environments, a significant performance
increase was observed in favor of the proposed approach when compared
to the P2P baseline approach, whereas a small performance increase was
observed when the results were compared to that of the single-pass MCE
approach. Adding auditorily verified transcriptions to the candidate pool
produced some interesting results. Firstly, our multi-pass approach out-
performed a lexicon consisting exclusively of the entire set of available AV
transcriptions, which shows that the set of alternate variants generated by
the p2p converter indeed contained some high quality variants, and that
our approach was able to exploit these to some extent. Moreover, adding
AV variants to the candidate pool caused the relatively small performance
gap with the single-pass approach to widen, indicating that our proposed
approach is in fact more effective when the candidate pool contains variants
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of high quality.
In the large vocabulary setting, the observed performance gain was rel-

atively larger compared to the small vocabulary setting. This is most likely
because the potential of the iterative approach to reduce lexical confusion
is exploited more fully in a large vocabulary setting where confusability is
naturally higher. The most interesting observation in the large vocabulary
setting, however, was that the lexicon yielding the highest performance con-
tained on average fewer than two variants per name. After this point, the
proposed approach selected pronunciation variants that introduced more
errors than they corrected, indicating some generalization problems in the
large vocabulary case. Adding AV variants to the candidate pool, however,
seemed to reduce these problems to some degree, as the best performing
lexicon now contained 3.1 variants per name and the number of variants
introducing more errors than they corrected was reduced. These effects can
largely be attributed to the AV variants aligning better with the training
utterances, increasing the distance between competitors in the N -best list,
which again increases the selection criterion’s ability to differentiate between
variants. Looking back at the results of the same experiment in the small
vocabulary case (Table 6.2) we observe that the same effect was in fact also
present in the controlled setting. These observations indicate a correlation
between the optimal number of variants in a lexicon and the quality of the
variants within the lexicon in the proposed approach.

To illustrate the difference in behavior between the single-pass MCE ap-
proach and the multi-pass MCE approach, we made a visual representation
of the development of the lexicons constructed using each of the selection
approaches (Figure 6.5 and Figure 6.6). Each column in these figures rep-
resents the total number of variants selected for a specific value of M . The
division of the columns into red and blue sections should be interpreted as in
Section 5.3.2: the blue sections represent variants that triggered a correct
recognition, the red sections represent variants that were either not used
or used in misrecognitions. As in Figure 5.5, the numbers correspond to
a recognition pass performed on all test utterances, using the end lexicon
obtained after 10 iterations of the respective selection approaches.

When comparing Figure 6.5 with Figure 6.6, the first thing we notice is
that the total number of variants selected in each iteration is considerably
lower for the multi-pass MCE approach than for the single-pass approach.5

Furthermore, the multi-pass approach selected no additional variants after
the sixth iteration. As we have seen, this is not at the cost of a loss in recog-

5Of course with the exception of the first iteration, where the same initial variant per
name was selected in both approaches.
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Figure 6.5: Number of variants added in every iteration using the single-
pass MCE approach.
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Figure 6.6: Number of variants added in every iteration using the multi-pass
MCE approach.

nition performance: Table 6.1 shows that the multi-pass approach performs
slightly better than the single-pass approach for all values of M > 1. This
considerable reduction in lexicon size is obviously an effect of the stopping
criterion introduced in the multi-pass approach, which prevents the addition
of variants that fail to reduce the expected loss of recognition accuracy.

We also observe that the number of successful variants selected by the
multi-pass algorithm in the early iterations is clearly higher than the cor-
responding number selected by the single-pass algorithm in the same itera-
tions. This is particularly striking in the first iteration, where the number
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of successful variants is higher for the multi-pass approach, even though
the lexicons employed in the two approaches are identical. This indicates
that the stopping criterion introduced in the multi-pass approach does in-
deed prevent the inclusion of superfluous variants. In later iterations of
the single-pass approach, a number of variants are selected which do result
in recognition success, but it transpires that the same recognition success
might have been achieved with variants that were already selected during
the first iteration, and that these later variants are effectively redundant. In
the multi-pass approach, these variants are not selected, and the recognizer
successfully resorts to the more generic pronunciation variants added in the
first iteration.

The same applies to the following iterations, although it is less straight-
forward to compare these, since the variants selected are only identical in
the first iteration. We can conclude, however, that the variants selected by
the multi-pass approach in later iterations are more complementary with
the previously selected variants, whereas those selected in later iterations of
the single-pass approach are more functionally equivalent to their predeces-
sors. The upshot of this is a far more compact lexicon, where the ratio of
successful variants is far higher: 44% of the variants selected by the multi-
pass approach are successful variants, versus only 20% in the single-pass
approach.

These observations show that the proposed approach succeeds to some
extent in preventing the inclusion of redundant variants in the recognition
lexicon, with a marginal gain in recognition performance. In larger vocabu-
laries, where lexical confusability inevitably plays a more crucial part, this
can be expected to lead to a more pronounced performance increase.

6.3.2 Limitations of the multi-pass iterative MCE approach

One limitation of the proposed method is that pronunciations that are not
represented in the training set will not be well covered by the resulting
lexicon. This is especially the case for names which have a uniform set of
pronunciations in the training set. In these cases, a more relaxed selection
and stopping criterion can be beneficial to represent a larger number of
outlier pronunciations in the lexicon. At the same time, however, we observe
from Figure 6.6 that a large number of the variants selected by the multi-
pass algorithm are not actually being used during testing. As pointed out
in Section 5.3.2, it is true that there must be some surplus in order to
cover unseen variation, but the amount of unused variants still seems to be
unnecessarily large. Paradoxically, this appears to indicate that we should
impose a stricter selection and stopping criterion in order to obtain a more
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compact lexicon. The linear contradiction of these two observations suggests
that our selection and stopping criterion may need to be revised altogether.

Another weakness of the proposed approach is its “breadth-first” strat-
egy of adding pronunciation variants to the lexicon. This amounts to adding
one or no pronunciation variant for every name before recalculating the
MCE scores and continuing to the next iteration. Such a strategy has sev-
eral limitations. First of all, it does not fully exploit the discriminative
power of the MCE score, since the scores are recalculated only after adding
several new variants to the lexicon. Ideally, new MCE scores should be
calculated after every lexicon change. Secondly, this approach treats all
variants selected in a particular iteration as equally important. Consider
for example the names “Gloucestershire” and “London”. The former is
obviously more prone to pronunciation variation than the latter, and will
therefore need to be represented with more pronunciation variants in the
lexicon. In most cases therefore, it would be more beneficial to add several
pronunciation variants of the name “Gloucestershire” to the lexicon before
adding one extra variant of the name “London”. The argument for this is
the same as for the selection approach proposed in this section. Prioritizing
the selection of variants with the highest potential to correct recognition er-
rors would enable us to implement a more precise stopping criterion, which
in its turn can prevent the addition of redundant variants to the lexicon.
We might therefore do better to abandon the “breadth-first” selection strat-
egy and adopt a “best-first” strategy, where at every step the best available
variant is added to the lexicon, regardless of the name it represents and how
many variants already represent this name in the lexicon. In this way, we
might be able to further reduce the lexicon size by selecting the variants
that yield the largest global reduction in error rate first. We will investigate
this hypothesis further in the next chapter.

Another acute problem of the proposed approach is its high computa-
tional load. In each iteration, all training utterances of each name must be
decoded as many times as there are available pronunciation candidates of
that name. Therefore, further optimizations of the method are necessary in
order to make it suitable for very large vocabularies.

6.4 Conclusion

In this chapter we have proposed a pronunciation variation modeling ap-
proach that proved effective for the recognition of English proper names
spoken by native Norwegian speakers. The iterative nature of the proposed
approach ensured that only the variants expected to decrease the error rate
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were included in the final lexicon. Testing this approach in a controlled
environment confirmed that selecting variants in this manner substantially
reduces both the error rate and the required number of variants per name
compared to a probability-based baseline selection method. When compar-
ing the proposed iterative approach to the single-pass approach described
in the previous chapter, we also observed some performance gain, given a
lexicon of considerably smaller size. The proposed approach proved to be
particularly effective when the quality of the variants in the pronunciation
candidate set was high. The positive effect of reducing the lexicon size was
illustrated in an experiment conducted in an open environment, where lex-
ical confusability was more prominent than in a small vocabulary setting.
When analyzing the behavior of the proposed approach, it was observed
that further improvements of the iterative MCE selection approach might
be achieved through:

• improving the coverage for unseen variation,

• removing an even larger amount of redundant variants,

• adopting a “best-first” selection strategy,

• reducing the computational load.

In the next chapter, we will investigate these limitations further and
propose new solutions for the problems identified in this chapter.



Chapter 7

Selecting variants using a
tree search approach

In the previous chapter, we proposed an efficient variant selection approach
based on the reduction in error rate observed after the addition of a partic-
ular variant. Although this approach constituted a significant improvement
over the probability-based baseline, we argued that it was still suboptimal
due to its inability to foresee which lexicon entries would benefit the most
from having additional pronunciation variants in the lexicon. Moreover,
since this approach employed a “breadth-first” selection strategy, adding
one pronunciation variant to each lexicon entry in every iteration until a
stopping criterion was met, it did not necessarily result in the most accu-
rate and compact lexicon.

In this chapter, we aim to deal with these shortcomings by recasting the
pronunciation variant selection task as a “best-first” tree search problem. In
this approach, the optimal recognition lexicon corresponds with the optimal
path through a search tree. To guide the search algorithm, we define a
discriminative evaluation function which is based on estimates of the number
of recognition errors before and after a lexicon change. As before, the error
rate for a given lexicon is estimated using the Minimum Classification Error
framework. This work was also presented in [4].

7.1 Evaluation function and selection algorithm

In this chapter we will consider the pronunciation variant selection problem
as a tree search problem, where the goal is to find the optimal path through
a predefined tree structure by using a discriminative evaluation function. In
order to make the chapter as easily comprehensible as possible, the following
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subsection gives an intuitive clarification of the type of tree structure we
aspire to construct. In Section 7.1.2, we define the evaluation function used
by the tree search variant selection algorithm. In Section 7.1.3, then, we
describe the variant selection algorithm itself.

7.1.1 Conceptualizing an optimal lexicon as a tree structure

As in our previous experiments, we assume that we have a set of names
W = {W1, W2, . . . ,WK} and that for each name Wk ∈ W we have a set
of training utterances Xk = {Xk1, Xk2, . . . , XkN} and a set of candidate
pronunciation variants Vk = {Vk1, Vk2, . . . , VkI}. We now define a pool of
all candidate variants V as the union of all sets of pronunciation variants:
V = {V1 ∪ V2 ∪ . . .∪ VK}. From this candidate pool V we attempt to select
those variants that together make up the optimized recognition lexicon Λopt.

An example of such an optimized lexicon Λopt might then be visualized
as the tree structure in Figure 7.1. Each branch of this tree corresponds with
one name Wk ∈ W and contains a set of nodes Nk = {nk1, nk2, . . . , nkL},
where L is a predefined threshold denoting the maximum number of variants
allowed per name. The filled nodes of a given branch represent the selected
pronunciation variants for the name with which the branch corresponds.
The branches do not have an equal amount of filled nodes, because not all
names benefit equally from the inclusion of multiple pronunciation variants.
Names that are pronounced in a fairly uniform way by different speakers
should be represented by fewer variants than names that can be pronounced
in a wide variety of ways, and consequently have fewer filled nodes.

The gray nodes, which are the lowest non-empty nodes on each branch,
constitute the goal nodes for the corresponding names. A name Wk is said
to have reached a goal node when at least one of the following four stop-
ping criteria is met: (1) there are no more available pronunciation variants
of Wk in the candidate pool V; (2) there are L variants of Wk in the recogni-
tion lexicon, which means that Wk is represented by the maximum allowed
number of variants; (3) all the utterances of Wk in the training set Xk are
correctly recognized; (4) none of the remaining variants of Wk in the can-
didate pool V is able to correct any more recognition errors of the training
utterances in Xk.

The order in which we build up the lexicon is governed by the poten-
tial improvement in overall recognition performance offered by the variants
that are still available in the candidate pool V. This affects the popula-
tion of the nodes in the lexicon in two ways. Firstly, and quite intuitively,
it means that the consecutive nodes within a branch are ordered by their
beneficial impact on recognition success. Secondly, and perhaps somewhat
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Figure 7.1: An example of an optimized lexicon conceptualized as a tree
structure.

less self-evidently, it means that the order in which additions are made to
the respective branches of the lexicon is not fixed. We should not add one
pronunciation variant to each name in sequence, but rather prioritize the
name which could have the greatest possible effect on overall recognition
success. That is to say, at any given point during the construction of the
lexicon, there may be a difference in the number of filled nodes per branch,
as different names may be represented by a different number of variants.
The upshot of this is that if Λm is an instance of such an optimized lexicon
containing m populated nodes, Λm will consist of the optimal set of pronun-
ciation variants for any given value of m. In practice, this means that if we
require our lexicon to be of a specific size the lexicon generated by the tree
search approach will inherently comprise the optimal set of variants for that
lexicon size. Our objective in this chapter, then, is to design a variant se-
lection approach that matches these expectations of a lexicon optimization
method.
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7.1.2 The evaluation function

Our main goal is to compile a recognition lexicon Λm in such a way that
both accuracy (in terms of recognition performance) and compactness (in
terms of lexicon size) are optimized. To achieve this, our search tree is
incrementally populated with the most promising node nkl. We define this
node as the pronunciation variant that maximizes the evaluation function

f̂m(nkl) = αl · ĝm(nkl) + ĥm(nkl). (7.1)

This function consists of two elements: a correction potential factor ĝm(nkl)
and an error potential factor ĥm(nkl). The correction potential factor gives
an estimate of the number of errors corrected for name Wk after adding
the variant of node nkl to the recognition lexicon Λm.1 The error potential
factor gives an estimate of the number of errors likely to be corrected by
the successors of node nkl.

The scaling factor αl, is a heuristic function designed to modify the rel-
ative weight between the error potential factor and the correction potential
factor in the evaluation function. In this work, we aim to use this heuris-
tic function to emphasize the importance of the correction potential factor
at shallow tree depths in order to give the search more of a breadth-first
character for the nodes higher in the search tree. The reasoning behind
this is to prevent the search algorithm of overemphasizing branches with a
high error potential factor high in the tree (i.e. names with poor recogni-
tion performance when represented with one or two variants in the lexicon).
Obviously, there are a variety of functions which can be used to give more
weight to the nodes higher in the tree. In the work described in this chapter,
we opted for a simple function, αl = (L− l), to serve as our scaling factor.
It should be noted that no attempt has been made to optimize this function
and it is therefore possible that there are functions better suited for this
purpose.

Figure 7.2 illustrates the correction potential factor and the error po-
tential factor within the search tree when node nK2 is being evaluated. As
in the previous experiments, the number of errors corrected by an arbitrary
lexicon Λ can be estimated by means of the expected loss of recognition
accuracy. This expected loss is the normalized sum of the loss values cal-
culated by the loss function lk(Xkn; Λ) obtained after a recognition pass of

1This makes the evaluation function dependent on the m nodes populated so far.
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Figure 7.2: The tree structure for lexicon expansion with ĝm(n) and ĥm(n).

the training utterances Xkn ∈ Xk of name Wk:

Lk(Xk; Λ) =
1
N

N∑

n=1

lk(Xkn; Λ) (7.2)

where lk(Xkn; Λ) is the MCE loss function described in Equation (3.7).
To define the correction potential factor of node nkl we first need to

create a temporary lexicon Λkl consisting of the variants comprised in Λm

with the addition of a candidate variant Vki of node nkl. If Lk(Xk; Λm)
is the expected loss of recognition accuracy when using lexicon Λm and
Lk(Xk; Λkl) is the corresponding loss when using the temporary lexicon Λkl,
we define the following correction potential factor:

ĝm(nkl) = Lk(Xk; Λm)− Lk(Xk; Λkl). (7.3)

The error potential factor for node nkl is estimated using the same tem-
porary lexicon Λkl. Since names with a high error potential factor are likely
to benefit the most from having an additional variant in the recognition
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lexicon, we aim to select variants with a high error potential factor as well
as a high correction potential factor. The error potential factor is estimated
as the expected loss of recognition accuracy of lexicon Λkl

ĥm(nkl) = Lk(Xk; Λkl). (7.4)

When populating the search tree, the evaluation function f̂m(nkl) is
calculated for every non-populated node in the tree (i.e. for all variants in V
not already in Λm) before the node with the highest f̂m-value is populated
and its variant added to the recognition lexicon Λm.

Approximating the evaluation function

It may be clear that continuously calculating the evaluation function for all
non-populated nodes in the manner described above is computationally very
expensive. Due to practical constraints, we decided to approximate the cal-
culation of the evaluation function f̂m in order to reduce the computational
load.

To approximate the calculation of the evaluation function, let us first
assume that node nkl has just been populated by some variant Vki and that
this variant has been added to the recognition lexicon Λm as the l-th variant
of name Wk. To determine which node to populate next, the evaluation
function should in principle be calculated for all variants in V not already
in Λm, which entails performing a large number of relatively time-consuming
computations. To reduce the number of calculations, we make use of the
following observation: since the evaluation function is based on the expected
loss of recognition accuracy, the only values of f̂m which are likely to change
considerably after the addition of variant Vki to Λm are values calculated
for other variants of name Wk. Thus, if we calculate new values only for
the variants in Vk, and use previously calculated values for the variants not
in Vk, we can reduce the number of calculations considerably.

When calculating the evaluation factor using this approximation, we
can employ the same correction potential factor and error potential factor
as described in Equation (7.3) and Equation (7.4). The only difference is
that we replace the recognition lexicon Λm with a lexicon Λk(l−1), compris-
ing the variants contained in the recognition lexicon when populating the
previous node of name Wk (node nk(l−1)). Then, if Λkl is a temporary lex-
icon containing the variant Vki and the variants in Λk(l−1) we can define
the following approximation to the correction potential factor and the error
potential factor:

ĝkl(nkl) ≈ g̃kl(nkl) = Lk(Xk; Λk(l−1))− Lk(Xk; Λkl) (7.5)
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ĥkl(nkl) ≈ h̃kl(nkl) = Lk(Xk; Λkl). (7.6)

This results in the following approximation of the evaluation function:

f̂kl(nkl) ≈ f̃kl(nkl) = αl · g̃kl(nkl) + h̃kl(nkl). (7.7)

7.1.3 The variant selection algorithm

The discriminative tree search algorithm was implemented as follows:

1. calculate the start lexicon Λm using the same procedure as in the first
iteration of the MCE approaches (described in Section 5.1.2). For
each name Wk ∈ W, populate the first node nk1 of the corresponding
branch with the variant that minimizes Equation 7.2.

2. initialize the selection algorithm by performing the following steps for
all names Wk ∈ W:

(a) if nk1 is a goal node, skip to the next name. A node is defined as
a goal node if one of the following criteria is met: h̃k1(nk1) = 0
or L = 1 or Vk = {Vk1}

(b) if nk1 is not a goal node, proceed to the following node in the
branch for Wk by incrementing l

(c) perform the following steps for every pronunciation candidate
Vki ∈ Vk not already in Λm:

i. create a temporary lexicon Λki by adding the candidate pro-
nunciation to the recognition lexicon Λm

ii. calculate the expected loss Lk(Xk; Λki) for every pronuncia-
tion candidate by performing a recognition pass on all the
training utterances Xk of name Wk, using Λki and an isolated
word grammar

(d) find the pronunciation variant in Vk with the highest g̃k2 value
and put the node in the stack

3. if the stack is empty, exit the algorithm

4. remove the node with the highest f̃kl value from the stack, populate
node nkl with its variant and add the variant to Λm

5. perform the following steps for name Wk:
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(a) if nkl is a goal node, go to step 3. A node is defined as a goal node
if one of the following criteria is met: h̃kl(nkl) = 0 or g̃kl(nkl) = 0
or L = l or Λm contains all variants Vki ∈ Vk

(b) if nkl is not a goal node, proceed to the following node in the
branch for Wk by incrementing l

(c) perform the following steps for every pronunciation candidate
Vki ∈ Vk not already in Λm:

i. create a temporary lexicon Λki by adding the candidate pro-
nunciation to the recognition lexicon Λm

ii. calculate the expected loss Lk(Xk; Λki) for every pronuncia-
tion candidate by performing a recognition pass on all the
training utterances Xk of name Wk, using this temporary
lexicon and an isolated word grammar

(d) find the pronunciation variant in Vk with the highest g̃kl value
and put the node in the stack

6. go to step 3

It may be evident that step 2 and step 5 in this algorithm are largely
identical. There are, however, two crucial differences. Firstly, since the goal
of step 2 is to initialize the algorithm by filling the stack, this step is repeated
for all names Wk ∈ W. Step 5, on the other hand, is only performed for the
particular name for which an additional node was populated in step 4. As
a consequence, the value of l becomes name-dependent as of step 5b, since
it is incremented for that name exclusively. Secondly, it should be noted
that step 2 does not include g̃kl(nkl) = 0 as a stopping criterion. The reason
for this is that g̃k1(nk1) cannot be meaningfully calculated. As defined in
Equation 7.3, the correction potential factor compares the performance of
a temporarily expanded recognition lexicon with the previous state of the
lexicon, but given that the lexicon was empty previous to the population of
the first layer of nodes, this comparison is impossible.

Step-by-step illustration of a hypothetical algorithm run

In order to further elucidate the procedure, Figure 7.3 and Figure 7.4 present
a step-by-step illustration of the subsequent states of our recognition lexicon
during a hypothetical run of the selection algorithm. Figure 7.3 shows
the initial states of the recognition lexicon, before the iterative procedure
described in step 2 above is initialized. Figure 7.4 shows the first series of
changes in a hypothetical example run of the actual tree search procedure,
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where one variant is added to the lexicon at a time. For every change in state
of the lexicon, we have marked the individual elements that have undergone
an alteration in red.

State 0 in Figure 7.3 shows the recognition lexicon before the selection
procedure is started; that is before step 1 of our selection algorithm. As
the recognition lexicon is empty at this point, it can be visualized as a tree
structure consisting exclusively of empty nodes. There is one branch for
each name Wk ∈ W containing L virtual nodes. Our objective, then, is
to populate these nodes in an optimally efficient way. State 1 corresponds
with the start lexicon compiled in step 1 of our selection algorithm. In this
state, the recognition lexicon is identical to the lexicons for M = 1 in the
MCE single-pass and multi-pass approaches: for each name Wk ∈ W, we
select the variant with the lowest MCE loss value. These variants provide
the base layer of our start lexicon that is needed for our evaluation function
to work upon. The stack is marked as empty during the two initial states
illustrated in Figure 7.3, as it does not come into play before the iterative
phase of the algorithm is initialized.
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Figure 7.3: The initial states of the tree search algorithm, prior to the
iterative phase.

From state 2 onwards, we see the iterative tree search algorithm proper
at work.2 This is visualized in Figure 7.4. State 2 illustrates the first use of
the stack [step 2]. For all names that have not yet reached a goal node, the
variant with the highest f̃kl value is added to the stack. The stack is sorted
by the f̃kl values of its members, which means that in our hypothetical
example, variant V13 of name W1 is the most promising variant we have
available in our candidate pool. In state 3 this variant is used to populate
its corresponding node n12: variant V13 is now removed from the stack and

2Where appropriate, the corresponding step in the selection algorithm described in
Section 7.1.3 is henceforth noted between brackets.
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added to the recognition lexicon [step 4].

State 4 shows the next change performed by the tree search selection
algorithm: a new variant V16 of name W1 is added to the stack, which has
a lower f̃kl value than variant V34 of name W3 and variant V22 of name W2

[step 5]. In state 5, node n32 is populated with variant V34 [step 4], and in
state 6, a new variant V37 of name W3 is added to the stack [step 5]. As
this is the variant with the highest f̃kl value, it is immediately added to
node n33 in state 7 [step 4].

In state 8, no new pronunciation variant of name W3 is added to the
stack, which indicates that name W3 has now reached a goal node [step 5a].
Given that we have not yet reached L, the maximum number of variants al-
lowed per name, and that there are still pronunciation variants for name W3

available in the candidate pool, this must be either because h̃kl(n33) = 0
or because g̃kl(n33) = 0. In the case that h̃kl(n33) = 0, we may conclude
that all recognition errors for name W3 have already been corrected by the
variants in the recognition lexicon. If g̃kl(n33) = 0, this indicates that none
of the remaining variants of name W3 in the candidate pool can be expected
to correct any more recognition errors. To emphasize that W3 has reached
a goal node, we have marked node n33 in gray in state 9 of Figure 7.4. It
may be clear that the algorithm does not stop here, since there are still
variants of other names in the stack, but this should suffice to illustrate the
procedure.

7.2 Experiments and results

In this section, we will compare the performance of the discriminative tree
search algorithm with the performance of the discriminative single-pass and
multi-pass selection approaches described in Chapter 5 and in Chapter 6
respectively. The experiments described in Section 7.2.1 were conducted in a
controlled environment, using a vocabulary of 617 names. Section 7.2.2 gives
the results of our experiments in an open environment, using a vocabulary
of 16,045 names. As elsewhere, the three-fold cross validation procedure
described in Section 4.2.3 was used in both experiments. The results of
these experiments are presented as the average name error rate (NER) of
the three test sets and are given as a function of the recognition lexicon size.
After a systematic trial and error procedure in both a controlled and open
environment, the maximum number of variants per name, L, was set to 4.
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Figure 7.4: The first sequence of states of the tree search algorithm during
a hypothetical example of the iterative phase.
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7.2.1 Testing in a controlled environment

The proposed tree search algorithm was first tested in a controlled environ-
ment, using a single-word grammar containing only the 617 names of the
NameDat corpus. The results of these experiments are given in Table 7.1.
It may be noted that the format in which these results are presented is
somewhat different from previous chapters. As the previously proposed se-
lection algorithms assess the addition of a variant to the lexicon for each
name in succession, it is natural to evaluate the recognition performance of
the resulting lexicons for the maximum number of variants per name M .
The tree search approach, on the other hand, simply adds the most promis-
ing variant from the candidate pool, regardless of the corresponding name.
Consequently, the recognition lexicon emerging from this selection algo-
rithm must be evaluated per added variant, rather than per iteration over
all names in the vocabulary. In the controlled experiments described in this
section, the performance of the tree search selection approach is evaluated
per 100 additions to the recognition lexicon.

Tree-search approach
Size NER
617 13.53%
717 12.58%
817 12.04%
917 11.88%
1017 11.80%
1117 12.07%
1217 11.96%
1317 12.00%
1417 12.05%

Table 7.1: Size and NER of a lexicon created with the tree-search variant
selection approach evaluated in a controlled environment.

To compare these results with those of previous experiments, they are
illustrated in Figure 7.5 together with the results of the probability-based
baseline approach (P2P Baseline), the single-pass MCE approach (MCE
Single-pass) and the multi-pass MCE approach (MCE Multi-pass). For
reference, the results of the threshold experiments conducted in Section 4.3
are marked with asterisks. The figure shows the NER as a function of the
lexicon size on a logarithmic scale.

Figure 7.5 clearly shows that the tree search selection approach pre-
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Figure 7.5: The results for the single-pass MCE, multi-pass MCE and tree-
search approach in a controlled environment.

sented in this chapter has considerable success in constructing a lexicon
yielding strong recognition performance for a low number of variants per
name. Comparing the performance of the tree search variant selection ap-
proach with the full G2P-P2P lexicon containing all available variants in
the candidate pool, we observe a decrease in Name Error Rate while using
fewer than one fifth of the variants. Remarkably, the lexicon yielding the
highest performance contains an average of no more than 1.6 variants per
name. When we compare the tree search approach with the other selection
methods presented in this dissertation, we see that it is capable of produc-
ing the best performance altogether. There is a significant improvement
over our baseline probability-based selection approach for all lexicon sizes,
and the discriminative single-pass MCE selection approach is significantly
outperformed for lexicons containing between approximately 900 and 1200
variants. For other lexicon sizes, and when comparing the tree search ap-
proach with the multi-pass MCE approach, the differences are not quite big
enough to confirm their statistical significance, but the numbers do show in
favor of the tree search algorithm.

A noteworthy element in this figure is the distinctive shape of the tree
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search curve. While the other curves show a steady decrease in NER before
either leveling out or tipping only slightly upwards, the dark blue curve of
the tree search approach clearly exhibits a more rapid decrease in NER.
This seems to indicate that the tree search algorithm is indeed capable of
selecting the strongest variants early on in the lexicon construction process,
as it is designed to do. It seems likely that it does this better than the
other algorithms presented here because it has a non-uniform distribution of
variants across the name space: while the other algorithms select one variant
per name in sequence, the tree search approach adds variants in order of
expected performance gain, irrespective of the amount of variants already
representing a particular name. This allows for better variant selection and
more flexible stopping criteria, which results in a steeper initial decline in
NER and more compact lexicons.

Experimental analysis of the evaluation function

In Section 6.3.2, we observed that our multi-pass MCE approach might be
improved by adopting a best-first approach, where new MCE scores are
calculated for every lexicon change, rather than for every round of lexicon
changes. That is of course exactly what we aim to achieve with the tree
search method proposed in this chapter. It may be argued, however, that
it is far from obvious whether the introduction of the error potential fac-
tor h̃kl(nkl) provides any additional value. It might have been sufficient to
simply apply the same decision rule used in the previous chapter; that is to
say to recalculate MCE scores after every addition to the recognition lexicon
and to select the variant that maximizes the decrease in overall expected
loss in recognition performance. On the other hand, the idea of expressly
prioritizing names that show the greatest room for improvement does seem
to have intuitive merit. In order to investigate the effective contribution
of the error potential factor, we have therefore conducted two additional
experiments, the results of which are shown in Table 7.2.

The left-hand column in this table reproduces the results of our original
tree search experiment, as described in the previous section and previously
presented in Table 7.1. The middle column shows the results of an experi-
ment where the correction potential factor g̃kl(nkl) is used as the evaluation
function, without its scaling factor αl. The upshot of this is an approach that
is effectively identical to the multi-pass method used in Chapter 6, except
for the crucial difference that additions to the lexicon are done individually
rather rather than collectively. The right-hand column, then, shows the re-
sults of the obverse experiment, in which the error potential factor h̃kl(nkl)
is used as the evaluation function. In this experiment, names with a high
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f̃kl(nkl) g̃kl(nkl) h̃kl(nkl)
Size NER Size NER Size NER
617 13.53% 617 13.53% 617 13.53%
717 12.58% 717 12.71% 717 13.08%
817 12.04% 817 12.38% 817 12.70%
917 11.88% 917 12.39% 917 12.54%
1017 11.80% 1017 12.15% 1017 12.18%
1117 12.07% 1117 12.04% 1117 12.14%
1217 11.96% 1217 11.96% 1217 12.25%
1317 12.00% 1317 12.13% 1317 12.00%
1417 12.05% 1417 12.02% 1417 12.04%
1517 - 1517 12.02% 1517 12.00%
1617 - 1617 12.02% 1617 -

Table 7.2: Performance of a tree-search variant selection approach when
using f̃kl, g̃kl and h̃kl as evaluation functions.

number of misrecognized training utterances are prioritized entirely.
The main observation to be made from Table 7.2 is that the combination

of the error potential factor with the correction potential factor into the
evaluation function f̃kl(nkl) does produce the overall best result (11.80%
NER) and the best results for the smallest lexicon sizes. For lexicon sizes
of less than 1000 variants, g̃kl performs appreciably better than h̃kl, but is
in its turn outperformed by f̃kl. This would seem to bear out our intuition
that there is some performance gain to be obtained from the combination
of both factors. Interestingly, however, after this initial benefit, recognition
performance in the three experiments converges completely.

Another observation that we want to make from these experiments, is
how they compare with our multi-pass MCE approach. As noted previously,
doing such a comparison is somewhat problematic, since the multi-pass
approach has a different iteration loop, and it can therefore not be evaluated
for any given lexicon size: we are bound to the discrete evaluation points
defined as a function of M , the maximum number of allowed variants per
name. Referring back to Table 6.1, the best possible approximation is to
compare the multi-pass MCE Name Error Rate for M = 2 (lexicon size 1184)
with the closest tree search lexicon size of 1217. This shows a performance
gain of 0.46% absolute in favor of the tree search approach. Interestingly,
at this particular lexicon size, the results of the experiments using f̃kl and
g̃kl have already begun to converge. This means that, for this lexicon size,
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no noticeable gain is derived from h̃kl or from the scaling factor αl: the
initial benefits that our selection approach reaps from applying these as
factors in the evaluation function have at this point already been leveled
out. The performance gain over the multi-pass MCE approach, then, is to
be ascribed completely to the improved order in which variants are added
to the lexicon. This results in a more optimal distribution of variants across
the name space, properly prioritizing the names that benefit most from the
inclusion of additional pronunciation variants.

Finally, the fact that the three columns differ in length may deserve some
clarification. The differences are to be ascribed to the respective stopping
criteria. The experiment using only g̃kl as its evaluation function selects the
greatest number of variants, due to the fact that h̃kl(nkl) = 0 does not count
as a stopping criterion: this experiment is intended as the closest possible
approximation to the multi-pass approach, where h̃kl does not affect the
selection algorithm in any way. Perhaps somewhat surprisingly, on the other
hand, g̃kl(nkl) = 0 does play a role as a stopping criterion in the experiment
using h̃kl as its evaluation function. The reason for this is that, in the case
where none of the available variants affects recognition performance, the
stopping criterion h̃kl(nkl) = 0 would never be met, and all available variants
would therefore be selected, regardless of their poor suitability. We therefore
elected to allow g̃kl some impact on the h̃kl experiment. The upshot of this
is that this experiment applies the exact same range of stopping criteria
as the original experiment using f̃kl, described in Section 7.1.1. The reason
that the right-hand column is nevertheless slightly longer than the left-hand
column, then, is that due to the more efficient selection of the most suitable
variants during the earlier iterations in the f̃kl experiment, the stopping
criteria g̃kl(nkl) = 0 and h̃kl(nkl) = 0 are reached faster.

Including AV variants in the candidate set

Although the tree search selection approach performed better than the pre-
viously proposed variant selection approaches, it was still unable to outper-
form the AV lexicon comprising only auditorily verified transcriptions of the
name utterances in the training set. In order to investigate the behavior of
the selection algorithm given the availability of these higher quality tran-
scriptions, we repeated the experiment with an extended candidate pool,
now containing the auditorily verified transcriptions as well as the candi-
dates generated by the g2p and p2p converters. Figure 7.6 compares the
results of this experiment with the performance of the single-pass and the
multi-pass selection approaches in the corresponding experiments.

This figure shows that the tree search variant selection approach offers a
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Figure 7.6: The results for the single-pass MCE, multi-pass MCE and tree-
search approaches using a candidate pool containing p2p, g2p and AV tran-
scriptions.

rapid decrease in name error rate (2.12% absolute) after adding on average
only 0.5 variants per name (from 617 variants to 917 variants). Interest-
ingly, however, this decrease in NER completely flattens out after this point
and ends in a performance equal to that of the MCE multi-pass selection
approach. Moreover, after the tree search algorithm has converged, the
MCE multi-pass approach continues to select additional promising pronun-
ciation variants, yielding a final performance surpassing that of the tree
search selection approach.

The more rapid initial drop in NER observed in the tree search results
is most likely an effect of the tree search algorithm’s ability to select the
variants yielding the highest performance gain at the earliest stages. In
fact, the selection algorithm is able to construct a lexicon yielding the same
performance as the AV lexicon using only half the number of transcription
variants. However, once the variants covering most of the pronunciation
variation observed in the training material have been added to the recog-
nition lexicon, the tree search algorithm is no longer able to differentiate
the promising variants from the redundant. One hypothesis which might
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explain this is that since the selected variants now are of a much higher
quality, the variants which are selected first cover the majority of the varia-
tion observed in the training set; in other words: they have a high correction
potential factor. The variants selected after this point will therefore have
a very small, and mutually similar, correction potential factor. This can
explain why these variants do not correct any additional errors and also
why the tree search algorithm does not converge. A possible reason why
the multi-pass approach is able to correct more errors in this experiment
is that this approach employs a more imprecise stopping criterion, adding
several variants which cover some of the variation not seen in the training
set.

To investigate whether we could remedy this effect by relaxing some
of the stopping criteria in the tree search approach, we performed three
additional experiments the results of which are shown in Table 7.3.3

f̃kl(nkl) L = 4 f̃kl(nkl) L = 6 g̃kl(nkl) L = 4 g̃kl(nkl) L = 6
Size NER Size NER Size NER Size NER
617 12.54% 617 12.54% 617 12.54% 617 12.54%
717 11.45% 717 11.67% 717 11.31% 717 11.31%
817 10.74% 817 10.76% 817 11.01% 817 11.01%
917 10.42% 917 10.40% 917 10.63% 917 10.63%
1017 10.47% 1017 10.28% 1017 10.56% 1017 10.56%
1117 10.45% 1117 10.20% 1117 10.46% 1117 10.46%
1217 10.43% 1217 10.39% 1217 10.31% 1217 10.31%
1317 10.44% 1317 10.43% 1317 10.26% 1317 10.26%
1417 10.37% 1417 10.43% 1417 10.23% 1417 10.23%
1517 - 1517 - 1517 10.20% 1517 10.20%
1617 - 1617 - 1617 10.20% 1617 10.20%

Table 7.3: Performance of a tree-search variant selection approach when
using different evaluation functions and L-values in the case when the can-
didate set contain auditorily verified transcriptions.

Again, the left hand column of this table reproduces the results of the
original AV experiment. The middle-left column shows the results of the
exact same experiment except that the value of L has been increased from
4 to 6.4 In the two columns to the right, we repeated the g̃kl(nkl) experi-

3A candidate pool containing auditorily verified transcriptions was used in all three
experiments.

4This particular value of L was chosen because the maximum number of variants per
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ment described in the previous section, using only the correction potential
factor g̃kl(nkl) as the evaluation function. The first experiment (the results
of which are shown in the middle-right column) was performed using an L-
value of 4, while in the second experiment (results shown in the rightmost
column) this value was again set to 6.

The results of these experiments showed that increasing the maximum
number of variants per name from 4 to 6 had no noteworthy effect on the
recognition performance. In other words, the restriction on L is not the
main reason why the tree search approach is unable to reach the same per-
formance as the multi-pass approach. When repeating the g̃kl(nkl) experi-
ment, we observed that the results were virtually identical to those of the
original tree search approach when tested using a candidate pool compris-
ing auditorily verified transcriptions. These results seem to indicate that
the error potential factor in Equation (7.7) contributes less to the overall
recognition performance when the quality of the variants in the candidate
set is high.

Interestingly, none of these experiments resulted in lexicons containing
more than 1617 variants. Even the two g̃kl(nkl) experiments did not gener-
ate lexicons containing as many variants as the multi-pass approach, even
though these experiments employed no additional stopping criteria other
than those incorporated in the multi-pass approach. One hypothesis that
might explain this effect is that the order in which variants are added to the
lexicon alters the values of the expected loss (the MCE loss value) to such a
degree that the tree search algorithm converges earlier than the multi-pass
approach. This would mean that there are still beneficial variants left in the
candidate pool which are not exploited by the tree search approach. How-
ever, since it is hard to analyze this effect directly, we can only speculate as
to its impact on the recognition result.

7.2.2 Testing in an open environment

The tree search selection approach gave a considerable performance increase
compared to the probability-based baseline when tested in a controlled envi-
ronment. To compare the performance of the different selection approaches
in a large vocabulary system, we repeated the recognition experiment using
a vocabulary of 16,045 names, namely the 617 names in the data set and
15,428 filler names.

As in the multi-pass approach, we wanted to add pronunciation variants
for the filler names in a way that reflected the behavior of the selection al-

name in the multi-pass approach was 6.
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gorithm. To achieve this, a simulation algorithm was implemented to select
variants for the filler names. This simulation algorithm selects filler vari-
ants with properties similar to that of the original variants selected by the
tree search selection algorithm. The variant properties deemed important in
this regard are the name the variant represents and the number of variants
already representing this name in the lexicon.

In practice, this means that when the tree search selection algorithm
has selected a pronunciation variant to represent one of the original 617
names, the simulation algorithm selects 15, 428 · 1

617 = 25 variants from
the pool of filler pronunciation variants. To decide which filler variants to
select, the simulation algorithm uses the properties of the original variant
selected by the tree search algorithm. For example, if the variant selected
by the tree search selection algorithm represents a name which already has
two variants in the recognition lexicon, the simulation selection algorithm
retrieves a subset of all the filler names which also are represented with two
variants in the recognition lexicon. The simulation algorithm then sorts this
subset according to the p2p probability of the third most probable variant
and selects the 25 names with variants on top of this list. These variants
are then added to the recognition lexicon and the process is repeated.

To compare the performance of the tree search selection approach with
that of the previously proposed selection methods, the results of this ex-
periment are illustrated in Figure 7.7 in juxtaposition with the results of
the single-pass and multi-pass MCE approaches. When interpreting these
results, however, we should keep in mind that the large vocabulary experi-
ments performed in this dissertation have a somewhat artificial set-up, and
that it is therefore difficult to draw definite conclusions from these data.

This figure shows that the performance of the tree search selection ap-
proach is very similar to that of the multi-pass MCE approach. Contrasting
the two approaches, we observe that the initial increase in performance
achieved by the tree search approach is not as marked as in the small vo-
cabulary experiment. A possible explanation for this is that the perfor-
mance gain observed after adding one variant to the recognition lexicon is
smaller in a large vocabulary setting, due to the increased lexical confusion
in the large vocabulary lexicons. This means that the values of the cor-
rection potential factor g̃kl and the values of the multi-pass decision rule
are relatively smaller in large vocabulary systems than in small vocabulary
systems. In other words, there is less clear evidence on which to base the
selection, resulting in a measure of randomness in the selection procedure.
Of course, this affects the performance of both the tree search and multi-
pass approach, but the effect is somewhat less prominent in the multi-pass
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Figure 7.7: The results for the baseline P2P, single-pass MCE, multi-pass
MCE and tree-search MCE approaches as a function of the lexicon size in
the case of a 16k vocabulary.

approach, as variants are added collectively in each iteration. The order
in which variants are added to the lexicon is therefore not considerably af-
fected by this. In the tree search approach, however, the variants are added
individually on the basis of their g̃kl and h̃kl values. Changes in these values
will therefore affect the order in which variants are added to the lexicon to
a much higher degree. A reduction in g̃kl values and h̃kl values will give the
tree search more of a random character, as a large number of nodes in the
stack have nearly identical f̃kl values.

Including AV variants in the candidate set

As in the previous experiments, we added the auditorily verified transcrip-
tions of the training set to the pool of pronunciation candidates and repeated
the large vocabulary experiment. The results of this experiment are shown
in Figure 7.8. In this figure, the AV lexicon contains auditorily verified tran-
scriptions for all the 617 names in the data set and the three most probable
variants for the filler names, while the G2P-P2P-AV lexicon contains all the
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variants in the extended variant pool.
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Figure 7.8: The results for the single-pass MCE, multi-pass MCE and tree-
search approaches tested in an open environment using a candidate pool
containing p2p, g2p and AV transcriptions.

This figure shows that both the multi-pass and the tree search approach
significantly outperformed the AV lexicon with a 2% absolute reduction
in NER. The G2P-P2P-AV lexicon was also outperformed by both ap-
proaches with a 1.14% absolute reduction in NER (using only one fourth
of the pronunciation variants). Furthermore, the strict stopping criterion
implemented in the tree search approach proved to be quite effective in this
experiment, as the best performing tree search lexicon achieved the same
NER as the best performing multi-pass lexicon, using only 2.5 variants per
name compared to 3.1 variants per name for the multi-pass approach.

Figure 7.8 further illustrates that the tree search approach seems to
benefit more from having high quality variants in the variant pool compared
to the multi-pass approach, particularly when the lexicon contains less than
32,000 variants. After this point, the two approaches achieve equivalent
recognition performances. This can most likely be attributed to the fact
that adding high quality variants to the recognition lexicon generally results
in a larger performance gain, hence providing the tree search algorithm with
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stronger evidence of which is the better performing variant. This reduces
the random factor discussed in the previous subsection and enables the
tree search approach to make a better informed selection at the individual
variant level.

7.3 Discussion

7.3.1 Observations

The variant selection approach proposed in this chapter aims to add pronun-
ciation variants to the lexicon entries which benefit the most from having
an additional variant, regardless of the number of variants already repre-
senting this entry in the lexicon. To achieve this, the recognition lexicon
was represented as a tree structure with a set of branches (names), each
containing a set of nodes (variants). This search tree was then incremen-
tally populated with the most promising node nkl in a best-first manner.
By compiling the recognition lexicon in this way, both accuracy (in terms
of recognition performance) and compactness (in terms of lexicon size) were
optimized. The upshot of this variant selection approach is that the recog-
nition lexicon always contains the optimal set of pronunciation variants for
any given lexicon size. This means that if we require our lexicon to be of
a specific size, we can simply use the tree search approach to generate a
lexicon of the required size and this lexicon will inherently comprise the
optimal set of variants for that lexicon size. This contrasts sharply with the
previously proposed variant selection approaches where the generated lex-
icons are always constrained by the maximum number of allowed variants
per name (M).

The tree search approach was evaluated in a controlled and in an open
environment. In both environments, a significant performance increase was
observed in favor of the proposed approach when compared to the baseline
P2P approach, whereas a small performance increase was observed for small
lexicon sizes when the results were compared to those of the multi-pass
approach. Additionally, in all experiments conducted in this chapter, a
rapid initial decrease in name error rate was observed for the proposed
approach after adding only a small number of variants. This is most likely
an effect of the ability of the tree search algorithm to identify the names that
benefit the most from the inclusion of an additional variant. By selecting
variants in this manner, the tree search approach is able to generate lexicons
with high coverage for names that are likely to be pronounced in a variety
of ways, even for small lexicon sizes. This effect was also observed after
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adding auditorily verified variants to the candidate pool, but in this case
the performance stabilized after the initial increase.

The experiments conducted in an open environment showed that the
performance of the tree search approach is very similar to that of the multi-
pass approach in large vocabulary systems. We hypothesized that this can
be ascribed to the fact that the impact on overall performance of a single
added variant is generally smaller when the vocabulary is large compared
to in a small vocabulary setting. In practice, this means that the variants
selected by the tree search approach in an open environment will have very
small, and mutually similar, correction potential factors. This makes it more
difficult for the selection algorithm to decide which lexicon entry benefits
most from having an additional variant, and the variant selection is subject
to random effects. This hypothesis is supported by the open environment
experiment using auditorily verified variants in the candidate pool. The
results of this experiment show that the performance gap between the tree
search approach and the multi-pass approach is relatively larger compared to
when using only p2p-g2p variants in the candidate pool. This performance
increase can most likely be attributed to the fact that the AV variants
tend to have a relatively high correction potential, and therefore reduce the
degree of randomness affecting the tree search approach.

There are three main differences between the multi-pass approach and
the tree search selection approach. The first and most important difference
is the flexibility of the order in which the variants are added to the lexicon.
This property enables the tree search approach to generate a lexicon with
a non-uniform distribution of variants across the name space. The second
difference lies in the introduction of an extra stopping criterion which pre-
vents the addition of variants to names which have already reached their
error potential (i.e. names for which the lexicon already covers all the pro-
nunciation variation observed in the training utterances). This enables the
tree search approach to avoid adding potentially redundant variants to the
lexicon, resulting in a more compact lexicon. The last difference is the
inclusion of the error correction factor h̃kl in the evaluation function f̃kl.
When analyzing the evaluation function in Section 7.2.1 we observed that
the combination of the error potential factor with the correction potential
factor into the evaluation function f̃kl does produce the best results, at least
for the smallest lexicon sizes. Interestingly, this is not necessarily true for
candidate sets of different quality, as we observed when we added auditorily
verified variants to the candidate set. In this case, the error potential fac-
tor neither increased nor decreased the recognition performance compared
to using an evaluation function consisting only of the correction potential
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factor. A possible explanation is that the correction potential factor g̃kl

tends to be considerably higher for high quality variants. The contribu-
tion of the correction potential factor to the evaluation function tends to be
very heavy in these cases, rendering the contribution of the error correction
factor negligible.

To illustrate the difference in behavior between the variant selection ap-
proaches proposed in this dissertation, we made a visual representation of
the development of the lexicons constructed using the single-pass MCE ap-
proach (Figure 7.9), the multi-pass MCE approach (Figure 7.10) and the
tree search approach (Figure 7.11). Each column in these figures repre-
sents the total number of variants selected for a specific lexicon size. The
division of the columns into red and blue sections is to be interpreted as
in Section 5.3 and in Section 6.3: the blue sections represent variants that
triggered a correct recognition, the red sections represent variants that were
either not used or used in misrecognitions. As in the previous two chap-
ters, the numbers correspond to a recognition pass performed on all test
utterances, using the end lexicon, obtained after 10 iterations in the case of
the single-pass MCE approach and after the convergence of the respective
selection algorithms for the two other approaches.

Strikingly, the number of blue variants in every set of 100 variants added
by the tree search selection algorithm is nearly constant, whereas the num-
ber of blue variants added in the single-pass and multi-pass MCE approaches
decreases steadily with each iteration. We also observe that the number of
blue variants in the first column is higher for the tree search approach than
for either of the two other approaches, even though the three corresponding
lexicons are completely identical. This phenomenon, which we encountered
previously in Section 6.3.1 when comparing the behavior of the single-pass
and the multi-pass MCE approach is most likely an effect of the stricter
stopping criteria which prevent the inclusion of superfluous variants, forc-
ing the recognizer to resort to the more generic variants added in the first
iteration. It is reasonable to assume that this effect also applies to the
variants selected subsequently, although it is less straightforward to com-
pare these. The upshot is a far more compact lexicon, where the ratio of
successful variants is markedly higher: 51% of the variants selected by the
tree search approach are successful variants, versus 41% in the multi-pass
approach and only 20% in the single-pass approach.

Figure 7.12 and Figure 7.13 illustrate the selection behavior of the multi-
pass and the tree search approach in a different way. The figures show for
different lexicon sizes how the lexicon entries are distributed with regard to
the number of variants by which they are represented. The blue curves in
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Figure 7.9: Number of variants added per iteration using the single-pass
method.
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Figure 7.10: Number of variants added per iteration using the multi-pass
method.
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Figure 7.11: Number of variants added per iteration using the tree search
method.
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these figures illustrate the NER attained using the corresponding lexicons.5
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Figure 7.12: Number of variants per lexicon entry for lexicons generated
using the multi-pass selection approach.
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Figure 7.13: Number of variants per lexicon entry for lexicons generated
using the tree search selection approach.

One of the most striking observations to be made from Figure 7.12 is that
over 90% of the names in the lexicon receive an additional pronunciation
variant during the second iteration of the multi-pass selection algorithm.
This stands in sharp contrast to the tree search approach, where more than
a quarter of the names are represented by only one single pronunciation
variant in the final recognition lexicon. The contrast is even more emphatic
when we compare the multi-pass lexicon for M = 2 with the tree search
lexicon that most closely corresponds to it in size: in the tree search lexicon

5It should be noted that the differences in appearance between Figures 7.12 and 7.13
should not be taken at face value, as the scales on the corresponding X-axes are not
identical.
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containing 1217 variants, 44% of the names are represented by a single
pronunciation variant. Given that the tree search lexicons consistently yield
slightly better recognition performance, it may be clear that this provides
further proof that they contain fewer redundant variants than the multi-pass
lexicons.

In the same vein, Figure 7.13 illustrates that there is nearly a two-thirds
majority (64%) of names that are represented by only one variant in the
lexicon that yields the best recognition performance, viz. the tree search
lexicon containing 1017 variants. The 7% most problematic names, on the
other hand, are represented by the maximum of 4 pronunciation variants,
while the remaining names are more or less equally distributed between the
intermediate levels. This shows that our working assumption for designing
the tree search approach was correct: there is clearly recognition gain to be
obtained from adding variants in a non-linear, best-first manner.

7.3.2 Limitations of the tree search approach

The tree search selection algorithm aims to generate a lexicon that covers
the pronunciation variation observed in the training material using as few
pronunciation variants as possible. One acute limitation of this approach is
that pronunciation variation not observed in the training material will not be
well represented using this selection algorithm. This is further exacerbated
by the efficiency of the tree search approach: we have seen that the selection
algorithm is particularly successful in the earliest iterations, which in many
cases results in the algorithm’s strict stopping criteria being met quickly.
The upshot of this is extremely compact lexicons yielding good recognition
performance, at the cost of increased data dependency. It may be clear,
however, that this effect is strongly dependent on the size of the training
set: a larger training set is likely to contain more variation and can therefore
be expected to result in a lexicon with greater coverage. In this way, this
shortcoming can be counteracted to some extent.

Two further weaknesses of the tree search selection approach follow from
the fact that the error potential factor and correction potential factor are
ultimately based on the same source of information, namely the expected
loss of recognition accuracy. Firstly, while our experiments in Section 7.2.1
showed that both factors do contribute individually to the performance in-
crease observed in favor of the tree search approach, it seems likely that
utilizing some other measure for the error potential factor might be ben-
eficial. We may speculate that this might be especially advantageous in
environments where the error potential factor proved to be less effective, as
was the case when we added auditorily verified variants to the candidate
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pool. This may well be a promising direction for future work aiming to
improve the performance of the tree search selection approach. Secondly,
once the differences in expected loss of recognition accuracy become negli-
gibly small, the evaluation function used by the tree search approach loses
much of its discriminative potential, and the approach becomes susceptible
to random effects.

Finally, although the computational load is noticeably lower for the tree
search selection approach than for the multi-pass selection approach, it is
still relatively high when optimizing large vocabularies. However, given that
the optimization process need be performed only once, and that it can be
performed off-line, this issue does not seem critical.

7.4 Conclusion

In this chapter, the pronunciation variant selection task was recast as a
best-first tree search problem, where the final recognition lexicon corre-
sponds with the optimal path through a tree structure. To guide the search
algorithm, an evaluation function consisting of a correction potential factor
and an error potential factor was defined.

We have shown that optimizing the pronunciation variant selection by
means of a best-first discriminative tree search algorithm is beneficial in
terms of reduced lexicon size and increased recognition performance. The
performance gain observed for small lexicon sizes demonstrated that the
order in which variants are added to the recognition lexicon is an important
contributor to recognition success. The introduction of the error potential
factor as a factor in the evaluation function also proved to have some impact
on the recognition accuracy when using a candidate set comprising only p2p-
g2p variants. Finally, the strict stopping criteria of the proposed selection
approach were shown to prevent the addition of redundant variants, which
reduced the lexical confusion between the lexicon entries.

The main limitation of the tree search selection algorithm is its data
dependency: the tree search approach is ill-suited to cover pronunciation
variation that is not observed in the training data. This is especially so
given the restrictive nature of the selection algorithm. While the efficiency
of the selection approach during the earliest iterations and the use of strict
stopping criteria result in highly compact recognition lexicons, it appears
that more leniency might be beneficial in order to address unseen pronun-
ciation variation.
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Chapter 8

Conclusions

In this dissertation, we have investigated different approaches to pronun-
ciation variation modeling of non-native proper names. Traditionally, lex-
ical pronunciation modeling has been dominated by heuristics and various
subjective optimization measures. The main goal of this work has there-
fore been to model the recognition lexicon in a data-driven manner, using
an objective variant selection criterion directly connected with the actual
recognition performance. The following section summarizes the main results
of this research and Section 8.2 suggests some directions for future work.

8.1 Contributions of this dissertation

Three different variant selection approaches have been proposed in this dis-
sertation and several experiments have been conducted to assess the behav-
ior and performance of these approaches. In this section we will describe
the main results drawn from these experiments. It should be noted that
these experiments have been limited to the task of non-native name recog-
nition and the NameDat corpus,1 and that the variant selection approaches
proposed in this dissertation have only been evaluated using a candidate
pool consisting of transcriptions generated by a P2P converter and audito-
rily verified transcriptions. Therefore, the conclusions drawn here do not
necessarily generalize to other recognition tasks or name databases, or to
variant transcriptions of different quality.

1With the exception of the breadth-first variant selection approach described in Chap-
ter 6, which was also tested using the Autonomata Spoken Name corpus [106]. These
experiments were presented in [3].
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An initial study of pronunciation variation of non-native proper
names

In an initial study on the nature of non-native names in automatic speech
recognition, we aimed to get a better understanding of the properties we
might expect in a lexicon that allows for good recognition performance.
The result of this study showed that there are two main properties which
are important in this regard: the quality of the variants in the lexicon and
the coverage of the lexicon (i.e. its ability to cover different pronunciation
phenomena)2. The first property is quite simple, an accurate phonological
transcription of a speech utterance will always perform better than an in-
accurate transcription. The second property is somewhat more ambiguous.
Ideally, the lexicon should contain an accurate transcription of every possible
pronunciation. Unfortunately, this tends to introduce unwanted confusion
between lexicon entries which may decrease the recognition performance. In
our initial study we identified two key factors which may be relevant with
respect to lexicon coverage. Firstly, we found that some proper names are
likely to have a variety of different pronunciations, whereas other names
can be expected to have a more uniform set of pronunciations. The lexicon
should therefore contain a variable number of transcriptions for each entry,
depending on the anticipated amount of pronunciation variation for that
entry. Secondly, we found that large vocabulary lexicons seemed to benefit
more from having additional transcription variants than small vocabulary
lexicons, even though the lexical confusion is higher in these lexicons. This
indicates that having variants of a higher quality in the lexicon is even more
important when lexical confusion is higher.

Based on our findings from this initial study we formulated as a working
hypothesis that a lexicon expected to yield good recognition performance
should, for each entry, contain:

1. transcription variants of high quality;

2. transcription variants covering different pronunciation phenomena;

3. transcription variants correcting more errors than they introduce;

4. a number of transcription variants reflecting the anticipated pronun-
ciation variation of the entry.

2We assume that the vocabulary size is given: in a different sense, the coverage of a
lexicon can also be said to be dependent on the number of entries for which it contains
variants, but our research is specifically concerned with pronunciation variation, and we
therefore focus on this meaning of the concept of coverage.
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A comparative study of different variant selection criteria

In a detailed comparative analysis of four different variant selection criteria,
we found that variant selection criteria based on evidence extracted from the
recognition engine significantly outperformed our baseline probability-based
selection criterion. The analysis further showed that the variant selection
criterion yielding the most promising results was based on the Minimum
Classification Error (MCE) framework. We also found that this framework
is particularly well-suited as a basis for new variant selection algorithms
due to its ability to evaluate the difference in recognition performance when
making use of different lexicons, for instance before and after a lexicon
change. Optimizing the recognition lexicon by adding the variants according
to their MCE score was found to perform considerably better than the
probability-based baseline approach and to be computationally inexpensive.
This approach, however, was also prone to selecting variants covering the
same pronunciation phenomena and to include many redundant variants in
the lexicon.

A breadth-first variant selection approach

In our “breadth-first” variant selection algorithm, variants were only added
to the lexicon on the condition that they correct recognition errors left un-
handled by the initial lexicon. Optimizing the recognition lexicon using
this approach showed to reduce the error rate compared to the single-pass
approach and result in a compact lexicon covering different pronunciation
phenomena. The breadth-first approach selected different numbers of tran-
scription variants for each lexicon entry, but additional experiments showed
that the lexicon still contained some redundant variants. Selecting variants
in this manner was particularly effective when the quality of the transcrip-
tion variants were high.

A best-first variant selection approach

At the end of each iteration loop, our “breadth-first” approach evaluates
for each name in the lexicon whether it is beneficial to add its top-ranked
pronunciation variant. However, since the level of observed pronunciation
variation strongly differs from name to name, we might do better with a
“best-first” variant selection algorithm that prioritizes inclusion of variants
for names where most variation is expected. Optimizing the lexicon by
selecting variants in a “best-first” manner showed to be beneficial in terms of
reduced computational load, lexicon size and error rate. Selecting variants in
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this manner generated lexicons containing variants correcting different types
of recognition errors and very few of the variants added to the lexicon were
redundant. As this approach greatly reduces the lexicon size, the approach
may suffer from generalization problems as a result of outlier pronunciations
not seen in the training data.

8.2 Future work

In this section we will give some general directions to future research.

Expanding the Maximum Entropy model

In our comparative study of different variant selection criteria, the Maxi-
mum Entropy (ME) model satisfied one single constraint, namely if an utter-
ance was correctly recognized or not. As the Maximum Entropy framework
is designed to use several constraints simultaneously, it would be interesting
to put additional constraints on the ME-model to see if we can utilize various
kinds of information rather than just the recognition result. To determine
the kind of information that may be helpful to the variant selection task, a
more in-depth analysis must be performed. One direction that may be fruit-
ful is to simulate the length of a transcription by means of acoustic models
and then compare this length with that of the utterance. Another direction
that can be used in iterative selection schemes, such as the breadth-first
selection approach or the best-first selection approach, is to constrain the
ME-model to give lower weight to variants which are very similar to the
variants already in the lexicon. To determine the similarity of two variants
string metrics such as the Levenshtein distance can be employed.

Repeating large vocabulary experiments using large data set

The large vocabulary experiments performed in this dissertation had a some-
what artificial setup due to the limited size of our data set. In these experi-
ments, the effect of the proposed variant selection approaches was mimicked
by a simulation algorithm and the resulting lexicon was only evaluated on a
subset of the names in the vocabulary. To investigate the real effect of the
proposed selection algorithms on a large vocabulary task, it would be very
interesting to repeat these experiments using a large data set extracted from
a real-life application such as a call center application or a car navigation
application.
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Handling data dependency

The pronunciation variation modeling approaches proposed in this disserta-
tion all rely on having relevant training data available in the optimization
process. This data dependency can in many cases pose some challenges to
the designer of the variant selection approach and to the selection approach
itself. Firstly, having to collect and process a large amount of training data
can be impractical as well as quite costly. Secondly, it makes the selection
approach highly dependent on the pronunciation variation captured in the
training data, which gives rise to generalization problems when encounter-
ing pronunciations that differ significantly from the pronunciations seen in
the training data. Finally, it makes the proposed methods unable to select
good pronunciation variants for unseen names. In this section we will give
some suggestions for directions of future research in this area which may
help to circumvent some of these issues.

Formulating the proposed variant selection methods in terms of more
generic mechanisms, e.g. the ones modeled by the p2p converter, would en-
able the generation of more accurate transcriptions for both seen and unseen
names. Investigating this further would therefore be of great interest. One
technique that is often used in conjunction with lexical pronunciation vari-
ation modeling, is to use the variants chosen by the selection algorithm to
iteratively re-train the mechanism that generates the transcription variants
and produce new and more accurate variants. It would be interesting, there-
fore, to use a similar scheme to re-train the phoneme-to-phoneme converter
so as to give more weight to pronunciation phenomena proven to have error
correcting capabilities.

An interesting approach that might prove useful to reduce the general-
ization problem is that of McAllaster et al. described in [46]. In this ap-
proach, acoustic speech data is simulated using a set of acoustic models and
a recognition lexicon. Using such an approach to simulate acoustic data for
the transcription variants proposed by the p2p converter can enable the pro-
posed selection approaches to make better informed decisions as to which,
and how many, variants to include in the recognition lexicon. A similar
approach that might be investigated further is to simulate the recognition
errors without having to use actual acoustic data. An interesting approach
in this respect is that of Jyothi and Fosler-Lussier [72]. This approach used
a predictive WFST framework, composed of a confusion matrix that used
acoustic and pronunciation information from the recognizer to model possi-
ble phone confusions. These confusions were then used to simulate probable
word errors. A study investigating whether these simulated word errors can
be used independently, or in conjunction with some other objective perfor-
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mance measure, to select good performing pronunciation variants would be
of great interest.



Appendix A

Statistical Significance
Testing

When comparing the performance of two different speech recognition algo-
rithms, it is important to be able to assess whether an observed performance
difference is related to one algorithm actually performing better then the
other, or if the difference is merely due to chance effects. In this appendix
a set of confidence intervals is calculated for a predefined selection of name
error rates using the total number of test utterances in our three test sets.
These confidence intervals enable us to test whether or not an observed
difference in NER is statistically significant.

A.1 Confidence intervals

In the experiments conducted in this dissertation n isolated name utterances
are tested in each experiment. For each of these experiments we observe
whether a name utterance was correctly recognized or not and count the
total number of errors ne made by the recognition algorithm. Using the
observed number of errors the name error rate is normally estimated as

p̂ =
ne

n
.

Since this is only an estimate of the true error rate p it necessary to find an
interval in which the true error rate is most likely to be found. This interval
is called the confidence interval and is often defined as

P (c1 < ne < c2) = 1− α
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where c1 and c2 are chosen in such way that the probability, P (c1 < ne < c2),
equals a predefined confidence level 1 − α. This confidence level is very
often set to 95%, which is the same as will be used in this dissertation. By
calculating such a confidence interval we know with a 95% certainty that
the true value of p can be found within the interval (c1, c2). If an error
rate produced by another recognition algorithm is outside this interval the
algorithm is said to perform significantly better or worse than the baseline.

Assuming that the recognition errors are independently distributed ac-
cording to a binomial distribution, the probability of ne can be expressed
as

P (ne = x) = b(x;n, p) =
(

n

p

)
px(1− p)(n−x).

The mean value and the variance of this distribution are then given by

µ = np

σ2 = np(1− p).

If the values n and p are sufficiently large (a general rule of thumb is np > 5
and n(p − 1) > 5), this distribution can be approximated by a normal
distribution N (µ, σ). Using this approximation the general normal random
variable Z is defined as

Z =
ne − µ

σ
.

It is then possible to find the numbers −z and z between which Z lies with
a probability of 1− α

P (−z < Z < z) = (1− α) = 0.95.

The number z can then be found from the inverse of the cumulative normal
distribution function Φ(z)

Φ(z) = P (Z ≤ z) = 1− α

2
= 0.975

z0.975 = Φ−1(0.975) = 1.96.

Including this z-value in the confidence interval and inserting np for µ and√
np(1− p) for σ we get

P (−1.96 <
ne − np√
np(1− p)

< 1.96) = (1− α)

P (np− 1.96
√

np(1− p) < ne < np + 1.96
√

np(1− p)) = (1− α).
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Substituting the lower and upper bounds, c1 and c2, with c1−0.5 and c2+0.5
for continuity correction we get

P (np− 0.5− 1.96
√

np(1− p) < ne < np + 0.5 + 1.96
√

np(1− p)) = (1− α).

It can now be shown [107] that the confidence interval P (a1(ne) < p <
a2(ne)) for the true error probability p can be found by calculating the
value of the two functions a1 and a2 as follows

a1(ne) =
ne − 0.5 + 0.5z2

0.975 − z0.975

√
0.25z2

0.975 + (ne−0.5)(n−ne+0.5)
n

(n + z2
0.975)

a2(ne) =
ne + 0.5 + 0.5z2

0.975 + z0.975

√
0.25z2

0.975 + (ne+0.5)(n−ne−0.5)
n

(n + z2
0.975)

(A.1)

Assuming that the recognition results of the three test sets described in
Chapter 4.2.3 are independent, we can use the total number of utterances
in the three test sets n = 3875 and Equation (A.1) to calculate the confi-
dence interval of the experiments conducted in this dissertation. The 95%
confidence interval is illustrated in Figure A.1 and in Table A.1 for selected
error rates.
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Figure A.1: Confidence bounds for α = 0.05 and n = 3875.
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NER Interval Low (a1) High (a2)
5% 1.40 4.35% 5.76%
6% 1.53 5.29% 6.82%
7% 1.64 6.24% 7.88%
8% 1.74 7.19% 8.93%
9% 1.83 8.14% 9.98%
10% 1.92 9.10% 11.02%
11% 2.00 10.06% 12.06%
12% 2.08 11.02% 13.10%
13% 2.15 11.99% 14.14%
14% 2.22 12.96% 15.17%
15% 2.28 13.93% 16.20%
16% 2.34 14.90% 17.24%
17% 2.40 15.87% 18.26%
18% 2.45 16.84% 19.29%
19% 2.50 17.82% 20.32%
20% 2.55 18.80% 21.34%
21% 2.60 19.77% 22.37%
22% 2.64 20.75% 23.39%
23% 2.68 21.73% 24.41%
24% 2.72 22.71% 25.43%
25% 2.76 23.70% 26.45%
26% 2.79 24.68% 27.47%
27% 2.83 25.66% 28.49%
28% 2.86 26.35% 29.51%
29% 2.89 27.63% 30.52%
30% 2.92 28.62% 31.54%
31% 2.94 29.61% 32.55%
32% 2.97 30.60% 33.57%
33% 2.99 31.59% 34.58%
34% 3.01 32.58% 35.59%
35% 3.03 33.57% 36.60%
36% 3.05 34.56% 37.61%
37% 3.07 35.55% 38.62%
38% 3.09 36.54% 39.63%
39% 3.10 37.54% 40.64%
40% 3.12 38.53% 41.65%
41% 3.13 39.53% 42.65%
42% 3.14 40.52% 43.66%
43% 3.15 41.52% 44.67%
44% 3.16 42.52% 45.67%
45% 3.16 43.51% 46.68%

Table A.1: Confidence intervals for α = 0.05 and for n = 3875.
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“Pronunciation-based ASR for names,” in Proceedings of the 10th
Annual Conference of the International Speech Communication Asso-
ciation (Interspeech 2009), Brighton, UK, 2009.

[86] Helmer Strik and Catia Cucchiarini, “Modeling pronunciation vari-
ation for ASR: A survey of the literature,” Speech Communication,
vol. 29, pp. 225–246, 1999.

[87] Judith M. Kessens, Mirjam Wester, and Helmer Strik, “Improving
the performance of a Dutch CSR by modeling within-word and cross-
word pronunciation variation,” Speech Communication, vol. 29, no.
2–4, pp. 193–207, November 1999.

[88] Hauke Schramm and Peter Beyerlein, “Discriminative Optimization
of the Lexical Model,” in ISCA Tutorial and Research Workshop
(ITRW) on Pronunciation Modeling and Lexicon Adaptation for Spo-
ken Language Technology (PMLA’02), 2002, pp. 105–110.

[89] Thomas Hain, “Implicit modelling of pronunciation variation in auto-
matic speech recognition,” Speech Communication, vol. 46, pp. 171–
188, 2005.

[90] Abhinav Sethy, Shrikanth Narayanan, and S. Parthasarthy, “A split
lexicon approach for improved recognition of spoken names,” Speech
Communication, vol. 48, pp. 1126–1136, 2006.

[91] Taeyoon Kim, Sunmee Kang, and Hanseok Ko, “An effective acoustic
modeling of names based on model induction ,” in Proceedings of



Bibliography 167

the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2000), 2000.

[92] Rebecca Bates, Mari Ostendorf, and Richard Wright, “Symbolic pho-
netic features for modeling of pronunciation variation,” Speech Com-
munication, vol. 49, pp. 83–97, 2007.

[93] Preethi Jyothi, Karen Livescu, and Eric Fosler-Lussier, “Lexical ac-
cess experiments with context-dependent articulatory feature-based
models,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2011), 2011.

[94] Mari Ostendorf, “Moving Beyond the ‘Beads-On-A-String’ Model of
Speech,” in Proceedings of the IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU 1999), 1999.
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