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Abstract

The propagation mechanism of signals for multiple input multiple output (MI-
MO) channels can be explained via a random matrix. Random matrix theory
is a very powerful tool to understand behaviour of such channels and analyse
their performance measure of MIMO systems. In this work we study:

The asymptotic eigenvalue distribution and the mutual information of a
multiuser (MU) multiple-input multiple output (MIMO) channel with a certain
fraction of users experiencing line-of-sight. It shows that the AED of the channel
matrix decomposes into two separate bulks for practically relevant parameter
choices and differs very much from the common assumption of independent i-
dentically distributed (iid) entries which induces the quarter circle law. This
happens even without antenna correlation at either side of the channel. In order
to tackle this problem the paper makes use of recent developments in free prob-
ability theory which allow to deal with complex-valued eigenvalue distributions
of non-Hermitian matrices.

Moreover to understand behaviour of MIMO channels we derived asymptotic
complex-valued eigenvalue distributions of practically relevant channels models
by means of their respective square equivalent and singular equivalent of channel
matrices.

Finally we derived an explicit mutual information formula which allows us
calculate the mutual information (in general) analytically in high signal-to noise-
ratio (SNR) regime for numerous practical important scenarios. Furthermore
the numerical result shows that, high-SNR approximation draws reliable portrait
even for quite moderate SNR level.



Chapter 1

Introduction

Wireless channels are usually not amiable as the wired one. Unlike wired chan-
nels that are stationary and predictable, wireless channels are extremely ran-
dom.

The radio waves propagates through multi-paths in general. During that
propagation the radio wave can impinge on an object whose dimension is larger
than the signal wavelength A that causes reflection, can impinge on a sharp ob-
ject that causes refraction, can impinge on several objects whose dimensions are
smaller than or comparable to A that causes scattering or can propagate direct-
ly to receiver antenna without experiencing reflection, refraction or scattering
that is called line-of-sight component [6]. Therefore multi-path channels cause
an arbitrary time dispersion, attenuation, and phase shift, know as fading, in
the received signal.

Fading causes poor signal quality thus bigger bit error probability. Suppose
now, the replica of transmitted signals are sent through independent fading
channels, it is highly probable to receive one of them that is not severely de-
graded by fading. If we imagine that, we have T antennas at the transmitter
side, R antennas at the receiver side. The first motivation for Multiple Input
Multiple Output (MIMO) system, was to investigate whether it is possible to
create a number of independent fading channels with the maximum value TR
to mitigate fading effects.

Moreover, with regards to technological development, high data rate de-
mands increase rapidly. MIMO systems can be used to increase data rate by
creating set of parallel channels. On the other hand, MIMO systems require
advanced mathematical and physical frameworks. In order to design efficient
and reliable MIMO system we first must understand propagation of signal thor-
ough MIMO channels which are physical framework of MIMO systems. After
the modelling of the channels, we must calculate practically relevant parameters
or efficiency of algorithms and so on. This is the mathematical framework of
MIMO systems.

MIMO systems first studied by Telatar [4] and Foschini & Gans [5] under
the rich scattering assumption of the channel. With their pioneering works, it



is realized that, with same power or bandwidth constraint, the data rate can be
remarkably increased. Moreover the fading effects can be significantly decreased
! These motivations made MIMO systems one of main research areas of wireless
communications.

However with the increasing interest on MIMO system; with more realistic
channel model assumptions; it is highly desired to understand more on MIMO
channels and respective performance measures or equivalently the singular value
distribution of channel matrix.

This is quite non-trivial mathematical problem in finite size analysis. On
the other hand today we have a situation that the singular value distribution
of a random matrix converges fast which brings much more interest on the
asymptotic analysis of MIMO system.

In this work, we will analyse MIMO channels in a large system limit, as the
number of antennas grows to infinity with a fixed ratio between the number
of transmitting to receiving antennas. We will address a recent mathematical
development free probability which was initiated by Voiculescu in the 1980s in
[11] to study asymptotic singular value distribution of random matrices.

Free probability allows to infer the asymptotic eigenvalue distributions of
sums or products of hermitan random matrices with known eigenvalue distribu-
tion provided that these Hermitian random matrices are free. This allowed us
to deal with a great number of channel models in wireless communications and
put the basis for the success of free probability in information theory of wireless
channels, see e.g. [25], [26], [27].

In contrast, most of the engineering literature is greatly focused on Non-
hermitian matrices, and we derived the empirical eigenvalue distribution of
square or singular? equivalent of practically relevant channel matrices. For,
we believe, it will bring a new point of view to understanding of behavior of
MIMO channels and respective performance measures. To show capability of
non-Hermitian approach we solved one open problem: MU-MIMO with line-of-
sight channel model.

INote that, there is a trade of between data rate and diversity rate. Both can’t be increased
simultaneously. We refer an interested reader to Chapter 10.14 in[62]

2Square and singular equivalent of rectangular random matrices are defined in fourth chap-
ter.



Chapter 2

On the Capacity of MIMO
Channels

In the second chapter we give a quick introduction onto MIMO system and some
important facts on information theory are reviewed. Then we will revise Telatar
work [4] and finally we review to convergence of random variables to start the
asymptotic analysis of random matrices.

2.1 MIMO Channels

Consider a MIMO channel

hu hl,t th
H=| hy1 -+ hpy - hrT (2.1)
th hR,t hR,T

where h,.; represents a fading gain (coefficient) corresponding to r"* receiving
and t*" transmitting antenna pairs. The 7" column of H is often refered to as
a spatial signature that represents the fading profile from the #*" transmitting
antenna to receiving antennas arrays. The relative geometry of T' spatial signa-
tures determine distinguishability of signals at receiver side [3]. Thus, allowing
to increase the data rate as sending the independent signals by creating inde-
pendent set of independent spatial signatures (independent fading channels).

2.1.1 SU-MIMO

In single user (SU)-MIMO systems, the data stream that belongs to single user
X is sent by multiple antennas, and transmitted through the channel H to the
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Figure 2.1: Single user MIMO: The signal vectors x is transmitted with multiple
antennas thorough the H and received by multiple antennas.

receiver antennas (shown in Figure 1.1) can be modelled as
y=Hx+n (2.2)

where H € C*T | x € CT, y, n € C®, the channel, channel input, channel
output, and the normalized additive white Gaussian noise (AWGN) such that,

E (nn') =1 (2.3)

where I is identity matrix. Furthermore the transmitted signal has a constraint

aS E (XTX) < (2.4)

where v represents the signal-to-noise ratio (SNR)?.

2.1.2 Multi-User MIMO

In this subsection we talk about two basic multi-user MIMO channel models:
the MIMO multiple access channel (MAC) and the MIMO broadcast channel
(BC).

MIMO-MAC Channel

In MIMO-MAC system we have multiple users on the transmitter side and each
user have T} antennas. In the receiver side (Base Station) we have R antennas.

Let x;, € CT* represents the transmitted data stream corresponding to k"
user. Moreover let the R x T} matrix H represents the channels between the
k' user and the base station. Moreover in the MAC, each user is subject to an
individual power constraint of Py [3]

E[x}ixk}ng, vk (2.5)
Now we define

X = [X1,..,XK] (2.6)

H = [H,.. Hg| (2.7)

INote that, the noise is with normalized variance, thus the power constraint it equal SNR.
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Figure 2.2: K users MIMO-MAC Channel.

Then the received signal can be expressed as

y=Hx+n (2.8)
where H € CEXT | x € CT, y, n € CE, the channel, channel input, channel
output, and the normalized AWGN as in equation (2.3).
MIMO-BC Channel

In MIMO-BC system, we have multiple users on the receiver side and each user
have R antennas. In the transmitter side (Base Station) we have T antennas.

Let yi € CP* represents the received data stream corresponds to kth user.
Moreover let the T' x Rimatrix Hy represents the channels between the base
station and kth user. Now we define

y = [yi,-YK] (2.9)
H = [H, . Hgl (2.10)

Then the received signal can be expressed as
y=Hx+n (2.11)

where H € C**T_ x € CT, y € CF, n € C%, the channel, channel input,
channel output, and the normalized AWGN as in (2.3). Moreover the base
station subject to an average power constraint

E[x'x] < P. (2.12)

It is immediate that MIMO-BC and MIMO-MAC channels are identical. Obvi-
ously one is Hermitian of the other.
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Figure 2.3: K users MIMO-BC channel.

2.2 On the Capacity of MIMO Channel

In the late 1940, Claude Shannon defined the concept of channel capacity as
the maximum data rate which can be transmitted reliably over the channel. He
proved that there is a coding scheme that performs at rate less then capacity
[1]. Calculating capacity of a channel has been the most fundamental problem
of the communication theory since Shannon’s result.

2.2.1 Glancing Over Information Theory

In this subsection we quickly review some important facts from information
theory.

Definition 1. (i) The measure of randomness or the information content as-
sociated with a random variable x € X with a transmitted probability p(x) is

defined as
1
I(z) & log —
() 800

(ii) The Shannon entropy can be written as average information content of x as

H(r) 2 E, (log zﬁ) (2.13)

i.e. average amount of information lost over the channel can be written as

).



Corollary 1. Mutual Information: The average amount of information at out-
put of the channel can be written as

I(w,y) £ H(z) — H(zy) (2.14)
The mutual information can be also written as

I(z,y) £ H(y) — H(y|z) (2.15)
Theorem 1. [1] Shannon proved that the channel capacity is

C = maxI(z,y) (2.16)
p(z)

Definition 2. Relative Entropy: is a measure the distance of two distribution.
D@wm«m>::z%(bgﬂﬁ)
q(z)

= :co@z
= [ ptayo Bata) (217)

Remark 1. Let p(z) and q(z) are two different distribution of x. Then
. H(xp) — H(zq) = =D(p(x)|q(x)).
e Dp@lla() > 0.

q(z)
= —D(p(x)||q(x)) (2.18)
D@@Nﬂ@)t/mmbg§%d<>
q(x)
> /p(x) ( - M) ()
= 0 (2.19)
Whereln5217uforu>0. O

Example 1. In the continuous case find a distribution p(x) that mazimizes the

entropy with the constraints E(z) = 0, E(2?) = o2.



Solution 1. We can mazimize the entropy by using Lagrange multiplier as:

J = f/p(:c) log(p(x)) + M1 [1 +/p(x)d4 + A2 [02 Jr/:ch(:c)d:E]

d
S —logp(r) — 14 A\ + Aoz?

dp
Setting the final term to zero gives,
p(z) = eMitrer’ (2.20)
where Gaussian distribution is a solution, hence p(z) ~ N(0,0?)
1 w2
p(x) = e 22 (2.21)

Example 2. In the continuous case find a distribution p(x) that mazimizes the
entropy with the constraints E(aczacj*) = C; with zero mean and x € CN. Then
calculate its entropy.

Solution 2. As in the previous example, we can mazximize the entropy by using
Lagrange multiplier as:

7= = [seostptaix+ 5|1+ [ pxiax]
+2N:§:)‘i,j [—Cij + /p(X)IxijIde] (2.22)

i=1 j=1

47 N N
d_ = _Ing(X)_1+6+ZZ)\i’j|Iij|2
P i=1 j=1
= —logp(x) — 14 B +xAx (2.23)
Setting the final term to zero gives,
p(x) = exp(B + XTAX) (2.24)

It is immediate that, multivariate normal distribution is a solution. Hence
p(x) ~ N (0, C) mazimizes the entropy given constraint.

1 Cxto-1x
p(x) = Eprmerel c (2.25)
Finally we can calculate the entropy as
H(x) = E(-logp(x))

= E (logdet[rC] +x'C 'xloge)

= logdet7C + tr(C ' E(xx")) loge

= logdet7C + tr(C~'C)loge

= logdet wC + N loge = log [eN det ﬂ'C}

= logdetmeC (2.26)

since i.e a’¥ det[A] = det[aA] for a scalar value a.



2.2.2 Capacity Formula of MIMO Channel
In the following we will address the wireless MIMO system described by

y=Hx+n (2.27)

where H € CRXT x € CT, y € C®, n € C, the channel, independent and
identically distributed (iid) channel input, channel output, and the normalized
additive white Gaussian noise (AWGN) n ~ A(0,I). Moreover the covariance
of channel input is,

Exx") =P (2.28)

where P is a T' x T diagonal matrix. Then the mutual information between
channel input x and channel output y reads,

I(x,y) = H(y)— H(ylx)
= H(y) — H(Hx + n|x)
= H(y) - H(n) (2.29)

since the noise n is independent of the channel input x. With (2.26) we have
I(x,y) = H(y)—logdetmel
H(y) — (logme)® (2.30)

Maximizing I(x,y) is equivalent to maximizing H(y). In example 2. we show
that, maximum entropy can be achieved with normal distribution. Hence y ~
N(0, C) where the covariance matrix can be written as

CcC = E(Hx—l—n)(Hx—l—n)T)
= HExx"H'4+1+HE(x)E(n") + E(n)E(x")HT
HPH' + 1 (2.31)

Then the capacity reads,

C(P) = logdet [we(u HPHT)] ~ (log me)R

log det [I + HPH' } . (2.32)

C(P) is a random variable. Therefore we define ergodic (mean) capacity which
is expectation of C' over H as

C.(P) /C(P)dP(H) (2.33)
- /logdet {I—i—HPHq dP(H). (2.34)

With eigenvalue decomposition

HPH' = UXU' (2.35)



where U is a unitary matrix and consist of eigenvector of HPH which is X =
diag(x1,...,xr). Then the capacity (ergodic) expression becomes,

C.(P) = / log det [T + X] dPygpyyt (X) (2.36)
R
= Y / log(1 + z,)dPupws (2,) (2.37)

= R/log(lJr:c)dPHpr(:c) (2.38)

where z denotes an arbitrary eigenvalue of HPHT. For notational convenience
we express ergodic capacity as

C.(P
% - / log(1 + 2)dPepyst (x) (2.39)
Moreover in this work we address on the equal power case such that

P =1l (2.40)

known as mutual information can be expressed
I(y) = /log(l + vz)d Pyt () (2.41)

The non-trivial question is how to find the eigenvalue distribution of HPHT.
Even in the simplest channel model it is still quite non-trivial question. In the
following we will address calculation of the ergodic capacity of Rich scattering
MIMO channel by assuming no channel state information at the transmitter
side.

2.2.3 Capacity of Rich Scattering MIMO Channel

Suppose, there is a channel state information at the receiver but no channel
state information at the transmitter. Then we will have equal power strategy,
thus

E(xx") =~ (2.42)

where v represents SNR. Note that, we assume the noise n is normalized AWGN
such that, n ~ A(0,I). Then the capacity formula can be written as in (2.41):

CQTW) = /log(l + v2)d Pt (). (2.43)

Theorem 2. [2]/ Wishart Matrices: Let the entries of RxT matriz H be iid with
zero mean and variance 1/R. Then the unordered joint eigenvalue distribution
of HH' is given by

Prpt (%) = —eXp[ Zx] [I" H i — @)’ (2.44)

l=i+1

where R! term in the dominator is due to allowing to all possible ordering.

10



In the following we will revise Talatar works who calculate the capacity
of MIMO rich scattering MIMO channels where the entries of channel H be
assumed iid with zero mean variance 1/R as defined in Theorem 2.

We start with Theorem 2: By using a column operation on determinant
(or row operation since det A = det AT): multiplication of a column by a con-
stant multiplies the determinant by that constant, and we can simply calculate
marginal eigenvalue distribution. Note that during calculation we do not take
into account the normalization constant, we will compensate it at the final step:

R R R
paut(X) ~ exp lzxz] HIETfR H (z; —x1)?

l=i+1
R R 2
- {Hexp (s /2 T (s - m}
i=1 I=i+1
1 1 2
R xl xR
= {[Texp /22072
i=1 ; ,
xffl (L‘gil
AT/ w12 ST-P2e=aryz |
ngJrR)/z—le_xl/z xg+R)/2fle—w1/2
¢1($1) ¢R(ﬂ?1)
¢r(r1) - ¢r(rk)

Now we use the combinatoric definition of determinant i.e. consider the 3 x 3
matrix A then,

det A=A Az As5+ . (DAl
cEP3;0#{1,2,3} i

where Py is the set of all permutation of the set {1,2...N}. Moreover if the
reordering o — (1,2...N) can be done with even number of pairwise switching
then, (—1)l7l =1 else (—=1)l7l = —1]8].

With the definition of determinant, (2.45) reads

PaEt(X) ~ Y Z(—1)‘0‘(—1)“"H%(i)(%)%(i)(%) (2.46)

oc€Pn wEPN

In addition, ¢; are orthonormal polynomials such that [2]:

11



Now we can easily calculate the marginal eigenvalue distribution with the or-
thogonality principle (2.47)

puui (1) = / Pt (X)dze. . dzg
RR*I
~ ) D (el / Hqsm 23 bu(iy (1) 2. d ¢
oc€Pr wePR

~ Z Z 1)le@IFHe@lg (1) Pu(1)(1)8(0 (1) — w(1))

o(1)=1w(1)=1
R

A (2.48)
=1

Finally the normalization constant can be computed as,

pumt(v1) = ¢ (z1)
z 1 f¢2 l‘l dl‘l zzl
1
= = Z ¢2 (1) (2.49)
i=1
To evaluate (2.49), one can use the following relation [2],
k! V2 d*
— L(T-R)/2 2T—Roz e~ M\T—R+k
Pr41(x) T [(kz—i—R—T)!] TR C ]

1/2
PRy | K / LI @), k=0,1.R—1.
(k+T — R)! K ’ ’

(2.50)

where Lng (x) is the generalized Laguerre polynomial of order k. Thus plug-
ging (2.50) in 2.43 we have:

Theorem 3. [4] Let entries of the R x T matriz H be #id with zero mean with
variance 1/R. With assuming channel state information at the receiver side but
no channel state information at transmitter the capacity of a channel H is

Ce]?) /bg{H_I}é — & [L<T Rq T=Re=(x)dx. (2.51)

2.3 Asymptotic Analysis
Assuming MIMO channels with iid entries is very limited case in practice. We

may need to assign a variance profile to channel matrix, or the channel may
have a line-of sight component, or we might take into account interference, we

12



may need to generalize the scattering richness of channel, the channel might
be correlated in a certain level, or strongly correlated by means of Kronecker
channel model, or any combination of these situation and the others.

There are very few mathematical result even the joint probability density
function (pdf) form of eigenvalue distribution. Moreover we need to marginalize
joint pdf where in iid case we used the machinery of orthogonal polynomials
(2.47). However the orthogonality principle does not work for such as scenarios
mentioned above.

On the other hand, the asymptotic analysis of random matrices quite trivial
comparing to finite size analysis allowing us to work in many practically rele-
vant channel models. Moreover the eigenvalue distribution of most of random
matrices converges very fast, thus asymptotic analysis draws reliable portrait
even for quite moderate number of antennas such as 4 x 4 or sometimes 2 x 2
[9].

2.3.1 Converges of Random Variable

Suppose you are interested in a sequence of random variables {X7, Xs.....} de-
fined in a probability space 2 and want to determine statistic of the sequence. In
the following, we want to address the statistic of Xy when number of sequence
goes infinity called convergence of random variables:

Definition 3. Let {X1, X2} be a sequence of random wvariables. Let X be a
random variable. Then {Xn} is said to converge to X in distribution if

lim Pr(Xy <z)=Pr(X <ux). (2.52)

N—oc0
A generic example of converging in distribution is the central limit theorem:

Example 3. Suppose that {X1, Xs, ..} are iid random variables with the mean
p and variance o®. Define,

1 n
Yy = X — 2.53
¥ = o ) (2.59)
Then we have,
vl t?
lim Pr(Yy <y)= —— 2.54
i r(Yn <y) /m\/ﬂeacp< 2)dt (2.54)

Definition 4. Let {X1, X2} be a sequence of random wvariables. Let X be a
random variable. Then {Xn} is said to converge to X in probability if

lim Pr(| Xy —X|>e) =0 (2.55)
N—o00

for any e > 0.
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Example 4. [10/Let {X1,.. X, } are iid Uniform random variables on the in-
terval [0, 1]. Define
YN = max(Xl, XN) (256)

such that,
Pr(Y, <y) <4V (2.57)

Then for any 0 < € < 1 we have

lim Pr([Yy —1/>€¢) = lim Pr(Y, <1—¢) (2.58)
N—oo N—oo
= lim (1-eV =0 (2.59)
N —o00

Definition 5. Let {X1,Xs} be a sequence of random wvariables. Let X be a
random variable. Then {Xn} is said to converge to X almost surely if

Pr ( lim Xy = X) = 1. (2.60)

N—oc0
Let us give an example regarding to the thesis topic:

Example 5. Consider a N x N random matriz H. Recall that,

N
tr(H) =), (2.61)
n=1
where x,, represents eigenvalues of H. Then define
Y = —t (H") (2.62)
N = N r .
Thus we have,
Pr( lim Yy = mn,x) =1 (2.63)
N —oc0

where my, 1 is n'h order moment of the asymptotic eigenvalue distribution of
H.

Note that, almost sure convergence implies convergence in probability, con-
vergence in probability implies convergence in distribution. But the converse is
not true in general.

14



Chapter 3

Random Matrix & Free
Probability Theory

In this chapter we will address how to find the empirical eigenvalue distribution
of sum and product of Hermitian random matrices as the size goes to infinity.
First, fundamental results on random matrix theory are introduced by means
of Stieltjes Transform. Then Free Probability as proposed by Voiculesco in [11]
which allows us to find sum and product of free random matrices is introduced.

Due to our main concern is the asymptotic eigenvalue distribution of a Her-
mitian random matrix, the moments of eigenvalue distribution will have a key
role. When we talk about moments of asymptotic eigenvalue distribution we
always use the following definition of normalized trace operator:

Definition 6. Consider a R x R hermitian matric A and define

. 1
6(A) = lim —tr(A). (3.1)

R—o0

Remark that, nth moment of A can be expressed as ¢p(A™).

3.1 Random Matrix Theory

In this section, we first introduce practically relevant random matrices and their
asymptotic empirical eigenvalue distribution to analyse the statistic of random
matrices.

The moments of most of important random matrices can be expressed in
terms of Narayana-Catalan numbers defined as follows [7] :

Definition 7 (Narayana-Catalan Numbers). Narayana numbers is defined as

Ny = %(Z) (k " 1). (3.2)

15



The definition of Catalan Number is,
Cn=3 Nup. (3.3)
k=1

Moreover these numbers have a key meaning in combinatoric which will be
pointed out in the next section.

The empirical eigenvalue distribution of important types of random matrices
are examined in the following theorems:

Theorem 4 (Girko Full Circle Law [12]). Let the entries of the R x R matriz H
be independent identically distributed entries with zero mean and variance 1/R.
Then the empirical eigenvalue distribution of H converges almost surely to the
limit given by

Lz <1
pu(z) = { 0 elsewhere (3.4)

as R — oo.

Theorem 5 (Wigner Semi Circle Law [13]). Let the entries of the R x R her-
mitian matric H be independent identically distributed entries with zero mean
and variance 1/R. Then the empirical eigenvalue distribution of H converges
almost surely to the limit given by

1
pH(I) = %\/ 4 — x2l{,2’2} (3.5)
as R — oo.

In free probability semicircle element distribution is analogous with normal
distribution in classical probability theory. Furthermore, the even moments of
semicircle distribution can be expressed with Catalan number as [43]

¢ (H™) = C,. (3.6)

Theorem 6 (Deformed Quarter Circle Law [14]). Let the entries of the R x
T matrix H be independent identically distributed entries with zero mean and
variance 1/R. Then the empirical singular value distribution of H converges
almost surely to the limit given by

48 — (2 — 1 — B)2
Py (r) = max(0,1— B)é(x) + VA (Jim P) I ypavvsy (3.7)

as R, T — oo with 8 =T/R fized.
Moreover the transformation random variable X as Y = X? reads

py(y) = ﬁpxw (3.8)

16



25

=
= =0.05
T 15 £
=
=
1k
=0.2
=0.5
05F

skipped

Figure 3.1: Deformed Quarter Circle Law (eigenvalues) with the fixed ratio
8 =T/R. Note in case 8 < 1, then the pdfs have some zero measure that are

This gives

punt (r) =

max(0,1 — B)5(x) + VAB— (& —1- )

o Lia—var.arvezy- (39)
which is known as the Marchenko-Pastur distribution and its moments are given
by

¢ (HH)"

ZNn kﬁ

(3.10)

Deformed quarter circle law has very important role in many practical fields.
As an example in MIMO system, Rayleigh i.i.d. channel H € C®*7 is a simple
application of the deformed quarter circle law and the mutual information reads
the following expression:

Rl1_r>noo = log det (I + VHHT)

lim —trlog(I + yHH'
L

(3.11)
(1+vB)*
1 1 -
— ¢(I+ —HH') = log (1 + ) \/5 (@ LI
o 2xmw
(1-VB)?

as T, R — oo with the ratio 3 = T/R fixed *

(3.12)

LA closed form expression for (3.12) will be given at the end of the section in (3.182)
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On the Unitary Matrices
Recall, R x R matrix U is called unitary if
UU' =UU =1 (3.13)

Unitary matrices has central role in free probability to define set of free matri-
ces?. Here we present some important class of random matrices in term of their
unitarily property.

Theorem 7 (Haar Distribution [15]). Let the entries of the R X R matrizx H
be independent identically complex distributed entries with zero mean and finite
positive variance. Define

U=H(H'H) 2 (3.14)

Then the empirical eigenvalue distribution of T converges almost surely to the
limit given by

pu(z) = %6(|z| —-1) (3.15)
as R — oo.

Note that, the eigenvalues of a unitary matrix lie on the complex unit cir-
cle. A Haar matrix is special class of unitary matrix, where its eigenvalues are
uniformly distributed on the complex unit circle.

Remark 2. Let the entries of the R x R matriz H be independent identically
complex distributed entries with zero mean and finite positive variance. Then
H can be decomposed as

H=UQ (3.16)

where U is a Haar matriz and Q fulfils same conditions as needed for the quarter
circle law.

Definition 8. If a hermitian random matriz H has same distributed with
UHU' (3.17)

for any unitary matriz U independent of H, then the matrix H is called unitarily
invariant.

Lemma 1. [31] A unitarily invariant X can decomposed

X =UAU (3.18)
with U is a Haar matriz independent of the diagonal matriz A.
Lemma 2. [31],/33] Consider a function

Y = ¢g(X) (3.19)

with unitarily invariant matriz X as an input and a hermitian matriz Y as an
output. Then the matriz Y is also unitarily invariant.

2The definition of freeness will be given in the next section.
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Example 6. [26] A matriz fullfills same conditions as needed for the semi circle
law or deformed quarter circle law, or Haar distribution is unitarily invariant.

Definition 9. [26] If the joint distribution of the entries of a R x T matriz X
has equal to the joint distribution of the entries of a matrix Y such that

Y = UHV' (3.20)
then the matriz X is called bi-unitarily invariant random matrix.

Note that, an identity matrix is also a unitary matrix. Then one can consider
bi-unitarily invariant R x T" random matrix H such that whose singular value
distribution is invariant both by left and right a unitary matrix product.

Example 7. Let the set {Hy,--- ,Hn} consists of independent standard Gaus-
stan matrices with the size of H,, is T,, X T,,_1. Moreover define a matriz

N
H= ][] H.. (3.21)
n=1

Then H is bi-unitarily invariant.

Theorem 8. [31] A square random matriz H is a bi-unitarily-invariant, if it
can be decomposed as
H=UY (3.22)

whereU is Haar matriz and independent of unitarily invariant positive definite
matriz Y.

3.1.1 Stieltjes Transform

There is no doubt that, the most useful transform in Random matrix theory is
Stieltjes transform. One can propose that, fully understanding the capability of
Stieltjes transform is equivalent to understanding half of random matrix theory.

In classical probability theory we take the Fourier transform (or character-
istic function) to determine moments of random variable X or vice versa:

Fx(s) = /esdeX(ac) (3.23)
_ / 3 (5:;)” dPx(z) =" %T: / 2"dP(z) (3.24)
n=0 : n=0
— im;f'"sn (3.25)
n=0 :

where mx , nth order moment of the random variable X. It is reasonable to
apply the same method for a hermitian random matrix A

Fa(s) = / edPa(z) = ‘Z’(?‘:")s". (3.26)
n=0 ’
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Beside we can determine the nth moment of A as

HA™) = T Fals)

(3.27)

s=0

However in contrast to the classical probability theory, Fourier transform method
is not fruitful in random matrix theory. On the other hand consider a hermitian
matrix A, define a function

Ga(s) = Z Snﬂ (3.28)

S [ [y A
B /dPA )' (3.30)

s —X

This method was proposed by Stieltjes in 1984 [34] to determine a unknown
probability distribution of random variable given its moments

Definition 10. Consider the hermitian random matriz A, then the Stieltjes
transform of the matrix A is defined as

A dl A(x)
= —_— 31
Ga(s) / P (3.31)
with s > 0.

In random matrix theory the Stieltjes transform is analogous Fourier trans-
form (characteristic function) in classical probability theory. In fact, it is im-
mediate to see the following relation between Stieltjes transform and Fourier
transform

d™ Ga(s) | "
— =nl —F 3.32
s | "M a(s) . (3.32)
Moreover, recall the scaling property of Fourier transform,
1 s
]:cA(S) = E]:A (Z) (3.33)
which is identical for Stieltjes transform as
dPA (:E)
G, = _— 3.34
e = [T (334
1 [dP
_ _/ Pa(z) (3.35)
C e x
1
= ZGa (f) (3.36)
c c

with ¢ € R.
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Theorem 9 (Stieltjes inversion formula [35]). If a < x < b is a continuity
points of Pr(a < x <b), then we have

b
Pria <z <b)= 2L lim [ QG(z + jy)de (3.37)

Obviously the probability density function can be simply obtained from the
Stieltjes transform as

p(z) = —; Z}Hn SG(x + jy) (3.38)

Lemma 3. Consider the R xT matriz X. Then we have the following relation:

Gxxi(s) = BGxix(s) + % (3.39)

with 8 =T/R.

Sum and Product of Random Matrices

In this subsection, we present some important results regarding to sum and
product of random matrices in term of Stieltjes transform:

Theorem 10 (Sum of Random Matrices I [37]). Let the entries of the R x T
matric H be independent identically distributed with zero mean and variance
1/R. Let the Rx R hermitian matriz X with an asymptotic empirical eigenvalue
distribution converges almost surely to the limit Px(x). Furthermore let Y =
diag(y1,...yr) be a T x T diagonal matriz the empirical eigenvalue distribution

converges almost surely to a limit distribution Py (y). Moreover, let the matrices
H, X,Y be jointly independent. Define,

S=X-+HYH' (3.40)

Then, the empirical eigenvalue distribution of S converges almost surely to a
limit distribution whose Stieltjes transform satisfies

Gs(s) = Gx (sm/y?édsp‘( ) (3.41)
as R, T — oo with $ =T/R fized.

In the case of the entries of the matrix H independent identically complex
Gaussian distributed with zero mean and variance 1/R, the matrix Y not nec-
essarily diagonal, it can be a Hermitian matrix and independent of H. The
reason why a hermitian matrix Y can be decomposed as

Y = UAU' (3.42)

where U is a unitary matrix. H and its right-unitary product HU have the
same distribution. Hence, Y can be replaced by any hermitian matrix UYU
for U unitary matrix. [27].
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With X = 0, theorem 10 has crucial role in MIMO system determining
the mutual information with power profile for the users even for a complicated
model. As well in Kronecker channel model is one of the known application of
theorem 10.

Theorem 11 (Products of Random Matrices I[36]). Let the entries of the R x
T matriz H be independent identically distributed entries with zero mean and
variance 1/R. Moreover, let the R x R hermitian matriz X be independent of
H, with an asymptotic empirical eigenvalue distribution converges almost surely
to the limit Px(x). Furthermore, let

P =HH'X. (3.43)
Then, the empirical eigenvalue distribution of P converges almost surely to a
limit distribution whose Stieltjes transform satisfies
dPX(ac)
Gp(s) =
w0 = [ r e
as R, T — oo with 8 =T/R fized.

Theorem 12 (Product of Random Matrices IT [18]). . Let the random matrices
H,,,Vn be size of T,, x T,,_1 with independent identically complex Gaussian
distributed entries with zero mean and variance 1/K,. Let

(3.44)

N
H= ][] H.. (3.45)
n=1
Furthermore define,
T,
N 4
Pn =T (3.46)

Then, the eigenvalue distribution distributions of HH' converges almost surely
to a limit distribution whose Stieltjes transform satisfies

N

G Y1 o
Grarr (5) [ HH*(S)p Prl o Grapi(s) = 1 (3.47)

n=1

as T, — oo but the ration p, fized for all 0 <n < N.
Theorem 12 is very relevant in many practical field. i.e. it is immediate
to see, it is key formula to find mutual information for a certain number of
successive scattering level in MIMO channels. Moreover it can be directly plug

into Layered Relay Network [16] to explore its performance measure such a
Capacity.

Lemma 4. [Mutual Information Lemma [19]] Consider a RxT matriz H, then
we have

as T, R — oo, with the ratio 8 =T /R fized.
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Proof. Let

1
Z(v) £ lim —logdet (I +7HHT) = /10g(1 + E)CZPHHT(:U) (3.49)
R—oo R s a1
Thus,
= | — - = (3.50)
ds s(s+x) |1 (s + ) S|e_1
1
= —Guni(-s) - 5 (3.51)
Then we find,
* 1
I(y) = / Gamt (=) + ~ds. (3.52)
O

It is often to get an analytical expression for the asymptotic eigenvalue dis-
tribution of singular values of MIMO Channels is not possible. This is why,
in order find the mutual information in MIMO system, the mutual information
lemma is quite useful.

3.2 Free Probability Theory

Consider Random matrices as a non-commutative random variable in general.
Then, in contrast to probability theory, we must define the variables in a matrix-
valued probability space or a non-commutative probability space which changes
whole frame of (classical) probability theory.

In this section a new mathematical field free probability theory which
was initiated by Voiculescu in the 1980s [39] will be introduced. The theory
is a magic of infinite dimension. i.e. definition of freeness. It applies for non-
commutative random variables. Therefore, the main feature of the theory is for
random matrix theory..

From Classical probability to Free probability

In (3.25), we have already mentioned the Fourier transform of a distribution
can be expressed in term of power series of moments as

o0
_ mXJL n
Fx(s) = Z%—n! s (3.53)
Moreover let define a function
rx(w) £ log Fx(w) (3.54)



where r(w) is called the cumulant generating function for a corresponding dis-
tribution, which can either be expressed as [45]

o0 k n
rx(w) =Y ;(; w" (3.55)
n=1 :

where kx j, is called nth order cumulant of the random variable X.

Remark 3. Let X and Y are independent random wvariables. Further define a
random variable X +Y . Then the cumulant generating function of X +Y is,

rx+y (W) =rx (W) +ry(w), (3.56)

or equivalently
kxivn =kxn + kyn. (3.57)

The relation between cumulants and moments can be expressed via combi-
natorics. Let P(n) is set of all partition (permutation) of {1,2,---n}. Let x is
a partition of this set as

m={DB1, - By} (3.58)

where B; is the block of 7 connects some elements in the partition 7. i.e.
m € P(6), 7 ={(1,3,5),(2,4),(6)}, with the graphical representation
123456

We denote the size of B; € 7 as |B;l,(i.e By = (1,3,5) = |B1]| = 3.).

Definition 11. Consider a random variables X . Then nth order moment of X

can be expressed as
mn= > ][ k.- (3.59)
m€P(n) B;€m

where k,, is called mth order cumulant.

On the other hand consider a non-commutative probability space where the
random variables do not commute in general. As example let the space be a
matrix probability space and let the non-commutative random variable be a
hermitian random matrix X. Moreover, in a similar way, let N(n) is set of all
non-crossing permutation of {1,2,---n}. Let 7 is a non-crossing partition of
this set

7 ={By, - B} (3.60)

where B; is the block of 7 connects some elements in the(non-crossing) partition
m. le. me N(6), 7 ={(1),(2,6),(3,4,5)}, with the graphical representation
123456

[
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Definition 12. Consider a random matriz X. Then the moment of asymptotic
eigenvalue distribution can be expressed

oX") = > ][ mim- (3.61)

meEN(n) Biem
where Kk, called nth order free cumulant.

The single difference between two summation is: (3.59) is over all possible
partition P(n), on the other side (3.61) is over all possible non-crossing partition
N (n), this single difference changes the full frame and brings a new theory called
free probability theory.

Furthermore, even though we haven’t yet defined the concept of freeness, it
is reasonable conjecture that: If A and B are free random variables or random
matrices, then their free cumulants are additive as

KA+B,n = KA,n T KBn (3.62)

Indeed this conjecture was proven by Voiculescu [39]. However we must warn
the reader, having an intuition about free provability by making analogy with
probability theory is wrong. We will come this issue later.

As a consequence of this subsection, let’s mention the combinatoric meaning
of Narayana and Catalan:

e The number of a-non-crossing partition of . of the set {1,2,¢c...,n}
where 7, includes r blocks can be expressed in term of Narayana number

as
1/n n
Np,=— = 3.63
Oz, e
T ENC(n)
e the number of non-crossing partition of the set {1,2,---,n} can be ex-

pressed in terms of Catalan Number as

Co= Y :Zn:Nm (3.64)

TeNC(n) r=1

3.2.1 Freeness

The counterpart of independence in classical probability theory is freeness in
free probability. But the concept of freeness comes from infinite dimension.
Therefore it is not easy to imagine freeness intuitively. Beside, later on we will
show one generic example to understand freeness in terms of eigenvectors of
matrices. Now, let’s focus on definition of freeness in polynomial approach.

Consider two random matrices A and B. Then focus on finding the eigen-
value distribution of A + B and AB. To find eigenvalue distribution we must
know for all n € N moments

#»((A+B)") and ¢((AB)") (3.65)

Thus we need to know the non-commutative polynomial of ¢.

25



Non-commutative Polynomials

To see the difference between non-commutative space and commutative space,
we will show two examples in the sense of a possible polynomial term of both two
commutative variable such as real numbers and two non-commutative variable
such as matrices. First let x,y be real numbers, then we define P,(z,y) as a
sum of all possible n*" order polynomials in two variables x and y is given by
18]

o0
P (z,y) £ Zaixl"ym" i liym; €{0,1..n} A o; € RV, (3.66)
i=1

ie. for Po(x,y), it is sum of nine terms
Py(x,y) = anx’y* + aox®y + azay® + aux® + aszy + asy® + arx + agy + ag

On the other hand, let A, and B be real matrices. Then we define N, (z,y) as
a sum of all possible n** order polynomials in two non-commutative variables
A and B is given by

o0 n
N,.(A,B) £ {ZaiHAlikamif’C:

i=1 k=1
D ik > mik € {0,1.n} Aa; € RW.} (3.67)
=1 =1
i.e. for Na(A,B), it is sum of nineteen terms
Ny(A,B) = o1A%B? + a;AB?A + a3ABAB + a,BABA +

asBA?B + agB2A? + a7A®B + asABA + agAB? +
@10BA? + a1 BAB + a15B2A 4 a13A% + a14BA +
a1sBA + a16B2 + a17A + a18B + a9l (368)

A non-commutative polynomial in p variables of order n can be defined as [20]

o0 n y4
Na(A,..A,) 2 {ZaiHHAf{”"q:

i=1 k=1g=1
oo
> likg €{0,1..n} Aoy € RV, q.} (3.69)
i=1
Freeness between two matrices or non-commutative variables can be defined:

Definition 13. [40/A and B are free (with respect to ¢) if all polynomials
Qi € No(A) and R; € Noo(B) such that,

P(Qi) = ¢(Ry) =0 (3.70)

Then we have,
#(Q1R1---QuRn) =0 (3.71)
Freeness for the most general form of non-commutative variables can be defined:
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Definition 14. [20],[40] The sets Q1 = {A1--- A}, Q2 = {By---Bp}--- Q.
form free a free family (Q1---Q,) if, for ever sequence (s1---,8k--) with
sp€{1,2---r}Vk and

Sk+1 7é Sk Vk (372)
and every sequence of polynomials (Q1---Qx---) with Qx € No(Qs,) and
every positive integer n

Q1) == d(Qn) = ¢(Q1---Qn) =0 (3.73)

“Due to the constraint on the sequence si adjacent factor in the product
Q1 - Qn must be polynomials of different sets of the family. This reflects
the non-commutative nature in the definition of freeness[20].”

Example 8. Using the definition of freeness, calculate the p(AB) where A and
B are free.

Solution 8. If we chose non-commutative polynomials

Q1 = A-9¢(A)
Q1 = B-¢(B) (3.74)
By using the definition
#(Q1Q1) =0
(A —¢(A))(B—¢(B))) =0 (3.75)
=  ¢(AB—¢(B)A —¢(A)B + @5( )¢(B)) =
¢(AB) = ¢(A)B + ¢(B)A — ¢(A)$(B) (3.76)

Free Random Matrices

Free probability allows to infer the asymptotic eigenvalue distribution of sums
and or products of free random matrices. This powerful tool works if and if
only if the matrices are free. In this subsection, sets of free family matrices
is presented. Most of them were found by Voiculesco and strengthened and
extended by Thorbj¢rnsen [38] and Hiai and Pets [31, 32].

Theorem 13. [38, 31] Let the entries of independent R x T matrices H; be
i.i.d. complex Gaussian distributed with zero mean and variance 1/R. Let the
independent Rx R matrices X; have upper bounded norm and a limit distribution
as R — oco. Moreover let the independent R x R matrices U; be Haar-unitary.
Assume (Hj, X, U;) are jointly independent for all n.

(i) Gaussian square random matrices(R =T ): then the family
(%0 X[ Xa, X} -} (Hy HL (Ho HYY o) (3.77)

is almost surely asymptotically free as R — co.

27



41) Hermitian random matrices: Let S; £ HiHT, then the family
1

(X0, X}, X2, XG -}, {Su}, {82}, ) (3.78)
is almost surely asymptotically free as R, T — oo with ratio § = T/T fized.
(iit) Unitary random Matrices: the family
(X0 X[ X, X} (U UL U2, UL}, ) (379)
and,
({Xih AT XiT] ) (U2 X0 UG ), ) (3.80)
are almost surely asymptotically free as R — oo.

Theorem 14. [32] Let H,, be an independent family of R X R bi-unitarily
invariant matrices for all 1 < n < N. Let D,, be an independent family of
R x R non-random diagonal matrices for all 1 <m < M. Moreover, let H,HI ,
D, D! have an upper bounded norm and a limit distribution as R — co. Then
the family,

({e2. H]} (Hy H)} - {D1. D]} {D2, DY} o) (38D)

us almost surely asymptotically free as R — oo.

3.2.2 Additive Free Convolution

Consider the free random matrices A and B and assume that, their asymptotic
eigenvalue distributions are known. Now we want to address how to infer the
asymptotic eigenvalue distribution of A 4+ B.

Theorem 15. [{0]Let the hermitian matrices A and B are free. Then we have
KA+B,;n = KAn + KBn (3.82)
where k..,n is free cumulants as defined in (5.61).

Definition 15. Consider an hermitian random matriz X. Then the definition
of R-transform is

[e.e]
Rx(w) = Z /@me"*l (3.83)
n=1
Let the matrices A and B are free. Then, with theorem 15 we have
[ee]
Rays(w) = D (kan+rBn)w" ! (3.84)
n=1
[ee] [ee]
= D ran" T ) ma ! (3.85)
n=0 n=0
= Ra(w)+ Rp(w). (3.86)
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Example 9. Let the entries of the R x T matriz H be i.i.d with the variance
1/R with the ratio $ = T/R fized. Show that,

Solution 9. Let’s start with (3.10),
¢ (HHT)") Z Npo " (3.88)

With the definition of free cumulant we have
S N8 = > ] s (3.89)
i=1 TEN(n) Biem
Remark that (3.89) holds if all free cumulants is equal 5 as
n
> NS = Y 8= D> 8 (3.90)
i=1 TEN(n) Biem TEN(n)

Then the R-transform reads,

R(w) = Z =8 Bw" (3.91)
6

= o (3.92)

Theorem 16. [41] The functional inversion of Stieltjes transform is equal to
1
G Y w) = R(w) + ~ (3.93)
Lemma 5. R-transform of the matriz ¢cX,c € R can be expressed as
R.x(w) = cRx(cw) (3.94)
Proof. Let us star with (3.36),

c-Gea(s) = Ga (Z) (3.95)
With s — G_, (s) we have
-1 -1
c=Ga (G“Z( )> = sz(s) = G (cs) (3.96)
Thus,
Rea(w) = G_a( )—l cGRc- s)l 1 3.97)
cA T VealW T = MA W w ’
= c¢-Ra(ew) (3.98)
O
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Example 10. Consider a projection matriz A, and a matriz B = UAUT where
U s a Haar matriz, and

dx+1)+6(x—1)
5 .
Find the asymptotic eigenvalue distribution of A + B.

pa(z) =

Solution 10. First we have seen on the examples of free families that, A and
B are free. It is immediate that, A and B have same distributions but the
eigenvectors are fully uncorrelated. Thus,

RA_;,_B(UJ) =2x RA(UJ) (3.99)
So let’s find Stieltjes transform of A,
1
= dP, 1
Gals) / ——dPw) (3.100)
L (3.101)
o o2\s—1 s+1 '
The functional inversion of Ga(s) reads
w = Ga(Gx'(Ww)) (3.102)
- ! ( ! + ! ) (3.103)
O 2\GRlw) -1 GRM(w)+1 '
1
0 = Gr'(w)?— ;GKI(M) —1 (3.104)
1F V1 + 4w?
Gallw) = — T2 2; - (3.105)

With theorem 13 we have,

1 F VI T 42

Ra(w) o (3.106)
We have two solutions. Now remark that
i%RA(w) = g1;1—>InO KA1+ Z;KAMW”_I (3107)
= ka1 =B(A) (3.108)
where the mean is 0. Then we can determine the right solution as
—1FV1+4w?
0 = Il —TVITR” (3.109)
w—0 2w
=1 V1 4+ 4w?
0 = D oo Flim— — (8:110)
1 V1 + 4w?
0 = —=F lim (3.111)

2 w—0 2w
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Figure 3.2: Arc Sine Law: The pdf of sum of two free random matrices both
have binary eigenvalue distributed.

thus the one with positive sign is the right solution. Then

-1+ 1+ 4w?

Ra(w) = Ra(w) = o (3.112)
Ranle) = LYV
52
Galals) = T
(3.113)

Then the Stieltjes transform reads

1+ 4G,2A+B(3)

Ga+B(2)
1
= GA+B(S) = m (3114)

Finally by using inversion formula of the Stieltjes transform we have

1 . .
parp(r) = - ;13% SGarB(T +5Yy)
1 1
TR (L —
T y—0 (I + iy)2 —_4
1 1
= ——%7
s 2 —4
1 1
= ——— (3.115)
T /4 — N2

We have two remarkable observations. The first one is: if we randomly rotate
the eigenvectors which is haar-unitary operation, then the matrix A is free with
the randomly rotated one (UAUT). Second, adding two free element which have
discrete densities has continuous density as shown in figure 10. Therefore, hav-
ing an intuition about free probability regards to (classical) probability theory
is wrong. On the other hand, thinking about freeness regarding to interdepen-
dency of eigenvectors is a good intuition.
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Figure 3.3: Free Central Limit Theorem: Semi Circle Law.

Corollary 2 (Free Central Limit Theorem [43]). Let H,, be a free identical
family of random matrices with the eigenvalues zero mean variance 1 for all
1 <n < N. Then the asymptotic eigenvalue distribution of

N—o00

N
!
H= lim N;Hn (3.116)

converges in distribution to semicircle.

1

pu(r) = -Vi—a2?  Ae(-2,2) (3.117)

Proof.

N
Ruw) = <=3 Fu(5%)

5

(3.118)
Since the matrices identical-free, we have
N w
Ruy(w) = —Rnu,

= VNRu (=)
- \/N<m+/i2\/%+/13%2+....)
_ \/N<0+\7—N+n3%2+....> (3.119)

where recall that: first order free cumulant is mean, the second order one is
variance. As N — oo, the cumulants which higher than 2 vanishes, thus

. w w?
Jvlgrloo\/ﬁ(0+\/—ﬁ+mgﬁ+....) =w (3.120)

One can simply follow same steps as previous example then will find the semi-
circle distribution. O
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Compression Of Random Matrix
Consider a R x R matrix H such that,

H=[hy, - hg (3.121)
Suppose, the R x T, (T < R) matrix Hg is defined as

Hg = [hy, -+ hrl. (3.122)

Assume that, you know R-transform of R x R matrix HH'. Then we want
to address to determine of R-transform of 7' x T" matrix H};Hﬂ. The ideas
compressing R x R matrix HH to T x T matrix by using projection matrix.
As an example, let the R x R diagonal matrix P be a projection matrix such
that,

pp(z) = (1 — B)d(x) + Bé(x — 1). (3.123)
For R=4,4=1/2,
hit hiz hiz hi hiit hiz 0 O
h h h h h h 0 0
. 21 hoa hogz has | to 21 ha
HH' = hai hsz hsz hsy |’ PHH'P = 0 0 00
hai hag haz ha 0 0 0 0

which is called also corner of matrix. It is immediate see that, eigenvalue dis-
tribution of T' X T' corner of matrix HH is equivalent to HgHg. Then we can
characterize any compressed version matrix which has real-valued eigenvalue
distribution with uncompressed version in terms of cumulants as

Theorem 17 (Theorem 14.10 in [43]). Consider the R x R hermitian random
matriz X. Let the R x R diagonal matriz P be distributed as

pe(z) = (1 - B)é(z) + Bo(z —1). (3.124)

Moreover define,
X = XP (3.125)

Then the asymptotic eigenvalue distribution of Xg converges almost surely to
limat
px,(x) = (1= B)d(x) + Bpy () (3.126)
such that the R-transform of Y satisfies
Ry (w) = Rx(Bw) (3.127)
as R — oo with § fized.

Example 11. Let the entries of the R x T matriz Hg be i.i.d with the variance

1/R with the ratio f = T/R < 1 fived. Then find the R-transform of H;Hﬂ for
any B < 1.
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Solution 11. With (3.87) for 5 =1,

Thus we have,

1, (@) = Bypp, (Bw) = jﬂw (3.129)

Ry

T
B

Theorem 18. [2/] Consider an invertible hermitian matriz X . Then we have,

=Rx-1 (—R 1 R . 3.130
RX((U) X 1( X(UJ)( +tw X(W))) ( )

Theorem 18 has an interesting connection with Replica Analysis for vector
precoding for wireless MIMO wystems [24]. Moreover it can be useful to find

performance measure of MIMO. In the following we address to find the minimum
mean square error (MMSE) MIMO:

A-Quick Application I

Consider the wireless MIMO system described as
y=y7Hx+n (3.131)

where x, y H, n, 7 are the channel input, the channel output,, the channel
matrix, additive Gaussian noise (AWGN), and the signal -to- noise ratio, re-
spectively. The entries of x and n are assumed to be iid zero mean and unit
variance. Moreover let the entries of the R x T" matrix H be iid with zero mean
variance 1/R.

In this subsection, we will address an important performance measure for
(3.131): the minimum mean-square-error (MMSE) such that [60]

1 . e
— min _ E[|lx-My|?] = / dPgip () (3.132)
0

T MecrxT 14~z

Consider the MIMO system defined in (3.131). Let define a bi-variate function
such that,

gz, y) 21+a—ay—/(z+1)2+zy(zy + 2 — 2z). (3.133)
Then we have,

T MggngE [Ilx — My|]?] = 2527 — 907, ) (3.134)

as T, R — oo with ratio § = T/R fixed.
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Solution

For simplicity let us define,
X =1+~H'H (3.135)

Thus,

1 . _
Fagmin B (= My[?) = ¢ (X7) = Rx2()log (3.136)

With the additive free convolution and the scaling property of R-transform, we
have

RX(w)Zl—’—'yfﬂw (3.137)
Recall theorem 18,
Rxl(w) = Rx-1 (—Rx(w)(1 + wRx(w))) . (3.138)
To solve the problem we must find the w such that,
—Rx(w)(1+wRx(w) =0 (3.139)
or explicitly
ity —qpe ) Wy —fw) (3.140)

1 —vfw 1 —vfw
where outside term of bracket generates one solution, inside the bracket gener-
ates two solutions. The right solution can be simply found by following criteria

d(X1) >0 (3.141)

since X is positive definite matrix which means X! is also positive definite.
Then the right solution comes from inside the bracket with minus sign of square
term of the solution quadratic equation such that,

L1y VO + 1)+ By(Br +2-27)

25 (3.142)

Finally,

1 1 —yfw

—1y _ o
HXT) = Rx(w) — 1+v—7Bw’

(3.143)
which completes the proof.

3.2.3 Multiplicative Free Convolution

Consider the free random matrices A and B and assume that, their asymptotic
eigenvalue distributions are known. Now we want to address how to infer the
asymptotic eigenvalue distribution of AB.
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Definition 16 (M-transform and S-transform). The moment generating func-
tion for a hermitian random matriz X is defined as

Mx(s) = = ¢(X")s" (3.144)

or equivalently,
1 1
Mx(s) = (—) GX (g) — 1. (3145)
Moreover, the S-transform of X is defined

14z
oz
Theorem 19. [{2] Let A and B be free random matrices such that, either
@(A) #0 or ¢(B) # 0. Then we have,

San(z) = Sa(2)Sp(2). (3.147)

Sx (2) Myt (s). (3.146)

Moreover, R-transform and S-transform has a straightforward relation such

that [43],
1
Sx(zR = — 3.148
x(2Rx(2)) x(@) (3.148)
Example 12. Let the entries of the R x T matriz H be i.i.d with the variance
1/R with the ratio $ = T/R fized. Show that,

1
= — 14
Swiml) = 15 (3.149)
Solution 12. Let us start with (3.129) in the previous example,
R (@) = — (3.150)
HIH\W) = 1— Bw .
Then with (3.148), we have
w
=1- 151
Sx(lﬂw) B (3.151)
Let z — w(1 — Bw) ™t which yields w = z(1 + B2)~t. Then we have
1
Serrpr(s) = 1— D (3.152)

_1+ﬁz z+ Bz

Lemma 6. Consider the R xT matriz X. Then we have the following relation:

Syexcr (2) = %Sm <%) (3.153)

with 8 =T/R.
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Proof. Recall the lemma (3),

Gxxrls) = Blxix(s) + 22 (3.154)
Thus,
Mxxi(s) = pMxix(s) (3.155)
= Mgk (2) = Mgy (%) (3.156)
Then we have,
Sxxi(2) = %HM)E}X (%) (3.157)
z+1 =z z
= TSk (E) (3.158)
z+1 z
= 5% <5> . (3.159)

O

Example 13. Let the entries of the R x T matriz H be i.i.d with the variance
1/R with the ratio B = T/R fized. Then find the S-transform of HHT.

Solution 13. Let us start with (3.149),

1
= 1
Suin(@) = 755 (3.160)
With lemma 6 we have
z+1 z
= — - 161
Sunt(w) Z+ﬁSHTX <ﬁ) (3.161)
1
= 3.162
z+f ( )
Lemma 7. S-transform of the matriz ¢cX,c € R can be expressed as
1
Scx(z) = ESX(Z) (3.163)
Proof.
M:x(s) = Z P("XM)s"™ = Z A(X™)(es)™ (3.164)
n=1 n=1
= Mx(sc) (3.165)
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Thus we have

M (s) = —Mx'(s) (3.166)
S.x(z) = %Sx(z). (3.167)

O

Example 14. Let the entries of the R X S and S X T matrices A and B be
independent identically distributed with zero mean, variances 1/R and 1/S and

H 2 AB. (3.168)

Moreover assume that R,S,T — oo with ratios p = S/R and 8 = R/T fized.
Then find the S-transform of HHT.

Solution 14. Let first define,

Crxr = ABBAT
Csxs = ATABBf (3.169)
where,
1 1

Satal(z) = T Sget(2) = ~+A/p

(3.170)

Then S-transform reads,

1
Sa(z) = 3.171)
&) = TG A (
z+1 z
S = Se | —
cle) z+p © <p>
z+1 p
z4p (L+2)(z+pB/p)
p
= — 3.172
CEMIEE) (3472
Moreover S-transform of product of free matrices can be generalize in the
following way:

Lemma 8. Define a random matriz X as,
X=ANAN_1---A2A; (3.173)
where A, is the size of K, X K, _1. Assume that, the family
({ATAL}, {AbAs} - {[ALAND) (3.174)
is asymptotically free all sizes K, tend to infinity with the ratios

Ko
Xn=—— 1<n<N (3.175)

n
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remaining constant. Moreover define the ratios,

Ky

e (3.176)

Pn =

Then we have,

Z+ pN
Sxxi(2) = H AfA, (

3.177
Z+po o > ( )

Pn—1

In theorem 18 we saw the relation between a matrix with its inverse in
term of R-transform. In S-transform this relation is quite similar determinant

operator such as
1

T detX’
Theorem 20. [{6] Let the hermitian matriz X be invertible. Then we have

det X1 =

1

)

(3.178)
Indeed, the S-transform and the determinant operator has the following
explicit relation:

Theorem 21. [Corollary.5 in [{8]]Let the R x R matrix X be bounded and
invertible, then we have

1 O
ElogdetXXT = - / log Sxx+(2)dz. (3.179)

—1
as R — oo.

Theorem 21 is very interesting result, since it gives a compact formula for
mutual information. In the following we show how to find the mutual informa-
tion of MIMO channels where the channel matrix consist of iid entries. Note
that, this is a trivial problem can be solved in term of Stieltjes transform, but
to show the capability of Theorem 21 we used non-trivial way. Moreover we

will re-refer the Theorem at the application chapter to derive explicit mutual
information formula in high SNR regime.

A-Quick Application II
Consider the wireless MIMO system described in (3.131) as
y=+y7Hx+n (3.180)

In this subsection, we will address another important performance measure for
(3.131): the mutual information such that,

I(v)

== /log(l + yx)d Py () (3.181)
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Then with Theorem 21 we have,

I(v) 9(v,8) =2\ | 9(v,B)
R (2757(%@5) Ty

i + 2 log By (3.182)
as T, R — oo with ratio 8 = T/ R fixed.

Solution

In the same way, let us define

X =1+~HH' (3.183)
Then R-transform reads,
Rx(w) =1+ 3 P (3.184)
5 +w

Recall the functional relation between R-transform and S-transform (3.148) such
that,

Sx(ZRx(Z)) = Rx(w) (3.185)

Then we have two solution such that,

_ 1+ B8+ F V(e — 12 +9B8(1B + 227 +2)

S 3.186
x(2) 5oy (3.186)

We can simply find the right solution by the following criteria
lim Sx(z) =1 (3.187)

B—0

since the S-transform of identity matrix is 1. Then the one with positive sign
of square term of 3.186 fulfils the criteria. With theorem 21 we have,

11 det (I+~HH) = O1 S d
T log et T+~ ) = 7/_1 og Sxi(2)dz. (3.188)
g(v,B) — 2> 9 B) |
1Og<2vg(%6)ﬁ * 2y 57 log By

where (3.188) computed by Mapple 15.
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Chapter 4

Non-hermitian Free
Probability

Starting Girko’s circular law is probably the best beginning for this section.
In 1994 Girko proved that, the eigenvalues of N x N matrix with independent
entries of mean 0, and the variance 1/N fall uniformly on a circular disk of
radius 1 as N — oo. Figure 4.1 illustrates this numerically. The theorem is
correct whether the matrix is real or complex. When the matrix is real there is
a larger attraction of eigenvalues on the real axis and a small repulsion just off
axis. This disappears as N — oo [50].

Non-hermitian matrices have complex-valued eigenvalue distribution in general.
In the hermitian case, we worked on the complex-valued functions to search
real-valued eigenvalues, we now have to work on a g-valued function to search
complex-valued eigenvalues (see figure 4.2).

To deal with complex-valued eigenvalue distribution, an extended version of

15

-15
-15 -1 -0.5 0 0.5 1 15

Figure 4.1: The eigenvalues of 500 x 500 Gaussian random matrices in the
complex plane.
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c? G(q)

Figure 4.2: Left: Complex-valued operation for a real function in upper complex
plane. Right: Quaternion-valued operation for a complex function in hyper
complex plane.

free probability which we call “Quatartenionic Free Probability Theory!” is
introduced.

4.1 Quatartenionic Free Probability Theory

Hermitian matrices have real eigenvalues. The method of choice to deal with
real-valued eigenvalue distributions in free probability is to utilize complex anal-
ysis, i.e. to represent a real-valued eigenvalue distribution

1
= — lim ®{;G j 4.1
pla) = — lim RG( + je)} (1)
as a limit of a complex-valued holomorphic function G(s), which is the Stieltjes
transform and as defined before by

dP(x)
G(s)= | —— 4.2

(= [T (42)
Complex-valued eigenvalue distributions are often circularly symmetric and,
thus, not holomorphic. They can be represented by a pair of holomorphic func-
tions representing real and imaginary part. Instead of real and imaginary part
of a complex variable z, one can also consider z, its complex conjugate z*, and
apply the Wirtinger rule [53] for differentiation, i.e.

0z 02"

Oz* =0 0z

(4.3)

4.1.1 Stieltjes Transform

In order to generalize the Stieltjes transform to two complex variables z and z*,
we first rewrite (4.2) by

G(s) = dii/log(s —x)dP(x) (4.4)

1A less explicit calculus for non-Hermitian random matrices was already proposed by Jarosz
and Nowak in [52]. However we generally follow a explicit calculus govern by Miiller in [23]
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Probability Space* Algebra*
Classical Probability* Commutative Commutative
Free Probability™* Non-commutative Commutative
Quatartenionic Free | Non-Commutative | Non-commutative
Probability™*

Figure 4.3: Comparison between Classical, Free, and Quatartenionic Free Prob-
ability Theories

Further, note that the Dirac function of complex argument can be represented
as the limit

8z—2") = llimL
R T EE e
1 o
= —1 1 — 2P+ € 4.
Dt =7 logllz — 2/ + € (45)
Thus we have
p(z) = 1 im 8—2 /1og[|z — 2+ €}dP(Z) (4.6)
T e—0 0z0z* ’
We define the bivariate Stieltjes transform by
9 2, 2
G(s,e) = 95 log[|s — z|* + €°]dP(z)
=2 ipe (4.7)

|s — 2|2 + €2

and get the bivariate Stieltjes inversion formula to read
p(z) = = lim ——G(z,¢) (4.8)

At first sight the bivariate Stieltjes transform looks quite different from 4.2.
However we can write (4.7) as

G(Swf):/[( T Slfz )_1

which clearly resembles the form of (4.2). To get an even more striking analogy
with (4.2), we can introduce the Stieltjes transform with quaternionic argument

qg=v+jw, (v,w) €C?i%=—1,ij = —ji

G(q) = / dP(z) (4.10)

q—z

dP(z) (4.9)
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and with the respective inversion formula

p(2) = L 1im L RG(= + i) (4.11)

T e—0 Oz*

and the definition R(v+iw) = v € C.2 Quaternions are inconvenient to deal with
since multiplication of quaternions does not commute, in general. However, any
quaternion ¢ = v + iw can be conveniently represented by the complex-valued

2 X 2 matrix
v w
< —ot o ) (4.12)

This matrix representation directly connects (4.9) with (4.10) via
G(s,€) = RG(s + ie). (4.13)

Finally, the quaternion-valued Stieltjes transform can be expressed as

Glg) = / (1—q'2) g dP(2) (4.14)

= > [wtoratire) (4.15)
n=0

ZE [(zq_l)”] gt (4.16)

n=0

Note that (4.16) is equivalent to
o0
g ! Z E [(qilz)”] . (4.17)
n=0
But we’ll follow (4.16) for the rest of the work.

4.1.2 Additive Free Convolution

We define the R-transform of quaternion argument p in complete analogy to the
complex case in [30] as

R(p) =G (p) —p~" (4.18)
and obtain for free random matrices A and B, with Ra (p) and Ra (p) denoting
the R-transforms of the respective asymptotic eigenvalue distributions,

Ra+B(p) = Ra(p) + Ra(p) (4.19)
The scaling law of the R-transform generalizes as follows
Roa(p) = zRa(pz) (4.20)

for z € C. Note that the order of factors does matter here, since pz # zp, in
general.

2Note that real and imaginary part of a quaternion are its first and second complex com-
ponent, respectively.
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Remark 4. Let A and B are free each others. Then we have

GatB(7) = Ga (¢ — RB[GayB(9)]) (4.21)

Proof.
¢ = Ga[G'(q)]
— Ga [G;iB@)—Ggl(qHé
= Ga[Galg(a) — Re(q)] (4.22)

By substitution ¢ — Ga1B(q), we have

GaiB(9) = Ga (¢ — RB[GA1B(9)])

4.1.3 Multiplicative Free Convolution

While additive free convolution generalizes straightforwardly, this is very differ-
ent, for multiplicative free convolution.

Define a modified quaternion-valued Stieltjes transform of a non-Hermitian
random matrix X as,

Gx = lim Gx (z + ie) (4.23)
e—0
Moreover for any ¢ € C? define the following operation as
¢ =wew*, ¢ =w'qw (4.24)

where w £ e(far82)/4 Tet the non-hermitian matrices A and B are free each
others. Then we have [54],

RaB (GaB) = Ra (Gs)' Re (GA)" . (4.25)

But this is non-trivial formula and very less fruitful compare quaternion valued
R transform. On the other hand there is an interesting result in the name of
S-Transfrom over (non-commutative) unital Banach algebra [51]:

Let b be a unital-(non commutative) Banach algebra over complex number.
Define the M-transform in term of the b-valued function,

lI>

M (b) GO Yot -1 (4.26)

I
K

E[(b2)" (4.27)

n=1

Then we have b-valued S-transform can be written as,

S®B)=b"11+r)M~(b) (4.28)
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Let x and y are free operators. Then we have [51]
Say(b) = Sy (b) Sz (Sy (b) 'Sy (b)) (4.29)

Since the b defined as a non-commutative variable, the functional form b—wvalued
Stieltjes transform completely matches with g—valued Stieltjes transform. Thus
we have the following conjecture:

Proposition 1. Let the square random matrices A and B be free each others.
Define quaternion-valued M-transform as

M(q) £ G ')-q'—1 (4.30)
= > El(g2)"] (4.31)

Moreover define the quaternion valued S-transform
S(ry=r"*1+r)M1(r) (4.32)
where r € C2. Then we propose

SAB(’I“) = SB(T)SA(SB(T)_lTSB(T)). (4.33)

4.1.4 Quaternion-valued functions for hermitian matrices

Recall that, the quaternion-valued Stieltjes can be expanded as,

JE S Te e

qQ—z

However the quaternion-valued Stietjes transform for a real distribution can be

written
/ dP(z) i / 2"dP(x)
qg—x - — qn+1

m
= Z qnfl (434)

n=0

since qx = zq,x € R. This yields the same algebra as in the complex case.
Therefore quaternion-valued Stieltjes, R and S transforms for a real distribution
are simply equivalent to the complex case. Obviously

Gu(q) = Gu(s)l,—,; Rulp) = RaW)l,—,; Su(r)=>5u(z),_,
where H is a hermitian matrix.

Example 15. Let H is a semicircle element. Find Gu(q) and Ru(p).
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Solution 15.

dPg(z) = C,
/ e go poree (4.35)
since odd moments of a even distribution vanishes and C,, is nth Catalan num-
ber. By using recursive expression of Catalan number, we have [43),

o0

Onla) = 1430 ot (zcmlcnm)

n=1 m=1

= _1+q_lzz 2m+1' 2(7: :)L+1

nlml

_ _ = O
= 1 12 2m+1.<2ﬁ>

n=m

= ¢ ' +q! Z P 'GH(q)
= q¢'+ q_lG%(q) =q¢ ' (1+Ghla)- (4.36)
which yields the following solution,

Gul(q) = % [q - (¢* - 4)%} (4.37)

Now with a substitution ¢ — G (q) in (4.36) we have,

0 = [Gx'@] 1+ —g
[Ru(e) +¢7'] (146 —q
= (1+¢*) —(Rulg)+q¢ ')g (4.38)
which yields
Ru(q) =q (4.39)

Remark 5. Let G is a full circle element, then we have

Ra(q) =S¢ (4.40)
Proof. G can be decomposed as
H H
G- 1t (4.41)
V2
where H; » are semicircle element and free each others. Then we have
1 . N
Re(e) = 5(a+jaj) =g (4.42)
O
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4.2 R-Diagonal Matrices

In the previous section, we worked on quaternionic free probability which allows
to deal with complex-valued eigenvalue distributions of non-Hermitian matrices.
In this section we will work on methods for R-diagonal matrices:

Definition 17. [56] A random matriz X is called R-diagonal if it can be de-
composed as X = UY, such that U is Haar unitary and free of Y = vVXXT.

Recall in the previous chapter we defined R x R bi-unitarily invariant matrix
X such that, it can be decomposed as X = UY where U is R x R Haar
unitary matrix and independent of R x R matrix Y. As the matrix size grows,
independence is converted into freeness according to some freeness result [32].
Therefore bi-unitarily invariant matrices are asymptotically R-diagonal®.

R-diagonal matrices have circularly symmetric eigenvalue distribution. In
order to determine the boundary of such distributions, we define the following
measures [47]:

lI>

in(X)? / idPXXT () (4.43)

out(X)? £ /l‘dpxxr(l') (4.44)

(where these integrals are computed by using the conventions 1/0 = oo and
1/oo = 0). It is obvious that, out(X)? is the 2nd moment of singular value
distribution of X and when H is invertible (or has no zero eigenvalues), in(X)?
is the 2nd moment of singular value distribution of X 1.

4.2.1 Which matrices are R-diagonal?

It is immediate to see that a Haar-unitary matrix T and a (i.i.d) Gaussian
random matrix H are asymptotically R-diagonal matrices such that they can

decomposed as
T =TI, H=UQ (4.45)

where U is a Haar-unitary matrix and Q is a quarter circle distributed random
matrix. Moreover, with the following theorems we here present some important
class R-diagonal matrices:

Theorem 22. [/7] Let the matriz X; be free family of R-diagonal matrices for
all1 <n<N. Then,

o Sum of free R-diagonal matrices: ), X;
e Product of free R-diagonal matrices: [ X;

e Power of a R-diagonal matrices: X%

3Note that independent R-diagonal matrices are free of each others.
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are R-diagonal too.

Theorem 23 (Proposition 6.1.1 in [43]). Let the matriz X be R-diagonal and
free of the matrix Y. Then XY is R-diagonal too.

Theorem 24. [43] Let the free hermitian matrices X and Y have a symmetric
(even) eigenvalue distribution on the real line. Then the matrix XY is R-
diagonal.

4.2.2 Additive Free Convolution

On the operations such a sum or product of R-diagonal random matrix can be
performed without quaternionic free calculus.
Consider a hermitian matrix X such that the empirical eigenvalue distribu-
tion of X is
pyxxr (@) + Pyxx(—T) (4.46)
2

px(z) =
where X is symmetrized singular value version of X.

Theorem 25. [Proposition 3.5 in [47]] Let the asymptotically free random ma-
trices A and B be R-diagonal. Define

C=A+B (4.47)

Then we have,
R& (w) = Rz (w) + R (w). (4.48)

At first sight, calculus with respect to the symmetrized singular distribution
looks non-trivial. However the following two lemmas make the problem as trivial
as in hermitian case.

Lemma 9. [Symmetrization Lemma I] Let X be a rectangular non-Hermitian
random matriz in general. Then we have,

Gx(s) = sGxxt (52) (4.49)

Lemma 10. [Symmetrization Lemma II] Let the matriz X be defined as in the
previous lemma. Then we have,

1
2

Sxxt (Z)] (4.50)

%@F{

Recall (3.148), such that zS5(z) and zR(z) are functionally inverse each oth-
ers [43]. Thus, (4.50) allows us to switch from S-transform from XX to R-
transform of X. and vice-versa. We also refer section 2.3 in [56] for an equivalent
argument.

Example 16. Let X is a deformed quarter circle element. Then find the Rx (w).
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Solution 16. Recall (3.170) such that the S-transform of XX reads

Sxxi(z)=(z+8)"". (4.51)

Then with the inversion formula between R-transform and S-transform 3.148
- - - -1 )
wRx (w) (wa(w) + 1) . (wRX(w) + B) =w (4.52)

which yields the following solution®,

= (2 5) vt 4 (459

4.2.3 Multiplicative Free Convolution

Trace operator is cyclic-invariant, this allows us to work in complex valued
free probability by means of S-transform to deal with a multiplication of non-
hermitian matrices.

Beside, the following theorem gives a straightforward way to switch from
singular values to eigenvalues of R-diagonal matrices and vice versa:

Theorem 26. [47] Let the random matriz X be R-diagonal such that it can

decomposed as X = UY where U is haar unitary matriz and free of Y = v XX1.
Then we have

(i) The eigenvalue distribution Px(z)is circularly invariant with its boundary
supp (Px) = [in(X) ™!, out(X)] x, [0,27). (4.54)

explicitly Px supports is the annulus with inner radius in(X)™! and outer radius
out(X).

(ii) The S-transform Sy of Y? has an analytic continuation to neighbourhood
of interval (Py=(0) — 1,0] and monotonically deceasing on (Py2(0) — 1,0] such
that the derivative of S-transform S4» < 0, and it takes the values in between
S ((Py=(0) — 1,0]) = (in(X) ™2, out(X)?]. (4.55)
(i1i) Px(0) = Py (0) and the radial distribution function
Px (sw (r — 1)—%) =r; re(Py(0),1]. (4.56)

(iv) Px(z) is the only circularly symmetric probability measure satisfying (iii).

4There are two solutions. Remark, in case 8 = 1, the right one must give R(w) = w.
5By x, we denote polar set product: A x, B = {aei®|a € A,0 € B}

50



Corollary 3. [/7] With the notation as in Theorem 26, the functional inversion
of radial probability measure of X

P)Zl(r) = Syz2(r — 1)7% . (Py(0),1] — (in(X)™!, out(X)] (4.57)

has an analytical continuation to a neighbourhood of its domain and monotoni-
cally increasing on (Py(0),1] such that the derivative (Px')’ > 0. Moreover the
radial density of X such that

dPX (7”)

0 T € (in(X) ™1, out(X)] (4.58)

217 px (2)| 5= =

has an analytical continuation to neighbourhood of (in(X)~!, out(X)].

Theorem 26 and its Corollary play central to characterize non-hermitian
random matrices. To comprehend the manner let us do an example:

Example 17. Let the entries of the T x T matriz G be independent identically
distributed with variance 1/T and the matriz P € {0,1}7*T be diagonal with
L non-zero entries. Then, show that the empirical eigenvalue distribution of
H = GP converges almost surely to

po) = -0+ { 5 e (4.59)

elsewhere

Solution 17. Remark that HH' is the square equivalent of deformed quarter
circle law (eigenvalues) element. Thus

Seam (2) = ﬁ (4.60)

With theorem 26, we have,

Pl = ——t =it 1 (4.61)

Sumt(r —1)
Then the probability measure (radial) reads
Pa(r)=(1—¢)+1r? (4.62)
Moreover, the zero measure of the distribution is
Pu(0) = (1 - ¢)i(z) (4.63)
Where the asymptotic eigenvalue distribution of H can easily find as

2nr  dr

(1= 6)5() + (

pu(2)

|z|=r

(1 - 0)5() + (4.64
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Finally we need determine the boundary of the density. Since the distribution
has some zero measure, then inner radius of the density reads,

in(H)™ =0 (4.65)

The outer radius of the density reads,

1
out(H) = T Vo. (4.66)

A large class of R-diagonal matrices have the property to behave as if they
are identical with respect to multiplication:

Theorem 27. [Proposition 3.10 in [47]] Let the random matrices Hy, be asymp-
totically free R-diagonal elements, and their asymptotic eigenvalue distributions
of H,, be identical for all n. Then the asymptotic eigenvalue distributions of

N
H, (4.67)

n=1
and HY are identical.

Theorem 27 allows us to derive the asymptotic eigenvalue distribution many
types of practically relevant random matrices with stardard methods for the
transformation of probability densities. We will re-refer this weird consequence
of R-diagonal matrices in the application chapter.

Moreover, the R-diagonal matrices has an interesting consequence of additive
free additive convolution regarding to singular values:

Theorem 28. [Theorem 3.4 in [57]]Let X be R-diagonal matriz, and decom-
posed as X = U+/Y1 such that U is Haar-unitary matriz and free with /Y1 =
VXX't. Furthermore let the asymptotic eigenvalue distribution of X be

pu(z) Pg'(¢) <|z/<b
$0(2) + { HO Helsewhere (4.68)

Moreover, define a summation of identical free matrices as

B
Ys=> Y, (4.69)
n=1

Then the asymptotic eigenvalue distribution of Xg = U\/?B satisfies,

elsewhere

P, (2) = ¢aé<z)+{ p (F5) VBPR' (87105 +1-57) < |2l < VB (1)
B 0

(4.70)
where ¢ = max(0,1+ ¢N — N).
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Theorem 28 immediately inspires us to propose the following theorem:

Theorem 29. Consider a R X R R-diagonal matrix H = [hy,--- ,hg] whose
eigenvalue distribution

pu(z) Pg'(¢) <|z/<b
$0(2) + { HO Helsewhere (4.71)

where Pﬁl(r) is the functional inversion of radial probability measure (CDF).
Moreover, let the R x T; (T < R) matrizt Hg = [hy,--- ,hy]. Define

¢5 = max (0,1+¢5~" — 571) (4.72)

Then empirical eigenvalue distribution of Hg, such that

Hg, = U\/H[Hp (4.73)
converges almost surely to limit distribution satisfies

_ Lpa(z) Pg'(Bgs+1—B) <|z[ <D
pH; , (2) —¢ﬂ5(2)+{ o H Lsewhere (4.74)

as T,R — oo with B =T/R <1 fized.

Theorem 29 is has very relevant role to analyse for rectangular random
matrices. With Theorem 29 we can very easily find the asymptotic eigenvalue
distribution of singular equivalent of rectangular random matrices.

In the following chapter will be application chapter for MIMO System and
we will characterize practically relevant random matrices with the following
definitions:

Definition 18. Consider the R x T, (T < R) matriz H and the R x (R —T)
null matriz N. Let the R x R matriz Hy = [H|N]. Then we have

H.H! = HH'. (4.75)
We call Hy as the square equivalence of H.

Moreover in case the matrix is R-diagonal that also means the matrix bi-
unitarily invariant, then square equivalence can be replaced by square equivalent:

Definition 19. Let the R X R random matriz be H be R-diagonal such that,
Hg = [hy, hy, ..., hg] (4.76)
Moreover define a R x T random matriz as

H = [hy, hs, ..., hy] (4.77)
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with the ratio § = T/R < 1 fized. Define an arbitrary R x R diagonal matriz
matriz P such that, the diagonal entries

pe() = (1 — B)3(x) + B6(z — 1) (4.78)
Moreover define HP = H,,, then we have,

H,H! = H,H] (4.79)
Thus we called Hy, as a square equivalent of a rectangular random matriz Hg.

In case the matrix singular equivalent

Definition 20. Consider the R x T matric H. Let the T x T matriz U be
Haar-unitary matriz and free of HTH. Moreover define,

H, = UVH'H (4.80)
Then, as far as concerning singular value distribution, we have
H H,=HH. (4.81)

We call Hy, as the singular equivalent of H.
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Chapter 5

Application to MIMO
Systems

In this chapter, we will work on the application of free probability for MIMO
System. The chapter divided into two section, the first section is under the
Rayleigh fading assumption such that the channel does not have not line-of-
sight component. Second section is under the Richian fading assumption where
the channel has line-of-sight component.

We will refer practically relevant channel models and the main consideration
will be asymptotic analysis of mutual information and asymptotic eigenvalue
distribution of square equivalence and singular equivalent of rectangular channel
matrix.

5.1 Rayleigh Fading Channels

In this section, we will address the wireless MIMO system described as follows

y=+y7Hx+n (5.1)
where H € CEXT x € CT, y € C®, n € C®, ~ are the channel, the channel
input, the channel output, additive white Gaussian noise, and the signal-to-
noise ratio, respectively. Moreover entries of the channel H € C*7 represent
the fading coeflicients between each transmission path from a transmit antenna
to receive antenna.

The channel input x and the noise vector n (AWGN) are assumed i.i.d
(independent identically distributed) such that,

E[xx'] = Enn'] =1 (5.2)

Moreover, we assumed the channel has no line-of-sight component. Then the
mutual information between the channel input and its output reads,

% = /log(l + y2)dPapi (2) (5.3)
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Figure 5.1: The eigenvalues of singular equivalent of 1000 x 750 iid Gaussian
random matrix in the complex plane.

5.1.1 Rich Scattering Channel

In this model we assume the channel H € C®*7 consist of a single scattering
matrix such that the entries of H are assumed be iid with zero mean variance
1/R.

Let us first try to understand the behaviour of H by means of both its square
equivalent and its singular equivalent:

Corollary 4. Let the entries of the R x T matriz H be iid with zero mean vari-
ance 1/R. Then, the empirical eigenvalue distribution of the square equivalent
of H converges almost surely to

pu,(2) =(1-75)+ elsewhere

O |-

as R,T — oo with ratio § =T/R <1 fized.

In other words, the projection of iid square random matrices from R to
T dimensions replaces the R — T eigenvalues with greatest modulus by zero
eigenvalues.

Corollary 5. Let the entries of the R x T matriz H be iid with zero mean vari-
ance 1/R. Then, the empirical eigenvalue distribution of the singular equivalent
of H converges almost surely to

= VI=B<|zI<1
= B -
P, (2) 0 elsewhere (5.5)

as R,T — oo with ratio § =T/R <1 fized.
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In other word, decreasing the rectangular ratio 5 = T'/R kills all eigenvalue
on the unit disk with the radius /1 — 8 as shown in figure 5.

Before having look at the, mutual information formula respective channel
model, we will first refer another important performance measure for (5.1) is the
minimum mean square-error (MMSE) achieved by a linear receiver, determines
signal-to-interference-and-noise ratio (SINR) such that [60],

1 min _F [||x — My|]*] = AOO dPgip(z) (5.6)

T MeCRxT 14~z

We have already found the MMSE measure for (5.1) in 3.2.2 such that,

. 2—g(v. 8
— min_E[|x-My|?] = _2-9(nB) (5.7)
T MechxT 2+2y—g(v,B)
as T, R — oo with ratio 8 = T/R fixed. Where the bi-variate function g(x,y)

is defined in

gz, y) 21 +2—zy— \/(:E+1)2+:Ey(:cy+272:c). (5.8)

Finally let us refer the mutual information for (5.1) which is already calculated
in 3.2.3 as:

M 1g(g(%ﬁ)_Q)-i-g(%ﬁ)+5210g5’7 (59)

R 2v9(v, B)? 2y

as T, R — oo with ratio 5 = T/R fixed. For similar result, we also refer the
reader to [61].

5.1.2 Channel with certain Scattering Richness

In this subsection we address more the following channel model for (5.1)[17]
H =HH; (5.10)

where H; € C*T_ H, € CP*S the propagation from the transmit antennas
to the scatterers, the propagation from the scatterers to the receive antennas,
respectively. The entries of the R x S matrix Hy and the S x T matrix H; are
assumed iid with zero mean variances 1/R and 1/T respectively.

The channel model defined in (5.10) generalizes the model defined in (5.1)
as it parametrizes various amounts of scattering richness such that,

lim H=X (5.11)

p—00

where p = S/R and the entries of X € C®XT be iid with zero mean variance
1/R.

As in the previous subsection, let us first analyse the non-hermitian matrix
H defined in 5.10 by its square equivalent and singular equivalent as:
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Figure 5.2: The eigenvalues of singular equivalent of 1000 x 750 H defined in
(5.10) on the complex plane.

Corollary 6. Let the random matriz H be defined as in (5.10). Then, the
empirical eigenvalue distribution of square equivalent of H converges almost
surely to the limit

pir, (2) = max(1 — 8,1 — p)d(z) + vl N (5.12)
0 elsewhere
as T, R, S — oo with ratios p=S/R and 8 =T/R <1 fized.
On the other the singular equivalent of H is:
Corollary 7. Let the random matrix H be defined as in (5.10). Then, the

empirical eigenvalue distribution of singular equivalent of H converges almost
surely to the limit,

P (2) = B%TS)\/T% Vie=8)1-8)/p) <lz| <1 (5.13)

elsewhere
as T, R, S — oo with ratios p=S/R<1' and 3 =T/R > 1 fized.

In other word, decreasing the rectangular ratio 5 = T'/R Xkills all eigenval-
ues on the unit disk with the radius v/(p — B)(1 — 8)/p as shown in figure 7.
Note that as general richness parameter p increase then the inner radius shows
converges to zero.

Finally the mutual information of (5.10) can be written in term of differential
form ( 54 in [17]) as

3 2
<1+’y%(,7)) +e (1+'y%§y>> +a <1+’y%(,7)) +p8=0

LAt the proof given in the appendix, we present the result without the constraint p =
S/R < 1.
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where ¢ = (p+ 8+ 1) and ¢; = pB8+ p+ 5+ p/vy. Numerical solutions to
this differential equation are simply obtained by solving (5.14) via Cardanos
formula and integrating numerically. We refer reader to [17] for more general
perspective and numerical results.

5.1.3 Completely Correlated MIMO Channel

Consider, the channel matrix H € C%*T whose entries are Gaussian variables

but the entries are correlated . To specify the model, correlation coefficients of
all pairs of elements are required [62].

On the other side, we can define a macroscopic variable a such that it is a
kind of average measure over all correlation levels between entries. However we
must connect the parameter o with the channel matrix. This can be achieved
by defining

«
H, = H H, (5.14)
n=1

where the entries of Rx R H,,, 1 < n < a and R xT matrix H, are iid with zero
mean with variance 1/R. Note that,o > 1 the entries of H are Gaussian but
correlated where the correlation level increases with the number of successive
independent matrix product whose entries are iid.

In the following we first analyse the channel matrix defined in 5.14 with
assuming R =T

Corollary 8. Let the entries of the independent R x R matrices H,, be iid
with zero mean and variance 1/R for all n. Then, the empirical eigenvalue
distributions of

ﬁ H, (5.15)

and H* converge almost surely to the same limit given by

_f AEE? <1
pu~ { “ 0 elsewhere (5.16)

as R — oo.

In other words, independent square random matrices with iid entries behave
with respect to multiplication asymptotically as if they were identical. This
means, that running through the same iid random channel twice or running
consecutively through two random channels with the same statistics makes no
difference in the large-system limit. By contrast, this does not even hold ap-
proximately if the channel is a diagonal matrix.

In the rectangular case, we can analyse the channel matrix H,, by means of
its singular equivalent:
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Figure 5.3: The eigenvalues of singular equivalent of 1000 x 750 H defined in
(5.14) on the complex plane with inner radius y = (1 — ) 2.

Corollary 9. Let the RxT matriz H, be defined as (5.14). Then, the empirical
eigenvalue distribution of singular equivalent of H, converges almost surely to
the limit,
1 2_9 o
[ R a-pE <zl < -
PH... { 0 elsewhere (5:17)

as R,T,— oo with the ratio B =T/R <1 fized.

It is easy to see, with increasing correlation level between entries the eigen-
value distribution of singular equivalent of the channel matrix H has gradient
to zero. The gradient can be easily seen on figure 5.1.3. Therefore we can con-
clude, the more correlation the entries have, then the eigenvalues will lie more
close in the complex plane.

Moreover, in physics literature there is an interesting measure for square
non-hermitian random matrices that how much the pairs of eigenvalues lying
close in the complex plane, called in literature left-right eigenvector correlation
[63]:

Consider a R x R non-Hermitian random matrix X with eigenvalue decom-
position

X = VAW =" \iv,w] (5.18)
K3

where V is called right eigenvector matrix and W = V! is called left eigen-
vectors. Then the correlation between right-left eigenvectors is defined [63]

Cx(Z) =

=l

R
Z(ij)(vjv)é(z —2;) (5.19)
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Figure 5.4: The asymptotic radial CDF of eigenvalues of the channel matrix
defined (5.14) respective parameter o with 5 = 1.

Theorem 30. Let the random matric H defined in (5.14). Then the correlation
between right-eigenvector defined in (5.19) of singular equivalent of H is

2 2 _ 4
(L—lz@)e]=72 (1-P)% <[2| <1

Chu,(z) = { 0 (5.20)

elsewhere
as T, R — oo with ratio B =T/R < 1.

Note that, we will calculate mutual information of 5.14 for more general
model in Corollary 10.

5.1.4 Mutual Information in High SNR Regime

High SNR analysis of MIMO channels is one of most the interesting area of
MIMO channels. Indeed when you google the title “MIMO Channels ” you will
get = 12 - 10° results. On the other hand when you google the title “MIMO
Channels with high SNR”, will get = 13 - 10° results.
In this subsection we will present an explicit expression of mutual informa-
tion in High SNR regime with respect to product of free random matrices.
Recall, the ergodic mutual information at the SNR level v can be written as

I(y) = E [logdet (I +yHHT)] (5.21)
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Furthermore in high SNR Regime 1 < v, it is reasonable to conjecture

Z(v) Rlog~ + E [logdet HH'] + 0 (%) (5.22)
~ Rlogy+ E [logdet HH'] (5.23)
We now address the following MIMO Channel H
H=AnNANn_1---AxA; (5.24)
where A,, is the size of K, x K, _1. Assume that, the family
({A]AL} {AJAS} - (AL ANY) (5.25)

is asymptotically free all sizes K,, tend to infinity with the ratios

Xn=—— 1<n<N (5.26)

n

remaining constant. Moreover define the ratios,

K,
= —r. 2
= Tex (5.27)
Theorem 31. Let the random matriz H defined as (5.24) and for simplicity

let Ky = R. Suppose that,

rank(HH') = R (5.28)
@
Moreover define a function,
g(a) = (1 —a)log(a —1) +aloga — 1 (5.29)

such that g(1) = —1 and define a vector x = [1,a, apn, apo]. Then the mutual
information reads,

16) _ 1] Sy =\,
7 = og’y+z g(zn) ; ogSAfAn apn z
*/ Gunt(—s
0

} (5.30)
where in high SNR regime (5.30) reads,

I;) {1 g7+z o(n) i:/ log Sara. <api_1)dz} (5.31)

As an application of Theorem 31, can be on the Asymptotic Eigenvalue
Distribution of Concatenated Vector-Valued Fading Channels [17] as follows:

2=
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Wi t hout appr oxi mati on

= wi t h appr oxi mation

I(y)

15
SNR: 7

Figure 5.5: Mutual information for a channel composed of two scatterer ma-
trices with the ratios pg = 3 and p; = 4 and the comparison between high-snr
approximated one and non-approximated one

Corollary 10. Let the random matriz H defined as (5.24). Furthermore let the
entries of the K, X K,_1 matriz A,, be independent and identically distributed
with zero mean and respective variances 1/K,. Let

_ 1
~ minp,)’

Let the function g(-) be as in (5.29) such that g(1) = —1. Then the mutual
information can be expressed as

0<n<N (5.32)

N
I(vy 1
% = - {logv +9() —g(1) + Y glapn—1) —log ap,—
n=1
g 1
Y o —
0
where in high SNR regime (5.33) reads as
N
I logvy + g(a) — g(1 1
g) ~ gyt 9@ =g() L™ ) logapn (5.34)
o o=

Moreover it was shown by Miiller in [17], the Stieltjes transform of HHT
satisfies:

N

G +1—p,
Grar (s) [ 2 HH*(S)p Pnl  sGrpi(s) = 1. (5.35)

n=1
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(5.35) allows us to find how much the approximated measure deviates from the
actual measure.

Example 18. Let the entries of the R x S matriz Ay and S X T Ay be inde-
pendent and identically distributed with zero mean and variance 1/R and 1/S.
Consider a MIMO channel H described as

H=AA, (5.36)

Then, in high SNR regime the mutual information can be approrimated as

2
1
+ = _9(apa-1) —logapy (5.37)

n=1

I(y) o logy+g(a) —g(1)
R a

as R, S, T — oo with ratios p1 = S/R and po = T/R fized.

As we see figure 77, high SNR approximation gives good result even for
quite moderate low SNR level. But this statement is not true in general. With
the help Theorem 29, it is reasonable to conjecture that, when the g >> 1
or B << 0, then the high SNR approximation draw reliable portrait even for
moderate SNR levels such as 8dB and its neighbourhood.

5.2 Richian Fading Channels

In this section we will work on MIMO Channels by taking account the line-of-
sight. We will consider the following MIMO system described by

H=0cH>H; + Hy (538)

with Hg, Hy, Hs, o denoting the line-of-sight path, the propagation from the
transmit antennas to the scatterers, the propagation from the scatterers to the
receive antennas, and the attenuation of the scattered paths relative to the line-
of sight paths, respectively, is one of them. Note that the terms to be summed
in

HH' = o?(H,H, H H}) + (HoH}) + o (H.H, H + HoHIH))  (5.39)

where terms in each parenthesis in (5.39) are Hermitian matrices but they are
not free. On the other hand, the term in (5.38) are free but they are non-
Hermitian matrices.

In this section, we will make use of an extension of free probability to non-
Hermitian random matrices that introduced in the previous chapter to analyse
the asymptotic eigenvalue distribution and the mutual information of MIMO
channels with line-of-sight.

As in the previous section we assumed the entries of the matrices correspond
the scattering component of the channel matrix (5.38), H; € C5*T and Hy €
CT*E are assumed to have iid with zero mean and variances 1/S and 1/R,
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respectively, where T, S and R denote the number of transmit antennas, of
scatterers, and of receive antennas, respectively. On the other hand, the entries
of the matrix Hy corresponds the line-of-sight component of the channel matrix
(5.38), is not iid.

Theorem 32. Let the entries of R x S matrix Ay and S x T matriz Ao be
independent and identically distributed with zero mean variances 1/R and 1/S
and m*™ moments upper bounded by c, R~™/2 for some oy, and all m < 1. Let
the RxT matriz B be arbitrary matrix free of A1As such that the empirical dis-
tribution of eigenvalues of BBT converges, as R, T — oo to a limit distribution
with Stieltjes transform Gggt(s) defined in (3.31). Furthermore, let

C=0A1A,+B (5.40)
with o € C and define

o(Bz* — pa® — p) + 0/(Ba® — pa® — p)? — 4(pBa?) (2% — p)
22(p — 2?)

g9(x) = (5.41)

Then, the empirical distribution of eigenvalues of CCT converges almost surely
to a limit distribution whose Stieltjes transform satisfies

1
%Gf; (\/g -9 [\/EGCCT (3)]) . (5.42)

as R, S, T — oo with p=5S/R and 8 =T/R <1 fized

Geet(s) =

5.2.1 Rician Mechanism

Rician fading occurs if the received signal has line-of-sight component: the
propagation from transmit antennas to receiver antennas. We will explain the
mechanism by means of basic wave propagation.

Before having look the propagation of line-of-sight, let us focus on the prop-
agation from scatterers to transmit antennas. Imagine we receive signals comes
from scatterer objects as shown in figure 5.2.1. Then, the phase profile of re-
ceived signals by the receive antenna index r and a scatterer object index s
is

64r = capl(jiar) = ezp <j [95 ~e-nEe sin(as)D (5.43)

Moreover it was well-explained by Miiller in [17] why the entries of a scattering
matrix be assumed iid by making an analogy with a method to generate random
number called Linear congruential random generator [64] which used up to 4th
version of Matlab. The algorithm is as follows,

Xn+1 = (aX, +c)mode m n<0. (5.44)

with seed Xy and a=1.
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Figure 5.6: Propagation from scatterers to uniform linear array receiver, scat-
terers are assumed in the far-field.

When we look at figure 5.2.1, it is obvious, that each scatter acts as random
number generator with its distance as seed and the sine of its angle times the
element spacing as increment. For more detail discussion, we refer the reader
to [17].

Now, let us focus on propagation from transmit antenna to receiver antennas
as shown figure 5.2.1. First remark, in case SU-MIMO (single user), the user
behaves as a single scatterer object. Therefore we conclude that the matrix
H, corresponds to line-of-sight component of (5.38) will be unit rank in case of
SU-MIMO (single user).

On the other hand in MU-MIMO, each user behaves as a single scatterer
object, therefore at first it seems rank of the matrix Hy will be the number
of users. But some users may not experience line-of-sight in general. Then we
define

L
o= (5.45)

where L represents the number of user experience line-of-sight. The parameter ¢
specifies the relative rank of line-of-sight component of the MU-MIMO system,
which we will call line-of-sight fraction.

5.2.2 MU-MIMO systems with LOS

Multiuser (MU) multiple-input multiple-output (MIMO) system have received
a great deal of attention recently as they also serve as a models to describe
the propagation of virtual MIMO systems were the multiple antennas are not
co-located but belong to different cooperating users. The capacity region of a
MU-MIMO system depends on the singular values of the channel matrix that
governs the propagation from all (virtual) transmitting antennas to all (virtual)
receiving antennas.

As we discussed previous subsection, in multi-user MIMO systems, the line-
of-sight component of the channel matrix is not limited to rank one, as the
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Figure 5.7: The Propagation of line-of-sight for single user MIMO and multiple
users MIMO, where users are assumed in the far-field.

antennas need not be co-located. Still, its rank is typically lower than the rank
of the scattered component as the existence of a direct path is less probable
than the existence of an indirect path. With the scattered component having
higher rank, but lower power, the question which of the two components is more
important is non-trivial. Furthermore, it is expected that the interplay of both
components is important to understand the properties of MU-MIMO systems.
In the following, we will address the wireless MIMO system described by

_ v
o+

y Hx+n (5.46)

where H, x, y, n, v are the channel defined in (5.38) the channel input, the
channel output, additive white Gaussian noise (AWGN), and the signal-to-noise
ratio, respectively. The entries of x and n are assumed to be iid with zero mean
and unit variance.

The asymptotic eigenvalue distribution of line-of-sight component Hy i.e.

HoH] = GPG (5.47)

where the entries of R x T matrix G are iid with zero mean variance 1/R ( with
ratio 8 = T/R fixed), and the T x T matrix P is a diagonal matrix with the
distribution of diagonal entries

pe(z) = (1 - ¢)d(x) + ¢d(z — 1) (5.48)
Recall the formula (3.41)
B xdPp(z)
Gy (5) = Gx <s + ﬂ/ g () 1 1) (5.49)
with X = 0 we have,
1 _ B
GHOHg(S) =s+ GHOHg )1 (5.50)
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Figure 5.8: Probability density function of the singular values of the matrix H
in (5.38) for 40 = 4¢ = 1. The dashed lines show scaled and shifted versions of
pure scattering (¢ = 0) and pure line-of-sight (o = 0), respectively.

(5.50) which is the Marchenko-Pastur distribution defined in (3.9) with param-
eter B¢,

1 1— 1— 2 1 1
Cagyray (5) = 3 + Qjﬁ ﬂ/( 48ﬁﬁ) - ;jﬁ +3 (5.51)

With the help of (5.51), Theorem 32 allows to calculate the asymptotic singular
value distribution of the channel (5.38) This examples was chosen, since the
relative scattering attenuation o and line-of-sight fraction ¢ are small, in prac-
tice. In that case, the asymptotic singular value distribution of H decomposes
into two bulks with each bulk being shaped very similar to the cases of pure
scattering and pure line-of-sight when scaled or shifted appropriately. This de-
viates strongly from the quarter circle law that would be obtained, if H were
composed of iid entries. The mutual information of the channel defined in (5.38)
and measured in nats is given by

. I(y,0,0) x
}%1_{1;0 —5 = /log (1 + ;) dPgpt(x) e (5.52)
o 1
_ ﬁ _, G (—s) + ~ds (5.53)
= 2/00 L Gg(—s)ds (5.54)
N =2 H '
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Figure 5.9: Mutual information for v = 9[dB], 8 = p = 1 versus ¢ and ¢.

where (5.54) and (5.54) follow from the mutual-information lemma (3.52) 2 Tt
is shown in Figure 5.2.2 for a fixed signal-to-noise ratio of 9 dB.

One can observe that small values of the line-of-sight fraction ¢ and the
relative scattering attenuation o that are typical in many practical scenarios
are quite deleterious for the mutual information of the channel.

Furthermore, the figure seems to suggest that blocking the line of sight is
better than a small, but non-zero value of the line-of-sight fraction ¢. However,
Figure. 5.2.2 is plotted for constant SNR and blocking the line of sight will
surely decrease the SNR.

The hit in mutual information for small line-of-sight fraction and relative
scattering attenuation is exacerbated in practice by the fact that analog-to-
digital conversion and precise estimation of the scattered paths is challenging
in the presence of much stronger direct paths.

5.2.3 Conclusion

Line of sight strongly influences the eigenvalue distribution of multi-user MIMO
channels. If the line-of-sight component is significantly stronger than the scat-
tered paths and/or the fraction of users who experience line of sight is small, the
eigenvalue distribution is composed of two separate bulks, one corresponding to
the scattered paths and one corresponding to the direct paths. In that case, the

2Symmetrized version of Stieltjes transform defined in (4.49) as:

Gg(s) = sGppt (5°) -
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asymptotic eigenvalue distribution can be accurately approximated by a scaled
version of pure scattering and a shifted version of pure line of sight which, in
contrast to the exact solution, can be given in closed explicit form.
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Appendix A

Proofs

A.1 Theorem 29
Let us start with the R x R R-diagonal matrix H defined in the Theorem as
H = [hy, - ,hg]. (A1)
Moreover we defined R x T; (T < R) matrix Hg as
Hg = [hy,--- ,hy]. (A.2)

Define a R x R diagonal matrix P whose diagonal terms distributed as

pp(x) = (1 - pB)é(z) + B6(z — 1) (A.3)
Then remark that,
PHH'P = H,H] (A.4)
Note that,
Par e (2) = (1= B)0() + By o, () (A5)
With Theorem 18 [Theorem 14.10 in [43]], we have,
RHLHH (w) = Rpnt (Bw). (A.6)
Recall the functional relation between R-transform and S-transform [43],
zR(2)S(zR(2)) = z; 2S(2)R(2S(2)) =z (A.7)
Let start with,
1 1
SHgHﬁ (2) (A.8)

Rygi, Suip, (7)) Rum (825g 4, (2))

—  Sum (g Sy, (2) Rene (st;Hﬂ (z))) (A.9)
= Sunt(B-2). (A.10)
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Moreover we defined in the Theorem

Hg, = U\/H[Hp (A.11)
With (4.57) in Corollary 3, we have,
1 1 1
PH@,u(T) = \/SH;Hﬁ r—1) o V/ Suui (Br — B)
_ 1
VSuui ((Br +1—-5) — 1)
= Pg'(Br+1-5). (A12)
Let r — Pp, , (1), we have
Pu(r) = fPu, (1) +1-5 (A.13)
This reads,
Py,  (r) = %PH(T) +1-— % (A.14)
Moreover, zero measure can be easily find as
¢s = Pu,,(0)=max(0,8 'Pu(0)+1-5"") (A.15)
= max(0,8 ¢ +1-p571) (A.16)

since we defined zero measure of H as ¢. Thus we have distribution of Hg 4,
satisfies with

Petonl) ) (A7)
— 6500) + Fpur) (A18)
() = M) (A19)
= 050(:) + Spm) (A.20)

Final step is to determine the boundary of distribution. It is obvious, that the
outer boundary doesn’t change since (with (A.12))

Pq), (1) =Pg'(B1+1-8) = Pg'(1). (A.21)
In the same way, the inner boundary reads
P, (#5) = Pa' (B¢ +1—B). (A.22)

Thus the asymptotic eigenvalue distribution of Hpg ., converges to limit distri-
bution

_ ipu(z) Pg'(Bes+1—p) <|z| <b
pHﬂ’u(Z) = #60(z) + { ’ 0 " elsewhere

as R, T — oo with the ratio 5 =T/R < 1 fixed.

(A.23)

72



A.2 Proof of Theorem 30

Consider a non-Hermitian random matrix X and its eigenvalue decomposition
as,

X =VAW (A.24)

such that,
V = |vi,..vg] (A.25)
V3Ii=W = [wy,..wg] (A.26)

Then the definition of left-right eigenvector correlation of H!

R
Cu(z) = % (wiw)(viv)s(z — z) (A.27)
=1
Remark that,
R
_T T T @
e (2) = 3wy Vil —30) (A.28)
since
H® = VAW (A.29)

Let the entries of the R x R matrix H be iid with zero mean variance 1/R. Then
we have, [63] ,
Cu(z)=1-2* |7| <1 (A.30)

Note that C(z) is a density function. See that, Cu(z) is circularly symmetric
such that the radial density read,

Cu(r)=2rr(1-7r% 0< r<l1. (A.31)

Thus we can easily find the Cpe(r) as

Cuo(r) = éCH (Té> pa—l (A.32)
= an(1ord)pd (A.33)
Thus we have

Cre(5) = 5 Cane ()], (A.34)
_ (1 — r%) ra=2, (A.35)

With theorem 27 we have,
H, = f[ H, = UH" (A.36)

n=1

INote in case the finite size analysis the definition is used as C’(z) = NC(z) in asymptotic
case in literature it is used as C(z). i.e. we refer to reader see (41) in [54] or [55]
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where the matrices H; are identical and free of each others and U be a unitary
free of H. Since we look for a singular equivalent, it is equivalent to concern
either the power of H or product of identical-free matrices H;. Moreover C(z)
is a measure of how much the eigenvalues closely lie each others in the complex
plane, therefore it is expected that randomly rotation of a R-diagonal matrix
doen’t change its the measure C(z).

Recall Theorem 29 tells us the eigenvalue distribution singular equivalent of
a rectangular random matrix tells us, is the same form of square-form except
the inner radius and the normalization constant 8 = T'/R < 1. Thus we have,

S —lzl@)zl572 (1-5)% <2 <1

Chu,(z) = { 0 (A.37)

elsewhere

as T, R — oo with ratio 8 =T/R < 1.

A.3 Proof of Theorem 31

Let R, = rank(XX') = R/a. Moreover let define the R, x R, Hermitian
matrix Y whose eigenvalue distribution identical to non-zero eigenvalue distri-
bution of XX such that,

1 1
pcxi () = (1= 2)6(2) + ~p () (A.38)
with (3.39),(3.153), we have
a-—1

Gy(s) = aGxxi(s)+ . (A.39)

z+1 z
Sy(z) = Z—l—aSXXT (a) (A.40)

Since XX and Y have same non-zero eigenvalues,

. I(v) _ . 1 t
}%gnoo = = }%gnoo = log det(I +yXX") (A.41)
.1
= ]%gnoo 7 log det(I +~Y) (A.42)
1 . 1

= - Rilgoo N log det(I+~Y) (A.43)

1 o0
= —/ log(1 + vyz)dPy (x)
@ Jo

_ é {bm i /OOO log (% + ac) dPy(x)} (A.44)

We first focus on the integral term in (A.44), and starting with formula [48],

1
1 7 ds
logl —+2x| =1lo ac—l—/ A 45
g2 o) —topas 10 (A.45)
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Thus,

/OOO log <% + :c> dPy(z) =

/O " log 2Py (x) / A d_ZY_S (A.46)
— [ ogaarv(o / Gy (~s)ds (A47)

1

= /000 log zdPy (z) — /0; (OLGxxf(S) + ! ; a> ds
(A.48)

With Theorem 21 (Corollary 5 in [48])such that, for a bounded and invertible

matrix Y, we have

0 0
/ log zdPy (x) = f/ log Sy (z)dz (A.49)
0 -1
where with lemma 1 and (A.40),
z+1 z
Sy(z) = Tt o Sxxt (a) (A.50)
z+1z+4+apn
_ A51
HMMPOHI:[ AA,L(ap ) (A.51)
Thus, we have,
oo 0
z+1 zZ+apn
1 d P = — 1 +1 d
/0 og xd Py (x) / 08— og Y z
_Z/ 10g S st o ( z )dz (A.52)
nn Oépnfl

The first integral term in (A.52) can be simplified by defining a function as

0
g(a) & / log(z + a)dz =

-1

such that,

9(1) =

Then we have,

o0
/ logzdPy (z) =
0

(1 —a)log(a—1)+aloga —1; (A.53)
logu
ulgél ulogu — 1= h i 1 (A.54)
lm —Z% lim w—1=—1 (A.55)
1 — = — 11 — = — .
u—0+ —1/(U2) u—0+

g9(a) -
ﬁ:/o 10gSp1 5 (api_l)dz (A.56)

n=1 1

g(1) + g(apo) — glapn)
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Moreover define a vector x £ [1, o, apn, apo]. With plugging (A.56) in (A.48),
then plugging (A.48) in (A.44) we have,

I(v) z
'R N {10g7 i Z 9(en) Z / tog SAT Ao (apn—l ) o

_ /07 Cxxt(—s) + 2= 1ds} (A.57)

S

where it is immediate to see that, in high SNR (A.57) becomes

% =~ {log'erZ g(zn) Z/ log Spia, <api_1)dz}(A'58)

n=1 n=1

A.4 Proof of Theorem 32

For notational convince, let us define
A=A A (A.59)

Furthermore to work with rectangular matrices we define the R x R diagonal
matrix P whose diagonal elements distributed as

pp(x) = (1 —B)o(x) + Bé(x — 1) (A.60)
where ratio § = T/R < 1 fixed. Moreover define
= [A|N]; YP = [B|N] (A.61)
where N is R x (R — T) null (zero) matrix such that,

CCl = PX+Y)X+Y)'P (A.62)
P(X+UY)X +UY)'P (A.63)

where that U is Haar unitary matrix and free of X and Y. Note that X and
UY are R-diagonal. With 25[Proposition 3.5 in [47]] (A.63) reads,

cct = PX+Y)X+Y)P (A.64)
= [P(X+Y)P|[P(X + Y)P] (A.65)
Thus we have,
C = PX+Y)P
PXP + PYP (A.66)

such that, PXP and PYP are free (1.12 Corollary in [44]). Then R-transform
of reads the following,

Rg(w) = Rpgp(w) + Rpyp(w) (A.67)



Note that A = PXP and B = PYP. Thus,
Rg(w) = Rx (w) + Ry (w) (A.68)

Moreover, the Stieltjes transform of C can be present as,

Gs [G5'() }
Gg él (w) + %:|
Gg [G L (w)} (A.69)
With substitution w — Gg(s), we have
Gé(s) =Gp (S - Rx [Gé(s)}) . (A.70)
With Lemma 9 we have,
Geer(s) = =G (V5 = Ry [ViGeen (5)]). (A1)

Thus we left with R-transform of A.
Let start with (3.172) in Example 14

p
()= —F A.72
San1 () = 3T (A.72)

With Lemma 10 we have,
Si(z) = |— P (A.73)

z+1(z+p)(z+B)

With the inversion formula between R-transform and S-transform 3.148 we have,
pRx (W) (WRz (@) + 1)

(WRg (W) + p)(wRz (W) + 5)

—w? =0. (A.74)

Or explicitly
w(p —w?)RE + (p— pw® — fw*) R} — pPw = 0. (A.75)

(A.75) is second order equation and the right solution fulfils 2

(Bw? = pw?® = p) + /(Bw? — pu? — p)? — 4(pBw?)(w? — p)

- = A.
R (w) 2w(p — w?) (A.76)
Finally with scaling property of R-transform (3.94) such that,
R_i(w) =0Rz(0w)(0) (A.77)

One can plug (A.76) with scaling property (A.77) into (A.71) which proves
Theorem 32.

2We choose the solution where in the case 8 = 1 Then the R-transform of satisfies A reads,
pw
- w

Ri(w) = 5

since when 8 = 1.
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A.5 Corollary 6

With example 14 we have,

_ p

Seart (=) = G T+ D) (A7)

With the theorem (26), we have

p
=r (A.79)
(Po (37) +0=1) (7 (35) +9-1)
or explicitly

/1) (P, () +p = 1) (Per, () 45— 1) = (A.80)

Which is standard quadratic equation with respect to radial probability measure
Py, (r). The right solution must fulfil the condition, Py, (r) > 0 such that

Pa,(r) = 5 [(1=0) + (= p) + VB pP T 07| (A81)
To find zero measure of the distribution,
P, (0) = 5 [(1=8)+( =)+ VB P (A82)
= S10-B)+0-p)+]o (A.83)
= max(1—-8,1—-p) (A.84)

We can easily find the density of asymptotic eigenvalue distribution as,

1 dPg,(r
p, () = max(1 - 5.1 - 5(e) + (5 )
1
tr 52 2
TV (B = €)? + 4¢lz|
Finally we need determine the boundary of the distribution. Since the distribu-
tion has some zero measure, then inner radius of the density reads,

|z|=r

= max(1—B,1-p)d(2)

(A.85)

in(Hy) =0 (A.86)
The outer radius of the density reads,
1
out(Hp) = —— = \/E (A.87)
’ Semi (0)

Thus the empirical eigenvalue distribution of R x R matrix H,, converges almost
surely to a limit

i
pr, (2) = max(1 — 8,1 p)d(z) + { e ASVE

0 elsewhere

as T, R, S — oo with ratios p = S/R and § = T/R fixed.
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A.6 Proof of Corollary 7

Let first present Corollary 5.2.1 with 8 =1 as

r e st
pu(z) = max(0,1 — p)d(z) + (1=p)*+4pl2| (A.89)
0 elsewhere
Define
p = max(0,1—p) (A.90)
ppg = max(0,1—pB~ ' —p71) (A.91)
With Theorem 29 we have,
1 __ »r __ pit +1-08)< |z <1
pr, (2) = ppo(z) +{ TVl T H (Bes B <lal < (A.92)
0 elsewhere

Thus we left to find the inner boundary, which can easily find by With (4.57)
in Corollary 3, we have,
1 1
P (r) = —m——— (A.93)
SHTHﬁ (r—1)

= Vir—1+p)(r—1+1)p (A.94)

Let, r — Bpg + 1 — 3, thus the inner boundary of the distribution reads,
in(H,) ™1 2 Py (Bég +1-5) (A.95)
= \/(Bosp — B)(Bps +1-B)p (A.96)

Thus the empirical eigenvalue distribution of H,, converges to limit distribution
as,

O B— inH)"!<|z] <1
pr, (2) = ppd(2) + ¢ " VARl (A.97)
0 elsewhere

Note the in that in case p = S/R < 1, then pg = 0. Thus, the inner boundary
reads

in(Hy) ™' = (p =1 - B)p (A.98)

as we presented at the corollary for simplicity.

A.7 Proof of Corollary 8

Note that, a matrix whose elements are iid is not R-diagonal matrix. DBut
thanks to CLT (Central Limit Theorem) when we successively product two or

79



more than two independent matrix whose element are iid then the products
become iid. Obviously successive product of independent matrix whose element
are iid is equivalent to successive product of independent matrix whose element
are iid Gaussian.

Recall the statement Theorem 27: the empirical eigenvalue distribution of
Product of n-times successive product identical-free R-diagonal matrices and
nth power of one of that matrix converge to to same limit.

Since R-diagonal matrices are circularly symmetric distributed, we will first
focus on the power of radial probability measure at the final step we switch the
complex-valued density as:

pr(r) = 2mr pu, (2)| ;)= = 2r (A.99)

Now recall the formula for a transformation of random variable for y = g(r) [43]

pr(y) = prls~'()) ﬁ—y(y)} (A.100)

In our case g(r) = r®, then we have,

1 1 1
py(y) = —px(yu)ya !
«
2
= Zya-! (A.101)
«
() = — pr(y)l
Pr; ©2m|e] PY =z
1, 2,
e A.102
1 (4102

A.8 Proof of Corollary 4 & 9

Start with Corollary 8, such that,
(e}
H= H H, (A.103)
n=1

where the entries of independent matrices H,, are iid. Then with Theorem 29,
we have,
1,22 -1 _ <
pi, =4 75a 7l Py (1-p) <]z <1 (A.104)
0 elsewhere

Thus we left with the innner boundary which can be easily found with (4.57) in
Corollary 3,

Pg'(1-p) = 7SHH3(*ﬂ) (A.105)
= (1-p)%. (A.106)
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Moreover Corollary 4 is same form with a = 1 such that

L1 p)<lel<1
[ <
PH., { 0 elsewhere (A.107)

where H; as define in Corollary 4.

A.9 Proof of Corollary 10
Just as in prof of Theorem 1 define, R, = rank(XX") = R/a. Moreover let

define the R, x R, Hermitian matrix Y whose eigenvalue distribution identical
to non-zero eigenvalue distribution of XX such that,

Pt (@) = (1= )0(2) + ~py () (A.108)

Now, let start with lemma 1 as,

N
Z+ pn z
S z) = —S A.109
xxt(2) 71;[12“”/)7171 AlA, (pn1) ( )
such that,
1
S z) = A.110
AEAH( ) X+ 1 ( )

Thus we have,

N
Z+ pn 1
S z) = Al1l
XXT( ) li[Z'i_pn—lZX" +1 ( )
n=1 Pn—1
N N
= [ = 2 (A.112)
el Z+ pPn—1 2+ pPn el Z =+ pn—1
see also (19) in [22]. It is easy to see the rank of XX is
rank(XX") = min(K,) = min(p,)R (A.113)
Thus our main rank parameter reads as
1
o= —, 0<n<N (A.114)
min(py, )
Hence,
z+1 z
S = Sxxi () A115
v (2) P+ a xxt\ g ( )
z+1 N «
= I 2 (A.116)
Z+ « foater} Z+app—1



With Theorem 21 (Corollary 5 in [48]) we have

o] 0
/ logzdPy (x) = 7/ log Sy (2)d= (A.117)
0

-1

0
_ / o
-1
The integral can be easily simplified by using the function g(-) defined in (A.53),
thus we have,

dz (A.118)

og — 2P
Z+apn-1

/ logzdPy (z) = g(a) — g(1) + Zg(apn,l) — log apy, (A.119)
0
With the same steps as in the proof of Theorem 2, one can simply get,
I 1
—g) = {log’y + g(a )+ Z g(app_1) —logap,—
g 1
¥ o —
Gxxf (—S) + S dS} (A120)
0
such that, in high SNR regime (A.120) reads as
I log~y + 1
g) 87 9((1 v z:: 1) — logapn (A.121)

A.10 Proof of Lemma 8

By Applying (3.153) recursively, we have

Sxxi(z) = SANANflANfz"'A2A1AIA§"'A§V72A§V71A&(Z)
z+1 z z
= Sata San 1Ax 2AsAATALAT AT
Z+XN NN XN N—-1AN-=-2 28187 A N—-2*N-1 XN

z+1 z z/xn +1 z
= T A \ T ) T o Oal ava o
2+ xN AN XN /) 2/XN+ XN-1 AN XNXN-1

g z
An_z-Az A ATAL AT YNXN_1
zZ+ pN

( Z+ pN— lg ( z )
- - T T
24 pn—_1 ANVAY \py_1 ) 24 pne )AL A PN -2

SAN—z"-AzAlAIAT <PN 2)
z

2+ pN ( z2+ pN_ Lg ( z >
—— S5+ At
z+pn_1 ANAY\pn_1) z+pN- 2 An—1AN-1\ py_g

Z+ pN-2 z
—S S A.122
Z+pN-3 Al oA -2 (PNS) “A2ALALAL (PNS) ( )
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This recursive relation shows the proof of Lemma 8. Moreover for completeness
let’s do final step as

N
z Z+ pn z
S z) = S — I I —S — A.123
XXT( ) A1A] <p1> e ? + Pn—1 ALA. <pn—1) ( )
N
z/p1+1 < z > 2+ pn < z 1}
= ——5 I I Sat —FA.124
Z/pl +X1 Al X1pP1 n=2 Z+ pn—1 AnAn Pn—1 )
N
z+ p1 z > 2+ pn < z )
= S — —S — A.125
Z =+ po AIAl (/)0 nI;IQ Z+ pn—1 ALA, Pn—1 ( )
N
Z+ pn z
— S A.126
g 2t puoy A (Pnl) ( )
zZ+p N z
N
— ” S = A127
z+ po il AnAn (pnl) ( )

A.11 Proof of Lemma 9

Gx(s) = sGxxi (s7) (A.128)

Proof. Then the Stieltjes transform of py(x) reads,

Gg(s) = /Oopi—dx (A.129)

o S5—T

l/oo pvgsr (@) +rygsr(®)
2 Jo s—z

1 1 1
o §/<s—m+s+m>dpvxw(x)

1 1
— 8/732 — dP jexr(x) = s/ o mdPXXT (x)
= sGxxi (%) (A.130)

A.12 Proof of Lemma 10

2

SRy (z)} (A.131)

Sx(z) = [
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Proof. With lemma 9, the M-transform reads the following,

1 1 1
(2) = O (?)

1
Mi(z) +1= _G)N(

Thus,

Ms

z

Finally the S-transform reads,

Sz (2)

z+1

|

z4+1
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%(2) = Mxxi(@)]yme = Mg ' (2) = |

-1
My x4

(A.132)

(A.133)

(A.134)

(A.135)
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