
Efficient Ray Tracing of Sparse Voxel
Octrees on an FPGA

Audun Wilhelmsen

Master of Science in Electronics

Supervisor: Per Gunnar Kjeldsberg, IET

Department of Electronics and Telecommunications

Submission date: June 2012

Norwegian University of Science and Technology

Problem Statement

Ray tracing is a method of generating images of 3D models. It involves tracing light rays
in reverse, from a camera to light sources in the scene. Sparse Voxel Octrees (SVO) is
a tree-based data structure used to store volumetric pixels. This structure can be used
for 3D models and can be traversed efficiently, which makes it suitable for ray tracing.
Recently there has been efforts to perform ray tracing of SVOs for the purpose of rendering
real-time graphics. There exists pure software implementations and solutions based on
general purpose graphics processing units.

Review the existing solution that implement this technique. Outline a design for a system
that can accelerate this technique in dedicated hardware. Implement a unit that can
traverse SVOs, a control unit which can schedule multiple traversal units and a cache and
memory management that is optimized for the memory access pattern of the traversal
units. Find and implement optimizations that can speed up rendering. Finally, explain
how this system could be integrated with traditional graphics processing units in order to
render images using both the proposed technique, and the traditional rendering technique.
Discuss the possible challenges that will be encountered.

i

ii

Abstract

Ray tracing of sparse voxel octrees is a method of rendering images of 3D models, which
could soon become practical for use in real time applications. This is desirable as ray
tracing can produce very realistic visualizations, while voxel models can represent models
with very fine geometric detail. For these reason the method has attracted significant
attention in recent years, but no hardware solution has been published yet. This thesis
presents a design of ray tracing of sparse voxel octrees in hardware. The objective is to
show if it is sensible to implement the method in hardware, and if it could be integrated on
modern GPUs alongside rasterization. To this end, the techniques used in existing soft-
ware implementations of this method is reviewed, and an algorithm suitable for hardware
implementation is presented. The problems of integrating the method with rasterization is
explored, and the algorithm is analyzed and optimized to improve efficiency in hardware.
A software implementation is presented, which supports the development of a hardware
design. This design is implemented using the Verilog hardware description language, and
it has been simulated and synthesized for an FPGA prototype. Multiple versions of the
design has been synthesized and tested, and to evaluate the impact of design parameters
the test results from these designs is presented. The thesis provides a comprehensive eval-
uation of the proposed design, and the results indicate that the algorithm is well suited
for hardware implementation. Although real-time performance was not achieved, there
are indications that further optimizations should allow real-time performance on the same
platform, and that a full scale implementation on a modern GPU could probably allow
ray tracing with a quality which is competitive with rasterization.

iii

iv

Sammendrag

Ray tracing av sparse voxel octrees er en metode for å tegne bilder av 3D modeller, som
snart kan bli praktisk for bruk i sanntidsapplikasjoner. Dette er ønskelig fordi ray trac-
ing kan produsere veldig realistiske visualiseringer, mens voxel modeller kan representere
modeller med veldig mye geometriske detaljer. Av disse årsakene har metoden f̊att bety-
delig oppmerksomhet de siste årene, men ingen hardwareløsning har vært publisert enda.
Denne oppgaven presenterer et design for ray tracing av sparse voxel octrees. Hensikten
er å vise om det er fornuftig å implementere metoden i hardware, og om den kan integr-
eres ved siden av rasterisering p̊a en GPU. Derfor blir teknikkene som har vært brukt i
eksisterende softwareløsninger gjennomg̊att, og en algoritme som er passelig for å imple-
menteres i hardware presenteres. Problemene med å integrere metoden med rasterisering
har blitt undersøkt, og algoritmen analyseres og optimaliseres for å forbedre ytelsen i
hardware. En software implementering presenteres, som underbygger utviklingen at et
hardwaredesign. Dette designet implementeres i hardware spr̊aket Verilog, og har blitt
simulert og syntetisert for en FPGA prototype. Flere versjoner av designet har blitt
syntentisert og testet, og for å evaluere p̊avirkningen av designparametere blir disse resul-
tatene presentert. Oppgaven gir en omfattende evaluering av det foresl̊atte designet, og
resultatene indikerer at algoritmen er egnet for implementering i hardware. Selv om san-
ntidsytelse ikke ble oppn̊add, er det indikasjoner p̊a at videre optimaliseringen vil kunne
føre til sanntidsytelse p̊a samme platform, og at en fullstending implementering p̊a en
moderne GPU sannsynligvis vil tillate ray tracing med kvalitet som er konkurransedyktig
med rasterisering.

v

vi

Preface

Computer graphics has always fascinated me, and I have found it highly motivating to
work with. A couple of years ago I stumbled over an interview with the co-found and
technical director of id Software, John Carmack. In it he commented, “there is a very
strong possibility, as we move towards next generation technologies, for a ray tracing
architecture that [...] involves ray tracing into a sparse voxel octree”. Ray tracing is a
very enticing form of rendering, because it closely mimics the nature of light. It can be
fun to work with because it is easy to get realistic results, but it is hard to make it fast.
In April 2010 I e-mailed him asking whether implementing this on an FPGA would be
a good idea. To my surprise he replied: “I have actually thought specifically about this
– much of the work would be very amenable to an FPGA implementation in a far more
efficient manner than when implemented on general purpose hardware.”. This has served
as a huge source of motivation while working on this thesis.

This project is a testament to the value and maturity of the open source hardware design
community. I am confident that open source hardware will become increasingly influential
in the coming years.

I am grateful to everyone who has contributed to the ORPSoC project, which has been
an invaluable platform in this thesis. I am in particular very grateful for the work done
by Stefan Kristiansson who ported ORPSoC to the Atlys prototype board I have been
using in this thesis. Without it I would surely have spent a lot of time on work that is
not directly relevant to the problems I wanted to explore. It is also amazing the extent
of support I received through the members of the ORPSoC IRC chat channel.

Chris McClelland’s “FPGALink” project was also an important tool in simplifying the
development process. It enabled me to write software which could communicate directly
with the FPGA over a USB link. He was also extremely helpful in ironing out issues
related to the use of this software. Other tools which have contributed to this thesis are
“binvox” by Patrick Min and the “vmath” vector library by Jan Bartipan

My supervisor has been Per Gunnar Kjeldsberg (Department of Electronics and Telecom-
munications, NTNU, Trondheim). He has given me some absolutely essential advice on
being focused and making the right decisions with regards to the scope of the thesis. More
importantly, he has given precious encouragement by showing genuine enthusiasm for the
value of my work.

I would also like to thank my friends in Trondheim who made the time I’ve spent in this

vii

city the best years of my life, and helped me maintain a healthy balance between work
and play.

This thesis is dedicated to my grandparents, Arthur and Irene Saunes, who let me stay
with them during the last stretch of the thesis. They gave me the perfect environment to
concentrate on my work which gave me some very productive weeks while I was there.

viii

Contents

Problem Statement i

Abstract iii

Sammendrag v

Preface vii

Contents x

1 Introduction 1

2 Background 3
2.1 Models . 3
2.2 Transforms . 4
2.3 Perspective Projection . 5
2.4 Rasterization . 5
2.5 Z-buffer . 6
2.6 Ray tracing . 6
2.7 Space Partitioning . 8
2.8 Sparse Voxel Octree . 8
2.9 Traversal of Voxel Octrees . 9
2.10 Representation of Numbers . 10
2.11 Data Cache . 12
2.12 FPGA . 13
2.13 ORPSoC . 13
2.14 Digilent Atlys . 14

3 Previous Work 17
3.1 Software Implementations . 17
3.2 GPU Implementations . 17
3.3 Ray Tracing in Hardware . 18
3.4 Data Structures . 19

4 An Algorithm for SVO Traversal 21
4.1 Overview . 21
4.2 Parameters . 22

ix

CONTENTS

4.3 Child Nodes . 23
4.4 Negative Directions and Parallel Rays . 25
4.5 The Tracing Kernel . 25

5 A Ray Tracer Geometry Stage 29
5.1 Normalizing the Octree . 29
5.2 Generating Primary Rays . 30
5.3 Inverse Perspective Projection . 31
5.4 Normalizing Ray Length . 31
5.5 Z-Buffering With Ray Tracing . 31

6 Hardware Optimizations 33
6.1 Floating Point vs Fixed Point . 33
6.2 The Decimal Point . 34
6.3 Stack . 34
6.4 Restarting . 36
6.5 Hardware Optimized Algorithm . 37

7 Software Implementation 41
7.1 SVO Data Structure . 42
7.2 Generating Sparse Voxel Octrees . 42
7.3 Software Ray Tracer . 43
7.4 Merging Ray Tracing and Rasterization 44
7.5 Cache Profiling . 44
7.6 Results . 46
7.7 Discussion . 47

8 Hardware Implementation 49
8.1 Hardware Platform . 49
8.2 Ray Casting Module . 51
8.3 Scheduler . 52
8.4 Memory Controller . 54
8.5 Ray Traversal Core . 55
8.6 Core State Machine . 56
8.7 Testing . 58
8.8 Results . 60
8.9 Discussion . 64

9 Conclusions 67
9.1 Future Work . 68

Bibliography 74

A Attached Files 75

B The Software Ray Tracing Core Functions 76

C The Ray Tracing Core Module 82

x

Chapter 1

Introduction

Ray tracing of sparse voxel octrees (SVO) is a method for rendering images of three
dimensional models. It has a wide range of potential applications; medical imaging[31],
visualization of scientific data[23], video production[9, 6] and real-time graphics[29, 10, 56].
This thesis will outline a practical design for ray tracing of SVOs in hardware.

This method has had some attention in recent years, and there are currently several im-
plementations of real-time ray tracing of SVO in software[29, 10, 42, 56]. There are also
a few implementations of a somewhat similar technique, ray tracing of polygon models,
in hardware[43, 64]. Although some algorithms for ray tracing of SVOs seem to be par-
ticularly suited for hardware implementation, there seems to have been no such attempt
yet.

Making hardware optimized for a specific domain, such as medical imaging, can be pro-
hibitively expensive. Technology is often developed and popularized within a consumer
market before being adopted in another domain. Consider the massively parallel gen-
eral purpose graphics processor units (GPGPUs). These are now being used to process
e.g., scientific and medical data[22], and NVIDIA is producing versions of their GPGPUs
specifically for this market[62, 34]. However, these processors grew out graphics cards for
the consumer gaming industry.

Similarly, this thesis will present a hardware implementation which could conceivably be
integrated in a graphics processing units (GPUs) for consumer games, with the under-
standing that this might be the most practical path for developing hardware that can
be used within other domains as well. It should be noted that one can not expect this
method to supplant the established method of rendering graphics for consumer games:
rasterization. There is a large investment in rasterization in terms of toolchains, rendering
engines and knowledge. For ray tracing of sparse voxel octrees to gain popularity within
games, it must be implemented alongside rasterization, and it should be possible to use it
within the same rendering pipeline. This way the method can initially be used for special
effects, and over time gain more uses as the capabilities of the hardware grows and the
mind share of the method increases. Consequently, a practical architecture for raytracing
of SVOs should be as compatible with rasterization as possible.

1

Chapter 1 Introduction

Using sparse voxel octrees to represent 3D models is a logical evolution of virtual texturing
techniques which have been developed recenty[57, 19, 18]. They can allow full freedom to
define the shape and texture of the models, in addition to being a potentially more efficient
way to store the color and geometry data[47]. More importantly, these structures can be
ray traced efficiently[29, 10]. Although ray tracing is generally slower than rasterization,
ray tracing is a much more accurate model of how light behaves, and can enable effects
like accurate reflections, detailed shadows and ambient occlusion[9]. There is also a
benefit to developers as expression visual effects with rays of light is more natural and
easy to deal with than the tricks that rasterization employ[48]. As hardware becomes
faster, as demand for more realistic graphics grows, and as algorithms for ray tracing
become more developed, there may soon come a time when using ray tracing for real-
time computer games is feasible. This is effectively demonstrated by Schmittler and Pohls
work of converting existing games to use ray tracing[44].

Field-programmable gate arrays (FPGAs) allow designs for digital integrated circuit hard-
ware to be prototyped and tested at a price which is several orders of magnitude cheaper
than making application-specific integrated circuits (ASICs). This thesis uses an FPGA
prototype platform with the intention of presenting a design that could later be integrated
on an ASIC. Although there are additional challenges to putting a design on an ASIC,
an FPGA prototype should solve many of the initial problems.

In this thesis an algorithm for ray tracing of SVOs has been chosen and analyzed. A
software implementation has been made to produce reference renderings and behavioral
simulations, which provide data relevant to a hardware implementation. The software
has also been used to evaluate techniques to combine rasterization and ray tracing based
rendering. A hardware module which implements the algorithm has been described in
the hardware description language Verilog. This module has been simulated, integrated
in a system-on-chip solution for an FPGA, and several variations of the design has been
synthesized, tested and benchmarked. This has provided useful data on the impact of
various design parameters.

Chapter 2 presents the background material for the thesis. Topics related to rasterization,
ray tracing, sparse voxel octrees, caching techniques and FPGAs are covered. Chapter 3
presents previous work which is related to the thesis, and these have been categorized into
work related to software-based ray tracing of SVOs, other forms of ray tracing in hard-
ware and work on sparse voxel octree data structures. Chapter 4 presents and explains
an existing algorithm for ray tracing of SVOs, which serves as a good basis for a hardware
implementation. Chapter 5 discusses some challenges related to integrating ray tracing
and rasterization and presents some solutions which should lead to an architecture that
makes it easier to combine the two techniques. Chapter 6 presents analysis of aspects of
the algorithm which is significant to a hardware implementation, and modifications to the
algorithm that make it feasible to implement it in hardware. Chapter 7 describes the soft-
ware implementation of the hardware optimized algorithm and discusses the results this
produced. Chapter 8 describes a hardware implementation, the methodology for testing
the resulting design and discusses the results from these tests. Chapter 9 discusses the
conclusions drawn from this thesis and future work necesssary to reach a comprehensive
and practical design for ray tracing of SVOs in hardware.

2

Chapter 2

Background

2.1 Models

In 3D computer graphics, we usually want to visualize real world objects. These objects
must necessarily be represented in the computer by some kind of model. We use a data
structure or a mathematical model to represent these objects. A common way to model
objects is using polygon models. These are constructed from sheets of polygons. The
polygons themselves are usually subdvided into triangles, which can be represented by
three points. A normal vector is often also included, which is useful to indicate which
side of the triangle is facing outwards, and how light should behave on it.

Figure 2.1: A triangle based (left) and a voxel based (right) model.

Another way to represent models is through voxels. Voxels are to 3D models what pixels
are to 2D images. You represent the space as a uniform collection of points, and you
store parameters for each of these points. The parameters can be a color value and
normal vector of the voxel. Voxels can be drawn as points, circles or more commonly
cubes. Although the cubes result in aliased hard edges, these can be softened through
adaptive blurring techniques[29].

Given a type of model (polygons or voxels), there can be many different ways to render
that model to a 2D image. Rendering algorithms are usually optimized for one type of

3

Chapter 2 Background

model. Rasterization is optimized for polygon models, and the algorithm presented in
this thesis is optimized for voxel models.

2.2 Transforms

Transforms are essential tools in computer graphics[3]. It takes an entity and moves,
rotates, scales or performs any other kind of geometrical conversion. They are useful
for positioning objects in the scene, moving cameras and lights, etc. The most useful
transforms are linear transforms. These can be represented as a matrix. In computer
graphics points, vectors and colors are usually represented as a 4-component vector. For
points and vectors these represent the x, y and z-axis, with the fourth component (w)
usually being set to 1. The w-component is useful if a transform needs to add a constant
to a component. Any combination of linear transforms can then be applied using a 4x4
matrix.

Model transform Models are defined within their own coordinate systems. But to
model a scene with several different models in it, the models must be positioned in a
common coordinate system, the world space. A model of a teapot could be centered in
the origo of its coordinate system, and the nose could point along the z-direction. The
model transform for the tea-pot could then for instance rotate it around the y-axis to point
at an angle θ and position it at the coordinate (10, 0, 20). The matrix for this example is
illustrated below, with p and q being a vector before and after transformation.

M =

cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

1 0 0 10
0 1 0 0
0 0 1 20
0 0 0 1

 (2.1)

q = Mp (2.2)

View transform The coordinate system of the world space is usually defined in an
intuitively useful manner. The ground could for instance be defined to be parallel to
the X-Z plane. A virtual camera could be positioned freely in this space. For rendering
algorithms however, it is useful to have the camera positioned in the origo of the coordinate
system with the camera looking along the z-axis. The view transform transforms the scene
from the world space to the camera space (or eye space). The model and view transform
can be combined in a single model-view matrix.

Projection transform A projection transform maps the visible parts of the scene to
some canonical view volume, a simple axis aligned cube with corners at e.g., (−1,−1,−1)
and (1, 1, 1). The nearest visible objects are mapped to the near plane (z = −1). The
furthest visible objects are mapped to the far plane (z = 1). Similarly there is a top,
bottom, left and right plane[3]. Anything outside these planes is outside the view of the
camera, and should be ignored.

4

2.3 Perspective Projection

2.3 Perspective Projection

A perspective projection is a projection which closely match how we perceive the world:
objects gets smaller as they get further away, and larger when they come closer. Conse-
quently in scene space, the far plane is larger than the near plane, while in the canonical
view volume they are equally big. This projection is represented by the following trans-
form matrix[3] (for the OpenGL API), where position of the near, far, left, right, bottom
and top planes are denoted respectively n, f, l, r, b and t:

Pp =

2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 − f+n
f−n − 2fn

f−n
0 0 −1 0

 (2.3)

After this matrix is applied, the resulting vector must be divided by its w -component
to complete the perspective transform. The w -component has in other words been used
to temporarily store a value which is a linear function of the other components, and all
components will be divided by this value. I.e., to get from a view space point q to a
canonical view space point v:

v′ = Ppq

v = v′/v′w
(2.4)

2.4 Rasterization

The most popular form of 3D rendering today is rasterization of polygon models, or just
rasterization for short[59]. It is the technique used by virtually all commercial GPUs.
The process of rasterization can be divided into a pipeline. The three conceptual stages
of the pipeline is the application, geometry and rasterizer stages[3]. The application stage
is defined by the developer and runs on the CPU, it runs simulations and provides the
models, textures, data and other parameters for the following stages in the pipeline. The
task of the geometry stage is to apply transforms and effects that work on the geometry of
the models, and eventually ending up with triangles mapped to a surface that represents
the screen. The triangles are passed on to the rasterizer stage. This stage iterates through
all the given triangles, and generates fragments for every pixel the triangle covers. These
fragments can be further processed by a pixel shader, a small program that applies per-
pixel visual effects. Finally the fragments for each pixel is merged, producing a single
color-value for that pixel.

Figure 2.3 illustrates in further detail how the geometry stage works. The model trans-
forms positions different models in a common coordinate system. The view transform
positions the camera in the origo, and points it along the z-axis. The perspective trans-
form maps the part of the world which is visible to the camera to a canonical view volume.
Anything that is outside this volume is discarded. The geometry is then passed on to the
rasterizer which is responsible for drawing each triangle.

5

Chapter 2 Background

Model & View
Transform

Vertex
Shading Projection Clipping Screen

Mapping

Geometry stage

Triangle Setup Triangle
Traversal Pixel Shading Merging

Rasterizer stage

Application stage

Figure 2.2: A typical GPU pipeline[3]

 d
isc

ard

x

z

x

z

x

z

x

zModel
bounding box Camera

Far plane

Near plane

Model Transform View Transform Projection Transform

Image

Figure 2.3: The geometry stage in action

2.5 Z-buffer

When drawing a fragment, it must be possible to determine whether the fragment should
be drawn in front of or behind those that were drawn before. This is usually accomplished
using a Z-buffer (or depth buffer)[3]. When drawing a fragment of a triangle to a pixel
in the image, the z-coordinate (in the canonical view volume) of the fragment is stored
in the Z-buffer. If the z-coordinate of the fragment is larger than the one in the buffer,
we know that the fragment is behind those that were drawn before, and should not be
drawn to the image.

One thing which is important to note about the Z-buffer, is that when using a perspec-
tive transform, the value stored in the buffer is not proportional to the distance of the
camera to the fragment. The z-coordinate in the canonical view volume is derived from
Equation 2.4. It can be shown that this implies that the z-coordinate in the canonical
view volume is a function of 1/zc, where zc is the z-coordinate in the camera space.

2.6 Ray tracing

Ray tracing is a method which generates 3D images by tracing the path of a ray of light
in reverse. A virtual camera is defined, with a location and direction. From this camera,
rays are traced in to a scene (a collection of objects we want to render). These rays

6

2.6 Ray tracing

Figure 2.4: An image of the Stanford bunny and a buddha statue, and its Z-buffer. Whiter
intensity implies further distance from camera. The background has been colored green
to allow the bunny to stand out.

represent the pixels on the resulting image. Ideally, a pixel represents a volume in the
space as seen in Figure 2.5. Accurately rendering this would be too expensive, but the
pixel can be approximated by a ray instead. This will result in anti-aliasing issues, so it
is common to average the colors of several rays to find the color of a pixel[14].

Virtual
Camera

Ray origin

Rendered
Image

Pixel

Volume represented
by pixel

Primary ray

Light source
Secondary ray

Figure 2.5: Ray tracing

The rays going from the camera to the objects in the scene are called primary rays. After
a primary ray hits an object, additional rays can be sent out. These can be used to find
whether the point is in a shadow or not, by tracing a ray to the light sources in the scene.
They can also be used to calculate reflections and refractions on the object, allowing us
to draw accurate transparent objects such as glass or water. These rays are often called
secondary rays.

Any geometrical construct for which a ray-object intersection test can be formulated,
can be rendered using ray tracing. The ray can fundamentally be described using Equa-

7

Chapter 2 Background

tion 2.5. The ray has an origin o and a direction vector d. t can be considered a virtual
time parameter, and p a position along the ray at different times. In these terms ray
tracing is the problem of finding the values t where the ray intersect objects.

p(t) = o + t · d (2.5)

This equation can for instance be solved for the equation of a perfect sphere, which is
commonly used to demonstrate simple ray tracers. Equation 2.5 can also be solved for
a triangle[14], making it possible to ray trace polygon models. A naive implementation
of this would do an intersection test on every triangle in the model for every pixel in the
screen, making the algorithm very slow. To optimize ray tracing, a space partitioning
data structure is often used. Instead of testing every primitive, one performs a search
of this data structure instead to find a set of primitives the ray could intersect. There-
fore, ray tracing is cited as having the advantage over rasterization in that performance
depends logarithmically, not linearly, on geometric complexity[25]. Although it should
be mentioned that level-of-detail (LOD) based techniques to achieve similar performance
scaling exists for rasterization[20].

2.7 Space Partitioning

Space partitioning is a method where a given space is divided into smaller non-overlapping
spaces. These sub-spaces can be arranged in a hierarchical tree, where each sub-space can
be divided into further partitions. This results in a nonuniform spatial subdivision[14].
Space partitioning data structures is often used in computer games to accelerate certain
operations. In rasterization, it can used to exclude regions of polygons that will not be
rendered (occlusing culling[7]), or to sort objects by depth, which is important for certain
visual effects[3]. For these purposes, the BSP/kd-tree structures have been found to be
better than octrees[55]. Although kd-trees have been used for ray tracing voxel data[52],
sparse voxel octrees seem particularly suited for this purpose because they can be traced
by a remarkably simple algorithm which will be presented in a later chapter.

2.8 Sparse Voxel Octree

An octree is a hierarchical space-partitioning data structure[41] where a space is divided
in eight equal sub-regions, or octants, and where each octant that contains objects is
further divided until the resulting tree reaches a desired height. A voxel is a volumetric
pixel, in other words, an axis-aligned rectangular prism[14]. A sparse voxel octree is a
data structure used to store a voxel model when most of the voxels are empty (the space
is “sparse”). In visualization of real-world objects, this would be the case, as all the voxels
exists on the surface of objects.

Often, when using a space-partitioning data structure, a list of objects is stored in the
leaf nodes. In a sparse voxel octree the leaf node is a voxel, either an empty space or a
solid cube. A solid voxel may have a color value. For an inner node, we can take the

8

2.9 Traversal of Voxel Octrees

3
2

7
6

1
0

5
4

Root

3
2

7
6

1
0

5
4

Figure 2.6: An octree with 2 levels and a single solid voxel

average color of all the child nodes, and attach it to this node. Doing so means the scene
represented by the tree can be rendered at varying resolutions, depending on how deep we
traverse. This is desirable because it is a waste to render objects that are far away with
high detail. Furthermore, we can even avoid loading into memory those parts of the tree
that represent high detail in far away parts of the scene, and stream them into memory
as the camera moves towards those areas[10].

2.9 Traversal of Voxel Octrees

A variety of algorithms to traverse space partitions have been described in the literature.
They have different complexities, and they can have very different performance on a given
computer architecture. A significant attribute of the algorithms are whether they use a
stack or not. A stack is useful for keeping track of the path taken as the tree is traversed,
but can be detrimental on certain architectures. The following are descriptions of a few
of the most common methods.

Restart The simplest methods are those based on the kd-restart algorithm. This is a
stack-less algorithm: A starting point, the ray origin, is chosen. The tree is traversed
until the voxel representing this point is found. If the voxel represented by the node is
empty, the point is moved to where the ray exits the voxel. The algorithm then restarts
from the new point. In other words, the algorithm traverses one octant at a time, and
has to descend the tree from the root node down every iteration. This is repeated until
a collision is found, or the ray exits the voxel represented by the root node.

Backtrack Backtracking algorithms (or push-down optimization [21]) are similar to kd-
restart. But it exploits the fact that we can keep track of the last node which must be
parent to all the nodes traversed by the ray. It is a simple optimization than can provide
a performance boost. But the parent node might be close to the root, which can make
the gain minimal in some iterations. It only eliminates traversal steps near the top of the
tree, which are the ones that are most shared by neighboring primary rays [21].

9

Chapter 2 Background

Full stack A tree traversal algorithm can use a stack to keep track of the nodes visited
as the algorithm descends the tree. The algorithms utilizing a stack is similar to the
restarting algorithms when descending the tree, but will push the traversal state to a
stack for each node. If an empty space is found, the stack is unwounded until it finds the
next node the ray intersects. The descent can continue as usual from that point. In this
thesis the algorithms using a stack as deep as the tree the algorithm was designed for is
referred to as full stack algorithms, to distinguish them from short stack algorithms.

Short stack Sometimes a full stack can be too expensive to implement. In GPGPU
implementations, the processing cores are often not optimized for the memory access
pattern required by the stack. An alternative is to keep the state for the last Ns nodes
traversed. If the stack is exhausted (a stack underflow), the algorithm can perform a
restart.

The restarting algorithms can be considered a special case of a short stack with Ns = 0.
Similarly, a full stack can be considered a special case with Ns = Nt where Nt is the
depth of the octree. Even if an algorithm is designed with a full stack, it could be wise
to support restarts, as it will allow the algorithm to support octrees deeper than it was
originally designed for.

Bottom up methods Revelles et al. [41] describes bottom-up methods as those start-
ing at the first terminal node intersected by the ray. The algorithm must then find
the neighboring nodes by some method. Some algorithms use neighbor pointers in the
octree[15], which are pointers stored in the leaf nodes, pointing to the neighboring nodes
at each face of its voxel. This enables the algorithm to jump between nodes without
ascending the tree. It can improve traversal speed, but at a significant memory cost, as
the additional pointers have to be stored in the octree.

2.10 Representation of Numbers

There are several ways to represent numbers. For performing calculations, the two most
popular schemes are probably fixed point and floating point representations. They both
have strength and weaknesses.

Fixed point numbers The fixed point format is named so because the decimal point is
fixed in one place. Equation 2.6 shows the number 5.625 represented in binary fixed-point,
with three bits for the integer and fractional part, or a total of six bits.

101.101

1 · 22 + 0 · 21 + 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3
(2.6)

The position of the decimal point must be chosen carefully. It will determine what range
of numbers can be represented, and how accurately they can be represented. Given N

10

2.10 Representation of Numbers

number of integer bits, and a two’s complement representation, the range of integers is
−2N−1 to 2N−1 − 1. Given M number of fractional bits, the smallest fraction that can
be represented is 2−M .

Fixed point numbers are relatively cheap to implement in hardware. Table 2.1 shows the
resource use of a 32 bit adder/subtract unit and a 32 bit multiplier unit, as estimated by
the Xilinx Core Generator tool[67, 65].

FPGA Operation LUTs FF Latency DSPs Max Clock Freq.

Virtex-5 Add/Subtract 70 91 3 0 410Mhz
Virtex-5 Add/Subtract 32 32 0 0 388Mhz
Spartan-6 Multiplier(35x35) 58 107 8 4 250Mhz

Table 2.1: Resource use of fixed point operations[67, 65]

Floating point numbers Floating point numbers are similar to scientific notation;
it represents numbers of the form m · 2e−b. A standard for floating point representation
called IEEE 754[1] is now used almost exclusively in digital computing platforms[24]. The
numbers are stored as a mantissa, m, and an exponent, e. The exponent is offset by a con-
stant bias, b. A sign bit, S, indicates whether the number is positive or negative. Floating
point numbers provide a much larger dynamic range than fixed point numbers given the
same amount of bits. That is, it is possible to represent both very large and very small
numbers in the same representational system. This has several benefits over fixed point
numbers, one being that the programmer or hardware designer does not have to worry as
much about overflowing the boundaries of the representation. Floating point numbers are
essential in modern GPUs, and a modern high-end GPU can perform over 1000 billion
floating point operations per second[60]. Table 2.2 shows the estimated resource use for
single precision (32 bit) floating point numbers[66]. Comparing to Table 2.1, we see that
floating point numbers are significantly more expensive to implement.

31 30 23 22 0
S Exponent Mantissa

Figure 2.7: Bit organization of single precision (32 bit) IEEE 754 floating point
representation[1].

FPGA Operation LUTs FF Latency DSPs Max Clock Freq.

Virtex-5 Add/Subtract 432 558 12 0 420Mhz
Virtex-5 Add/Subtract 388 76 2 0 110Mhz
Spartan-6 Multiplier 140 187 8 0 150Mhz

Table 2.2: Resource use of floating point operations[66]

11

Chapter 2 Background

2.11 Data Cache

Processors can perform operations on its internal registers significantly faster than it can
access its main memory. For modern systems the cost of accessing main memory can be
about 120 times as much as accessing a register [39]. It has long been known that using a
cache can improve the practical cost of accessing main memory. A cache is a fast memory
which can hold some of the content of the main memory, and which is inserted between
the processor and main memory, sometimes with multiple levels of increasingly faster and
smaller caches.

Registers

Level 1 Cache

Level 2 Cache

Main Memory

Bigger m
em

ory size

Faster access tim
e

Figure 2.8: A cache hierarchy

A cache exploits two features inherent in the way many algorithms access memory: tem-
poral locality and spatial locality. Temporal locality refers to cases where the algorithm
accesses the the same content several times in a small amount of time. Spatial locality is
where the algorithm accesses memory that is located nearby the last address it accessed.
When the processor attempts to access main memory, the cache will be checked to see
if it contains the relevant word. If it did (a cache hit) the cache will return the data. If
it did not (a cache miss) the cache will fetch the data from main memory, usually in a
block (or “line”) of several words at a time. The ratio of cache misses over the number of
accesses is called the miss rate, and can be used as a simple indicator of the performance
of the cache [17].

The cache can be considered to have a set of slots in which the blocks can be inserted.
Each slot will have an associated tag which indicates the address of the block which is
stored there. There are different ways of determining the position of a block in the cache
[39]:

Direct mapped : Each block is mapped to a single slot. This implies that when a new
block is fetched, the old block occupying its slot must be evicted.

N-way set associative : Each block is mapped to one of N slots. When fetching a
new block a replacement policy determines which of the old slots are chosen. A common
policy is least recently used (LRU). The policy tracks the usage of blocks and the block
that was used least recently will be evicted in favor of the new one.

12

2.12 FPGA

Fully associative : A block can be inserted into any slot. This implies that we must
compare the tags of all the slots in the cache to determine if a word is present or not.

These approaches have various pros and cons. A direct mapped cache is cheap to im-
plement, but will have a lower hit rate. An N-way set associative cache requires more
logic, and higher N implies a higher cost. The cost is also dependent on the replacement
policy. LRU is cheap to implement in a 2-way set associative cache, requiring only a
single bit to track which block was used last. For 4 and 8-way set associative cache, using
a LRU policy can become prohibitively expensive and some implementations opt for a
pseudo-LRU policy [53, 13].

2.12 FPGA

A field-programmable gate array (FPGA) is a type of integrated circuit which can be
programmed (or configured) to perform the function of almost any kind of digital circuit
or system[28]. The FPGAs is an array of logic blocks, memory and a routing fabric which
connects these together. The logic blocks, or look-up tables (LUTs), can be configured
to perform arbitrary combinatorial functions on a number of inputs. FPGAs can also
contain some specialized blocks. The FPGA used in this thesis contains for example digital
signal processing and memory controller blocks[68]. These specialized blocks implement
commonly used functions and using these is more efficient than implementing the same
functions in the general logic blocks.

Although FPGAs are use more area, consume more power and are slower than application-
specific integrated circuits (ASICs), they are still very useful due to significantly smaller
investment costs in terms of both time and money[28]. It is therefore beneficial for projects
with low volume productions or short development time, or for prototyping and testing.

2.13 ORPSoC

OpenRISC Reference Platform SoC (“ORPSoC”) is a project aimed at creating an open-
source platform for OpenRISC development. The current version of ORPSoC uses the
OpenRISC processor OR1200 and integrates it in a system with several other modules and
interfaces. The system includes modules for JTAG, Ethernet MAC, on-chip RAM/ROM,
SPI, UART, I2C and USB. Every module in the system is connected through the Wish-
bone bus. There are derivate configurations available for a few different FPGA boards,
both based on Actel and on Xilinx.

Wishbone[35] is an open-source hardware bus standard, and specifies the interface between
components in an ASIC or FPGA design. It is an effort by the OpenCores community
to develop a common interface between open-source hardware components, and it’s used
by many of the modules available on the OpenCores website. The standard only specifies
the digital signals and their protocol. Analog effects or bus topology is intentionally left
ambiguous.

Data is transferred during an interval called a bus cycle. During a bus cycle the master will

13

Chapter 2 Background

request a read or write operation on a slave and the relevant data will be transferred. Of
particular interest in this thesis is burst cycles, which is an optional feature of Wishbone.
In a 32-bit Wishbone bus, a single 32-bit word is the most that can be transferred in a
single clock cycle. By using burst cycles the master can negotiate the transfer of multiple
consecutive words during a single bus cycle. This provides two benefits: it avoids having
to set up a new bus cycle for each word and it allows the slave to know up front the
next address that should be transferred. This can potentially allow it to service the
following requests with less delay. When negotiating a burst cycle, the master provides
the first address that should be transferred and indicates how the next addresses should
be calculated. There are four ways the addresses can be incremented: linear, wrap-4,
wrap-8 and wrap-16. With the linear mode the address is incremented linearly for each
transfer, while with wrap-4, wrap-8 and wrap-16, the address is looped around a 4, 8 or
16 word block boundary. This feature is useful for reading cache lines for the cache of a
processor. The word that the processor requested can be fetched first and sent directly to
the processor, allowing it to continue executing, while the rest of the words in the cache
line can be transferred subsequently.

Wishbone B4

Some signals may or may not be present on a specific interface. That’s because many of
the signals are optional.

Two symbols are also presented in relation to the [CLK_I] signal. These include the
positive going clock edge transition point and the clock edge number. In most diagrams a
vertical guideline is shown at the positive-going edge of each [CLK_I] transition. This
represents the theoretical transition point at which flip-flops register their input value, and
transfer it to their output. The exact level of this transition point varies depending upon
the technology used in the target device. The clock edge number is included as a
convenience so that specific points in the timing diagram may be referenced in the text.
The clock edge number in one timing diagram is not related to the clock edge number in
another diagram.

Gaps in the timing waveforms may be shown. These indicate either: (a) a wait state or (b)
a portion of the waveform that is not of interest in the context of the diagram. When the
gap indicates a wait state, the symbols ‘-WSM-‘ or ‘-WSS-‘ are placed in the gap along the
[CLK_I] waveform. These correspond to wait states inserted by the MASTER or SLAVE
interfaces respectively. They also indicate that the signals (with the exception of clock
transitions and hatched regions) will remain in a steady state during that time.

Undefined signal levels are indicated by a hatched region. This region indicates that the
signal level is undefined, and may take any state. It also indicates that the current state is
undefined, and should not be relied upon. When signal arrays are used, stable and
predictable signal levels are indicated with the word ‘VALID’.

 1.5 Signal Naming Conventions

All signal names used in this specification have the ‘_I’ or ‘_O’ characters attached to them.
These indicate if the signals are an input (to the core) or an output (from the core). For
example, [ACK_I] is an input and [ACK_O] is an output. This convention is used to clearly
identify the direction of each signal.

Signal arrays are identified by a name followed by a set of parenthesis. For example,

Back to TOC Copyright © 2010 OpenCores Page 14 / 128

Illustration 1-2: Standard connection
for timing diagrams.

C L K _ I

A D R _ O ()

D A T _ I ()

D A T _ O ()

W E _ O

S E L _ O ()

S T B _ O

A C K _ I

C L K _ I

A D R _ I ()

D A T _ I ()

D A T _ O ()

W E _ I

S E L _ I ()

S T B _ I

A C K _ O

WI
SH

BO
NE

 M
AS

TE
R

WI
SH

BO
NE

 S
LA

VE

C Y C _ O C Y C _ I

T A G N _ O T A G N _ I

R S T _ I R S T _ I

T A G N _ I T A G N _ O
U S E R

D E F I N E D

S Y S C O N

Figure 2.9: Wishbone signal lines[35]

OpenRISC is an effort to develop a series of general purpose, open-source RISC CPU
designs. There is currently one OpenRISC architecture, called OpenRISC 1000. The first
implementation is OpenRISC 1200 (“OR1200”). The OR1200 is a 32-bit scalar RISC
with Harvard micro-architecture (separate data and instruction interface), 5 stage integer
pipeline, IEEE 754 compliant single precision FPU, virtual memory support (MMU) and
basic DSP capabilities[36]. It includes an 8KB data cache and an 8KB instruction cache
by default. The data and instruction interfaces is implemented as a Wishbone interface.

2.14 Digilent Atlys

Atlys is an FPGA prototype board made by Digilent. It uses a Spartan-6 XC6SLX45
FPGA chip. The FPGA chip has 43,661 logic cells (27,288 6-input LUTs), 54,576 flip-

14

2.14 Digilent Atlys

flops and 116 18Kbit Block RAM blocks (total 2,088Kbit)[68]. The Atlys prototype board
includes 128Mbyte DDR2 RAM, an Ethernet port, two HDMI inputs, two HDMI outputs,
an AC-97 codec, a 16Mbyte SPI Flash, USB Keyboard/Mouse input, 8 LEDs, 8 switches,
5 push buttons, a 100MHz clock and two expansion ports[11]. The FPGA is programmed
through a Cypress CY7C68013A-56 USB microcontroller. This microcontroller is has
communication lines connected to the FPGA which can be used to communicate with the
configured FPGA from a personal computer.

15

Chapter 2 Background

16

Chapter 3

Previous Work

No hardware implementations of ray tracing of SVOs was found in the literature. The
work this project builds on can be divided in four categories: implementations of ray
tracing of SVOs in software, implementations in GPUs, implementations of other forms
of ray tracing in hardware and work related to data structures for SVOs.

3.1 Software Implementations

These works are all in software on CPUs, which is typical for papers from the 90s, as
GPGPUs were not available yet. The first descriptions found of octree traversal was as a
volume rendering technique by Levoy [31]. It illustrates that introducing the hierarchical
octree structure improves voxel traversal speed. The next works are the SMART algo-
rithm by Spackman and Willis [49] and an algorithm by Stolte and Caubet [51]. They are
both based on a 3D DDA (Digital Differential Analyzer) as described by Sung [54], which
works by stepping through the space by adding a delta value to a vector. Revelles et al.
[41] presents an algorithm based on keeping track ray parameters (t from Equation 2.5)
for the voxels during traversal. It appears to be the first work that constructs an algo-
rithm which is specifically optimized for traversing octrees. The algorithm is compared
to three previous bottom-up algorithms, and one top-down algorithm, and it was found
to have improved performance over existing algorithms. A paper by Whang et al. [58]
was also reviewed. It presents a variation of octrees where the middle planes could be
shifted. This made it possible to balance the tree depending on the content of the scene.
However, it was not intended for rendering voxels, as the resulting voxels would not be
equilateral.

3.2 GPU Implementations

The arrival of GPGPUs allowed new rendering techniques to be implemented. Gobbetti
et al. [15] implemented one of the first techniques for ray casting octrees on the GPU.

17

Chapter 3 Previous Work

Their algorithm is based on an extension of an efficient ray traversal algorithm for kd-
trees. Crassin et al. [10] presents a full ray tracing architecture for GPUs, which is capable
of streaming parts of the octree to the GPU on demand. Their work is similar to that
of Gobbetti et al. [15], but provides better quality and performance. Their algorithm is
based on kd-restart, and avoids the use of a stack which is potentially inefficient on a
GPU. The solution is geared towards rendering large volumetric data sets, e.g., medical
3D images.

Laine and Karras [29] created an implementation that utilizes a stack, and the algorithm
appears nearly identical to that of Revelles et al. [41]. It is not clear why they chose to use
a stack, but considering it was research by NVIDIA, who makes GPGPUs, it is probably
an informed choice. Another difference from Crassin et al. [10] is that the implementation
is made more suitable for rendering surfaces than volumetric data, which they claim is
more relevant for most real-world content.

A master thesis by Römisch [42] presented three implementations: one using a bottom-up
method utilizing neighbor pointers, the second using a kd-restart based method, and the
third using a short stack. Neighbor pointers was found to be fastest, but at the cost
of some flexibility. Between kd-restart and short stack, kd-restart was fastest. It’s hy-
pothesized that it’s because of the limited performance of GPU processors when complex
control-flow statements are used.

Römisch [42] and Laine and Karras [29] both explored short stacks on GPGPUs but
came to differing conclusions. Römisch and Møller-Nielsen found that using a stack, even
a short one, resulted in worse performance. While Laine found that a full stack was
better than a short stack. This could possibly be due to different GPGPU architectures,
or that the specifics of the implementations are different. In a hardware implementation,
this issue is also particularly interesting, as the stack will require registers that consume
area. This area could be used for other logic that could improve performance. Another
important consideration is memory bandwidth. A short stack or restart algorithm will
require more node lookups, causing more traffic on the data bus.

3.3 Ray Tracing in Hardware

The only hardware designed for ray tracing found in the literature are two prototypes by
Woop and Schmittler from the computer graphics laboratory at Saarland University[43,
64]. They render polygon data, and use a kd-tree as an space partition structure to
accelerate ray tracing. The first prototype is a fixed function ray tracer called SaarCOR.
The second is a programmable ray processing unit (RPU), which allows for higher quality
in the rendered image at the cost of area or performance. Presumably the kd-tree traversal
unit described in these papers bears some similarity to the octree traversal unit in this
thesis. Unfortunately the papers do not go into detail regarding the traversal unit, except
to mention that it uses a stack and requires 4 adders, 4 dividers, 13 comparators and
44.5KB of internal memory.

18

3.4 Data Structures

3.4 Data Structures

There are many ways to encode an octree. The main considerations is to compress the
size of the encoded octree as much as possible without making decoding of the structure
too expensive. A naive implementation would have 8 child pointers for each inner node,
which would either point to another innor node, or leaf data. One optimization to this
scheme is to store data about child nodes within the inner nodes as a set of flags[6, 29].
Each node can be either an empty octant, an inner node, or a solid voxel. Using 2 bits
to represent these three states for each child results in 16 bits of data. Instead of having
a pointer to each child node, a single pointer can point to an array of node data. The
size of this pointer depends on the potential size of the octree file. Laine and Karras [29]
showed that if we use a relative pointer and organize the data in a depth-first order, 15
bits is enough for most child pointers. For the few cases where the pointer falls outside
the 15-bit range, an additional bit indicates that the pointer is a far pointer, which points
to a 32-bit pointer instead. The contour pointer and page header/info section shown in
Figure 3.1 is used to refine the shape of the voxels and attach additional data to them.

Octree-based geometry compression is introduced by Botsch et al. [8] and Peng et al. [38].
Schnabel and Klein [45] builds on this work and presents a method for compression of
point-sampled models. The general idea is that it is possible to predict the configuration
of a child node as you descend the tree, and that this can be exploited by storing this
configuration using variable-length encoding. These techniques obviously add complexity
to the encoding and decoding of the octree, but the size of the encoded octree is smaller.

2 Previous Work

There is a vast body of literature on visualizing volumetric struc-
tures, so we will focus on papers that are most directly related to
our work. We specifically omit methods that are restricted to height
fields (see e.g. [Dick et al. 2009] for a recent contribution) or are
based on a combination of rasterization and per-pixel ray casting
in shaders (see [Szirmay-Kalos and Umenhoffer 2008] for an ex-
cellent survey) because these are not capable of performing generic
ray casts.

Amanatides and Woo [1987] were the first to present the regular
grid traversal algorithm that is the basis of most derivative work,
including ours. The idea is to compute the t values of the next
subdivision planes along each axis and choose the smallest one in
every iteration to determine the direction for the next step.

Knoll et al. [2006] present an algorithm for ray tracing octrees con-
taining volumetric data that needs to be visualized using different
isosurface levels. Their method is conceptually similar to kd-tree
traversal, and it proceeds in a hierarchical fashion by first deter-
mining the order of the child nodes and then processing them re-
cursively. The algorithm is not as such well suited for GPU im-
plementation. An extension to coherent ray bundles is given by
Knoll et al. [2009].

Crassin et al. [2009] present a GPU-based voxel rendering algo-
rithm that combines two traversal methods. The first stage casts
rays against a regular octree using kd-restart algorithm to avoid the
need for a stack. The leaves of this octree are bricks, i.e. 3D grids,
that contain the actual voxel data. When a brick is found, its con-
tents are sampled along the ray. Bricks typically contain 163 or 323

voxels, yielding a lot of wasted memory except for truly volumetric
data. On the other hand, mipmapped 3D texture lookups supported
by hardware make the brick sampling very efficient, and the result is
automatically antialiased. An interesting feature of the algorithm is
the data management between CPU and GPU. The renderer detects
when data is missing in GPU memory and signals this to the CPU,
which then streams the needed data in. This way, only a subset of
nodes and bricks needs to reside in GPU memory at any time.

Ju et al. [2002] augment an octree structure with auxiliary data to
improve fine geometric details. While the Hermite data utilized by
their representation is flexible in its ability to support dynamic CSG
operations, a separate triangulation pass is required to render the
resulting surface. Our contour-based representation, on the other
hand, aims for efficient rendering and compact storage given the
assumption of static geometry.

3 Voxel Data Structure

We store voxel data in GPU memory using a sparse octree data
structure where each node represents a voxel, i.e. an axis aligned
cube that is intersected by surface geometry. Voxels may be further
subdivided into smaller ones, in which case both the parent voxel
and its children are included in the octree. The data structure has
been designed to minimize the memory footprint while supporting
efficient ray casts. Sometimes both can be achieved at the same
time, because more compact data layout also reduces the memory
bandwidth requirements.

To this end, we adopt a scheme where most of the data associated
with a voxel is stored in conjunction with its parent. This removes
the need to allocate storage for individual leaf voxels and makes
compression of shading attributes more convenient.

On the highest level, our octree data is divided into blocks. Blocks
are contiguous areas of memory that store the octree topology along
with voxel geometry and shading attributes for localized portions

Figure 2: 64-bit child descriptor stored for each non-leaf voxel.

Figure 3: Layout of the child descriptor array. Left: Example voxel
hierarchy. Right: Child descriptor array containing one descriptor
for each non-leaf voxel in the example hierarchy.

of the octree. All memory references within a block are relative,
making it easy to reorganize blocks in memory. This facilitates
dynamic memory management necessary for out-of-core rendering.

Each block consists of an array of child descriptors, an info section,
contour data, and a variable number of attachments. The child de-
scriptors (Section 3.1) and contour data (Section 3.2) encode the
topology of the octree and the geometrical shape of voxels, re-
spectively. Attachments (Section 3.5) are separate arrays that store
a number of shading attributes for each voxel. The info section
encompasses a directory of the available attachments as well as a
pointer to the first child descriptor.

We access child descriptors and contour data during ray casts. Once
a ray hits surface geometry, we execute a shader that looks up the
attachments contained by the particular block and decodes the shad-
ing attributes. For the datasets presented in this paper, we use a sim-
ple Phong shading model with a unique color and a normal vector
associated with each voxel.

3.1 Child Descriptors

We encode the topology of the octree using 64-bit child descrip-
tors, each corresponding to a single non-leaf voxel. Leaf voxels do
not require a descriptor of their own, as they are described by their
parents. As illustrated in Figure 2, the child descriptors are divided
into two 32-bit parts. The first part describes the set of child voxels,
while the second part is related to contours (Section 3.2).

Each voxel is subdivided spatially into 8 child slots of equal size.
The child descriptor contains two bitmasks, each storing one bit per
child slot. valid mask tells whether each of the child slots actually
contains a voxel, while leaf mask further specifies whether each of
these voxels is a leaf. Based on the bitmasks, the status of a child
slot can be interpreted as follows:

✏ Neither bit is set: the slot is not intersected by a surface.
✏ The bit in valid mask is set: the slot contains a non-leaf voxel.
✏ Both bits are set: the slot contains a leaf voxel.

If the voxel contains any non-leaf children, we store an unsigned
15-bit child pointer in order to reference their data. These children,

2 Previous Work

There is a vast body of literature on visualizing volumetric struc-
tures, so we will focus on papers that are most directly related to
our work. We specifically omit methods that are restricted to height
fields (see e.g. [Dick et al. 2009] for a recent contribution) or are
based on a combination of rasterization and per-pixel ray casting
in shaders (see [Szirmay-Kalos and Umenhoffer 2008] for an ex-
cellent survey) because these are not capable of performing generic
ray casts.

Amanatides and Woo [1987] were the first to present the regular
grid traversal algorithm that is the basis of most derivative work,
including ours. The idea is to compute the t values of the next
subdivision planes along each axis and choose the smallest one in
every iteration to determine the direction for the next step.

Knoll et al. [2006] present an algorithm for ray tracing octrees con-
taining volumetric data that needs to be visualized using different
isosurface levels. Their method is conceptually similar to kd-tree
traversal, and it proceeds in a hierarchical fashion by first deter-
mining the order of the child nodes and then processing them re-
cursively. The algorithm is not as such well suited for GPU im-
plementation. An extension to coherent ray bundles is given by
Knoll et al. [2009].

Crassin et al. [2009] present a GPU-based voxel rendering algo-
rithm that combines two traversal methods. The first stage casts
rays against a regular octree using kd-restart algorithm to avoid the
need for a stack. The leaves of this octree are bricks, i.e. 3D grids,
that contain the actual voxel data. When a brick is found, its con-
tents are sampled along the ray. Bricks typically contain 163 or 323

voxels, yielding a lot of wasted memory except for truly volumetric
data. On the other hand, mipmapped 3D texture lookups supported
by hardware make the brick sampling very efficient, and the result is
automatically antialiased. An interesting feature of the algorithm is
the data management between CPU and GPU. The renderer detects
when data is missing in GPU memory and signals this to the CPU,
which then streams the needed data in. This way, only a subset of
nodes and bricks needs to reside in GPU memory at any time.

Ju et al. [2002] augment an octree structure with auxiliary data to
improve fine geometric details. While the Hermite data utilized by
their representation is flexible in its ability to support dynamic CSG
operations, a separate triangulation pass is required to render the
resulting surface. Our contour-based representation, on the other
hand, aims for efficient rendering and compact storage given the
assumption of static geometry.

3 Voxel Data Structure

We store voxel data in GPU memory using a sparse octree data
structure where each node represents a voxel, i.e. an axis aligned
cube that is intersected by surface geometry. Voxels may be further
subdivided into smaller ones, in which case both the parent voxel
and its children are included in the octree. The data structure has
been designed to minimize the memory footprint while supporting
efficient ray casts. Sometimes both can be achieved at the same
time, because more compact data layout also reduces the memory
bandwidth requirements.

To this end, we adopt a scheme where most of the data associated
with a voxel is stored in conjunction with its parent. This removes
the need to allocate storage for individual leaf voxels and makes
compression of shading attributes more convenient.

On the highest level, our octree data is divided into blocks. Blocks
are contiguous areas of memory that store the octree topology along
with voxel geometry and shading attributes for localized portions

Figure 2: 64-bit child descriptor stored for each non-leaf voxel.

Figure 3: Layout of the child descriptor array. Left: Example voxel
hierarchy. Right: Child descriptor array containing one descriptor
for each non-leaf voxel in the example hierarchy.

of the octree. All memory references within a block are relative,
making it easy to reorganize blocks in memory. This facilitates
dynamic memory management necessary for out-of-core rendering.

Each block consists of an array of child descriptors, an info section,
contour data, and a variable number of attachments. The child de-
scriptors (Section 3.1) and contour data (Section 3.2) encode the
topology of the octree and the geometrical shape of voxels, re-
spectively. Attachments (Section 3.5) are separate arrays that store
a number of shading attributes for each voxel. The info section
encompasses a directory of the available attachments as well as a
pointer to the first child descriptor.

We access child descriptors and contour data during ray casts. Once
a ray hits surface geometry, we execute a shader that looks up the
attachments contained by the particular block and decodes the shad-
ing attributes. For the datasets presented in this paper, we use a sim-
ple Phong shading model with a unique color and a normal vector
associated with each voxel.

3.1 Child Descriptors

We encode the topology of the octree using 64-bit child descrip-
tors, each corresponding to a single non-leaf voxel. Leaf voxels do
not require a descriptor of their own, as they are described by their
parents. As illustrated in Figure 2, the child descriptors are divided
into two 32-bit parts. The first part describes the set of child voxels,
while the second part is related to contours (Section 3.2).

Each voxel is subdivided spatially into 8 child slots of equal size.
The child descriptor contains two bitmasks, each storing one bit per
child slot. valid mask tells whether each of the child slots actually
contains a voxel, while leaf mask further specifies whether each of
these voxels is a leaf. Based on the bitmasks, the status of a child
slot can be interpreted as follows:

✏ Neither bit is set: the slot is not intersected by a surface.
✏ The bit in valid mask is set: the slot contains a non-leaf voxel.
✏ Both bits are set: the slot contains a leaf voxel.

If the voxel contains any non-leaf children, we store an unsigned
15-bit child pointer in order to reference their data. These children,

Figure 3.1: Data structure organization from Laine and Karras [29].

19

Chapter 3 Previous Work

20

Chapter 4

An Algorithm for SVO
Traversal

Out of the various algorithms reviewed, the one described by Revelles et al. [41] appeared
to be most suited for this thesis. It was written with the intention of CPU implementation,
and it is a recursive top-down algorithm using a stack. However, it can easily be modified
to support restarting and short stacks. The algorithm is thoroughly described, which
makes it easy to implement. Furthermore, the operations performed in the kernel of
the algorithm is well suited for implementation using fixed point numbers; additions,
comparisons and simple bit manipulation. And as a very similar algorithm was used
by Laine and Karras [29], it appears the algorithm is still competitive. However, the
addition of contour data that they presented was not used in this thesis, as it would
add too much complexity to the hardware implementation. The algorithm described
by Gobbetti et al. [15], uses several multiplications which would increase the cost of
a hardware implementation, and it is uncertain if the algorithm is faster. Bottom-up
methods were also discarded. Although they were found to be a little faster than restart
based and short stack algorithms in one GPGPU implementation[42], the stack in this
implementation made the algorithm slower due to the architecture of the GPGPU. It is
expected that a stack will have a large performance benefit in a hardware implementation,
without the drawbacks of larger memory consumption and less flexibility that the bottom-
up method had.

This chapter describes the algorithm presented by Revelles et al. [41], with some minor
modifications and differences in notation. Finally, an illustration has been created that
demonstrates in detail how the algorithm works.

4.1 Overview

The algorithm takes each face of the octants in the tree, and extends them to planes. It
then finds the t-value at which the ray intersects these planes, as per Equation 2.5. First

21

Chapter 4 An Algorithm for SVO Traversal

it calculates these values for the root voxel. The ray could in some applications start
outside the root, meaning the actual octree we want to traverse might just be part of the
scene being rendered. We must therefore check that the ray hits the root voxel at all. If
it does, the algorithm enters the recursive part. It takes the t-values of the voxel, and
uses these to determine which child node the ray enters. If the child node is not a leaf, it
calculates the t-values for the child, and recurses on it. It moves through each child the
ray intersects, until it exits the current voxel, at which point the function returns.

For now we assume that the ray traverses in a positive direction along each axis. I.e., the
components of d are all positive. According to Revelles et al. [41] this assumption makes
it more efficient to describe and implement the algorithm, while it is easy to modify it to
support negative directions.

4.2 Parameters

t0y

tenter / t0x

tenter / t1y

t1x

tmx

tmy

x0-plane x1-planemiddle x-plane

x

y

0

2

4

6

Figure 4.1: Parameters in the octree traversal algorithm[41].

The octree consists of axis-aligned cubes. Each face of the cube is extended to a plane.
Unless the ray is running parallell to this plane, there will be a time, t, at which the ray
intersects the plane. The entry planes are the ones where the ray potentially enters the
octant. The exit planes are the ones where the ray exits the octant. The fundamental
parameters of the algorithm are the t-values for the three entry planes, t0 or t0x, t0y, t0z,
and for the three exit planes t1 or t1x, t1y, t1z. At every step in the algorithm, it must
keep track of t0 and t1 for the current octant.

Assuming that the components of the direction vector are positive, the t-values can be
found using Equation 4.1, where x0 and x1 are the x-coordinate of the two faces of the

22

4.3 Child Nodes

octant that are normal to the x-axis.

t0x = (min(x0, x1)− ox)/dx

t1x = (max(x0, x1)− ox)/dx
(4.1)

The ray will not enter an octant unless it has crossed all the entry planes. Consequently,
the t at which the ray enters the octant is the t of the last entry plane it crosses. Since t
is strictly increasing as we travel along the ray, the t at which we enter the octant, tenter,
is the largest of t-values of the three entry planes. By the same reasoning, the time at
which we exit the octant is the smallest of the t-values of the three exit planes.

tenter = max(t0x, t0y, t0z)

texit = min(t1x, t1y, t1z)
(4.2)

4.3 Child Nodes

Assuming that the ray intersects an octant, and given the t-values for that octant, the
t-values for the child nodes can be easily derived. As each child nodes shares either the
entry plane or exit plane for each side, one set of t-values can be copied from the parent
node. The other set can be found by finding the t-values for the middle planes of the
node (tm or tmx, tmy, tmz):

tm = (t0 + t1)/2 (4.3)

The t-values for the child node can now be found. Equation 4.4 shows an example for the
x-values, and can be extended to the other components.

t0x-child = t0x

t1x-child = tmx

}
If child-node is on the low side of the middle plane (4.4a)

t0x-child = tmx

t1x-child = t1x

}
If child-node is on the high side of the middle plane (4.4b)

For instance, child 0 in Figure 4.1 is on the left (lower) side of the middle x-plane, and
thus its t0x and t1x is the parents t0x and tmx. Determining which side of the middle
plane a given child node is on is made easy by carefully selecting the indices of the child
nodes. There are 8 child nodes, which can be represented by a 3-bit integer. The child
nodes are numbered so that each of the 3 bits determine which side of the middle plane
the nodes are on. Bit 2, 1 and 0 represent respectively X, Y and Z. I.e., if bit 2 is set,
the child node is on the lower end of the X-axis. This results in the numbering shown in
Figure 4.2. The hidden node is node #1.

23

Chapter 4 An Algorithm for SVO Traversal

ZY

X
4

6
7

5
0

6

4

2

7
6

3
2

Figure 1: Labeled octree (the hidden node has
label 1).

the parent node. If we substitute the following recur-
rence relations

(6)

into (4) we obtain

In this case, and are components of the fo-
llowing two vectors:

(7)

The last result also holds for . Thus, we have
shown how these values can be incrementally com-
puted for all child nodes of the current node. The
computation of these values for the root node is car-
ried out by using (4).

Knowing the definitions of a node and a ray, we easily
deduce that an intersection between a ray and a node
occurs if at least one real value exists such that:

(8)

Where a intersection occurs, an interval o values of
satisfies the above inequalities. This interval is closed
at the left and open on the right for half lines with a
positive or zero valued direction vector.

By taking all these results into account, we can now
rewrite the condition 8 by using the parameters of the
ray. For instance, taking condition
from (8), we can substitute by ,
then, as is an increasing function, we obtain

. By using the other inequalities in (8) the
same way, we can state that an intersection between
and occurs if and only if exists such that

(9)

This equation can be further simplified by defining
and for a node and a ray as

If a exists obeying (9), then . The
inverse implication also holds, thus equation (9) is
equivalent to

(10)

When above condition is true, all values of
in the interval are mapped to points

which belong to the node. If the condi-
tion is false, no intersection occurs. It is now possible
to outline the proposed parametric algorithm used to
traverse a quadtree. First, we check condition (10) for
the root node. If this condition is not satisfied then the
ray does not intersect with the octree. But where it is,
the four parameters and need to be
computed for the root node by using (4). The main re-
cursive procedure is subsequently executed accepting
a node as input parameter, and its corresponding four
parameter values. In cases where the node is termi-
nal, this node is added to the resulting pierced nodes
list. If it is non-terminal, those child nodes which are
pierced by the ray are checked using (10) for each of
them. A recursive call to the procedure is carried out
for each of them.

q0 q1

q3q2

tym
tx0

ty0

xmt

q0 q1

q3q2
tym
tx0

txm

ty0

Figure 2: Sub-nodes crossed when
(2D case).

q0 q1

q3q2

t
t
x0
y0

txm
tym

q0 q1

q3q2

t
t

t

xm
y0

ym

tx0

Figure 3: Sub-nodes crossed when
(2D case).

Note that, for any non-terminal node ,
, and . Other child nodes

behave in a similar way. Thus, computation of the en-
try and exit parameters for each child node of is re-
dundant, because some of them can be taken directly
from the parent node, and the others are shared by
several child nodes. In fact, there are just six different

Figure 4.2: Indexing of child nodes[41].

Finding child indices When processing a node, the child-nodes have to be traversed
in the right order. The first child node the ray enters have to be found, and if a collision
is not found there, there are one or two more child nodes the ray can intersect. The first
child node is determined by looking at which side of the various middle planes the ray
enters. This is best illustrated by Algorithm 1.

Algorithm 1 FirstIndex(tenter, tm)

1: idx⇐ 0b000 (3-bit integer)
2: if tenter > tmx then
3: idx[2]⇐ 1
4: end if
5: if tenter > tmy then
6: idx[1]⇐ 1
7: end if
8: if tenter > tmz then
9: idx[0]⇐ 1

10: end if
11: return idx

After traversing a child node, finding the index of the next child node is a function of the
previous index and the exit plane of the child. This function is illustrated in Algorithm 2.
It states that if the ray exits the child through the YZ-plane, which is equivalent to t1x
being the smallest of t1, then the ray should step to the next child along the x-axis. If the
child is already on the high side of the x-axis, it means the ray exited the parent voxel.

Algorithm 1 and Algorithm 2 has here been transformed from the tabular form found
in Revelles et al. [41] to a functional form closer to the form which we will use in the
hardware implementation in later chapters.

24

4.4 Negative Directions and Parallel Rays

Algorithm 2 NextIndex(idxprev, texit-child)

1: idx⇐ idxprev (3-bit integer)
2: exit-node⇐ false
3: if t1x-child = texit-child then
4: if idx[2] = 1 then
5: exit-node⇐ true
6: end if
7: idx[2]⇐ 1
8: else if t1y-child = texit-child then
9: if idx[1] = 1 then

10: exit-node⇐ true
11: end if
12: idx[1]⇐ 1
13: else
14: if idx[0] = 1 then
15: exit-node⇐ true
16: end if
17: idx[0]⇐ 1
18: end if
19: return idx, exit-node

4.4 Negative Directions and Parallel Rays

Negative Directions It was mentioned that we have assumed that the components of
the direction vector are all positive. This is obviously not the case for real rays (i.e., a ray
can point in any direction in the space), and so the algorithm must be modified slightly
to handle this case. If one of the components of the direction vector is negative, the ray
is mirrored about the corresponding middle plane of the octree. Furthermore, a bit mask
is set to recall this fact, labeled dir-mask in Algorithm 3. The bit mask is only used
when we retrieve a child node. The corresponding bits in the child node index is then
flipped (implemented using xor in Algorithm 3), and the the algorithm will consequently
descend into the correct child node. Why this works is explained more thoroughly by
Revelles et al. [41].

Parallel Rays If a ray runs parallel to an axis, t0 and t1 can not be found (or will be
infinite). There are two ways to deal with this. Revelles et al. [41] suggests setting t0/t1
to +∞ or −∞ depending on conditions, and taking this into account in all calculations
that involve the parameters. A different solution is to check if the components of the ray
direction vector d is zero, and if so, set them to a tiny non-zero value[30]. This is slightly
less accurate, but makes the algorithm easier to implement.

4.5 The Tracing Kernel

25

Chapter 4 An Algorithm for SVO Traversal

Algorithm 3 TraceKernel(node, t0, t1)

1: if t1x < 0 or t1y < 0 or t1z < 0 then
2: return false
3: end if
4: tenter ⇐ max(t0x, t0y, t0z)
5: if ChildIsLeaf(node) then
6: ProcessLeaf(node, tenter)
7: return true
8: end if
9: tm ⇐ (t0 + t1)/2

10: child-idx ⇐ FirstIndex(tenter, t0)
11: repeat
12: child-node⇐ GetChildNode(node, child-idx⊕ dir-mask)
13: t0-child, t1-child ⇐ SelectChildT(child-idx, t0, tm, t1)
14: if IsValid(child-node) then
15: found-leaf ⇐ TraceKernel(child-node, t0-child, t1-child)
16: if found-leaf then
17: return true
18: end if
19: child-node, exit-node ⇐ NextIndex(child-idx, t1-child)
20: end if
21: until exit-node
22: return false

The kernel of the tracing algorithm can now be defined, and is listed in Algorithm 3.
It is formulated as a recursive function for clarity. The kernel can be called with the
parameters calculated for the root node. It will traverse the octree until a leaf node is
found, or the ray exits the octree. The first lines will skip all nodes it encounters before
the start of the ray (t = 0). It then checks if the current node is a leaf node. If not, it finds
the first child node index, and starts to iterate over each child node the ray intersects.
If a valid node is found it recurses on that node, if not it calculates the next child index
and iterates untill the ray exits the current node.

To illustrate how the algorithm works in practice, Figure 4.3 shows the algorithm running
on a small three-level octree with two solid voxels. The ray will pass close to the first
voxel and hit the second one.

Initialization The t-values are calculated for the root, and we check if the ray hits the
octree. Since it does, the trace kernel is called for the root node.

Root node The first child index is found (node 0). The child is empty. The next child
index is found (node 2). The child is an inner node. The algorithm recurses on node 2.
1©

26

4.5 The Tracing Kernel

0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

62

0 4

62

0 4

0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

texit / tstart

62

0 4

62

0 4

62
0 4

0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 64

First child index
Next child index

Enter child node / push
Exit child node / pop

Root node

Node 2

Node 2-4

Node 6

Node 6-2

1

2

3

4

5

6

Figure 4.3: Illustration of the octree tracing algorithm.

Node 2 The first child index is found (node 4). The child is an inner node. The
algorithm recurses on node 2-4. 2©

Node 2-4 The first child index is found (node 0). The child is empty. The next child
index is found (node 4). The child is empty. The next child index is found (node 6). The
child is empty. The ray exits the current node and the algorithm goes up a level. If we
used a restarting algorithm, we would use texit-child to set a parameter tstart, and restart
from the root. Then, when evaluating a node, we would pass it if tenter < tstart. 3©

Node 2 We re-enter node 2 from child index 4. The ray exits the current node and the
algorithm goes up a level. 4©

27

Chapter 4 An Algorithm for SVO Traversal

Root node We re-enter the root node from child index 2. The next child index is found
(node 6). The child is an inner node. The algorithm recurses on node 6. 5©

Node 6 The first child index is found (node 2). The child is an inner node. We recurse
on node 6-2. 6©

Node 6-2 The first child index is found (node 0). The child is empty. The next child
index is found (4). The child is a solid voxel. The algorithm terminates.

28

Chapter 5

A Ray Tracer Geometry Stage

With traditional rasterization, the model-view matrix and the perspective projection
matrix is the main data which dictates the size and position of the models relative to the
camera, and how they should be projected to a 2D image. If ray tracing of SVOs is to
be implemented alongside rasterization, it would be very benificial to use the same data
in the ray tracer. This chapter outlines a geometry stage for a ray tracer which mirrors
the one used in rasterization. Although it is probable that these techniques have been
developed previously, for instance in commercial ray tracing systems, it was not described
in any of the literature covered in this thesis. Therefore, these techniques were developed
independently.

5.1 Normalizing the Octree

In rasterization, the world is transformed so the camera occupies a fixed position and
orientation, and the volume that should be rendered occupies a fixed space. With ray
tracing of sparse voxel octree, it is the octree that must occupy a fixed position. As
mentioned, the algorithm requires an axis-aligned octree. The algorithm can in principle
work with an octree of any size. However, to simplify analysis and implementation, we
choose to normalize the octree so that it occupies the volume defined that by the points
(-1,-1,-1) to (1,1,1). I.e., the length of the sides of the octree is always 2, and the center
of the octree is in the origo of the coordinate system. Instead of defining the size and the
position of the model by the corners of the octree, we can use a model transform matrix.
This has two benefits: the core of the algorithm can make simplifying assumptions, and
the same techniques used to transform polygon model can be used to transform the octree,
which should simplify and ease programming.

29

Chapter 5 A Ray Tracer Geometry Stage

5.2 Generating Primary Rays

In a ray tracer, it is the position and direction of the primary rays which dictates how the
model end up looking on the screen. We can easily define these rays in the canonical view
volume. Each ray starts at z = −1 and ends at z = 1, and they are evenly spaced along
the X/Y axis. The distance between each ray along the X and Y axis is defined by the
width and height of the image. Now consider the transforms discussed in Chapter 2.2. If
we follow these in reverse, we get the position and direction of the rays in the coordinate
system where the octree is axis aligned and normalized. In essence, the idea of the ray
tracer geometry stage is to perform the same operations as in the rasterization geometry
stage (Figure 2.3), and perform them in reverse on the ray data rather than the model
data. This is illustrated in Figure 5.1. Fortunately, the model and view transform can
be reversed simply by taking the inverse of the model/view matrix, but the perspective
projection transform requires some elaboration.

x

z

x

z

x

z

x

z Octree

Inverse Model TransformInverse View TransformInverse Projection Transform

Image / Screen

Rays

the X/Y axis. The distance between each ray along the X and Y axis is defined by the
width and height of the image. Now consider the transforms discussed in Chapter 2.2. If
we follow these in reverse, we get the position and direction of the rays in the coordinate
system where the octree is axis aligned and normalized. In essence, the idea of the ray
tracer geometry stage is to perform the same operations as in the rasterization geometry
stage (Figure 2.3), and perform them in reverse on the ray data rather than the model
data. This is illustrated in Figure 5.1. Fortunately, the model and view transform can
be reversed simply by taking the inverse of the model/view matrix, but the perspective
projection transform requires some elaboration.

Octree

Inverse Model TransformInverse View TransformInverse Projection Transform

Image / Screen

Rays

Figure 5.1: A ray tracer geometry stage in action

Equation 5.1 shows the equations for the ray tracer geometry stage, where x and y are
the x and y coordinates of the pixel in the image, w and h is the width and height of the
image, v0 and v1 are the starting and end point of the ray in the canonical view space, q0,
q1, p0 and p1 are the same points in the camera space and the normalized octree space,
Pi is the inverse perspective projection and Mmv is the model-view tranform matrix.

v0 = (x/w, y/h,�1, 1)

v1 = (x/w, y/h, 1, 1)

q0
0 = Piv0

q0
1 = Piv1

q0 = q0
0/q

0
0w

q1 = q0
1/q

0
1w

p0 = Mmv
�1q0

p1 = Mmv
�1q1

(5.1)

The ray origin o and direction vector d for the ray traversal algorithm (see Equation 4.1)
may be found as such:

o = p0

d = p1 � p0

(5.2)

26

the X/Y axis. The distance between each ray along the X and Y axis is defined by the
width and height of the image. Now consider the transforms discussed in Chapter 2.2. If
we follow these in reverse, we get the position and direction of the rays in the coordinate
system where the octree is axis aligned and normalized. In essence, the idea of the ray
tracer geometry stage is to perform the same operations as in the rasterization geometry
stage (Figure 2.3), and perform them in reverse on the ray data rather than the model
data. This is illustrated in Figure 5.1. Fortunately, the model and view transform can
be reversed simply by taking the inverse of the model/view matrix, but the perspective
projection transform requires some elaboration.

Octree

Inverse Model TransformInverse View TransformInverse Projection Transform

Image / Screen

Rays

Figure 5.1: A ray tracer geometry stage in action

Equation 5.1 shows the equations for the ray tracer geometry stage, where x and y are
the x and y coordinates of the pixel in the image, w and h is the width and height of the
image, v0 and v1 are the starting and end point of the ray in the canonical view space, q0,
q1, p0 and p1 are the same points in the camera space and the normalized octree space,
Pi is the inverse perspective projection and Mmv is the model-view tranform matrix.

v0 = (x/w, y/h,�1, 1)

v1 = (x/w, y/h, 1, 1)

q0
0 = Piv0

q0
1 = Piv1

q0 = q0
0/q

0
0w

q1 = q0
1/q

0
1w

p0 = Mmv
�1q0

p1 = Mmv
�1q1

(5.1)

The ray origin o and direction vector d for the ray traversal algorithm (see Equation 4.1)
may be found as such:

o = p0

d = p1 � p0

(5.2)

26

the X/Y axis. The distance between each ray along the X and Y axis is defined by the
width and height of the image. Now consider the transforms discussed in Chapter 2.2. If
we follow these in reverse, we get the position and direction of the rays in the coordinate
system where the octree is axis aligned and normalized. In essence, the idea of the ray
tracer geometry stage is to perform the same operations as in the rasterization geometry
stage (Figure 2.3), and perform them in reverse on the ray data rather than the model
data. This is illustrated in Figure 5.1. Fortunately, the model and view transform can
be reversed simply by taking the inverse of the model/view matrix, but the perspective
projection transform requires some elaboration.

Octree

Inverse Model TransformInverse View TransformInverse Projection Transform

Image / Screen

Rays

Figure 5.1: A ray tracer geometry stage in action

Equation 5.1 shows the equations for the ray tracer geometry stage, where x and y are
the x and y coordinates of the pixel in the image, w and h is the width and height of the
image, v0 and v1 are the starting and end point of the ray in the canonical view space, q0,
q1, p0 and p1 are the same points in the camera space and the normalized octree space,
Pi is the inverse perspective projection and Mmv is the model-view tranform matrix.

v0 = (x/w, y/h,�1, 1)

v1 = (x/w, y/h, 1, 1)

q0
0 = Piv0

q0
1 = Piv1

q0 = q0
0/q

0
0w

q1 = q0
1/q

0
1w

p0 = Mmv
�1q0

p1 = Mmv
�1q1

(5.1)

The ray origin o and direction vector d for the ray traversal algorithm (see Equation 4.1)
may be found as such:

o = p0

d = p1 � p0

(5.2)

26

the X/Y axis. The distance between each ray along the X and Y axis is defined by the
width and height of the image. Now consider the transforms discussed in Chapter 2.2. If
we follow these in reverse, we get the position and direction of the rays in the coordinate
system where the octree is axis aligned and normalized. In essence, the idea of the ray
tracer geometry stage is to perform the same operations as in the rasterization geometry
stage (Figure 2.3), and perform them in reverse on the ray data rather than the model
data. This is illustrated in Figure 5.1. Fortunately, the model and view transform can
be reversed simply by taking the inverse of the model/view matrix, but the perspective
projection transform requires some elaboration.

Octree

Inverse Model TransformInverse View TransformInverse Projection Transform

Image / Screen

Rays

Figure 5.1: A ray tracer geometry stage in action

Equation 5.1 shows the equations for the ray tracer geometry stage, where x and y are
the x and y coordinates of the pixel in the image, w and h is the width and height of the
image, v0 and v1 are the starting and end point of the ray in the canonical view space, q0,
q1, p0 and p1 are the same points in the camera space and the normalized octree space,
Pi is the inverse perspective projection and Mmv is the model-view tranform matrix.

v0 = (x/w, y/h,�1, 1)

v1 = (x/w, y/h, 1, 1)

q0
0 = Piv0

q0
1 = Piv1

q0 = q0
0/q

0
0w

q1 = q0
1/q

0
1w

p0 = Mmv
�1q0

p1 = Mmv
�1q1

(5.1)

The ray origin o and direction vector d for the ray traversal algorithm (see Equation 4.1)
may be found as such:

o = p0

d = p1 � p0

(5.2)

26

the X/Y axis. The distance between each ray along the X and Y axis is defined by the
width and height of the image. Now consider the transforms discussed in Chapter 2.2. If
we follow these in reverse, we get the position and direction of the rays in the coordinate
system where the octree is axis aligned and normalized. In essence, the idea of the ray
tracer geometry stage is to perform the same operations as in the rasterization geometry
stage (Figure 2.3), and perform them in reverse on the ray data rather than the model
data. This is illustrated in Figure 5.1. Fortunately, the model and view transform can
be reversed simply by taking the inverse of the model/view matrix, but the perspective
projection transform requires some elaboration.

Octree

Inverse Model TransformInverse View TransformInverse Projection Transform

Image / Screen

Rays

Figure 5.1: A ray tracer geometry stage in action

Equation 5.1 shows the equations for the ray tracer geometry stage, where x and y are
the x and y coordinates of the pixel in the image, w and h is the width and height of the
image, v0 and v1 are the starting and end point of the ray in the canonical view space, q0,
q1, p0 and p1 are the same points in the camera space and the normalized octree space,
Pi is the inverse perspective projection and Mmv is the model-view tranform matrix.

v0 = (x/w, y/h,�1, 1)

v1 = (x/w, y/h, 1, 1)

q0
0 = Piv0

q0
1 = Piv1

q0 = q0
0/q

0
0w

q1 = q0
1/q

0
1w

p0 = Mmv
�1q0

p1 = Mmv
�1q1

(5.1)

The ray origin o and direction vector d for the ray traversal algorithm (see Equation 4.1)
may be found as such:

o = p0

d = p1 � p0

(5.2)

26

the X/Y axis. The distance between each ray along the X and Y axis is defined by the
width and height of the image. Now consider the transforms discussed in Chapter 2.2. If
we follow these in reverse, we get the position and direction of the rays in the coordinate
system where the octree is axis aligned and normalized. In essence, the idea of the ray
tracer geometry stage is to perform the same operations as in the rasterization geometry
stage (Figure 2.3), and perform them in reverse on the ray data rather than the model
data. This is illustrated in Figure 5.1. Fortunately, the model and view transform can
be reversed simply by taking the inverse of the model/view matrix, but the perspective
projection transform requires some elaboration.

Octree

Inverse Model TransformInverse View TransformInverse Projection Transform

Image / Screen

Rays

Figure 5.1: A ray tracer geometry stage in action

Equation 5.1 shows the equations for the ray tracer geometry stage, where x and y are
the x and y coordinates of the pixel in the image, w and h is the width and height of the
image, v0 and v1 are the starting and end point of the ray in the canonical view space, q0,
q1, p0 and p1 are the same points in the camera space and the normalized octree space,
Pi is the inverse perspective projection and Mmv is the model-view tranform matrix.

v0 = (x/w, y/h,�1, 1)

v1 = (x/w, y/h, 1, 1)

q0
0 = Piv0

q0
1 = Piv1

q0 = q0
0/q

0
0w

q1 = q0
1/q

0
1w

p0 = Mmv
�1q0

p1 = Mmv
�1q1

(5.1)

The ray origin o and direction vector d for the ray traversal algorithm (see Equation 4.1)
may be found as such:

o = p0

d = p1 � p0

(5.2)

26

Figure 5.1: A ray tracer geometry stage in action

Equation 5.1 shows the equations for the ray tracer geometry stage, where x and y are
the x and y coordinates of the pixel in the image, w and h is the width and height of the
image, v0 and v1 are the starting and end point of the ray in the canonical view space, q0,
q1, p0 and p1 are the same points in the camera space and the normalized octree space.
These points are also illustrated in Figure 5.1. Pi is the inverse perspective projection
and Mmv is the model-view tranform matrix.

v0 = (x/w, y/h,−1, 1)

v1 = (x/w, y/h, 1, 1)

q′0 = Piv0

q′1 = Piv1

q0 = q′0/q
′
0w

q1 = q′1/q
′
1w

p0 = Mmv
−1q0

p1 = Mmv
−1q1

(5.1)

30

5.3 Inverse Perspective Projection

The ray origin o and direction vector d for the ray traversal algorithm (see Equation 4.1)
may be found as such:

o = p0

d = p1 − p0

(5.2)

5.3 Inverse Perspective Projection

The model/view matrix can be inverted using standard matrix inversion algorithms such
as Gauss-Jordan elimination. The perspective projection however, can not be inverted by
simply inverting the perspective projection matrix, because the result is divided by the
w -component(Equation 2.4). Using simple linear algebra, we can find a similar equation
to go from a canonical view space point v to a camera space point q.

Solving for Pi results in the following matrix:

Pi =

− f(r−l)

f−n 0 0 − f(r+l)
f−n

0 − f(t−b)
f−n 0 − f(t+b)

f−n
0 0 0 2fn

f−n
0 0 1 − f+n

f−n

 (5.3)

5.4 Normalizing Ray Length

A ray has a starting point and a direction. The direction is often defined as a normalized
vector with a length of 1. However, the output of the proposed geometry stage is a starting
point and an end point. The starting point is positioned at the near plane and the end
point is positioned at the far plane. Although a far plane is strictly speaking not necessary
in a stand-alone ray tracer, when combining with rasterization it can be be useful to have
the option of terminating the ray tracing at the far plane. Following equation 2.5, the
near plane is placed at t = 0 and the far plane at t = 1. If we standardize on this, our
algorithm can be designed to optionally terminate at t = 1. This functionality should be
useful when calculating light/shadow rays as well. In this case we also have a starting
point (the point at which the primary ray hits an object) and an end point (the light
source), and we are only interested in finding if the line between these points intersects
some object. I.e., we should terminate the ray tracing at t = 1. Another useful feature of
having the start and end point be at the near and far plane, is that the resulting t-value
can be used to calculate a value for the Z-buffer.

5.5 Z-Buffering With Ray Tracing

In rasterization, the Z-buffer ensures that the geometry appears appears in the correct
order from front to back. If we wish to merge the result of the ray traced image with a

31

Chapter 5 A Ray Tracer Geometry Stage

rasterized image, and have everything appear in the correct order, we need to be able to
generate the correct values for the Z-buffer.

When a primary ray hits a voxel, the algorithm returns a t-value (tout) which represent
how far along the ray the voxel is. Because we placed the start and end of the ray at the
near and far plane, this t-value also represents the position of the voxel between the near
and the far plane. This is illustrated by the red dot in Figure 5.1, which can be followed
in reverse from its position in the octree on the right, to its position in the canonical view
volume on the left.

However, this can not be directly used as a Z-value. The tout is linear with regards to
distance in the camera space. In rasterization the Z-value is linear with regards to distance
in the canonical view volume. If we use perspective projection, this Z-value is not linear
with regards to camera space. If we look at Equation 2.4, we can see that the Z-value
in the canonical view volume, vz, is divided by v′w. This implies that vz is a function of
1/qz where qz is the Z-value in the camera space.

To solve this problem, we can first find the collision point in the camera space, given the
t-value at the collision point tout:

qc = q0 + (q1 − q0) · tout (5.4)

Using the perspective projection matrix Pp defined in Equation 2.3, we can transform
this coordinate in to the canonical view volume:

vc = Ppqc (5.5)

Taking the z-coordinate from this vector will give us a Z-value which is compatible with
the Z-buffer generated by the rasterizer.

32

Chapter 6

Hardware Optimizations

In order to optimize the ray traversal algorithm for hardware implementation, various
considerations were made, and the algorithm was transformed to a form which is feasible
to implement in a hardware description language. This chapter will present the rationale
for using fixed point numbers, we will analyze the use of a stack in hardware, and the
final hardware optimized version of the algorithm will be presented.

6.1 Floating Point vs Fixed Point

A fundamental decision regarding how to implement the algorithm, was whether to use
floating point or fixed point representation for the parameters in the algorithm. Since
the algorithm could be integrated with a modern GPU – which extensively support use
of floating point numbers – using a floating point representation might be pertinant.
However, looking at the algorithm, the operations performed on the parameters in the
core of the algorithm are only additions and divisions by two. Additions require much
more resources to implement and is slower to execute with floating point numbers. The
difference is probably even more dramatic with the division by two. This can be done
with a simple sign-extended shift operation in fixed point arithmetic[26]. Because of these
differences in resource use, a fixed point representation was chosen in this thesis.

To integrate the hardware module presented in this thesis with a system using floating
point numbers, the module could integrate a floating point to fixed point conversion unit.
Even given the cost of this unit, it is probably still better than using floating point units
within the core of the module. The floating point parameters passed to the module could
fall out of range of the chosen fixed point representation, but this could be solved by
scaling the parameters by a common factor such that the largest parameter falls within
the range of the fixed point representation. When the results are passed back out of the
module, they could be scaled back using the same scaling factor.

The number of bits used to represent the number was chosen to be 32 bits. This was due
to the fact that the bus width is 32 bits, and that the OpenRISC processor that was used

33

Chapter 6 Hardware Optimizations

is a 32-bit processsor.

6.2 The Decimal Point

The position of the decimal point in a fixed point number dictates the range and precision
of the numbers that can be represented. In this thesis, it was decided to use 16-bit each
to represent the integer and fractional part of the number. Since the octree is normalized
to exist within the range −1..1, the octree is contained within the fractional part of the
number. Consequently we have 16 bits to represent a position within the octree.

Numbers equal to or larger than 215 can not be represented by the chosen representa-
tion. When calculating the initial t-values for the algorithm, it is important to make
sure the calculations to not overflow, which would make the results nonsensical. Tak-
ing Equation 4.1 and applying the constraints of the normalized octree, we end up with
Equation 6.1, where ox and dx is x-component of the ray origin and direction vectors.

t0x = (−1− ox)/dx

t1x = (1− ox)/dx
(6.1)

Assuming the ray origin is somewhere outside the octree, i.e. ox � 1, we have t0x ≈ ox/dx.
The value of t0x can easily overflow if ox is large and dx is small. We should therefore put
a constraint on ox. Constraining ox arbitrarily to be less than 25 gives us a lower bound
for dx:

dx = ox/t0x = 25/215 = 2−10 (6.2)

This implies that if 2−10 < dx < −2−10, then dx should be clipped to ±2−10 before
calculating t0 / t1. If we do this we also avoid the problem discussed in Chapter 4.4,
where dx = 0. This clipping implies there is a limit to the resolution of the direction
vector, and we have shown that there is a relationship between this limit, the maximum
values of the origin vector and the upper bound of our number representation.

6.3 Stack

Algorithm 3 is formulated as a recursive function. Since functions are not a native primi-
tive in hardware design, an explicit stack must be used to achieve the same functionality.
Instead of recursing, the algorithm will push the necessary variables in the stack, and
instead of returning the variables will be popped from the stack.

The stack requires memory, and since the purpose of the stack is to avoid slow memory
requests, the stack memory should be fast, preferably accessible in one clock cycle. This
implies that this memory will be expensive in terms of resources, and we should seek to
minimize the size.

34

6.3 Stack

The state that must be stored on the stack are the node data and address, the current
child index, and the t-values t0 and t1. The node address is a 32-bit pointer pointing to
the node data. The node data is a 32-bit value consisting of the 16-bit child table pointer
and the 16-bit child data. The node data is not strictly necessary since we could request
the node data from memory using the node address. Howevery, this would partly defeat
the performance enhancing benefits of the stack.

It is possible to eliminate the need to store the 16-bit child pointer on the stack. Whenever
the algorithm enters a child node, we must calculate the child address. Taking the current
node address and adding the 16-bit child table pointer gives us the address of the table of
child nodes. Adding the child offset to this value gives us the address of the desired child
node. By storing the resolved child node table address instead of the parent node address
on the stack, we avoid the need to store the child table pointer, as the only use of these
two values is to calculate the child table address. This optimization has a secondary
benefit aswell: if the child table pointer is a far pointer, we need to perform an extra
memory request to fetch the far pointer in order to calculate the child table address. By
storing the child table address on the stack we avoid having to resolve the far pointer
again later.

The child index is a 3-bit value. It is not strictly necessary to store this value on the stack.
If we implement restarting, as will be described later, the tstart parameter is sufficient to
insure that we do not visit nodes we have visited before. However, this would come at a
cost of a few extra wasted clock cycles each time the stack is popped. Considering that
the child index is so small relative to the node data/address, it is probably worth keeping
on the stack.

The t-values t0 and t1 are each a vector of three 32-bit numbers. However, it is not
necessary to store the full value of these numbers on the stack. When the algorithm
enters a child node, the t-values for the child node is picked from t0, tm and t1. If we
can reconstruct the parents t-values from the child t-values we can avoid storing them on
the stack. Consider how the child t-values are calculated:

tm = (t0 + t1)/2 (6.3a)

t0x-child = t0x

t1x-child = tmx

}
If child-idx[2] is 1 (6.3b)

t0x-child = tmx

t1x-child = t1x

}
If child-idx[2] is 0 (6.3c)

If we store child-idx on the stack, we can use this value to find either t0x or t1x. We call
this value tpass:

tpass = t0x = t0x-child

tmx = t1x-child

}
If child-idx[2] is 1 (6.4a)

35

Chapter 6 Hardware Optimizations

tpass = t1x = t1x-child

tmx = t0x-child

}
If child-idx[2] is 0 (6.4b)

The other value, which we will name trecover, must be recovered from tmx. However, the
division by two in Equation 6.3a, which is implemented as a shift-operation in hardware,
discards one bit of information. To recover trecover, we need to save this bit, which we
will call tbit.

tmx, tbit = (tpass + trecover)/2 (6.5a)

trecover = (tmx, tbit) · 2− tpass (6.5b)

Finally we set t0x or t1x to trecover depending on the value of child-idx[2].

Using this method, we have reduced the stack memory requirement of the t-values to
one bit per component, i.e., three bits in total. Adding up the total size of the required
variables we get 32 + 16 + 3 + 3 = 54 bits. For a stack of depth D the total size of the
stack in bits S is:

S = 54D (6.6)

The optimal depth of the stack, and thus the total size of the stack, has been optimized
experimentally. This is presented in Chapter 8.

6.4 Restarting

Implementing restarting is useful because it makes it possible to trace octrees which are
deeper than the depth of our stack. We can adjust the size of the stack to a size that gives
the best performance for the resources we use, and we do not have to worry about the
size of the octree. Even if the stack is large enough to trace the octrees we are currently
using, we might want to use the hardware for larger octrees in the future.

First, we need to find the t-value at which the ray exits a node:

texit = min(t1x, t1y, t1z) (6.7)

Restarting requires one extra variable tstart. When we exit a node, instead of popping the
stack to return to the parent node, we store texit in tstart. We then restart the algorithm
from the root node. Each time the algorithm processes a child node it will pass the node
if tstart >= texit−child. I.e., the next time we visit the parent node of the last node we
visited before we restarted, the algorithm will pass that node.

36

6.5 Hardware Optimized Algorithm

This operation is quite expensive compared to popping the stack, since we have to process
every node from the root node down to the parent node of the node we exited, while when
we pop the stack we go directly back to the parent node.

6.5 Hardware Optimized Algorithm

To implement the raytracing algorithm in hardware, it first had to be converted to a form
which is suitable for hardware implementation. The goal was to create a state machine
where the operations performed in each state was limited and reuse of functional units
was possible between states. This process did not follow a strict methodology, but it was
informed by techniques from high-level synthesis[12] and compiler techniques[2].

First, the kernel listed in Algorithm 3 was changed from a recursive form to a non-recursive
form. The recursive function call was replaced by a loop and a stack was introduced which
could save and restore the required state, after which the algorithm consisted of a set of
nested loops. The algorithm was converted to a state machine by introducing a state for
each basic block in the function, and replacing loop branching with state transitions.

In synchronous digital circuits, it is important to keep the delay of the critical path
(i.e., the longest path through a combinatorial circuit) below the period of the clock. A
shorter critical path increases the maximum clock frequency of the design. This can be
achieved through pipelining, which splits the critical path with registers, and the same
operation is divided over additional clock cycles[4]. In this thesis the algorithm was
implemented in a system alongside the 32-bit OpenRISC processor and the ray tracing
module was designed to run at the same clock frequency as this processor. Running the
module and the processor at different clock frequencies would have resulted in a design
with multiple clock domains which are more difficult to implement[4]. The OpenRISC
processor performs 32-bit addition, subtractions and comparisons in one clock cycle[36].
To keep the maximum clock frequency of the ray tracing module similar to that of the
processor, the algorithm was designed so that the critical path would go through no more
than one 32-bit adder/subtractor/comparator, a couple of multiplexer and some simple
combinatorial logic. To achieve this, any state that had two or more chained arithmetic
operations was split into two or more states.

To minimize the amount of resources a digital design uses, it is important to consider re-
source sharing. By allowing the operations in different states to share functional units such
as arithmetic units, we can minimize the area (or LUTs) consumed by the design[40]. Sev-
eral operations in the presented algoritm requires three comparators. These are the max,
min and FirstIndex(Algorithm 1) functions in Algorithm 4. These are all performed in
different states, and could potentially share comparators. As adders and comparators are
similar functional units, the calculation of tm could potentially also share these units, by
splitting up the CalcT state. Even further reduction of resource use could be achieved
by further pipelining the design and perform a single addition/comparison in each cycle.

Algorithm 4 shows the kernel of the algorithm converted to a form which should be
suitable for hardware implementation. Each label represents a state in a state machine,
and each state has been assigned operations that can be executed in a single cycle. This
algorithm was used in the ray traversal core of the hardware implementation. Further

37

Chapter 6 Hardware Optimizations

descriptions along with a state diagram can be found in Chapter 8.5.

Algorithm 4 TraceCore(root-adr, root-t0, root-t1, dir-mask)

1: globals node, level, idx
2: globals is-first-node, exits-node, pass-node
3: globals t-start, t-enter, t-exit, t-exit-child
4: globals t0, t1, tm, tbit
5: globals t0-child, t1-child
6: globals is-leaf, t-out
7: Init:
8: t0 ⇐ root-t0
9: t1 ⇐ root-t1

10: is-first-node ⇐ true
11: level ⇐ 0
12: node ⇐ GetRootData(root-adr)
13: goto CalcT

14: CalcT:
15: tm, tbit ⇐ (t0 + t0)/2
16: t-enter ⇐ max(t0x, t0y, t0z)
17: if is-first-node then
18: goto FirstIdx
19: else
20: goto NextIdx
21: end if

22: FirstIdx:
23: if got-node-data then
24: idx ⇐ FirstIndex(t-enter, tm)
25: exits-node ⇐ false
26: is-first-node ⇐ false
27: goto CalcChildT
28: else
29: goto FirstIdx
30: end if

38

6.5 Hardware Optimized Algorithm

TraceCore continued

31: NextEval:
32: idx, exits-node ⇐ NextIndex(idx, t-exit-child)
33: if exits-node then
34: if level = 0 then
35: is-leaf ⇐ false
36: t-out ⇐ t-exit-child
37: goto Finished
38: else if stack-empty then
39: t-start ⇐ t-exit-child
40: goto Init
41: else
42: node, t0, t1, idx ⇐ Pop
43: level ⇐ level− 1
44: goto CalcT
45: end if
46: else
47: goto CalcChildT
48: end if

49: CalcChildT:
50: t0-child, t1-child ⇐ SelectChildT(idx, t0, tm, t1)
51: t-exit-child ⇐ min(t1x−child, t1y−child, t1z−child)
52: goto Eval

53: Eval:
54: pass-node ⇐ t-exit-child <= t-start
55: if pass-node then
56: goto NextIdx
57: else if IsChildLeaf(node, idx⊕dir-mask) then
58: t-out ⇐ t-enter
59: goto Finished
60: else if IsChildValid(node, idx⊕dir-mask) then
61: Push(node, tbit, idx)
62: t0 ⇐ t0-child
63: t1 ⇐ t1-child
64: level ⇐ level + 1
65: is-first-node ⇐ true
66: node ⇐ GetData(node, idx⊕dir-mask)
67: goto CalcT
68: else
69: goto NextIdx
70: end if

71: Finished:
72: return is-leaf, t-out

39

Chapter 6 Hardware Optimizations

40

Chapter 7

Software Implementation

Figure 7.1: A screenshot of the software application used to support this thesis.

Implementing an algorithm in a hardware description language like Verilog can be a
cumbersome task, and if there is an error in the design it can be hard to track down
where and how the error occured. Implementing the system in a software application
can help ease the process of implementing it in hardware later. It can provide a better
intuitive understand of the algorithm and it can make debugging easier by comparing the
output from the two implementations.

This chapter will present the software application which was created to support this
thesis. The software was used to generate sparse voxel octrees with the correct format,
to implement the ray tracing algorithm, to test the proposed ray tracer geometry stage,
to generate an image using hybrid rendering and to create a model of a cache in order to
evaluate the attributes of a cache in hardware.

41

Chapter 7 Software Implementation

The application was created using Xcode on Mac OS X. The GUI-related code was written
in Objective-C, while the code to generate and trace the octree was written in C++. The
software was executed on a laptop with a 2 GHz Intel Core i7 processor, 4 GB of 1333 MHz
DDR3 memory and an AMD Radeon HD 6490M GPU with 256 MB graphics memory.

7.1 SVO Data Structure

Both the software and hardware implementation needs data in a sparse voxel octree
format. The data structure in this thesis is organized in a way similar to that of Laine
and Karras [29], but the contour data, page header and info section they describe was
dropped as none of those features was required for this thesis. The resulting data structure
is illustrated in Figure 7.3. The data structure is an array of 32-bit entries. Two 8-bit
masks indicate the type of the child nodes. The 8-bit leaf_mask indicates whether a
child node is a leaf node or not. The 8-bit valid_mask indicates whether a child node
has solid voxels or not. A partially filled inner node will have its valid_mask set but not
its leaf_mask. A solid leaf node (a solid voxel) will have both set. If the node has any
inner node children, the 15-bit child_table_ptr is a relative pointer to a table of these
child nodes. If the 15-bits are not enough to hold the pointer, the is_far bit is set, and
child_table_ptr points to an entry with a 32-bit pointer. The final address of the child
table is found by adding the 32-bit far pointer to the parent node address.

000000001000100000000000000000100 (root)

leaf_maskvalid_maskchild_table_pointeris_far

000000001000010100000000000001101
000000000101000000000000000000112

3

000001010000010100000000000000004
000101000001010000000000000000005
111000001110000000000000000000006

110000001100000000000000000000007
000000110000001100000000000000008

address
15 bits 8 bits 8 bits

32 bits

00000000000000000000000000000101

Root

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 7.2: The organization of the sparse voxel octree data structure.

7.2 Generating Sparse Voxel Octrees

The models used in this thesis was the “Stanford Bunny”, “Happy Buddha” and “Stanford
Dragon” models from Stanford Computer Graphics Laboratory [50]. These models were
processed by the third-party program “binvox”[16], which converted the polygon models
to voxel models. The program outputs a run-length encoded voxel format. A routine

42

7.3 Software Ray Tracer

was created to convert this format to an octree. The routine loads the entire voxel model
to a three-dimensional array in memory. It then recursively divides the array into eight
sub-regions untill a region contains a single voxel and constructs an inefficient octree in
the process. This octree is then compacted into the binary format described previously.
This data can then be used by the software application and be written to a binary file
which can be uploaded to the FPGA memory. The voxel models are 1024 voxels wide
along each axis, and the resulting octree is 10 levels deep.

dragon.ply
33.8MB

Polygon Model

binvox

dragon.binvox
9.4MB

Run-length encoded
voxel array

Octree
Converter

dragon.bin
2MB

Sparse Voxel Octree

Figure 7.3: The process of generating sparse voxel octree models.

7.3 Software Ray Tracer

The ray tracing algorithm was implemented in software to provide reference images and
facilitate in debugging the hardware solution. Initially the algorithm was implemented
according to Algorithm 3, but it was later rewritten to closely match the hardware version.
This proved immensely useful in debugging. When rendering the same image using the
same input, the software and hardware simulation could be executed and the value of the
variables in the algorithm could be compared at different points during execution. This
made it easier to locate and fix bugs in the hardware implementation. The software ray
tracer was also used to generate the parameters required to initialize the ray tracing core
in the hardware implementation. The same function which generates these parameters
for the ray tracing kernel in software can be redirected to write these parameters to a
file. This file can then be uploaded to the FPGA memory and used by the hardware ray
tracing core.

There are some important differences between the software and the hardware ray tracer.
The software version does not run on multiple cores in parallell. It can use either floating
point numbers or fixed point numbers in the calculation. Furthermore, although both
a stack and cache is implemented in the software version, they are used to simulate the
behavior of the hardware version, not to boost the performance in software. Finally, the
shading, i.e., the coloring of the rendered image is different. In the software implementa-
tion, simple hard shadows are rendered by tracing secondary rays from the collision point
of the ray to a point light source. These shadows are used to better visualize the octree
model, and to provide preliminary indications that such techniques are possible using the
algorithm. The software can also visualize the cost of rendering a ray by coloring the

43

Chapter 7 Software Implementation

pixel of the ray according to the number of memory requests required to trace that ray
as seen in Figure 7.5

The core functions of the code for the software ray tracer is included in the appendix.

7.4 Merging Ray Tracing and Rasterization

To test the proposed technique for merging ray tracing and rasterization, the software ray
tracer was designed with the proposed geometry stage, and the corrected Z-values was
extracted and stored in a Z-buffer. The GPU on the computer executing the software
was utilized through the OpenGL API to perform rasterization. The dragon voxel model
was rendered with the ray tracer and the resulting image and Z-buffer was uploaded to
the image buffer and Z-buffer of the GPU. The bunny and buddha polygon models were
then drawn using the GPU, positioning them such that the bunny would appear behind
the dragon, and the buddha in front of the dragon, if the Z-buffer generated by the ray
tracer was correct. The results from this experiment is illustrated in Figure 7.4. It shows
the image and depth buffer from the octree ray tracing and polygon rasterization, and
that the three models appear in correct order in the combined image.

+

=

Figure 7.4: Ray traced image and Z-buffer + rasterized image and Z-buffer = combined
image and Z-buffer

7.5 Cache Profiling

It was suspected that the memory bus of the hardware module would be a bottleneck for
the algorithm. To investigate the benefits of a data cache in the hardware implementation
a behavioral model of a cache was created in software. Each access to a node or far pointer
in the octree was logged by a software cache model. This cache has three configurations:
the cache size (in number of 32-bit words), the block size (in words) and block placement
policy (direct mapped and 2/4-way set associative). A small test routine rendered a given
SVO model from four different angles, logged the cache hits/misses and calculated the
average miss rate.

As the data cache is designed for a specific algorithm, it should in theory be possible

44

7.5 Cache Profiling

to implement novel and specific optimizations to the cache which exploits the memory
access patterns of the algorithm. For instance, nodes that are closer to the root are more
likely to be accessed often than nodes deeper in the tree. It is possible that it is inefficient
to cache nodes deeper in the tree. If they are accessed only once or twice, the benefit of
caching them is small compared to the penalty of evicting a node closer to the root. To
investigate this, a cache model was created where the cache was given the level of the
node accessed in addition to its address. The cache could then be configured to disable
caching for deeper nodes.

45

Chapter 7 Software Implementation

7.6 Results

Direct mapped

Block size

Cache size 1 2 4 8

32 0.46 0.54 0.60 0.61
128 0.25 0.28 0.31 0.33
512 0.17 0.17 0.16 0.16

Two way set associative

Block size

Cache size 1 2 4 8

32 0.37 0.49 0.60 0.60
128 0.18 0.19 0.21 0.26
512 0.14 0.12 0.10 0.09

Four way set associative

Block size

Cache size 1 2 4 8

32 0.31 0.45 0.60 0.59
128 0.15 0.14 0.16 0.20
512 0.14 0.11 0.08 0.06

Two way set associative
1 word block size

Cache size

Max level* 8 32 128 512

2 0.66 0.53 0.48 0.47
4 0.67 0.43 0.31 0.28
6 0.70 0.40 0.24 0.17
8 0.72 0.42 0.24 0.18

*Max level of N: only the nodes N levels or
less from the root are cached

Table 7.1: Cache miss-rate results from software profiling. Smaller numbers are better.

Figure 7.5: An illustration of the cost of tracing the primary rays. The lighter the color
the more memory requests was used to trace that ray.

46

7.7 Discussion

Stanford Bunny Stanford Dragon Happy Buddha
652ms 824ms 677ms

Figure 7.6: The three voxel models and their rendering speed in software.

7.7 Discussion

In the few experiments that were done, merging ray tracing and rasterization using the
Z-buffer seemed to work correctly. In addition, since the model-view transform matrices
used in ray tracing was extracted from the OpenGL API, the same OpenGL calls that
were used to set up the rasterized models could be used for ray tracing as well. The
same function calles used to set up the camera for the OpenGL rasterizer was used for
the ray tracer as well. In other words, programming was made easy and tidy. However,
this is a very basic demonstration. Commercial games rely on many different effects, e.g.,
translucent materials, reflections and shadows. Implementing these various effects using
a hybrid rendering technique will probably be challenging.

The cache profiling resulted in some interesting data. Larger block size has a negative
impact on the performance of the cache for small cache sizes. However, for large cache
sizes the cache miss-rate seems to improve with larger block sizes, especially with two
and four way set associative caches. It is possible that there is a rather small chance that
the next memory access is one of the other words in the block. For small cache sizes that
could imply that it is more likely that the algorithm will need one of the words that had
to be evicted, than one of the other words in the block. However, as the cache size grows,
the probability that a cache block read will evict a word that the algorithm will soon
access diminishes.

A two way set associative cache is better than a direct mapped cache, and two way is
better than four way. However, the improvement from two way to four way set associative
is minor, and might not be worth the increased resources required to implement it. Finally,
restricting which words are cache based on the depth of the node which is accessed seems
to be detrimental to performance, for all but the very smallest caches. To understand
why, consider the case where the ray for one pixel has been traced. The cache is now
filled with nodes from this trace. In this implementation the next pixel to be traced is
the next pixel to the right in the image. When tracing the ray for this pixel, it will follow
a path very similar to the one for the last pixel, and consequently it will access mostly
the same nodes, even for nodes deep in the tree. However, secondary rays such as those
used to calculate shadows and reflections, are not as coherent as the primary rays. There
is a possibility that a variation of this optimization could be useful in a more complex
rendering system.

47

Chapter 7 Software Implementation

Figure 7.6 shows the time it took to render the three models in software. These are given
to provide some frame of reference to the results from the hardware implementation.
Because neither implementation is aggressively optimized, and given the vast differences
in hardware capabilities, a direct comparison is of little interest. However, it would
be surprising if the relative speed from one model to the others is different in the two
implementations. Note that the dragon model takes longer to render. If a ray passes
close to the edge of a model, it will be costly to trace because it will have to traverse
deep in the octree to determine if it collides with a voxel or not. This effect is illustrated
effectively in Figure 7.5, where brighter colors imply higher cost. Although the dragon
appears to have a similar surface area as the bunny, the edge has more folds, and thus is
more costly to render. In this figure one can also observe the structure of the octree. As
the ray crosses into new octants the cost increases, and thus faint cubes can be observed
in the picture.

48

Chapter 8

Hardware Implementation

The goal of this thesis was to create a practical design for ray tracing of sparse voxel
octrees in hardware. To demonstrate that the proposed design could work, a hardware
prototype had to be created. An FPGA prototype board was used, and a system-on-chip
platform for that board was modified to include a ray tracing module. This module was
written in the Verilog hardware description language.

This chapter presents the design of the hardware system and the details of the design
of the ray tracing modules and its sub-components. The methodology used to test the
complete system is presented, along with the results. Finally, the design and results are
discussed.

8.1 Hardware Platform

As one of the goals of the thesis was to synthesize the module for an FPGA, a prototype
board had to be chosen. The criteria for selecting an FPGA prototype board was:

• Academic Discount

• On-board RAM for storing ray data, octrees and the resulting image

• Video output (VGA or DVI/HDMI)

The Digilent Atlys prototype board was selected since it fitted well with the chosen
criteria. One drawback of the board is that it contains relatively few switches and LEDs,
and no display. However, there is a USB-port for a keyboard and/or mouse, and there
is UART over USB. The UART module has been used extensively to debug the system,
by communicating with a terminal on a personal computer. Additionally, the Cypress
microcontroller that is used to configure/program the FPGA over USB, also connects to
the FPGA through a set of data signals. Digilent provides a software API and a piece of
software to transfer data to the FPGA over these signal lines.

49

Chapter 8 Hardware Implementation

Two different architectures was considered for the thesis. One was a standalone system,
where the system would consist of only the ray tracing module, and the necessary support
to connect it to RAM, to initiate ray traing, and to get image out to a computer or a
display. The second was to use a soft core CPU, and implement the ray caster as an
accelerator. A soft core CPU is a CPU which can be implemented on an FPGA[46],
while an accelerator is a component attached to the same bus as the CPU which can
provide performance increases for specific functions[63]. The benefits of having a CPU is
that some parts of the system can be significantly easier to implement in software than
in hardware. If those are not performance critical, then having a CPU to perform those
tasks can cut down design time with little or no performance penalty. However, a soft
core CPU can take up a significant amount of the FPGAs resources, leaving less for the
ray tracing module, and increasing the time it takes to synthesize the system.

Computer

Pear NoteBook Pro

or1200
OpenRISC CPU

Wishbone /
DDR RAM Interface

Instruction Bus

Data Bus

Byte Bus

Master Master

Bridge Master

Slave (R)

128Mbyte
DDR2 RAM

Slave (R/W)

Ray Tracing Module

SlaveMaster

Slave (R/W) Slave (R) Slave (R/W)

ROM

Slave

SPI

Slave

UART

Slave

GPIO

Slave

16Mbyte
SPI Flash

Buttons
Switches

LEDs

orlink
PC/FPGA

Link

Master

USB I/F USB I/F

VGA/HDMI
Encoder

SlaveMaster

Digilent Atlys Prototype Board

Xilinx Spartan-6
FPGA Chip

Modules implemented in this thesis

ORPSoC Modules

Board peripherals/ICs

Display

Figure 8.1: Hardware platform overview

The second architecture, with a CPU and the ray caster implemented as an accelerator,
was chosen because the complexity of creating a stand-alone system was deemed to be too
much for this thesis, and that debugging the system could be hard without an internal
CPU which could quickly be programmed to change certain behavior in the system. To
create the proposed system an existing system-on-chip solution had to be found. There
was some investigation into using Xilinx’ embedded development kit (EDK) and their
MicroBlaze CPU. However, the tools were complicated to use and did not encourage
automating the synthesis of the design. The open source system-on-chip solution ORPSoC
has recently been ported to Atlys by Kristiansson [27]. Using this platform as a basis for
the project meant that all the support modules were already in place. The ray tracing

50

8.2 Ray Casting Module

module could easily be attached to the system bus, using the open interface standard
Wishbone. In addition, the complete system could be built using Makefiles, which implies
that the process of synthesizing the design could easily be automated, allowing many
variations of the design to be synthesized.

A module named orlink was also created for this thesis. This module supports transfers
between a computer and the FPGA system. This allowed OpenRISC software, ray data
and octree data to be uploaded to the on-board RAM, and the resulting image to be
downloaded to a computer. This work builds on McClelland’s FPGALink [32] software,
which uses a custom firmware for the Cypress microcontroller on the board. The software
presents a software API similar to the one Digilent provides. However, FPGALink is
cross-platform and open-source. Orlink consists of a verilog module, and a piece of
software. The Verilog module translates request from the microcontroller, to Wishbone
bus requests. The orlink software is a command-line interface that allows a user to halt
and reset the CPU on the FPGA and transfer data between a personal computer and the
on-board memory. As the module is not directly relevant to the results of the thesis, the
details of this module will not be presented.

The final system is presented in Figure 8.1. The OR1200 OpenRISC CPU uses a Harvard
architecture, which is why there is a separate instruction and data bus. The ROM module
is a small read-only memory on the FPGA, which bootstraps the CPU. The bootstrapper
can load software from an SPI Flash chip, or it can simply cause the CPU to jump to
a reset vector in RAM. Both of these modes have been used in the project for various
purposes. The instruction bus and the data bus are 32-bits wide, while the byte bus is 8-
bits wide. All of them are implemented as cross-bar buses, which have good performance,
but at a large routing cost[37]. The byte bus alleviates some of this cost, by having a
narrower connection where bandwidth is not essential.

8.2 Ray Casting Module

The ray casting module is responsible for taking a collection of rays and tracing them
through a given octree. It is divided into several sub-modules. The slave module imple-
ments a set of registers which are accessible from the CPU, these are used to configure
and control the ray casting module. The slave module also generates an interrupt request
to the CPU when a frame has finished rendering.

The module instantiates up to four cores, each of which can perform the tracing algorithm.
The algorithm is inherently parallel, and the performance of the module should scale
with the number of cores we use until we saturate the memory bandwidth. The scheduler
iterates through each pixel in the image, loads ray parameters from memory, finds an
available core to trace the ray, and once a core has finished tracing, it writes the correct
pixel data to the frame buffer.

The module has a single master interface to read and write to the main memory. Both
the scheduler and the cores require access to memory, so these requests are handled by
a single memory controller module. It arbitrates the request from the scheduler and the
cores, and implements a common cache for all of the cores.

51

Chapter 8 Hardware Implementation

Ray Casting Module

Wishbone MasterWishbone Slave

Slave Module Memory Controller

Scheduler

Core 0 Core 1 Core 2 Core 3

Core 0 Core 1 Core 2 Core 3

Core 0 Core 1 Core 2 Core 3Sched.

CPU
Interrupt

Byte bus RAM controller

Figure 8.2: Ray casting module overview

8.3 Scheduler

The scheduler has a variety of tasks. In essence it is responsible for initializing the cores
and getting the results out to an image, in order to test the functionality of the ray tracing
cores. It is designed to perform that function with the least amount of effort, and as such
the design of this module should not be considered optimal for a practical ray tracing
system.

The scheduler reads parameters from registers in the slave module. These parameters
have been set up by software running on the OpenRISC CPU, and include the address of
the octree data, the base address of the frame buffer, the address of the ray parameters
data and the numbers of rays to trace (i.e., the numbers of pixel in the image). When a
start signal is received from the slave module, the scheduler will start iterating through
every pixel/ray in the image.

The first task of the scheduler is to load ray parameters from memory and assign a
core to perform the tracing of that ray. The ray parameters has been pre-calculated by
the software application and transferred to the memory on the FPGA prototype board
beforehand. These parameters should ideally have been calculated in hardware, but this
was not done in order to save effort for the design of the ray tracing cores. The parameters
loaded from memory for each pixel are the dir-mask and the root t0 and t1 values for
the ray. In total seven 32-bit words are loaded from memory for every pixel/ray.

The second task of the scheduler is to find an available core, load it with the ray parameters
and send a start signal. Once the core has finished, a color value for the corresponding
pixel is calculated. The scheduler will simply color the pixel according to the depth of
ray. I.e., the resulting image is a modified Z-buffer. Finally, the color must be written to
the frame buffer in memory.

52

8.3 Scheduler

Two ways of writing to the frame buffer was explored. Earlier designs would write each
pixel directly to memory after each core had finished. This allowed some flexibility in
which order the pixels were written, but was somewhat slow as each individual memory
write request takes a significant amount of time. The final designs used a buffer of 24
bytes. This size was chosen as it is divisible by 3 bytes, which is the number of bytes in
a pixel, and 4 bytes, which is the width of the memory bus. After eight pixels had been
written to the buffer, the whole buffer could be written at once with a six word burst
using the linear address increment burst cycle of the Wishbone bus. This solution resulted
in improved rendering speed, but as the pixels had to be written in order of increasing
memory address, there is no flexibility with regard to which order the pixels are written
to memory.

Round-robin First-available
890229 cycles 800803 cycles

Figure 8.3: Scheduling of ray tracing cores and the rendering time in simulation

Figure 8.4: First-available scheduling with 3 cores on the FPGA

Two ways of scheduling the cores was explored. A round-robin approach was tried, where
core 1 would be scheduled first, then core 2, core 3, etc., untill it runs out of cores and
loops around to core 1 again. The second approach, first-available, would simply look
for any core which is not busy and use that. These are illustrated in Figure 8.3 where a
pixel is colored by the core that traced it. As different rays require different amount of
clock cycles to trace, the first-available approach utilizies cores more efficiently, and so
this approach can use fewer clock cycles to render the same image. However, the first-
available scheduling technique could not be used in combination with the buffering and

53

Chapter 8 Hardware Implementation

burst writing of pixel values discussed previously. The reason is that if one ray takes a
particular long time to trace, once it is finished the pixel buffer could have been flushed
to memory. Experiments indicated that the round-robin scheduling in combination with
pixel buffering was faster than the first-available scheduling without buffering. A more
advanced design could conceivably combine a variation of first-available scheduling with
buffering though.

8.4 Memory Controller

M
em

or
y

C
on

tro
lle

r

Scheduler Core 1 Core 2 ...

Arbitration

Cache Memory

Wishbone Interface

Wishbone Interface Wishbone Interface Wishbone Interface ...

Figure 8.5: Memory controller overview

The memory controller arbitrates requests from the scheduler and the cores. The requests
are very different in nature. The scheduler issues both read and write requests, and uses
burst transfers to fetch ray data. The cores issues only read requests, and in addition,
these requests pass through a cache. The cache is unnecessary for the scheduler, as the
data it reads is only read once per frame. The arbitration scheme is a simple fixed-
priority scheme, where the scheduler has top priority, followed by core 1, core 2, etc.
This implies that if the bus bandwidth is saturated, the upper cores will be starved first.
This is assumed to be unproblematic, as we are only interested in the total time it takes
to render an image. If a single trace finishes faster at the expense of another it should
not impact the overall performance. This starvation effect can be observed in Figure 8.4.
Core 3 is colored blue in this picture, and we can observe that this core traces fewer pixels
as it uses more time to trace each ray.

The cache unit uses two blocks of RAM on the FPGA. These blocks are instantiated
as ordinary Verilog arrays. Although the Spartan-6 FPGA has specialized 18kbit block
RAM cells[68], they are slightly more cumbersome to use, but it would be reasonable to
use them in more refined versions of the design. One block of RAM is used to store the
cached data, and the second is used to store tags indicating the address of the data in the
cache. The size of these can theoretically be configured to any power-of-two size. The
cache unit can be configured to replace cache entries in blocks of 1, 4, 8 or 16 words, which

54

8.5 Ray Traversal Core

is the sizes which are directly supported by the Wishbone bus cycle functionality. With
block transfers the size of the tag required to identify a cache block is 32bits− log2(b)bits,
where b is the block size. Both a direct mapped cache and a two-way set associative
cache was implemented. The two-way set associative cache uses two sets of data and tag
memory.

When a core requests a word from memory, the tag memory is checked to see if the block
this words belongs to is resident in the cache. For the two-way set associative cache
both sets of tags must be checked. If the data is not present, the block is transferred
from memory using the burst cycle transfer functionality of the Wishbone bus. The first
address requested by the burst cycle is the word that the core requested, and this word
is returned to the core as soon as it is received. After this, the rest of the words in the
cache block is transferred and stored in the cache.

8.5 Ray Traversal Core

Ray Traversal Core

Wishbone Master (Read-only)Control Signals

Control FSM
Node Data Controller

Index Datapath

X-axis Datapath Y-axis Datapath Z-axis Datapath
Stack StackStack

Index Stack

Control Datapath

Node Address Stack

Node Data Stack

IDLE
INIT CALC_T

EVALFINISHED

FIRST_IDX

RESET

NEXT_EVAL

CALC_CHILD_T

Figure 8.6: Core schematic

The kernel of the ray traversal algorithm was implemented as illustrated in Figure 8.6.
The module has two interfaces. A set of control signals lets the scheduler feed the module
with the root address, dir-mask and the parameters t0 and t1. A Wishbone port, modified
for read-only operation, gives the module access to the memory. A finite state machine
(FSM) controls a collection of datapaths. The data processing related to calculating tm

55

Chapter 8 Hardware Implementation

and finding t0 and t1 for the child nodes, have been seperated into three datapaths –
one for each of the X, Y and Z components. These are implemented as a single Verilog
module which can be instantiated three times within the core. These also contain the
stack of t0/t1 values. The index datapath implements the functions FirstIndex and
NextIndex. It outputs the next index, and a flag indicating if the ray has exited the
octant or not. The node data controller is tasked with generating memory request to
fetch data for a node, and contains the node address and data stacks. It also contains a
small state machine to generate the memory requests, since far pointers requires multiple
memory requests. The control datapath performs calculations that integrate data between
all the other datapaths.

These design choices were made so that it would be easy to know which calculations
were performed in which clock cycles, and to attempt to limit the amount of calcu-
lations performed within a single clock cycle. The critical path through the combi-
natorial circuits for a calculation, should pass through no more more than one 32-bit
adder/subtracter/comparator, a couple of multiplexers and some basic logic. This should
keep the maximum clock frequency on the same level as that of the OpenRISC 32-bit
processor, meaning it is both possible and sensible to run the processor and the cores
from the same clock.

The size of the stacks can be configured, and even be completely removed. This made it
possible to evaluate the impact of stack size on the performance of the ray traversal core.
The node address, node data and index stack is instantiated from the same Verilog module.
For this module, both a shift-register and a memory-based approach was tried, and it was
found that the latter approach used less resources. For the X/Y/Z-axis datapath stacks,
a single shift-register was used, as they only required a single bit per stack level, and it
was assumed that using an addressed memory would not be beneficial here.

The Verilog code for the core module is included in the appendix.

8.6 Core State Machine

The core state machine implements the logic of the algorithm. It evaluates output from
the various calculations and generates control signals to latch the result of calculations to
registers or to initialize a pop or push of the stack and request node data from memory.
It is illustrated in Figure 8.7, where the conditions for advancing to a state is labeled at
the base of the arrows. The task of each state is given below:

• Idle: When the start signal is received, it latches all the parameters given by the
scheduler to internal registers.

• Init: Resets all working parameters to the root parameters. Initializes a request
for the root data.

• Calc-T: Calculate tm and tenter.

• First-Index: Calculate the first child index by latching output from index datap-
ath. Wait for node data request to finish.

56

8.6 Core State Machine

IDLE
INIT CALC_T

EVALFINISHED

• start_i

• data_ready
FIRST_IDX

• is_first_node

exit_node and is_root •

child_is_solid •
pass_node or •

empty_child

stack_underflow •

exit_node •

RESET

NEXT_EVAL

CALC_CHILD_T

Figure 8.7: Core state machine

• Next-Eval: Calculate the next child index and evaluate which decision take, based
on whether the ray exited the current node:

– Exited the root node: Go to Finished, and indicate that we did not hit a leaf.

– Exited the current node: If there’s a stack underflow, restart from the root by
going to Init. Otherwise, go up a level, pop the stack, and go to Calc-T.

– Otherwise: the ray did not exit the node, latch the next child index and go to
Calc-Child-T.

• Calc-Child-T: Calculate texit−child.

• Eval: Calculate pass-node, evaluate the current child node and

– If pass-node: Go to the next child index.

– If the node data indicates the child is a solid voxel: Go to Finished, and
indicate that we hit a leaf.

– If the node data indicates the child is an internal node: Go down a level, push
the stack, initiate a node data request and go to Calc-T.

– Otherwise: The child must be empty: Go to the next child index.

57

Chapter 8 Hardware Implementation

8.7 Testing

In order to test whether the design worked and to benchmark the performance impact
of various design parameters, the following test procedure was used. First, the design
was simulated using the free open source verilog simulator “Icarus Verilog”. A small
test image was rendered, and if there was a problem with the simulation, the waveform
viewer Scansion was used to inspect the output of the simulation. If the design passed
simulation, it was synthesized using Xilinx ISE.

A small test program was written for the OpenRISC processor. After the FPGA board is
reset it will initialize the HDMI output module and display a blank image on the screen.
It will wait for a start signal from a physical button or input from the USART port. It
will then set up the ray tracer module with its parameters, the ray data address and the
octree model address. It starts a clock cycle counter, and send a start signal to the ray
tracer module. It will then wait for an interrupt signal from the ray tracer module. Once
the interrupt is received, the clock cycle counter is stopped, and its value is printed over
the USART port. This value is then used to calculate the time it took to render the
image.

In addition to the SVO data, the raytracer module needs data to initialize the ray cores.
This data is the framebuffer address of the pixel represented by the ray, the direction
mask, and the root t-values root-t0 and root-t1. This data is generated by the software
implementation and saved to a file. The ray data file and SVO model file is uploaded to
the FPGA using a small software tool.

Computer

Pear NoteBook Pro

FPGA
Configuration

Software ImplementationPolygon Model

Binvox Tool

Voxel Model

raydata.bin

dragon.svo

FPGA
Upload Tool

Generate Ray

Generate SVO

Terminal Software
Cycle	 count	 results	
from	 FPGA	 via	 USART OpenRISC

Software

Display

FPGA Board

OpenRISC Processor
––––––––––

 • Initialize display
 • Start cycle counter
 • Start raytrace module
 • Wait for interrupt
 • Output cycle count
 over USART

Raytrace Module

HDMI Module PC/FPGA
Link

USART
over USB

Ray data SVO data OpenRISC
Software

Memory

Figure 8.8: Setup for testing the raytracing module on the FPGA. Software/hardware
written for this thesis indicated in teal. Third party software/hardware in orange.

There are four design parameters which could be adjusted to generate different permu-
tations of the design. The core count is the number of ray tracing cores. That is, the

58

8.7 Testing

designed can be synthesized without some of the cores illustrated in Figure 8.2, to gener-
ate designs with 1, 2, 3 or 4 cores. The stack depth is the depth of the stack as discussed
in Chapter 6.3, and can be set to any power of two up to 16. The cache block size is the
number of words which is transferred to the stack after a cache miss. The cache size is the
size of the cache in 32-bit words. The block size and cache size are the same parameters
as were profiled by the software model in Chapter 7.5. In addition, the version of the
cache with a two-way set associative replacement policy was synthesized for some of the
permutations.

These four parameters were used to generate a total of 67 permutations of the design with
the intent of investigating the impact of the design parameters and their interactions on
the performance of the design. For every permutation the design was tested by rendering
the same image of the dragon model from a specific angle. The time it took to render the
image was logged and inserted into a table of results.

To evaluate the impact on resource use of the various design parameters, five different
design with similar rendering speed, but different design parameters was synthesized and
tested. The number of resources measured in registers and LUTs was extracted from the
reports generated by the Xilinx synthesis tools.

To provide a frame of reference for the generated results, the ray tracing module was
executed once without starting the cores. The only task performed by the module was to
load the ray parameters from memory, and to write a blank pixel value to memory. This
provides the maximum theoretical speed of the design which can be achieved without
improving the scheduler, or increasing the clock speed. Furthermore, the total resources
used by a typical design has been reported. The maximum memory bandwidth of the
memory channel used by the ray tracing module was calculated by testing the time it
took to load a large dataset using block cycle transfers.

59

Chapter 8 Hardware Implementation

8.8 Results

Table 8.1: Asorted results and constraints

FPGA: Spartan-6 XC6SLX45
Available registers: 54 576
Available LUTs: 27 288

System clock speed: 50 MHz
Memory bandwidth: 95 MB/s
Output image resolution: 640 x 480 pixels
Number of pixels/rays: 307 200

Minimum “real-time” speed: 24fps / 42ms
Maximum theoretical speed: 150ms
Time to load ray data: 130ms

Best achieved speed: 303ms / 3.3fps
Best achieved rays / second: 1 013 760

Avg. clock cycles per ray @ 24fps : 7
Avg. clock cycles per ray @ 3.3fps: 50

Typical total resource utilization

Total number of registers used: 6 919 (12%)
Total number of LUTs used: 12 849 (47%)
OpenRISC CPU registers used: 2 383
OpenRISC CPU LUTs used: 6 695
Ray tracer registers used: 2 294
Ray tracer LUTs used: 3 412

State of the art GPU: GeForce GTX 680[61]

Release date: March 22, 2012
Core clock speed: 1 006 MHz
Memory bandwidth: 192 GB/s

60

8.8 Results

Table 8.2: Results from FPGA testing. Smaller numbers are better.

A: Cache block size vs cache size

Cache type: Direct mapped
Core count: 1
Stack size: 8

Cache
size

Block size

1 4 8 16

128 741ms 921ms 1085ms 1070ms
512 605ms 696ms 796ms 736ms
1024 582ms 641ms 641ms 651ms

B: Stack size vs cache size

Cache type: Direct mapped
Block size: 1
Core count: 2

Stack
size

Cache size

None 128 512 1024

None 1910ms 822ms 646ms 617ms
2 1230ms 566ms 455ms 434ms
4 1090ms 505ms 413ms 394ms
8 1053ms 491ms 403ms 385ms
16 1053ms 490ms 403ms 385ms

C: Stack size vs core count

Cache type: Direct mapped
Block size: 1
Cache size: 128

Stack
size

Core count

1 2 3 4

None 1257ms 822ms 728ms 712ms
2 831ms 566ms 526ms 526ms
4 756ms 505ms 473ms 478ms
8 741ms 491ms 458ms 463ms
16 741ms 490ms 457ms 463ms

61

Chapter 8 Hardware Implementation

D: Cache size vs core count

Cache type: Direct mapped
Block size: 1
Stack size: 8

Cache
size

Core count

1 2 3 4

None 1044ms 1053ms 1026ms 1052ms
128 741ms 491ms 458ms 463ms
512 605ms 403ms 365ms 358ms
1024 582ms 385ms 346ms 336ms

E: Cache size vs core count

Cache type: Two-way
Block size: 1
Stack size: 8

Cache
size

Core count

1 2 3 4

128 669ms 446ms 402ms 394ms
512 549ms 365ms 324ms 312ms
1024 539ms 357ms 315ms 303ms

Table 8.3: Resource use of a selection of designs with approximately 440ms render speed.

Cores
Stack
size

Cache
size

Cache
type*

Render
speed

Registers LUTs
LUT-
RAM

2 8 128
Two-
way

446ms 2358 3357 210

2 8 256 DM 430ms 2294 3257 340
2 2 512 DM 455ms 2258 3541 592
3 8 128 DM 458ms 3078 4221 238
3 2 256 DM 438ms 4353 4353 368

*DM = Direct Mapped, Two-way = Two way set associative

62

8.8 Results

(a) The Stanford Dragon

(b) The Stanford Bunny (c) The Happy Buddha

Figure 8.9: Rendered images extracted from the FPGA implementation

63

Chapter 8 Hardware Implementation

8.9 Discussion

The test results show that with a direct mapped cache, greater block size does not in fact
improve rendering speed, even with large cache sizes (Table 8.2A). The small improve-
ments seen with larger cache sizes in the software model is not apparent here. This can
probably be attributed to inaccuracies in the software cache model. It does appear that
a 16 word block size is slightly better than an 8 word block size, and one can speculate
if even larger block sizes would improve performance further. It is possible that the two
way set associative cache would have benefited from larger cache block sizes, but as the
the way set associative cache was implemented late in the thesis work, this has not been
explored.

The relationships between the stack size and the cache size (Table 8.2B) show that larger
stack sizes improve the performance of the design even when the cache size is large. With
both no cache and a 512 word cache, the design is almost twice as fast with a 8 level cache
compared to no cache. There is no benefit to have a 16 level cache compared to 8 levels,
which is not surprising as the octree is only 10 levels deep. There is a low probability
that a restart will be necessary when the stack is almost as deep as the octree, and if a
restart does occur it is relatively cheap.

Table 8.2C shows that increasing stack size and core counts seems to improve performance
mostly independently when in the presence of a small cache. However, the jump from 3
to 4 cores seems to provide no performance benefit. In some instances it even decreases
performance, but this difference is so small that no conclusions can be drawn from it.
It is probably due to random variations in the rendering speed. The reason why more
cores do not necessarily lead to better performance is probably due to congestion on the
memory bus. When the memory bus is saturated the cores spend most their time waiting
for access to the memory bus.

The same congestion issues can be observed in Table 8.2D, where cache size and core
count is contrasted. These results illustrate that the larger the cache – the more cores
the memory bus can support. With no cache, adding extra cores does not improve
performance. With a cache, adding a second core improves rendering speed significantly.
Although adding cores does seem to add some improvement for larger cache sizes, the
most dramatic improvement is from 1 to 2 cores.

The same test of cache size vs. core count was done using a two way set associative cache
(Table 8.2E). The results indicate a significant improvement across all configurations.
This cache seems to improve utilization of the cores without increasing the cache size.
This table also shows the design that achieved the best performance in the tests that were
performed: a design with 4 cores, 1024 word cache, 1 word cache block size and a two way
set associative cache. Larger cache size were not tested due to issues with synthesizing.

Table 8.3 provides some interesting data on the resource use of the different design pa-
rameters. For instance, the first two rows illustrate that a two way set associative cache
requires more LUTs but fewer LUT-RAMs. The reason is probably that the set asso-
ciative cache requires an extra comparison unit and some extra logic. On the Spartan-6
FPGA the LUT-RAMs seem to be interchangeable with LUTs, so the version with a two
way set associative cache wins on that measure. But it also requires more registers. In

64

8.9 Discussion

essence, the resource use is very similar between these designs. However, it is possible
that the benefit of a two way set associative cache increases as the cache size increases,
since the overhead of the two way set associative cache should be somewhat constant.

Looking at the design with a small stack size, it seems clear that it is better to have a
large stack size and a smaller cache, than a small stack and a larger cache. It is also clear
that among those designs the jump from 2 to 3 cores is not economical.

If we assume the design can achieve real time speed with a 640 x 480 image, by improving
the scheduler and the cache system further, then we can try to estimate whether the design
should allow real time speeds at higher resolutions when implemented with state of the
art integrated circuit technology. A commercial system should be able to render a full
HD image at a resolution of 1920 x 1080 pixels, which would imply that we need to trace
at least 2 million pixels per frame. As we have seen, memory bandwidth is the critical
bottleneck in the design, and it is not unreasonable to assume that the performance scales
somewhat linearly with the memory bandwidth. A state of the art GPU has more than
2 000 times more memory bandwidth than our system[61], which could potentially allow
us to trace 2 billion rays per second, or 84 million rays per frame at 24 frames per second.
This gives us 42 rays per pixel with full HD resolution, which should be enough for a wide
range of effects, e.g., multiple light sources, reflections, ambient lighting and anti-aliasing.

To achieve this throughput the number of cores would probably also have to be increased,
but it is difficult to evaluate how many cores could be included on a modern GPU. The
NVIDIA GeForce GTX 680 GPU contains 1536 CUDA cores[33], which are more capable
than the ray tracing cores presented in this thesis. A similar anecdote, is that Laine
and Karras [29] achieved 24-170 million rays per second on a modern GPU by using
software running on the CUDA cores. If the ray tracing cores are significantly smaller
than the CUDA cores, and can perform the ray tracing algorithm faster, then that is also
an indication that a GPU could conceivably integrate enough cores to achieve real time
speed for high resolutions within a reasonable area.

There are many other factors that could affect this estimate. The GPU will probably
require much of the memory bandwidth to load color/texture data. In addition, some
games run at 60 frames per second. However, smarter caching and other optimizations
could allow the design to be even faster without increasing bandwidth requirements.
Furthermore, the SVO model that was rendered in this thesis was only 10 levels deep,
but if a game is to use the technique to render a vast landscape, it could require an SVO
which is much deeper, and the performance impact of rendering a larger SVO has not
been analyzed.

65

Chapter 8 Hardware Implementation

66

Chapter 9

Conclusions

In this thesis the outline of a practical design for ray tracing of sparse voxel octree in
hardware has been presented. The final system approaches real-time speeds at a low
clock frequency, and with further work it is possible that this milestone could be passed
without increasing the clock frequency. There is much work left before the design is a
complete and optimal system for ray tracing of SVOs in hardware. There are also many
unknown factors that affect the performance should the design be integrated in a modern
GPU. However, the results shows that the technique is promising.

We have seen the value of maintaining a software version of the algorithm to aid in the
design of a hardware implementation. It generated input data, implemented parts of the
algorithm which had not been done in hardware yet, was used to debug simulations of the
hardware and provided data which could inform the choice of design parameters. Most
importantly the software version demonstrated that rasterization and ray tracing could
potentially be integrated in a hybrid rendering system, which would be essential in a
commercially viable design.

The use of the ORPSoC system has shown the utility of open source in hardware design.
It provided a complete and functional system for the chosen FPGA prototype board,
which greatly simplified the process of creating a ray tracing system. The OpenRISC
CPU proved very valuable in debugging the design, and adjusting the functionality of
the system on the fly. In addition, the open source FPGALink software/firmware allowed
for easy and efficient communication with the board. The verilog simulator was open
source as well. In conclusion, almost all the intellectual property used in this thesis was
community created open source software and hardware. An added benefit of this was
that most of the tools used was cross-platform, allowing development on any of the three
big operating systems. Only the commercial Xilinx synthesis tools were limited to just
Windows and Linux.

The work on hardware optimizations have shown that the algorithm explored in this
thesis can be optimized in ways that are quite specific to hardware. By doing a careful
evaluation of the information required to implement the stack for the algorithm, we can
drastically reduce the number of bits required for each level of the stack. The results

67

Chapter 9 Conclusions

from the hardware design testing shows the importance of evaluating the impact of design
parameters. Using a stack which is at least half the size of the octree is one of the most
economical ways of boosting performance. Using a data cache is essential to improving
performance, both by improving the speed of a single core, and to support more cores
using the same memory bus. Finally, using a two way set associative cache improves the
utilization of the cores without increasing cache size.

The future of ray tracing in hardware is still uncertain. First, there is the question of
whether one should implement ray tracing of polygon models, as demonstrated by Woop
et al. [64], rather than using sparse voxel octrees. It is also conceivable that one could
construct a system which was flexible enough to do both. Second, it is possible that the
software implementations on GPGPUs, such as that of Laine and Karras [29], will be
fast enough on future GPGPUs, and that a dedicated hardware solution will be deemed
too inflexible. There are many open questions, and more work is needed before we can
conclude whether ray tracing in hardware is truly practical or not.

9.1 Future Work

We have not looked thoroughly at the possible data structures for sparse voxel octrees.
As indicated by the experiments, memory bandwidth is crucial to performance, and a
more efficient data structure could reduce the impact on bandwidth. The challenge is to
create a data structure which can efficiently compress the SVO, while being fast enough
to decode in hardware without excessive resources. The data structure would have to
incorporate and compress color data as well.

A large scale system for ray tracing of SVOs should also support streaming of voxel data
from primary storage, as was demonstrated in software by Crassin et al. [10]. To use SVOs
to model a large terrain could require tens of gigabytes if not more, and it is unreasonable
to expect to hold all the data in memory at once. Enabling streaming of voxel data will
present additional design challenges in both the design of the hardware and the data
structure.

There is currently very little research on the animation and deformation of SVOs[5].
Animation of SVOs could increase the number of applications of the technique. To enable
this, one should perhaps look at accelerating the construction of SVOs in hardware as
well. If one could dynamically modify the SVOs in real time one could for instance create
tire tracks in the dirt as a car drives across it. This is also something worth considering
when researching data structures for SVOs.

If these techniques are to be implemented in dedicated hardware on GPUs, one should
try to enable as many uses as possible to justify the cost. Octrees are a space partitioning
structure, and as mentioned in the chapter on space partitioning, these structures have
many uses in computer games. It could be wise to attempt to design the ray traversal
module in a way that enables other uses.

It is clear that the design of the caches for the ray tracing cores has a very large impact
on performance. Introducing cache hierarchies could further improve performance. One
could introduce a small private cache to each core, have a set of cores share a larger

68

9.1 Future Work

cache, and have several sets of cores share an even larger one. The interplay between
the scheduler and the cache is also interesting. One could investigate a scheduler which
starts a set of cores at the exact same time. If the cores are tracing coherent rays they
should access some of the same node data at the same time, which could enable additional
optimizations. Finally, there could yet be smart optimizations to the cache which could
exploit the specific memory access patterns of the ray tracing cores. There is still much
research that could be done on this subject.

69

Bibliography

[1] IEEE Standard for Floating-Point Arithmetic (754-2008), 2008.

[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, us ed edition, January 1986.

[3] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-Time Ren-
dering, Third Edition. AK Peters, 3 edition, July 2008.

[4] Mohit Arora. The Art of Hardware Architecture: Design Methods and Techniques
for Digital Circuits. Springer, 2012 edition, October 2011.

[5] Dennis Bautembach. Animated Sparse Voxel Octrees, 2011. URL http://

bautembach.de/wordpress/wp-content/uploads/asvo.pdf. Retrieved on 2012-
06-17.

[6] David Benson, Joel Davis, David Benson, and Joel Davis. Octree textures.
In SIGGRAPH ’02 Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, pages 785–790, New York, USA, July 2002. ACM.

[7] J Bittner, V Havran, and P Slavik. Hierarchical Visibility Culling with Oc-
clusion Trees. In Computer Graphics International, pages 207–219. IEEE Comput.
Soc, 1998.

[8] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high qual-
ity rendering of point sampled geometry. Eurographics Association, July 2002.

[9] Per Christensen, Julian Fong, David Laur, and Dana Batali. Ray Tracing
for the Movie ‘Cars’. In 2006 IEEE Symposium on Interactive Ray Tracing, pages
1–6. IEEE, 2006.

[10] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann.
Gigavoxels: Ray-Guided Streaming for Efficient and Detailed Voxel Rendering. In
Proceedings of the 2009 symposium on Interactive 3D graphics and games, pages
15–22, New York, NY, USA, January 2009.

[11] Digilent Inc. Atlys Booard Reference Manual, 2011. URL http://digilent.us/

Data/Products/ATLYS/Atlys_rm.pdf. Retrieved on 2011-12-16.

[12] Daniel D Gajski, Nikil D Dutt, Allen C-H Wu, and Steve Y-L Lin. High-
Level Synthesis: Introduction to Chip and System Design. Springer, 1st edition,
February 1992.

70

http://bautembach.de/wordpress/wp-content/uploads/asvo.pdf
http://bautembach.de/wordpress/wp-content/uploads/asvo.pdf
http://digilent.us/Data/Products/ATLYS/Atlys_rm.pdf
http://digilent.us/Data/Products/ATLYS/Atlys_rm.pdf

BIBLIOGRAPHY

[13] H Ghasemzadeh, S Mazrouee, and M R Kakoee. Modified pseudo LRU re-
placement algorithm. In 13th Annual IEEE International Symposium and Workshop
on Engineering of Computer-Based Systems (ECBS’06), pages 6 pp.–376. IEEE,
2006.

[14] Andrew S Glassner. An introduction to ray tracing. Academic Press, 1989.

[15] Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias Guitián. A
single-pass GPU ray casting framework for interactive out-of-core rendering of mas-
sive volumetric datasets. The Visual Computer, 24(7-9):797–806, 2008.

[16] Eric Haines and Qingnan Zhou. binvox 3D mesh voxelizer, 2012. URL http:

//www.cs.princeton.edu/~min/binvox/. Retrieved on 2012-05-22.

[17] John L Hennessy and David A Patterson. Memory Hierarchy Design. In Com-
puter Architecture: A Quantitative Approach, 4th Edition, pages 288–342. Morgan
Kaufmann, September 2006.

[18] Charles Hollemeersch, Bart Pieters, Peter Lambert, and Rik Van de
Walle. Accelerating virtual texturing using CUDA. In GPU Technology Conference,
2009.

[19] Charles-Frederik Hollemeersch, Bart Pieters, Aljosha Demeule-
meester, Frederik Cornillie, Bert Van Semmertier, Erik Mannens, Pe-
ter Lambert, Piet Desmet, and Rik Van de Walle. Infinitex: An interactive
editing system for the production of large texture data sets. Computers &
Graphics, 34(6):643–654, December 2010.

[20] H Hoppe. Smooth view-dependent level-of-detail control and its application to
terrain rendering. In Visualization ’98, pages 35–42,. IEEE, 1998.

[21] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Hanra-
han. Interactive kd tree GPU raytracing. In Symposium on Interactive 3D Graphics
and Games, Seattle, Washington, 2007.

[22] Fumihiko Ino, Jun Gomita, Yasuhiro Kawasaki, and Kenichi Hagihara. A
GPGPU Approach for Accelerating 2-D/3-D Rigid Registration of Medical Images. In
Minyi Guo, Laurence Yang, Beniamino Di Martino, Hans Zima, Jack Dongarra, and
Feilong Tang, editors, Parallel and Distributed Processing and Applications, pages
939–950. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006.

[23] Arie Kaufman. Volume visualization. The Visual Computer, 6(1):1–1, January
1990.

[24] Shoab Ahmed Khan. Digital Design of Signal Processing Systems: A Practical
Approach. Wiley, 1 edition, February 2011.

[25] Aaron M Knoll, Ingo Wald, and Charles D Hansen. Coherent multiresolu-
tion isosurface ray tracing. The Visual Computer, 25(3):209–225, March 2008.

[26] Isreal Koren. Computer arithmetic algorithms. Ak Peters Series. A K Peters,
2002.

71

http://www.cs.princeton.edu/~min/binvox/
http://www.cs.princeton.edu/~min/binvox/

BIBLIOGRAPHY

[27] Stefan Kristiansson. ORPSoC on Digilent Atlys, 2012. URL http://www.

chokladfabriken.org/projects/orpsoc-atlys. Retrieved on 2012-06-16.

[28] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA Architecture: Survey
and Challenges. Foundations and Trends R© in Electronic Design Automation, 2(2):
135–253, 2007.

[29] Samuli Laine and Tero Karras. Efficient Sparse Voxel Octrees. Symposium on
Interactive 3D Graphics and Games, February 2010.

[30] Samuli Laine and Tero Karras. Efficient Sparse Voxel Octrees – Analysis,
Extensions, and Implementation, February 2010. URL http://code.google.com/

p/efficient-sparse-voxel-octrees/.

[31] Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics,
9(3):245–261, July 1990.

[32] Chris McClelland. FPGALink, 2011. URL http://www.makestuff.eu/

wordpress/?page_id=1400. Retrieved on 2011-12-15.

[33] NVIDIA Corporation. Nvidia geforce gtx 680, 2012. URL http://www.geforce.

com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf. Re-
trieved on 20212-06-16.

[34] NVIDIA Corporation. High Performance Computing, 2012. URL http://www.

nvidia.com/object/tesla-supercomputing-solutions.html. Retrieved on 2012-
05-18.

[35] OpenCores. Wishbone B4 - Wishbone System-on-chip (SoC) Interconnection Ar-
chitecture for Portable IP Cores. OpenCores, 2011. URL http://opencores.org/

opencores,wishbone. Retrieved on 2011-12-15.

[36] OpenCores. OpenRISC 1200 IP Core Specification (Preliminary Draft). Open-
Cores, 2012. URL http://opencores.org/openrisc,or1200. Retrieved on 2012-
06-15.

[37] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Architectures: Sys-
tem on Chip Interconnect (Systems on Silicon). Morgan Kaufmann, 1 edition, May
2008.

[38] Jingliang Peng, C.-C. Jay Kuo, Jingliang Peng, and C.-C. Jay Kuo.
Geometry-guided progressive lossless 3D mesh coding with octree (OT) decompo-
sition. ACM Transactions on Graphics (TOG), 24(3):609–616, July 2005.

[39] Naila Rahman. Algorithms for Hardware Caches and TLB. In Ulrich Meyer, Peter
Sanders, and Jop Sibeyn, editors, Lecture Notes in Computer Science, pages 171–192.
Springer Berlin Heidelberg, Berlin, Heidelberg, February 2003.

[40] S. Raje and R. A. Bergamaschi. Generalized resource sharing. IEEE Computer
Society, November 1997.

[41] J. Revelles, C. Ureña, and M. Lastra. An Efficient Parametric Algorithm for
Octree Traversal. Journal of WSCG, pages 212–219, January 2000.

72

http://www.chokladfabriken.org/projects/orpsoc-atlys
http://www.chokladfabriken.org/projects/orpsoc-atlys
http://code.google.com/p/efficient-sparse-voxel-octrees/
http://code.google.com/p/efficient-sparse-voxel-octrees/
http://www.makestuff.eu/wordpress/?page_id=1400
http://www.makestuff.eu/wordpress/?page_id=1400
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://opencores.org/opencores,wishbone
http://opencores.org/opencores,wishbone
http://opencores.org/openrisc,or1200

BIBLIOGRAPHY

[42] Kristof Römisch. Sparse voxel octree ray tracing on the GPU. Master’s thesis,
Aarhus University, 2009.

[43] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J. Paul, and
Philipp Slusallek. Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, page 95, New York, New York, USA, 2004. ACM Press.

[44] Jörg Schmittler, Daniel Pohl, Tim Dahmen, Christian Vogelgesang,
and Philipp Slusallek. Realtime ray tracing for current and future games. In
ACM SIGGRAPH 2005 Courses, page 23, New York, New York, USA, 2005. ACM
Press.

[45] Ruwen Schnabel and Reinhard Klein. Octree-based Point-Cloud Compression.
In Eurographics Symposium on Point-Based Graphics (2006). Institut für Informatik
II, Universität Bonn, Germany, 2006.

[46] D Sheldon, R Kumar, F Vahid, D Tullsen, and R Lysecky. Conjoining Soft-
Core FPGA Processors. In Computer-Aided Design, 2006. ICCAD ’06. IEEE/ACM
International Conference on, pages 694–701, 2006.

[47] Ryan Shrout. John Carmack on id Tech 6, Ray Tracing, Consoles, Physics
and more, 2008. URL http://www.pcper.com/reviews/Graphics-Cards/

John-Carmack-id-Tech-6-Ray-Tracing-Consoles-Physics-and-more. Re-
trieved on 2012-06-15.

[48] Ryan Shrout. John Carmack Interview: GPU Race, Intel Graphics, Ray Trac-
ing, Voxels and more!, 2011. URL http://www.pcper.com/reviews/Editorial/

John-Carmack-Interview-GPU-Race-Intel-Graphics-Ray-Tracing-Voxels-and-more.
Retrieved on 2012-06-15.

[49] John Spackman and Philip Willis. The SMART navigation of a ray through an
oct-tree. Computers & graphics, 15(2):185–194, 1991.

[50] Stanford Computer Graphics Laboratory. Scanning and surface reconstruc-
tion, 2012. URL http://graphics.stanford.edu/data/3Dscanrep/. Retrieved on
2012-05-22.

[51] Nilo Stolte and René Caubet. Discrete Ray-Tracing of Huge Voxel Spaces.
Computer Graphics Forum, 14(3):383–394, August 1995.

[52] K R Subramanian and D S Fussell. Applying Space Subdivision Techniques to
Volume Rendering. In First IEEE Conference on Visualization: Visualization ‘90,
pages 150–159,. IEEE Comput. Soc. Press, 1990.

[53] TSB Sudarshan and RA Mir. Highly efficient LRU implementations for high
associativity cache memory. In Proceedings of 12th . . . , 2004.

[54] Kelvin Sung. A DDA Octree Traversal Algorithm for Ray Tracing. In Eurographics
Conference Proceedings 1991, 1991.

[55] L Szirmay-Kalos, V Havran, and B Balázs. On the efficiency of ray-shooting
acceleration schemes. In Proceedings of the 18th . . . , 2002.

73

http://www.pcper.com/reviews/Graphics-Cards/John-Carmack-id-Tech-6-Ray-Tracing-Consoles-Physics-and-more
http://www.pcper.com/reviews/Graphics-Cards/John-Carmack-id-Tech-6-Ray-Tracing-Consoles-Physics-and-more
http://www.pcper.com/reviews/Editorial/John-Carmack-Interview-GPU-Race-Intel-Graphics-Ray-Tracing-Voxels-and-more
http://www.pcper.com/reviews/Editorial/John-Carmack-Interview-GPU-Race-Intel-Graphics-Ray-Tracing-Voxels-and-more
http://graphics.stanford.edu/data/3Dscanrep/

BIBLIOGRAPHY

[56] Branislav Śıleš. Atomontage Engine - Home, 2012. URL http://www.

atomontage.com/. Retrieved on 2012-05-18.

[57] JMP Van Waveren. Van Waveren: id Tech 5 Challenges-From Texture Virtualiza...
- Google Scholar. In SIGGRAPH 2009: . . . , 2009.

[58] Kyu-Young Whang, Ju-Won Song, Ji-Woong Chang, Ji-Yun Kim, Wan-
Sup Cho, Chong-Mok Park, and Il-Yeol Song. Octree-R: an adaptive octree
for efficient ray tracing. IEEE Transactions on Visualization and Computer Graphics,
1(4):343–349, 1995.

[59] Wikipedia. Rasterization. URL http://en.wikipedia.org/wiki/Rasterisation.
Retrieved on 2012-06-17.

[60] Wikipedia. Geforce 500 series, 2012. URL http://en.wikipedia.org/wiki/

GeForce_500_Series. Retrieved on 2012-03-22.

[61] Wikipedia. Geforce 600 series, 2012. URL http://en.wikipedia.org/wiki/

GeForce_600_Series. Retrieved on 2012-06-16.

[62] Wikipedia. Nvidia tesla, 2012. URL http://en.wikipedia.org/wiki/Nvidia_

Tesla. Retrieved on 2012-05-18.

[63] Wayne Wolf. Computers as Components, Second Edition: Principles of Embedded
Computing System Design. Morgan Kaufmann, 2 edition, June 2008.

[64] Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU: A Pro-
grammable Ray Processing Unit for Realtime Ray Tracing. ACM SIGGRAPH 2005
Papers, pages 434–444, April 2005.

[65] Xilinx Inc. LogiCORE IP Adder/Subtracter v11., 2011. URL http://www.xilinx.

com/support/documentation/ip_documentation/addsub_ds214.pdf. Retrieved
on 2012-03-22.

[66] Xilinx Inc. LogiCORE IP Floating-Point Operator v5.0, 2011. URL
http://www.xilinx.com/support/documentation/ip_documentation/

floating_point_ds335.pdf. Retrieved on 2012-03-22.

[67] Xilinx Inc. LogiCORE IP Multiplier v11.2, 2011. URL http://www.xilinx.com/

support/documentation/ip_documentation/mult_gen_ds255.pdf. Retrieved on
2012-03-22.

[68] Xilinx Inc. Spartan-6 Family Overview, 2011. URL http://www.xilinx.com/

support/documentation/data_sheets/ds160.pdf. Retrieved on 2011-12-16.

74

http://www.atomontage.com/
http://www.atomontage.com/
http://en.wikipedia.org/wiki/Rasterisation
http://en.wikipedia.org/wiki/GeForce_500_Series
http://en.wikipedia.org/wiki/GeForce_500_Series
http://en.wikipedia.org/wiki/GeForce_600_Series
http://en.wikipedia.org/wiki/GeForce_600_Series
http://en.wikipedia.org/wiki/Nvidia_Tesla
http://en.wikipedia.org/wiki/Nvidia_Tesla
http://www.xilinx.com/support/documentation/ip_documentation/addsub_ds214.pdf
http://www.xilinx.com/support/documentation/ip_documentation/addsub_ds214.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

Appendix A

Attached Files

raycaster/ -- The Verilog source of the ray caster module

raycast_core_axis_dp.v -- The datapath of the per-axis calculations

raycast_core_idx.v -- The datapath of the index calculations

raycast_core_master.v -- The memory request unit of the core

raycast_core.v -- The ray casting core

raycast_ctrl.v -- The scheduler / control unit

raycast_master.v -- The ray caster memory interface / cache

raycast_slave.v -- The slave interface

raycaster.v -- The ray caster top level module

oppgave.pdf -- This report

orpsoc/ -- HDL, Software and Makefiles for the full ORPSoC-based system

sim/ -- The bench for simulation of the hardware module

out/ -- The source and synthesis output of the designs

data/ -- The octree and ray data used to test the designs

Octree2/ -- The software application

orlink/

hw/ -- HDL code and Sim. bench for orlink

sw/ -- CLI software to communicate with orlink

75

Appendix B

The Software Ray Tracing
Core Functions

RayCastOutput rayCast(Ray r)

{

Ray r2 = r;

int dir_mask=0;

// if (fabs(r.o.x)>o_max ||

// fabs(r.o.y)>o_max ||

// fabs(r.o.z)>o_max)

// throw;

if (r.d.x==0)

r.d.x+=0.001;

if (r.d.x<0.0) {

r.o.x = -r.o.x;

r.d.x = -r.d.x;

dir_mask |= 4;

}

if (r.d.y==0)

r.d.y+=0.001;

if (r.d.y<0.0) {

r.o.y = -r.o.y;

r.d.y = -r.d.y;

dir_mask |= 2;

}

if (r.d.z==0)

r.d.z+=0.001;

if (r.d.z<0.0) {

r.o.z = -r.o.z;

r.d.z = -r.d.z;

dir_mask |= 1;

}

float tx0, tx1, ty0, ty1, tz0, tz1;

tx0 = (-1-r.o.x)/r.d.x;

tx1 = (1-r.o.x)/r.d.x;

76

ty0 = (-1-r.o.y)/r.d.y;

ty1 = (1-r.o.y)/r.d.y;

tz0 = (-1-r.o.z)/r.d.z;

tz1 = (1-r.o.z)/r.d.z;

if (debug_ray) {

// printf("Init:\n\t%f %f %f\n\t%f %f %f\n",

// tx0, ty0, tz0,

// tx1, ty1, tz1);

printf("\tdir_mask: %d\n", dir_mask);

}

// float t_min = min(tx0,min(ty0,tz0));

// float t_max = max(tx1,max(ty1,tz1));

// float t_absmax = max(abs(t_min),abs(t_max));

float t_enter = max(max(tx0,ty0),tz0);

float t_exit = min(min(tx1, ty1), tz1);

tx0 *= tnum_scale; ty0 *= tnum_scale; tz0 *= tnum_scale;

tx1 *= tnum_scale; ty1 *= tnum_scale; tz1 *= tnum_scale;

tnum_clip(&tx0);

tnum_clip(&ty0);

tnum_clip(&tz0);

tnum_clip(&tx1); tnum_clip(&ty1); tnum_clip(&tz1);

assert(tx0<tnum_max && tx0>tnum_min);

assert(ty0<tnum_max && ty0>tnum_min);

assert(tz0<tnum_max && tz0>tnum_min);

assert(tx1<tnum_max && tx1>tnum_min);

assert(ty1<tnum_max && ty1>tnum_min);

assert(tz1<tnum_max && tz1>tnum_min);

if (debug_ray)

printf("%.8x %.8x %.8x\n%.8x %.8x %.8x\n\n",

(tnum)tx0, (tnum)ty0, (tnum)tz0,

(tnum)tx1, (tnum)ty1, (tnum)tz1);

if (t_enter < t_exit) {

OctreeCursor cursor = ot->newRootCursor();

cursor.cache = cache;

if (exportMode){

exportRay(tx0,ty0,tz0,

tx1,ty1,tz1,

dir_mask);

return RayCastOutput(0,0);

}

else

return rayCastCore(r2,

tx0,ty0,tz0,

tx1,ty1,tz1,

dir_mask,

cursor);

}

else {

77

Chapter B The Software Ray Tracing Core Functions

if (exportMode)

exportRay(0,0,0,0,0,0, (1<<31));

}

if (debug_ray) printf("End.\n");

return RayCastOutput(0,false);

}

RayCastOutput rayCastCore(Ray ray,

tnum r_tx0, tnum r_ty0, tnum r_tz0,

tnum r_tx1, tnum r_ty1, tnum r_tz1,

int dir_mask,

OctreeCursor r_cur)

{

int level;

int idx, idx_flip;

bool is_first_node;

bool exits_node;

bool pass_node;

tnum t_start = 0;

tnum t_enter;

tnum t_exit_child;

tnum tx0, ty0, tz0;

tnum tx1, ty1, tz1;

tnum txm, tym, tzm;

tnum tx0_child, ty0_child, tz0_child;

tnum tx1_child, ty1_child, tz1_child;

bool is_leaf;

tnum t_out;

OctreeCursor cur;

S_INIT:

cur = r_cur;

tx0 = r_tx0; ty0 = r_ty0; tz0 = r_tz0;

tx1 = r_tx1; ty1 = r_ty1; tz1 = r_tz1;

is_first_node = true;

level = 0;

exits_node = false;

stack->reset();

if (debug_ray)

printf("Init - t_start: %.8x\n", t_start);

goto S_CALC_T;

S_CALC_T:

txm = (tx0+tx1)/2;

tym = (ty0+ty1)/2;

tzm = (tz0+tz1)/2;

t_enter = max(tx0,max(ty0,tz0));

78

if (debug_ray)

printf("t_enter: %.8x\n", t_enter);

if (is_first_node)

goto S_FIRST_IDX;

else

goto S_NEXT_IDX;

S_FIRST_IDX:

idx = (txm < t_enter)<<2 | (tym < t_enter)<<1 | (tzm < t_enter);

exits_node = false;

is_first_node = false;

if (debug_ray)

printf("FrstIdx: %d / %d\n", idx, idx^dir_mask);

goto S_DATA_WAIT;

S_DATA_WAIT:

// if (got_data)

if (debug_ray)

printf("Data: %.8x : %.8x\n", cur.adr*4, *((int*)cur.node));

goto S_CALC_CHILD_T;

S_NEXT_IDX:

exits_node = false;

if (t_exit_child == tx1_child) {

if (idx & 4)

exits_node = true;

else

idx = idx ^ 4;

}

else if (t_exit_child == ty1_child) {

if (idx & 2)

exits_node = true;

else

idx = idx ^ 2;

}

else {

if (idx & 1)

exits_node = true;

else

idx = idx ^ 1;

}

if (debug_ray)

printf("NextIdx: %d / %d exit: %d\n", idx, idx^dir_mask, exits_node);

goto S_NEXT_EVAL;

S_NEXT_EVAL:

if (exits_node) {

if (level==0) {

is_leaf = false;

goto S_FINISHED;

}

else if (stack->empty()) {

if (debug_ray)

printf("Underflow\n\n");

restart_count++;

t_start = t_exit_child;

79

Chapter B The Software Ray Tracing Core Functions

goto S_INIT;

}

else {

if (debug_ray) printf("Pop\n");

stack->pop(&cur,

&tx0, &ty0, &tz0,

&tx1, &ty1, &tz1,

&idx);

level--;

goto S_CALC_T;

}

}

else {

goto S_CALC_CHILD_T;

}

S_CALC_CHILD_T:

// if (debug_ray) printf("Idx %d / %d\n", idx, idx ^ dir_mask);

tx0_child = (idx&4) ? txm : tx0;

tx1_child = (idx&4) ? tx1 : txm;

ty0_child = (idx&2) ? tym : ty0;

ty1_child = (idx&2) ? ty1 : tym;

tz0_child = (idx&1) ? tzm : tz0;

tz1_child = (idx&1) ? tz1 : tzm;

t_exit_child = min(tx1_child,min(ty1_child,tz1_child));

goto S_EVAL;

S_EVAL:

idx_flip = idx ^ dir_mask;

pass_node = t_exit_child <= t_start;

if (pass_node) {

goto S_NEXT_IDX;

}

else if (cur.childIsFilled(idx_flip) || level==terminLevel) {

tx0 = tx0_child; ty0 = ty0_child; tz0 = tz0_child;

tx1 = tx1_child; ty1 = ty1_child; tz1 = tz1_child;

is_leaf = true;

goto S_FINISHED;

}

else if (cur.childIsValid(idx_flip)) {

if (debug_ray) {

// printf("%.8x %.8x %.8x\n%.8x %.8x %.8x\n",

// tx0, ty0, tz0, tx1, ty1, tz1);

if (cur.childPtrIsFar())

printf("Far %x\n", cur.farPtr());

printf("Push\n\n");

}

if (cur.childPtrIsFar()) {

far_count++;

}

push_count++;

stack->push(cur,

tx0, ty0, tz0,

tx1, ty1, tz1,

idx);

tx0 = tx0_child; ty0 = ty0_child; tz0 = tz0_child;

tx1 = tx1_child; ty1 = ty1_child; tz1 = tz1_child;

80

level++;

is_first_node = true;

cur = cur.getChild(idx_flip);

goto S_CALC_T;

}

else {

goto S_NEXT_IDX;

}

S_FINISHED:

t_enter = max(tx0,max(ty0,tz0));

t_out = is_leaf ? t_enter : t_exit_child;

if (debug_ray) {

printf("Leaf: %d %.8x\n\n\n", is_leaf, t_out);

}

return RayCastOutput((float)t_out/(float)tnum_scale, is_leaf);

}

81

Appendix C

The Ray Tracing Core Module

// TODO: Implement error when level overflows

‘include "raycast_defines.v"

module raycast_core

(

clk, rst,

start_i,

root_adr_i,

dir_mask_i,

tx0_i, ty0_i, tz0_i,

tx1_i, ty1_i, tz1_i,

m_wb_adr_o, m_wb_dat_i,

m_wb_cyc_o, m_wb_stb_o,

m_wb_ack_i,

finished_o, leaf_o, t_o, level_o

);

// = Parameters =

parameter dw = 32; // Data width

parameter stack_size = 8;

parameter stack_size_log2 = 3;

parameter max_lvl = 32;

parameter max_lvl_log2 = 5;

// --

// = Ports =

input clk;

input rst;

input start_i;

input [31:0] root_adr_i;

input [2:0] dir_mask_i;

input [dw-1:0] tx0_i, ty0_i, tz0_i;

82

input [dw-1:0] tx1_i, ty1_i, tz1_i;

// WISHBONE master

output [31:0] m_wb_adr_o;

input [31:0] m_wb_dat_i;

output m_wb_cyc_o;

output m_wb_stb_o;

input m_wb_ack_i;

output reg finished_o; reg finished_o_n;

output reg leaf_o; reg leaf_o_n;

output [dw-1:0] t_o;

output [max_lvl_log2-1:0] level_o;

// --

// = States =

parameter S_IDLE = 0, S_INIT = 1,

S_CALC_T = 2, S_FIRST_IDX = 3,

S_NEXT_EVAL = 4, S_CALC_CHILD_T = 5, S_EVAL = 6, S_FINISHED = 7;

// --

parameter EXIT_X = 2’b01, EXIT_Y = 2’b10, EXIT_Z = 2’b00;

// = Registers/Memories =

reg [31:0] root_adr, root_adr_n;

reg [2:0] dir_mask, dir_mask_n;

reg signed [dw-1:0] tx0_root, tx0_root_n;

reg signed [dw-1:0] ty0_root, ty0_root_n;

reg signed [dw-1:0] tz0_root, tz0_root_n;

reg signed [dw-1:0] tx1_root, tx1_root_n;

reg signed [dw-1:0] ty1_root, ty1_root_n;

reg signed [dw-1:0] tz1_root, tz1_root_n;

reg [2:0] state, state_n;

reg [max_lvl_log2-1:0] level;

reg [1:0] expl_child, expl_child_n; // Child exit plane

reg signed [dw-1:0] t_exit_child, t_exit_child_n;

reg signed [dw-1:0] t_enter, t_enter_n;

reg signed [dw-1:0] t_start, t_start_n;

reg [2:0] idx, idx_n;

reg [2:0] idx_prev, idx_prev_n;

reg is_first_node, is_first_node_n;

// --

// = Wires/Aliases =

wire signed [dw-1:0] tx0;

wire signed [dw-1:0] ty0;

wire signed [dw-1:0] tz0;

wire signed [dw-1:0] txm;

wire signed [dw-1:0] tym;

wire signed [dw-1:0] tzm;

wire signed [dw-1:0] tx1;

83

Chapter C The Ray Tracing Core Module

wire signed [dw-1:0] ty1;

wire signed [dw-1:0] tz1;

wire signed [dw-1:0] tx1_child;

wire signed [dw-1:0] ty1_child;

wire signed [dw-1:0] tz1_child;

reg tem_latch;

wire [2:0] idx_next;

wire exit_node;

reg t_enter_calc;

reg t_exit_child_calc;

reg pass_node_calc;

wire signed [dw-1:0] t_enter_next;

wire signed [dw-1:0] t_exit_child_next;

wire [1:0] expl_child_next; // Child exit plane

// = Calculations =

assign t_enter_next =

(tx0>=ty0 && tx0>=tz0) ? tx0 :

(ty0>=tz0) ? ty0 : tz0;

assign expl_child_next[0] =

(tx1_child <= ty1_child) && (tx1_child <= tz1_child);

assign expl_child_next[1] =

!expl_child_next[0] && (ty1_child <= tz1_child);

assign t_exit_child_next =

expl_child_next[0] ? tx1_child :

expl_child_next[1] ? ty1_child : tz1_child;

wire pass_node = (t_exit_child <= t_start);

wire node_is_root = (level==0);

wire [2:0] idx_flip = idx ^ dir_mask;

assign t_o = leaf_o ? t_enter : t_exit_child;

// Stack signals

reg init;

reg push;

reg pop;

wire stack_empty;

wire [2:0] idx_stack_o;

// Master signals

reg node_data_req;

wire [15:0] node_data;

wire node_data_ready;

// Decode node data

wire [7:0] valid_mask = node_data[7:0];

wire [7:0] leaf_mask = node_data[15:8];

wire child_is_solid = leaf_mask[idx_flip];

wire child_is_valid = valid_mask[idx_flip];

84

// --

// = Datapath Instances =

raycast_core_axis_dp x_axis_dp

(

.clk (clk),

.rst (rst),

.init_i (init),

.push_i (push),

.pop_i (pop),

.tem_latch_i (tem_latch),

.idx_i (idx[2]),

.idx_prev_i (idx_prev[2]),

.te0_i (tx0_root),

.te1_i (tx1_root),

.te0_o (tx0),

.tem_o (txm),

.te1_o (tx1),

.te1_child_o (tx1_child)

);

defparam x_axis_dp.dw = dw;

defparam x_axis_dp.stack_size = stack_size+1;

raycast_core_axis_dp y_axis_dp

(

.clk (clk),

.rst (rst),

.init_i (init),

.push_i (push),

.pop_i (pop),

.tem_latch_i (tem_latch),

.idx_i (idx[1]),

.idx_prev_i (idx_prev[1]),

.te0_i (ty0_root),

.te1_i (ty1_root),

.te0_o (ty0),

.tem_o (tym),

.te1_o (ty1),

.te1_child_o (ty1_child)

);

defparam y_axis_dp.dw = dw;

defparam y_axis_dp.stack_size = stack_size+1;

raycast_core_axis_dp z_axis_dp

(

.clk (clk),

.rst (rst),

.init_i (init),

.push_i (push),

.pop_i (pop),

.tem_latch_i (tem_latch),

.idx_i (idx[0]),

.idx_prev_i (idx_prev[0]),

.te0_i (tz0_root),

.te1_i (tz1_root),

.te0_o (tz0),

85

Chapter C The Ray Tracing Core Module

.tem_o (tzm),

.te1_o (tz1),

.te1_child_o (tz1_child)

);

defparam z_axis_dp.dw = dw;

defparam z_axis_dp.stack_size = stack_size+1;

raycast_core_idx idx_next_dp

(

.is_first_i (is_first_node),

.idx_i (idx),

.txm_i (txm),

.tym_i (tym),

.tzm_i (tzm),

.t_enter_i (t_enter),

.exit_plane_child_i (expl_child),

.idx_next_o(idx_next),

.is_exit_o(exit_node)

);

defparam idx_next_dp.dw = dw;

raycast_core_master core_master

(

.clk (clk),

.rst (rst),

.m_wb_adr_o (m_wb_adr_o),

.m_wb_dat_i (m_wb_dat_i),

.m_wb_cyc_o (m_wb_cyc_o),

.m_wb_stb_o (m_wb_stb_o),

.m_wb_ack_i (m_wb_ack_i),

.init_i (init),

.pop_i (pop),

.root_adr_i (root_adr),

.idx_flip_i (idx_flip),

.node_data_req_i (node_data_req),

.node_data_ready_o (node_data_ready),

.node_data_o (node_data)

);

defparam core_master.stack_size = stack_size;

defparam core_master.stack_size_log2 = stack_size_log2;

// --

// = Control FSM =

always @(*)

begin

root_adr_n = root_adr;

dir_mask_n = dir_mask;

tx0_root_n = tx0_root;

ty0_root_n = ty0_root;

tz0_root_n = tz0_root;

tx1_root_n = tx1_root;

ty1_root_n = ty1_root;

tz1_root_n = tz1_root;

state_n = state;

expl_child_n = expl_child;

86

t_exit_child_n = t_exit_child;

t_enter_n = t_enter;

t_start_n = t_start;

idx_prev_n = idx_prev;

idx_n = idx;

is_first_node_n = is_first_node;

leaf_o_n = leaf_o;

finished_o_n = finished_o;

t_enter_calc = 0;

t_exit_child_calc = 0;

pass_node_calc = 0;

tem_latch = 0;

init = 0;

push = 0;

pop = 0;

node_data_req = 0;

case (state)

S_IDLE: begin // 0

if (start_i) begin

root_adr_n = root_adr_i;

dir_mask_n = dir_mask_i;

tx0_root_n = tx0_i;

ty0_root_n = ty0_i;

tz0_root_n = tz0_i;

tx1_root_n = tx1_i;

ty1_root_n = ty1_i;

tz1_root_n = tz1_i;

t_start_n = 0;

finished_o_n = 0;

state_n = S_INIT;

end

end

S_INIT: begin // 1

// Fetch root data

// Set level = 0

// Reset stack

init = 1;

is_first_node_n = 1;

state_n = S_CALC_T;

end

S_CALC_T: begin // 2

// tm <= (t0+t1)/2 (in axis_dp)

tem_latch = 1;

// t_enter <= min(t0)

t_enter_calc = 1;

t_enter_n = t_enter_next;

if (is_first_node)

state_n = S_FIRST_IDX;

else

state_n = S_NEXT_EVAL;

end

S_FIRST_IDX: begin // 3

87

Chapter C The Ray Tracing Core Module

if (node_data_ready) begin

idx_n = idx_next;

is_first_node_n = 0;

state_n = S_CALC_CHILD_T;

end

end

S_NEXT_EVAL: begin

if (exit_node) begin

// We’ve exited current octant.

if (node_is_root) begin

// Exited octree, we’re finished

leaf_o_n = 0;

state_n = S_FINISHED;

end

else if (stack_empty) begin

// Stack underflow, restart from root

t_start_n = t_exit_child;

state_n = S_INIT;

end

‘ifndef RAYC_DISABLE_STACK

else begin

// Go up a level. Pop the stack.

pop = 1;

idx_prev_n = idx_stack_o;

idx_n = idx_prev;

state_n = S_CALC_T;

end

‘endif

end

else begin

idx_n = idx_next;

state_n = S_CALC_CHILD_T;

end

end

S_CALC_CHILD_T: begin

t_exit_child_calc = 1;

t_exit_child_n = t_exit_child_next;

expl_child_n = expl_child_next;

state_n = S_EVAL;

end

S_EVAL: begin

pass_node_calc = 1;

if (pass_node) begin

// Proceed to next child voxel

state_n = S_NEXT_EVAL;

end

else if (child_is_solid) begin

// We hit a voxel

// Push to get child parameters

push = 1;

leaf_o_n = 1;

state_n = S_FINISHED;

end

else if (child_is_valid) begin

// We hit an octant containing something

// Push and get next node

// level <= level+1

push = 1;

idx_prev_n = idx;

is_first_node_n = 1;

88

node_data_req = 1;

state_n = S_CALC_T;

end

else begin

// Empty octant, evaluate next child node

state_n = S_NEXT_EVAL;

end

end

S_FINISHED: begin

// Calculate t_enter for child

t_enter_calc = 1;

t_enter_n = t_enter_next;

finished_o_n = 1;

state_n = S_IDLE;

end

endcase

end

// --

// = Registers =

always @(posedge clk)

begin

if (rst) begin

root_adr <= 32’d0;

dir_mask <= 3’d0;

tx0_root <= 32’d0;

ty0_root <= 32’d0;

tz0_root <= 32’d0;

tx1_root <= 32’d0;

ty1_root <= 32’d0;

tz1_root <= 32’d0;

state <= 3’d0;

level <= 0;

expl_child <= 2’d0;

t_exit_child <= 32’d0;

t_enter <= 32’d0;

t_start <= 32’d0;

idx_prev <= 3’d0;

idx <= 3’d0;

is_first_node <= 0;

finished_o <= 1;

leaf_o <= 0;

end

else

begin

root_adr <= root_adr_n;

dir_mask <= dir_mask_n;

tx0_root <= tx0_root_n;

ty0_root <= ty0_root_n;

tz0_root <= tz0_root_n;

tx1_root <= tx1_root_n;

ty1_root <= ty1_root_n;

tz1_root <= tz1_root_n;

89

Chapter C The Ray Tracing Core Module

state <= state_n;

expl_child <= expl_child_n;

t_exit_child <= t_exit_child_n;

t_enter <= t_enter_n;

t_start <= t_start_n;

idx <= idx_n;

idx_prev <= idx_prev_n;

is_first_node <= is_first_node_n;

finished_o <= finished_o_n;

leaf_o <= leaf_o_n;

if (init)

level <= 0;

else if (push)

level <= level + 1;

else if (pop)

level <= level - 1;

else

level <= level;

end

end

// --

// = Stacks =

‘ifndef RAYC_DISABLE_STACK

reg [stack_size_log2:0] stack_depth;

wire stack_full = (stack_depth==stack_size);

assign stack_empty = (stack_depth==0);

always @(posedge clk)

if (init) begin

stack_depth <= 0;

end

else if (push) begin

if (!stack_full)

stack_depth <= stack_depth + 1;

end

else if (pop) begin

stack_depth <= stack_depth - 1;

end

raycast_stack idx_stack_inst

(

.clk (clk),

.push (push),

.pop (pop),

.data_i (idx_prev),

.data_o (idx_stack_o)

);

defparam idx_stack_inst.dw = 3;

defparam idx_stack_inst.depth = stack_size; ///-1

defparam idx_stack_inst.depth_log2 = stack_size_log2;

‘else

90

assign stack_empty = 1;

‘endif

// --

endmodule

91

	Title Page
	Problem Statement
	Abstract
	Sammendrag
	Preface
	Contents
	1 Introduction
	2 Background
	2.1 Models
	2.2 Transforms
	2.3 Perspective Projection
	2.4 Rasterization
	2.5 Z-buffer
	2.6 Ray tracing
	2.7 Space Partitioning
	2.8 Sparse Voxel Octree
	2.9 Traversal of Voxel Octrees
	2.10 Representation of Numbers
	2.11 Data Cache
	2.12 FPGA
	2.13 ORPSoC
	2.14 Digilent Atlys

	3 Previous Work
	3.1 Software Implementations
	3.2 GPU Implementations
	3.3 Ray Tracing in Hardware
	3.4 Data Structures

	4 An Algorithm for SVO Traversal
	4.1 Overview
	4.2 Parameters
	4.3 Child Nodes
	4.4 Negative Directions and Parallel Rays
	4.5 The Tracing Kernel

	5 A Ray Tracer Geometry Stage
	5.1 Normalizing the Octree
	5.2 Generating Primary Rays
	5.3 Inverse Perspective Projection
	5.4 Normalizing Ray Length
	5.5 Z-Buffering With Ray Tracing

	6 Hardware Optimizations
	6.1 Floating Point vs Fixed Point
	6.2 The Decimal Point
	6.3 Stack
	6.4 Restarting
	6.5 Hardware Optimized Algorithm

	7 Software Implementation
	7.1 SVO Data Structure
	7.2 Generating Sparse Voxel Octrees
	7.3 Software Ray Tracer
	7.4 Merging Ray Tracing and Rasterization
	7.5 Cache Profiling
	7.6 Results
	7.7 Discussion

	8 Hardware Implementation
	8.1 Hardware Platform
	8.2 Ray Casting Module
	8.3 Scheduler
	8.4 Memory Controller
	8.5 Ray Traversal Core
	8.6 Core State Machine
	8.7 Testing
	8.8 Results
	8.9 Discussion

	9 Conclusions
	9.1 Future Work

	Bibliography
	A Attached Files
	B The Software Ray Tracing Core Functions
	C The Ray Tracing Core Module

