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Chapter 1

Introduction

Nowadays, telecommunications and information technologies dominate the world.
Advances in these areas have changed the people life’s way around the world, what
has led our current society to become the Information Society.

Much have evolved the telecommunications world and the way to transmit in-
formation throughout the years. Specially interesting have been the development
of the optical communications since the discovery in 1958 of the laser (Light Am-
plification by Stimulated Emission of Radiation).

Transmitting light trough optical fiber has permitted an amazing increase of the
capacity of sending information, improving the quality of transmitted signal and
increasing the velocities of transmission respect to the microwave communications
through radio links and coaxial wires.

Furthermore, the laser has provided an quite important tool in order to mea-
sure any kind of fast event, the ultrashort light pulse (about a few femtoseconds
(1fs = 10−15)). And from this point we are going to focus on the measuring of
fast events with ultrashort laser pulses, since many events occurs at these scales
of time: key processes in biology like photosynthesis, key processes in chemistry
(molecular vibrations) and key events in physics and engineering (photo-ionization
and electron-hole relaxation times that determine the response times of light de-
tectors and electronics)[1].

As well known, in order to measure an event in time we must use a shorter one,
but then, to measure that shorter event, we need an even shorter one. And so on,
until arriving at the shortest event ever created, the ultrashort pulse that has been
said above.

In order to measure any fast event with an ultrashort laser pulse we need to check
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that such pulse is in fact, a shorter event than the event we want to measure.
Therefore, we must to measure our ultrashort laser pulse. If we study with detail
the features of the pulse, we will obtain some key information about the possibili-
ties and applications in which the ultrashort pulses can be very useful.

In the following chapter we will deal with the basis and foundations that we must
take in account for the studying and measuring of the ultrashort pulses. We will
describe in that chapter the ultrashort laser pulses and we will also define just
what it is that we need to measure, it will be their intensity and phase. When
we deal with ultrashort pulses we must to talk about the nonlinear optics, since
linear optics cannot describe all the properties about the ultrashort pulses and its
propagation.

We will also see in that chapter the great benefits of using the time-frequency
domain for measuring the ultrashort pulses by the Frequency-Resolved Optical
Gating technique, better known as FROG, its acronym. We will go through its
advantages respect in both time domain and frequency domain separately.

In Chapter 3 we will see the techniques that preceded to the use of FROG for
measuring ultrashort pulses which could not characterize the pulses completely,
just the intensity. They are techniques as the intensity autocorrelation and the
measuring of the spectrum.

In following chapters we will describe the FROG technique, as well as some as-
semblies done at the laboratory to check experimentally, from some measurements,
the goodnesses of the FROG and comparing it with the autocorrelator performance.
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Much has been written about FROG since in 1991 Rick Trebino and Daniel
J.Kane invented it. Currently, a lot of laboratories around the world are working
to improve the different FROG techniques and doing a hard research on it, in order
to discover new applications in a width range of differents areas. In this thesis we
will just deal with a small part of the whole posibilities that FROG can provide
us.
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Chapter 2

Basis and Foundations

2.1 Parameters of interest of Electromagnetic waves

As well known the electromagnetic waves propagation is well defined by the Maxwell’s
Equations, there are available some great papers that you can find and check at the
bibliography of this thesis for a deeper research about the properties and features
of such equations [2-3].

Starting with the four Maxwell Equations (in differential form)

∇×H = J +
∂D

∂t
(2.1)

∇×E = −∂B
∂t

(2.2)

∇ ·D = ρV (2.3)

∇ ·B = 0 (2.4)
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and the so-called constitutive equations

D = εE (2.5)

B = µH (2.6)

J = σE (2.7)

it is possible to obtain the Telegrapher’s Equation (here for the electric field E) by
a few fundamental transformations [4]:

∇×∇×E + µσ
∂E

∂t
+ µε

∂2E

∂t2
= 0 . (2.8)

For the wave propagation in free space one can set σ = 0 and the charge den-
sity ∇ ·D = 0 as well and obtain the wave equation

∆E = µε
∂2E

∂t2
. (2.9)

In general, the electric permittivity ε and the magnetic permeability µ can be
described as the product of a relative, material dependent factor and the constant
for the free space:

µε = µrµ0εrε0 (2.10)

So let us start to talk about the part of interest that the electromagnetic wave
has for us. From the Maxwell’s Equations we obtain the Telegrapher’s equation
for the electric field ~E and for the magnetic field ~B respectively. After some as-
sumptions, like the free space propagation, and taking the harmonic solution for
the electric field ~E we have:

~E(~r, t) = <[E0 ∗ ej
~k~r−jωt] (2.11)

where ~r is the position vector and ~k is the wave vector
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~k = k ∗ ~ek = (ω
√
µε(ω)) ~ek (2.12)

where the permittivity is a function of ω, ε(ω) = εr(ω)ε0. So the wave vector
is also a function of ω

~k(ω) = ω
√
µ0ε0

√
ε(ω) =

ω
√
ε(ω)

c
=
ωn(ω)

c
~ek (2.13)

Finally we must not forget that the wave number could be a complex number,
therefore we could have

~k(ω) = β(ω) + j
α(ω)

2
(2.14)

where β(ω) would be the propagation coefficient of the wave a function of ω, and
α(ω) would be the absorption coefficient of the wave.

2.2 Properties of Ultrashort Laser Pulses

Once we have seen some of the most important properties of a electromagnetic
wave is easy to define what is an ultrashort laser pulse, since it has an electric field
as we have seen above ~E(~r, t).

An ultrashort laser pulse is just a portion of a sine wave, created by multiply-
ing a sine wave and a pulse-envelope function. So, an ultrashort pulse is not much
different respect to the other lasers. Furthermore, having a shorter pulses in time,
we will have more bandwidth in frequency (spectrum). But a broader spectrum
means a greater range of colors, the bandwith, that we have. And although we are
going to deal with pulses whose duration is too short, that color can change fastly
during one of them. This color change is the frequency variation, contained in the
pulse phase.

And measuring the phase from an ultrashort laser pulse is not easy at all. In-
deed, some techniques developed during many years for measuring ultrashort laser
pulses before FROG were invented, failed when they treated to get the pulse’s
phase, unsuccesfully. It is so hard to measure the phase because when the pulse
pass through a material its phase can be changed. Several types of glasses are used
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to variate the pulse’s phase (as fused silica or BK7), and it can also be changed by
the air [5].

Then we want to measure the frequency variation (phase) and also the intensity
variations of our ultrashort pulse, in order to completely characterize the pulse we
are measuring.

2.2.1 The Intensity and Phase vs. Time and Frequency

Intensity and Phase vs. Time

We are going to simplify the electric field expression using the scalar aproximation,
in which we will only care about the temporal features. So the equation above
changes to

E(t) =
1

2

√
I(t)ej(ωt−φ(t)) + c.c. (2.15)

where I(t) is the intensity a function of time, φ(t) is the phase of the pulse, and ω0

is a carrier angular frequency on the order of femtoseconds. Since I(t) and φ(t) vary
slowly respect to ejω0t we can approximate to a complex pulse field eliminating the
c.c. term.

Given the approximation before we can conclude that the temporal intensity and
phase are:

I(t) = |E(t)|2 (2.16)

We do not care about the absolute magnitude of the intensity, we only are in-
terested about the shape, so, in the equation above we have omitted constants like
permittivity ε and the speed of light c.

And the phase is:

φ(t) = −arctan(
=[E(t)]

<[E(t)]
) (2.17)
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Intensity and Phase vs. Frequency

Unlike we have done with the temporal Intensity and Phase, where we have taken
the complex electric field, for the frequency-domain we have the Fourier Transform
of the real electric field. So, from the pulse field in the frequency domain

Ẽ(ω) =
√
S(ω)e−jφ(ω) (2.18)

we can obtain the spectral phase and intensity

S(ω) = |Ẽ(ω)|2 (2.19)

φ(ω) = −arctan(
=[Ẽ(ω)]

<[Ẽ(ω)]
) (2.20)

2.2.2 Phase distortions in Time and Frequency

Zeroth-order Phase: The Absolute Phase

Is the same in both domains, frequency and time. Is the relative phase of the
carrier wave with respect to the envelope. We won’t take it in account since when
the pulse is many cycles long, variations in absolute phase shifts the carrier wave
from the peak of the envelope just a little, and therefore the pulse field changes
just little.

First-order Phase: A Shift in Time or Frequency

A linear term in the spectral phase corresponds to a shift in time, and a linear
term in temporal fase corresponds to a shift in frequency, being the last one more
interesting because we do not care about the arrival time of the pulse (just the
shape). Anyway the spectral shift is easily measured with other methods.
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Second-order Phase: Linear Chirp

It is a very important effect over the pulse, the variation of its color during its
propagation. Material properties, such as dispersion, alter the (phase) relationship
between the spectral components of light, effectively separating the different com-
ponents of the pulse in time. Chirp elongates the pulse in time.

Figure 2.1: Temporal relationship between spectral components of a chirped pulse
[18]

Is a quadratic variation of φ(t) that represents a linear ramp of frequency
vs.time.

E(t) = [E0e
−at2 ]ejbt

2

(2.21)
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where b is the chirp parameter and 1√
a

is the pulse duration approximately

I(t) = |E0|2e−2at2 (2.22)

where I(t) is the intensity of the linear chirp.

Figure 2.2: Chirped Pulse

A positive linear chirp is usually caused due to the propagation through materi-
als, so a pulse with a negative chirp will be shortened after it has been propagated
through material.
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2.2.3 The Pulse Length and Spectral Width

We want to measure both the intensity and phase of the pulse in time and frequency.
We also want to know the pulse shape, and everything we can know regard the
pulse, but it is not completely possible. We only can measure approximately the
pulse length (width), where the most common definition is the Full-width-half-
maximum (τFWHM ).

Full-width-half-maximum

Is the time between the most separated points that have half of the peak intensity
of the pulse. Is the most intuitive definition and the most used in experimentsbe-
cause is esay to plot it. But is not good for calculations. However, for a simple
Gaussian-intensity pulse can be written with (τFWHM )

E(t) = E0e
−1.38( t

τFWHM
)2

(2.23)

2.3 Nonlinear Optics

It is easy to realize that an ultrashort event in time will provide us a high event
in frequency due to the inverse relationship existing between time and frequency
domains. It is also interesting to realize that all the energy of an ultrashort laser
pulse is contained into a very short time, so they have a very high power and in-
tensity.

Given that we are going to work with high power and intensity pulses, we have
to take in account the high-intensity effects that they will suffer. For studying
high-intensity effects it is not appropriate to work fall the linear optics area but
non-linear optics. Some of these effects are very useful for our work with the FROG
as the ’second-harmonic generation’ that yields a new frequency twice higher than
the input signal.

The fundamental equation of optics is the wave equation:

∂2E

∂z2
− 1

c20

∂2E

∂t2
= µ0

∂2P

∂t2
(2.24)
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where µ0 is the magnetic permeability of free space, c0 is the speedo f light in
vacuum, E is the real electric field, and P is the real induced polarization. P con-
tains linear-optical effects as the refractive index and the absorption coefficient and
also nonlinear-optical effects. At low intensity we have:

P = ε0χ
(1)E (2.25)

where ε0 is the electric permitivity of free space and χ(1) is the linear suscepti-
bility.

Figure 2.3: Linear optics [6]

In linear optics the wave equation is linear, then P drives the wave equation to
produce light with only those frequencies present in P, light doesn’t change color.
As the principle of superposition holds, the beams of light do not affect each other.
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2.4 Non-linear optical effects

At high intensity, high-order terms must be included to the induced polarization:

P = ε0

[
chi(1)E + χ(2)E2 + χ(3)E3 + ...

]
(2.26)

If the real field E is:

E(t) =
1

2
E(t)eiωt +

1

2
E∗(t)e−iωt (2.27)

and E(t) is the complex field, squaring this field we have:

E2(t) =
1

4
E(t)e2iωt +

1

2
E(t)E∗(t)e−iωt +

1

4
E∗2(t)e−2iωt (2.28)

Figure 2.4: Nonlinear optics [6]

This expression includes terms that oscillate at 2ω the second harmonic of the
input light frequency, driving the wave equation to yield light at this new frequency.
This important process, called second-harmonic generation (SHG) permit us create
new frequencies and it is the most important effect to measure ultrashort laser
pulses.
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Figure 2.5: Second-harmonic generation

2.5 Time-frequency domain

2.5.1 Short-Time Fourier Transform

The Fourier transform is a mathematical operation that decomposes a signal into
its constituent frequencies. The original signal depends on time, and therefore is
called the time domain representation of the signal, whereas the Fourier transform
depends on frequency and is called the frequency domain representation of the
signal. The term Fourier transform refers both to the frequency domain repre-
sentation of the signal and the process that transforms the signal to its frequency
domain representation.

A window is a mathematical function that is zero-valued outside of some cho-
sen interval. Is used in frequency analysis and signal processing. Some common
windows are: rectangular (a), triangular(c), Hanning (e), Hamming (f), cosine,
Barttlet, etc.

Figure 2.6: Types of windows used for STFT

The windowed Fourier transform replaces the Fourier transform’s sinusoidal
wave by the product of a sinusoid and a window which is localized in time. It takes
two arguments: time and frequency. It is defined by:
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Sf (t, ω) =

∫ +∞

−∞
f(t)g(t− τ)e−jωt dt (2.29)

The windowed Fourier transform has a constant time frequency resolution. This
resolution can be changed by rescaling the window g. It is a complete, stable,
redundant representation of the signal.

2.5.2 Time-Frequency localization

There is no finite energy function which is compactly supported both in the time
and frequency domains. The time-frequency localization is measured in the mean
squares sense and is represented as a Heisenberg box, which is a rectangle with a
time width σt and a frequency heigth σw, and time frequency center which coincides
with the signal’s.

Figure 2.7: Heisenberg box

The Fourier transform can be viewed as a representation of a function as a
sum of sinusoidal waves. These sinusoids are localized in the frequency, but not in
time, since their support has an infinite length. This is a consequence of periodicity.
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To represent the frequency behavior of a signal locally in time, the signal should
be analyzed by functions which are localized both in time and frequency, for in-
stance, signals that are compactly supported in the time and Fourier domains. This
time-frequency localization is limited by the following two results: The Uncertainty
theorem of Heisenberg and Compact Supports.

The Uncertainty theorem of Heisenberg

If f is in L2, then its time root deviation σt and its Fourier root deviation σw are
defined. Then

σ2
t σ

2
w ≥

1

4
(2.30)

A balance has to be reached between the time and frequency resolution. In the
limit case of a sinusoid, σw is zero and σt is infinite.

Compact Supports

If f is non zero with a compact support, then its Fourier transform cannot be zero
on a whole interval. Similarly, if its Fourier transform is compactly supported, then
it cannot be zero on a time interval. Hence, even if the Heisenberg constraints are
verified, it is impossible to have an function in L2 which is compactly supported
both in the time and Fourier domains. In particular, this means that there is no
instantaneous frequency analysis for finite energy signals.

2.5.3 The Spectrogram

The square modulus of the windowed Fourier transform is the spectrogram of a
signal.

|Sf (t, ω)|2 = |
∫ +∞

−∞
f(t)g(t− τ)e−jωt dt|2 (2.31)

The spectrogram then, shows a visual representation of a signal frequency vari-
ations (vertical axis) throughout the time (horizontal axis). This is interesting to
know which spectral components of a signal are in each instant of time.
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Depending of the window size applied for the Windowed Fourier Transform we
will have different resolution levels of the spectrogram. If a very large window size
is applied, we will have a great resolution level of spectrogram, however we will
also have increased the operation time:

Figure 2.8: Spectrogram with great resolution

On the other hand, if a very short window size is applied, we cannot differen-
tiate the spectral components(at least it will be too hard), but the operation time
will decrease.

Figure 2.9: Spectrogram with bad resolution
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The spectrogram is very useful for identifying two signals that appears added
and is too hard to identify each one in the time domain. The next figures show
two couples of added signals in time and theirs respectives spectrograms.

Figure 2.10: Couple of added signals in time 1

We can also see that in frequency-domain is too hard to differenciate the two
beams separately in both the graph above and the graph below:
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Figure 2.11: Couple of added signals in time 2

As the Windowed Fourier Transform is a FT, and a FT is a sum of several fre-
quency components of a signal, we can see the spectrogram usefulness for this kind
of representations and functions. The spectrogram provides us which frequency
components are at each instant of time, and this facilitates the study of these sig-
nals.

2.5.4 Wigner Transform

STFT limitations

The Windowed Fourier Transform (WFT) or Short-Time Fourier Transform (STFT)
(equation 2.32), provides us a good Time-Frequency representation of signals, as
we have seen before. But STFT has some limitations due to the nature of the joint
time-frequency representation used, given that exist a inverse relationship between
time domain and frequency domain, and therefore, between their respective signal
resolution.
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This is due to a frequency (fourier) domain property, whereby a temporal win-
dow and its spectrum cannot both be arbitrarily narrow, because if the window
(time) narrows its spectrum widens and then, the signal spectrum resolution gets
worse[7].

Sf (t, ω) =

∫ +∞

−∞
f(t)g(t− τ)e−jωt dt (2.32)

The inmediate consequence of this inverse relationship between time and fre-
quency is that, using STFT, there is just one way for improving the identification
of spectral detail from a spectrogram, and this is achieved impairing the temporal
resolution. Therefore, this is not good enough for pulse transmission, so we need
another kind of representation for the joint time-frequency that provides us better
results for this joint. Is it usually used quadratics representations because this kind
of representations have a quadratic (non-linear) relations with the signal, similar
to signal-energy relation, thus showing an important signal feature, the energy dis-
tribution. Actually we will can see that these quadratic representations have to
satisfy some conditions to seem a energy distribution representation. The most
basic time-frequency quadratic (bilinear) representation, and object of our study
is the Wigner Distribution (WD) (equation 2.33).

Wigner-Ville Distribution WVD

The Wigner Distribution (WD) was proposed by Eugene Wigner in 1932 for ap-
plication in quantum mechanics. This distribution was redefined by Ville (WVD-
Wigner-Ville Distribution) in 1948 at signal context, like a time-frequency function
[8]. It has more recently been recognised as a powerful tool for time-frequency
analysis of signals, where with some care, it can be interpreted as a distribution
of the signal energy in time and frequency. Claasen and Mecklenbrauker [9] show
that the WVD can be evaluated from time signal f(t)

Wf (t, ω) =

∫ +∞

−∞
f
(
t+

τ

2

)
f∗
(
t− τ

2

)
e−jωτ dτ (2.33)

While STFT is a linear transform, WVD is a bilinear (non-linear) distribution.
The first difference we can appreciate between linear and non-linear representa-
tions is the fulfillment or not of Superposition Theorem [10]
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T [α1f1 + α2f2] = α1T [f1] + α2T [f2] (2.34)

Linear repreentations fulfill Suerposotion Theorem, while non-linear representa-
tions do not do it, so WVD neither does it.

WVD properties

Bilinear representations have to satisfy several conditions to be a valid energy dis-
tribution interpretation. WVD is the most complete distribution, satisfying more
properties or conditions than any of other distributions.

Marginal Properties

The spectral density of energy and instant energy (power) can be obtained as WVD
marginal distributions

∫ +∞

−∞
Wf (t, ω)dt = |F (ω)|2 (2.35)

∫ +∞

−∞
Wf (t, ω)dω = |f(t)|2 (2.36)

, being |F (ω)|2 the spectral density of energy and |f(t)|2 the instant energy (power).

Energy Conservation

To be considered our distribution like a energy density it must satisfy∫ +∞

−∞

∫ +∞

−∞
Wf (t, ω)dtdω =

∫ +∞

−∞
|f(t)|2 dt =

∫ +∞

−∞
|F (ω)|2 dω (2.37)
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Negativity or Real Property

WVD spectrum always takes real values of the signal. This means that it takes
both negative and positive values, so we can conclude WVD cannot be defined as
density function, given that WVD spectrum should have only positive values to be
a density function[6].

Invariance Properties

We have
s(t) = f(t− t0) (2.38)

s(t) = f(t)e−jω0t (2.39)

If s(t) is equal to f(t) time-shifted or frequency-shifted function the signal is in-
variant to time or frequency shifts, respectively, when

Ws(t, ω) = Wf (t− t0, ω) (2.40)

Ws(t, ω) = Wf (t, ω − ω0) (2.41)

2.6 WVD Drawbacks and conclusions

The main drawback of WVD and any bilinear time-frequency distribution represen-
tation is the intererence between the own terms of the distribution and its crossed
terms. This crossed terms are generated due to the quadratic nature of WVD, that
it has several spectral components. The crossed terms are always generated for any
kind of signal or noise (each signal has their own crossed term), and it may induce
to misleading representation and impair the useful signal analysis[11].

It can be shown that the WVD is the most basic distribution. Another impor-
tant attribute is the spread of the square magnitude of any joint time-frequency
distribution. It can also be shown that in the case of the WVD, the spread will be
smaller and easier reduced than of the STFT[12-13].
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Chapter 3

Previous alternatives
techniques of measuring

It has been said in previous lines that, in order to measure a pulse, we need to get
its intensity and phase in either the time or frequency domains. And, before the
FROG appearance, it was done with autocorrelation (time-domain) and spectrum
(frequency-domain).

We are going to see the FROG technique is a more complete solution for mea-
suring ultrashort pulses than autocorrelation and spectrum separately. But we
hardly need to know the features of those previous alternatives of measuring ultra-
short pulses, since as we are going to see in next chapters, the Frequency-Resolved
Optical Gating is strongly based on them.

3.1 The Spectrum

The target in the frequency domain is the spectrum, as we mentioned above. There
are some devices that can get the spectrum, they are the spectrometer and the
interferometer. There are several ways to perform a spectrometer either diffraction-
grating device or Fourier-transform spectrometers.
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The last ones operate in the time domain and measure the transmitted inte-
grated intensity from a Michelson interferometer, often called the light’s second-
order coherence function, also called the interferogram and the field autocorrelation:

Γ(2)(τ) =

∫ +∞

−∞
E(t)E∗(t− τ)dt (3.1)

Figure 3.1: Michelson’s interferometer [6]

And its Fourier transform gives the spectrum, the Autocorrelation Theorem:

|Ẽ(ω)|2 = F

{∫ +∞

−∞
E(t)E∗(t− τ)dt

}
(3.2)

One-Dimensional Phase Retrieval

We have seen that we can get the spectrum, but just this, the spectrum. We cannot
get the spectral phase easily, since there are too many pulses that correspond to a
given spectrum. However, if we have available some additional information as the
kind of event we are measuring (a pulse) and the knowledge that the pulse intensity
in time domain is zero outside a finite range of times, we could reduce the number
of possibles pulses candidates to correspond to our given spectrum.
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We are dealing then with a one-dimensional phase-retrieval problem, since we want
to retrieve the spectral phase from the spectrum using additional information.

Nevertheless, even with the additional information, the one-dimensional phase-
retrieval problem is usually unsolvable. With the constraints that we could fix, we
reduce the number of possibles corresponding pulses, but it is not enough, there
would still have infinte posibilities.

Some of the reasons of this large amount of puses that can correspond to the
same spectrum magnitude are the ’trivial’ ambiguities [14]. For example, adding a
phase shift to a spectrum belonging to a complex amplitude we still have the same
spectrum:

E(t) =⇒ Absolute-phase shift =⇒ E(t)eiφ0

It occurs the same with two more ambiguities:

E(t) =⇒ Time translation =⇒ E(t− t0)

E(t) =⇒ Time-reversal =⇒ E∗(−t)

But those are just the trivial ambiguities, there are more complex ambiguities
we cannot live with. The number of ambiguities associated with the measurement
of the pulse spectrum are too many.

We could have a sech2 spectrum with a chirp parameter, and it can correspond to
another sech2 in time domain, but with any pulse width.
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Figure 3.2: Example of sech2 pulse

3.2 The Intensity Autocorrelation

The intensity autocorrelation results when a pulse is used to measure itself in
the time domain [15]. In order to measure the pulses’s intensity in time domain
we need a shorter event than the pulse we want to measure. If we have not got
that shorter event, we have to use the pulse to measure itself as we have said above.

It is so interesting to know how the intensity autocorrelation is done because it
is gonna be quite similar to the FROG setup that we are gonna see in following
chapters. Firstly, the pulse is splitting into two arms, after that one of them is
delayed respet the other one. Finally we have to overlap both arms spatially in
a nonlinear-optical medium such a second-harmonic generation crystal(SHG). In
order to get the second-harmonic in my FROG setup, I use a beta Barium Borate
(BBO) crystal.
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Figure 3.3: Intensity Autocorrelator [6]

The light that is produced by the SHG crystal is twice the frequency input
light. In my experiments I use a fundamental light of λ =800 nm (red light), and
the BBO produces a 400 nm light(blue). The field and its intensity are given as:

ESHGsig (t, τ) ∝ E(t)E(t− τ) (3.3)

ISHGsig (t, τ) ∝ I(t)I(t− τ) (3.4)

The detector used at the end of the autocorrelator setup is too slow to resolve
in time the intensity autocorrelation, so this measurement produces a time inte-
gral[10]:

A(2)(τ) =

∫ +∞

−∞
I(t)I(t− τ)dt (3.5)
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That is the intensity autocorrelation, similar to the field autocorrelation equa-
tion we talk about before (equation 3.1), but not the same at all, since its informa-
tion is related with the spectrum. It is needed an autocorrelation to overlap pulses
in time and then, we can get a measure of a second-harmonic pulse’s length. If
there is a relative delay of one pulse length, the second-harmonic generated inten-
sity will be decreased.

Figure 3.4: Autocorrelation [6]

The autocorrelation is symetrical, if we replace τ by −τ in equation 3.4 we
obtain A(2)(τ) = A(2)(−τ). So it cannot be distinguished a pulse from its mirror
image:

A(2)(τ) =

∫ +∞

−∞
I(t+ τ)I(t)dt (3.6)

The Fourier transform of the autocorrelation is the mag-squared Fourier transform
of the intensity:

Ã(2)(ω) = |Ĩ(ω)|2 (3.7)

We could see there are some constraints that we can apply in order to reduce the
number of posibilities to find I(t) from the Fourier transform of the autocorrelation,
as the fact Ã(2)(ω) is real and non-negative. Nevertheless, the autocorrelation gives
us the magnitude, but not the phase of Fourier transform of I(t). There is again
a one-dimensional phase-retrieval problem, with trivial ambiguities and stronger
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constraints than before, I mean respect to the spectrum’s one-dimensional phase-
retrieval problem. The target in this case is supposed to be easier to reach respect
to the spectrum’s goal, as well known,it was obtaining the complete pulse field.
Now, we only want to get the pulse intensity I(t).

Pulse Length

Well, the autocorrelation cannot give us the intensity without dealing with a lot
of ambiguities and their corresponding assumptions, but it could provide us useful
information, as the pulse length.

The rms (root mean square) pulse length is easy to get from the autocorrela-
tion by using a known result in probability theory that, if we have a convolution,
h(t) = f(t) ∗ g(t) the rms widths of the functions belonging to the convolution are
related by a Pythagorean sum[16]:

(τrms)
2
h = (τrms)

2
f + (τrms)

2
g (3.8)

The autocorrelation is a kind of autoconvolution, with an argument reversedA(2)(t) =
I(t) ∗ I(−t):

(τrms)
2
A = 2(τrms)

2 (3.9)

That is good, but we normally prefer to work with FWHM (Full-Width Half-
Maximum) instead since rms is too sensitive in the pulse wings, and we do not like
it. But in this case, the autocorrelation does not provide much information, so we
have to make a guess about the pulse shape and then deriving a multiplicative fac-
tor that relates the autocorrelation FWHM with the autocorrelation of the pulse
I(t). This factor varies dependind the pulse shape taken, being for a Gaussian
intensity 1.41, and for a sech2(t) 1.54 times wider.
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3.3 Combination of Autocorrelation and Spectrum

We have seen that neither the autocorrelation or spectrum provide a complete pulse
field. But we could use both to try it, taking in account than they can strongly con-
straints each other about their repsective one-dimensional phase-retrieval problems.

Rundquist and Peatross did it [17]. They realized that knowing intensity and
spectrum, is often enough to provide the phase in both domains. But for ultra-
short laser pulses we have the autocorrelation, instead of the instensity, and the
spectrum. So the same problem than before remains.
Summarizing, maybe the autocorrelation and spectrum could not measure ultra-
short pulses very well, but they have been the best results until better techniques
were discovered or invented.
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Chapter 4

Frequency-Resolved
Optical-Gating (FROG)

4.1 Introduction and principal features

Finally, here it is. The Frequency-Resolved Optical-Gating appears to solve the
problems that autocorrelation and spectrum could not, neither separately or both
together.

FROG measures a spectrogram of the pulse. We have seen in chapter 2 a couple
of Time-Frequency domain distributions, one of them is the spectrogram. Recall-
ing that chapter, we should know that a knowledge of the spectrogram of E(t) is
enough to completely determine E(t), except some trivial ambiguities.

We have to remind that spectrogram uses a gate function for gating the field E(t).
As occurs in autocorrelation, we have to use the pulse to measure itself, in this
case, to gate itself. After that we will have to solve in frequency domain the gated
piece of the pulse.
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Figure 4.1: Description of the spectrogram

We must compute the spectrum of the product E(t)g(t − τ), where E(t) con-
tributes phase (i.e., color) to the signal pulse and g(t−τ) contributes only intensity,
not phase. The spectrogram yields the color and intensity of E(t) at the time τ .

Yes, it seems similar to autocorrelation, but now we also have a spectral resosolu-
tion and that will make the difference. That is true, we have to gate a unknown
pulse with itself, a gate also unknown so we could not use available spectrogram
inversion algorithms. So, finally, we can say that FROG is basically an autocorre-
lation measurement, whose output is spectrally solved, the difference is that from
now, we are not going to measure the autocorelation energy along the time domain,
but the spectrum along the time.

An example of a FROG trace could be:

ISHGFROG(ω, τ) =

∣∣∣∣∫ ∞
−∞

E(t)E(t− τ)e−jωtdt

∣∣∣∣2 . (4.1)
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Figure 4.2: FROG signal

Is interesting to see that the FROG trace is a spectrogram in which the pulse
intensity gates itself where the gate function here is E(t − τ). In order to obtain
E(t) from its FROG trace we have to consider that Esig(t, τ) ∝ E(t)E(t − τ) is
considered as the Fourier transform with respect to τ , of a new quantity called
Esig(t,Ω):

Esig(t, τ) =

∫ ∞
−∞

Esig(t,Ω)e−jΩτdΩ (4.2)

So, once we have found either Esig(t, τ) or Esig(t,Ω) the pulse field E(t) is given.
So, to find E(t) we just need to know Esig(t,Ω), then if we substituting the equa-
tion into the FROG trace we have:

ISHGFROG(ω, τ) =

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

Esig(t,Ω)e−jωt−jΩτdtdΩ

∣∣∣∣2 . (4.3)

This expresion yields the magnitude, but not the phase. So the problem now
is to find the phase of Esig(t,Ω), being know this inversion problem as the two-
dimensional phase-retrieval problem.
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The difference between the two-dimensional phase-retrieval problem and the
one-dimensional phase-retrieval problem is that, the first one has, however, an
unique solution and is a solved problem when certain additional information about
Esig(t,Ω) is available, while in the one-dimensional phase-retrieval problem many
solutions can exist. Furthermore, the two-dimensional phase retrieval problem has
only trivial ambiguities:

Esig(t,Ω) =⇒ Absolute phase factor =⇒ Esige
iφ0

Esig(t,Ω) =⇒ Time translation =⇒ Esig(t− t0,Ω− Ω0)

Esig(t,Ω) =⇒ Time-reversal =⇒ E
∗
sig(−t)

Is too hard that another solution may exist, but it normally does not occur. Is
important to say that using an iterative algorithm, the pulse field E(t) could be
determined. I won’t go into any algorithm performance, for a deeper study of the
FROG algorithm is highly recommended Trebino’s book, chapter 8[15]. But is
interesting to know how works a generic algorithm, given that we are gonna use
that later to retrieve the pulse field E(t) from its FROG trace:

Figure 4.3: Schematic of a generic FROG algorithm[15]
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4.2 Properties and advantages of FROG

We have seen that the most important property of FROG is that we can get the
pulse intensity and phase either estimating by looking at experimental FROG trace
or using the iterative algorithm to retrieve the precise values of intensity and phase
versus time or frequency.

FROG is highly accurate, especially for measuring the phase in the wings of the
pulse. It is experimentally simple and very general, we can use FROG to measure
simple and complex pulses. FROG can measure a wide range of pulse lengths, from
a few femtoseconds to many picoseconds.

It operates from the mid-infrared region to the Ultra-Violet. FROG operates
single-shot or multi-shot, and it’s very sensitive, Spectrograms for Linearly Chirped
Pulses1-pJ pulses in multi-shot and 1− µJ in single-shot. FROG is insensitive to
noise, for a 10% of additive noise it is produced an error in intensity and phase less
than 1%. FROG overdetermines the pulse, revealing potentials systematic errors
and it can correct them, even when their causes are unknown. FROG is rigorous
and well established, is really fast and it can measure two pulses at the same time.

Figure 4.4: Spectrograms for Linearly Chirped Pulses [6]
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4.3 Impairments

We can agree in the fact tha FROG is a powerful tool to measure ultrashort laser
pulses, but there some aspects of intensity and phase that it cannot measure.
FROG doesn’t measure the absolute phase, φ0 in the Taylor expansion of spectral
phase, since it is a mag-squared magnitude. As the pulse is gating itself, there is
no absolute time reference, so it cannot measure, for example, the arrival time, φ1,
the firs-order term coefficient in the spectral-phase Taylor series.
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Chapter 5

FROG Device Setup

5.1 The Ti:Sapphire laser

Before starting with the FROG Device, it is interesting to mention where our fun-
damental beam comes from. And it comes from a Ti:Sapphire laser.

Since their invention in the early 1980s, titanium-doped sapphire (Ti:Al2O3 or
Ti:sapphire) lasers and amplifiers have enabled countless applications in funda-
mental research in physics, biology and chemistry. Today, they play an important
role across a wide range of photonics applications, including multicolor ultrafast
spectroscopy, multiphoton deep-tissue imaging, terawatt and petawatt physics [19].

Compared with other competing media, the Ti:sapphire medium is extremely flex-
ible and provides high performance and several advantages. It is unmatched in its
characteristics for delivering a combination of broad spectral bandwidth, a range of
repetition rates, wide tunability and high-average-power levels. Spectral outputs
of Ti:sapphire lasers range from ultranarrow single frequency to several hundred
nanometers of bandwidth, resulting in ultrafast pulses as short as a few oscillations
of the electric field at 5.5 fs. At the same time, repetition rates can range from
single-shot output for maximum energy up to multigigahertz quasi-CW output
with tunability of 400 nm and average powers of many watts.

5.2 Second-Harmonic-Generation FROG

5.2.1 FROG Beam Geometries

One of the properties of FROG is its versatility, and because FROG is a spectrally
resolved autocorrelation, every nonlinear-optical process available to make several
types of autocorrelator can also be used to make different kinds of FROG.
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I am not going to talk about the different beam geometries of FROG, we only
have to pay attention in this thesis to the SHG nonlinear-effect and its FROG
configuration. Anyway in Trebino’s book [6] there is a complete chapter dedicated
to this topic. Anyway, here I leave a summary-table:

Figure 5.1: Different FROG geometries. The prism/lens represents a spectrome-
ter[6]

The third order FROG geometries (Polarization Gating (PG), Self-Diffraction
(SD), Transient Grating (TG)) give traces in time-frequency domain whose spectral
components can belong to a different instants of time. SHG gives symetrical traces,
so it is less intutitive the correspondence between the spectral components and the
instants of time. Third-harmonic generation (THG) is intermediate between the
two above cases.

5.2.2 SHG FROG

My whole work in the laboratory goes around the SHG FROG, and as we saw in
equation 4.1, it is based in a SHG autocorrelator, spectrally resolved.
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The main advantage of SHG FROG is sensitivity, unlike the other geometries with
SHG FROG we just have to deal with a only second-order nonlinearity. It is com-
monly used to measure unamplified pulses directly from a Ti:Shappire oscillator,
as I did.

SHG FROG also gives the best signal-to-noise ratios because of its different signal
beam colour and it is also ideal for few-femtoseconds pulse measurement.

The main drawback of SHG FROG, as we said before, is that it has unintuitive
traces, symmetrical with respect to delay, and that means there is an ambiguity in
the direction of time that can be removed easily if wanted.

Figure 5.2: Difference between SHG and PG traces [6]

The most important experimental thing that we have to take care about, is the
SHG crystal bandwith, since it is inversely proportional to the crystal thickness. I
fthe crystal is too thick the SHG FROG trace will be too narrow along the spectral
axis, resulting to a non-convergence of the algorithm.
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The picture below shows an experimental setup for a SHG FROG device, with
a 50/50 beamsplitter, a delay line using two mirror pairs on translation stages to
give variable delays, a focal lens/mirror to focus the pulses into the SHG crystal
(KDP or BBO), and a spectrometer camera. For BBO (Beta Batium Borate) crys-
tal is recommended a ≈ 100 µ m thickness, in order to measure 100-femtoseconds
pulses.

Figure 5.3: SHG FROG experimental setup [6]

5.3 Setting-up SHG FROG Device

We saw in the section above a possible experimental SHG FROG device schematic,
but it is not the one. Before starting with the description of the setup that I have
done, is important to clarify that there are several possibilities for building a SHG
FROG device, depending, for example, of the optic material available or space at
workplace. For my setup I have followed the Newport (our optics provider com-
pany) approach.
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Short name Name Model
BS1 Beamsplitter 10RQ00UB.2
BS2 Beamsplitter 10RQ00UB.2

WP λ
2 Waveplate 10RP52-1

IA1 Iris Assembly 1 ID-0.5
Pell Pellicle Beamsplitter PBS-2C
DL1 Delay Line 1 10SD520ER.2
DL2 Delay Line 2 10B20UF.20
FM Folding Mirror 20D20ER.2
CM Spherical Mirror 20DC500ER.2
BBO Nonlinear crystal (Castech) H6825-1
DF Dichroic Filter FSR-KG5
IA2 Iris Assembly 2 ID-1.0
MC Motion Controller SMC100CC
MS Minispectrometer 78358

Table 5.1: Frog device’s subassemblies and optics

Figure 5.4: SHG FROG Schematic of Newport [18]

Throughout the project I have used a lot of useful tools as posts, holders, align-
ing stuff, but I am not going to specify all the instruments, just the the most
important, they are the optics. The table 5.1 shows the principal optics and as-
semblies needed to set up the SHG FROG.

The first step to be done is to achieve that the fundamental beam from the
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Ti:Sapphire laser, our laser, gets the FROG device. It is important to take in ac-
count the sensitivity of our spectrometer, since the Ti:Sapphire provides a 400 mW
beam, and it could damage the spectrometer if we are not careful. If the beam is
low enough than the spectrometer sensitivity, we would only need some mirrors in
order to drive the beam towards the FROG setup.

So, we have to calculate the sensitivity of our spectrometer, and it is easy to
get from its power features availables in the spectrometer’s data sheet:

Power average of the output beam from the Ti:Sapphire laser ⇒ Pav = 400 mW

For calculating the sensitivity of our autocorrelator we did:

Repetition rate = 80.38 MHz ⇒ Trep = 1
8.38·106≈12µs

PavTrep = Pptp

Pp =
PavTrep

tp

Pp = 400·10−3

60·10−15·8.38·106 Watts

Pp ≈ 105W

PavPp = 400 · 10−3 · 105 ∼= 4 · 104W2

AutocorrelatorSensitivity = 4 · 10−4W2

But in this case, we have to calculate the sensitivity of our spectrometer, and
it is easier to get, since we can get the value that we need from its power features
availables in the spectrometer’s data sheet:

Power Density, Average Maximum with Atenuator ⇒ PDEN = 0.2 W
cm2

Pav = PDEN ·DetectorActiveArea = 0.2 W
cm2 · 1cm2

Pav = 200mW

So our spectrometer has a sensitivity of 200 mW, so we will have to use some
beamsplitters along the path of the fundamental beam. I had available at the lab-
oratory differents beamsplitters with their respectives transmitted/reflected ratios.
I just chose two of them, a 85%/15% beamsplitter (BS1) and a 35%/65% beam-
splitter (BS2). That would give me a low enough input power at the entrance of
the FROG device.
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With this configuration, the beam does not go through any beamsplitter before
going into the FROG device, we are just using the reflected beam in both beam-
splitters. What if we had needed to put the FROG device behind the transmitted
part of a beamsplitter? In order to ensure that during the beam routing the beam-
splitters do not add an important amount of dispersion to the beam it should be
interesting check it, and I did it.

Figure 5.5: Previous Routing Beam
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Figure 5.6: Quantity of light that goes through the beamsplitter

Well, the beam only goes through one of the two beamsplitters with an angle
of incidence of 45, what mean that we have a right angle, and the Pythagorean
theorem with two legs (two sides of the right angle) of 3 mm, we need to get the
hypotenuse:

x2 = 32 + 32(mm) x =
√

9 + 9(mm) x = 4.2624(mm)

And now if we use the next equation to know the new FWHM pulse lenght, we can
check if the beam is too much dispersed because of the beamsplitter:

τFWHM
1 (x) =

√
1 +

16ln2(2)GDD2x2

(τFWHM
0 )4

(5.1)

We only do not know the value of GDD (Group Delay Dispersion), but we can
get it from the next table taht shows values of different properties of the propa-
gation of the light through a fused silica optic, the material of beamsplitters and
most of the optics that we are going to use.
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Figure 5.7: The dispersive properties of Fused Silica [18]

We can get GDD from GVD (Group Delay Dispersion) for a wavelenght of 800
nm (our beam’s wavelenght) as:

GDD = GVD · x

GDD = 36.1 · 4.2624(fs2mm/mm)

GDD = 53.2(fs2)

and knowing that our FWHM pulse length is τFWHM
0 ≈ 125(fs), the equation

5.1 gives us a result of:

τFWHM
1 (4.2624(mm)) = 125.04618(fs) (5.2)
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So, in the case that our beam has to go through some beamsplitters they won’t
add too much dispersion to the beam. It is important to discard things that can
add an important dispersion to the final FROG trace, since we will see that the
beam, before get the spectrum, has to pass through several optics and reflecting
itself over several mirrors.

So now, we are ready to go into the FROG device except for one thing. We
need to check that the polarization is the correct at the entrance of the FROG
device. I had several problems becuse of the polarization, since the Newport ap-
proach for assembling the FROG device, need to have a horizontal polarization at
the entrance of the spectrometer, and our Ti:Sapphire offers a vertical polarization.
So we need to change the polarization, and we can change it with a λ/2 wave-plate
(WP). It is important to take care about the location of the wave-plate, it does not
work in any place inside the FROG, we should put it before the FROG’s pellicle
beamsplitter (Pell), and that is at the entrance of the FROG setup.

By rotating the wave-plate and driving the beam through it and after, throug
a polarizing cube beamsplitter, I could get it.

Figure 5.8: Polarizing Cube
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So, let us go into the FROG device. Firstly we are going to put an iris assembly
(IA1), that will help us to make sure that the input beam goes straight. Then,
the beam goes through our 50%/50% pellicle beamsplitter (Pell). So, the beam is
divided in two arms which go to the delay lines (DL1 and DL2).

Figure 5.9: SHG FROG Device
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With the delay line 1 we achieve to have separated and parallel both arms, ap-
proximatelly 2.5 (cm). With the delay line 2, which is controlled by the computer
software sends its beam arm back to go through the pellicle. Both mirrors over the
delay lines have to be separated from the pellicle at the same distance, roughly 11.5
(cm). The delay line 2 should be placed at least 200(mm) behind the wave-plate
at the input of the device.

Figure 5.10: SHG FROG Device
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After that both arms go parallel respect to each other towards the folding mir-
ror (FM), which should be located 250 (mm) after the pellicle. Then, the armr
goes to the focusing (concave) mirror (CM). From this mirror both arms are gonna
be focused/overlapped in the middle point at BBO crystal, at 250 (mm) from the
concave mirror.

Figure 5.11: SHG FROG Device

Then, we have to rotate the nonlinear crystal (BBO) until finding one second-
harmonic corresponding to one of the two arms, and noting the angle. Then, we
have to go on until finding the secon-harmonic corresponding to the other arm, and
then noting the angle. Our SHG FROG beam appears when we put the nonlinear
crystal at the middle angle between the two noted before.
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The second-harmonic beams (blue) go through the dichcroic filter (DF), and
the fundamental beam (red) cannot pass through the filter. After that and close
to the spectrometer entrance, we put a iris assmebly (IA2), in order to get inside
the spectrometer the SHG FROG and not the others second-harmonic beams.

Figure 5.12: SHG FROG Device

So, that is all about the assembling of SHG FROG device. It is so important
to check the polarization before starting to build the FROG device, it helps you to
save much time. It is also important to make sure that the arms go parallel respect
to each other after the delay line 1, as well as taking care about the distance
between the optics.
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Chapter 6

Measurements and analysis
of FROG traces

6.1 Newport FROG Software

Once we have set up the FROG, we have to get the FROG trace from the spectrum
with a specific software. This software manages the spectrometer detector and the
motion stage that moves the delay line 2, in order to overlap both arms to achieve
the SHG beam, being this movement time-dependent.

This software is so important, I would even say that it is critical for getting a
good enough pulse from the spectrometer detector. Indeed, I had to use eigth ver-
sions of this software until get a newer version than the newest version, since I was
dealing with a Newport technical supporter that was improving the newest version
according I asked him for some issues related with the software perform. One of
the principal problems was about the spectrometer calibration, since I could not
exactly get the 800 nm pulse, value that I was supposed to have for the fundamen-
tal beam from the Ti:Sapphire laser. It is so important to take in account because
the pulse could not appear completely centered in 800 nm in the software screen,
and improving the calibration could mean a better pulse measured and showed in
the software.
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Figure 6.1: Screenshot of FROG software of Newport

By managing the integration time, step size in time, wavelenght range and time-
domain range we can obtain our FROG trace. The trace that we obtain here can
be analyzed by the software from Femtosoft, FROG 3.2.0. We are going to deal
with that software at the next section.

6.2 Femtosoft FROG 3.2.0. Software

So, we have our FROG traces, after a hard work carried out at the laboratory
about aligning optics during several weeks, some problems with the performance
of the FROG-traces-scanning, calibrating the spectrometer...etc. And now what?
What is next?

Well, we are ready to retrieve the phase and intensity in time-domain and frequency-
domain by means of the FROG 3.2.0. software, which uses a FROG algorithm in
order to retrieve the pulse from the trace with a minimum error rate. This error
is the FROG error, and is the difference existing between the original FROG trace
that we have obtained from the minispectrometer and the retrieved trace, obtained
from this software. We need to achieve the convergence of the algorithm to an error
value smaller than 1%, which would be a good convergence of course, but we are
gonna try to go down 0.5%.
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The typical values for FROG errors achieved in expereiments are given by the
FROG’s inventor, Rick Trebino [6]. With arrays (grids) of 128 x 128, and a BBO
crystal thickness of no more than 100 µm for measuring 100 femtoseconds (800
nanometers) pulses using SHG FROG, the error should be < 0.5%[20]. Errors
tend to be lower for larger arrays beacuse, due to Fast Fourier Transform relations
between the delay and frequency axis ranges increment, the fractional area of the
trace that is nonzero is less in the larger array traces.

It has to be said that in this chapter I am not going to do an extensive expla-
nation about how this software works, I will do that at the end of this paper, in
Appendix B. Anyway, here I leave a screeshot where we can see the original pulse
measured, the retrieved trace and its temporal and spectral properies such the
phase and intensity.

Figure 6.2: Screenshot of FROG software Femtosoft

We can also see how the algorithm has worked as well as some dispersive pa-
rameters obtained from this analysis of the FROG trace.
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6.3 Characterization of our pulse of reference

At the output of our Ti:Sapphire laser we have a beam of a fixed wavelenght of
800 nm, with a Full-Width Half-Maximum around of 125 fs and a power output of
400 mW.

Figure 6.3: Set up to measure the pulse of reference

After several reflections over every mirror, beamsplitter or another kind of op-
tics, the beam will appear positively chirped at the end of the beam path, and we
will check that with the spectrometer.
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For this first measure we chose the next parameters:

In Newport’s software

Delay range ⇒ −500fs ≤ τ ≤ 500fs
Delay Step size ⇒ ∆τ = 10 fs

Wavelength Step size ⇒ ∆λ = 0.6581 nm, fixed by the spectrometer.

Wavelength range ⇒ 366.42nm ≤ λ ≤ 428.58nm

In Femtosoft’s software

Grid size ⇒ N = 128
Order ⇒ Delay
Read in as ⇒ ConstantWavelength
Wavelength Centering ⇒ Peak

(a) (b)

Figure 6.4: FROG trace of the reference pulse

Above we can see the trace obtained with the FROG (Newport) software, and
plotted using matlab. The code for plotting this trace and all the next figures,
appears in Appendix C at the end of this paper. Some of that code was taken from
Martin Jackisch’s work [4].
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In the picture below we can see both the original and the retrieved pulse given
by FROG 3.2.0. software (Femtosoft). We can note that this pictures are narrower
than the FROG trace, what is logic, since we have obtained that trace by an au-
tocorrelation of the original pulse, and then, integrating in time.

(a) (b)

(c) (d)

Figure 6.5: Original Pulse (a)(b) and Retrieved pulse (c)(d)
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We can check in the next figures that the our FROG trace really corresponds
to a positively chirped SHG FROG trace, as it had been said, commonly happened
because of the path followed by the fundamental beam, going through some optics
and reflecting in others.

(a)

(b)

Figure 6.6: Retrieved electric field from the reference pulse in (a) time domain and
(b) frequency domain
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We can check that with the table above of comparison of traces for common
ultrashort pulse distortions for the most common FROG beam geometries given
by the inventor of FROG, Rick Trebino [20].

Figure 6.7: Comparison of FROG beam geometries

So that is fine, it seems that we have obtained, at least qualitatively, a correct
SHG FROG trace from our optics setup. But, what about the FROG algorithm
error value? We have to remind, as it has been said some paragraphs above, that
we should get a value down to 0.5% for a SHG frog after using a 128 x 128 grid in
Femtosoft’s software.
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But we were so close but not down, we got a algorithm error of 0.56994%, which
is not a bad result, since a good FROG algorithm error must be down 1% and it
is. Obviusly, when we took a larger grid, we got error values down 0.5%, as occurs
in every Fourier Transform operation, the more N (grid) points taken, the more
precise results obtained. However it also occurs paralelly that, the more N points
taken, the bigger computing cost.

Figure 6.8: Autocorrelation of the reference pulse

We should remind that the FROG error that we are using concerns the dif-
ference between the original pulse and the retrieved pulse, and many systematic
errors could have made during the assembling of the FROG setup device, one o
several of them could add an extra delay to the original pulse. It could be, for
that reason, we obtained from the analisys software (Femtosoft) a FWHM value of
190 fs, that is 65 fs more than the 125 fs from the original beam of Ti:Sapphire laser.

As we have said, many factors could affect the beam. One of the most impor-
tant could be the phase matching [6], a nonlinear effect that talk about the correct
coincidence of the two arms into the nonlinear BBO crystal, inside the FROG
setup. Since a very small error in phase matching could shift the pulse from the
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center at the time axis. In fact, every time I took off the BBO from the FROG
device and then put it again, the pulse FWHM, varied slightly.

But more errors could have been made to obtain some times a pulse FWHM around
170 fs and others, 190 fs. In Trebino’s book [6] there is a entire chapter about the
most common errors made in the assembling of a FROG setup. I have listed below
some practical factors to take in account:

- Trebino says in his book that for a 100 fs pulse is necesary to use a BBO with
a thickness of no more than 100 µm . And I used a 100 µm crystal for a 125 fs pulse.

- The different optics that I used, have the spectrometer resolution, and some
aligning problem could have been bothering the beam all the time. Even the in-
tegration time that I used in the Newport’s FROG software, could have been too
high. But I had to take a very high integration time because of the second har-
monic was too hard to detect with lower values of integration time.

- The Minispectrometer could have not been completely calibrated, since I fi-
nally got a 795 µm fundamental beam, 397.5 µm SHG, and not 800 µm (400 µm
SHG) as hoped.

Anyway, I could check succesfully the dispersion effect of the water over the pulse
in different experiments whose results we are gonna see in the next sections.
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6.4 Increasing chirp effect

6.4.1 10 mm Water cuvette

Figure 6.9: Set up including a water cuvette of 10 mm

In the picture above we see that a new stuff was included in our setup between
the fundamental beam and the FROG setup, a 10 mm cuvette filled with tap water.

We can note that the chirp effect was slightly increased in the graphs below:

(a) (b)

Figure 6.10: FROG trace with 10 mm water cuvette

Although is a bit hard to note, the pulse FWHM is bigger than the reference
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pulse, because of the effect of water. We have obtained now a value of 198.11 fs
for the pulse FWHM.

(a) (b)

Figure 6.11: Retrieved electric field from the reference pulse in (a) time domain
and (b) frequency domain

(a) (b)

(c) (d)

Figure 6.12: Original Pulse (a)(b) and Retrieved pulse (c)(d)
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Figure 6.13: Autocorrelation of the reference pulse

If the pulse is wider, the autocorrelation too. For the reference pulse we had a
value of 239.59 fs for the autocorrelation and now we have 255.42 fs. Furhermore,
the FROG error algorithm minimum value obtained is 0.56172%, slightly higher
than the reference pulse FROG error.
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6.4.2 50 mm Water cuvette

Figure 6.14: Set up including a water cuvette of 50 mm

Now, we have included a 50 mm cuvette filled with tap water and we can not that
the chirp effect go on increasing.

(a) (b)

Figure 6.15: FROG trace with a 50 mm cuvette included

The pulse FWHM is now 247.81 fs.
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(a) (b)

Figure 6.16: Retrieved electric field with a 50 mm cuvette included in (a) time
domain and (b) frequency domain

The FROG algorithm error minimum value obtained also increases in this case,
going over 1%.

(a) (b)

(c) (d)

Figure 6.17: Original Pulse (a)(b) and Retrieved pulse (c)(d)

The autocorrelation is even wider now than before, 311.05 fs.
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Figure 6.18: Autocorrelation with a 50 mm cuvette included

6.4.3 100 mm Water cuvette

Figure 6.19: Set up including a water cuvette of 100 mm

Now we are gonna use the largest cuvette that we had, a 100 mm cuvette, also
filled with tap water.
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(a) (b)

Figure 6.20: FROG trace with a 100 mm cuvette included

The pulse FWHM is now 319.69 fs.

(a) (b)

Figure 6.21: Retrieved electric field a 100 mm cuvette included in (a) time domain
and (b) frequency domain

The FROG algorithm error minimum value obtained also increases in this case,
going over 1.5418%.
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(a) (b)

(c) (d)

Figure 6.22: Original Pulse (a)(b) and Retrieved pulse (c)(d)

The autocorrelation is even wider now than before, 393.63 fs.

Figure 6.23: Autocorrelation a 100 mm cuvette included
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Now it would be interesting to see how the spectral phase is changing according
to the chirp effect is increased.

Figure 6.24: Comparison of the spectral phases

We can also see how the chirp effect increases the autocorrelation, the larger
cuvette the wider autocorrelation.

Figure 6.25: Comparison of the autocorrelations
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Chapter 7

Conclusion

All this work goes around the necessity of characterizing an ultrashort pulse in
order to use it in measurements of very very short events.

The problem is that we have to characterize an unknown event, the shortest event
ever created, the ultrashort pulse. And we cannot use any method to do that, we
need to use the Frequency-Resolved Optical-Gating. We have seen that the previ-
ous techniques or methods used to measure an ultrashort pulse, could not achieve
a complete succes.

In time-domain we had the Intensity autocorrelation that provided the pulse field
but not the phase, while in frequency-domain we had the spectrum, which also
could not characterize an unknown ultrashort pulse completely.

So, at the end of this work our goal was to be able of characterizing an ultra-
short laser pulse with the Frequency-Resolved Optical-Gating method, and we have
achieved that.

Despite of the extra delay obtained in the characterization of such pulse, because
of the different systematic errors that could have been made during either the as-
sembling of the FROG device setup or the beam path from the Ti:Sapphire laser
until the entrance of the FROG device. It also might have occurred some mea-
surement error with one of the different softwares used in these experiments or the
calibration of the spectrometer may have influenced in the final results.

We have obtained a good enough FROG algorithm error value, down the 1% de-
manded and around 0.5% hoped for a SHG FROG measurement with a 128 x 128
grid.

We also could see the dispersive effect of the water over the pulse, adding a positive
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chirp effect, showing us one of the several possibilities that offers this ultrashort
pulse measuring technique. An almost perfect chirp can provide us a different spec-
tral component of a pulse in different instants of time, and it is so useful for the
scientific areas that work with a very short events.

We have seen that, the longer water cuvette placed between the beam and the
FROG device, the more chirped pulse achieved.

(a) Reference Pulse (b) With 10 mm Cuvette

(c) With 50 mm Cuvette (d) With 100 mm Cuvette

Figure 7.1: Evolution of the chirp effect using different water cuvette lengths
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7.1 Future work

One of the several things, and more interesting, that could be made from this work
would be to send an ultrashort pulse through a portion of optic fiber and then,
check the dispersion effect of the glass fiber over the pulse.

Maybe, before doing a measurement with the optic fiber, would be interesting
to improve the FROG device and the measurements made in this work, in order
to get a better FWHM value in the characterization of the reference pulse.

In order to do a better measurement it would be nice to use the marginal value
from the spectrum of the fundamental beam and comparing it with the marginal
file generated by the Femtosoft FROG 3.2.0 software belongin to the FROG trace
measured by the Newport’s software. I tried it, because it is supposed that by
using the marginals correction you can achieve a better relationship between the
original pulse and the retrieved pulse, and that means, a better FROG algorithm
error value. But I could not obtain a better result using the marginals property,
but worse.

It would be interesting to do some little changes on the setup to perform another
of the FROG beam geometries, as the Self-Diffraction (SD) FROG, and take some
measurements to compare with the SHG FROG results.
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Chapter 8

Summary

Communication technologies are continuosly evolving since were invented the tele-
graph. Nowadays, one of the most interesting and relatively youngest field of
telecommunications are the optical communications. The search of the shortest
event ever created to measure very fast/short events is now possible because of the
Light Amplification by Stimulated Emission of Radiation, longer known as laser.

So well, we need to find the shortest event but we need to know how to mea-
sure it, since it is supposed that there is not a shorter event. So we need the pulse
to measure itself, and its sound as we need to do a kind of autocorrelation.

In order to measure a pulse, we need to get its intensity and phase in either the
time or frequency domains. And, before the FROG appearance, it was done with
autocorrelation (time-domain) and spectrum (frequency-domain).

And that was one of the firsts techniques used to characterize an ultrashort laser
pulse, called theIntensity Autocorrelation. The intensity autocorrelation results
when a pulse is used to measure itself in the time domain.

Firstly, the pulse is splitting into two arms, after that one of them is delayed respet
the other one. Finally we have to overlap both arms spatially in a nonlinear-optical
medium such a second-harmonic generation crystal(SHG).

A(2)(τ) =

∫ +∞

−∞
I(t+ τ)I(t)dt (8.1)

The target in the frequency domain is the spectrum. There are some devices that
can get the spectrum, they are the spectrometer and the interferometer. There are
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several ways to perform a spectrometer either diffraction-grating device or Fourier-
transform spectrometers.

The last ones operate in the time domain and measure the transmitted integrated
intensity from a Michelson interferometer, often called the light’s second-order co-
herence function, also called the interferogram and the field autocorrelation:

Γ(2)(τ) =

∫ +∞

−∞
E(t)E∗(t− τ)dt (8.2)

And its Fourier transform gives the spectrum, the Autocorrelation Theorem:

|Ẽ(ω)|2 = F

{∫ +∞

−∞
E(t)E∗(t− τ)dt

}
(8.3)

We have seen that we can get the spectrum, but just this, the spectrum. We can-
not get the spectral phase easily, since there are too many pulses that correspond
to a given spectrum. We are dealing then with a one-dimensional phase-retrieval
problem, since we want to retrieve the spectral phase from the spectrum using
additional information, and this kind of problem is usually unsolvable.

Summarizing, maybe the autocorrelation and spectrum could not measure ultra-
short pulses very well, but they have been the best results until better techniques
were discovered or invented.

The Frequency-Resolved Optical-Gating appears to solve the problems that au-
tocorrelation and spectrum could not, neither separately or both together. FROG
measures a spectrogram of the pulse.

An example of a FROG trace could be:

ISHGFROG(ω, τ) =

∣∣∣∣∫ ∞
−∞

E(t)E(t− τ)e−jωtdt

∣∣∣∣2 . (8.4)

Is interesting to see that the FROG trace is a spectrogram in which the pulse
intensity gates itself where the gate function here is E(t − τ). In order to obtain
E(t) from its FROG trace we have to consider that Esig(t, τ) ∝ E(t)E(t − τ) is
considered as the Fourier transform with respect to τ , of a new quantity called
Esig(t,Ω):
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Esig(t, τ) =

∫ ∞
−∞

Esig(t,Ω)e−jΩτdΩ (8.5)

So, once we have found either Esig(t, τ) or Esig(t,Ω) the pulse field E(t) is given.
So, to find E(t) we just need to know Esig(t,Ω), then if we substituting the equa-
tion into the FROG trace we have:

ISHGFROG(ω, τ) =

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

Esig(t,Ω)e−jωt−jΩτdtdΩ

∣∣∣∣2 . (8.6)

This expresion yields the magnitude, but not the phase. So the problem now
is to find the phase of Esig(t,Ω), being know this inversion problem as the two-
dimensional phase-retrieval problem.

The difference between the two-dimensional phase-retrieval problem and the one-
dimensional phase-retrieval problem is that, the first one has, however, an unique
solution and is a solved problem when certain additional information about Esig(t,Ω)
is available, while in the one-dimensional phase-retrieval problem many solutions
can exist. The two-dimensional phase retrieval problem has only trivial ambigui-
ties. Is too hard that another solution may exist, but it normally does not occur.
Is important to say that using an iterative algorithm, the pulse field E(t) could be
determined.

We have seen that the most important property of FROG is that we can get
the pulse intensity and phase either estimating by looking at experimental FROG
trace or using the iterative algorithm to retrieve the precise values of intensity and
phase versus time or frequency.

FROG is highly accurate, especially for measuring the phase in the wings of the
pulse. It is experimentally simple and very general, we can use FROG to measure
simple and complex pulses. FROG can measure a wide range of pulse lengths, from
a few femtoseconds to many picoseconds.

We can agree in the fact tha FROG is a powerful tool to measure ultrashort
laser pulses, but there some aspects of intensity and phase that it cannot mea-
sure. FROG doesn’t measure the absolute phase, φ0 in the Taylor expansion of
spectral phase, since it is a mag-squared magnitude. As the pulse is gating itself,
there is no absolute time reference, so it cannot measure, for example, the arrival
time, φ1, the firs-order term coefficient in the spectral-phase Taylor series.
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8.1 Experimental work

My whole work in the laboratory goes around the SHG FROG, and as we saw in
equation 4.1, it is based in a SHG autocorrelator, spectrally resolved.

The main advantage of SHG FROG is sensitivity, unlike the other geometries with
SHG FROG we just have to deal with a only second-order nonlinearity. It is com-
monly used to measure unamplified pulses directly from a Ti:Shappire oscillator,
as I did.

SHG FROG also gives the best signal-to-noise ratios because of its different signal
beam colour and it is also ideal for few-femtoseconds pulse measurement.

Figure 8.1: SHG FROG Device

We characterized the pulse, and then we checked how the chirp effect increase
according to the length of some cuvettes placed between the beam and the FROG
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setup. We could see how the spectral phase is changing according to the chirp
effect is increased and how the chirp effect increases the autocorrelation value.

(a) Comparison of the spectral phases

(b) Comparison of the autocorrelations

Figure 8.2

So we could see experimentally how the dispersive effect of the water over the
pulse, added a positive chirp effect, showing us one of the several possibilities that
offers this ultrashort pulse measuring technique.
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Appendix A

Assembling FROG device

Actually, most of the steps followed in order to assembly a FROG device was
explained in chapter 5. This appendix just pretends to give some guidelines and
tips about how to build the FROG setup, trying to avoid systematic errors that
could impair the pulse measurement.

I am not gonna waste time giving numbers about relatives distances between the
optics placed in the setup, because some papers as Application Note 33 from New-
port company [18], listed above in References, do that.

I am just gonna give some pieces of advices, things that I have learnt from the
practical experience in this work at the laboratory. There will have several generic
tips about the work with optics and others more especific about the performing of
a SHG FROG device.

1. The first thing that you have to realize yourself, is all the material you need.
You need to know from the beggining if there are available all the items nec-
essaries to assembly your setup. Maybe you note that you do not have all the
items you need but may you have the possibility to make yourself a similar
item with others you have availables at lab. It is so important in order to
save time and money.

2. Once you have all the items/optics you need you have to check the power of
your laser beam and the sensitivity of your detector/spectrometer and others,
to avoid damaging any of them.

3. Working in the alignment of a laser beam could be a too hard, boring and at
times, stressful task. So, my best advices are as follows:

(a) Be patient, spend enough time improving your alignment. An almost
perfect alignment will make your next tasks easier.

(b) Don’t get mad, crazy or anxious if your alignment is not perfect. Im-
prove your alignment all you can, but not too much. If you cannot get
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the second-harmonic beam at the end of the FROG setup, please, check
the distances between the optics, the heights of the subassemblies where
the mirrors, beamsplitters and others are placed with their respectives
mounts.

4. Check the bibliography that you have once and again, ask to your material
company providers, maybe some optics have a wrong label in its box.

5. If your pulse length is 100 fs, please use a 100 µm thickness BBO to generate
your SHG signal.

6. Check the polarization of your beam at the entrance of your FROG device
with a cube beamsplitter, maybe you need to change the polarization with a
λ
2 waveplate. If you have to use a waveplate, please use it between the beam
and the FROG device. Don’t place the waveplate into the FROG device.

7. Rotate the BBO mount until one of the SHG beam appear, from one of the
two arms generated before into the FROG device. Then, go on rotating the
BBO mount until the second SHG beam appear and then rotate the mirror
at the middle point between the point where the other SHG beam appeared
and where this last one did.

8. Use the dichcroic filter to see clearly the SHG beam, a blue light, and not the
red one. But after that, when you have found yor middle point where your
SHG FROG is placed, if the SHG pulse appears in the software too much
attenuated, please, don’t care about taking off the dichroic then, your iris
assembly close to the spectrometer entrance will block the red beams contri-
butions.

9. Build your FROG setup over a small table to be able of bringing your FROG
to different locations in order to make different experiments.

10. Finally, make sure again the BBO mount is in the correct position, horizon-
tally and vertically as well as the spectometrer input.
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Appendix B

Dealing with Femtosoft and Newport softwares

Newport FROG Software

It is a so important software, since with it we are gonna get the FROG trace
from the minispectrometer. And after some problems and several modifications of
the older version of the software, we decide to use the newest one, also making sev-
eral changes in the code of the program. This work corresponded to our technical
supporter from Newport.

So let’s see some screenshots of the software and overe those pictures I am gonna
comment a few important things to take in account.

Figure 8.3: Newport FROG software Rev. 3

I have pointed with different colours boxes the parameters of the program to
explain:
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RED BOX

HOME (mm): It’s the home position where the delay line 2 is placed to see the
SHG beam at the entrance of the spectrometer.

RANGE (ps): It’s the range of the time delay axis of the graph in which are
gonna see our pulse.

STEP SIZE (ps): This parameter determines the resolution of the measure-
ment in time domain.

YELLOW BOX

SCAN MODE: Offers two possibilities of scan, Single Sweep or Non-stop Sweep.

GREEN BOX

INTEGRATION TIME (ms): This parameter permits us obtaining bigger or smaller
amplitude of the SHG pulse received, and it’s important to have a big enough am-
plitude to make our measurements properly. We have also to try don’t saturate
the spectrometer with a too high integration time.

BLACK BOX

WAVELENGTH RANGE (nm): It determines the limits of the range of the wave-
length axis.

BLUE BOX

SAVE TO FILE: This button just save the trace measured or not, in a file into
a path specified.

PURPLE BOX

Those are some tools to manage the time-frequency graph representation.
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Femtosoft FROG 3.2.0 Software

The software of measuring seemed simple to manage, that is true. However, the
software for analizying the FROG traces obtained with the software before, it is
not easy to manage at all.

Figure 8.4: Femtosoft FROG 3.2.0 software

YELLOW BOX

F: This button open the window Frog algorithm calibrations, which permit us
manage the different aspects of the calibration of the FROG algorithm that use
this analisys software, in order to get a more appropiate result from our FROG
trace file obtained with the previous software.

BLUE BOX

GRID SIZE: With this option we can choose the N X N grid which will be used
by the algorithm. Remind, the larger grid size, the smaller algorithm error but also
the more computing cost.
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NLO: This option permit us to choose the nonlinear effect of our trace.

DATA SOURCE: If the data to evaluate is theoretical or experimental. In our
case, the second one.

RED BOX

By marking the Use heaer information, is automatically load the features se-
lected previously for the measuring software

GREEN BOX

Some parameters to get a better graph representation and results.

The next window that appears is our trace.

Figure 8.5: Raw Data

In order to get a better and cleaner trace before applying the algorithm we have
some options to manage the trace representation, teh raw data:
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Noise Subtraction: Permit us to eliminate the noise around the trace.

Figure 8.6: Noise Subtraction

Data: Permit us to extrac roughly just the trace and also permit us to resample
the time axis

Figure 8.7: Data
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After that, clicking on the option Grid Data we are gonna start to deal with
the algorithm.

Figure 8.8: Algorithm running

We can run the algorithm clicking on the Begin button and then obtaining all
the graphs and information about the original and retrieved pulse, the FROG error
algorithm and the dispersive parameters of the pulse.
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Appendix C

Matlab Code for plotting

This code is just for showing the graphs and traces generates mostly by FROG
3.2.0. from Femtosoft. Although is also shown one trace from the Newport’s soft-
ware, the most important, it is the FROG trace.

The script ShowFrog2012.m shows most of the figures that we have seen in mea-
surements chapter. The script phases.m just show the last two graphs about both
comparison the spectral phases and autocorrelations obtained in the different mea-
sures with the cuvettes filled with water.
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ShowFrog2012.m 
 
 
function ShowFrog2012(folder) 
  
clc 
close all 
% clear all 
  
path='C:\Users\Andrés\Documents\MATLAB'; 
folder=folder; 
fEk=fullfile(path,folder,'Ek.dat'); 
fa=fullfile(path,folder,'a.dat'); 
farecon=fullfile(path,folder,'arecon.dat'); 
fAutok=fullfile(path,folder,'Autok.dat'); 
ffrog=fullfile(path,folder,'frog.dat'); 
fmarg=fullfile(path,folder,'marg.dat'); 
fSpeck=fullfile(path,folder,'Speck.dat'); 
  
data=fullfile(path,folder,'data.mat'); 
  
header = data(1:5); 
trace = data(6:length(data)); 
  
Ek=dlmread(fEk);                    %retrieved electric 
field in time domain 
a=dlmread(fa,' ');                      %original FROG-trace 
arecon=dlmread(farecon,' ');            %received FROG-trace 
Autok=dlmread(fAutok);              %autocorrelation of 
retrieved electric field 
marg=dlmread(fmarg,' ');                %marginals of 
original and retrieved pulse 
Speck=dlmread(fSpeck);              %retrieved electric 
field in frequency domain 
pi=3.1416; 
  
  
  
figure(1), 
[AX,H1,H2]= plotyy(Ek(:,1),Ek(:,2),Ek(:,1),Ek(:,3)/pi); 
title('Intensity and Phase in time domain'); 
set(get(AX(1),'Ylabel'),'String','Intensity'); 
set(get(AX(2),'Ylabel'),'String','\Phi/\pi'); 
legend([H1 H2],'Intensity','Phase',1); 
xlabel('t in fs'); 
  
figure, 
plotyy(Ek(:,1),Ek(:,4),Ek(:,1),Ek(:,5)) 
title('Imaginary and Real Part in time domain'); 
legend('Real','Imaginary',1); 
xlabel('t in fs');ylabel('Intensity'); 
  
figure, 
[AX,H1,H2]= 



plotyy(Speck(:,1),Speck(:,2),Speck(:,1),Speck(:,3)/pi); 
title('Intensity and Phase in frequency domain'); 
set(get(AX(1),'Ylabel'),'String','Intensity'); 
set(get(AX(2),'Ylabel'),'String','\phi/\pi'); 
legend([H1 H2],'Intensity','Phase',1); 
xlabel('\lambda in nm'); 
  
figure, 
plotyy(Speck(:,1),Speck(:,4),Speck(:,1),Speck(:,5)); 
title('Imaginary and Real Part in frequency domain'); 
legend('Real','Imaginary',1); 
xlabel('\lambda in nm');ylabel('Intensity'); 
  
figure, 
plot(Autok(:,1),Autok(:,2)); 
title('Autocorrelation'); 
xlabel('\tau in fs');ylabel('Intensity');     
  
  
  
%%Data Performance%% 
  
a2=a(3:length(a(:,5)),1:length(a(5,:))); 
arecon2=arecon(3:length(arecon(:,5)),1:length(arecon(5,:)))
; 
load (data); 
trace=data(6:length(data)); 
data=data'; 
header=data(1:5); 
data1=data(6:length(data)); 
coltrace = 1; 
trace=data1(1:header(1)); 
for i=1:length(data1)-header(1) 
    if mod(i,header(1))== 0 
        coltrace = coltrace + 1; 
        trace(coltrace,:)=data1(i+1:i+header(1)); 
    end 
end 
  
  
trace = [[trace(1:header(2),1:round(header(1)/2)-1)] 
[trace(1:header(2),round(header(1)/2):header(1))]]; 
  
trace3(:,header(1))=trace(:,1); 
for k=1:header(1)-1 
    trace3(:,k)=trace(:,header(1)-k); 
end    
  
a3(:,length(a2))=a2(:,1); 
for l=1:length(a2)-1 
    a3(:,l)=a2(:,length(a2)-l); 
end    
a4(length(a3),:)=a3(1,:); 
for n=1:length(a3)-1 
     a4(n,:)=a3(length(a3)-n,:); 



end    
arecon3(:,length(arecon2))=arecon2(:,1); 
for m=1:length(arecon2)-1 
    arecon3(:,m)=arecon2(:,length(arecon2)-m); 
end    
arecon4(length(arecon3),:)=arecon3(1,:); 
for o=1:length(arecon3)-1 
     arecon4(o,:)=arecon3(length(arecon3)-o,:); 
end   
%  
a5=a4(length(a4)/4+1:length(a4)/4+length(a4)/2,length(a4)/4
+1:length(a4)/4+length(a4)/2); 
arecon5=arecon4(length(arecon4)/4+1:length(arecon4)/4+lengt
h(arecon4)/2,length(arecon4)/4+1:length(arecon4)/4+length(a
recon4)/2); 
dl3=[-(header(2)/4)*header(4)+header(5):header(4)*header(2)
/a(1,1):(header(2)/4-1)*header(4)+header(5)+(header(4)*(hea
der(2)/a(1,1)-(header(4)/2)))]; 
dt3=[-header(1)/4*header(3):header(3)*header(1)/a(1,1):(hea
der(1)/4-1)*header(3)+header(3)-1]; 
  
  
dl2=[-(header(2)/2)*header(4)+header(5):header(4)*header(2)
/a(1,1):(header(2)/2-1)*header(4)+header(5)+(header(4)*(hea
der(2)/a(1,1)-(header(4)/2)))]; 
dt2=[-header(1)/2*header(3):header(3)*header(1)/a(1,1):(hea
der(1)/2-1)*header(3)+header(3)-1]; 
dt=[-header(1)/2*header(3):header(3):(header(1)/2-1)*header
(3)]; 
  
dl=[-(header(2)/2)*header(4)+header(5):header(4):(header(2)
/2-1)*header(4)+header(5)]; 
dl2=[-(header(2)/2)*header(4)+header(5):header(4)*header(2)
/a(1,1):(header(2)/2)*header(4)+header(5)+(header(4)*(heade
r(2)/a(1,1)-(header(4)/2)))]; 
dt2=[-header(1)/2*header(3):header(3)*header(1)/a(1,1):(hea
der(1)/2-1)*header(3)+header(3)-1]; 
  
figure('Name','FROG Traces') 
colormap(jet(64)) 
%  %Raw data vs. delay and wavelength 
  
 surf(dt,dl,trace3,'FaceColor','interp',... 
 'EdgeColor','none',... 
 'FaceLighting','phong') 
%surf(X,Y,trace3) 
axis([dt(1) dt(length(dt)) dl(1) dl(length(dl)) 0 
max(max(trace3))]); 
title('Original Trace');                      
xlabel('\tau in fs');ylabel('\lambda in nm'); 
%original and retrieved FROG traces% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
intensitytrace3=(0:max(max(trace3))) 
intensityarecon=(0:max(max(arecon5))) 
intensitya=(0:max(max(a5))) 



  
  
figure('Name','FROG Traces') 
colormap(jet(64)) 
  
  
surf(dt3,dl3,a5,'FaceColor','interp',... 
 'EdgeColor','none',... 
 'FaceLighting','phong') 
%         contour3(X2,Y2,a3,1000) 
axis([dt3(1) dt3(length(dt3)) dl3(1) dl3(length(dl3)) 0 
max(max(a5))]);    
%original FROG trace 
title('Original Pulse'); 
xlabel('\tau in fs');ylabel('\lambda in nm'); 
  
figure('Name','FROG Traces') 
% subplot(2,4,[7 8]) 
colormap(jet(64)) 
surf(dt3,dl3,arecon5,'FaceColor','interp',... 
 'EdgeColor','none',... 
 'FaceLighting','phong') 
axis([dt3(1) dt3(length(dt3)) dl3(1) dl3(length(dl3))  0 
max(max(arecon5))]);                     %retrieved FROG 
trace 
title('Retrieved Pulse'); 
xlabel('\tau in fs');ylabel('\lambda in nm'); 
 
 
 
 
 
 
 
 
 
 
 
phases.m 
 
path='C:\Users\Andrés\Documents\MATLAB\6_NoCuvNoDich10fs'; 
Speck1=dlmread(fullfile(path,'Speck.dat')); 
Autok1=dlmread(fullfile(path,'Autok.dat')); 
Ek1=dlmread(fullfile(path,'Ek.dat')); 
path='C:\Users\Andrés\Documents\MATLAB\10_10mmCuvNoDich10fs
'; 
Speck2=dlmread(fullfile(path,'Speck.dat')); 
Autok2=dlmread(fullfile(path,'Autok.dat')); 
Ek2=dlmread(fullfile(path,'Ek.dat')); 
path='C:\Users\Andrés\Documents\MATLAB\12_50mmCuvDich10fs'; 



Speck3=dlmread(fullfile(path,'Speck.dat')); 
Autok3=dlmread(fullfile(path,'Autok.dat')); 
Ek3=dlmread(fullfile(path,'Ek.dat')); 
path='C:\Users\Andrés\Documents\MATLAB\16_100mmCuvDich10fs'
; 
Ek4=dlmread(fullfile(path,'Ek.dat')); 
Speck4=dlmread(fullfile(path,'Speck.dat')); 
Autok4=dlmread(fullfile(path,'Autok.dat')); 
pi =3.1416; 
Speck1_n=size(Speck1,1);   
limit_orig=2.8934e-11;                       %maximum of 
intensity value relative to I_max for which phase is set to zero 
limit=limit_orig;                       %reset limit 
for i=1:Speck1_n                         %shorter 
wavelengths 
    if Speck1(i,2)<limit                 %if intensity < 
limit, 
        Speck1(i,3)=0;                   %set phase = 0 
        wave_left=i;                    %wavelength counter 
for extract of relevant pulse part 
    else                                %if intensity > 
limit 
        limit=0;                         
    end; 
end; 
limit=limit_orig;                       %reset limit 
for i=Speck1_n:-1:1                      %longer wavelengths 
    if Speck1(i,2)<limit                 %if intensity < 
limit, 
        Speck1(i,3)=0;                   %set phase = 0 
        wave_right=i;                   %wavelength counter 
for extract of relevant pulse part 
    else                                %if intensity > 
limit 
        limit=0; 
    end; 
end; 
Ek3_n=size(Ek3,1); 
limit_orig=2.8934e-11;                       %maximum of 
intensity value relative to I_max for which phase is set to zero 
limit=limit_orig;  
for i=1:Ek3_n                            %negative time of 
the pulse 
    if Ek3(i,2)<limit                    %if Intensity < 
limit,  
        Ek3(i,3)=0;                      %set phase=0 
        time_left=i;                    %time counter for 
extract of relevant pulse part 
    else                                %if Intensity > 
limit 
        limit=0; 
    end; 
end; 
limit=limit_orig;                       %reset limit 
for i=Ek3_n:-1:1                         %positive time of 



the pulse 
    if Ek3(i,2)<limit                    %if intensity < 
limit 
        Ek3(i,3)=0;                      %set phase=0 
        time_right=i;                   %time counter for 
extract of relevant pulse part 
    else                                %if intensity > 
limit 
        limit=0;                         
    end; 
end; 
figure, 
% 
plot(Speck1(wave_left:wave_right,1),Speck1(wave_left:wave_r
ight,3)/pi),hold on 
plot(Speck1(:,1),Speck1(:,3)/pi,'r'), hold on 
plot(Speck2(:,1),Speck2(:,3)/pi,'b'), hold on 
plot(Speck3(:,1),Speck3(:,3)/pi,'g'), hold on 
plot(Speck4(:,1),Speck4(:,3)/pi,'k'), hold off 
axis([750 850 0 5]);   
title('Phase variation'); %retrieved FROG trace 
xlabel('\lambda in nm'); 
ylabel('Phase \phi/\pi'); 
legend('Reference', '10mm', '50mm', '100mm'); 
  
figure, 
plot(Autok1(:,1),Autok1(:,2),'r'), hold on 
plot(Autok2(:,1),Autok2(:,2),'b'), hold on 
plot(Autok3(:,1),Autok3(:,2),'g'), hold on 
plot(Autok4(:,1),Autok4(:,2),'k'), hold off 
axis([-500 500 0 1]) 
title('Autocorrelation Broadening'); 
xlabel('\tau in fs'); 
ylabel('Intensity'); 
legend('Reference', '10mm', '50mm', '100mm'); 
  
figure, 
plot(Ek1(:,1),Ek1(:,3)/pi,'r'), hold on 
plot(Ek2(:,1),Ek2(:,3)/pi,'b'), hold on 
plot(Ek3(:,1),Ek3(:,3)/pi,'g'), hold on 
% 
plot(Ek3(time_left:time_right,1),Ek3(time_left:time_right,3
)/pi),hold on 
plot(Ek4(:,1),Ek4(:,3)/pi,'k'), hold off 
% axis([750 850 0 3]);                     %retrieved FROG 
trace 
title('Temporal Phases'); 
xlabel('t in fs'); 
ylabel('Phase \phi/\pi'); 
legend('Reference', '10mm', '50mm', '100mm'); 
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