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Abstract

Two systems for spoken document classification are implemented by combining an
automatic speech recognizer with the two classification algorithms naive Bayes and
logistic regression. The focus is on how to handle the inherent uncertainty in the output
of the speech recognizer. Feature extraction is performed by computing expected word
counts from speech recognition lattices, and subsequently removing words that are
found to carry little or noisy information about the topic label, as determined by the
information gain metric. The systems are evaluated by performing cross-validation
on broadcast news stories, and the classification accuracy is measured with different
configurations and on recognition output with different word error rates. The results
show that a relatively high classification accuracy can be obtained with word error rates
around 50%, and that the benefit of extracting features from lattices instead of 1-best
transcripts increases with increasing word error rates.





Sammendrag

To systemer for emneklassifisering av tale er implementert ved å kombinere automatisk
talegjenkjenning med de to klassifiseringsalgoritmene naiv Bayes og logistisk regresjon.
Det fokuseres på hvordan den iboende usikkerheten i talegjenkjenningsresultatet kan
håndteres. Egenskapsuttrekking gjøres ved å beregne forventet antall ordforekomster fra
talegjenkjenningsgrafer («lattices»), for deretter å fjerne ord som gir liten eller forvirrende
informasjon om emnet, som målt ved informasjonsgevinst. Systemene er evaluert ved
bruk av kryssvalidering på nyhetsinnslag fra kringkastingsmedier, og klassifikasjon-
snøyaktigheten er målt for forskjellige konfigurasjoner og på talegjenkjenningsresultater
med forskjellige ordfeilrater. Resultatene viser at en relativt høy klassifikasjonsnøyak-
tighet kan oppnås med ordfeilrater på rundt 50%, og at fordelen ved å gjøre egenskapsut-
trekkingen fra talegjenkjenningsgrafer i stedet for topprangerte transkripsjonshypoteser
øker med økende ordfeilrate.
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Introduction

1.1 Definition and Motivation

With an ever-increasing amount of spoken data being produced, it becomes increasingly
important to be able to properly organize such data in for example audio databases. A
common organization task is categorization, or classification, into different topics. The
term spoken document classification is defined as the problem of labeling a digital speech
segment with the correct topic from a fixed set of possible topics.

A system for automatic spoken document classification can for example be used in
applications such as classification of broadcast news stories into topics like “science” and
“sports”, and classification of conversations from a surveilled telephone line into either
“criminal” or “innocent” activity.

Spoken document classification is closely related to spoken document retrieval,
where a list of spoken documents is returned in response to a given query. This retrieval
approach is suitable when the user has a very specific need to which only a relatively
small number documents are relevant. The classification approach is better suited when
the user is looking for documents matching a more general definition of a topic that is
hard to express in form of a query. Classification and retrieval can also be combined
to improve the user experience, for example to help disambiguate a query like mine,
which could mean both an explosive device and an excavation from which minerals are
extracted. If the user was able to filter the returned documents by topics like “war” and
“economics”, it could help the user find relevant documents more quickly.

1.2 Challenges

In many situations, there is no meta-data available to help with the classification, and the
speech itself is then the only source of information. Doing topic classification manually
can be very time-consuming, and this is especially true for a linear medium like audio
where the ability to manually scan through a spoken document is limited.

In this thesis the focus is on supervised learning, which means that an automatic
spoken document classifier will learn parameters from training documents manually
labeled with topics. While some manual labeling is still required at first, the goal is that
the classifier should learn the characteristics of the classes from the training documents
such that it becomes able to classify previously unseen documents with high accuracy.
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A spoken document classifier can be built by combining an automatic speech rec-
ognizer with a topic classification algorithm. Such a combination will consist of three
different modules: the speech recognizer, a feature extractor, and the topic classifier. In
this thesis, the speech recognizer is assumed to be given (except for parameter adjust-
ments), and the focus is on how to perform feature extraction and classification of the
speech recognition output.

An important question in such a system is how to handle the inherent uncertainty
in the textual representation of speech. The analysis will focus on the impact of speech
recognition errors on classification accuracy, and whether considering multiple hypothe-
ses from the speech recognizer, instead of only the most probable hypothesis, can help
increase accuracy. Feature selection will also be employed, which means that only a
subset of the speech recognition vocabulary is considered for classification. The idea is
that some words are thought to provide either little or noisy information about the topic
label, such that removing them could be beneficial for classification accuracy.

1.3 Thesis Outline

The remainder of this thesis is organized as follows.
Chapter 2 covers necessary background theory for spoken document classification.

First, automatic speech recognition is explained, including how multiple recognition
hypotheses can be obtained in form of a lattice. Then, a formal definition of the clas-
sification problem is given, followed by coverage of feature extraction in general and
from lattices in particular. Finally, feature selection and the two classification algorithms
naive Bayes and logistic regression are covered. The chapter is rounded off by discussing
previously proposed approaches to spoken document classification.

Chapter 3 explains the approach to spoken document classification taken in this
work. A brief architectural overview is given, before implementation details about the
speech recognizer, the feature extractor and the classifiers are given.

In Chapter 4, details about the broadcast news data set used for evaluation are
given. The evaluation methodology and evaluation metrics are covered, before the speech
recognition and classification results are reported. The results and their implications are
discussed at the end of this chapter.

The conclusion is given in Chapter 5, along with proposals of work that can be done
to further improve the classification accuracy. Some more general ideas about future
approaches to spoken document classification and related fields are also discussed.
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Theory & Previous Work

In this chapter we will cover some background theory for this thesis. First, automatic
speech recognition is covered, before we continue by covering classification in general,
and then spoken document classification in particular.

Let us begin by introducing some probability notation. We will use capital letters to
denote random variables, lowercase letters to denote a particular value taken by a random
variable, and blackboard bold to denote its sample space, i.e.

∑
x∈X P (X = x) = 1 for

any discrete random variable X taking values in the sample space X. We will often use
the shorthand notation P (x) instead of P (X = x).

2.1 Automatic Speech Recognition

For this project we will assume that the automatic speech recognition (ASR) system is
given and already trained. The process of finding the N most probable transcription
hypotheses is referred to as N -best recognition. If N = 1, we will explicitly write 1-best
recognition.

We will in this section briefly describe how 1-best recognition can be performed
by an ASR system, and then continue by discussing how N -best recognition can be
performed, as we are interested in the consequence of considering more than only the
1-best recognition result for classification.

When we feed the ASR system with an acoustic feature sequence o = o1o2 . . . oT ,
the 1-best recognition task is to find the word string ŵ = w1w2 . . . wL with the maximum
posterior probability given that acoustic feature sequence. This maximum a posteriori
estimate of the word string is given by

ŵ = arg max
w

P (w|o) = arg max
w

P (o|w)P (w)

P (o)
= arg max

w
P (o|w)P (w), (2.1)

where P (o|w) is given by our acoustic model, and P (w) is given by our language model.
The acoustic modeling in modern ASR systems is typically based on hidden Markov

models (HMMs) [1]. The probability P (o|w) may be modeled directly by word HMMs,
but sub-word models such as phone models are more commonly used in large-vocabulary
continuous speech recognition due to the lack of sufficient training data for words.
Word models are then constructed by concatenating sub-word HMMs according to a
pronunciation lexicon.

The most common language model P (w) is a simple n-gram language model [2,
Chapter 4], in which the probability of a word depends only on the n − 1 preceding
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words:

P (w) = P (w1w2 . . . wL)

=

L∏
i=1

P (wi| ∩i−1j=1 wj) (by the chain rule)

=

L∏
i=1

P (wi| ∩i−1j=i−n+1 wj) (by the n-gram model).

2.1.1 Viterbi Search

The Viterbi search is a dynamic programming algorithm for finding the most likely state
sequence given an observation sequence. For speech recognition, the search is performed
on a grammar network constructed by acoustic word units weighted according to the
language model [3, Section 12.4]. An example of such a grammar network for a unigram
language model is shown in Figure 2.1.

The algorithm works by keeping a record of the previous state for the most likely
path ending in each state for each time step. The search is referred to as time-synchronous
because the time steps are processed consecutively from 1 to T . The most likely state
sequence is then found by backtracking from the state having the most likely path at
time T . Usually we return a sub-optimal estimate of the word sequence ŵ taken directly
from the most likely state sequence, and this is called the Viterbi approximation.

W1

W2

W|W|
P (W|W|)

P (W2)

P (W1)

Figure 2.1: A grammar network for a unigram language model. Based on Figure 12.14 from [3].



AUTOMATIC SPEECH RECOGNITION 5

The extension from a unigram language model to a bigram language model is
done by letting the words have separate start and end nodes in order to “remember” the
preceding word, as shown in Figure 2.2.

Extension beyond a bigram language model violates the first-order Markovian
property that the Viterbi algorithm depends on, and therefore the search space has
to be expanded to recover the first-order property. If the original search space (the
vocabulary) is W = {W1,W2, . . . ,W|W|}, and we have an n-gram language model with
n > 2, then we need to expand the search space to Wn−1 to recover the first-order
property. This trick works because now the word history can be embedded in the current
grammar state word, such that the transition probability from a grammar state word
(wi−n+1, . . . , wi−1) ∈Wn−1 to any grammar state word beginning with wi is the n–gram
probability P (wi|wi−1, . . . , wi−n+1). The exponential growth in the search space means
that language models quickly become infeasible with increasing n.

W1

W2

W|W|

P (W1|W2)

P (W1|W1)

P (W2|W1)

P (W2|W2)

P (W|W||W2)

P (W|W||W1)

P (W|W||W|W|)

P (W2|W|W|)

P (W1|W|W|)

Figure 2.2: A grammar network for a bigram language model. Based on Figure 12.15 from [3].
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2.1.2 Pruning

The full search space for the Viterbi search is O(MT ) and its time complexity is O(M2T )

where M is the total number of HMM states after state expansion according to the
language model [1] [3]. Since these numbers can become incredibly large for large-
vocabulary speech recognition with higher-order language models, a full Viterbi search
is often infeasible, and it is common to perform pruning of the search space [4]. Instead
of processing each state in each time step, only the states with the most promising
hypotheses are processed. This heuristic may very well result in the optimal state path
not being found, but it allows us to trade-off between speed and accuracy.

A common pruning method is beam pruning, where a path is removed if its proba-
bility is below some threshold (the beam width) of the most likely path so far. This is
illustrated in Figure 2.3. Since the Viterbi algorithm already keeps track of the probability
of the most likely path ending at each state, beam pruning is only a matter of comparing
these already computed values.

Pruned

Beam
width

paths

The best path

Lo
g 

lik
el

ih
oo

d

Time

Figure 1: A conceptual example of the global beam pruning.

the global beam pruning histogram pruning has the benefit of
defining a worst case processing time for decoding. In many
cases, however, it is not as effective as the global beam pruning,
so these two criteria are often used together.

2.3. Word end pruning

The two pruning criteria described above are applied to all path
hypotheses. Besides these global prunings, it is also possible to
define prunings specific to the state of the search space which
a search hypothesis occupies. One pruning criterion that is of-
ten reported is applied after the language model score has been
added to the likelihood score of the path hypothesis. In [3] this
pruning is called the language model pruning, but we refer to
it as the word end pruning, as it is used at the end of a lexical
search network, where the word identity has been resolved. The
idea is the same as with the global beam pruning, except that we
compare the likelihood scores to the best partial path hypothesis
in the word end position and use a tighter beam width.

Let us define the likelihood score of the best word end hy-
pothesis as

QWE (t) = max
(v,σ∈SWE )

{Qv(t, σ)}, (4)

where SWE is the set of word end states of the search network.
The pruning is then applied to those path hypotheses, which
are in one of the word end states and a path is removed if its
likelihood score fulfills

log Qw(t, s) < log QWE (t) − f ′
WE , (5)

where f ′
WE is the corresponding beam width.

The word end pruning is useful for two reasons. The global
beam width must be wide enough to tolerate the addition of the
language model score. The word end beam width can therefore
be tighter, because for the paths this pruning is applied to the
language model score has been added recently. Another advan-
tage of the word end pruning is that usually the search network
has a high level of branching in these word end positions, due to
beginning of a new word. The paths at those positions are there-
fore likely to be expanded to numerous new path hypotheses, so
it is beneficial to prune them more tightly.

2.4. Setting the pruning thresholds

The pruning thresholds can be used to adjust the tradeoff be-
tween the recognition accuracy and efficiency. If accuracy is to
be maximized, the tightest possible pruning thresholds that still

give the optimal accuracy can be found by evaluating different
values iteratively using a development data set.

Besides fixed pruning thresholds, it is also possible to adap-
tively change them during decoding. This is useful especially
for the global beam width when histogram pruning is also used.
As stated above, the global beam pruning (and also the word
end pruning) can be applied already when the best likelihood
score of the current time frame is not yet available. Histogram
pruning, on the other hand, can be used only after all path hy-
potheses have been expanded. It would be beneficial if the paths
which will be pruned due to histogram pruning could be pruned
already before expansion. This situation can be approximated
by adjusting the global beam width based on the number of ex-
panded path hypotheses in previous frames. One method for
this was presented in [4].

3. New pruning criteria
Extending the idea behind the word end pruning, it is possible
to define additional specific pruning criteria, which use sepa-
rate reference likelihood scores and pruning thresholds. Next
we present three new pruning criteria which we show to give
performance boosts in the evaluation.

3.1. Equal depth pruning

If the search network is organized as a lexical prefix tree (see [1]
for more information about the tree organization of the search
network), it is easy to define for each state a depth from the
root of the tree as the number of states between the state and
the root. Path hypotheses ending at the states at equal depth
may have common properties which enable the use of a tighter
beam threshold. We therefore define the equal depth pruning as
follows:

QED(t, s) = max
(v,D(σ)=D(s))

{Qv(t, σ)}, (6)

log Qw(t, s) < log QED(t, s) − f ′
ED , (7)

where D(s) denotes the depth of the state s, and f ′
ED is the

beam width of the pruning.
In our decoder, the depths of the search network states are

most naturally computed at the level of HMM states. The num-
ber of depth levels is therefore slightly too fine grained, so we
divide the depth value by two and retain only the integral part.

3.2. Equal word count pruning

Adding language model scores to the path likelihood score
causes discontinuities, which at worst may throw an otherwise
feasible path hypothesis outside the global beam. The situation
is problematic especially if the differences between the word
counts of the competing path hypotheses are large, implying
considerable differences in the added language model likeli-
hood scores. The global beam width may therefore need to be
rather wide, so some efficiency is lost in situations where the
word counts do not differ.

To improve the prunings in these situations, we define the
equal word count pruning, for which the reference likelihood
score is relative to the word count of the word history. The
pruning criterion can be stated as

QEWC (w, t) = max
(C(v)=C(w),σ)

{Qv(t, σ)}, (8)

log Qw(t, s) < log QEWC (w, t) − f ′
EWC , (9)

Figure 2.3: An illustration of beam pruning. Reproduced from [4].

2.1.3 The N -Best Recognition Algorithm

As previously discussed, we are interested in whether considering more than only the
1-best transcription will improve classification accuracy. The exact N -best algorithm [5]
describes how to alter the time-synchronous Viterbi search to obtain an N -best list. The
key difference is that the N -best algorithm keeps up to N separate records in each state
and time step for paths that represent different word histories, where the standard Viterbi
algorithm only keeps one record representing the path with the maximum probability
ending in that state. If several paths arrive at the same state in the same time slot, and they
have the same word history, their probabilities are added. If their word histories differ
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and cause the number of records in that state to exceed N , only the records representing
the N most likely word histories are kept. The final N -best list is found from the N
records representing the most likely word histories at time T . Beam pruning can easily
be applied to the N -best search, and the only difference from 1-best beam pruning is that
it involves N times as many pruning candidates.

2.1.4 Word Lattices

A word lattice is in principle a compressed lossless representation of an N -best list of
recognition hypotheses in which words overlapping in time in multiple hypotheses are
merged. We represent a word lattice as a directed acyclic graph, where each vertex (node)
is labeled with a word, and each edge is labeled with a joint language and acoustic
probability. Each path through the lattice represents a recognition hypothesis consisting
of the words from the vertices on the path, with a joint acoustic and language probability
P (o|w)P (w) = P (o,w), as seen in Equation 2.1, given by the product of the edge
probabilities on the path.

hi

there

hair

mister

sister

p1

p2

p3

p4

p5

p6

<s> </s>

1

1

p0

Figure 2.4: An example of a word lattice containing four different recognition hypotheses. The probability of
a hypothesis can be calculated by multiplying the edge probabilities on its path.

2.1.5 Evaluation

The usual evaluation metric for an end-to-end automatic speech recognition system is
the word error rate (WER). The WER is the word edit distance between the reference
string and the recognized string, divided by the number of words in the reference string.
The word edit distance is defined as the minimum total number of insertions, deletions
and substitutions of words needed to transform the recognized string to the reference
string. Then we have

WER =
number of insertions + number of deletions + number of substitutions

number of words in reference
.
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If the reference word string is v1v2 . . . vm and the recognized word string isw1w2 . . . wn,
then the edit distance is dm,n, given by the recursive definition

d0,0 = 0

di,0 = i, 1 ≤ i ≤ m
d0,j = j, 1 ≤ j ≤ n
di,j = min

[
di−1,j + 1, di,j−1 + 1, di−1,j−1 + 1vi 6=wj

]
, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where 1vi 6=wj is an indicator function taking the value one if the subscript condition is
true, and zero otherwise. The first argument to min represents a deletion, the second
represents a insertion, and the third represents a substitution if vi 6= wj or a match if
vi = wj . The edit distance dm,n can be calculated in time O(mn) by using dynamic
programming to construct an (m+ 1)× (n+ 1) matrix containing the elements di,j .

2.2 Classification Overview

We will begin this section by giving a formal definition of a classifier and a supervised
learning algorithm.

A classifier is a function γ : XD → C that maps an instance x ∈ XD to a class c ∈ C.
The D-dimensional instance space XD is called the feature space, in which each feature
takes values from the set X, which is assumed to be the real numbers R or some subset
like the natural numbers N or {0, 1}. A single instance x is called a feature vector. A
supervised learning algorithm is a function Γ that takes a training set D ⊂ C × XD as
input and returns a learned classifier Γ(D) = γ.

2.2.1 Feature Extraction

Feature extraction is the procedure of converting original source data to feature vectors.
Domain knowledge about each specific problem is used to create a feature extractor
that does this conversation. For text classification, the feature vector often follows the
bag-of-words model, in which a document is represented by an unordered collection of
words. Since the position of each word is ignored, we can use a simple feature vector
representation in which each dimension corresponds to a word in the vocabulary. The
value of each dimension (i.e. word) is usually the number of occurrences of that word in
the document.
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Word Counting in Spoken Documents

If we want to use the number of occurrences of each word, also called word counts, as
features for a spoken document, we have to decide on how to calculate these numbers.
We can count the number of occurrences of each word in the 1-best ASR transcription, or
we can calculate expected word counts from the ASR lattice representation. We will now
describe how the computation of expected word counts can be done.

We formally define a lattice as a directed acyclic graph with vertices (nodes) V
and edges E ⊂ V × V. Each vertex v ∈ V is labeled with a word w(v), and each edge
e = (u, v) ∈ E is labeled with a probability P (e) that is a joint language and acoustic
probability. There is also a unique start vertex vS and a unique end vertex vE , for which
there are defined two special words w(vS) = <s> and w(vE) = </s>.

The expected number of occurrences c(w) for a word w can be calculated by
summing the posterior probabilities for vertices labeled with that word, given by

E{c(w)|o} =
∑

v∈V:w(v)=w

P (v|o),

where P (v|o) is the posterior probability for a vertex v to be visited on a random path
through the lattice.

Now, the problem of computing P (v|o) is actually very similar to the problem of
computing the probability of being in a particular HMM state at a specific time given an
observation sequence. This HMM problem is solved efficiently by the forward-backward
algorithm as shown by Rabiner in [1]. We will here derive a variant of the forward-
backward algorithm for lattices.

A lattice path π is a sequence of consecutive edges in the lattice. Let o(π) denote
the observation sequence corresponding to the path π, and let u v denote the set of all
paths from vertex u to vertex v. We then define the forward variable α(v) for a vertex
v as the probability mass of all partial paths from the start vertex ending in that vertex,
given by

α(v) =
∑

π∈vS v
P (π,o(π)) =

∑
π∈vS v

∏
e∈π

P (e), v ∈ V \ {vS}.

Similarly, the backward variable β(v) for a vertex v is defined as the probability mass of
all partial paths from that vertex to the end vertex, given by

β(v) =
∑

π∈v vE
P (π,o(π)) =

∑
π∈v vE

∏
e∈π

P (e), v ∈ V \ {vE}.

We also define that α(vS) = β(vE) = 1.
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vS v vE↵(v) �(v)

Figure 2.5: An illustration of the forward and backward variables for vertex v. The dashed boxes on the top
and on the bottom represent the probability mass of the paths not passing through v.

We can now express P (v|o) in terms of forward and backward variables:

P (v|o) =
∑

π1∈vS v,π2∈v vE
P (π1π2|o)

=

∑
π1∈vS v,π2∈v vE P (π1π2,o)

P (o)

=

(∑
π1∈vS v P (π1,o(π1))

) (∑
π2∈v vE P (π2,o(π2))

)∑
π∈vS vE P (π,o)

=
α(v)β(v)

α(vE)
.

Notice that the normalization factor in the denominator will ensure that the sum
of the posterior probabilities of all lattice paths will be one. In other words, this is a
posterior probability conditioned on the lattice, since any probability mass from paths
pruned during recognition is ignored.

The only thing left now is the computation of the forward and backward variables.
We will exploit the fact that they can be expressed by recursion:

α(vS) = β(vE) = 1

α(v) =
∑

u∈V:(u,v)∈E
α(u)P ((u, v)), u ∈ V \ {vS}

β(u) =
∑

v∈V:(u,v)∈E
P ((u, v))β(v), v ∈ V \ {vE}.

Here the meaning behind their names is revealed since, for efficiency, the forward
and backward variables should be calculated by dynamic programming for the vertices
in forward and backward topological order, respectively. If they instead were calculated
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in the opposite direction (directly from the recursion), it would result in a lot of redundant
calculations.

2.2.2 Feature Selection

Feature selection is the process of selecting a subset of the original features with the
purpose of using only those for training and classification. In other words, it is a
form of dimensionality reduction of the original feature vector representation. For the
bag-of-words representation, feature selection is equivalent to reducing the size of the
vocabulary. In spoken document classification, this amounts to selecting a subset of the
ASR vocabulary as the classification vocabulary.

The most obvious advantage of feature selection is that it makes learning and
classification more computationally efficient. However, it can also help increasing the
classification accuracy because it can remove noisy features. Consider for example the
case when a rare word like arachnocentric1 happens to only occur in documents
from the class “sports” in the training data. If the classifier exaggerates the importance of
this and tends to misclassify any document containing arachnocentric as “sports”,
the classifier has learned an accidental property of the training data, instead of the
underlying characteristics, and this is called overfitting.

Information Gain Feature Selection

One method of performing feature selection is by ranking the features by their information
gain [7] with respect to a training set, and then selecting a certain number features from
the top of this ranking. The information gain of feature i, with a value of Xi, is defined as

IG(C|Xi) = H(C)−H(C|Xi),

where H(C) is the entropy of the class label C, and H(C|Xi) is the conditional entropy
of the class label C given the feature value Xi. Intuitively, IG(C|Xi) is the reduction in
uncertainty about the class label C obtained by knowing the feature value Xi. In other
words, it measures how much the feature helps with making the correct classification
decision.

(1) Thanks to [6] for the example.
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The information gain can be calculated as follows:

IG(C|Xi) = −
∑
c∈C

P (c) logP (c) +
∑
xi∈X

P (xi)H(C|xi)

=
∑
c∈C

∑
xi∈X

P (c, xi) log
1

P (c)
+
∑
c∈C

∑
xi∈X

P (xi)P (c|xi) logP (c|xi)

=
∑
c∈C

∑
xi∈X

P (c, xi) log
P (c, xi)

P (c)P (xi)
. (2.2)

For the illustrative special case of binary classification and binary features (i.e. pres-
ence/absence of words), we have C = X = {0, 1}, and maximum likelihood estimation
for a given word results in

IG(C|Xi) =
N00

N
log

N00N

N0∗N∗0
+
N01

N
log

N01N

N0∗N∗1
+

N10

N
log

N10N

N1∗N∗0
+
N11

N
log

N11N

N1∗N∗1
,

where Ncxi is the number of instances with C = c and Xi = xi, ∗ is a wildcard matching
any value, and N is the total number of instances.

χ2 Feature Selection

Another way of performing feature selection is by ranking the features by the χ2 statistic
between Xi and C. The χ2 statistic measures the lack of independence between the
variables, and the intuitive motivation is that good features should be highly dependent
on the class label. We refer to [7] for details about the calculation of the χ2 statistic.

Discretization

The calculation of the information gain in Equation 2.2 requires X to be discrete set, and
the same is true for calculating the χ2 statistic. This is a problem for our continuous-
valued expected word counts, so we need a way to discretize these values. One method
of doing such discretization is proposed in [8]. The idea is to first sort all the training
instances D according to their value for the feature to be discretized, before potential cut
points are identified at positions in the sorted list where the class label changes. Each
potential cut point T splits the data set into two subsets, D1 with values ≤ T and D2 with
values > T , and then the class entropy of the cut is calculated as

H(T ;D) =
|D1|
|D| H(D1) +

|D2|
|D| H(D2),
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where the entropy of a document set is defined as the entropy of its internal class
distribution, with a maximum likelihood estimate of

H(D) = −
∑
c∈C

Nc
N

log
Nc
N
,

where Nc is the number of documents with class label c.
The potential cut point with the lowest class entropy is then chosen as the dis-

cretization threshold. This procedure continues recursively on each subinterval until
all documents belonging to the subinterval either have the same class label or the same
value, or if a stopping criterion is met. The stopping criterion proposed in [8] is a mini-
mum description length stopping criterion. We refer to the paper for a description of this
criterion, which is also based on information theory.

2.2.3 Evaluation

We want to evaluate the ability of a classifier to correctly predict future data. Therefore,
it is essential to have disjoint training data and testing data, such that testing is performed
on data not seen during training. A commonly used method is cross-validation, in which
several independent trials (folds) are performed in a way such that each instance is used
for both training and testing, but never in the same fold.

In k-fold cross-validation, the data set D is split evenly into k disjoint subsets
D1, . . . ,Dk. In fold i, subset Di is used as test data and D \ Di is used as training data.
The testing and training for each fold is done independently from all the other folds, and
the evaluation results obtained in these independent tests are usually averaged across
folds.

A common evaluation metric for multiclass classification is accuracy, which is
defined as the fraction of correctly classified instances.

The cross-validation procedure can also be stratified, which is a way of performing
the data split that ensures that each fold has a distribution of classes that matches the
distribution of the data set as a whole. An example of the contrary (non-matching
distributions) is a subset consisting solely of a single class, which obviously would cause
problematic results.

The stratification is implemented by handling the instances belonging to each class
separately. A total of k|C| disjoint subsets are formed by splitting the instances belonging
to each class evenly into N disjoint subsets. The final k stratified folds are then obtained
by combining these subsets such that each fold has one of these subsets from each class.
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2.3 Classification Models & Algorithms

2.3.1 Naive Bayes

Naive Bayes is a probabilistic classifier in which the probability of a feature vector x

belonging to class c is computed by using Bayes’ rule:

P (c|x) =
P (c)P (x|c)

P (x)
.

The feature vector probability P (x|c) can be decomposed by the chain rule as

P (x|c) =

D∏
i=1

P (xi|c, xi−1, . . . , x1).

To be able to calculate this probability, we need all the probabilities in the product.
However, a table listing the distribution P (xi|c, xi−1, . . . , x1) for all i would contain
|C|∑D

i=1 2i = |C|2D−1 probabilities if the features are binary. This is clearly problematic
because of the memory consumption of this table, but also because a model with this
number of parameters is prone to overfitting. To avoid this problem, we employ the
naive Bayes assumption, which states that each feature is conditionally independent of all
the other features given the class label. Then we have that P (xi|c, xi−1, . . . , x1) = P (xi|c)
for all i, and we have reduced the number of probabilities used for modeling P (x|c) for
binary features from |C|2D−1 to |C|D.

Classification with the naive Bayes model is performed by selecting the maximum
a posteriori (MAP) estimate of the class:

ĉ = arg max
c∈C

P (c|x) = arg max
c∈C

P (c)P (x|c)
P (x)

= arg max
c∈C

P (c)

D∏
i=1

P (xi|c).

We can drop the denominator since it is fixed with respect to the class label, but in
addition to modeling P (x|c), we also need to model the class priors P (c).

Event Models

There are two popular variations of the naive Bayes model as applied to text classifica-
tion [9]. The Bernoulli model has binary feature values indicating absence or presence of
words, so it can be seen as generating the vocabulary for each document. For a binary
feature vector representation with X = {0, 1}, the probability of a class c is given by

P (c|x) ∝ P (c)

D∏
i=1

(xiP (Xi = 1|c) + (1− xi)(1− P (Xi = 1|c))) ,
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where the model parameter P (Xi = 1|c) is the probability of word i being present in a
document from class c.

This Bernoulli model is simple, but problematic for our expected word counts
where presence and absence of words cannot be directly defined.

The multinomial model instead has numerical features representing the number of
occurrences of each word, and it can be seen as generating a document by selecting a
word for each position in the document. The multinomial model has also been shown
experimentally to give better accuracy than the Bernoulli model on many data sets unless
the vocabulary is very small [9]. The probability of a class c given a feature vector x with
word counts xi = c(wi) is given by

P (c|x) ∝ P (c)

D∏
i=1

P (wi|c)xi ,

where the model parameter P (wi|c) is the probability of word i appearing at a specific
position in a document with class label c.

We notice that the Bernoulli model explicitly models absence of words, while
the multinomial model will only take into account the words that are present in the
document, since words with zero counts will result in factors of one in the probability
calculation.

It is interesting to note that the multinomial naive Bayes model is equivalent to
using a unigram language model for classification, in which each class is treated as its
own language, and the most probable class for a document is given by the language
model that has the highest probability of the document.

In this thesis, we will focus on the multinomial model, but we will turn to the
Bernoulli model once to simplify a theoretical analysis.

Training

As a supervised classification model, naive Bayes learns its parameters from a set of
training data. Maximum likelihood estimation of the parameters for the multinomial
model is given by

P̂ (w|c) =
Ncw∑

w′∈WNcw′
,

and the maximum likelihood estimator for the class priors is simply

P̂ (c) =
Nc
N
,

where Ncw is the number of occurrences of the word w in documents with the class label
c in the training data, Nc is the number of documents from class c in the training data,
and N is the total number of training documents.



16 THEORY & PREVIOUS WORK

These estimates would give a probability of zero to a word not seen in the class
during training, and since the probabilities are multiplied, this would result in the
product being zero. To avoid this, we employ Laplace smoothing, which distributes
some of the probability mass from words seen during training to words not seen during
training [10]. This corresponds maximum a posteriori estimation with a uniform Dirichlet
prior, which is the conjugate prior of the multinomial distribution. The expected posterior
probabilities are then given by

P̂ (w|c) =
Ncw + 1∑

w′∈W(Ncw′ + 1)
=

Ncw + 1

(
∑
w′∈WNcw′) + |W| .

Decision Boundary

Now, for a theoretical analysis, let us consider the Bernoulli naive Bayes model for binary
classification with C = {c1, c2}. If we define

θ1 =


ln P (X1=1|c1)

P (X1=1|c2)
...

ln P (XD=1|c1)
P (XD=1|c2)

 and θ0 =


ln P (X1=0|c1)

P (X1=0|c2)
...

ln P (XD=0|c1)
P (XD=0|c2)

 ,

then the log-odds ratio for the naive Bayes classifier can be expressed as

ln
P (c1|x)

P (c2|x)
= ln

P (c1)P (x|c1)

P (c2)P (x|c2)

= ln
P (c1)

P (c2)
+

D∑
i=1

ln
P (xi|c1)

P (xi|c2)

= ln
P (c1)

P (c2)
+

D∑
i=1

(
xi ln

P (Xi = 1|c1)

P (Xi = 1|c2)
+ (1− xi) ln

P (Xi = 0|c1)

P (Xi = 0|c2)

)
= ln

P (c1)

P (c2)
+ θT0 1 + (θ1 − θ0)Tx,

which is a linear function in x. The log-odds ratio can also be interpreted as a decision
boundary since we decide on the class c1 if and only if the log-odds ratio is greater than
zero. So the Bernoulli naive Bayes classifier is linear in log space, and this is in fact true
for naive Bayes in general [6, Section 14.4]. It might seem optimistic to hope for linear
separability of the classes in real-word data, but with the relatively high dimensional
feature vectors that are used in document classification, it turns out this is often the
case [11].

2.3.2 Logistic Regression

Logistic regression is a probabilistic classifier that differs from naive Bayes by modeling
the probability P (c|x) directly, which is sufficient for classification. The logistic regression
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classifier for binary classification with C = {c1, c2} can be derived by assuming a linear
log-odds ratio with respect to the feature vector:

ln
P (c1|x)

P (c2|x)
= wTx̃,

where we have added an intercept (bias) term to the feature vector to obtain x̃ =(
1 xT

)T
. We can derive the posterior probability P (c1|x) from the log-odds ratio

by exponentiating to get

P (c1|x)

1− P (c1|x)
= exp(wTx̃)

P (c1|x) =
exp(wTx̃)

exp(wTx̃) + 1
=

1

1 + exp(−wTx̃)
,

which is the sigmoid function with parameter wTx̃.
For multiclass classification with the classes C = {c1, . . . , c|C|}, the probability of a

class ci 6= c|C| is

P (ci|x) =
exp(−wT

i x̃)

1 +
∑|C|−1
j=1 exp(−wT

j x̃)
,

and the probability of the last class c|C| is such that the they sum to one:

P (c|C||x) =
1

1 +
∑|C|−1
j=1 exp(−wT

j x̃)
.

Training

The training procedure for logistic regression consists of finding the (D + 1)× (|C| − 1)

weight matrix W =
(
w1 · · · w|C|−1

)
that maximizes the conditional likelihood of the

training data. The likelihood, assuming N independently generated training instances
D = {(c(1),x(1)), . . . , (c(N),x(N))}, is given by

L(W) =

N∏
i=1

P (c(i)|x(i);W),

and the maximum likelihood estimate of the weights is then given by

Ŵ = arg max
W

logL(W)

= arg max
W

N∑
i=1

logP (c(i)|x(i);W).
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We can use indicator functions to write this out in terms of posterior probabilities for all
the classes:

Ŵ = arg max
W

N∑
i=1

|C|∑
j=1

1c(i)=cj logP (cj |x(i);wj).

There is however no closed-form solution to this maximization, due to the non-
linearity of the sigmoid function. Luckily, this maximization problem is convex [12,
Section 4.3], so any local optimum is also a global optimum, and therefore gradient
ascent or Newton’s method with random initial weights can be used to approach the
global maximum.

2.3.3 Discriminative and Generative Models

A generative classifier learns the joint probability P (x, c), and can then estimate the
posterior probability P (c|x) of a given observation x by using Bayes’ rule. The maximum
a posteriori (MAP) estimate is the class c that maximizes this probability. Naive Bayes is
an example of such a classifier. The classifier is called generative since it can generate
new data from the learned joint distribution. One application exploiting this property
of generative models is HMM-based speech synthesis [13]. Since HMMs are generative
models, they can be used for generation of speech, in addition to recognition of speech
as explained previously in this chapter.

A discriminative classifier instead learns the posterior probability P (c|x) directly,
which is sufficient for classification. This is what logistic regression does. A theoretical
argument for this approach is that “one should solve the [classification] problem directly
and never solve a more general problem as an intermediate step [such as modeling
p(x|c)]” (quote from [14] paraphrased by [15]). A thorough empirical and theoretical
comparison of generative and discriminative classifiers is given in [15], in which the
authors conclude that a generative classifier indeed has a higher asymptotic error when
the number of training examples grows large. However, a generative classifier may
approach its (higher) asymptotic error much faster than the discriminative model.

2.4 Previous Work

There has been much research into text classification, and the dominating approach
has shifted from handcrafted rule-based methods to more recent automatically trained
probabilistic and/or geometric methods [16]. An example of a classification rule in a
rule-based system is shown in Figure 2.6.



PREVIOUS WORK 19

if (wheat ∧ farm) ∨
(wheat ∧ commodity) ∨
(bushels ∧ export) ∨
(wheat ∧ agriculture) ∨
(wheat ∧ tonnes) ∨
(wheat ∧ winter ∧ ¬soft) then ĉ = “wheat”

Figure 2.6: Example classification rule for the class wheat. Reproduced from [17].

The problem with this rule-based approach is not necessarily the resulting rules,
but mainly the process of constructing the rules. The construction is time-consuming and
often involves consulting a domain expert. The difference with later approaches is the
shift from manual construction of the rules to manual construction of the classifier and
learning algorithms, in addition to the manual labeling of training documents required
by supervised learning. In this supervised learning paradigm, the manual work does not
involve the inference itself, but rather the manual classification of training documents to
be passed to an automated learning (inference) algorithm.

An overview over work regarding naive Bayes text classification is given in [9],
including an evaluation of the two event models previously discussed in this chapter for
different vocabulary sizes. In [10] different improvements to the standard naive Bayes
model are discussed and evaluated.

In [18] the authors analyze why the classification accuracy for the naive Bayes clas-
sifier is surprisingly high in many cases, even though its posterior probability estimates
are poor because of the conditional independence assumption.

2.4.1 Spoken Document Classification

The simplest way of constructing a spoken document classification system is concatenat-
ing an automatic speech recognizer with a text-based classification system. Unfortunately,
the accuracy of current speech recognizers degrade significantly when faced with un-
constrained conversational speech or varying acoustical environments [19]. Since the
relative benefit of considering multiple hypotheses is expected to increase with decreas-
ing recognition accuracy [20] [21], there has been much work going into the joint field of
spoken document classification.

An insightful generalization emphasized in [22] is that the textual representation
of a spoken document is probabilistic and can be seen as a distribution over its possible
transcriptions. Hence, the features used for classification should be treated as proba-
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bilistic quantities. Seen from this perspective, it is clearly suboptimal to consider the
distribution over transcriptions P (w|o) only at its maximum as is done in 1-best classifi-
cation. Additionally, when the uncertainty contained in the transcription distribution
is large (high WER), the probability mass is distributed more evenly across hypotheses
than when the uncertainty is smaller (low WER). With a small uncertainty, most of the
probability mass is contained in the 1-best hypothesis, and there is not much to gain from
considering the other unlikely hypotheses.

A spoken document classifier is proposed in [23]. They are using a multinomial
naive Bayes classifier combined with expected word counts feature extraction. They
employ χ2 feature selection to select the classification vocabulary. Their results on the
switchboard corpus show that using expected word counts is better than 1-best, both for
feature (word) selection and for classification. They advise against feature selection from
1-best data by arguing that selecting a word because it discriminates well based on 1-best
might not work well, since it could be the case that it cannot be reliably detected or it has
a large insertion probability by the speech recognizer. The expected word counts are not
computed directly from a recognition lattice, instead they are computed by using what
they call a HMM word spotter, which is a special-purpose speech recognizer that aims
to only recognize words chosen by the feature selector. They use a forward-backward
algorithm to compute the posterior probabilities for the classification vocabulary words
at all time steps. To calculate the expected word counts, instead of summing all the
posteriors for each word, they only include a posterior in the sum when it reaches a local
maximum on the time axis.

Another spoken document classifier is proposed in [24], including an update in
[25] giving better results because of an improved ASR engine. In the first paper, the
word accuracy in the recognition transcripts was 22%, and the word error rate was
“well into the 90%’s”. On these recognition transcripts they obtained a classification
accuracy (for 10 topics) of 74% with a classification vocabulary of 4,600 words. They
used a smoothed unigram language model for each topic (equivalent to naive Bayes
except for the smoothing). They used the χ2 feature selection criterion to reduce the
vocabulary size. Both feature selection and classification were performed on 1-best
recognition transcripts. The second paper left the classifier unchanged, only the ASR
engine is improved to a word error rate “in the 40%’s”. With this new recognizer, the
same unigram language model classifier obtains an accuracy of 99.2%, the same as what
they obtain on the reference transcripts.

There are also proposed several methods for segmenting speech into topics. Many
of these are using a hidden Markov model in which each state represents a topic. Since a
hidden Markov model is a generative model, the observation model for each state has
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to be generative, and a topic-dependent language model is chosen in most approaches.
Both [26] and [27] use a unigram language model equivalent to multinomial naive Bayes.
In the latter paper a trigram language model is also tested, but unigram was found to be
better.

As previously mentioned, spoken document classification is closely related to
spoken document retrieval, in which a list of documents is returned in response to a
given query. A lattice-based approach to spoken document retrieval is proposed in [21],
where expected word counts are estimated from the lattice and subsequently used to
produce a ranking of the documents. They report a significant relative improvement by
using expected counts from lattices instead of 1-best word counts.
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Methods & Implementation

We have implemented two spoken document classification systems by combining an
automatic speech recognizer with the two classification algorithms multinomial naive
Bayes and logistic regression. Our combination of expected word count feature extraction
and the naive Bayes classifier is similar to the approach presented in [23]. But instead
of their use of χ2 feature selection, we used information gain feature selection, and in
addition to naive Bayes, we also implemented logistic regression classification.

The systems are implemented in a single Java application. The application takes
raw audio input and passes it to an automatic speech recognizer, from which the results
are passed to the feature extractor and finally to the classifier. A flow chart of the process
is shown in Figure 3.1.

Audio
Automatic 

speech 
recognizer

Feature 
extractor Classifier

Figure 3.1: Flow chart of the classification system.

3.1 The Automatic Speech Recognizer

The automatic speech recognizer is based on the CMU Sphinx-4 open source framework
for speech recognition [28], which is written in Java. Acoustic features in form of 13
mel-frequency cepstral coefficients (MFCCs) [29] are extracted from the audio signal, then
normalized by their means to reduce convolutional channel distortion (cepstral mean
normalization) [30], and finally their time deltas and double-deltas are also included to
form the complete 39-element acoustic feature vector.

These acoustic feature vectors are then used in an HMM-based recognition system
in which each HMM represents a cross-word context-dependent phone (triphone). The
observation probability density for each HMM state is given by a mixture model con-
sisting of eight Gaussians. For recognition, a grammar network is constructed by these
HMMs according to a pronunciation lexicon and a trigram language model, and then a
time-synchronous Viterbi beam search is performed on the grammar network to obtain
the recognition hypotheses in form of a lattice.
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Both the acoustic model and the language model used in this implementation are
trained on the 1997 English Broadcast News Speech (HUB4) corpus1 provided by the
Linguistic Data Consortium. The vocabulary contains 64,000 words.

3.2 The Feature Extractor

The automatic speech recognizer returns a lattice representing multiple hypotheses with
corresponding probabilities. The feature extractor converts a text string or a lattice to a
D-dimensional feature vector that can be used directly for classification. We are using
the bag-of-words representation, in which each of the D elements represents a word,
and the corresponding value is the number of occurrences of that word. In order to save
memory, a sparse vector representation is used for the feature vectors, in which only
nonzero values are listed along with the corresponding word indices.

3.2.1 Word Normalization and Stemming

We start the feature extraction phase by normalization and stemming of the words. The
normalization done on ASR output only consists of lowercasing all letters. However, the
system should also be able to accept the reference transcripts, both for WER calculations
and for reference classification. Because of this we have implemented some additional
normalization which involves removal of punctuation, and conversion of numbers to
words (eg. 2000 to two thousand).

Stemming is a procedure also known as suffix stripping, which reduces words
to their root forms. Two examples of English stemming are stemming to stem, and
procedures to procedure. The stemming procedure reduces the effective vocabulary
size and can therefore shorten the feature vector. Since the exact form of a word is
assumed to have little information about the topic label, stemming could also help
improve accuracy. We are using the Porter stemming algorithm for English [31].

3.2.2 Counting Word Occurrences

We have implemented two different ways of counting word occurrences in the lattice.
The first one counts the number of occurrences in the 1-best Viterbi path, while the other
one counts the expected number of occurrences in the lattice. As seen in Chapter 2,
computing the expected number of occurrences requires computation of the posterior
probability for each node in the lattice, i.e. the probability that the node occurs on a
random path through the lattice. Once the posterior computation is done, the expected

(1) http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC98S71

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC98S71
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count for each word is obtained by summing the posteriors for all nodes corresponding
to that word.

Let V be the set of all vertices (nodes) in the lattice, and W the set of all words in the
vocabulary of the speech recognizer (and hence the vocabulary of the lattice). For a given
vertex v, let w(v) be the corresponding word. The computation of the expected number
of occurrences of word w is then simply implemented by using the forward-backward
algorithm as described in Chapter 2. The forward pass is given in Algorithm 1, the
backward pass in Algorithm 2, and finally the expected word calculation is done in
Algorithm 3.

Algorithm 1 Calculating forward variables.

α(vS) := 1
for all v ∈ topologically_sorted(V \ {vS}) do

α(v) := 0
for all e ∈ incoming_edges(v) do

α(v) := α(v) + α(source_vertex(e)) ∗ edge_probability(e)
end for

end for

Algorithm 2 Calculating backward variables.

β(vE) := 1
for all v ∈ reverse_topologically_sorted(V \ {vE}) do

β(v) := 0
for all e ∈ outgoing_edges(v) do

β(v) := β(v) + β(destination_vertex(e)) ∗ edge_probability(e)
end for

end for

Algorithm 3 Calculating expected word counts.

for all w ∈W do
c(w) := 0

end for
for all v ∈ V do

c(w(v)) := c(w(v)) + α(v) ∗ β(v)/α(vE)
end for
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3.2.3 Word Selection

The number of distinct words in the lattice is upper-bounded by the number of words
in the vocabulary used by the speech recognizer, which in our case is 64,000 words. We
tried both χ2 and information gain feature selection, and in practice information gain
gave marginally better results, so we chose to go with information gain feature selection
in the final implementation. In order to be able to compute the information gain, the
continuous values that arise from the expected value computation are discretized by
recursive splitting according to an information gain criterion, as proposed in [8] and
explained in Section 2.2.2.

3.3 The Naive Bayes Classifier

The open source Weka data mining software [32] (written in Java) was used for imple-
mentation of the multinomial naive Bayes classifier. The classifier is trained with Laplace
smoothing (add-one smoothing) for both the class-conditional parameters and the class
priors.

When a trained classifier is passed a test instance x, it returns a vector containing
the posterior distribution over classes, which is obtained by normalization of the classifier
output P (x|c)P (c) over all classes:

P (c|x) =
P (x|c)P (c)∑
c∈C P (x|c)P (c)

.

3.4 The Logistic Regression Classifier

The LibLINEAR library [33] was used for implementation of the logistic regression
classifier. The LibLINEAR library applies a trust region Newton method to efficiently
maximize the log-likelihood during training of the logistic regression classifier [34]. An
L2 regularization term is subtracted from the log likelihood in order to get an objective
function that penalizes large weights, since this can prevent overfitting [35].

We used a Java wrapper for LibLINEAR in order to call it from our Java applica-
tion. The LibLINEAR logistic regression classifier also returns a vector containing the
posterior distribution over classes when given a test instance, from which we can pick
the maximum as the MAP estimate.
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Results & Discussion

In this chapter, we describe our experiments and report the results obtained with the
implementation described in the previous chapter.

4.1 Data Set

The experiments were performed on news stories from the English part of the Topic
Detection and Tracking data from 2003 (TDT4), provided by the Linguistic Data Con-
sortium1. The English part of the data consists of 874 categorized news stories from six
different broadcasters. The distribution over categories and broadcasters is shown in
Table 4.4. The broadcaster names behind the acronyms and the names of the news shows
are listed in Appendix A. The average news story length is 250 words.

Category ABC CNN MNB NBC PRI VOA Total

Elections 12 21 6 16 31 45 131
Scandals/Hearings 9 10 1 5 8 13 46
Legal/Criminal 8 20 0 10 13 13 64
Natural Disasters 12 22 2 8 5 23 72
Accidents 9 20 4 9 11 30 83
Violence or War 30 54 9 22 28 57 200
Science 2 4 0 1 5 0 12
New Laws 1 5 0 2 2 12 22
Sports 2 23 0 0 1 10 36
Political Meetings 6 20 2 7 21 45 101
Celebrities 10 20 0 6 9 15 60
Miscellaneous 3 6 0 1 13 24 47

Total 104 225 24 87 147 287 874

Table 4.1: Distribution over categories and broadcasters in the TDT4 data set.

4.2 Automatic Speech Recognition Results

We have run two recognition rounds with different pruning beam widths in order to
evaluate the systems on recognition data with different word error rates.

(1) http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2005S11

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2005S11
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As can be seen from Table 4.2, the overall WER of the stemmed 1-best output is
49.8% for the whole data set when we set a relatively generous pruning beam width.
The error rates vary a bit across the broadcasters, with the two radio broadcasters PRI
(Public Radio International) and VOA (Voice of America) being the ones with the lowest
WERs at 51.0% and 44.8% respectively. The television broadcasters often have more
background noise than radio, and this could be the reason why their WERs are a little
higher. Stemming gives an absolute decrease in the WER of 1.5%, and this improvement
comes mainly from a reduced number of substitutions caused by recognition of the
wrong form of a word.

As can be seen from Table 4.3, the overall WER of the stemmed 1-best output with
more aggressive pruning is 84.5% for the whole data set. The absolute reduction in WER
after stemming is 0.8%, also mainly from a reduced number of substitutions.

ABC CNN MNB NBC PRI VOA Total

Unstemmed WER 52.71% 55.84% 56.45% 56.10% 52.49% 46.00% 51.30%
Stemmed WER 51.29% 54.25% 54.88% 54.46% 51.14% 44.39% 49.78%

Table 4.2: Recognition errors for the different broadcasters with less pruning.

ABC CNN MNB NBC PRI VOA Total

Unstemmed WER 85.25% 87.64% 87.13% 87.28% 85.52% 83.29% 85.26%
Stemmed WER 84.43% 86.80% 86.34% 86.49% 84.68% 82.51% 84.45%

Table 4.3: Recognition errors for the different broadcasters with more pruning.

4.3 Classification Evaluation Methodology

We evaluate the naive Bayes and logistic regression classifiers with both the low WER and
high WER recognition data, giving a total of four different combinations or “scenarios”.
We report the stratified five-fold cross-validation accuracy obtained in each scenario. The
results are compared to the results obtained by using the same classifiers and the same
cross-validation method on the official TDT4 reference transcripts, which should be an
upper-bound on the achievable accuracy.

A range of different classification vocabulary sizes is tested in each scenario. The
ASR vocabulary size is 64,000 in all cases, but the classification vocabulary size is reduced
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Less pruning More pruning

Category Unstemmed Stemmed Unstemmed Stemmed

Elections 55.06% 53.94% 86.24% 85.48%
Scandals/Hearings 52.99% 51.78% 86.44% 85.63%
Legal/Criminal 50.65% 49.16% 85.14% 84.30%
Natural Disasters 58.32% 57.19% 87.42% 86.71%
Accidents 51.15% 49.88% 85.44% 84.73%
Violence or War 49.03% 46.58% 83.97% 83.05%
Science 51.20% 49.88% 84.32% 83.43%
New Laws 39.05% 36.94% 80.97% 79.99%
Sports 56.64% 55.71% 86.46% 85.86%
Political Meetings 48.37% 46.88% 84.73% 83.90%
Celebrities 48.35% 47.46% 85.15% 84.23%
Miscellaneous 46.79% 45.13% 84.82% 84.08%

Total 51.30% 49.78% 85.26% 84.45%

Table 4.4: Recognition errors for the different topics.

from this upper bound by using information gain feature selection. It should be noted that
in practice the upper bound is the number of distinct words occurring in the recognition
data. There are around 20,000 distinct words occurring in the recognition lattices, around
17,000 in the 1-best hypotheses, and around 9,600 in the reference transcriptions.2

Each fold in the stratified cross-validation is performed by first ranking the words
(features) by their information gain with respect to the training data for that fold. For
each classification vocabulary size k to be tested, the top-k words from this ranking are
used to train the classifier on the same training data, before testing is performed on the
testing data for the fold. The reported accuracy is the average test accuracy obtained in
this manner across all five folds for a given vocabulary size.

4.4 Classification Evaluation Results

4.4.1 Feautere Selection

Since the feature selection is done independently in each fold (on the training portion),
the selected features will vary across folds. However, in Table 4.5 we have listed the top
ranked words with respect to the information gain on the whole data set to give an idea
about the kind of words that are selected.

(2) Both the lattice and Viterbi numbers are averages across the higher and lower WER data. In fact, the
number of distinct words is a little larger with higher WER than with lower WER.
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Rank Word Information gain

1 presid 0.2536
2 yemen 0.2511
3 coal 0.2278
4 earthquak 0.2270
5 terrorist 0.2227
6 attack 0.2216
7 sailor 0.2185
8 elect 0.2095
9 clinton 0.1923
10 prison 0.1830

Table 4.5: The top 10 ranked words by information gain on the expected word counts from the 50%
WER recognition data. Notice the stemming from president(s) to presid, earthquake(s) to
earthquak and election(s) to elect.

4.4.2 Naive Bayes

The results for the naive Bayes classifier for lower and higher WER are shown in Fig-
ure 4.1.

The results for lower WER are shown in Figure 4.1a. We see that there is almost
no loss in classification accuracy with 1-best word counts, compared to the reference,
for vocabulary sizes up to around 200 words. The expected word counts give a slightly
lower accuracy than the 1-best word counts for these small vocabulary sizes. For larger
vocabulary sizes, 1-best word counts and expected word counts have approximately the
same accuracy, with increasing loss compared to the reference accuracy. Both the 1-best
and expected word count classifiers reach a maximum accuracy of approximately 88%
with a 700-word vocabulary, and both start losing accuracy when more words are added
to the vocabulary. The same pattern is seen for the reference, but its maximum accuracy
of 91% is reached at a larger vocabulary size of 980 words.

The results for higher WER are shown in Figure 4.1b. The reference results are
naturally the same as in Figure 4.1a. The large number of recognition errors causes a
significant loss in accuracy for classification with both the 1-best and expected word
counts, but the expected word counts give a noticeably higher accuracy than the 1-best
word counts for all vocabulary sizes larger than around 15 words. Classification with
expected word counts reaches a maximum accuracy of 50% at a vocabulary size of 950
words, while classification with 1-best word counts reaches its maximum of 46% accuracy
at a vocabulary size of 230 words.
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4.4.3 Logistic Regression

The results for the logistic regression classifier with lower and higher WER are shown in
Figure 4.2.

In Figure 4.2a, the results for lower WER are shown. The accuracy with both 1-best
and expected word counts increase with increasing vocabulary size up to 200 words,
but for larger vocabulary sizes the classification accuracy is almost constant at 90% with
a slight increase to 92% for the 1-best word counts with vocabulary sizes above 1,000
words. The logistic regression reference classifier obtains a maximum accuracy of 96% at
a vocabulary size of 490 words.

The results for higher WER are shown in Figure 4.2b. The reference results are still
from the manual transcriptions and thus have the same results as in Figure 4.2a. As with
naive Bayes, the large number of recognition errors causes a significant loss in accuracy
for classification with both the 1-best and expected word counts, but the expected word
counts give a noticeably higher accuracy than the 1-best word counts for all vocabulary
sizes larger than around 15 words. With this high WER, logistic regression performs best
when including all the words (no feature selection), giving a 57% accuracy for expected
word counts and 53% accuracy for 1-best word counts.

A confusion matrix for the logistic regression classifier is shown in Table 4.6, and a
confusion matrix for the naive Bayes classifier is shown in Table 4.7.

4.4.4 Comparing Logistic Regression and Naive Bayes

Logistic regression and naive Bayes are compared in Figure 4.3 for 1-best word counts
and in Figure 4.4 for expected word counts.

On the 55% WER recognition data, the logistic regression classifier consistently
outperforms the naive Bayes classifier across all vocabulary sizes.

On the 85% WER recognition data, logistic regression and naive Bayes have almost
the same accuracies for all vocabularies under 1,000 words. While logistic regression
gains accuracy when adding more words to the vocabulary after this point, naive Bayes
instead loses accuracy.
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(a) 50% word error rate.
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(b) 85% word error rate.

Figure 4.1: Five-fold cross-validation accuracy for the naive Bayes classifier.
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(a) 50% word error rate.
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(b) 85% word error rate.

Figure 4.2: Five-fold cross-validation accuracy for the logistic regression classifier.
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(a) 50% word error rate.
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(b) 85% word error rate.

Figure 4.3: Five-fold cross-validation accuracy for 1-best word counts.
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(a) 50% word error rate.
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(b) 85% word error rate.

Figure 4.4: Five-fold cross-validation accuracy for expected word counts.
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Classified as: a b c d e f g h i j k l

a = Elections 126 1 0 0 1 2 0 0 0 1 0 0
b = Scandals/Hearings 1 42 1 0 0 1 0 0 0 1 0 0
c = Legal/Criminal 0 0 64 0 0 0 0 0 0 0 0 0
d = Natural Disasters 0 0 0 70 2 0 0 0 0 0 0 0
e = Accidents 0 0 1 4 78 0 0 0 0 0 0 0
f = Violence or War 20 0 3 2 1 167 0 0 0 4 1 2
g = Science 0 0 0 3 0 0 9 0 0 0 0 0
h = New Laws 2 0 0 1 0 1 0 15 0 3 0 0
i = Sports 0 1 0 1 0 8 0 0 26 0 0 0
j = Political Meetings 2 1 1 0 1 2 0 0 0 93 1 0
k = Celebrities 6 1 0 0 1 0 0 1 0 5 46 0
l = Miscellaneous 14 0 0 1 0 4 0 0 0 3 1 24

Table 4.6: Cross-validation confusion matrix for the naive Bayes classifier with expected word counts on the
50% WER data and a classification vocabulary of 750 words.

Classified as: a b c d e f g h i j k l

a = Elections 121 0 0 0 0 7 0 0 0 0 1 2
b = Scandals/Hearings 1 40 1 0 0 0 0 0 2 2 0 0
c = Legal/Criminal 0 0 64 0 0 0 0 0 0 0 0 0
d = Natural Disasters 0 0 0 68 2 0 0 0 1 1 0 0
e = Accidents 0 0 0 3 78 0 0 1 1 0 0 0
f = Violence or War 4 0 1 0 1 185 0 0 2 4 1 2
g = Science 0 0 0 1 0 1 10 0 0 0 0 0
h = New Laws 0 0 0 0 0 3 0 16 0 3 0 0
i = Sports 0 1 0 0 0 1 0 0 34 0 0 0
j = Political Meetings 1 2 0 0 0 3 0 0 1 93 0 1
k = Celebrities 5 0 0 1 0 1 0 0 1 2 50 0
l = Miscellaneous 6 0 0 1 2 3 0 0 1 4 0 30

Table 4.7: Cross-validation confusion matrix for the logistic regression classifier with expected word counts
on the 50% WER data and a classification vocabulary of 750 words.
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4.5 Discussion

We can observe some interesting patterns in the reported results. First, the logistic
regression classifier outperforms or performs as well as the naive Bayes classifier in
almost all of the tests. Their respective maxima are 92% versus 88% on the 50% WER
data, and 53% versus 46% on the 85% WER data.

Another apparent difference is that while the naive Bayes classifier reaches a clear
maximum before getting less accurate for bigger vocabulary sizes, the accuracy for
the logistic regression classifier is almost a nondecreasing function with respect to the
vocabulary size. On the 50% WER recognition data, neither of the classifiers gain any
benefit from the the words ranked below position 600-800 by the information gain
criterion. However, it is apparent that the logistic regression classifier is able to ignore
these irrelevant or noisy words, while the naive Bayes classifier instead is negatively
impacted.

On the 50% WER recognition data, there seems to be no advantage of using the
expected word counts over the 1-best word counts. For the logistic regression classifier,
1-best word counts actually give slightly better results than expected word counts.
However, when the automatic speech recognizer has a WER of 85%, usage of expected
word counts gives a consistent increase in accuracy over simple 1-best word counts. The
absolute increase in accuracy by using expected word counts is 4% for both naive Bayes
and logistic regression. The results indicate that the advantage of using expected word
counts increases with increasing speech recognition error rates, which is consistent with
the literature. An intuitive explanation for this is that more of the probability mass in the
transcription distribution is contained in hypotheses other than the 1-best, and therefore
are 1-best word counts a less accurate estimate of the true transcription distribution.

The 92% classification accuracy that was obtained with the logistic regression
classifier is encouraging considering the relatively high word error rate of 50%. With a
very high word error rate of 85%, the classifier is able to make the correct prediction half
of the time.





5

Conclusion & Future Work

We have implemented two systems for spoken document classification by combining
an automatic speech recognizer with the two classification algorithms naive Bayes and
logistic regression. The focus has been on how to deal with the inherent uncertainty
in the output of the speech recognizer. We performed feature extraction by computing
expected word counts from speech recognition lattices by using a forward-backward
algorithm, and words were selected for the classification vocabulary according to the
information gain feature selection criterion. The systems were evaluated by performing
stratified cross-validation on broadcast news stories, and the classification accuracy is
measured with different configurations and on recognition output with different word
error rates. The results show that a relatively high classification accuracy can be obtained
with word error rates around 50%, and that the benefit of extracting features from lattices
instead of 1-best transcripts increases with increasing word error rates.

To further improve the classification accuracy for this data set, the most apparent
route is to try and improve the accuracy of the speech recognizer. Other classifier
algorithms could also be explored. On a more general note, if we are faced with a
situation of conversational speech with varying acoustic environment where the WER
is high and hard to reduce, there is a significant benefit of using expected word counts
instead of 1-best word counts.

In this thesis, we have assumed that the boundaries of the news stories are known.
In many real-world situations however, this is not the case, and segmentation of audio
by topic is an interesting problem for further research.





A

The TDT4 Broadcasters and News Shows

Acronym Broadcaster News show

ABC American Broadcasting Company “World News Tonight”
CNN Cable News Network “Headline News”
MNB Microsoft/National Broadcasting Company “News with Brian Williams”
NBC National Broadcasting Company “NBC Nightly News”
PRI Public Radio International “The World”
VOA Voice of America English news programs

Table A.1: The English news shows in the TDT4 data set.
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