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Sammendrag

I pasientoverv̊akning, b̊ade p̊a sykehus og i ambulerende behandling, er det dyrt
utstyr som er normen, spesialutviklet og produsert for å utføre bestemte oppgaver.
S̊avel i disse sammenhengene som i hjemmemarkedet vil det allikevel alltid finnes
en etterspørsel etter billige og allsidige løsninger, der hvor disse kan gi fornuftige
og nyttige opplysninger.

Selv om pulsoksimetri og andre typer biologisk anvendt spektroskopi er noks̊a
velkjent teknologi, og p̊a tross av at studier er gjort p̊a feltet, kan det for noen være
et overraskende faktum at man kan hente ut fysiologiske parametre som hjerte- og
pustefrekvens kun ved å filme lysstyrkevariasjoner i noens hud ved hjelp av kon-
vensjonelt forbrukerutstyr for videoopptak: kameraet kan “se” disse variasjonene,
men vi kan ikke selv uten videre oppfatte dem.

Denne avhandlingen er et forsøk p̊a å utforske visse aspekter av temaet som
kalles kontaktfri, omgivelsesbelyst fotopletysmografi, hvor vi h̊aper p̊a å avdekke
fordelaktige egenskaper teknikken m̊atte ha. Vi har et klart fokus p̊a tekniske
muligheter, men medisinsk relevans blir ogs̊a diskutert og bekreftet.

Konklusjoner fra tidligere arbeider eksemplifiseres—muligheten vi har med denne
metoden til å beregne nøyaktige estimater av hjertefrekvens, fra hudoverflaten
b̊ade i ansiktet og i h̊andflaten, med en forsøksperson som beveger seg eller sit-
ter stille; tilstedeværelsen av signalfluktuasjoner beslektet med respirasjon. Dertil,
at pulseringen er sterk nok til å muliggjøre underinndeling i mindre segmenter og
kartlegging av pulsamplitudens distribusjon dem imellom.

Det lykkes oss å innhente annen informasjon: signalets faseinformasjon er robust
nok til at ikke bare hjertefrekvensens gjennomsnitt over lengre tid, men ogs̊a kort-
tids variabilitet kan ses med mer enn et minimum av detaljoppløsning. Fra et opp-
tak hvor b̊ade ansikt og h̊and er synlig estimerer vi faseforsinkelsen, dvs. forskjellen
mellom blodtrykkbølgens gangtider til panne og til h̊andflate, og sannsynliggjør
derved ytterligere p̊astanden om faserobusthet.

Konseptet uavhengighetsanalyse (Independent Component Analysis) har blitt
foresl̊att som en m̊ate å forbedre metodens resultater p̊a – en fremgangsm̊ate vi
undersøker og finner begrenset støtte for. Ved andre, enklere tilnærmelser til sig-
nalbehandlingen avdekkes positive egenskaper n̊ar det gjelder å oppn̊a et klart
signal.
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Problem Statement

The medical care system is going through radical changes caused to a large de-
gree by technological innovation. At the same time as increasingly expensive di-
agnostic and therapeutic methods are being developed, utilization of new mass-
produced electronics makes the screening processes for many serious diseases easier
and cheaper.

In the present project, research is intended performed that may result in new
diagnostic tools for the evaluation of abnormalities in the cardiovascular system.
Video recording of reflected light in the RGB channels and subsequent signal pro-
cessing represent extremely inexpensive and, when developed, relatively simple
screening tools. These methods will be unlikely replacement candidates for present
diagnostic modalities, but may well become tools for the screening and identifica-
tion of serious conditions.

Investigate the use of low-cost equipment (e.g. web camera) in non-contact ambient-
light reflectance photoplethysmography. Explore previous work. Questions to an-
swer include how to extract the cleanest possible signal, and what information apart
from heart rate can be acquired from it. Study signal processing algorithms for
estimating heart rate and other relevant parameters and, where possible, compare
the results with standard techniques.
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Abstract

This thesis is an attempt to explore certain aspects of the subject called non-
contact, ambient-light photoplethysmography, where we hope to reveal beneficial
properties the technique may have. We have a clear focus on technical possibility
but the medical relevance of it is also discussed and confirmed.

Conclusions from previous work are exemplified – the ability we have with this
method to compute an exact heart rate estimate, from the skin surface both on
our face and in the palm of our hand, with and without the subject moving during
recording; the presence of signal fluctuations akin to those of breathing. Moreover,
that the pulsations are strong enough to enable subdivision into smaller segments
and a mapping of how the pulse amplitude is distributed among them.

Other information is obtained: the phase information contained in the signal
is robust enough that not only the average heart rate over some time but also its
short time variability can be seen with more than a minimum of detail resolution.
From a recording where both face and hand is in view, we further substantiate the
claim of phase robustness by estimating the phase delay, i.e. the difference in blood
pressure wave travel time between forehead and palm.

The concept of Independent Component Analysis has been suggested as a way of
improving the output of the method—a procedure we investigate and find limited
support for. Other, more simplistic signal processing approaches are found to have
positive traits in achieving overall signal clarity.
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Chapter 1

Introduction

1.1 Motivation

In patient monitoring, clinical as well as ambulatory, expensive devices developed
and built for performing exact tasks are the norm. Both in such situations and in
home care, however, there will always exist the demand for low-cost, multi-purpose
solutions, whereever we can expect these to provide us with sensible and useful
data.

Despite pulse oximetry and other kinds of biologically applied spectroscopy
being fairly well known technologies, and even though studies in the field have
been done, some may regard it a surprising fact that physiological parameters like
heart and respiratory rates can be extracted using only conventional, consumer-
grade video recording equipment to film the brightness variations in someone’s skin:
the camera can “see” these variations but we cannot ourselves sense them.

One study ([1], see ch. 2.4) suggests the use of Independent Component Analysis
(ICA) in extracting photoplethysmogram (PPG) heart rate information and backs
this with experimental results. Specifically, ICA is in that study applied on a signal
extracted from a video segment where (after use of automatic face detection on a
recording where the subject is moving) all of the subject’s face is visible. We want
to investigate this further, by applying ICA also in other situations. We know that
the wanted PPG signal can be “seen” most clearly in the skin on the forehead,
cheaks etc., meaning the whole-face signal will be a noisy starting point. Will
other, less noisy starting points also benefit from the application of ICA? This is a
question we here seek answered. Can other, less sophisticated approaches be used
to our advantage? We suggest the rather obvious in not using the results from
face detection directly, but only the part containing the forehead. By mapping
the spatial distribution of pulse amplitude on the skin, we will also see if we can
pre-confirm the pulsatility of the signal we wish to obtain.

Another study ([2], see 2.2) gives a more general assessment of what we can
expect from the method, an example of which is the presence of respiration infor-
mation. Likely there will exist other studies that we weren’t aware of and did not
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2 CHAPTER 1. INTRODUCTION

include in our reading (see bibliography p. 51).
Some further interesting questions to be raised are: What is the minimum

recording duration needed to estimate “instantaneous” heart rate? Can we record
simultaneously the skin on two locations (e.g. hand, face) and find such information
as the phase delay between them? Can we apply the technique to not only skin
but also internal organs? These questions are attempted answered in this report.

1.2 Report Structure

The report starts by laying out background information on a few physically and
medically important issues in chapter 2: the behavior of light absorption in hemo-
globin as the basis for the photoplethysmogram in 2.1, the diagnostical relevance
of pulse transit time in 2.5 and of heart rate variability in 2.6. In addition, two
recent studies are revisited and their results described in some detail in 2.2 and
2.4.

General aspects and specific involved methods of analysis are dealt with in
chapter 3, some of them explained in detail. This includes simple procedures for
phase delay estimation between two blood-pressure-like signals in 3.3 and mapping
of the distribution of the pulse amplitude on skin surface in 3.4, as well as two
ways of estimating instantaneous heart rate from a video “snapshot” of only a few
seconds duration in 3.5.

A short preliminary exploration is done in chapter 4 in an attempt to give
clues to what information we can expect to reveal and to affirm some conclusions
from previous studies on the subject. Chapter 5 gives only a brief overview of
the experiments that are to be executed, as more detail is given alongside the
presentation of the results in chapter 6:

6.2 and 6.1 give the results of heart rate estimations respectively with and
without movement. The application of JADE independent component analysis
(see 2.3) is invoked in several different cases to assess the benefits thereof. The
pulsatility mapping procedure is tried out in 6.3 on videos of the face and the hand,
separately and both combined in one video. This latter combination is investigated
further in 6.4. A small test case is presented in 6.5 in which we try to confirm the
applicability of the pulsatility mapping method, as well as shed some light on what
minimum duration of video is needed to achieve a stable heart rate estimation. In
6.6 a short laparoscopy recording of a cancerous liver is attempted analyzed.

The preliminary explorations of photoplethysmogram contents are discussed in
7.1. Following this, the rest of chapter 7 discusses the other results sections in the
same order that they appear in chapter 6. Conclusions are made in chapter 8 by
answering two questions from the problem description—8.1: How do we extract
the best possible signal? and 8.2: What information can we acquire from this
signal?—as best we can from presented results and subsequent discussion.



Chapter 2

Background

2.1 Photoplethysmography

Stemming from the Greek plethysmos to increase, plethysmography means “[...]
finding variations in the size of a part owing to variations in the amount of blood
passing through or contained in the part.” [3].

Using conventional plethysmography one measures pulsatile tissue volume di-
rectly, e.g. with a strain gauge that measures changes in the circumference of
an extremity. This will measure the sum total of volume changes in any and all
blood vessels. Of these, arterial pulsations are the most significant. Capillaries
are largely non-compliant and will register with only minor pulsations. Venous
oscillations may be evident but are, depending on measurement technique, often
avoided by applying external pressure [4]. The plethysmogram is used as an indirect
measure for arterial blood pressure (ABP) [5].

Photoplethysmography is related to, but not equivalent to, traditional plethys-
mography. Transmission mode PPG measures how light is obstructed and absorbed
through tissue (e.g. finger tip, earlobe) by use of an LED on one side and a pho-
todetector on the other. When the LED and the photodetector are placed alongside
eachother on a tissue surface to measure the amount of light that is reflected, we
have reflectance mode PPG.

Several factors play a role in the formation of the AC1 component of the
PPG signal, the most important of which are given in the schematics in fig. 2.1.
Grey boxes signify externalities that differ according to measurement methodology:
amount of light, physical properties of the sensor and applied external pressure;
while yellow are simple physiologic parameters. ABP is the main source of PPG
signal variations, as suggested by their morphological similarities (compare fig. 2.2
and fig. 2.4(a)), and it is indeed reported that the dependence of the PPG on the
ABP is similar to that of the true plethysmogram on the ABP [4,6].

In non-contact PPG, changes in ambient light and automatic brightness ad-

1Where AC is used specifically in reference to pulsation generated by individual heartbeats,
as opposed to their baseline.

3



4 CHAPTER 2. BACKGROUND

justment in camera or software have a significant influence on the baseline1 of the
signal, but also physiologic parameters like changes in capillary density[7] and in
venous volume fluctuations [4].

An application of non-contact reflectance mode PPG for combat or field triage
situations is investigated in [8]. A recent innovation in contact reflectance PPG are
applications using popularly available smartphone technology, able to record a high
quality PPG signal when you place your finger covering both the photo-light LED
and the camera lens [9]. Experimental results have been presented and discussed
regarding the use of PPG and pulse oximetry in laparoscopic2 surgery [10].

Transmission mode PPG is routinely used in clinical settings (pulse oximetry).
Non-contact reflectance mode PPG using ambient light is a field of research
on the incline, offering promising insights into the future of non-invasive circulatory
monitoring [1, 2].

Figure 2.1: General processes and interactions that underlie the photoplethysmo-
gram (PPG) [4]

Figure 2.2: Radial ABP waveform cycle

2“Laparoscopy. Examination of the interior of the abdomen using a laparoscope, which is a
type of endoscope [..] (see minimally invasive surgery).” [3].
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2.1.1 The Hemoglobin Absorption Spectrum

The complex hemoglobin molecule makes up most of the content of the blood and
is the carrier of oxygen in the blood stream. It is precisely therefore also the
physiologic basis for the PPG: incident light on the skin travels into the underlying
layers where a significant part is absorbed in blood and surrounding tissue, and
the remaining part reflected back to the surface.

Fig. 2.3 is taken from [11] and modified to include an approximate color spec-
trum. It shows the absorptivity spectrum functions for (1) oxyhemoglobin (HbO2)
and (2) deoxygenated hemoglobin (Hb) in the wavelength span 450–700 nm. We
observe: on red wavelengths absorption is low – higher on blue and yet higher on
green, including peaks in both Hb and HbO2. The Hb absorptivity is generally
lower than that of HbO2 on blue and green wavelengths.

Figure 2.3: HbO2 (1) and Hb (2) absorption spectra [L ·mmol−1 · cm−1]

The values from [11] are obtained by transmission of light through in vitro
blood. The interpretation (as pertaining to PPG) of these values is supported by
[12], where the reflectance of in vivo tissue is theoretically assessed and the findings
corroborated by experiment.

In a PPG recording using an RGB colorspace we would expect seeing heart rate
pulsations in the green channel, where the absorption is the highest, and to a lesser
extent in the blue channel. More light is absorbed when the blood is more dense, i.e.
“on the beat”, meaning the heart rate pulsations will be inversely related to the
ABP. Signal variations due to changes in the closely interrelated concentrations
of Hb and HbO2 are also expected to arise in both the green and the blue channel
where their absorptivities are differing significantly. The red channel will have
higher pixel values because of more light being reflected, but less variations owing
to physiological parameters.
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2.1.2 Pulse Oximetry

Optical oximetry was developed during the last world war and was able to provide
a continuous estimate of blood oxygen saturation (SaO2) from a light-weight device
placed on the earlobe. The same principle is applied here as in laboratory oximetry,
in which different wavelengths of light is shone through a small container of blood.
Using knowledge of the hemoglobin absorption spectrum, one measures HbO2 and
Hb concentrations with one distinct wavelength for each, and calculates

SaO2 =
HbO2

HbO2 +Hb
.

Pulse oximetry (contact transmission mode PPG) is an extension on this, over-
coming difficulties regarding other light absorbers than hemoglobin by using flashes
of red and infrared light to obtain the pulsatile signal purely related to arterial
blood. The possibility of heart rate measurements is a byproduct of this. Today’s
finger pulse oximeters use this method, and also compensate for the unwanted in-
fluence of external light. They are regarded as standard in clinical monitoring care
but are also cheaply available for home use [13].

(a) 2-second example waveform (b) Spectrogram

Figure 2.4: Output from finger pulse oximeter

In fig. 2.4 is displayed example output from the finger pulse oximeter used for
heart rate control purposes in this report (see B.2), (a) 2 seconds of pulse waveform
when a heart rate of about 60 bpm was measured, (b) spectrogram from about 1
minute of the same measurement. SaO2 measuremeants were not used.

An application with some similarities has recently been made popular through
smartphone programs that are able to record a high quality (contact reflectance
mode) PPG signal when a finger is placed covering both the photo-light LED and
the camera lens [9]. The lack of control over lighting means only the pulse waveform
is available in this way, no absolute values and no oximetry. In this it is similar to
the non-contact ambient-light PPG investigated in this report.
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2.2 Study by Verkruysse, Svaasand, Nelson

A survey of non-contact ambient-light PPG is done in the 2008 article titled “Re-
mote plethysmographic imaging using ambient light” [2], using a consumer level
digital photo camera in video mode. It is shown that PPG signals can be measured
on the human face with normal ambient light as the source, from a distance of more
than one meter; revealing up to four harmonics of the fundamental heart rate (HR),
in addition to the respiration rate (RR), and modulation products between these.

Videos of different subjects were recorded with durations of 30 seconds to a few
minutes, where they where sitting or laying down to reduce movement, with day-
light as the only source of illumination. Frame rates of 15 or 30 fps and resolutions
of 640×480 or 320×240 were used. Regions of interest (ROI’s) were selected manu-
ally, and the pixel values in these averaged for each of the R, G and B channels and
for each frame to give one raw signal for each channel. The assumptions that are
made about the PPG signal in ch. 2.1.1 are confirmed: the green channel shows
clearer signs of both HR and RR than the blue channel, while the red is mostly
lacking in any interesting content apart from sometimes showing traces of the RR.

A case is made for the use of pulsatility (pulse amplitude) mapping and phase
mapping on a grid of 40×50 cells. Each of these cells is considered an ROI, and
maps are constructed displaying their phases and amplitudes at the fundamental
HR frequency (from the green channel). Phase mapping is applied to a case of so
called “portwine stains”3 right after laser surgery, showing clear contrast to the
surrounding areas.

Another experiment is conducted in which the subject is instructed to hyper-
ventilate. This has a clear influence on the heart rate, but also the signal content
that is seen at around 0.15 Hz is found to increase – a clear indication that these
are variations that are caused by respiration (breathing causes varying oxygen con-
centration) as the authors are indeed arguing.

Further arguments are made that the signals acquired are true PPG signals:
(1)–HR is not visible in areas affected by involuntary movement but not containing
any bare skin (e.g. hair, clothing) and (2)–the green channel contains by far the
strongest HR signal, even though its actual pixel values are much lower than the
red’s. (2) is strong evidence that the signals are filtered by variations in blood
volume (due to the absorption bands for Hb and HbO2 for yellow and green light).

2.3 Independent Component Analysis (ICA)

Sensors employed in measurements of any quantity will commonly output a signal
which is a mixture of several independent physical processes. In independent com-
ponent analysis (ICA), a special case of the wider concept of blind source separation
(BSS), a representation is sought where this mixture is a linear transformation of
the original data (for reasons of computational and conceptual simplicity), i.e.

x = M · s
3“A purple-red birthmark that is level with the skin’s surface. It is a permanent type of

haemangioma.” [3]
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or with a dimensionality of 3 and vectors as functions of time,

[s1(t), s2(t), s3(t)] = M−1 · [x1(t), x2(t), x3(t)] (2.1)

where x is the vector of knowns and s the underlying physical signals. M is found
in ICA as the matrix maximizing some measure of the statistical independence of
the components of s [14]. Often used measures are based on the nongaussianity
of the variables, a property that (by the central limit theorem) implies indepen-
dence4. The well-known FastICA algorithm is based on negentropy, a measure of
nongaussianity based on the information-theoretic quantity of (differential) entropy
[15].

ICA is very well exemplified by the application to speech data [16] (see illustra-
tion in fig. 2.5). If several people are in the same room, and what they are saying
is recorded by several microphones placed there, each recording will be a different
mixture of the speech signals. If the number of people is the same as the number
of microphones, ICA can recover separately each of the source signals, on the basis
of the statistical independence that follows from their physical independence.

There are thoughts of applying some form of constrained ICA (cICA) to the
subject matter of this report, but this is not investigated further here [17].

2.3.1 JADE

The Matlab implementation of Joint Approximate Diagonalization of Eigenmatri-
ces (JADE) used in this report is available online [18], an implementation by the
original author of the algorithm [19, ch. 4.2]. JADE approximates the statistical
independence of the sources with their kurtosis (fourth moment) as the measure of
nongaussianity [1, 19].

Figure 2.5: ICA source separation illustrated

4If we can find a set s of variables each less gaussian than the ones in x, they will likely be less
codependent. This because the sum of any two signals will tend to be more gaussian than each
of them.
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2.4 Study by Poh, McDuff, Picard

This 2010 MIT article, titled “Non-contact, automated cardiac pulse measurements
using video imaging and blind source separation” [1], explores the possibility of au-
tomatically measuring heart rate using a normal web camera and face recognition.
Videos of 15 fps were recorded in 24-bit RGB color space at a resolution of 640×480
pixels with an Apple iSight built-in camera at a distance of approximately 50 cm.
The experiments were conducted indoors and with a varying amount of sunlight as
the only source of illumination, on 12 subjects of varying age and of both genders.
Results were compared to and validated by measurements from a blood volume
pulse (BVP) sensor. Subjects were told to be moving around gently as if interact-
ing normally with the computer.

The analysis was performed on videos of 1-2 minutes length. Firstly, face recog-
nition (OpenCV Viola and Jones) [20] was used on each frame to identify the region
of interest (ROI). Secondly, the three raw traces were extracted by averaging the
pixel value within the ROI, for each frame, for each of the R, G and B channels.
Finally the R, G and B raw traces were fed through the JADE algorithm, resulting
in three new, statistically more independent signals. From these, the second chan-
nel was the one most often found to be containing the most pulsatile information,
and it was generally chosen as the basis for estimating values for the heart rate. A
30 second epoch was used for heart rate estimations.

Figure 2.6: Results from Poh, McDuff, Picard study

Fig. 2.6 is borrowed from the article and gives an overview of the agreement
between the BVP sensor and heart rate estimations from the raw green trace (a) and
the ICA method (b). The plots are Bland-Altman plots, which plot the average vs.
the difference of the estimated value and the control value5, for 372 measurement
points from the 12 participants. The overall root mean square error (RMSE) was
19.36 bpm for (a) and 4.63 bpm for (b).

5In a Bland-Altman plot, a narrow vertical spread indicates good accuracy, while a wide
horizontal spread indicates an appropriate testing range.
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2.5 Pulse Transit Time

Pulse transit time (PTT) is the time it takes the pulse pressure wave to travel from
the heart to a given measurement point on the arterial tree. The pressure wave
originates at the left ventricle of the heart where blood is ejected through the aortic
valve into the aorta, and the pulse wave velocity (PWV) is much greater than the
forward movement of the blood itself [21]. A decrease in the compliance (an increase
in stiffness) of the arteries leads to an increase in the PWV. The compliance is a
function of several physiological parameters, also partly of the blood pressure –
indeed in some conditions, PWV and blood pressure are highly correlated [22].

Computing the PTT requires one proximal and one distal measurement. Prox-
imal options include valve sounds, PPG and even direct arterial blood pressure
measurements. The ECG, often being readily available in a monitoring situation,
is also used [4]. PTT measured by ECG R-peak, though simple to detect and tol-
erant of motion artifact, is known not to consistently coincide with the mechanics
of the valve movements, and is reported to be an unreliable marker of beat-to-beat
blood pressure [23].

The difference in PTT (PTTD) between two distal points can be measured di-
rectly by PPG on both points (e.g. toe and finger), which is done in [24] in addition
to controlling the values by use of ECG. The relation of PTTD to diastolic blood
pressure is investigated but in this case found not to be statistically significant.
PTTD is however not ruled out as an assessment of arterial compliance.

2.6 Heart Rate Variability

Short- and long-term variabilities in someone’s heart rate as measured from the
ECG R-peak reflect properties of the autonomic nervous system. Heart rate vari-
ability (HRV) can therefore be used as a monitoring tool in clinical conditions with
altered autonomic nervous system function. In postinfarction [25,26] and diabetic
patients, low heart rate variability is associated with an increased risk for sudden
cardiac death. Heart rate variability analysis is easily applicable in adult medicine,
but physiologic influences such as age must be considered [27].

The significance of HRV has also been examined in sports medicine, both on
athletes [29] and on sedentary subjects [30]. A discovered correlation between
resting HRV and maximal oxygen uptake (VO2-max) is applied in some consumer
heart rate monitoring devices as an indicator of physical fitness [28]. Although
ECG is the preferred method for measuring the HRV, PPG is also applicable.



Chapter 3

Method

All spectrograms were done on normalized but unfiltered signals using a window
width of 12 seconds and an 11 second overlap, and shown logarithmically on arbi-
trary scale.

Pulse frequency estimation was done with the same window length and overlap,
by FFT and peak detection, limited to an accuracy of ±0.1 bpm. A change in
detected heart rate of more than 10% in either direction from one data point to the
next was considered to be an error, and the value of the second highest peak was
used instead. Peak detection was done between 45 and 200 bpm where nothing
else is said. See A.2. Respiration frequency was estimated using the same method,
only with peak detection between 0.055 and 0.75 Hz.

All video material was recorded using a Microsoft Lifecam, a ∼500 NOK camera
of relatively high quality, at 30 frames per second and 640×360 pixels resolution
(unless otherwise specified), further cropped as detailed in each case. See B.3.
The subject was the author of this report unless otherwise stated. All experiments
carried out were done on several video recordings, the ones reported in ch. 6 being
representative examples. One must however be careful not to interpret any result
as conclusive evidence.

3.1 Segmenting

In footage without movement, the segmenting was done manually, i.e. the exact
area of pixels to be used was found and cut out either in video editing software or
directly in Matlab. In chapter 6.1 this is done, one segment containing only the
forehead and another containing the whole face.

In footage with movement, face recognition was applied as in [1] (see ch. 2.4).
In 6.2.1, the signal is extracted from the face rectangle on each frame. In 6.2.2, it
is extracted from a smaller segment of the rectangle which is made sure to contain
only the bare skin on the forehead. In 6.2.3, due to the “choppy”1 nature of the

1the coordinates returned vary significantly with only small differences between two video
frames

11
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face detector, the coordinates are filtered before signal extraction.
Using “pulsatility mapping” (see 3.4 and 6.3) a segment was divided into sub-

segments using a grid of squares.

3.2 Signal Extraction

Signal extraction was done, by for each video frame averaging the pixel values of
the green channel within the chosen segment. Wherever ICA/JADE was used, this
was done also for the red and the blue channel, using all three as input signals for
the algorithm. Of the three output signals was chosen the one which contained the
most pulse information. For signals extracted from the green channel a capital G
is used, for ICA/JADE signals a capital J followed by the number of the channel
used, i.e.

[J1(t), J2(t), J3(t)] = M−1 [R(t), G(t), B(t)] ,

where M is the resulting mixing matrix.
Where pulsatility mapping was used, signals where extracted individually for

each subsegment in a grid overlayed the original larger segment.

3.3 Phase Delay Estimation

An estimation of the phase delay between two pulse signals was done (similarly to
the pulse frequency estimation) as follows (see A.4):

1. The two signal Ga(t) and the face signal Gb(t) were both split into N windows
of 12 seconds and 11 seconds overlap. Hamming windowing was applied.

2. For each window
{Wa(t; i)}Ni=1, {Wb(t; i)}Ni=1

the index of the peak in the absolute value of its FFT corresponding to the
pulse frequency was found, yielding

{Ia(i)}Ni=1, {Ib(i)}Ni=1.

3. The absolute phases at these points were found as

Φaa(i) = ∠FFT{Wa(t; Ia(i))}, Φbb(i) = ∠FFT{Wb(t; Ib(i))}.

The phases

Φab(i) = ∠FFT{Wa(t; Ib(i))}, Φba(i) = ∠FFT{Wb(t; Ia(i))}

were also found.

4. Two estimates of the phase delay were found,

PD1(i) = Φaa(i)− Φba(i), PD2(i) = Φba(i)− Φbb(i),

this to account for the fact that the peaks of the two signals were more often
than not offset by a few points, i.e. Ia(i) 6= Ib(i) but Ia(i) ≈ Ib(i).
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5. Wherever a discontinuity/likely erroneous value was found in the one esti-
mate, the value of the other was used. Wherever both had discontinuities,
the previous value was used. Otherwise the average of the two was taken.

6. Result divided by Fs = 30 to give values in seconds.

It is pointed out that this is a method of estimating average phase delay, and the
phase delay at the base frequency only. In the case of blood pressure-like signals,
an estimation of peak-point distance may be a more accurate way to a meaningful
value, although it may prove problematic on noisy signals. See further discussion
in ch. 7.5.1.

3.4 Pulsatility Mapping

Matlab scripts were written which create a map of the relative values of the pul-
satilities – within each square in a grid segmenting the video frame. The procedure
used was as follows (see also A.3):

1. Create grid dividing video frame into N squares. Square size is chosen by ex-
periment in each case to give a balance between resolution and signal strength.

2. For each frame and for each square the average pixel value in the green
channel of the video is calculated to give the set of signals {gi(t)}Ni=1.

3. For all i = 1, ..., N , Gi(f) = FFT{gi(t)} is calculated. The indices fGmax(i)
and values Gmax(i) of the maximum in the interval (45, 200) [bpm] are ex-
tracted.

4. The pulse rate is assumed to be the most frequently occurring value i.e. the
mode of fGmax(i). The squares corresponding to the i’s for which fGmax(i) 6=
mode{fGmax(i)} are excluded.

5. The colormap [red, yellow, green, blue] is assigned to Gmax(i) using
[3, 2, 1, 0.5] · std{Gmax(i)} as lower thresholds, accordingly. Maps are shown
overlayed an averaged video frame indicating the slight movements of the
subject.

A new PPG signal is constructed by averaging the content of a combination of the
red, yellow, green and blue sets. What sets to use was determined by experiment
to see what combinations gave the most pleasing result in each case. It is pointed
out that the thresholds for the different pulsatility levels are based on what levels
exist in the given video, and do not represent an absolute scale.

Repeating the procedure for {ri(t)}Ni=1 (R channel) was tested as a means of re-
moving false positives caused by movement/mechanical pulsations, but was deemed
unnecessary as only very few were found.
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3.5 Short-Time Heart Rate Estimation

(i) Heart rate estimation using forehead segment A simple Matlab script
was written executing the following procedure. A subject is assumed to be situated
with face directed towards the camera in normal computer interaction distance, i.e.
about 40 cm.

1. Construct webcam video object with resolution 640×360 pixels, color space
24-bit RGB and frame rate 10 fps.

2. Capture single frame and perform face recognition [20]. As ROI choose top,
middle 96×32 pixels from the rectangle returned.

3. Record L seconds of this ROI. Average contents of green channel for each
frame.

4. Calculate PSD and detect its peak in the interval [45, 200] bpm.

(ii) Heart rate estimation using pulsatility mapping A second Matlab script
was written executing the following procedure. Subject is situated as before.

1. Construct webcam video object with resolution 640×360 pixels, color space
24-bit RGB and frame rate 10 fps.

2. Capture single frame and perform face recognition [20]. The height of the
returned rectangle is increased by a factor of 1.5 to make sure all of the
subject’s face is contained within it. It is also made sure to be divisible by d
in both directions.

3. Record L seconds of this ROI. Create grid and within each d×d square av-
erage the contents of the green channel.

4. Calculate PSD for each square and detect its peak in the interval [45, 200]
bpm.

5. Detected pulse is taken to be the most frequently occurring peak index (with
a few exceptions, see A.5).



Chapter 4

Preliminary

4.1 Exploring Contents of the ambient-light PPG

4.1.1 Forehead

From a video of about two minutes’ length of the subject keeping his face still
were cut two segments, (i) a segment on the forehead of 93×54 pixels and (ii) a
segment of the same size on the subject’s t-shirt. These segments were averaged
over each frame, both resulting in separate signals for the red, green and blue
channels. Fig. 4.1 shows (in their respective colors) the red, green and blue signals
(here shown above each other without regard to amplitude/scale) and their FFT
contents between 0.1 and 1.1 Hz for segment (i). The green and blue signals both
have peaks at around 0.15 and 1 Hz, but the green peaks are seen to be significantly
higher. Fig. 4.2 shows the same information for segment (ii), all three signals with
a peak at around 0.2 Hz. In fig. 4.3 an example view of the relative R, G, B
absolute pixel values of segment (i) are seen (segment (ii) has values that do not
differ significantly between the channels).

Figure 4.1: Red, green and blue channels, segment from forehead (i)

15
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A view of the green signal from fig. 4.1 is given in fig. 4.4 where it is split into
four frequency bands delimited at 0.055, 0.75 and 3.75 Hz. (Bands hypothesized
to be influenced by a) external, b) respiration, c) blood pressure/heart rate, d)
HF/noise.) The spectrogram for this same green signal can be seen in fig. 6.2(a).

Figure 4.2: Red, green and blue channels, segment from subject’s clothing (ii)

Figure 4.3: Amplitudes of R, G and B channels, segment (i), to scale. Channel bit
depth of 8 gives pixel values in the interval [0, 255].

Figure 4.4: Forehead PPG signal in frequency bands (from top to bottom): a, b,
c, d.
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4.1.2 Palm

From 136×196 pixels closeup video footage of the subject’s palm were extracted
RGB signals. The green channel’s spectrogram is shown in fig. 4.5 and its division
into frequency bands in fig. 4.6.

Figure 4.5: Spectrogram from palm

Figure 4.6: Palm PPG signal in frequency bands
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4.2 ICA-JADE Test Case

We synthesize a signal consisting of an ABP-like AC component with varying heart
rate of 1.1-1.3 Hz, baseline modulated by a respiration-like part at 0.11-0.13 Hz.
See spectrogram in fig. 4.7 and waveform s1(t) in fig. 4.8. Together with the two
low pass noise signals s2(t) and s3(t) it was linearly mixed using a mixing matrix

M =

0.004 −7 3
0.04 2 4
0.01 6 6


to give the signals x1(t), x2(t) and x3(t) according to eq. 2.1 on page 8. We see in
fig. 4.9 that the synthesized signal has been essentialy drowned in noise because of
the lower values in the left column of M .

Figure 4.7: Spectrogram of synthesized heart/respiration signal

Figure 4.8: Original signals

The signals ς1(t), ς2(t) and ς3(t) (fig. 4.10) were recovered using JADE according
to

[ς2(t), ς1(t), ς3(t)] = M−1
ς · [x1(t), x2(t), x3(t)]
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with

Mς =

 7.6323 1.5394 0.0802
−0.1296 0.0230 4.3537
−2.9090 −0.5603 7.6536

 .

Figure 4.9: Originals signals mixed – input to JADE.

Figure 4.10: Output from JADE.

At the scale shown here, the recovered signals are very much alike the original
ones. Although the numbers in the mixing matrix are not exactly the same (and
the column order has been changed), we recognize that the middle column of Mς ,
corresponding to the pulse signal, contains lower values than the others, as in M.
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Chapter 5

Experiments

1. From video footage where the subject is not moving, a pulsatile signal is
extracted in different ways:

(a) from a segment containing the entire face of the subject

(b) from a segment containing only the bare skin on the forehead of the
subject

(c) by applying JADE source separation to (a)

The results are compared visually by spectrograms and by their ability to
track the heart rate as compared to a finger pulse oximeter, in ch. 6.1, and
discussed in ch. 7.2.

2. From video footage where the subject is moving, a pulsatile signal is extracted
in different ways:

(a) from a segment containing the entire face of the subject, as found by
face detection

(b) from a segment containing only the bare skin on the forehead of the
subject, i.e. the top, middle segment cut out from (a)

(c) by applying JADE source separation to (a)

(d) by applying JADE source separation to (b)

(e) (a)-(d) repeated with filtered face coordinates

The results are compared visually by spectrograms and by their ability to
track the heart rate, in ch. 6.2, and discussed in ch. 7.3.

3. In ch. 6.3 and 6.5 a method of pulsatility mapping is tried out as a means
of (i) mapping the distribution of the pulsatile signal, (ii) semi-automatically
extracting the pulsatile signal and (iii) estimating heart rate. This is discussed
in ch. 7.4.
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4. In ch. 6.4, experiments are done on a recording where parts of both the
hand and the face of the subject are visible, efforts are made to extract such
information as heart rates, respiratory rates and phase delay. Discussed in
ch. 7.5.

5. In ch. 6.5, efforts are made to find out what duration of video is needed for
a stable heart rate estimation, using the methods of (i) forehead segment and
(ii) pulsatility mapping. Method (ii) is then subject to a somewhat larger
test on 6 subjects to confirm the stability. Discussed in ch. 7.6.

6. In ch. 6.6, a brief analysis is done of a short laparoscopy video recording of
a liver. The JADE algorithm is applied on four separate ROI’s, one of which
contains a cancerous growth. Discussed in ch. 7.7.



Chapter 6

Results

6.1 Heart Rate Estimation from Footage without Move-
ment

6.1.1 Segment on Forehead

About 120 seconds of footage was recorded where the subject was keeping his face
still. A segment of 93×54 pixels on the forehead was cut out and Gforehead(t)
extracted. The spectrogram of Gforehead(t) is shown in fig. 6.2(a). A clip of a few
seconds of the waveform is shown in fig. 6.1.

Figure 6.1: Cut from Gforehead(t)

6.1.2 Segment containing whole Face

A new segment of 158×212 pixels was cut from the same video containing the whole
face. Gface(t) was extracted. Its spectrogram is shown in fig. 6.2(b), and a clip of
the waveform in fig. 6.3.

Rface(t) and Bface(t) were also extracted and together the three were used
as input for a JADE ICA source separation (see 3.2 and 2.3.1). Of the output

23
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(a) Gforehead(t) (b) Gface(t)

Figure 6.2: Spectrograms

Figure 6.3: Cut from Gface(t)

signals J1face(t) was the one containing the most pulsatile information, and its
spectrogram is shown in fig. 6.4. The mixing matrix found was

Mface =

0.9147 0.8269 5.6251
0.0891 0.9296 3.9579
0.0950 0.4633 4.0161


Heart rate estimations were performed and are shown in fig. 6.5 for the pulse

oximeter, Gforehead(t), Gface(t) and J1face(t). Error is quantified in tab. 6.1,
where values are listed for average heart rate (mean), maximum absolute error
(emax,abs) and the standard deviation of the error (σe), when results from pulse
oximeter are taken as correct.
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Figure 6.4: Spectrogram of J1face(t)

Table 6.1: Error in estimated pulse frequency, video without movement
Signal Mean [bpm] emax,abs [bpm] σe [bpm]

Pulse oximeter 61.6 0 0
Gforehead(t) 61.4 0.6 0.20

Gface(t) 61.4 1.2 0.36
J1face(t) 61.4 1.4 0.61

Figure 6.5: Estimated pulse frequency compared for the different signals
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6.2 Heart Rate Estimation from Footage with Move-
ment

6.2.1 Segment containing whole Face

A video of 100 seconds was recorded with the subject moving around as if he were
interacting normally with the computer, i.e. no abrupt movement and face always
directed towards the camera. Face detection was carried out as described in 2.4.
Traces of resulting face position are given in fig. 6.6, the blue trace (X-position) here
quantifying the horizontal movement. For comparison a simultaneous recording was
done with the finger pulse oximeter.

Figure 6.6: Result of OpenCV face recognition on 360×360 pixels video

The raw trace from the green channel, Grecface, was extracted as before, now
from the segment returned from the face recognition procedure. Its spectrogram
is shown in fig. 6.7(a). With its corresponding red and blue channels it was then
used as input to the JADE algorithm, the result signal containing the most pulsatile
information was J2recface, whose spectrogram is shown in fig. 6.12(a). The mixing
matrix was

Mrecface =

4.2975 1.0157 0.0333
1.6173 1.2284 −0.0513
1.9027 0.7555 0.7371

 .
The heart rate was estimated from the two signals and are compared to the

heart rate estimated from the finger pulse oximeter in fig. 6.8. Minimum allowed
frequency for the pulse was raised to 52 bpm for Grecface when low frequency
disturbances were seen. Error data is compared in tab. 6.2
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(a) Grecface(t) (b) Grecface,MA30(t)

Figure 6.7: Spectrograms

Figure 6.8: Estimated pulse from face detection

6.2.2 Segment on Forehead

Based on the rectangles returned from the face recognition procedure, a segment
of 64×32 pixels was extracted from the top middle part of the face, i.e. a segment
containing a part of the forehead, moving with the face throughout the video.
The signals Grecforehead and J2recforehead were extracted in the same manner as
before, directly from the green channel and by JADE separation, respectively. The
spectrogram from Grecforehead is shown in fig. 6.9(a) and from J2recforehead in fig.
(excluded, see 7.3).

Heart rate was estimated also from these signals, result shown in fig. 6.10 in
comparison with pulse oximeter. Here, too, minimum pulse frequency was raised
to 52 bpm, in this case for the Grecforehead signal.
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(a) Grecforehead(t) (b) Grecforehead,MA30(t)

Figure 6.9: Spectrograms

Figure 6.10: Estimated pulse from face detection, segment on forehead

6.2.3 Smoothing out Face Coordinates

To smooth out the movement from frame to frame of the face detection rectangle,
its coordinates were filtered in with a 30-frame (1 second) moving average (MA)
filter. New coordinates are shown in fig. 6.12(a). Signal extraction was repeated,
giving the signals Grecface,MA30 (fig. 6.7(b)), Grecforehead,MA30 (fig. 6.9(b)) and
J2recface,MA30 (fig. 6.12(b)). BPM values for these signals are shown in fig. 6.11.
Error data is compared in tab. 6.2, where values are listed for average heart rate
(mean), maximum absolute error (emax,abs) and the standard deviation of the error
(σe).
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Figure 6.11: Estimated pulse when face detection coordinates are filtered

Table 6.2: Error in computed pulse frequency, video with movement
Signal Mean [bpm] emax,abs [bpm] σe [bpm]

Pulse oximeter 59.6 0 0
Grecface(t) 59.4 2.4 0.95
J2recface(t) 59.5 3.5 1.0

Grecforehead(t) 59.6 2.8 0.95
Grecface,MA30(t) 59.5 2.1 0.68
J2recface,MA30(t) 59.4 3.0 0.80

Grecforehead,MA30(t) 59.5 2.1 0.71

(a) J2recface(t) (b) J2recface,MA30(t)

Figure 6.12: Spectrograms
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6.3 Pulsatility Mapping

6.3.1 Inside of Hand

The procedure described in 3.4 was carried out on a two minute video of the
subject’s palm using a grid of 8×8 pixel squares. The resulting pulsatility map is
shown in fig. 6.13, and a new signal was constructed by averaging the content of
the red squares. The spectrogram of this signal is shown in fig. 6.14(a) compared
to the spectrogram of a signal that was extracted manually from a rectangular
segment of 136×96 pixels in fig. 6.14(b).

Figure 6.13: Hand pulsatility map

(a) Signal made from summing pulsatile areas (b) Signal from rectangular segment

Figure 6.14: Spectrograms hand
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6.3.2 Face

The procedure was done similarly for a two minute face video (same video as in
ch. 6.1.1), using 4×4 pixels grid size, result shown in fig. 6.15. Spectrograms are
compared in the same manner as above in fig. 6.18 (using the forehead segment of
93×54 pixels from fig. 6.2(a)). The signal in 6.16(a) was taken this time from the
red, green and yellow squares.

Figure 6.15: Face pulsatility map
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(a) Signal made from summing pulsatile areas (b) Signal from rectangular segment

Figure 6.16: Spectrograms face

6.3.3 Face and Hand combined

A video was recorded in which parts of both face and hand were visible, and
pulsatility mapping done on an 8×8 pixel grid, result shown in fig. 6.17. It is again
pointed out that the color scale used is not absolute – we observe lower levels on
the inside of the hand than on the face, not evident from figs. 6.13 and 6.15.

Figure 6.17: Pulsatility map for both face and hand in one frame
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6.4 Face/Hand Comparisons

Extending upon the previous section 6.3.3, the video frame was manually sepa-
rated into one hand segment and one face segment, and signals were averaged
over the pulsatile squares within each segment. Spectrograms of these signals are
shown alongside spectrograms of signals averaged over manually chosen rectangle
segments.

(a) Signal made from summing pulsatile areas (b) Signal from rectangular segment

Figure 6.18: Spectrograms face

(a) Signal made from summing pulsatile areas (b) Signal from rectangular segment

Figure 6.19: Spectrograms hand
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6.4.1 Phase Delay Estimation

Figure 6.20: Comparing heart rate pulsations

In fig. 6.20 is shown a small clip of the signals from figs. 6.19(a) and 6.18(a) after
being bandpass filtered to reveal HR contents and their harmonics in the frequency
band [0.75, 3.75] Hz. The HR frequencies were estimated for both signals, shown
in fig. 6.22(a). The phase delay between them was estimated as described in 3.3
and is shown in fig. 6.22(c). This phase delay is equivalent to the PTTD for the
hand and the face, see Background (ch. 2.5) and Discussion (ch. 7.5.1).

6.4.2 Respiration Rate Estimation

Figure 6.21: Contents of the face and hand signals in the frequency band [0.055,
0.75]

Fig. 6.21 shows the contents of the two signals in the band [0.055, 0.75] Hz,
assumed to be conditioned by respiratory variations. Values for their frequencies
were estimated and are shown in fig. 6.22(c).
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Figure 6.22: (a) estimated heart rates, face and hand, (b) estimated respiration
rates, face and hand, (c) estimated phase delay, hand on average 6.6 ms after face
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6.5 Short-Time Heart Rate Estimation Testing

(i) Testing For the application example described in 3.5(i), a single-subject
test was carried out for a suggestion of the necessary length L of the recording.
For each run the value found was noted as well as the instantaneous value from
the finger pulse oximeter. The application was run 24 times at each value of L,
and values were calculated for RMSE erms, bias eavg and maximum absolute error
emax,abs. Results are listed in tab. 6.3.

Table 6.3: Error results, short-time heart rate estimations (i)
L [s] erms [bpm] eavg [bpm] emax,abs [bpm]

4 6.6 -3.8 23
5 6.1 -2.5 15
6 4.2 -2.3 10
7 2.2 -1.1 4.0

(ii) Testing 1 For the application example described in 3.5(ii), a single-subject
test was carried out for a suggestion of the necessary length L of the recording.
For each run the value found was noted as well as the instantaneous value from
the finger pulse oximeter. The application was run 24 times at each value of L,
and values were calculated for RMSE erms, bias eavg and maximum absolute error
emax,abs. Results are listed in tab. 6.3. The value d = 10 was used.

Table 6.4: Error results, short-time heart rate estimations (ii)
L [s] erms [bpm] eavg [bpm] emax,abs [bpm]

4 7.9 -3.5 26
5 14 1.1 67
6 4.6 0.042 18
7 2.3 -0.92 4.0

(ii) Testing 2 It was chosen L = 7 and a test of 24 runs of the script was per-
formed on 6 subjects, a total of 144 data points. For each run the value found was
noted (pwebcam) as well as the instantaneous value from the finger pulse oximeter
(ppoxi). The results are shown in a Bland-Altman plot in fig. 6.23. The overall
RMSE was 4.95 and the bias -0.77 bpm. Examples of face pulsatility maps from
the six subjects are found in B.1.
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Figure 6.23: Average vs. difference of estimated and control value, short-time
heart rate estimation testing. By convention of Bland-Altman plots, 1.96 ·SD and
−1.96 · SD limits are indicated. Data points outside these are in red. Note that a
large amount of data points coincide with each other due to integer rounding.
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6.6 Laparoscopy Video

On a short clip (7 seconds, the longest available with reasonably low movement)
from a liver laparoscopy video were chosen 4 separate ROI’s, two on the wall of
the abdominal cavity (1, 2) and two on the liver (3, 4) whereof one (4) containing
a cancerous growth (see fig. 6.24). The R, G and B raw traces were extracted for
each ROI and fed through the JADE algorithm. Normalized RGB traces and the
most pulsatile of the independent components are shown in the following figures
with their respective FFT’s.

Figure 6.24: Video frame with the 4 ROI’s

Figure 6.25: Laparoscopy ROI 1
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Figure 6.26: Laparoscopy ROI 2

Figure 6.27: Laparoscopy ROI 3

Figure 6.28: Laparoscopy ROI 4
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Chapter 7

Discussion

The procedures in this report are focussed on not requiring expensive equipment,
e.g. no especially high quality video recording is used. Wherever something is
stated to be infeasible, it may not mean that it is impossible to do so, it means,
however, that the wanted results may not be readily available at the technologically
low threshold wanted. Better lighting and higher quality optics and image sensors
will likely yield better results, but when an expressed goal is that a normal webcam
should suffice, a procedure is disproven by one of them failing to do so. On the
other hand, that something is possible to do with the camera at hand, does not
mean that it is possible with any camera. In this regard, any exploration on the
topic of this report will be incomplete, but will likely give a very good indication
of what is possible with an average web camera.

7.1 The Contents of the Webcam PPG

Discussed here are findings from preliminary explorations in 4. What is evident
at first glance from fig. 4.1(b) is the protruding FFT peak at around 1 Hz in the
green, to a lesser extent also visible in the blue channel, which it is reasonable to
assume is the base harmonic of the heart rate frequency.

Further, it is observed comparing figs. 4.1(a) and 4.2(a) that there are common
baseline fluctuations in what is revealed to be the frequency band below 0.055 Hz.
The fact that these are found both on bare skin and on clothing makes us conclude
that they are related to movement and external lighting but possibly also partly
to in-camera adjustments we were not able to control manually.

The peaks in the green and blue channels in fig. 4.1(b) at 0.15 Hz, that are
also clearly visible as variations with a period of about 7 seconds in fig. 4.1(a), are
assumed to be indicative of respiration rate, based on argumentation and explo-
rations in [2] (see 2.2). That the content found at both 0.15 and 1 Hz is indeed
true PPG content stemming from physiological parameters is further backed by
the relative pixel values of the R, G and B channels, an argument put forth by [2].
We see in fig. 4.3 that green and blue values are significantly lower than red.
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A peak is seen in all three channels from segment (ii) (fig. 4.2(b)) at 0.2 Hz. This
is distinct from respiration rate at 0.15 Hz and is likely to come from movement.

The hypothesized frequency band characterization a) external, b) respiration,
c) blood pressure/heart rate, d) HF/noise is, all in all, confirmed. It is also seen
in fig. 4.4 in this case to be very well delimited at the frequencies 0.055, 0.75 and
3.75 Hz.

The same information that we find in the forehead segment also occurs in the
palm segment. The base harmonic of the heart rate is clearly seen in fig. 4.5,
and the first and second are also clear enough to be made out. Compare fig.
6.2(a), however, to see that the noise level between the harmonics is much higher.
The variations due to respiration can be seen in fig. 4.6 although they are more
ambiguous than the ones in 4.4.

7.2 Without Movement

From the preliminary exploration in 4 and from previous work, it is expected that
a good heart rate estimation should be readily available from a face video without
movement. This is confirmed in 6.1.1 and 6.1.2 where a segment containing the
whole face (Gface) is compared to a segment containing bare skin on the forehead
only (Gforehead). A radical difference between these is expected, and confirmed by
figs. 6.1 and 6.3, the latter having a significantly higher SNR. In fig. 6.2 it is seen
that going from Gface to Gforehead we remove noise both above and inbetween
the visible harmonics of the heart rate. The second harmonic, partly visible in
Gforehead is completely camouflaged by noise in Gface.

Estimations of the heart rate done from Gforehead and Gface concur closely with
those done by finger pulse oximeter, as the numbers in tab. 6.1 show: Gforehead

has a small but not insignificant edge1, nowhere differing from the control value by
more than 0.6 bpm.

The use of JADE source separation here is deemed unsuccessful or at the very
least unnecessary. Although J1face in fig. 6.4 shows a strong base frequency com-
ponent – we may even see traces of a first harmonic – the noise level is evidently
worse than that in Gface. We see a decline in the quality of the heart rate estima-
tions with increases in both maximum error and error variance. The mixing matrix
Mface was included in case it could reveal any clue to which of the JADE output
signals was the most beneficial choice, as we saw in ch. 4.2, but no such clue was
revealed.

We remark that this is not the case for which JADE is used in [1], so different
results may be expected when movement and face detection are involved, meaning
no conclusions are yet to be drawn. If forehead segmenting can be done in an
automatized way, it may provide a method of improving the signal, admittedly less
sophisticated, but algorithmically a lot less complex and maybe somewhat more
intuitively understandable.

1The heart rate estimation from the face may not show overall convergence to the one from
the finger, even when they are done by the same method – see fig. 6.22(a) where both rates are
estimated by use of webcam.
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7.3 With Movement and Face Detection

When we include face detection, and the procedure is repeated on recordings where
the subject is moving, we see a distinct decline in signal quality. This is expected
due to the physical movement of the subject, but also, as we will see, due to
the movement of the face tracker itself – even when two video frames are nearly
identical, their detected face coordinates will differ, leading to a “choppy” behavior.
A smoothing-out of the coordinates is suggested as a way of improvement, and
seemingly (see fig. 6.6) a simple one-second MA filter does a good job of this.
In tab. 6.2 we see an improvement on the three signals that are based on face
detection when the coordinates are filtered (“MA30”), both maximum errors and
error variances are down on all three of them. We compare spectrograms: fig.
6.7(a) to fig. 6.7(b) and fig. 6.9(a) to 6.9(b). In both cases and especially in the
last, the coordinate-filtered version is perceived to be less noisy: base frequency is
more clearly protruding and traces of harmonics are more prominent.

In fig. 6.8 we see the first point in these experiments at which the application
of JADE begets beneficial results: for the first 35 seconds we are not able to trace
the heart rate from Grecface(t) (when the low threshold is 45 bpm), because of low
frequency disturbances higher in amplitude than the base heart frequency. This
is not the case for J2recface(t) (disturbances present in fig. 6.7(a) but not in fig.
6.12(a)). We remark that this is the case for which JADE was applied successfully
in [1], and choose to take our results as indicative of the reason for this success.

JADE is not helpful in the case of a forehead-only segment, we see in fig. 6.10
that a tracking of the heart rate is not successful for J2recforehead(t), not even
when the low threshold is raised to 52 bpm. Its spectrogram is not included, as it
was not particularly enlightening. As we see from comparing the figs. 6.12(a) and
6.12(b), the coordinate filtering led only to a noise enhancement for J2recface(t),
due to this, filtering was not attempted for J2recforehead(t).

7.4 Pulsatility Mapping

The method described in 3.4 and applied in 6.3, 6.4 and 3.5/6.5 may be viewed
as a method for either (i) mapping the distribution of the amplitude of the pulse
signal in the skin that is exposed to the camera, (ii) semi-automatically extracting
the physiologic signal with both heart and respiration rates including harmonics
and modulation products or (iii) robustly estimating the bpm value of the heart
rate by “majority vote”. Each of these discussed separately here:

(i) This is medically interesting if it does actually map an underlying anatom-
ical structure – which it is reasonable to assume that it does, to some degree. The
resulting distribution map in fig. 6.15 reflects an expected [2] higher pulsatility in
the forehead and upper cheak areas. It must, though, be remarked that angle of
lighting, angle of projection and shadowing resulting from both of these all play
important roles, i.e. a different result would be expected if the subject was to tilt
his head sideways or forward/backward. But, however important this role is, we
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still find the result technically pleasing because it tells us where to look for the
wanted signal. In the flatter palm area, angles will play less of a role but still have
an influence. Here (fig. 6.13) we see higher pulsatility in the “meatier” parts of
the hand, but the pattern is less clear than in the face.

(ii) This is done in 6.3.1 and 6.3.2 and is successful, at least what the heart rate
and a few harmonics are concerned. This is seen in figs. 6.14(a) and 6.16(a). When
these spectrograms are compared to their more naively extracted counterparts in
figs. 6.14(b) and 6.16(b) we even perceive some overall improvement – “cleaning-
up” of noise between the harmonics – this is a likely result, but hard to judge
accurately from the spectrograms (see also figs. 6.18 and 6.19). Important is that
it is at all possible to extract the signal in this way, a way that may prove more
generalizable than separating out the forehead from a face detection, because of its
independence of face shape.

(iii) In 6.5 we see an example of this. Although we in the initial (ii) Testing 1
register some instability for L≤6, for L=7 the method behaves well, with an RMSE
of only 2.3 bpm. It behaves similarly in Testing 2 when the number of subjects
and correspondingly the amount of data points increases, only with somewhat
higher spread and additional outliers. We take care when comparing the Bland-
Altman plot in fig. 6.23 to the ones in fig. 2.6, the latter being from tests where
the pulse is tracked continuously. The tests carried out here are “pointwise”, i.e.
not taking advantage of the fact that changes in the pulse rate appear slow and
gradual, and may therefore be considered stronger. If a continuous tracking were
to be implemented using this method, acceptable results would be expected also
for L<7, where errors were dominated by a significant number of outliers.

7.5 Comparing PPG from different Locations

Such comparisons are shown to be possible in ch. 6.4, and also in [2] where phase
distribution is used to assess blood flow in portwine stains.

From the technical point of view, it is satisfying that we are able to acquire this
phase information with such a low equipment threshold. Practically, one might
find the positioning of both hand and face within the video frame (while staying
relatively still) physically awkward. This practice was used largely as an answer to
the need for synchronization, so if there did exist a simple way to record multiple
frame-synchronized videos, one might just as well use two cameras (which would
in turn make possible measurements on other locations, e.g. lower extremities).
Medically, there is also the question of whether raising one’s hand to face height
changes the vascular compliance, blood pressure, heart rate or other parameters
that may influence the PWV, a question which is not answered here.
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7.5.1 Phase Delay

We see that measuring the average phase delay (see 3.3) at the heart rate frequency
between two locations is possible. The results of this for a two-minute recording
of forehead/palm is shown in fig. 6.22(c), averages over 12 seconds. Regarding
these results as an estimate of the face-hand PTTD: a more direct way would be
to measure the distance between corresponding peaks in the two PPG signals2.
Finding the peak distances may not be straightforward for a noisy signal whose
morphology also varies, and the phase delay is believed to be a good and more stable
estimate. Indeed, a crude manual inspection of the waveform in fig. 6.20 reveals
that nearly half of the peaks3 in the palm signal are found at the same sample
point as their corresponding forehead peaks, and the rest are rather symmetrically
distributed around that, though leaning slightly towards a positive lag, with an
average of about 0.15 sample points (forehead peaks appear before palm peaks).
This is equivalent to 0.15 · 1000/30 = 5 ms, compare the average estimated phase
delay of 6.6 ms.

The accuracy of the results is also rightly questioned on grounds of the high
(30 ms) sample period (low temporal resolution) of the signals. If, for example,
the actual PTTD was a steady 6.6 ms, nothing would register at all. The fact that
in this case the PTTD was not behaving that steadily but was varying from beat
to beat, combined with averaging over 12-second time windows, gives the values
higher accuracy.

7.5.2 Respiration Rates

The extracted signals for both forehead and palm show significant frequency peaks
in the 0.055-0.75 Hz band, these are assumed to be a result of respiration (see
7.1). The content is shown filtered in fig. 6.21, and an estimate of its varying
frequency was done, using FFT and a 12-second sliding window. The respiration
rate estimated from the palm is seen in fig. 6.22(b) to generally be lower than that
estimated from the forehead, their means are respectively 0.104 and 0.128 Hz or 6.2
and 7.7 “breaths per minute”, an average disparity of 23%. (Had the values been
closer to each other, a phase delay could have been found also at these frequencies.)
We also see no clear shape correlation between them. It is uncertain whether this
has to do with poor signal quality (affected by unphysiological disturbances) or
differing blood flow velocity influencing the oxygen transport. A good coherence
between actual respiratory rate (breaths taken per minute) and the value measured
by PPG is reported [31]. The physiologic properties of the webcam-acquired signal
could be investigated further with knowledge of the accurate RGB wavelength
responses of the camera.

2or rather peaks in their polarity reversed versions, as the PPG is inversely related to blood
pressure (see 2.1.1)

3of the ∼100 peaks in this signal with unambiguous positions
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7.5.3 Heart Rates

The heart rates estimated from the two PPG locations are shown in fig. 6.22(a).
We see that they are not exactly the same: the estimates from the palm have
slightly more abrupt changes. All positive differences are evened out by negative,
though, and they show the same average, as one would expect (68.6 bpm).

Figure 7.1: Phase delay variations compared to variations in heart rate difference

At the points where an above-average difference in heart rates between forehead
and palm is measured, one would expect the phase delay to also be above average,
i.e. some form of correlation between heart rate difference and phase delay. This
is shown to hold some truth in fig. 7.1 and, though not further investigated, taken
as evidence for the validity of both estimates.

7.6 Necessary Duration of Recording

In both [1] and [2] analysis is performed on time windows of 20-30 seconds du-
ration4. In chapters 6.1-6.4 of this report, a duration of 12 seconds is shown to
give a good balance between temporal resolution and unambiguity in the results.
With a reasonably clean signal, however, it is natural to expect good results to be
attainable even for durations long enough for only a few heart cycles. We see from
the results in 6.5 an indication that this is true. Of the two methods, (i) shows
a clearer pattern of convergence with increasing L, but they perform equally well
when L reaches 7 seconds, in this limited testing scheme. Further testing on other
subjects confirms this for method (ii); in fig. 6.23 we see that with an RMSE of
4.95 most measurement points are within a 5-10 bpm error, with only few outlier
errors. The testing range is limited but covers much of the normal values for resting
heart rate. As mentioned in 7.4, we expect that a continuous tracking of heart rate
could remove some of the outliers and function well also with L<7. Good temporal
resolution in HR monitoring gives meaningful values for the HRV, this has several
possible applications, as mentioned in ch. 2.6.

4[2] mentions the use of recording durations as low as 10 seconds
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7.7 Laparoscopy

From the plots in ch. 6.6 we see the frequency peak that is the most likely candidate
for the heart rate at 1.87 Hz (112 bpm). This is visibly present in the JADE
independent components from all 4 ROI’s as well as in the RGB traces from ROI 3
and 4. We interpret this as JADE here being able to extract pulsatility components
that are not clearly visible in the RGB traces. When they are clearly visible,
however, we see no drastic change in the waveform. Peaks that may be consistent
with respiratory rate are observed in a few of the plots at about 0.2 Hz.

The R trace from ROI 3 is seen in fig. 6.27 (top, right) to have a peak at 1.87
Hz of higher amplitude than that in the G and B traces. This is an indication that
these pulsations are influenced by movement artifact5 more than by true PPG.
(This is also seen from the video itself.) We would expect signal traces extracted
from a video of longer duration and higher stability to have content where the
influence of true PPG outweighs this movement artifact, and that the different
regions could be recognized (by phase, amplitude) more clearly in a comparison
like the one in fig. 7.2, maybe even to the point of diagnostical usefulness, i.e. the
ability to distinguish cancerous tissue from surrounding non-cancerous tissue.

Possible observed respiratory rate fluctuations are even more likely to be influ-
enced by movement – consider the large influence of breathing mechanics on the
abdomen. The mixing matrices were excluded from these results as they gave no
further insight.

Figure 7.2: JADE components from laparoscopy compared

5though the heart rate may still be correct
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7.8 Problems and Artifacts

Several parameters were seen to have an influence on the quality of the acquired
pulsatile signal. Among them, interference from fluorescent lighting was found
especially disruptive at one recording location, but also the correct choice of white
balance6 has seemed vital for obtaining a high quality signal.

All video used was uncompressed, but it was found that no information was lost
neither through MJPEG (intra-frame only) compression nor several different modes
of heavy H264 (inter-frame) compression. A Sony Handycam using another mode
of MPEG-4, however, was found to produce video where any and all physiological
pulsatility was masked completely by other spectral lines, suspectedly with relation
to the keyframe interval of the codec. (One might comment that a good video
compression scheme should remove such information, as it is not perceived by
anyone.) A few movie scenes with face footage of sufficient length were found and
analyzed but revealed no pulsatile signal. However well lit a film set is, this is not
an unexpected result, taken into account heavy use of makeup and post-processing
(dynamic compression, data compression).

A quantification of signal-to-noise ratio (SNR) is never attempted in this report.
There would be certain difficulties involved in defining an SNR, i.e. what is to be
defined as signal and what as noise? (High/low frequency noise, noise between
the different harmonics, modulation products etc.) In many cases the difference
in SNR is very clear, and quantification is not seen as necessary. In other cases it
is less clear, and no strict conclusion is drawn. Signal quality is also assessed by
how well the signal tracks the heart rate, and visually by spectrograms. Further
investigations may warrant a definition of SNR.

6notorious for being chosen wrongly by automatic adjustments, especially indoors
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Conclusions

It was known that heart and respiratory rate can be extracted by using a web
camera to film someone’s exposed skin, especially his forehead, even with daylight
as the only source of illumination. To expand on this we have investigated ways in
which to do this extraction, as well as looked into what other information can be
gathered from such a recording. To finish we briefly assess possible applications.

8.1 Extracting the best possible Signal

The arguably cleanest signal we have seen in this report is the one spectrographed
in fig. 6.18(a) which was extracted by use of pulsatility mapping (ch. 3.4) from a
video without movement. Compared to the output from a finger pulse oximeter in
fig. 2.4(b) we see radical difference. The clarity of the non-contact ambient-light
photoplethysmogram is severely restricted by noise and lack of illumination control.

As long as the subject is keeping relatively still, we extract a similarly clear
signal by use of simple manual segmenting of the forehead (fig. 6.2(a)), a scheme
which we were able to apply also when movement and automatic face tracking was
introduced (ch. 6.2.2). The signals extracted from videos with movement using
face tracking are, however, vulnerable to the nature of the tracker. Filtering of the
coordinates alleviates some of this problem (ch. 6.2.3).

JADE source separation (ch. 2.3.1) is admitted some merit in revealing the
heart rate where it was not visible (ch. 7.7) and in one case we see JADE causing
an improvement in the detectability of the heart rate by removing lower-frequency
disturbances (ch. 7.3). In addition to this there is rather conclusive evidence
from [1] that JADE improves the heart rate detectability, in the case where the
whole face of the subject is taken as the ROI. However, when it comes to obtaining
the clearest possible signal, we show more evidence in favour of the more naively
thought out procedures of forehead-segmenting and pulsatility mapping. All in all
we have reason to assume that JADE works better when the starting point is a
signal of lower quality (it can indeed uncover a signal in very high noise levels, as
in ch. 4.2).

49
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8.2 What Information can be acquired?

We give examples of heart rate estimations with as low as 0.2 bpm average error,
0.6 bpm maximum error and 0.2 bpm error standard deviation (compared to finger
pulse oximeter), when the subject is not moving, from a video of duration 2 minutes
(ch. 6.1.1). When the subject is moving (slow horizontal movements within the
100 middle pixels of a 360×360 video frame) the numbers are 0.1, 2.1 and 0.7 bpm,
accordingly; from a video of similar duration (ch. 6.2.3).

Many of the spectrograms in this report clearly show several harmonics to the
base HR frequency: the signals are recovered with more than a minimum of phase
information. This means we can find the heart rate variability with more than
a minimum of accuracy (fig. 6.10). The difference in pulse transit time between
two distal locations (forehead and palm) is found in ch. 6.4.1. This shows that the
phase information contained in the signals, both from forehead and palm, is robust
enough to make use of the phase distribution.

For both face and hand amplitude distribution is found (ch. 6.3), not only
interesting in itself but also as a means of excluding parts that are less or not at
all pulsatile. Differing results from face to hand give us reason to doubt the values
obtained for respiratory rate (ch. 6.4.2), but previous work has concluded that
the information is present in the signals.

8.3 Possible Applications

Even the very limited results of this report show the clear possibility for creating
an application (e.g. smartphone, laptop with webcam) that tracks heart rate (HR
and HRV) from face video in real time, concurring with results from previous work
[1, 2]. (To our knowledge this does not exist.) Such an application may be of use
in a multitude of situations, from clinical patient monitoring to sports. We suggest
applying pulsatility mapping or at least some way of automatically confirming the
pulsatility of the signal in such an application, seeing as this works reasonably well
even for short durations (ch. 6.5). Though movement can be compensated for to
some degree, abrupt displacement will cause disturbances in the signal – the user
would basically be required to face the camera and limit his movement to what is
normal when interacting with the computer.

Other information that may prove medically relevant includes PTTD (see ch.
2.5) and respiratory rates. Applications involving these are thinkable in a remote
monitoring situation where cost and availability is important. On the topic of la-
paroscopy (ch. 6.6) and other types of endoscopic recordings we are more reluctant
to conclude; it is likely that PPG signals are available also in these cases, but this
was not clearly demonstrated in our work.
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Appendix A

Matlab Script Samples

A.1 Extracting Signals, Face Detection

% clc
% clear all,close all force

% Doing face recognition on each frame and storing coordinates

FILENAME = 'facevid.avi';
OBJ = VideoReader(FILENAME);

numFrames = get(OBJ, 'NumberOfFrames');
disp(numFrames);

h = waitbar(0,'Please wait...');
noface=zeros(1,numFrames);
Face=zeros(4,numFrames);
RGB=zeros(3,numFrames);

for k = 1 : numFrames, waitbar(k/numFrames,h)

% Read frame, recognize face, make sure everything is ok or else using
% coordinates from previous frame.
A = read(OBJ,k);
Img = double (rgb2gray(A));
AFace = FaceDetect('haarcascade frontalface alt2.xml',Img);clear Img
if all(size(AFace)==[1 4])

Face(:,k)=AFace;
elseif all(size(AFace)==[2 4])

d1=abs(AFace(1,1)−Face(1,k−1));
d2=abs(AFace(2,1)−Face(1,k−1));
if d1≤d2, Face(:,k)=AFace(1,:);
else

Face(:,k)=AFace(2,:);
end

elseif all(size(AFace)==[3 4])
d1=abs(AFace(1,1)−Face(1,k−1));
d2=abs(AFace(2,1)−Face(1,k−1));
d3=abs(AFace(3,1)−Face(1,k−1));
if d1≤d2&&d1≤d3, Face(:,k)=AFace(1,:);
elseif d2≤d1&&d2≤d3, Face(:,k)=AFace(2,:);
else

Face(:,k)=AFace(3,:);
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end
else

Face(:,k)=Face(:,k−1);
noface(k)=1;

end
clear AFace

% Reducing width of face rectangle by 40%
reduceWidthBy=.4*Face(3,k);
Face(1,k)=round(Face(1,k)+.5*reduceWidthBy);
Face(3,k)=round(Face(3,k)−reduceWidthBy);

% Extracting RGB averages
f1=Face(1,k);f2=Face(2,k);f3=Face(3,k);f4=Face(4,k);
for ii=1:3

RGB(ii,k)=(1/(f3*f4))*sum(sum(A(f2:f2+f4,f1:f1+f3,ii)));
end

end

close all force
save('facevid.mat','RGB', 'Face', 'noface')

A.2 Heart Rate Calculation

function [time pBPM] = compute pulse(ppg,Fs,pMin)%,wL, wD, pMin, pMax)

% FUNCTION compute pulse(ppg,Fs,wL, wD, pMin, pMax)
% ppg: ppg or similar signal containing heart rate pulsations
% Fs: sampling rate in samples per second
% wL: window length in seconds
% wD: window displacement in samples
% pMin: minimum pulse frequency in bpm
% pMax: maximum pulse frequency in bpm

wL=12;
wD=Fs;
% pMin=45;
pMax=200;

wL=wL*Fs;
w=hamming(wL);
% w=ones(wL,1);
wN=round((length(ppg)−wL)/wD);
fN=Fs*60*5;
pMin=round(pMin*fN/Fs/60);
pMax=round(pMax*fN/Fs/60);
pI=zeros(1,wN);

for ii=1:wN
start=wD*(ii−1)+1;
stop=start+wL−1;
ppgSegmentWindowed=stdnrm(stdnrm(ppg(start:stop)).*w');
ppgSegmentPSD=abs(fft(ppgSegmentWindowed,fN)).ˆ2;
ppgSegmentPSD([1:pMin pMax:end])=0;
[¬,pI(ii)]=max(ppgSegmentPSD);
if ii>1
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while pI(ii)>1.1*pI(ii−1)||pI(ii)<.9*pI(ii−1)
ppgSegmentPSD(pI(ii))=0;
[¬,pI(ii)]=max(ppgSegmentPSD);

end
end

end

pBPM=pI*Fs*60/fN;
% time=linspace(0,Fs*length(pBPM)/wD,length(pBPM));
time=.01*round(100*linspace(wL/Fs,wL/Fs+Fs*length(pBPM)/wD,length(pBPM)));

A.3 Pulsatility Mapping

%% Extract the G channel for each square in a grid

% clear all
% close all force
FILENAME = 'C:\Users\asmundr\Videos\01\01crop.avi';
OBJ = VideoReader(FILENAME);

numFrames = get(OBJ, 'NumberOfFrames');
% disp(numFrames)
frame1 = read(OBJ,1);
res=size(frame1);
yres=res(1);
xres=res(2);

image(frame1)
axis equal
hold on

dx=4; % x−dim of square
dy=4; % y−dim of square
numBlocks=xres*yres/(dx*dy);

% create vector of square coordinates on form
% [x−pos top left, y−pos top left, dx, dy]
b=zeros(4,numBlocks);
b(1,:)=mod(1:dx:dx*numBlocks,xres);
b(2,:)=sort(mod(1:dy:dy*numBlocks,yres));
b(3,:)=dx*ones(1,numBlocks);
b(4,:)=dy*ones(1,numBlocks);

% display grid on video frame
for ii=1:numBlocks
rectangle('position',b(:,ii),'edgecolor','g')
end
hold off

%% Average pixel value for each square and each frame
R=zeros(numBlocks,numFrames);
G=zeros(numBlocks,numFrames);
B=zeros(numBlocks,numFrames);
h = waitbar(0,'Please wait...');
for ii=1:numFrames

waitbar(ii/numFrames,h)
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frameii=read(OBJ,ii);
for jj=1:numBlocks

rect=frameii(b(2,jj):b(2,jj)+dy−1,b(1,jj):b(1,jj)+dx−1,1);
R(jj,ii)=sum(sum(rect))/(dx*dy);
rect=frameii(b(2,jj):b(2,jj)+dy−1,b(1,jj):b(1,jj)+dx−1,2);
G(jj,ii)=sum(sum(rect))/(dx*dy);
rect=frameii(b(2,jj):b(2,jj)+dy−1,b(1,jj):b(1,jj)+dx−1,3);
B(jj,ii)=sum(sum(rect))/(dx*dy);

end
end
for ii=1:numBlocks, G(ii,:)=zmean(G(ii,:)); end
save('01crop4x4rgb.mat','G','R','B')
close all force

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
load 01crop4x4rgb.mat

Gd=zeros(size(G));
for ii=1:size(G,1)

Gd(ii,:)=limitdiff(G(ii,:));
end
G=Gd;

%compute PSDs
N=2ˆnextpow2(length(G));
GF=abs(fft(G',N)).ˆ2/N;
GF=GF(1:N/2,:);
idx28bpm=round(28*N/(2*15*60));
idx200bpm=round(200*N/(2*15*60));%2*15*60*71/N
GF(1:idx28bpm,:)=0;
GF(idx200bpm:end,:)=0;
f=linspace(0,15*60,N/2);

%find peaks
for ii=1:size(G,1)

[Y(ii) I(ii)]=max(GF(:,ii));
end

Icorrectpulse=find(I==mode(I));
Iwrongpulse=find(I6=mode(I));
Y(Iwrongpulse)=0;
Ibest=find(Y>3*std(Y)); % red squares
Igood=find(Y>2*std(Y)); % yellow squares
Iok=find(Y>std(Y)); % green squares
Ilessok=find(Y>.5*std(Y)); % blue squares
% figure,plot(Y)
% figure,hist(Y)

GZ=stdnrm(sum(G(Ibest,:))); % summing best signals
figure,plotbands(stdnrm(double(GZ)),'k')
myspectrogram(double(GZ),30,'log')
% plot(G(145,:))

% show previously computed image averaged over all frames to indicate
% video is not completely stable
load hand7c averageimage
frame1 = frameaverage;
res=size(frame1);
yres=res(1);
xres=res(2);
figure
imagesc(frame1)
axis equal
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hold on
dx=8;
dy=8;
numBlocks=xres*yres/(dx*dy);

b=zeros(4,numBlocks);
b(1,:)=mod(1:dx:dx*numBlocks,xres);
b(2,:)=sort(mod(1:dy:dy*numBlocks,yres));
b(3,:)=dx*ones(1,numBlocks);
b(4,:)=dy*ones(1,numBlocks);

% display colored squares overlayed video frame:

for ii=Ilessok
rectangle('position',b(:,ii),'facecolor','b')
end

for ii=Iok
rectangle('position',b(:,ii),'facecolor','g')
end

for ii=Igood
rectangle('position',b(:,ii),'facecolor','y')
end

for ii=Ibest
rectangle('position',b(:,ii),'facecolor','r')
end

hold off

% load('hand7cc.mat')
% myspectrogram(limitdiff(G),30,'log')
% figure,plotbands(stdnrm(double(G)),'k')

A.4 Phase Delay Calculation

function [time ptt] = compute ptt(ppg1,ppg2,Fs,pMin)%,wL, wD, pMin, pMax)

% Computes PULSE TRANSIT TIME, i.e. the phase delay between the (assumed to
% have common frequency) pulsations of ppg1 and ppg2

% FUNCTION compute pulse(ppg,Fs,wL, wD, pMin, pMax)
% ppg: ppg or similar signal containing heart rate pulsations
% Fs: sampling rate in samples per second
% wL: window length in seconds
% wD: window displacement in samples
% pMin: minimum pulse frequency in bpm
% pMax: maximum pulse frequency in bpm

wL=12;
wD=Fs;
% pMin=45;
pMax=200;

wL=wL*Fs;
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w=hamming(wL);
% w=ones(wL,1);
wN=round((length(ppg1)−wL)/wD);
fN=Fs*60*5;
pMin=round(pMin*fN/Fs/60);
pMax=round(pMax*fN/Fs/60);
p1I=zeros(1,wN);
p2I=zeros(1,wN);
ptt1=zeros(1,wN);
ptt2=zeros(1,wN);

for ii=1:wN
start=wD*(ii−1)+1;
stop=start+wL−1;

% find frequency peak in ppg1, as in compute pulse.m
ppg1SegmentWindowed=stdnrm(stdnrm(ppg1(start:stop)).*w');
ppg1SegmentPSD=abs(fft(ppg1SegmentWindowed,fN)).ˆ2;
ppg1SegmentPSD([1:pMin pMax:end])=0;
[¬,p1I(ii)]=max(ppg1SegmentPSD);
if ii>1

while p1I(ii)>1.1*p1I(ii−1)||p1I(ii)<.9*p1I(ii−1)
ppg1SegmentPSD(p1I(ii))=0;
[¬,p1I(ii)]=max(ppg1SegmentPSD);

end
end

% find frequency peak in ppg2, as in compute pulse.m
ppg2SegmentWindowed=stdnrm(stdnrm(ppg2(start:stop)).*w');
ppg2SegmentPSD=abs(fft(ppg2SegmentWindowed,fN)).ˆ2;
ppg2SegmentPSD([1:pMin pMax:end])=0;
[¬,p2I(ii)]=max(ppg2SegmentPSD);
if ii>1

while p2I(ii)>1.1*p2I(ii−1)||p2I(ii)<.9*p2I(ii−1)
ppg2SegmentPSD(p2I(ii))=0;
[¬,p2I(ii)]=max(ppg2SegmentPSD);

end
end

% take the angle of the fft's
ppg1SegmentAngle=angle(fft(ppg1SegmentWindowed,fN));
ppg2SegmentAngle=angle(fft(ppg2SegmentWindowed,fN));

% find difference in angle at peak points. two versions of this
% difference are found, assuming the peak point are not exactly the
% same for the two signals.
ptt1(ii)=(ppg1SegmentAngle(p1I(ii))−ppg2SegmentAngle(p1I(ii)))/Fs;
ptt2(ii)=(ppg1SegmentAngle(p2I(ii))−ppg2SegmentAngle(p2I(ii)))/Fs;

end

% "averaging" ptt1 and ptt2. where "discontinuities" are found in one but
% not in the other, use other. where "discontinuities" are found in both,
% use previous value.
c=.5*(ptt1(1)+ptt2(1));
d1=diff(ptt1);
d2=diff(ptt2);
d3=zeros(size(d2));
s1=2*std(d1);
s2=2*std(d2);
for ii=1:length(d1)

if all([abs(d1(ii))>s1 abs(d2(ii))<s2])
d3(ii)=d2(ii);

elseif all([abs(d2(ii))>s2 abs(d1(ii))<s1])
d3(ii)=d1(ii);

elseif all([abs(d2(ii))>s2 abs(d1(ii))>s1])
d3(ii)=0;

else
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d3(ii)=.5*(d1(ii)+d2(ii));
end

end
ptt=[c cumsum(d3)+c];

time=.01*round(100*linspace(wL/Fs,wL/Fs+Fs*length(ptt)/wD,length(ptt)));

A.5 Short-Time Heart Rate Estimation (ii)

%%
clear all,close all

% initialize camera
fps=10; %frames per second
snapshot=2; %number of seconds to record
numFrames=snapshot*fps;

%construct webcam object 3*8bit RGB @ res 640*360
obj=videoinput('winvideo',1,'RGB24 640x360');
triggerconfig(obj, 'manual');
obj.FramesPerTrigger=numFrames;
src=getselectedsource(obj);

%set properties of exposure etc.
%all auto−behavior set to off to avoid unwanted fluctuations,
%meaning settings must be adjusted to environment
src.BacklightCompensation = 'off';
src.ExposureMode = 'manual';
src.WhiteBalanceMode = 'manual';
src.Brightness = 90;
src.Exposure = −9;
% src.WhiteBalance = 6800;
src.WhiteBalance = 7200;
% src.WhiteBalance = 7500;
src.FocusMode = 'manual';
src.Focus = 18;
src.Sharpness = 20;
src.Saturation = 100;
src.FrameRate = num2str(fps);
%preview(obj)

%%
%get 1−frame snapshot for face recognition
start(obj)
% tic,pause(2),toc,disp(' (pause 2 sec)')%time to stabilize

trigger(obj)%sets startpoint of following recording
frame=getsnapshot(obj);

stop(obj)

%face recognition works faster with a reduction in resolution
reduce=2;
img=double(rgb2gray(imresize(frame,1/reduce)));
Face=FaceDetect('haarcascade frontalface alt2.xml',img);
Face=reduce*Face;
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%set RegionOfInterest to expanded face−rectangle
%make sure dimensions are integer multiples of dx
dx=16; % x−dim of square
dy=dx; % y−dim of square
reducewidth=5/5;
increaseheight=6/4;
xres=dx*ceil(Face(3)*reducewidth/dx);
yres=dy*ceil(Face(4)*increaseheight/dy);
Face(1)=Face(1)+.5*(Face(3)−xres);
Face(2)=Face(2)+.5*(Face(4)−yres);
Face(3)=xres;
Face(4)=yres;
Face=round(Face);
obj.ROIPosition = Face;
frame=frame(Face(2):Face(2)+Face(4),Face(1):Face(1)+Face(3),:);
numBlocks=xres*yres/(dx*dy);

% create vector of square coordinates on form
% [x−pos top left, y−pos top left, dx, dy]
b=zeros(4,numBlocks);
b(1,:)=mod(1:dx:dx*numBlocks,xres);
b(2,:)=sort(mod(1:dy:dy*numBlocks,yres));
b(3,:)=dx*ones(1,numBlocks);
b(4,:)=dy*ones(1,numBlocks);

%%
%record numFrames number of frames
start(obj)

tic,pause(2),toc,disp(' (pause 2 sec)')%time to stabilize
trigger(obj)%sets startpoint of following recording
tic,frames=getdata(obj,numFrames);toc,disp(' (data acq)')

stop(obj)
g=squeeze(frames(:,:,2,:));%2=green

%%
%compute average for each block and frame
G=zeros(numBlocks,numFrames);
for ii=1:numFrames

for jj=1:numBlocks
rect=g(b(2,jj):b(2,jj)+dy−1,b(1,jj):b(1,jj)+dx−1,ii);
G(jj,ii)=sum(sum(rect))/(dx*dy);

end
end
for ii=1:numBlocks, G(ii,:)=zmean(G(ii,:)); end
%%
close all

%compute PSDs
N=256;%2ˆnextpow2(numFrames);
f=60*linspace(0,fps,N);
p=abs(fft(G',N)).ˆ2/N;
f=f(1:end/2);p=p(1:end/2,:);

%find peaks in interval (i45,i200)
i45=find(f≥45,1,'first');
i200=find(f≥150,1,'first');
for ii=1:numBlocks,[Y(ii) I(ii)]=max(p(i45:i200,ii));end
Ibpm=f(i45+I−1);
figure,hist(Ibpm(Ibpm6=0),500)

%removing histogram peaks at endpoints is found to improve result
I2=Ibpm(Ibpm6=min(Ibpm));
I2=I2(I26=min(I2));
I2=I2(I26=max(I2));
I2=I2(I26=max(I2));

%FOUND PULSE
pulse=mode(I2);
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disp(round(pulse))

%display blocks where pulse was detected correctly
Icorrectpulse=find(round(Ibpm)==round(pulse));
Iwrongpulse=find(round(Ibpm)6=round(pulse));
Y(Iwrongpulse)=0;
Ibest=find(Y>2*std(Y));
Igood=find(Y>1*std(Y));
Iok=find(Y>0*std(Y));

figure, hold off
image(frame),axis equal,hold on

for ii=Iok
rectangle('position',b(:,ii),'facecolor','g')
end

for ii=Igood
rectangle('position',b(:,ii),'facecolor','y')
end

for ii=Ibest
rectangle('position',b(:,ii),'facecolor','r')
end



62 APPENDIX A. MATLAB SCRIPT SAMPLES



Appendix B

Other

B.1 Face Maps, other Subjects

63



64 APPENDIX B. OTHER

B.2 Pulse Oximeter Specifications

Contec CMS50E, Contec Medical Systems Co., Ltd. The pulse oximeter records
a waveform with samplerate 60 Hz to a CSV file when connected to a computer.
The CSV format was then converted to Matlab format.

Main Parameters (from user manual)

Measurement of SpO2 Measurement range: 0-100%, accuracy: 70-100%, ±
2%; 0-69%, unspecified.

Measurement of pulse rate Measurement range: 30-250 bpm, accuracy: ±2
bpm or ± 2% (select larger).

Resolution SpO2: 1%, pulse rate: 1 bpm.

Resistance to surrounding light The deviation between the value measured
in the condition of man-made light or indoor natural light and that of dark room
is less than ±1%.

Optical sensor Red light (wavelength is 660 nm, 6.65 mW). Infrared (wave-
length is 880 nm, 6.75 mW).

B.3 Web Camera Specifications

Microsoft LifeCam Studio

Imaging features (from technical data sheet)

Sensor CMOS sensor technology

Resolution Sensor resolution: 1920×1080, video resolution: up to 1920×1080.

Field of view 75◦ diagonal field of view

Frame rates Supported frame rates are 7.5, 10, 15, 20 and at most 30 frames
per second, depending on resolution.

Other Digital only pan, tilt and zoom. Auto focus from 10 cm. Automatic
image adjustment with manual override.
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