
Low-Cost MemBIST for
Micro-Controllers

Hossein Atashi

Embedded Computing Systems

Supervisor: Einar Johan Aas, IET
Co-supervisor: Kai Kristian Amundsen, Atmel Corporation

Department of Electronics and Telecommunications

Submission date: June 2012

Norwegian University of Science and Technology

Low-Cost MemBIST for Micro-Controllers

by
Hossein Atashi

June, 2012

Abstract

The challenge of testing SRAM memories consists in providing realistic fault
models and test solutions with minimal application time. While classical mem-
ory tests cover the static faults, they are not sufficient to cover dynamic faults
which have emerged in VDSM technologies. The purpose of this thesis is im-
plementation of a memory BIST that targets static faults as well as dynamic
faults while maintaining an acceptable test time and area overhead.

At first, and as a semester project [1], the functional fault models (FFMs) as-
sociated with state-of-the-art SRAM technologies have been studied and state-
of-the-art memory testing algorithms, targeting these FFMs have been pre-
sented.

Next, and as part of this master’s thesis, a combination of March LR and
March AB memory testing algorithms is selected and modified to support test-
ing word-oriented memories. Furthermore, this algorithm is extended to provide
support for detecting Data-Retention Faults. This algorithm is then imple-
mented using Verilog HDL in Register-Transfer Level of abstraction.

The implemented MemBIST is then evaluated with respect to area, perfor-
mance and fault coverage. A bit-oriented March LR-based MemBIST, currently
in use on Atmel® AVR® micro-controllers, is used as a reference for bench-
marking purposes. All target fault primitives (FPs) have been implemented
using behavioral Verilog HDL and simulated with both MemBISTs.

Our evaluations show that our word-oriented MemBIST can provide a 500%
performance advantage (due to the word-oriented execution) for 32-bit memo-
ries and at the same time has a better fault coverage compared to the reference
MemBIST. The implemented algorithm can detect all static and realistic dy-
namic inter-word memory faults as well as most static and realistic dynamic
intra-word faults. The implemented MemBIST also maintains a very small area
overhead due to sharing the required registers with existing system components.

Keywords: MemBIST, Built-In Self Test, Memory Testing, March Test,
Fault Model, Fault Coverage, Fault Detection

Problem Description

Micro-controllers are produced in very high volumes, and are sensitive to high
test cost (long test time) as well has high Design-For-Test cost (increased silicon
area). This conflicting requirement poses a particular challenge for production
testing of RAMs. Each micro-controller typically contains multiple RAM blocks,
which require a memory built-in self test (MemBIST) module to reduce test cost.
This can only be justified if the added cost of the MemBIST module itself is
very low. At the same time, test coverage should be as high as possible, both for
traditional stuck-at faults, as well as memory-specific faults such as retention
faults.

The main assignment in this thesis was to:

1. Describe different fault mechanisms in embedded RAMs.

2. Find a BIST algorithm that covers these mechanisms for RAMs of arbi-
trary bit size.

3. Find a way to support retention testing of RAMs using the above algo-
rithm.

4. Suggest how this algorithm might be implemented in an actual 32-bit
micro-controller.

Note: This research was carried out in two separate steps. At first, and as
part of a semester project, a comprehensive literature review was performed, the
results of which are presented in chapters 2 and 3. Afterwards, and as part of a
master’s thesis, the actual implementation and evaluation of the MemBIST was
done, the results of which are presented in chapters 4 and 5. For the sake of
completeness and readability, the results of both steps are joined in this report.
The results of the semester project were also separately published as [1].

1

Preface

The work presented in this thesis contains the results of my research as a student
in European Master in Embedded Computing Systems (EMECS) program at
the Department of Electronics and Telecommunications at Norwegian University
of Science and Technology (NTNU), and at Atmel Norway AS in Trondheim,
Norway.

This thesis would not have been possible without the contribution of nu-
merous people in several ways. I would like to take this opportunity to thank
them.

First, I would like to thank Prof. Einar Johan Aas for giving me the oppor-
tunity to work on this research. His guidance in every step of the project, from
the start to writing the thesis report was of great help to me without which,
this research would not have been possible.

Furthermore, I would like to thank the involved people at Atmel Norway
AS at Trondheim, Norway, especially Kai Kristian Amundsen, and Tor Erik
Leistad who also helped me in every step of the project, from problem definition
to writing the report, with their valuable feedbacks, technical guidance, and
providing the required equipment and tools for implementation and evaluation
of the project.

Last, but not least, I want to thank my family and friends who always stood
by me and provided me with the moral support. In particular, I want to thank
my father who never stopped believing in me, and whom I can never thank
enough for his support.

Hossein Atashi Trondheim, June, 2012
Norway

2

Contents

1 Introduction 9

2 Literature Review 11
2.1 Memory Fault Models . 11

2.1.1 Concept of Fault Primitive 11
2.1.2 Classification of Fault Primitives 13

2.1.2.1 Simple versus Linked Faults 14
2.1.2.2 Static versus Dynamic Faults 15
2.1.2.3 Single-Port versus Multi-Port Faults 15
2.1.2.4 Single-Cell versus Multi-Cell Faults 16

2.1.3 Single-Port Static Faults 16
2.1.3.1 Single-Cell Fault Primitives 16
2.1.3.2 Single-Cell Functional Fault Models 17
2.1.3.3 Two-Cell Fault Primitives 20
2.1.3.4 Two-Cell Functional Fault Models 20

2.1.4 Single-Port Dynamic Faults 24
2.1.4.1 Single-Cell Fault Primitives 25
2.1.4.2 Single-Cell Functional Fault Models 25
2.1.4.3 Two-Cell Fault Primitives 27
2.1.4.4 Two-Cell Functional Fault Models 27

2.2 Memory Test Algorithms . 28
2.2.1 March Test Algorithms 29
2.2.2 March LR: A Test for “Realistic” Linked Faults 29
2.2.3 March SS: A Test for All Static Simple RAM Faults . . . 31
2.2.4 March 13N and March 9N 32
2.2.5 March AB: A State-of-the-Art March Test for Realistic

Static Linked Faults and Dynamic Faults 33

3

CONTENTS 4

2.2.5.1 Dynamic Faults 34
2.2.5.2 Static Linked Faults 34
2.2.5.3 March AB Test Algorithm 36

2.2.6 March RAW: Testing Static and Dynamic Faults in Ran-
dom Access Memories . 36

2.2.7 Effect of Address Ordering 37
2.2.8 Converting March Tests for Bit-Oriented Memories into

Tests for Word-Oriented Memories 37
2.2.8.1 Detection of Single-Cell and Inter-Word Faults . 38
2.2.8.2 Detection of Intra-Word Faults 39

2.3 Conclusion . 47

3 Comparison of MemBIST Algorithms 49
3.1 Effectiveness of Memory Test Algorithms and Analysis of Fault

Distribution in SRAMs: A Case Study Based on Industrial Test
Results . 50

3.2 Testing Static and Dynamic Faults in Random Access Memories 51
3.3 March AB, A State-of-the-Art March Test for Realistic Static

Linked Faults and Dynamic Faults in SRAMs 52
3.4 Conclusion . 53

4 Implementation of the MemBIST 55
4.1 Proposed Architecture . 55
4.2 Proposed MemBIST Algorithm 58

4.2.1 Selected BOM Test . 58
4.2.2 Extension to WOM Test 60
4.2.3 Theoretical Performance Analysis 61
4.2.4 Extension to Retention Testing 62

4.3 Implementation of the MemBIST Unit 63
4.3.1 Implementation of March AB+LR 63
4.3.2 Implementation of Data Retention Testing 64

4.4 Conclusion . 65

5 Evaluation and Experimental Results 66
5.1 Performance Evaluation . 67

5.1.1 Discussion . 68
5.2 Area Evaluation . 69

5.2.1 Discussion . 69
5.3 Fault Coverage Evaluation . 70

CONTENTS 5

5.3.1 Inter-word Faults . 71
5.3.1.1 Discussion . 71

5.3.2 Intra-word Faults . 73
5.3.2.1 Discussion . 73

5.3.3 Interpretation of the Results and Translation to Physical
Defect Coverage . 79

5.4 Summary . 80

6 Summary and Conclusions 81

Bibliography 82

List of Figures

2.1 Classification of Fault Primitives 13
2.2 General Form of Linked Coupling Faults 14

3.1 Results of the Comparison Performed in [2] 50

4.1 A Block Diagram of Relevant Interconnection Structures in a
Typical Atmel® AVR32® Micro-Controller 56

6

List of Tables

2.1 The Complete Set of 1PF1 Fault Primitives 18
2.2 List of 1PF1 FFMs; x ∈ {0, 1} . 18
2.3 The Complete Set of 1PF2 FPs; x ∈ {0, 1} 21
2.4 List of 1PF2 FFMs; x, y ∈ {0, 1} 22
2.5 The Complete Set of Single-Cell 2-Operation Dynamic Fault Prim-

itives . 26
2.6 List of Single-Cell Two-Operation Dynamic Functional Fault Mod-

els . 26
2.7 List of Two-Cell Two-Operation Dynamic Functional Fault Models 27
2.8 Realistic Static Linked Faults Targeted by March AB 35
2.9 DBs for uCFsts (B=8) . 40
2.10 DBS S8 for uCFids (B=8) . 41
2.11 DBOS for CFdsts (B=4) . 42
2.12 Set of 8-bit DBs for rCFsts . 45
2.13 Set of 8-Bit DBs for crCFsts . 46
2.14 8-Bit DBS for crCFids . 46
2.15 DBOS for crCFdsts, B=4 . 47
2.16 Number of DBs and TLs for Different CF Types 48

3.1 Result of the Fault Coverage Estimation Performed in [3] 51
3.2 Comparison of March Tests with Respect to Dynamic Faults as

Presented in [4] . 52
3.3 Comparison of March Tests with Respect to Linked Faults as

Presented in [4] . 53

5.1 Run-time of MemBIST algorithms on an 8×32bit reference memory 68
5.2 Area Report for Synthesis of Memory Service Unit 69

7

LIST OF TABLES 8

5.3 Fault Simulation Results for Inter-Word Static Single-Cell Faults 71
5.4 Fault Simulation Results for Intra-Word Static Coupling Faults . 72
5.5 Fault Simulation Results for Inter-Word Dynamic Single-Cell Faults 73
5.6 Fault Simulation Results for Inter-Word Dynamic Coupling Faults 74
5.7 Fault Coverage for Inter-Word Faults 75
5.8 Fault Simulation Results for Intra-Word Static Faults 76
5.9 Fault Simulation Results for Intra-Word Dynamic Faults 77
5.10 Fault Coverage for Targeted Intra-Word Faults 78
5.11 Fault Coverage for Untargeted Intra-Word Faults 78

Chapter 1

Introduction

Memories are designed to exploit the technology limits to reach the highest
storage density and high speed access. The main consequence is that memory
devices are statistically more likely to be affected by manufacturing defects. The
challenge of testing SRAM memories consists in providing realistic fault models
and test solutions with minimal application time. Due to the complexity of
the memory device, fault modeling is not trivial. Classical memory test solu-
tions cover the so-called static faults, such as stuck-at, transition, and coupling
faults, but are not sufficient to cover faults that have emerged in latest VDSM1

technologies, referred to as dynamic faults [5].
The goal of this thesis is to implement an efficient MemBIST2 for produc-

tion testing of embedded SRAMs on a micro-controller. In particular we are
interested in selecting a suitable test algorithm for the SRAMs embedded on
Atmel® AVR® family micro-controllers.

As the users are generally not willing to pay the price for testing costs while
expecting the final product to be defect-free, the desired algorithm should satisfy
the following criteria:

Performance: The ATE3 devices used for testing semiconductor devices are
typically very expensive. Therefore the required time for testing a device
has a direct impact on the production costs. A good MemBIST should
be able to test the device in a reasonable amount of time, typically in the

1Very Deep Sub-Micron
2Memory Built-In Self Test
3Automatic Test Equipment

9

CHAPTER 1. INTRODUCTION 10

order of seconds.

Area: Since MemBIST is a built-in unit, it will be implemented in every single
device. Therefore, the silicon area of each device will be increased by
the MemBIST which will result in increased production costs. A good
MemBIST algorithm should impose a relatively low area overhead.

Fault coverage: The main objective in implementation of a MemBIST is to
detect as many faulty units as possible before shipping to the field. This
requires a high fault coverage to be provided by the algorithm.

In the rest of this research, an efficient MemBIST algorithm is chosen, imple-
mented and evaluated with respect to the above criteria.

This report is organized as follows: at first, and in chapter 2, a comprehensive
literature review will be performed, and state-of-the-art memory fault models
and memory test algorithms will be discussed. Next, in chapter 3, we will
compare the studied memory test algorithms based on the fault coverage results
published in the literature. In chapter 4, an appropriate algorithm will be
selected and implemented for the target devices. In chapter 5, the designed
MemBIST will be evaluated with respect to the above criteria and compared to
a reference MemBIST currently in use in Atmel AVR micro-controllers. Finally,
in chapter 6, a summary of the research will be given and conclusions will be
made.

Chapter 2

Literature Review

In this chapter an overview of previous research on memory test will be given.
In section 2.1, different memory fault models will be studied and in section

2.2, existing memory test algorithms will be reviewed.

2.1 Memory Fault Models
In this section, different memory fault models will be introduced and catego-
rized. First the concept of fault primitive will be defined based on which the
memory faults are categorized. Afterwards different faults will be classified
based on these fault primitives. Most of the fault models and classifications in
this section are based on the study done in [6].

In general, the functional model of a memory depends on its specific imple-
mentation. However for testing purposes, a so-called reduced functional memory
model is used that only consists of three subsystems: the address decoder, the
memory cell array and the read/write logic. Since the vast majority of main-
stream memory devices contain these three subsystems, the reduced functional
fault model is, to a large extent, independent of specific memory implementa-
tions [6].

2.1.1 Concept of Fault Primitive
Intuitively, a functional fault model is defined as a description of the failure of
the memory to fulfill its functional specifications. This definition of a fault is

11

CHAPTER 2. LITERATURE REVIEW 12

not precise since it does not indicate which functional specifications should be
taken into account.

By performing a number of memory operations and observing the behavior
of any component functionally modeled in the memory, functional faults can be
defined as the deviation of the observed behavior from the specified one under
the performed operation(s). Therefore the two basic ingredients to any fault
model are:

1. A list of performed memory operations.

2. A list of corresponding deviations in the observed behavior from the ex-
pected one.

Any list of performed operations on the memory is called an operation sequence.
An operation sequence that results in a difference between the observed and
the expected memory behavior is called a sensitizing operation sequence (SOS).
The observed memory behavior that deviates from the expected one is called a
faulty behavior [6].

In order to specify a certain fault, a SOS together with the corresponding
faulty behavior should be specified. This combination for a single fault behavior
is called a fault primitive (FP) [7], and is denoted as < S/F/R >. S describes
the SOS that sensitizes the fault. F describes the value or the behavior of the
faulty cell (e.g., the cell flips from 0 to 1), while R describes the logic output
level of a read operation (e.g., 0) [6].

The concept of a FP allows for establishing a complete framework of all
memory faults, since for all allowed operational sequences in the memory, one
can derive all possible faulty behaviors. In addition, the concept of a FP makes
it possible to give a precise definition of functional fault model (FFM) as it
has to be understood for memory devices [7, 6]: A functional fault model is a
non-empty set of fault primitives.

Since a fault model is defined as a set of FPs, it is expected that FFMs would
inherit the properties of FPs. For example, if a FFM is defined as a collection
of single cell FPs, then the FFM is a single cell fault. If a FFM is defined as
a collection of 2-operation (i.e., the SOS consists of two sequential operations)
FPs, then the FFM is also called a 2-operation fault. If a FFM consists of FPs
classified into inconsistent classes (e.g., single cell and two-cell FPs) the FFM
is described by the classes of its consistent FPs. Therefore a FFM that consists
of single cell and two-cell FPs, for example, is described as a single and two-cell
FFM [6].

CHAPTER 2. LITERATURE REVIEW 13

Figure 2.1: Classification of Fault Primitives

2.1.2 Classification of Fault Primitives
In this section, a classification of different fault primitives is given. This classi-
fication is based on the classification done by Hamdioui in [6].

Figure 2.1 shows the different classifications of the FPs. They can be classi-
fied based on:

1. The way the FPs manifest themselves, into simple and linked faults

2. The number of sequential operations required in the SOS, into static and
dynamic faults

3. The number of simultaneous operations required in the SOS, into single-
port and multi-port faults

4. The number of different cells the FPs involve, into single-cell andmulti-cell
faults

Note that the four ways of classifying fault primitives are independent since their
definition is based on independent factors of the SOS. Therefore a dynamic fault

CHAPTER 2. LITERATURE REVIEW 14

Figure 2.2: General Form of Linked Coupling Faults

primitive can be single-port or multi-port, single-cell or multi-cell. Similarly a
linked fault can be static or dynamic, and each of them can be single-port or
multi-port, single-cell or multi-cell [6].

In the rest of this section, this classification is described in more detail.

2.1.2.1 Simple versus Linked Faults

Depending on the way FPs manifest themselves, they can be categorized into
simple faults and linked faults.

Simple faults are those faults which cannot influence the behavior of each
other. In other words, the behavior of a simple fault does not influence
the behavior of another one; therefore masking cannot occur.

Linked faults are those faults that do influence the behavior of each other.
This means that the behavior of a certain fault can change the behavior
of another one such that masking can occur [8, 9]. Linked faults consist
of two or more simple faults. As an example, assume that performing an
operation to a cell c1 will cause a fault in a cell cv (i.e., the cell flips). Also
assume that application of an operation to a cell c2 will cause a fault in
the same cell cv, but with a fault effect opposite to the fault caused by c1.
Now if an operation is applied to cell c1, followed by an operation on c2,
the fault effect of c1 is masked by the fault effect of c2. Therefore no fault
effect is visible in cv [6].

An example for linked coupling faults is shown in figure 2.2. Cell i is coupled to
a cells j all with addresses lower than i and b cells k all with addresses higher
than i. Masking can for example occur in case of the following two coupling
faults: <↑; ↑>j1,i and <↑; ↓>j2,i; because the first CF causes the cell to be set
which is thereafter reset by the second CF [10].

CHAPTER 2. LITERATURE REVIEW 15

2.1.2.2 Static versus Dynamic Faults

Fault primitives can be classified based on the number of operations required
to sensitize the corresponding faults. This criterion will classify the FPs into
static and dynamic faults [6].

Static faults are those FPs which can be sensitized by performing at most one
operation. For example if the state of a cell is stuck at one, no operation
is needed to sensitize the fault. As another example, if a read operation
on a cell causes that cell to flip, one operation will be required to sensitize
this fault. Therefore, these two faults are classified as static faults.

Dynamic faults are those FPs that can only be sensitized by at least two
sequential operations. Depending on the number of sequential operations
required to sensitize these faults, these FPs can be further categorized to
2-operation dynamic FPs, 3-operation dynamic FPs, etc.

2.1.2.3 Single-Port versus Multi-Port Faults

Fault primitives can be classified based on the number of ports required simul-
taneously to apply a SOS. This criterion will classify the FPs into single-port
and multi-port faults [6].

Single-port faults are those faults that require at most one port to be sensi-
tized. For example if a single read operation on a memory cell causes that
cell to flip, this fault will be classified as a single-port fault. Note that
single-port faults can be sensitized in single-port memories as well as in
multi-port memories.

Multi-port faults are those faults that can only be sensitized by multiple si-
multaneous operations through different ports. For example, if two simul-
taneous read operations cause a memory cell to flip, this will be classified
as a multi-port fault. Based on the number of ports required to sensitize a
fault, this class can be further categorized into two-port faults, three-port
faults, etc.

Since the primary objective of this project is testing single-port memories, we
have focused on single-port faults in the rest of this report.

CHAPTER 2. LITERATURE REVIEW 16

2.1.2.4 Single-Cell versus Multi-Cell Faults

Based on the number of cells accessed during a SOS, FPs can be classified to
single-cell and multi-cell faults. Multi-cells faults are also known as coupling
faults [6].

Single-cell faults are the FPs which only involve a single cell. In these FPs,
the cell used for sensitizing the faults is the same as the cell in which the
fault appears (i.e., the victim cell). For example, if reading a cell c1 causes
the same cell c1 to flip, the corresponding FP will be a single-cell fault
primitive.

Coupling faults are the FPs which involve more than one cell. These FPs have
the property that the cell(s) which sensitizes (or contributes for sensitizing)
the fault is different from the cell where the fault appears. For example,
if reading a cell c1 causes a different cell c2 to flip, the corresponding FP
will be a coupling fault. Based on the number of cells involved in a FP,
these faults can be further classified into two-coupling fault primitives,
3-coupling fault primitives, etc.

2.1.3 Single-Port Static Faults
Since the main focus of this project is on single-port memories, the faults asso-
ciated to this type of memories (i.e., single-port faults), are described in more
detail. The descriptions in this section are mostly based on the overview made
in [6, 5].

Single-port faults can occur in both single-port and multi-port memories.
These faults can in turn be simple or linked, static or dynamic and single-cell
or multi-cell. In the literature, among multi-cell faults, mostly 2-cell coupling
faults have been considered. Since these faults are an important class in SRAM
faults [6], we have also focused only on this type of coupling faults in this project.

2.1.3.1 Single-Cell Fault Primitives

A single port, single cell fault primitive (1PF1) involving a single cell cvis de-
noted by < S/F/R > (or < S/F/R >v) . In this type of fault, the cell used to
sensitize the fault is the same as the cell in which the fault appears.

In this notation, S describes the sensitizing value or operation; S ∈ {0, 1, 0w0,
1w1, 0w1, 1w0, r0, r1} whereby 0 (1) denotes a zero (one) value, 0w0 (1w1) de-
notes a write 0 (1) operation to a cell which contains a 0 (1) , 0w1 (1w0) denotes

CHAPTER 2. LITERATURE REVIEW 17

an up (down) transition write operation, and r0 (r1) denotes a read 0 (1) opera-
tion. If the fault effect of S appears after time T , then the sensitizing operation
is given as ST [6].

F describes the value of the faulty cell (victim cell); F ∈ {0, 1, ↑, ↓, ?},
whereby ↑(↓) denotes an up (down) transition due to a certain sensitizing oper-
ation, and ? denotes an undefined state of the cell (e.g., the voltage of the true
and the false node of the cell are almost the same).

R describes the logical value which appears at the output of the SRAM if the
sensitizing operation applied to the v-cell is a read operation: R ∈ {0, 1, ?,−},
whereby ? denotes a random value. A random logic value can occur if the
voltage difference between the bit lines is very small. A ’-’ in R means that the
output data is not applicable; for example if S = w0, then no data will appear
at the memory output, and for that reason R is replaced by a ’-’. It is worth
noting here that the word undefined is used for the state of the cell (F =?) and
random is used for the read data value (R =?).

Using these possible values for S, F , and R, it is possible to list all 1PF1s.
This list is illustrated in table 2.3. Other possible combinations of S, F , and R
do not represent a faulty behavior. For example, < 1w0/0/− > demonstrates
a correct w0 operation in the memory. The ’FFM’ column describes the func-
tional fault model corresponding to each fault primitives. These FFMs will be
discussed in detail in section 2.1.4.2.

One can see that in total there are 28 single-cells FPs, 8 of which are sensi-
tized by write operations and 16 by read operations.

2.1.3.2 Single-Cell Functional Fault Models

The list of all possible single-cell FPs can be compiled to a set of FFMs. Assign-
ing each FP to a FFM is rather arbitrary and is mainly determined by historical
arguments. Again, this classification is based on the classification done in [6].
The list of FFMs and their corresponding FPs is shown in table 2.2.

Each of these FFMs is described in the following.

1. State Fault (SF): A cell has a state fault if its logic value flips before it
is accessed, even if no operation is performed on it1. This fault does not
need any operation for sensitization and therefore only depends on the
initial stored value in the cell.

1It should be noted that here the cell should flip in short time period after initialization
and before accessing the cell

CHAPTER 2. LITERATURE REVIEW 18

Table 2.1: The Complete Set of 1PF1 Fault Primitives
S F R < S/F/R > FFM # S F R < S/F/R > FFM

1 0 1 − < 0/1/− > SF 2 0 ? − < 0/?/− > USF

3 1 0 − < 1/0/− > SF 4 1 ? − < 1/?/− > USF

5 0w0 ↑ − < 0w0/ ↑ /− > WDF 6 0w0 ? − < 0w0/?/− > UWF

7 1w1 ↓ − < 1w1/ ↓ /− > WDF 8 1w1 ? − < 1w1/?/− > UWF

9 0w1 0 − < 0w1/0/− > TF 10 0w1 ? − < 0w1/?/− > UWF

11 1w0 1 − < 1w0/1/− > TF 12 1w0 ? − < 1w0/?/− > UWF

13 r0 0 1 < r0/0/1 > IRF 14 r0 0 ? < r0/0/? > RRF

15 r0 ↑ 0 < r0/ ↑ /0 > DRDF 16 r0 ↑ 1 < r0/ ↑ /1 > RDF

17 r0 ↑ ? < r0/ ↑ /? > RRDF 18 r0 ? 0 < r0/?/0 > URF

19 r0 ? 1 < r0/?/1 > URF 20 r0 ? ? < r0/?/? > URF

21 r1 1 0 < r1/1/0 > IRF 22 r1 1 ? < r1/1/? > RRF

23 r1 ↓ 0 < r1/ ↓ /0 > RDF 24 r1 ↓ 1 < r1/ ↓ /1 > DRDF

25 r1 ↓ ? < r1/ ↓ /? > RRDF 26 r1 ? 0 < r1/?/0 > URF

27 r1 ? 1 < r1/?/1 > URF 28 r1 ? ? < r1/?/? > URF

Table 2.2: List of 1PF1 FFMs; x ∈ {0, 1}
FFM Fault Primitives

1 SF < 1/0/− >, < 0/1/− >

2 TF < 0w1/0/− >, < 1w0/1/− >

3 WDF < 0w0/ ↑ /− >, < 1w1/ ↓ /− >

4 RDF < r0/ ↑ /1 >, < r1/ ↓ /0 >

5 DRDF < r0/ ↑ /0 >, < r1/ ↓ /1 >

6 RRDF < r0/ ↑ /? >, < r1/ ↓ /? >

7 IRF < r0/0/1 >, < r1/1/0 >

8 RRF < r0/0/? >, < r1/1/? >

9 USF < 1/?/− >, < 0/?/− >

10 UWF < 0w0/?/− >, < 0w1/?/− >, < 1w0/?/− >, < 1w1/?/− >

11 URF < rx/?/0 >, < rx/?/1 >, < rx/?/? >

12 SAF < ∀/0/− >,< ∀/1/− >

13 NAF {< 0w1/0/− >, < 1w0/1/− >, < rx/x/? >}

14 DRF < 1T / ↓ /− >, < 0T / ↑ /− >, < xT /?/− >

CHAPTER 2. LITERATURE REVIEW 19

2. Transition Fault (TF): A cell has a transition fault if it fails to undergo
a transition in a write operation. This FFM depends both on the initial
stored value and the type of the operation.

3. Write Destructive Fault (WDF): A cell suffers from a write destructive
fault if a non-transition write operation causes a transition in the cell.

4. Read Destructive Fault (RDF): A cell is said to have a read destructive
fault if a read operation performed on the cell changes the data in the cell,
and returns an incorrect value on the output.

5. Deceptive Read Destructive Fault (DRDF): A cell suffers from a deceptive
read destructive fault if a read operation performed on the cell changes
the logic value of the cell, while returning the correct value as the output.

6. Random Read Destructive Fault (RRDF): A cell has a random read de-
structive fault if a read operation performed on the cell, changes the logic
value of the cell and returns a random value.

7. Incorrect Read Fault (IRF): A cell is said to have an incorrect read fault
if a read operation performed on the cell returns the incorrect logic value
while keeping the correct value in the cell.

8. Random Read Fault (RRF): A cell suffers from a random read fault if a
read operation returns a random value while keeping the correct value in
the cell.

9. Undefined State Fault (USF): A cell has an undefined state fault if the
logic value of the cell flips to an undefined state before the cell is accessed,
even if no operation is performed on it2. As in SF, this fault does not need
any operation for sensitization and therefore only depends on the initial
stored value in the cell.

10. Undefined Write Fault (UWF): A cell is said to have an undefined write
fault if the cell is brought in an undefined state by a write operation.

11. Undefined Read Fault (URF): A cell is said to have an undefined read
fault if the cell is brought in an undefined state by a read operation. The
returned data value during this operation can be correct, incorrect, or
random.

2It should be noted that here the cell should flip in short time period after initialization
and before accessing the cell

CHAPTER 2. LITERATURE REVIEW 20

12. Stuck-At Fault (SAF): A cell is said to have a stuck-at fault if it remains
always stuck at a given value for all performed operations.

13. No Access Fault (NAF): A cell suffers from a no access fault if the cell is
not accessible. In this case the state of the cell cannot be changed by write
operations, and any read operation applied to the cell returns a random
data value. The NAF consists of four FPs which occur simultaneously :
{< 0w1/0/− >, < 1w0/1/− >, < r0/0/? >, < r1/1/? >}. Note that
NAF is a more general form of the Stuck-Open Fault which is defined as
an inaccessible cell due to an open word line.

14. Data Retention Fault (DRF): A cell is said to have a data retention fault if
the state of the cell changes after a certain time T , and without accessing
the cell. T here should be longer than the duration of the pre-charge cycle
in SRAMs, because if the cell flips within the pre-charge cycle then the
sensitized fault would be a state fault.

Note that the first 11 FFMs defined above, contain 28 possible FPs of table 2.2.
The SAF and NAF are FFMs which require more than one FP to be present
due to the same single defect; therefore they are called composite FFMs.

2.1.3.3 Two-Cell Fault Primitives

A two-cell FP is denoted by < Sa;Sv/F/R > (or < Sa;Sv/F/R >a,v). In this
type of fault, the sensitizing cell is different from the cell in which the fault
occurs.

In this notation, Sa describes the sensitizing operation or state of the aggres-
sor cell (a-cell); while Sv describes the sensitizing operation or state of the victim
cell (v-cell). Here, the set Si is defined as: Si ∈ {0, 1, 0w0, 1w1, 0w1, 1w0, r0, r1}
(i ∈ {a, v}), F ∈ {0, 1, ↑, ↓, ?}, and R ∈ {0, 1, ?,−}.

All possible combinations of the values for < Sa;Sv/F/R > notation are
listed in table 2.3. The column ’FFM’ shows the functional fault model asso-
ciated with each FP. These FFMs will be discussed in more detail in section
2.1.3.4.

The completeness of table 2.3 is proven in [6].

2.1.3.4 Two-Cell Functional Fault Models

The list of all possible two-cell FPs can be compiled to a set of FFMs. Assigning
each FP to a FFM is rather arbitrary and is mainly determined by historical

CHAPTER 2. LITERATURE REVIEW 21

Table 2.3: The Complete Set of 1PF2 FPs; x ∈ {0, 1}
Sa Sv F R < Sa; Sv/F/R > FFM # Sa Sv F R < Sa; Sv/F/R > FFM

1 x 0 1 − < x; 0/1/− > CFst 2 x 0 ? − < x; 0/?/− > CFus

3 x 1 0 − < x; 1/0/− > CFst 4 x 1 ? − < x; 1/?/− > CFus

5 x 0w0 ↑ − < x; 0w0/ ↑ /− > CFwd 6 x 0w0 ? − < x; 0w0/?/− > CFuw

7 x 1w1 ↓ − < x; 1w1/ ↓ /− > CFwd 8 x 1w1 ? − < x; 1w1/?/− > CFuw

9 x 0w1 0 − < x; 0w1/0/− > CFtr 10 x 0w1 ? − < x; 0w1/?/− > CFuw

11 x 1w0 1 − < x; 1w0/1/− > CFtr 12 x 1w0 ? − < x; 1w0/?/− > CFuw

13 x r0 0 1 < x; r0/0/1 > CFir 14 x r0 0 ? < x; r0/0/? > CFrr

15 x r0 ↑ 0 < x; r0/ ↑ /0 > CFdrd 16 x r0 ↑ 1 < x; r0/ ↑ /1 > CFrd

17 x r0 ↑ ? < x; r0/ ↑ /? > CFrrd 18 x r0 ? 0 < x; r0/?/0 > CFur

19 x r0 ? 1 < x; r0/?/1 > CFur 20 x r0 ? ? < x; r0/?/? > CFur

21 x r1 1 0 < x; r1/1/0 > CFir 22 x r1 1 ? < x; r1/1/? > CFrr

23 x r1 ↓ 0 < x; r1/ ↓ /0 > CFrd 24 x r1 ↓ 1 < x; r1/ ↓ /1 > CFdrd

25 x r1 ↓ ? < x; r1/ ↓ /? > CFrrd 26 x r1 ? 0 < x; r1/?/0 > CFur

27 x r1 ? 1 < x; r1/?/1 > CFur 28 x r1 ? ? < x; r1/?/? > CFur

29 0w0 0 ↑ − < 0w0; 0/ ↑ /− > CFds 30 0w0 0 ? − < 0w0; 0/?/− > CFud

31 1w1 0 ↑ − < 1w1; 0/ ↑ /− > CFds 32 1w1 0 ? − < 1w1; 0/?/− > CFud

33 0w1 0 ↑ − < 0w1; 0/ ↑ /− > CFds 34 0w1 0 ? − < 0w1; 0/?/− > CFud

35 1w0 0 ↑ − < 1w0; 0/ ↑ /− > CFds 36 1w0 0 ? − < 1w0; 0/?/− > CFud

37 r0 0 ↑ − < r0; 0/ ↑ /− > CFds 38 r0 0 ? − < r0; 0/?/− > CFud

39 r1 0 ↑ − < r1; 0/ ↑ /− > CFds 40 r1 0 ? − < r1; 0/?/− > CFud

41 0w0 1 ↓ − < 0w0; 1/ ↓ /− > CFds 42 0w0 1 ? − < 0w0; 1/?/− > CFud

43 1w1 1 ↓ − < 1w1; 1/ ↓ /− > CFds 44 1w1 1 ? − < 1w1; 1/?/− > CFud

45 0w1 1 ↓ − < 0w1; 1/ ↓ /− > CFds 46 0w1 1 ? − < 0w1; 1/?/− > CFud

47 1w0 1 ↓ − < 1w0; 1/ ↓ /− > CFds 48 1w0 1 ? − < 1w0; 1/?/− > CFud

49 r0 1 ↓ − < r0; 1/ ↓ /− > CFds 50 r0 1 ? − < r0; 1/?/− > CFud

51 r1 1 ↓ − < r1; 1/ ↓ /− > CFds 52 r1 1 ? − < r1; 1/?/− > CFud

CHAPTER 2. LITERATURE REVIEW 22

Table 2.4: List of 1PF2 FFMs; x, y ∈ {0, 1}
FFM Fault Primitives

1PF2s

1 CFst < 0; 0/1/− >, < 0; 1/0/− >, < 1; 0/1/− >, < 1; 1/0/− >

2 CFus < 0; 0/?/− >, < 0; 1/?/− >, < 1; 0/?/− >, < 1; 1/?/− >

1PF2a

3 CFds < xwy; 0/ ↑ /− >, < xwy; 1/ ↓ /− >, < rx; 0/ ↑ /− >, < rx; 1/ ↓ /− >

4 CFud < xwy; 0/?/− >, < xwy; 1/?/− >, < rx; 0/?/− >, < rx; 1/?/− >

5 CFid < 0w1; 0/ ↑ /− >, < 0w1; 1/ ↓ /− >, < 1w0; 0/ ↑ /− >, < 1w0; 1/ ↓ /− >

6 CFin {< 0w1; 0/ ↑ /− >, < 0w1; 1/ ↓ /− >}, {< 1w0; 0/ ↑ /− >, < 1w0; 1/ ↓ /− >}

1PF2v

7 CFtr < 0; 0w1/0/− >, < 1; 0w1/0/− >, < 0; 1w0/1/− >, < 1; 1w0/1/− >

8 CFwd < 0; 0w0/ ↑ /− >, < 1; 0w0/ ↑ /− >, < 0; 1w1/ ↓ /− >, < 1; 1w1/ ↓ /− >

9 CFrd < 0; r0/ ↑ /1 >, < 1; r0/ ↑ /1 >, < 0; r1/ ↓ /0 >, < 1; r1/ ↓ /0 >

10 CFdrd < 0; r0/ ↑ /0 >, < 1; r0/ ↑ /0 >, < 0; r1/ ↓ /1 >, < 1; r1/ ↓ /1 >

11 CFrrd < 0; r0/ ↑ /? >, < 1; r0/ ↑ /? >, < 0; r1/ ↓ /? >, < 1; r1/ ↓ /? >

12 CFir < 0; r0/0/1 >, < 1; r0/0/1 >, < 0; r1/1/0 >, < 1; r1/1/0 >

13 CFrr < 0; r0/0/? >, < 1; r0/0/? >, < 0; r1/1/? >, < 1; r1/1/? >

14 CFuw < x; 0w0/?/− >, < x; 0w1/0/− >, < x; 1w0/?/− >, < x; 1w1/?/− >

15 CFur < x; r0/?/0 >, < x; r0/?/1 >, < x; r0/?/? >, < x; r1/?/0 >, < x; r1/?/1 >, < x; r1/?/? >

arguments. This classification is based on the classification done in [6]. The list
of FFMs and their corresponding FPs is shown in table 2.4. Here the FFMs are
divided into three types: 1PF2s, 1PF2a and 1PF2v.

1PF2s FFMs In this type of fault, the state of the a-cell sensitizes a fault in
the v-cell. This type of fault consists of two FFMs:

1. State Coupling Fault (CFst): Two cells are said to have a state coupling
fault if the v-cell is forced into a given logic state only if the a-cell is in a
given state, without performing any operation on the v-cell or the a-cell.
This fault is special in the sense that no operation is needed to sensitize
it and it only depends on the initial stored values in the cells.

2. Undefined State Coupling Fault (CFus): Two cells are said to have an
undefined state coupling fault if the v-cell is forced into an undefined logic

CHAPTER 2. LITERATURE REVIEW 23

state only if the a-cell is in a given state, without performing any operation
on the v-cell or the a-cell.

1PF2a FFMs In this type of fault, performing a single-port operation to the
a-cell sensitizes a fault in the v-cell. It consists of the following FFMs:

1. Disturb Coupling Fault (CFds): Two cells are said to have a disturb cou-
pling fault, if application of an operation (read, transition write or non-
transition write) performed on the a-cell, causes the v-cell to flip.

2. Undefined Disturb Coupling Fault (CFud): Two cells are said to have
an undefined disturb coupling fault, if application of an operation (read,
transition write or non-transition write) performed on the a-cell, forces
the v-cell to an undefined state.

3. Idempotent Coupling Fault (CFid): Two cells are said to have an idempo-
tent coupling fault, if a transition write operation performed on the a-cell,
causes the v-cell to flip.

4. Inversion Coupling Fault (CFin): Two cells are said to have an inver-
sion coupling fault, if a transition write operation performed on the a-cell,
causes the inversion of the v-cell. The CFin consists of two pairs of FPs;
the two FPs of each pair have to be present simultaneously: {< 0w1; 0/ ↑
/− >, < 0w1; 1/ ↓ /− >}, {< 1w0; 0/ ↑ /− >, < 1w0; 1/ ↓ /− >}.

1PF2v FFMs This type of fault has the property that the application of a
single-port operation to the v-cell, with the a-cell in a certain state, sensitizes a
fault in the v-cell. It consists of the following FFMs:

1. Transition Coupling Fault (CFtr): Two cells are said to have a transi-
tion coupling fault if a given logic value in the aggressor cell prevents a
transition write operation on the victim.

2. Write Destructive Coupling Fault (CFwd): Two cells are said to have a
write destructive coupling fault if a non-transition write operation per-
formed on the v-cell results in a transition when the a-cell is in a given
logic state.

3. Read Destructive Coupling Fault (CFrd): Two cells are said to have a
read destructive coupling fault if a read operation performed on the v-cell
changes the data in the v-cell and returns an incorrect value on the output,
if the a-cell is in a given logic state.

CHAPTER 2. LITERATURE REVIEW 24

4. Deceptive Read Destructive Coupling Fault (CFdrd): Two cells are said
to have a deceptive read destructive coupling fault if a read operation per-
formed on the v-cell changes the data in the v-cell and returns a correct
value on the output, if the a-cell is in a given logic state.

5. Random Read Destructive Coupling Fault (CFrrd): Two cells are said to
have a random read destructive coupling fault if a read operation performed
on the v-cell changes the data in the v-cell and returns a random value on
the output, if the a-cell is in a given logic state.

6. Incorrect Read Coupling Fault (CFir): Two cells are said to have an incor-
rect read coupling fault if a read operation performed on the v-cell returns
the incorrect value on the output, when the a-cell is in a given logic state.
Note that here the state of the v-cell is not changed.

7. Random Read Coupling Fault (CFrr): Two cells are said to have an ran-
dom read coupling fault if a read operation performed on the v-cell returns
a random value on the output, when the a-cell is in a given logic state.
Note that here the state of the v-cell is not changed.

8. Undefined Write Coupling Fault (CFuw): Two cells are said to have an
undefined write coupling fault if the v-cell is brought in an undefined state
by a write operation performed on the v-cell, when the a-cell is in a given
state.

9. Undefined Read Coupling Fault (CFur): Two cells are said to have an
undefined read coupling fault if the v-cell is brought in an undefined state
by a read operation performed on the v-cell, when the a-cell is in a given
state.

A subset of above FFMs that covers all the FPs listed in table 2.3 needs to be
selected. An analysis of the defined FFMs shows that all introduced FFMs are
necessary except the CFid and CFin. These two FFMs have been introduced
for historical reasons [6].

2.1.4 Single-Port Dynamic Faults
Dynamic faults are those faults that require more than one operation (read/write)
in order to be sensitized. All parts of memory can be subject to these faults.
For example, Address Decoder Open Faults (ADOF) are related to dynamic
faults in the address decoder, dynamic Read Destructive Faults (dRDFs) are

CHAPTER 2. LITERATURE REVIEW 25

dynamic faults linked to failures in the core-cell and Un-Restored Destructive
Write Faults (URDWFs) are dynamic faults due to failures either in the pre-
charge circuit or in the write driver [5].

Dynamic faults can be categorized based on the number of operations needed
to sensitize each fault, as well as the number of memory cells involved in the
faulty behavior. In the literature, the single and two-cell two-operation dynamic
faults are the only investigated type of dynamic faults [7, 5].

In the rest of this section, single-port dynamic faults will be classified. This
classification is mostly based on the study done in [7].

2.1.4.1 Single-Cell Fault Primitives

Each particular FP is denoted by < S/F/R >, where S ∈ {i(Od)1(Od)2 :
O ∈ {r, w}, i ∈ {0, 1} , d ∈ {0, 1}} for two-operation dynamic FPs, F ∈ {0, 1},
and R ∈ {0, 1,−}. Based on the values of S, F , and R, a list of 30 detectable
single-cell 2-operation dynamic FPs can be compiled. This list is shown in table
2.5.

Out of these 30 FPs, only a subset of 12 FPs has been demonstrated to be
realistic [5, 7]. These 12 FPs are assigned to three functional fault models which
will be described in section 2.1.4.2.

2.1.4.2 Single-Cell Functional Fault Models

As mentioned in section 2.1.4.1, a subset of 12 single-cell dynamic fault prim-
itives are shown to be realistic. These fault primitives are associated to three
functional fault models as shown in table 2.6.

Each of these FFMs is described in the following:

1. Dynamic Read Disturb Fault (dRDF): In this fault, a write operation
immediately followed by a read operation, changes the logical value stored
in the memory cell and returns an incorrect output.

2. Dynamic Deceptive Read Disturb Fault (dDRDF): In this fault, a write
operation immediately followed by a read operation, changes the logical
value stored in the memory cell, but returns the correct output.

3. Dynamic Incorrect Read Fault (dIRF): In this fault, a write operation
immediately followed by a read operation, does not change the logical
value stored in the memory cell but returns an incorrect output.

CHAPTER 2. LITERATURE REVIEW 26

Table 2.5: The Complete Set of Single-Cell 2-Operation Dynamic Fault Primi-
tives

S F R FP # S F R FP

1 0w0w0 1 - < 0w0w0/1/− > 2 0w0w1 0 - < 0w0w1/0/− >

3 0w0r0 0 1 < 0w0r0/0/1 > 4 0w0r0 1 0 < 0w0r0/1/0 >

5 0w0r0 1 1 < 0w0r0/1/1 >

6 0w1w0 1 - < 0w1w0/1/− > 7 0w1w1 0 - < 0w1w1/0/− >

8 0w1r1 0 0 < 0w1r0/0/0 > 9 0w1r1 0 1 < 0w1r1/0/1 >

10 0w1r1 1 0 < 0w1r1/1/0 >

11 1w0w0 1 - < 1w0w0/1/− > 12 1w0w1 0 - < 1w0w1/0/− >

13 1w0r0 0 1 < 1w0r0/0/1 > 14 1w0r0 0 0 < 1w0r0/0/0 >

15 1w0r0 1 1 < 1w0r0/1/1 >

16 1w1w0 1 - < 1w1w0/1/− > 17 1w1w1 0 - < 1w1w1/0/− >

18 1w1r1 0 0 < 1w1r1/0/0 > 19 1w1r1 0 1 < 1w1r1/0/1 >

20 1w1r1 1 0 < 1w1r1/1/0 >

21 0r0w0 1 - < 0r0w0/1/− > 22 0r0w1 0 - < 0r0w1/0/− >

23 0r0r0 0 1 < 0r0r0/0/1 > 24 0r0r0 1 0 < 0r0r0/1/0 >

25 0r0r0 1 1 < 0r0r0/1/1 >

26 1r1w0 1 - < 1r1w0/1/− > 27 1r1w1 0 - < 1r1w1/0/− >

28 1r1r1 0 0 < 1r1r1/0/0 > 29 1r1r1 0 1 < 1r1r1/0/1 >

30 1r1r1 1 0 < 1r1r1/1/0 >

Table 2.6: List of Single-Cell Two-Operation Dynamic Functional Fault Models
FFM Fault Primitives

1 dRDF < 0w0r0/1/1 >, < 1w1r1/0/0 >, < 0w1r1/0/0 >, < 1w0r0/1/1 >

2 dDRDF < 0w0r0/1/0 >, < 1w1r1/0/1 >, < 0w1r1/0/1 >, < 1w0r0/1/0 >

3 dIRF < 0w0r0/0/1 >, < 1w1r1/1/0 >, < 0w1r1/1/0 >, < 1w0r0/0/1 >

CHAPTER 2. LITERATURE REVIEW 27

Table 2.7: List of Two-Cell Two-Operation Dynamic Functional Fault Models
FFM Fault Primitives

1 dCFds
< 0w0r0, 0/1/− >, < 0w0r0, 1/0/− >, < 1w1r1, 1/0/− >, < 1w1r1, 0/1/− >,

< 0w1r1, 0/1/− >, < 1w0r0, 1/0/− >, < 0w1r1, 1/0/− >, < 1w0r0, 0/1/− >

2 dCFrd
< 0, 0w0r0/1/1 >, < 1, 0w0r0/1/1 >, < 1, 1w1r1/0/0 >, < 0, 1w1r1/0/0 >,

< 0, 0w1r1/0/0 >, < 1, 0w1r1/0/0 >, < 1, 1w0r0/1/1 >, < 0, 1w0r0/1/1 >

3 dCFdrd
< 0, 0w0r0/1/0 >, < 1, 0w0r0/1/0 >, < 1, 1w1r1/0/1 >, < 0, 1w1r1/0/1 >,

< 0, 0w1r1/0/1 >, < 1, 0w1r1/0/1 >, < 1, 1w0r0/1/0 >, < 0, 1w0r0/1/0 >

4 dCFir
< 0, 0w0r0/0/1 >, < 1, 0w0r0/0/1 >, < 1, 1w1r1/1/0 >, < 0, 1w1r1/1/0 >,

< 0, 0w1r1/1/0 >, < 1, 0w1r1/1/0 >, < 1, 1w0r0/0/1 >, < 0, 1w0r0/0/1 >

2.1.4.3 Two-Cell Fault Primitives

Each two-cell two-operation dynamic fault primitive can be denoted by< S/F/R >
where S can be one of the following:

Saa = a(iO1d1O2d2)v(j)
Sav = a(iO1d1)v(jO2d2)
Sva = v(jO1d1)a(iO2d2)
Svv = a(i)v(jO1d1O2d2)

The subscripts a and v in the SOS names indicate whether each of the
two operations is performed on the aggressor or the victim, respectively. For
example, < v(0r0)a(1r1)/1/− > stands for an FP sensitized by performing
a 0r0 on the victim first and then performing a 1r1 on the aggressor. After
performing the sensitizing sequence, a 1 is detected in the victim instead of the
expected 0.

Based on possible combinations of S, F , and R, an exhaustive list of all 192
possible two-cell two-operation dynamic FPs is compiled and given in [7]. Out
of these 192 FPs, a subset of 32 FPs has been demonstrated to be realistic [7, 5]
and is associated to a list of four functional fault models. These functional fault
models, considered to be realistic, are described in section 2.1.4.4.

2.1.4.4 Two-Cell Functional Fault Models

The list of realistic two-cell two-operation dynamic fault primitives can be com-
piled to a set of four FFMs. The list of these FFMs is given table 2.7.

Each of the these FFMs is described in the following:

CHAPTER 2. LITERATURE REVIEW 28

1. Dynamic Disturb Coupling Fault (dCFds): In this type of fault, a write
operation, immediately followed by a read operation on the aggressor cell,
causes the victim cell to flip.

2. Dynamic Read Disturb Coupling Fault (dCFrd): Two cells are said to have
a dynamic read disturb coupling fault if a write operation immediately fol-
lowed by a read operation performed on the victim cell when the aggressor
is in a certain state, changes the logical value stored in the memory and
returns an incorrect output.

3. Dynamic Deceptive Read Disturb Coupling Fault (dCFrd): Two cells are
said to have a dynamic deceptive read disturb coupling fault if a write
operation immediately followed by a read operation performed on the
victim cell when the aggressor is in a certain state, changes the logical
value stored in the memory but returns the correct output.

4. Dynamic Incorrect Read Disturb Coupling Fault (dCFir): Two cells are
said to have a dynamic incorrect read disturb coupling fault if a write
operation immediately followed by a read operation performed on the
victim cell when the aggressor is in a certain state, does not affect the
logical value stored in the memory but returns an incorrect output.

As mentioned before, the n-cell m-operation dynamic faults where n ≥ 2 and
m ≥ 2 have never been considered in the literature. From a theoretical point of
view, it is possible to compute the FPs to model these types of dynamic faults,
but in practice, it has not been considered. Indeed, up to now, it has never been
demonstrated that these types of dynamic faults are a realistic set of dynamic
faults [5].

2.2 Memory Test Algorithms
There have been many test algorithms proposed for testing memories. The
first tests proposed in the literature were ad-hoc test algorithms. They were
developed without resorting to formal fault models and proofs. Tests such as
Scan, Galpat, and Walking 1/0 belong to this class. The main drawback of these
algorithms is the high complexity, generally not linear with respect to memory
size, that makes them not applicable to nowadays large memories[5].

To overcome the complexity issues of ad-hoc test solutions, the class ofmarch
tests has been introduced and defined in [11]. In section 2.2.1, some of the well
known algorithms of this class have been studied.

CHAPTER 2. LITERATURE REVIEW 29

Traditionally, most of the memory test algorithms have been targeted against
bit-oriented memories while most of the memories currently used in the industry
are word-oriented. In [12], a systematic method has been presented to convert
bit-oriented tests to word-oriented algorithms. In section 2.2.8, we will review
this method for converting bit-oriented march tests to word-oriented algorithms.

2.2.1 March Test Algorithms
Amarch test is a test algorithm composed of a sequence ofmarch elements. Each
march element (ME) is a sequence of memory operations applied sequentially
on a certain memory cell before proceeding to the next one. The way in which
one moves from a certain address to another is called address order (AO). The
AO characterizes the ME and can be done in either one of two address orders:
an increasing (⇑) address order (e.g., from address 0 to n − 1) or a decreasing
(⇓) address order which is the opposite of ⇑ address order. When the address
order is irrelevant the symbol m is used. Hereinafter, a march test is denoted by
’{...}’ bracket and a march element using a ’(...)’ bracket. The ith operation is
defined as opi where opi ∈ {wd, rd}, d ∈ {0, 1} in which ’wd’ means ’write logic
value d in the memory cell’ and ’rd’ means ’read the content of the memory cell
and verify that its value is equal to d.’ [5]

In general, the complexity of a March test is in the order of O(n), i.e., linear
with respect to the size of the memory under test. More precisely, it is defined
as the number of memory operations composing the different March elements
multiplied by the size of the memory (n).

March tests are nowadays the dominant type of memory tests used in the
industry due to their low complexity [5].

In the following sections, we will concentrate on this class of algorithms for
SRAM testing, and some of the well known algorithms will be introduced and
studied.

2.2.2 March LR: A Test for “Realistic” Linked Faults
March LR algorithm was proposed by van de Goor et al. in [10] in 1996. In the
reference article, first the universe of linked faults is reduced to realistic linked
faults. Then it has been shown that March LR is able to detect all static simple
faults as well as realistic static linked faults. As in the time when March LR was
proposed dynamic faults had not become a serious problem in SRAMs, dynamic
faults have not been taken into account.

In [10], the following linked faults have been assumed to be unrealistic:

CHAPTER 2. LITERATURE REVIEW 30

1. Linked faults which include CFins.

2. Linked faults which include the following two linked CFids: <↑; ↑>j,i

<↓; ↓>j,i or <↑; ↑>i,k # <↓; ↓>i,k; The authors have argued that this
types of linked faults are unrealistic due to the structure of SRAMs and
DRAMs.

3. Linked faults which include two linked CFdsts with opposite fault ef-
fects: < x; ↓>j,i # < y; ↑>j,i or < x; ↓>i,k # < y; ↑>i,k where x, y ∈
{r0, r1, w0, w1}. These faults are also considered unrealistic due to the
structure of SRAMs and DRAMs.

March LR algorithm has a complexity of O(14n) and is as follows:

{m (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);⇑ (r0)}

Simple March LR is not able to detect data retention faults (DRFs). Two
extensions have been proposed by the authors to make it able to detect DRFs
as well.

March LRD is able to detect single DRFs (where the cell fails to retain ’1’ or
’0’ state, but not both). This algorithm is an extension of March LR as follows:

{m (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);⇑
(r0);Del;m (r0, w1);Del;m (r1)}

In this notation, Del refers to a delay to let the data retention fault affect
the victim cell.

March LRDD is able to detect single and double DRFs (where the cell fails
to retain both ’0’ and ’1’ logic values). This algorithm is an extension of March
LR as follows:

{m (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);⇑
(r0);Del;m (r0, w1, r1);Del;m (r1)}

In [10], it has been shown that March LR outperforms the following older
algorithms in terms of fault coverage:

• March C: {m (w0);⇑ (r0, w1);⇑ (r1, w0);m (r0);⇓ (r0, w1);⇓ (r1, w0);m
(r0)} [13]

• March C-: {m (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);m (r0)}
[14]

CHAPTER 2. LITERATURE REVIEW 31

• March A: {m (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓
(r0, w1, w0)} [15]

• March B: {m (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓
(r0, w1, w0)} [15]

• Algorithm B: {m (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, r0, w1);⇓ (r1, w0, w1, w0);⇓
(r0, w1, r1, w0)} [13]

• MOVI: {⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}
[16]

• March M: {m (w0);⇑ (r0, w1, r1, w0);m (r0);⇑ (r0, w1);m (r1);⇑ (r1, w0, r0, w1);m
(r1);⇓ (r1, w0)} [17]

Based on these results, and considering that the above mentioned algorithms are
mostly very old and not suited to new technologies and corresponding faults, we
will not review these algorithms and focus on the more advanced and up-to-date
algorithms.

2.2.3 March SS: A Test for All Static Simple RAM Faults
March SS algorithm was proposed by Hamdioui et al. in [18] in 2002. This
algorithm targets simple static fault models that have been shown to exist for
Random Access Memories. In the reference article, it has been shown that this
algorithm is able to detect all of these fault models.

March SS has a complexity of O(22n) and is as follows:

{m (w0);⇑ (r0, r0, w0, r0, w1);⇑ (r1, r1, w1, r1, w0);⇓ (r0, r0, w0, r0, w1);⇓
(r1, r1, w1, r1, w0);m (r0)}

In [18], it has been shown that March SS outperforms the following older
algorithms in terms of fault detection capabilities:

• MATS+: {m (w0);⇑ (r0, w1);⇓ (r1, w0)}[11]

• March C-: {m (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);m (r0)}
[14]

• March B: {m (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓
(r0, w1, w0)} [15]

CHAPTER 2. LITERATURE REVIEW 32

• PMOVI: {⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}
[16]

• March U: {m (w0);⇑ (r0, w1, r1, w0);⇑ (r0, w1);⇓ (r1, w0, r0, w1);⇓ (r1, w0)}
[19]

• March LR: {m (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);⇑
(r0)} [10]

• March SR: {⇓ (w0);⇑ (r0, w1, r1, w0);⇑ (r0, r0);⇑ (w1);⇓ (r1, w0, r0, w1);⇓
(r1, r1)} [20]

It should be noted that while March SS outperforms all the above mentioned
algorithms in terms of fault detection capabilities, in terms of complexity it is
the slowest. While March SS has a complexity of O(22n), the second slowest
algorithm of the above is March B with a complexity of O(17n).

2.2.4 March 13N and March 9N
March 13N and March 9N were introduced by Dekker et al. in [21] in 1988.
March 9N is proposed for SRAMs with combinational R/W logic, while March
13N is targeted for memories with sequential R/W logic. For each of these
algorithms, a data retention test extension is also proposed.

March 9N, as the name suggests, has a complexity of O(9n) and is as follows:

{⇑ (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0)}

March 9N with data retention test is as follows:

{⇑ (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);Del;⇑ (r0, w1);Del;⇑
(r1)}

March 13N, as the name suggests, has a complexity of O(13n) and is as
follows:

{⇑ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}

March 13N with data retention test is as follows:

{⇑ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0);Del;⇑
(r0, w1);Del;⇑ (r1)}

CHAPTER 2. LITERATURE REVIEW 33

March 9N and March 13N have been shown to detect the following fault
models:

• Stuck-at Faults (SAFs)

• Stuck-Open Faults3

• Transition Faults (TFs)

• State Coupling Faults (CFsts)

• Multiple Access Faults: Multiple Access Fault is a special case of Disturb
Coupling Faults (CFds), in which case, a write operation on the a-cell with
value x(x ∈ {0, 1}), forces a write operation in the v-cell with the same
value x.

• Data retention faults

It is worth emphasizing that March 9N and March 13N target the same set of
faults and the only difference between them is that March 9N is designed for
SRAMs with combinational R/W logic while March 13N is designed for SRAMs
with sequential R/W logic.

In the reference paper, March 9N and March 13N have also been extended to
support testing of word-oriented memories. But since in the following sections
of this chapter, we are going to present a general methodology for this type of
extension, these extensions are not presented here.

2.2.5 March AB: A State-of-the-Art March Test for Re-
alistic Static Linked Faults and Dynamic Faults

March AB was proposed by Bosio et al. in [4] in 2006. This march test targets
all realistic memory static linked faults and dynamic unlinked faults as well as
all static simple faults targeted by March SS.

The authors have first defined a subset of all possible static linked faults and
dynamic faults as realistic. This subset is defined in the following.

3As mentioned in section 2.1.4.2, Stuck-Open Fault is a special case of No-Access Faults
(NAFs)

CHAPTER 2. LITERATURE REVIEW 34

2.2.5.1 Dynamic Faults

Dynamic faults are in turn categorized into single-cell two operation dynamic
faults and two-cell two operation dynamic faults. Dynamic faults which need
more than two operations to be sensitized have not been considered since there
has been no evidence of their existence in the real world.

March AB targets the following single-cell two-operation dynamic FFMs:

• Dynamic Read Disturb Faults (dRDF)

• Dynamic Deceptive Read Disturb Faults (dDRDF)

• Dynamic Incorrect Read Disturb Faults (dIRF)

In addition, March AB targets the following two-cell two-operation dynamic
FFMs:

• Dynamic Disturb Coupling Faults (dCFds)

• Dynamic Read Disturb Coupling Faults (dCFrd)

• Dynamic Deceptive Read Disturb Coupling Faults (dCFdrd)

• Dynamic Incorrect Read Disturb Coupling Faults (dCFir)

A comparison between the fault models mentioned above and the fault models
in tables 2.6 and 2.7 shows that March AB essentially targets all realistic two-
operation dynamic fault models.

2.2.5.2 Static Linked Faults

As mentioned in section 2.1.2.1, static linked faults are two or more static faults
that share the same aggressor and/or victim cell. The static linked faults con-
sidered to be realistic and targeted by March AB are summarized in table 2.8.

As can be seen in table 2.8, two-cell static LFs have been divided into LF2aa,
LF2av, and LF2va classes. Each of these classes is described in the following:

LF2aas are the linked faults that share both the a-cell and the v-cell.

LF2avs are the linked faults in which FP1 is a two-cell FP and FP2 is a single-
cell FP.

LF2vas are the linked faults in which FP1 is a single-cell FP and FP2 is a
two-cell FP.

CHAPTER 2. LITERATURE REVIEW 35

Table 2.8: Realistic Static Linked Faults Targeted by March AB
LF Type FFM

TF → WDF

Single-Cell Static LFs

WDF → WDF

DRDF → WDF

TF → RDF

WDF → RDF

DRDF → RDF

CFds→ CFds

Two-Cell Static LF2aas

CFtr → CFds

CFwd→ CFds

CFdr → CFds

CFds→ CFwd

CFtr → CFwd

CFwd→ CFwd

CFdr → CFwd

CFds→ CFrd

CFtr → CFrd

CFwd→ CFrd

CFdr → CFrd

CFds→ WDF

Two-Cell Static LF2avs

CFtr → WDF

CFwd→ WDF

CFdr → WDF

CFds→ RDF

CFtr → RDF

CFwd→ RDF

CFdr → RDF

WDF → CFds

Two-cell Static LF2vas

TF → CFds

DRDF → CFds

WDF → CFwd

TF → CFwd

DRDF → CFwd

WDF → CFrd

TF → CFrd

DRDF → CFrd

CHAPTER 2. LITERATURE REVIEW 36

It has also been shown that realistic three-cell linked faults are composed of two
two-cell fault models that share at least one cell; therefore realistic three-cell
linked faults can be represented by the same fault primitives used to represent
two-cell linked faults. Therefore these types of faults are targeted by March AB
as well.

2.2.5.3 March AB Test Algorithm

March AB has a complexity of O(22n) and is as follows:

{m (w0);⇓ (r0, w1, r1, w1, r1);⇓ (r1, w0, r0, w0, r0);⇑ (r0, w1, r1, w1, r1);⇑
(r1, w0, r0, w0, r0);m (r0)}

In [22], another variant of March AB, called AB1, is proposed which with a
complexity of O(11n) is able to detect single-cell two-operation dynamic faults.
Unfortunately, no claim has been made by the authors with respect to coverage
of static faults (simple or linked). March AB1 is as follows:

{m (w0);m (w1, r1, r1, r1);m (w0, r0, w0, r0, r0)}

To the extent of our knowledge, the only other algorithms in the literature
that target the same set of faults as March AB and March AB1, are March
RAW with complexity of O(26n) and March RAW1 with complexity of O(13n)
respectively. For the sake of completeness, we will review these tests in section
2.2.6.

2.2.6 March RAW: Testing Static and Dynamic Faults in
Random Access Memories

March RAW was proposed by Hamdioui et al. in [3] in 2002. Like March AB,
March RAW also has two variants: March RAW and March RAW1.

March RAW and March RAW1 target the same fault set as March AB and
March AB1 that were described in sections 2.2.5.1 and 2.2.5.2.

March RAW1 has a complexity of O(13n) and targets realistic single-cell
dynamic faults as March AB1. This march test is as follows:

{m (w0);m (w0, r0);m (r0);m (w1, r1);m (r1);m (w1, r1);m (r1);m (w0, r0);m
(r0)}

March RAW has a complexity of O(26n) and targets realistic two-cell dy-
namic fault as March AB. This march test is as follows:

CHAPTER 2. LITERATURE REVIEW 37

{m (w0);⇑ (r0, w0, r0, r0, w1, r1);⇑ (r1, w1, r1, r1, w0, r0);⇓
(r0, w0, r0, r0, w1, r1);⇓ (r1, w1, r1, r1, w0, r0);m (r0)}

It should be mentioned again that March RAW and March RAW1 are out-
performed by the newer March AB and March AB1 respectively in terms of
complexity while targeting the same fault set. Since these march tests target
the same dynamic memory fault set of March AB and March AB1, they are
presented here for the sake of completeness.

2.2.7 Effect of Address Ordering
In the literature, there have been several attempts for targeting dynamic mem-
ory faults. Some of these attempts involve using a specific address order for
the march test, which should be derived based on the memory layout and the
dynamic fault set being targeted. As an example, an address order has been
used in [23] that enables March C- algorithm to detect dynamic read destructive
faults (dRDFs) on a specific SRAM layout from Infineon Technologies.

However, March RAW and March AB consider the memory and the associ-
ated fault models from a functional point of view. This means that the address
ordering is not important in performing these march tests, and these tests are
designed to detect the targeted faults regardless of the memory layout and phys-
ical location of memory cells. Therefore, as shown in [4], March AB and March
RAW can achieve a high fault coverage for dynamic faults in a functional model
of an SRAM while the fault coverage of March C- for dynamic faults in such a
memory is marginal.

Since address ordering does not affect the fault coverage of the presented
march tests for their targeted fault set, in our implementation we will use a
sequential address ordering to minimize the resources required for implementa-
tion of the MemBIST. This type of address ordering can be implemented using
a simple counter while specific hardware should be designed to implement other
address orderings.

2.2.8 Converting March Tests for Bit-Oriented Memories
into Tests for Word-Oriented Memories

Almost all the march tests reviewed in this chapter were designed for testing
bit-oriented memories (BOMs). In the real world, on the other hand, most of
the memories are word-oriented (WOMs). This means a read or write operation

CHAPTER 2. LITERATURE REVIEW 38

on a single bit in the memory cannot be performed and all the bits in a memory
word are addressed simultaneously.

The traditional method for testing WOMs consists of the repeated applica-
tion of a test for bit-oriented memories, whereby a different data background
(DB) is used during each application. This means that the length of the BOM
test will be multiplied by the number of DBs used. The disadvantages of these
methods are test time inefficiency and limited fault coverage for intra-word
(faults within words) coupling faults[12]. Due to these disadvantages, we will
not go into details about the traditional method of WOM testing. Instead, we
will discuss a more efficient and up-to-date method, proposed by van de Goor
et al. in [12] in 2003. This systematic method can be used to convert all march
tests designed for BOMs into WOM tests. All subsequent parts of this section
are based on this article.

The conversion consists of concatenating to the march test for inter-word
faults (fault between words), a march test designed for intra-word faults. This
means that the length of the intra-word march test will be added to the length
of the BOM test. For construction of the test for intra-word faults, a minimal
data background sequence (DBS), capable of sensitizing the targeted CFs has to
be established.

In the reference article, first the fault models for WOMs are categorized as
follows:

1. Single-cell faults: These are the classical stuck-at faults (SAFs), transition
faults (TFs), data retention faults (DRFs), and read disturb faults

2. Fault between memory cells: This class of faults consists of coupling faults
(CFs). These can be further divided into two subclasses:

(a) Inter-word faults: These are classical CFs whereby aggressor and vic-
tim cells belong to different words. They will be detected by properly
designed BOM tests.

(b) Intra-word faults: These are CFs whereby the aggressor and victim
cells belong to the same word. A special intra-word test has to be
designed to detect this class of faults.

2.2.8.1 Detection of Single-Cell and Inter-Word Faults

Any BOM test can be converted into a WOM test to detect single-cell and
inter-word faults as follows:

CHAPTER 2. LITERATURE REVIEW 39

1. The w0 operation should be replaced with a “w-data background” denoted
as “wD” whereby any DB is acceptable. For example “w0...0” (an all-
zero DB), “w01...01” (a DB pattern of a repeated sequence of “01”), etc.,
whereby the length of bit string is B bits. The w1 operation should be
replaced with a write operation which writes inverted data background,
i.e., “wD̄”.

2. The r0 and r1 operations should be replaced with “r-data background”
(rD) and “r-inverted-data background” (rD̄).

3. In the equations expressing the required number of operations for a test,
n (representing the number of bits in the chip) has to be replaced by n/B
(representing the number of words in the chip).

2.2.8.2 Detection of Intra-Word Faults

The DBs to be used for intra-word faults are determined by used intra-word
coupling fault models. If the layout of the memory is not known, fault models
called unrestricted CF models (uCFs) should be applied. If the layout of the
memory is known, restricted CF models (rCFs) and concurrent restricted CF
models (crCFs) can be used to simplify the march tests, improving the perfor-
mance. Each of these fault models is explained in more detail in the following
sections.

Tests for Unrestricted Intra-Word Faults In unrestricted fault model,
there can be a fault between any two cells in a word. There are three coupling
fault types for which DBs have been proposed in the reference article, in order
to detect intra-word types:

1. Unrestricted intra-word CFsts (uCFsts)

2. Unrestricted intra-word CFids (uCFids)

3. Unrestricted intra-word CFdsts (uCFdsts)

Detection of these faults is discussed in the following sections.

Data Backgrounds for Unrestricted Intra-Word CFsts (uCFsts) In
order to detect uCFsts, all states of two arbitrary cells ci and cj should be
checked, i.e., the states of (ci, cj) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

CHAPTER 2. LITERATURE REVIEW 40

Table 2.9: DBs for uCFsts (B=8)
Normal # Inverse
0 00000000 1 11111111
2 01010101 3 10101010
4 00110011 5 11001100
6 00001111 7 11110000

One way to test all these states is that for every DB, to start by an all-zero
word, in the second DB, set all bits bi such that (imod 2) ≥ 1 to 1, in the third
DB, set all bi such that (imod 4) ≥ 2 and so on. To clarify this, a set of DBs
for B=8 is shown in table 2.9.

The nature of uCFsts is such that only the states of the cells are relevant for
sensitizing and detecting a fault; therefore, the DBs of the set can be applied in
any order.

Data Backgrounds for Unrestricted Intra-Word CFids (uCFids)
In order to detect uCFids, the intra-word test has to use a set of DBs, which
have to be applied to the memory in a particular sequence. This set of DBs is
called a data background sequence (DBS). For a two-bit memory the DBS S2 =
00, 11, 00, 01, 10, 01 has been derived which can be split into: S′2 = 00, 11, 00 and
S”2 = 01, 10, 01.

As an example, the method to extend this DBS for an 8-bit memory is
presented which can easily be extended to wider memories.

In order to extend the DBS toWOMs with 8-bit words,W8 = {c0, c1, c2, c3, c4, c5, c6, c7}
the following steps should be performed:

1. Level 0: For each cell-pair (ci, ci+1), we apply the DBS S2 for 2-bit words,
replicated four times to fill the 8-bit word.

2. Level 1: For each cell-pair (ci, ci+2) we apply only the DBS S”2 = 01, 10, 01;
this is sufficient because the DBS S′2 has already been applied in Level 0.

3. Level 2: For each cell pair (ci, ci+4) we apply the DBS S”2.

After Level 2, all uCFids for an 8-bit WOM are sensitized. The DBS for 8-bit
WOM is shown in table 2.10.

CHAPTER 2. LITERATURE REVIEW 41

Table 2.10: DBS S8 for uCFids (B=8)

Data background Level
c0c1c2c3c4c5c6c7

0 00000000
1 11111111 0
2 00000000 0
3 01010101 0
4 10101010 0
5 01010101 0
6 00110011 1
7 11001100 1
8 00110011 1
9 00001111 2
10 11110000 2
11 00001111 2

Data Background for Unrestricted CFdsts (uCFdsts) An intra-word
test for uCFdsts uses a sequence of data background operations; referred to as
the DB operation sequence (DBOS).

In order to derive the DBOS, first a data background sequence needs to be
derived. It has been shown that the DBS for uCFdsts is identical to that of
uCFids which was derived in the previous section.

Based on this DBS, the DBOS can be derived. First the DBOS for a 2-bit
memory has been derived:

Ωt2 = w11, r11, r11, w00, r00, r00, w01, w10, r10, r10, w01, r01, r01

This DBOS can be split into:

Ω′t2 = w11, r11, r11, w00, r00, r00

Ω”t2 = w01, w10, r10, r10, w01, r01, r01

In order to derive the DBOS for an 8-bit memory the following steps should
be taken:

1. Level 0: For each cell-pair (ci, ci+1), we generate the DBOS found for 2-bit
words (Ωt2).

CHAPTER 2. LITERATURE REVIEW 42

Table 2.11: DBOS for CFdsts (B=4)

Op. DB Level # Op. DB Level
c0c1c2c3 c0c1c2c3

0 0000 0 11 w 0101 0
1 w 1111 0 12 r 0101 0
2 r 1111 0 13 r 0101 0
3 r 1111 0 14 w 0011 1
4 w 0000 0 15 w 1100 1
5 r 0000 0 16 r 1100 1
6 r 0000 0 17 r 1100 1
7 w 0101 0 18 w 0011 1
8 w 1010 0 19 r 0011 1
9 r 1010 0 20 r 0011 1
10 r 1010 0

2. Level 1: For each cell-pair (ci, ci+2), we apply only the DBOS Ω”t2. This
is sufficient, because the DBOS Ω′t2 has already been applied in Level 0.
The first operation w01 operation in Ω”t2 does not need to be followed by
a read operation because it is only used to connect the DBOS of Level 0
and Level 1 while producing a transition write operation on both bits.

3. Level 2: For each cell-pair (ci, ci+4) we apply the the DBOS Ω”t2.

This method can easily be extended to higher memory widths. The DBOS for
a 4-bit memory is shown in table 2.11.

WOM March Tests for Unrestricted Intra-Word Coupling Faults
Now that DB sequences and DB operation sequences have been derived, they
can be used to convert any given BOM test to a WOM test which additionally
covers intra-word CFs (uCFsts, uCFids, and/or uCFdsts).

Such a WOM march test is a concatenation of two march tests: {inter-word
march test} {intra-word march test}. The inter-word march test consists of a
traditional BOM test modified such that the bit-operations “r0,” “r1,” “w0,”
“w1” are replaced with the word operations “rD,” “rD̄,” “wD,” “wD̄,” whereby
the all 0s DB value has been chosen for D to optimize ground bounce. The
intra-word march test is used to detect the intra-word CFs. It consists of a
single march element of the following form:

CHAPTER 2. LITERATURE REVIEW 43

1. For uCFsts: m (wD0
, rD0

, ..., wDd−1
, rDd−1

) whereby D0 through Dd−1 are
taken from the set of DBs of table 2.9 (for B=8), such that both the
normal and inverse values are covered. These DBs can be applied in any
order.

2. For uCFids: m (wD0
, rD0

, wD1
, rD1

, ..., rDd−2
, wDd−1

, rDd−1
), whereby D0

through Dd−1 represents the DBS of table 2.10 (for B=8).

3. For uCFdsts: m (wD0 , rD0 , rD0 , ..., wDd−1
, rDd−1

, rDd−1
), whereby the DBOS

(consisting of the operations together with the DBs) is taken from table
2.11 (for B=4).

The above intra-word test may be modified as follows, without any impact on
the fault coverage:

1. Extra read operations may be added, for example to make the test more
symmetric and/or to detect possible faults of other fault models.

2. The single march element may be divided into any number of march ele-
ments and, for each march element, the address can be chosen freely.

The above freedom to modify the intra-word test allows for:

1. Test time reduction. If march elements of the intra-word test can be made
identical to march elements of the inter-word test, those intra-word march
elements can be removed.

2. Extra fault coverage for unanticipated faults. This can be optimized when
the intra-word march test has the following properties:

(a) It consists of several march elements because each march element
performs a sweep over the memory.

(b) All march elements start with a read; this allows for detection of CFs.

(c) The address orders of the march elements of the intra-word march
test should vary as much as possible. This maximizes the probability
of detecting dynamic faults.

Relationships of WOM March Tests and The Impact of Memory
Organizations It can be shown that:

1. WOM tests for uCFsts, uCFids, and uCFdsts cover SAFs, TFs, and RDFs.

CHAPTER 2. LITERATURE REVIEW 44

2. WOM tests for uCFids cover all uCFsts.

3. WOM tests for uCFdsts cover all uCFids.

In addition, it can be shown that based on the organization of the word-oriented
memory, only a subset of fault models may be sufficient to cover all intra-word
CFs. A memory can be organized in the following manners:

1. Adjacent: A q-bit row in a sub-array contains w × B bits. The B bits of
a word are adjacent and, therefore, the proposed WOM tests for uCFsts,
uCFids, and uCFdsts have to be applied.

2. Interleaved (a.k.a folded): A q-bit row in a sub-array contains w×B bits.
The B bits of a word are spread across B groups in such a way that the
bits of a B-bit word are interleaved with w − 1 bits of the other B-bit
words in that row. Therefore, only the test for uCFsts has to be applied
to one word of each fold in order to verify the I/O data path of each fold.
The uCF fault model is adequate for checking CFs in data paths.

3. Sub-arrays: Each bit of a B-bit word is taken from a different sub-array,
while all B bits have the same address in each sub-array. Similarly to the
interleaved case, only a test for uCFsts has to be applied to one word in
each sub-array, in order to verify the I/O data path.

Tests for Restricted Intra-Word Faults One reasonable restriction of
intra-word CFs is that an a-cell can only influence its left or its right phys-
ical neighbor. These restricted CFs, denoted as rCFs, apply to the following
fault types: rCFsts, rCFids, and rCFdsts. The way BOM tests can be converted
into WOM tests for rCFs depends on the physical memory organization:

1. Adjacent

• rCFsts: In order to detect rCFsts in an adjacent memory organiza-
tion, all states of adjacent cells should be checked. Table 2.12 lists
the required DBs to perform such a test for a memory with a word
width of 8. These DBs can be extended to any arbitrary word width
and the number of DBs will be a constant 4.

• rCFids: In order to sensitize all rCFids in an adjacent memory orga-
nization, only the DBS for Level 0 of section 2.2.8.2 is required. This
reduces the number of DBs to 6 and the length of the DBS to 10 for
any given word width.

CHAPTER 2. LITERATURE REVIEW 45

Table 2.12: Set of 8-bit DBs for rCFsts
Normal # Inverse
0 00000000 1 11111111
2 01010101 3 10101010

• rCFdsts: In order to sensitize all rCFdsts in an adjacent memory
organization, only the DBOS for Level 0 of section 2.2.8.2 is required.
This reduces the number of DBs to 6 and the length of the DBOS to
13, for any given word width.

2. Interleaved (folded): In case of interleaved memory organization, the B
bits of a word are spread across B groups such that there are no neigh-
boring cells belonging to the same word. This means that there are no
adjacent cells within a word. One only has to check the data I/O paths
of each fold by applying the test for rCFsts to one word in each fold.

Tests for Concurrent-Restricted Intra-Word Faults WOMs are read
and written B bits at a time, i.e., B bits concurrently. Conceptually, B-1 bits
in a word may concurrently act as a-cells for a given v-cell. When the physical
layout of the cells in a row is known, tests can be simplified significantly when
the a-cells are restricted to be the two physical neighbors of the v-cell, which
are the most likely a-cells. This coupling fault model will be called concurrent-
restricted CF model (crCF model). The crCF model has to be analyzed for the
fault types: crCFst, crCFid, and crCFdst.

In order to detect crCFsts, all states of three adjacent cells (i − 1, i, i + 1)
should be checked:

(i− 1, i, i+ 1) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0),
(0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

The set of required DBs to sensitize crCFsts in an 8-bit-wide memory has
been shown in table 2.13. It can be extended to any number of bits, and the
number of DBs is 8 and independent of the memory width.

The DBS required to sensitize the crCFids in an 8-bit memory is shown in
table 2.14. This can be extended to any word width, and the length of the DBS
is 22 and independent of the word width.

CHAPTER 2. LITERATURE REVIEW 46

Table 2.13: Set of 8-Bit DBs for crCFsts
Normal # Inverse
0 00000000 1 11111111
2 00100100 3 11011011
4 01001001 5 10110110
6 01101101 7 10010010

Table 2.14: 8-Bit DBS for crCFids

DB Operation
c0c1c2c3c4c5c6c7

0 00000000 -
1 11111111 w,r
2 00000000 w,r
3 00100100 w
4 11011011 w,r
5 00100100 w,r
6 10110110 w
7 01001001 w,r
8 10110110 w,r
9 01101101 w
10 10010010 w,r
11 01101101 w,r

CHAPTER 2. LITERATURE REVIEW 47

Table 2.15: DBOS for crCFdsts, B=4

Op. DB # Op. DB
c0c1c2c3 c0c1c2c3

0 0000 14 w 0100
1 w 1111 15 w 1011
2 r 1111 16 r 1011
3 r 1111 17 r 1011
4 w 0000 18 w 0100
5 r 0000 19 r 0100
6 r 0000 20 r 0100
7 w 0010 21 w 0110
8 w 1101 22 w 1001
9 r 1101 23 r 1001
10 r 1101 24 r 1001
11 w 0010 25 w 0110
12 r 0010 26 r 0110
13 r 0010 27 r 0110

The DBOS for sensitizing crCFdsts in a 4-bit-wide memory is shown in table
2.15. It can be extended to any word width and the length of the DBOS is 27,
independent of the word width.

For an adjacent memory organization, the proposed tests for crCFsts, crC-
Fids, and/or crCFdsts have to be applied. For interleaved (folded) and sub-array
memory organizations, only the data I/O paths of each fold/sub-array have to
be verified using a test for crCFsts.

Complexity of Intra-Word Tests The complexity of the proposed intra-
word fault tests is summarized in table 2.16. In this table, TL denotes the
required test length for each fault model. Note that the complexity of rCF and
crCF fault models is independent of the word width.

2.3 Conclusion
In this chapter, first different functional fault models were introduced, defined
and classified.

CHAPTER 2. LITERATURE REVIEW 48

Table 2.16: Number of DBs and TLs for Different CF Types
CF Type # of DBs TL
uCFst 2× β + 2 4× β
rCFst 4 4
crCFst 8 12
uCFid 3× β + 3 6× β + 4
rCFid 6 10
crCFid 12 22
uCFdst 3× β + 3 7× β + 6
rCFdst 6 13
crCFdst 12 27

Note: β = dlog2Be .

After that, some state-of-the-art memory test algorithms were reviewed.
These algorithms included March LR, March SS, March 13N, March 9N, March
RAW and March AB. While the older algorithms (March LR, March SS, March
13N and March 9N) mostly targeted static memory faults, newer algorithms
(March RAW and March AB) targeted both static and dynamic faults.

At the end of this chapter a systematic method for conversion of bit-oriented
memory tests to word-oriented memory tests was reviewed in detail, and realistic
simplifications to reduce the complexity of the test were discussed.

Chapter 3

Comparison of MemBIST
Algorithms

The objective of this chapter is to compare different MemBIST algorithms re-
viewed in chapter 2. The information presented in this chapter will be used to
select the appropriate MemBIST algorithm for implementation in hardware.

This chapter is based on the comparisons performed in the literature to
compare fault detection capabilities of different algorithms. Unfortunately, some
of such studies are very old, and do not cover the algorithms evaluated in this
report such as March LR, March RAW, and March AB. Neither do they cover
the new fault models present in new embedded SRAMS. Therefore we will not
consider these studies and will confine our attention to more up-to-date articles
which cover the new algorithms and fault models.

It should be noted that these studies do not cover all the algorithms presented
in section 2.2 at the same time; each study usually covers a subset of them.
Nevertheless, these comparisons provide valuable information for selection of a
suitable algorithm for implementation in hardware.

49

CHAPTER 3. COMPARISON OF MEMBIST ALGORITHMS 50

Figure 3.1: Results of the Comparison Performed in [2]

3.1 Effectiveness of Memory Test Algorithms and
Analysis of Fault Distribution in SRAMs: A
Case Study Based on Industrial Test Results

A study done by Linder et al., and presented in [2], has compared the fault
coverage of 25 different march tests based on industrial test results. This study
is particularly interesting, because the results reflect the physical defect coverage
instead of functional fault coverage. This means that the faults which happen
more often in reality have a higher weight in determining the fault coverage,
compared to the faults that rarely happen. In other words, the fault coverage
here is not based on any functional fault model set and instead is based on the
coverage of actual physical defects in SRAMs produced by Infineon Technologies.

The results of this comparison are shown in figure 3.1. As can be seen, March
LR provides the highest fault coverage among the 25 evaluated algorithms. This
is due to March LR’s high capabilities in detecting linked faults, and the fact
that these types of faults were very common in the particular set of memories,
tested in this study. Dynamic faults on the other hand, for which March AB
and March RAW were designed, have not occurred as often in this particular
set of memories.

It should be noted however, that even though dynamic faults did not happen
as often as static linked faults, they were present, and probably account for a
considerable portion of the faults that were not detected by March LR. A fault

CHAPTER 3. COMPARISON OF MEMBIST ALGORITHMS 51

Table 3.1: Result of the Fault Coverage Estimation Performed in [3]

FFM

March Tests

MATS+ March C- March B PMOVI March U March SR March LA March LR

(5n) (10n) (17n) (13n) (13n) (14n) (22n) (14n)

dRDF 0% 0% 50% 50% 50% 50% 50% 50%

dDRDF 0% 0% 0% 50% 0% 0% 50% 0%

dIRF 0% 0% 50% 50% 50% 50% 50% 50%

dCFdsxwx̄rx̄ 0% 0% 50% 87.5% 50% 50% 100% 50%

dCFdsxwxrx 0% 0% 0% 0% 0% 0% 0% 0%

dCFrd 0% 0% 25% 50% 25% 25% 50% 25%

dCFdrd 0% 0% 0% 37.5% 0% 0% 50% 0%

dCFir 0% 0% 25% 50% 25% 25% 50% 25%

distribution extracted in the study, shows that linked faults accounted for 9%
of the total faults in the memories, while dynamic faults accounted for 7%.

This shows that in order to achieve a low defect-per-million (DPM), it is
necessary to address both types of faults. The authors conclude that a combi-
nation of different march tests, with different capabilities (e.g., March LR and
March RAW to target both linked faults and dynamic faults) is necessary to
achieve a high fault coverage.

3.2 Testing Static and Dynamic Faults in Ran-
dom Access Memories

Another comparison of different MemBIST algorithms has been performed in
[3], the study in which March RAW was proposed to address the inability of
other algorithms in detection of dynamic faults. As March AB was proposed
after March RAW, it is not present in this comparison.

In this study, functional fault models are used to estimate the fault coverage
of march tests. Therefore, all FFMs contribute equally to the fault coverage,
regardless of their actual probability in the real world. The result of this com-
parison is shown in table 3.1.

As can be seen in the table, none of the studied march tests can provide
a high fault coverage with respect to dynamic faults. March RAW and March
RAW1 are then proposed to address this problem. March RAW1 can detect

CHAPTER 3. COMPARISON OF MEMBIST ALGORITHMS 52

Table 3.2: Comparison of March Tests with Respect to Dynamic Faults as
Presented in [4]

FFM
March Tests

March C- March RAW1 March SS March AB March RAW
10n 13n 22n 22n 26n

dRDF 0.39% 100% 25% 100% 100%
dDRDF 0.39% 100% 0.39% 100% 100%
dIRF 0.39% 100% 25% 100% 100%
dCFds 0.83% 0% 50% 100% 100%
dCFrd 0.39% 50% 50% 100% 100%
dCFrdr 0.39% 50% 0.39% 100% 100%
dCFir 0.39% 50% 50% 100% 100%

all 1-cell dynamic FFMs considered in table 3.1 (dRDFs, dDRDFs and dIRFs),
while March RAW can detect all 2-cell dynamic FFMs in this table (these results
are not reflected in the table).

3.3 March AB, A State-of-the-Art March Test
for Realistic Static Linked Faults and Dy-
namic Faults in SRAMs

Another interesting comparison of fault coverage of different march tests has
been done in [4], the article in which March AB was proposed. As March RAW
was introduced before March AB, it is included in this study as well.

The comparison performed in [4] consists of two parts; in the first part
algorithms are compared with respect to dynamic faults and in the second part,
they are compared with respect to linked faults.

The result of comparison with respect to dynamic faults is presented in table
3.2.

Of particular interest in this table, is comparison with March SS and March
RAW. The results show that March AB provides a much better fault coverage
with respect to dynamic faults compared to March SS, while having the same
complexity of O(22n). It is also claimed that March AB covers the same set of
static faults as March SS. It can also be seen that March AB provides the same
fault coverage with respect to dynamic faults as March RAW, while maintaining

CHAPTER 3. COMPARISON OF MEMBIST ALGORITHMS 53

Table 3.3: Comparison of March Tests with Respect to Linked Faults as Pre-
sented in [4]

FFM
March Tests

LR A B LA AB MSL RAW SL
14n 15n 17n 22n 22n 23n 26n 41n

Single-cell 75% 66% 75% 83% 100% 100% 100% 100%
LF2aa 82% 75% 70% 87% 100% 100% 100% 100%
LF2av 75% 60% 64% 83% 100% 100% 100% 100%
LF2va 80% 73% 73% 86% 100% 100% 100% 100%
All 80% 69% 70% 86% 100% 100% 100% 100%

a lower complexity.
The result of comparison with respect to linked faults is presented in table

3.3.
It can easily be seen that among the algorithms that provide 100% linked

fault coverage, March AB provides the lowest complexity with a complexity of
O(22n).

3.4 Conclusion
In this chapter, a few articles on comparison of different march tests were re-
viewed.

Based on these comparisons, it appears that some disagreement exists with
respect to the best algorithm for detection of linked faults. While the results of
[2] can be interpreted to the conclusion that March LR provides the best linked
fault coverage, results of [4] indicate that March AB and March RAW are able
to detect 100% of two-cell linked faults. After a more detailed look into these
algorithms, as mentioned in [2], it seems that the superior results of March LR
in that study can be associated to the following march elements in March LR
that is not covered in March AB or March RAW:

...w1);⇑ (r1, w0, r0, w1);⇑ (r1...

and

...w0);⇑ (r0, w1, r1, w0);⇑ (r0...

CHAPTER 3. COMPARISON OF MEMBIST ALGORITHMS 54

With respect to dynamic faults however, without any disagreement, it seems
that March RAW and March AB provide the best fault coverage, which is 100%
for two-cell two-operation faults. It should be noted however that March AB
provides a lower complexity compared to March RAW.

It seems that a combination of March LR with either March AB or March
RAW can provide a good fault coverage with respect to all realistic faults ex-
isting in current SRAMs.

Chapter 4

Implementation of the
MemBIST

In this chapter the implementation of the MemBIST unit will be discussed. At
first, the architecture of a typical Atmel AVR micro-controller will be presented
and different architectural choices for implementation of the MemBIST will be
discussed. Afterwards, an appropriate MemBIST algorithm will be chosen for
implementation. At the end the technical details of implementation will be
explained.

4.1 Proposed Architecture
The first step in implementation of the MemBIST unit is finding a suitable
architecture, providing efficient access to memories for the MemBIST unit.

Figure 4.1 shows a block diagram of interconnection structures in a typical
Atmel AVR32® micro-controller. Note that in order to keep simplicity, only
the basic blocks which are relevant for this project are shown in the diagram.
The SRAM shown in the diagram represents CPU’s main memory, connected
to the CPU using a Memory Interface unit. Additional SRAM units may exist
in a design which may or may not be connected to the High-Speed Bus Matrix.

Two possible concepts were considered for the block in which the MemBIST
module could be implemented. Each of these choices has its own pros, cons,
and implications. These two choices have been described in the following.

55

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 56

Figure 4.1: A Block Diagram of Relevant Interconnection Structures in a Typical
Atmel® AVR32® Micro-Controller

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 57

Centralized MemBIST in Memory Service Unit In this scheme, Mem-
BIST unit is implemented inside Memory Service Unit and accesses the
SRAM blocks through Service Access Bus and High-Speed Bus Matrix.
In this architecture, all SRAMs in a chip are tested using the same Mem-
BIST unit which leads to reduced area overhead. Furthermore, using this
architecture, the functional path to the SRAM will be tested in addition
to the SRAM itself.
On the other hand, all memory transactions need to go through Service
Access Bus, High-Speed Bus Matrix and possibly Memory Interface which
can lead to longer testing times due to communication delay. Furthermore,
since more blocks are involved in the MemBIST operation, this can po-
tentially lead to higher power consumption during testing.
Another important implication of this architecture is that MemBIST can
only access the memory using words as wide as the Service Access Bus
which is 32-bits wide. Therefore, if a wider memory is to be tested,
each transaction needs to be segmented into smaller transactions and re-
assembled in the target SRAM. This will in turn require a segmentation-
and-reassembly protocol which potentially results in communication over-
head.

Specific MemBIST for Each SRAM Block In this scheme, every SRAM
block will have a MemBIST unit, directly attached to it, using a dedicated
test port.
Using a separate MemBIST unit for each SRAM block will lead to a higher
area overhead. Furthermore, this approach only provides coverage for the
SRAM and the functional path to the SRAM will not be tested.
On the other hand, the memory access time will be shorter which in turn
leads to a shorter testing time. Furthermore, multiple blocks can be tested
at the same time which can further shorten the testing time.
Another, and possibly the most important implication of this architecture
is that the MemBIST can access the memory using the full bus-width of the
memory in a single cycle. This shortens the access time and furthermore
simplifies the communication protocol and the MemBIST.

As described above, each of these architectures has its pros and cons. Based
on the number of SRAM blocks in a design, the second approach can lead to
an unacceptable area overhead, while the first architecture can be prohibitively
slow for wide memories.

Based on these observations, it was decided that a combination of both archi-
tectures will be most suitable for our application. In our proposed architecture,

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 58

the centralized approach will be used to test SRAMs which have a width equal
to or lower than that of the Service Access Bus, while a specific MemBIST will
be attached to every wider memory. Since typically there are not many such
memories in each design, this will not impose a very high area overhead on the
design, while keeping the testing time to an acceptable level.

4.2 Proposed MemBIST Algorithm
The next step in implementation of the MemBIST, is the selection of the Mem-
BIST algorithm. Based on the study done in chapter 3, it was concluded that a
combination of March LR and March AB can provide an acceptable fault cov-
erage. Such an algorithm should then be converted to a WOM test in order to
test the word-oriented embedded SRAMs. In this section, this algorithm will be
derived and optimized and then a theoretical performance analysis will be given.
Practical simulation-based performance evaluation is carried out in chapter 5.

4.2.1 Selected BOM Test
As concluded in section 3.4, a combination of March LR and March AB was
found suitable for the embedded SRAMs targeted in this research. March LR
and March AB are described in more detail in section 2.2 and are as follows:

MarchAB : {m (w0);⇓ (r0, w1, r1, w1, r1);⇓ (r1, w0, r0, w0, r0);⇑
(r0, w1, r1, w1, r1);⇑ (r1, w0, r0, w0, r0);m (r0)}

MarchLR : {m (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑
(r0, w1, r1, w0);⇑ (r0)}

Without any optimization, a combined test algorithm consisting of March
LR (O(14n)) and March AB (O(22n)) will have a complexity of O(36n) and
will be as follows:

{m (w0)[M0];⇓ (r0, w1, r1, w1, r1)[M1];⇓ (r1, w0, r0, w0, r0)[M2];
⇑ (r0, w1, r1, w1, r1)[M3];⇑ (r1, w0, r0, w0, r0)[M4];m (r0)[M5];

m (w0)[M ′0];⇓ (r0, w1)[M ′1];⇑ (r1, w0, r0, w1)[M ′2];
⇑ (r1, w0)[M ′3];⇑ (r0, w1, r1, w0)[M ′4];⇑ (r0)[M ′5]}

It can be seen that the march element M ′1 and M ′3 in March LR are covered
by M1 and M4 in March AB. Therefore M ′1 and M ′3 are redundant and do

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 59

not serve any purpose with regard to fault coverage. However they do set up
the memory values for M ′2 and M ′4. In order to achieve a better performance,
M ′1 can be replaced with simple m (w1). M ′0 is also unnecessary, because it is
completely covered by M0, and therefore can be removed.

After these optimizations, the combined march test will have a complexity
of O(33n) and be as follows:

MarchAB + LR : {m (w0);⇓ (r0, w1, r1, w1, r1);⇓ (r1, w0, r0, w0, r0);
⇑ (r0, w1, r1, w1, r1);⇑ (r1, w0, r0, w0, r0);m (r0);m (w1);⇑ (r1, w0, r0, w1);

⇑ (r1, w0);⇑ (r0, w1, r1, w0);⇑ (r0)}

This march test can even be further optimized. Note that the only reason
why we need to replace M ′1 with a m (w1) march element, is that the final
values of memory, after performing March AB will be set to zero. However,
since March AB is a symmetric test algorithm (for example both stuck-at-0 and
stuck-at-1 are detected), all the values written and read from the cells can be
inverted without affecting the fault coverage [5]. This means that the following
test can be used instead of March AB without any impact on the fault coverage:

MarchABi : {m (w1)[M”0];⇓ (r1, w0, r0, w0, r0)[M”1];⇓
(r0, w1, r1, w1, r1)[M”2];⇑ (r1, w0, r0, w0, r0)[M”3];⇑

(r0, w1, r1, w1, r1)[M”4];m (r1)[M”5]}

At the end of this march test, the values in the memory are preset to 1. It
should be noted that M ′1 and M ′3 are still redundant, because they are covered
byM”2, M”4 respectively. M ′0 is also unnecessary because after removal ofM ′1,
it does not serve any testing purpose. After making these modifications, M”5

will also be unnecessary, because the r1 operation of M ′2 can be used to check
the result of M”4.

After these optimizations, the final optimized march test will have a com-
plexity of O(32n) and will be as follows:

MarchABi+ LR : {m (w1);⇓ (r1, w0, r0, w0, r0);⇓ (r0, w1, r1, w1, r1);
⇑ (r1, w0, r0, w0, r0);⇑ (r0, w1, r1, w1, r1);⇑ (r1, w0, r0, w1);

⇑ (r1, w0);⇑ (r0, w1, r1, w0);⇑ (r0)}

It should be noted that this algorithm will be the base BOM test which
should be extended to a WOM test before being used in the MemBIST. Since
this algorithm is a combination of March LR and March AB, hereinafter we will
refer to it simply as March AB+LR.

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 60

4.2.2 Extension to WOM Test
As mentioned before, the specific targets of this research are embedded SRAMs
on Atmel AVR32 micro-controllers. This means that the memory layout is
known prior to implementation of the SRAM (this would not be true if the
MemBIST was expected to test the external memories as well). Therefore the
neighbors of each memory cell are known and a test designed for concurrent-
restricted intra-word fault model will provide enough fault coverage for the target
memories.

Among concurrent-restricted intra-word fault models, crCFdst fault model
is the most general fault model which requires 12 different data backgrounds
(DBs) in 27 operations in order to be tested thoroughly.

In this section we will use a Hexadecimal 32-bit notation to describe these
DBs and operations. But it should be noted that the number of required DBs
and operations are independent of memory width and the test can easily be
extended to any arbitrary word size.

The inter-word march test, as derived in section 4.2.1, is as follows:

MarchABi+ LR : {m (wFFFFFFFF);
⇓ (rFFFFFFFF , w00000000, r00000000, w00000000, r00000000);

⇓ (r00000000, wFFFFFFFF , rFFFFFFFF , wFFFFFFFF , rFFFFFFFF);
⇑ (rFFFFFFFF , w00000000, r00000000, w00000000, r00000000);

⇑ (r00000000, wFFFFFFFF , rFFFFFFFF , wFFFFFFFF , rFFFFFFFF);
⇑ (rFFFFFFFF , w00000000, r00000000, wFFFFFFFF);

⇑ (rFFFFFFFF , w00000000);⇑ (r00000000, wFFFFFFFF , rFFFFFFFF , w00000000);
⇑ (r00000000)}

Assuming the initial value of memory cells is set to zero at the beginning of
intra-word test (which is true at the end of the inter-word test derived above),
the intra-word march test consists of a single march element as follows:

m (wFFFFFFFF , rFFFFFFFF , rFFFFFFFF , w00000000,
r00000000, r00000000, w24924924, wDB6DB6DB ,
rDB6DB6DB , rDB6DB6DB , w24924924, r24924924,
r24924924, w49249249, wB6DB6DB6, rB6DB6DB6,
rB6DB6DB6, w49249249, r49249249, r49249249,
w6DB6DB6D, w92492492, r92492492, r92492492,
w6DB6DB6D, r6DB6DB6D, r6DB6DB6D)

This march element is derived using the method demonstrated in section
2.2.8 and specifically the DBOS shown in table 2.15. For optimization purposes,

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 61

theoretically, the intra-word march element can be modified in the following
ways without any impact on fault coverage [12]:

1. Extra read operations may be added, for example to make the test more
symmetric and/or to detect possible faults of other fault models.

2. The single march element may be divided into any number of march ele-
ments and, for each march element, the address can be chosen freely.

However, based on the inter-word and intra-word tests mentioned above, even
considering these degrees of freedom, it doesn’t seem possible to modify the
intra-word test in a way that some march elements become similar to those in
the inter-word test. Therefore the final WOM test will be a simple concatenation
of the inter-word and intra-word test and will have a complexity of O(59n):

{m (wFFFFFFFF);⇓ (rFFFFFFFF , w00000000, r00000000, w00000000, r00000000);
⇓ (r00000000, wFFFFFFFF , rFFFFFFFF , wFFFFFFFF , rFFFFFFFF);

⇑ (rFFFFFFFF , w00000000, r00000000, w00000000, r00000000);
⇑ (r00000000, wFFFFFFFF , rFFFFFFFF , wFFFFFFFF , rFFFFFFFF);

⇑ (rFFFFFFFF , w00000000, r00000000, wFFFFFFFF);
⇑ (rFFFFFFFF , w00000000);⇑

(r00000000, wFFFFFFFF , rFFFFFFFF , w00000000);⇑ (r00000000);
m (wFFFFFFFF , rFFFFFFFF , rFFFFFFFF , w00000000,

r00000000, r00000000, w24924924, wDB6DB6DB ,
rDB6DB6DB , rDB6DB6DB , w24924924, r24924924,
r24924924, w49249249, wB6DB6DB6, rB6DB6DB6,
rB6DB6DB6, w49249249, r49249249, r49249249,
w6DB6DB6D, w92492492, r92492492, r92492492,
w6DB6DB6D, r6DB6DB6D, r6DB6DB6D)}

4.2.3 Theoretical Performance Analysis
As currently implemented in Atmel AVR micro-controllers, March LR algorithm
has been used in a bit-oriented manner to test the embedded SRAMs on the
micro-controllers. It is worth mentioning that this was an effective algorithm
prior to DSM technologies when static simple and linked faults were the domi-
nant types of memory faults. In this thesis, we use this MemBIST as a reference
for benchmarking purposes and evaluation of our proposed MemBIST.

For a 32-bit wide memory of depth n, our optimized combination of March
LR and March AB, when converted to WOM with concurrent-restricted model,

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 62

has a complexity of O(59n) while the reference MemBIST implementation has
a complexity of:

O((14× 32)n) = O(448n)

This shows that the proposed MemBIST implementation can theoretically
provide up to 659% improvement in test time, while providing additional fault
coverage for dynamic faults, at least for inter-word fault models.

This improvement will be practically verified using simulation in chapter 5.

4.2.4 Extension to Retention Testing
Extension to data retention testing can easily be done by concatenating the
WOM test with the following march elements to any march test:

m (w00000000, r00000000);Del;m (r00000000, wFFFFFFFF , rFFFFFFFF);Del;m
(rFFFFFFFF)

where Del represents a delay for a specified time. This march element pro-
vides coverage for both single DRFs (where the faulty cell fails to maintain a 0 or
1 state but not both), and double DRFs (where the faulty cell fails to maintain
both states) [10].

Although it may be possible to reduce the test complexity by combining this
march element with the march elements in the main WOM test, it is better to
separate the retention testing from the rest of the tests because this way, the
retention testing can be enabled or disabled on demand.

In theory, it is also possible to take advantage of the existing values in
memory after performing the WOM test. In this case the memory words will
contain 0x6DB6DB6D value. We could use this value to optimize the test
further by using the following march elements for retention testing instead:

Del;m (r6DB6DB6D, w92492492, r92492492);Del;m (r92492492)

However, this approach would eliminate the independence of the two march
tests (March AB+LR and retention testing). Therefore, we decided to use the
non-optimized retention testing. This way, either test can be used indepen-
dently, and data retention testing can even be used with other WOM tests
without any for modifications.

With this extension, the final march test will be as follows:

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 63

{m (wFFFFFFFF);⇓ (rFFFFFFFF , w00000000, r00000000, w00000000, r00000000);
⇓ (r00000000, wFFFFFFFF , rFFFFFFFF , wFFFFFFFF , rFFFFFFFF);

⇑ (rFFFFFFFF , w00000000, r00000000, w00000000, r00000000);
⇑ (r00000000, wFFFFFFFF , rFFFFFFFF , wFFFFFFFF , rFFFFFFFF);

⇑ (rFFFFFFFF , w00000000, r00000000, wFFFFFFFF);
⇑ (rFFFFFFFF , w00000000);⇑

(r00000000, wFFFFFFFF , rFFFFFFFF , w00000000);⇑ (r00000000);
m (wFFFFFFFF , rFFFFFFFF , rFFFFFFFF , w00000000,

r00000000, r00000000, w24924924, wDB6DB6DB ,
rDB6DB6DB , rDB6DB6DB , w24924924, r24924924,
r24924924, w49249249, wB6DB6DB6, rB6DB6DB6,
rB6DB6DB6, w49249249, r49249249, r49249249,
w6DB6DB6D, w92492492, r92492492, r92492492,

w6DB6DB6D, r6DB6DB6D, r6DB6DB6D);m (w00000000, r00000000);
Del;m (r00000000, wFFFFFFFF , rFFFFFFFF);Del;m (rFFFFFFFF)}

4.3 Implementation of the MemBIST Unit
Implementation of the MemBIST was done using RTL1 Verilog. To minimize
the area overhead, the MemBIST was embedded into Memory Service Unit and
existing registers were reused in implementation of the MemBIST.

The implementation was done in two phases. In the first phase, March
AB+LR algorithm was implemented and extended for WOM using crCFdst
intra-word fault model. In the second phase, necessary extension was made to
enable detection of data retention faults. Each of these steps is described in
more detail in the following sections.

4.3.1 Implementation of March AB+LR
To implement the March AB+LR part of the MemBIST, a new command was
added to Memory Service Unit to activate the execution of this algorithm. The
MemBIST was implemented as a finite state machine with two sets of registers
as state registers.

The first set of registers was used to point to the march element being ex-
ecuted and the second set was used to point to the active memory operation
within the march element. This was done to maximize the reuse of the registers
in the Memory Service Unit. The state register of the old bit-oriented MemBIST

1Register Transfer Level

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 64

was reused to point to march elements and the bit-counter of the bit-oriented
test was reused to point to each operation within march elements. This helps
to minimize the area overhead when it is desired to have both MemBISTs im-
plemented in the system (for example during transition period from the old
MemBIST to the new MemBIST). Since the longest march element (intra-word
march element) has 27 operations, this 5-bit counter was long enough and no
changes were necessary to adapt it for the new purpose.

After initiation of a MemBIST operation, a status register will be set to
indicate that MemBIST unit is busy. Upon successful completion of a MemBIST
operation, the status register will be set accordingly, indicating a successful
MemBIST operation. In case of a failure, the status register will indicate an
error and the march element, memory operation, and memory address which
led to the failure will be saved. This information can help diagnosis algorithms
to locate the fault and identify the type of fault. It should be noted, however,
that fault diagnosis is beyond the scope of this thesis.

4.3.2 Implementation of Data Retention Testing
As mentioned in section 4.2.4, data retention testing can be done by performing
the following march elements:

m (w00000000, r00000000);Del;m (r00000000, wFFFFFFFF , rFFFFFFFF);Del;m
(rFFFFFFFF)

In the above march element Del indicates a delay which is usually chosen
as equal to a few milliseconds. This is a huge amount of time compared to
most testing operations during MemBIST. Furthermore, during this delay, the
MemBIST is not doing anything, and it’s simply waiting for data retention
faults to be sensitized. The testing efficiency can be improved by allowing the
ATE to perform other useful tasks during this period.

To achieve this goal, it was decided to use three different commands to
activate each of the three march elements. This way, the MemBIST will return
the control to the tester between the march elements. The tester will then re-
activate MemBIST after the Del amount of time has passed. In the meantime,
the tester can apply test vectors to other parts of the chip, as long as they do
not change the values inside the memory being tested.

Another advantage of separating data retention testing from March AB+LR
is that it can be used with any previous or future MemBISTs. For example it
can be used in conjunction with the March LR MemBIST to enable DRF testing
for that algorithm.

CHAPTER 4. IMPLEMENTATION OF THE MEMBIST 65

4.4 Conclusion
In this chapter the actual implementation of the MemBIST unit was discussed.
At first, based on the results from chapter 3, a combination of March LR and
March AB was derived and optimized which is expected to provide coverage for
both static and dynamic, simple and linked faults.

This algorithm was then extended for word-oriented memories using the
concurrent-restricted fault model described in section 2.2.8. It was estimated
that the proposed algorithm can provide up to 659% performance improvement
over the current bit-oriented March LR-based MemBIST.

Afterwards, the proposed MemBIST algorithm was extended to provide cov-
erage for data retention faults.

At the end, the relevant technical implementation details of the MemBIST
inside Memory Service Unit were discussed.

Chapter 5

Evaluation and Experimental
Results

As explained in chapter 1, the main requirements that an efficient MemBIST
should fulfill are the following:

Performance: The equipment used for testing semiconductor devices are typ-
ically very expensive. Therefore the required time for testing a device has
a direct impact on the production costs. A good MemBIST algorithm
should be able to test the device in a reasonable amount of time. This
will lead to lower production costs and increase the profit margin of the
product.

Area: Since MemBIST is a built-in unit, it will be implemented in every single
device. Therefore, the silicon area of each device will be increased by
the MemBIST which will result in increased production costs. A good
MemBIST algorithm should impose a relatively low area overhead on the
target chip. Since most of the device resources (e.g., registers) are not in
use during MemBIST operation, it is a good idea to reuse these resources
in implementation of the MemBIST.

Fault coverage: The main objective in implementation of any BIST unit is to
detect as many faulty units as possible before shipping to the field. This
requires a high fault coverage to be provided by the algorithm.

The production cost of a semiconductor can typically be calculated according
to the following equation:

66

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 67

Cost = Carea + Ctest−time + const.

In this equation, const. represents other production costs which are not
related to test circuitry (such as packaging). Carea is the silicon cost and can
be calculated as follows:

Carea = Area× a

where a represents the cost of the silicon per area unit. Here, area unit can
be considered, for example, as the number of gates in the design. Furthermore,
Ctest−time is the cost of the ATE equipment and can be calculated as follows:

Ctest−time = TestT ime× t

where t represents the cost of the ATE per time unit.
With the advance of semiconductor technology, the cost of silicon per area

unit is becoming cheaper and cheaper, while the ATE equipment are becoming
more expensive. This means that in the long run, testing time will be a more
important factor compared to area.

In this chapter, we will evaluate the implemented MemBIST with respect
to the above mentioned criteria. The implemented MemBIST will be compared
to the current implementation of bit-oriented March LR as a reference. The
results are normalized in such a way that the results of the reference MemBIST
will be equal to 1. This is done to compensate for dependence of the results on
technology, clock frequency, and synthesis parameters (e.g. optimization effort).
After each evaluation, a discussion is made to explain the result in more detail.
At the end, a explanation will be given with regard to how these results should
be interpreted.

5.1 Performance Evaluation
The implemented MemBIST was simulated on an 8word × 32bit embedded
SRAM of an AVR micro-controller using Synopsys® VCS®.

The reference MemBIST was simulated using the same test-bench on the
same memory.

The normalized run-times of the MemBIST units are shown in table 5.1.
Note that this run-time does not include retention testing and only corresponds
to WOM March AB+LR algorithm. This is due to three reasons:

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 68

Table 5.1: Run-time of MemBIST algorithms on an 8× 32bit reference memory
MemBIST Unit MemBIST Algorithm Normalized Run-Time

Newly Implemented MemBIST
Word-oriented March AB+LR

0.16
with crCFdst intra-word extension

Reference MemBIST Bit-oriented March LR 1.00

1. Data retention testing consists mostly of huge delays during which other
useful tasks can be performed (e.g. testing other parts of the chip), there-
fore the run-time of data retention testing is not entirely an overhead in
its real sense.

2. The reference MemBIST does not perform retention testing and therefore
such a comparison would not be a fair one, since the MemBISTs would be
targeting two completely different types of fault.

3. The data retention testing is really a separate test which can be used in
conjunction with either MemBIST. Therefore it should not be considered
as a part of WOM March AB+LR.

5.1.1 Discussion
As can be seen in table 5.1, the required testing time of the MemBIST is short-
ened by 84% which translates to 525% performance improvement over this par-
ticular implementation of bit-oriented March LR. This performance improve-
ment is less than the estimated improvement in section 4.2.3. Our more detailed
analysis showed that this difference is due to the fact that this particular March
LR implementation is not completely bit-oriented and the initial w0 and the
final r0 operations are done in a word-oriented manner.

It should be noted that even though this test is run on an 8−word memory,
due to the regular structure of SRAMs and MemBIST algorithm, the same
improvement can be expected on all 32 − bit wide memories. In other words,
since test times of both test algorithms (as well as any other march test) increase
linearly with the memory size, the timing improvement should remain almost
constant.

With reduction of memory width, this improvement becomes smaller, and
eventually the bit-oriented test will become faster than the word-oriented test
due to the long intra-word march element which will be run on every memory

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 69

Table 5.2: Area Report for Synthesis of Memory Service Unit
Synthesized Configuration Normalized Area

Without any MemBIST 0.9994
With reference MemBIST 1.0000

With new MemBIST 1.0007
With both MemBISTs 1.0013

word. On the other hand, with increasing the memory width, this improvement
will become even more significant due to the fact that the number of memory
operations is independent from the memory width, thanks to crCFdst intra-
word fault model. Based on the current trend in microprocessor technology
(e.g., 64-bit architectures becoming more and more popular), it seems that the
latter case will be more likely in the foreseeable future and therefore even more
significant improvements can be expected over the bit-oriented march tests.

5.2 Area Evaluation
The micro-controller device was synthesized using Synopsys® Design Com-
piler®. The synthesis was done for 4 different configurations:

1. Neither MemBIST was implemented

2. Only the reference MemBIST implemented

3. Only the new MemBIST implemented

4. Both MemBISTs implemented

Similar synthesis parameters were used for all mentioned configurations. The
area report of the synthesis of micro-controller are shown in table 5.2.

The device used here as a reference, was a typical Atmel 32-bit AVR micro-
controller.

5.2.1 Discussion
As can be seen in table 5.2, either MemBIST imposes a marginal area overhead
when compared to the micro-controller area. Although the area overhead of the
proposed MemBIST is 100% more than the reference MemBIST, this amount

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 70

of area overhead is still too little to cause any considerable increase in the
production costs.

This very low area overhead is due to the fact that all the registers used for
implementation of MemBIST are reused from existing registers in the Memory
Service Unit. Therefore this area overhead mostly consists of the control logic of
the MemBIST state machine. This is expected to be higher than the reference
MemBIST, considering that the proposed MemBIST has many more states (59
memory operations) compared to the reference MemBIST (14 memory opera-
tions).

5.3 Fault Coverage Evaluation
As mentioned in section 2.2.5, the WOM March AB+LR algorithm is expected
to detect the following inter-word faults:

• All single-cell static faults (1PF1s, table 2.2)

• All two-cell static faults (1PF2s, table 2.4)

• Realistic single-cell two-operation dynamic faults (table 2.6)

• Realistic two-cell two-operation dynamic faults (table 2.7)

Additionally, as mentioned in section 2.2.8, this algorithm is expected to detect
the following intra-word faults:

• State Coupling Faults (CFsts)

• Idempotent Faults (CFids)

• Disturb Coupling Faults (CFdsts)

In order to evaluate fault coverage, all static faults and realistic dynamic fault
models (except the ones which involve a random output or undefined state) were
implemented using behavioral Verilog and injected to the simulated memory.
All of the fault primitives of each FFM from tables 2.2, 2.4, 2.6 and 2.7 were
separately implemented and simulated.

Coupling faults were injected 2 times, once on cells from different memory
words (to simulate inter-word faults) and once on cells within the same memory
word (to simulate intra-word faults). For injection of intra-word faults, the
aggressor and victim cells were chosen as two adjacent memory bits, due to the
assumptions of concurrent-restricted fault model.

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 71

Table 5.3: Fault Simulation Results for Inter-Word Static Single-Cell Faults

FFM FP
Detected By

Proposed MemBIST Reference MemBIST

SF
< 1/0/− > Yes Yes

< 0/1/− > Yes Yes

TF
< 0w1/0/− > Yes Yes

< 1w0/1/− > Yes Yes

WDF
< 0w0/ ↑ /− > Yes No

< 1w1/ ↓ /− > Yes No

RDF
< r0/ ↑ /1 > Yes Yes

< r1/ ↓ /0 > Yes Yes

DRDF
< r0/ ↑ /0 > Yes Yes

< r1/ ↓ /1 > Yes Yes

IRF
< r0/0/1 > Yes Yes

< r1/1/0 > Yes Yes

In the following subsections, the results for inter-word and intra-word faults
will be separately presented and discussed.

5.3.1 Inter-word Faults
The fault simulation results for inter-word faults are shown in tables 5.3, 5.4,
5.5, and 5.6.

5.3.1.1 Discussion

The fault coverage for inter-word FFMs is extracted from tables 5.3, 5.4, 5.5,
and 5.6 and shown in table 5.7.

As shown in table 5.7, the proposed MemBIST successfully manages to de-
tect all targeted inter-word faults, including all static faults and realistic dy-
namic faults.

The reference MemBIST, as expected from a March LR-based MemBIST,
provides a reasonable fault coverage for static simple faults and static coupling
faults. However it provides a poor coverage for dynamic faults. Since the
reference MemBIST does not have a data retention fault testing extension, it
was not evaluated for these fault models.

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 72

Table 5.4: Fault Simulation Results for Intra-Word Static Coupling Faults

FFM FP
Detected By

Proposed MemBIST Reference MemBIST

CFst

< 0; 0/1/− > Yes Yes

< 0; 1/0/− > Yes Yes

< 1; 0/1/− > Yes Yes

< 1; 1/0/− > Yes Yes

CFds

< xwy; 0/ ↑ /− > Yes Yes

< xwy; 1/ ↓ /− > Yes Yes

< rx; 0/ ↑ /− > Yes Yes

< rx; 1/ ↓ /− > Yes Yes

CFid

< 0w1; 0/ ↑ /− > Yes Yes

< 0w1; 1/ ↓ /− > Yes Yes

< 1w0; 0/ ↑ /− > Yes Yes

< 1w0; 1/ ↓ /− > Yes Yes

CFin
{< 0w1; 0/ ↑ /− >, < 0w1; 1/ ↓ /− >} Yes Yes

{< 1w0; 0/ ↑ /− >, < 1w0; 1/ ↓ /− >} Yes Yes

CFwd

< 0; 0w1/0/− > Yes Yes

< 1; 0w1/0/− > Yes Yes

< 0; 1w0/1/− > Yes Yes

< 1; 1w0/1/− > Yes Yes

CFrd

< 0; 0w0/ ↑ /− > Yes No

< 1; 0w0/ ↑ /− > Yes No

< 0; 1w1/ ↓ /− > Yes No

< 1; 1w1/ ↓ /− > Yes No

CFdrd

< 0; r0/ ↑ /1 > Yes Yes

< 1; r0/ ↑ /1 > Yes Yes

< 0; r1/ ↓ /0 > Yes Yes

< 1; r1/ ↓ /0 > Yes Yes

CFir

< 0; r0/ ↑ /0 > Yes Yes

< 1; r0/ ↑ /0 > Yes No

< 0; r1/ ↓ /1 > Yes Yes

< 1; r1/ ↓ /1 > Yes Yes

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 73

Table 5.5: Fault Simulation Results for Inter-Word Dynamic Single-Cell Faults

FFM FP
Detected By

Proposed MemBIST Reference MemBIST

dRDF

< 0w0r0/1/1 > Yes No

< 1w1r1/0/0 > Yes No

< 0w1r1/0/0 > Yes Yes

< 1w0r0/1/1 > Yes Yes

dDRDF

< 0w0r0/1/0 > Yes No

< 1w1r1/0/1 > Yes No

< 0w1r1/0/1 > Yes No

< 1w0r0/1/0 > Yes No

dIRF

< 0w0r0/0/1 > Yes No

< 1w1r1/1/0 > Yes No

< 0w1r1/1/0 > Yes Yes

< 1w0r0/0/1 > Yes Yes

5.3.2 Intra-word Faults
The fault simulation results for inter-word faults are shown in tables 5.8 and
5.9.

5.3.2.1 Discussion

Since the proposed algorithm is not targeted against all simulated faults of table
5.8 and 5.9, we divide these faults into targeted and untargeted faults and discuss
each category separately. Of course, the targeted fault set of the proposed
algorithm is different from that of the reference MemBIST. Therefore, in this
classification, “targeted fault” means faults that are targeted by the proposed
algorithm, and untargeted fault means the faults that are not targeted by the
proposed algorithm.

Targeted Fault Coverage As mentioned in section 5.3, the proposed algo-
rithm only targets the following intra-word faults:

• State Coupling Faults (CFsts)

• Idempotent Coupling Faults (CFids)

• Disturb Coupling Faults (CFdsts)

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 74

Table 5.6: Fault Simulation Results for Inter-Word Dynamic Coupling Faults

FFM FP
Detected By

Proposed MemBIST Reference MemBIST

dCFds

< 0w0r0, 0/1/− > Yes No

< 0w0r0, 1/0/− > Yes No

< 1w1r1, 1/0/− > Yes No

< 1w1r1, 0/1/− > Yes No

< 0w1r1, 0/1/− > Yes Yes

< 1w0r0, 1/0/− > Yes Yes

< 0w1r1, 1/0/− > Yes No

< 1w0r0, 0/1/− > Yes No

dCFrd

< 0, 0w0r0/1/1 > Yes No

< 1, 0w0r0/1/1 > Yes No

< 1, 1w1r1/0/0 > Yes No

< 0, 1w1r1/0/0 > Yes No

< 0, 0w1r1/0/0 > Yes Yes

< 1, 0w1r1/0/0 > Yes No

< 1, 1w0r0/1/1 > Yes Yes

< 0, 1w0r0/1/1 > Yes No

dCFdrd

< 0, 0w0r0/1/0 > Yes No

< 1, 0w0r0/1/0 > Yes No

< 1, 1w1r1/0/1 > Yes No

< 0, 1w1r1/0/1 > Yes No

< 0, 0w1r1/0/1 > Yes No

< 1, 0w1r1/0/1 > Yes No

< 1, 1w0r0/1/0 > Yes No

< 0, 1w0r0/1/0 > Yes No

dCFir

< 0, 0w0r0/0/1 > Yes No

< 1, 0w0r0/0/1 > Yes No

< 1, 1w1r1/1/0 > Yes No

< 0, 1w1r1/1/0 > Yes No

< 0, 0w1r1/1/0 > Yes Yes

< 1, 0w1r1/1/0 > Yes No

< 1, 1w0r0/0/1 > Yes Yes

< 0, 1w0r0/0/1 > Yes No

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 75

Table 5.7: Fault Coverage for Inter-Word Faults

FFM
Fault Coverage

Proposed MemBIST Reference MemBIST

SF 100% 100%

TF 100% 100%

WDF 100% 0%

RDF 100% 100%

DRDF 100% 100%

IRF 100% 100%

CFst 100% 100%

CFds 100% 100%

CFid 100% 100%

CFin 100% 100%

CFtr 100% 100%

CFwd 100% 0%

CFrd 100% 100%

CFdrd 100% 75%

CFir 100% 100%

dRDF 100% 50%

dDRDF 100% 0%

dIRF 100% 50%

dCFds 100% 25%

dCFrd 100% 25%

dCFdrd 100% 0%

dCFir 100% 25%

DRFs 100% -

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 76

Table 5.8: Fault Simulation Results for Intra-Word Static Faults

FFM FP
Detected By

Proposed MemBIST Reference MemBIST

CFst

< 0; 0/1/− > Yes Yes

< 0; 1/0/− > Yes Yes

< 1; 0/1/− > Yes Yes

< 1; 1/0/− > Yes Yes

CFds

< xwy; 0/ ↑ /− > Yes Yes

< xwy; 1/ ↓ /− > Yes Yes

< rx; 0/ ↑ /− > Yes Yes

< rx; 1/ ↓ /− > Yes Yes

CFid

< 0w1; 0/ ↑ /− > Yes Yes

< 0w1; 1/ ↓ /− > Yes Yes

< 1w0; 0/ ↑ /− > Yes Yes

< 1w0; 1/ ↓ /− > Yes Yes

CFin
{< 0w1; 0/ ↑ /− >, < 0w1; 1/ ↓ /− >} Yes Yes

{< 1w0; 0/ ↑ /− >, < 1w0; 1/ ↓ /− >} Yes Yes

CFtr

< 0; 0w1/0/− > Yes Yes

< 1; 0w1/0/− > Yes Yes

< 0; 1w0/1/− > Yes Yes

< 1; 1w0/1/− > Yes Yes

CFwd

< 0; 0w0/ ↑ /− > Yes No

< 1; 0w0/ ↑ /− > Yes No

< 0; 1w1/ ↓ /− > No No

< 1; 1w1/ ↓ /− > Yes No

CFrd

< 0; r0/ ↑ /1 > Yes Yes

< 1; r0/ ↑ /1 > Yes Yes

< 0; r1/ ↓ /0 > Yes Yes

< 1; r1/ ↓ /0 > Yes Yes

CFdrd

< 0; r0/ ↑ /0 > Yes Yes

< 1; r0/ ↑ /0 > Yes No

< 0; r1/ ↓ /1 > Yes Yes

< 1; r1/ ↓ /1 > Yes Yes

CFir

< 0; r0/0/1 > Yes Yes

< 1; r0/0/1 > Yes Yes

< 0; r1/1/0 > Yes Yes

< 1; r1/1/0 > Yes Yes

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 77

Table 5.9: Fault Simulation Results for Intra-Word Dynamic Faults

FFM FP
Detected By

Proposed MemBIST Reference MemBIST

dCFds

< 0w0r0, 0/1/− > No No

< 0w0r0, 1/0/− > Yes No

< 1w1r1, 1/0/− > Yes No

< 1w1r1, 0/1/− > Yes No

< 0w1r1, 0/1/− > Yes Yes

< 1w0r0, 1/0/− > Yes Yes

< 0w1r1, 1/0/− > Yes No

< 1w0r0, 0/1/− > Yes No

dCFrd

< 0, 0w0r0/1/1 > Yes No

< 1, 0w0r0/1/1 > Yes No

< 1, 1w1r1/0/0 > Yes No

< 0, 1w1r1/0/0 > No No

< 0, 0w1r1/0/0 > Yes Yes

< 1, 0w1r1/0/0 > Yes No

< 1, 1w0r0/1/1 > Yes Yes

< 0, 1w0r0/1/1 > Yes No

dCFdrd

< 0, 0w0r0/1/0 > Yes No

< 1, 0w0r0/1/0 > Yes No

< 1, 1w1r1/0/1 > Yes No

< 0, 1w1r1/0/1 > No No

< 0, 0w1r1/0/1 > Yes No

< 1, 0w1r1/0/1 > Yes No

< 1, 1w0r0/1/0 > Yes No

< 0, 1w0r0/1/0 > Yes No

dCFir

< 0, 0w0r0/0/1 > Yes No

< 1, 0w0r0/0/1 > Yes No

< 1, 1w1r1/1/0 > Yes No

< 0, 1w1r1/1/0 > No No

< 0, 0w1r1/1/0 > Yes Yes

< 1, 0w1r1/1/0 > Yes No

< 1, 1w0r0/0/1 > Yes Yes

< 0, 1w0r0/0/1 > Yes No

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 78

Table 5.10: Fault Coverage for Targeted Intra-Word Faults

FFM
Fault Coverage

Proposed MemBIST Reference MemBIST

CFst 100% 100%

CFid 100% 100%

CFdst 100% 100%

Table 5.11: Fault Coverage for Untargeted Intra-Word Faults

FFM
Fault Coverage

Proposed MemBIST Reference MemBIST

CFin 100% 100%

CFtr 100% 100%

CFwd 75% 0%

CFrd 100% 100%

CFdrd 100% 75%

CFir 100% 100%

dCFds 87.5% 25%

dCFrd 87.5% 25%

dCFdrd 87.5% 0%

dCFir 87.5% 25%

In other words, the algorithm only targets a subset of intra-word static faults.
No intra-word dynamic faults are targeted by this algorithm.

As shown in table 5.8, the implemented MemBIST manages to detect all
targeted faults successfully. The fault coverage for targeted intra-word faults is
shown in table 5.10.

Since the reference MemBIST is a bit-oriented test, it provides the same
coverage for inter-word and intra-word faults of the same fault model. As shown
in table 5.8, this coverage is 100% for all targeted fault models.

Untargeted Fault Coverage The fault coverage for untargeted FFMs is
presented table 5.11.

It can be seen from table 5.11 that the implemented MemBIST provides a
good fault coverage for untargeted faults as well. Again, the reference MemBIST
provides a fault coverage similar to inter-word faults, as expected.

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 79

The reason why some fault primitives are not covered by the proposed al-
gorithm is that there are no sensitizing sequences corresponding to these fault
primitives in the intra-word march test.

For example, the following CFwd is not covered by the proposed MemBIST:
< 0; 1w1/ ↓ /− >. This is due to the fact that based on the DBOS used for
crCFdsts (table 2.15), there are no operations which overwrite the victim cell
with 1, while the aggressor cell is set to 1 and the old value for the victim cell
is 0. The same reason is true for other uncovered fault primitives as well.

It should also be noted that since the designed MemBIST operates at the
system’s target clock frequency, the memory test will be run at-speed. This
will enable the MemBIST to provide some coverage for timing-related faults,
such as path delay faults, as well. However since our simulations were done in
a functional level, the exact coverage for these faults was not determined.

5.3.3 Interpretation of the Results and Translation to Phys-
ical Defect Coverage

While the fault coverages estimated in this section can give an overview of how
good each MemBIST will perform, they should not be interpreted as the actual
defect coverages.

In order to estimate the actual physical defect coverage, a statistical dis-
tribution showing the probabilities of each functional fault model in the real
world should be available. Only after that, the actual defect coverage can be
estimated as follows:

DefectCoverage =

∑
i
[P (FFMi)×Fault Coverage(FFMi)]∑

P (FFMi)

In the above formula, P (FFMi) is the probability of functional fault model
i occurring in reality and FaultCoverage(FFMi) is the fault coverage for that
functional fault model provided by the algorithm.

This means that the fault primitives that have a lower probability of occur-
ring in real life should have a lower weight in calculation of defect coverage.

For example, prior to introduction of DSM technologies, dynamic FFMs had
a very low probability of happening in real life. That’s why algorithms such as
March LR were able to provide a very high defect coverage without targeting
these fault models.

Unfortunately, at the time of this research, statistical distribution of fault
models for Atmel’s process was not available. This is due to the fact that the
chips produced at Atmel typically have had a high yield and it has not been

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 80

necessary to identify the type of the faults that led to very few chips failing the
MemBIST.

That said, considering the fact that the proposed MemBIST covers all the
fault primitives covered by the reference MemBIST, it is safe to assume that
the defect coverage of the proposed MemBIST will be at least as high as the
reference MemBIST and any fault detected by the reference MemBIST will be
detected by the proposed MemBIST as well.

5.4 Summary
In this chapter the implemented MemBIST was evaluated with respect to area
overhead, performance, and fault coverage. In each evaluation, the designed
MemBIST was compared to a bit-oriented March LR-based MemBIST currently
in use in Atmel AVR family micro-controllers.

Our evaluation results show that the designed MemBIST provides a very
high fault coverage for static and realistic dynamic faults and at the same time
it performs 400% faster compared to the reference MemBIST. This all comes
at the cost of a small area overhead which is neglectable when compared to the
huge savings in testing cost.

Chapter 6

Summary and Conclusions

In this research, a state-of-the-art Memory Built-In Self Test unit was imple-
mented and evaluated for use on Atmel AVR family micro-controllers.

We started by studying state-of-the-art memory fault models for deep sum-
micron SRAM technologies. A comprehensive summary of these fault models
was given in section 2.1. We then continued by studying the state-of-the-art
memory fault-detection algorithms. A summary of up-to-date algorithms (at
the time of this research) was given in section 2.2.

In chapter 3, these state-of-the-art MemBIST algorithms were compared,
mostly based on their fault detection capabilities, and a combination of March
AB and March LR was selected for implementation.

In chapter 4, the combined MemBIST algorithm was derived from March AB
and March LR, and was extended to WOM testing using concurrent-restricted
intra-word memory fault model. This algorithm was then extended to provide
support for data retention testing and implemented in Verilog HDL in register-
transfer level.

Finally, in chapter 5, the designed MemBIST was evaluated for area over-
head, performance, and fault coverage. The bit-oriented March LR-based Mem-
BIST, currently in use in Atmel AVR micro-controllers, was used as a reference
MemBIST for benchmarking purposes. Our results show that the proposed
MemBIST provides a significant performance improvement and at the same
time provides a better fault coverage compared to the reference MemBIST.
This comes at the price of a small area overhead compared to the reference
MemBIST.

Note: This research was carried out in two separate steps. At first, and as

81

CHAPTER 6. SUMMARY AND CONCLUSIONS 82

part of a semester project, a comprehensive literature review was performed, the
results of which are presented in chapters 2 and 3. Afterwards, and as part of a
master’s thesis, the actual implementation and evaluation of the MemBIST was
done, the results of which are presented in chapters 4 and 5. For the sake of
completeness and readability, the results of both steps are joined in this report.
The results of the semester project were also separately published as [1].

Bibliography

[1] H. Atashi, “Low-cost membist for embedded srams,” 2012.

[2] M. Linder, A. Eder, K. Oberlaender, and M. Huch, “Effectiveness of mem-
ory test algortihms and analysis of fault distribution in srams: A case
study based on industrial results,” in European Test Symposium, 2011.
(ETS 2011). 16th IEEE, May 2011.

[3] S. Hamdioui, Z. Al-Ars, and A. van de Goor, “Testing static and dynamic
faults in random access memories,” in VLSI Test Symposium, 2002. (VTS
2002). Proceedings 20th IEEE, pp. 395 – 400, 2002.

[4] A. Bosio, S. Di Carlo, G. Di Natale, and P. Prinetto, “March ab, a state-
of-the-art march test for realistic static linked faults and dynamic faults
in srams,” Computers Digital Techniques, IET, vol. 1, pp. 237 –245, may
2007.

[5] A. Bosio, P. Girard, L. Dilillo, S. Pravossoudovitch, and A. Virazel, Ad-
vanced Test Methods for SRAMs: Effective Solutions for Dynamic Fault
Detection in Nanoscaled Technologies. Springer, 2009.

[6] S. Hamdioui, Testing Multi-Port Memories: Theory and Practice. PhD
thesis, January 2001.

[7] A. van de Goor and Z. Al-Ars, “Functional memory faults: a formal nota-
tion and a taxonomy,” in VLSI Test Symposium, 2000. Proceedings. 18th
IEEE, pp. 281 –289, 2000.

[8] A. J. van de Goor, Testing semiconductor memories: theory and practice.
New York, NY, USA: John Wiley & Sons, Inc., 1991.

83

BIBLIOGRAPHY 84

[9] C. Papachristou and N. Sahgal, “An improved method for detecting func-
tional faults in semiconductor random access memories,” Computers, IEEE
Transactions on, vol. C-34, pp. 110 –116, feb. 1985.

[10] A. van de Goor, G. Gaydadjiev, V. Mikitjuk, and V. Yarmolik, “March lr: a
test for realistic linked faults,” VLSI Test Symposium, IEEE, vol. 0, p. 272,
1996.

[11] A. J. van de Goor, Testing semiconductor memories: theory and practice.
New York, NY, USA: John Wiley & Sons, Inc., 1991.

[12] A. van de Goor and I. Tlili, “A systematic method for modifying march tests
for bit-oriented memories into tests for word-oriented memories,” Comput-
ers, IEEE Transactions on, vol. 52, pp. 1320 – 1331, oct. 2003.

[13] M. Marinescu, “Simple and efficient algorithms for functional ram testing,”
in ITC, pp. 236–239, 1982.

[14] A. J. van de Goor, Testing semiconductor memories: theory and practice.
New York, NY, USA: John Wiley & Sons, Inc., 1991.

[15] D. Suk and S. Reddy, “A march test for functional faults in semiconductor
random access memories,” Computers, IEEE Transactions on, vol. C-30,
pp. 982 –985, dec. 1981.

[16] J. de Jonge and A. Smeulders, “Moving inversions test pattern is thorough,
yet speedy,” Computer Design, pp. 169 –173, may 1976.

[17] V. G. Mikitjuk, V. N. Yarmolik, and A. J. V. D. Goor, “Ram testing algo-
rithms for detection multiple linked faults,” 1996.

[18] S. Hamdioui, A. van de Goor, and M. Rodgers, “March ss: a test for all
static simple ram faults,” inMemory Technology, Design and Testing, 2002.
(MTDT 2002). Proceedings of the 2002 IEEE International Workshop on,
pp. 95 – 100, 2002.

[19] A. van de Goer and G. Gaydadjiev, “March u: a test for unlinked memory
faults,” Circuits, Devices and Systems, IEE Proceedings -, vol. 144, pp. 155
–160, jun 1997.

[20] S. Hamdioui and A. Van De Goor, “An experimental analysis of spot defects
in srams: realistic fault models and tests,” in Test Symposium, 2000. (ATS
2000). Proceedings of the Ninth Asian, pp. 131 –138, 2000.

BIBLIOGRAPHY 85

[21] R. Dekker, F. Beenker, and L. Thijssen, “Fault modeling and test algorithm
development for static random access memories,” in Test Conference, 1988.
Proceedings. New Frontiers in Testing, International, pp. 343 –352, sep
1988.

[22] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, and P. Prinetto, “March ab,
march ab1: new march tests for unlinked dynamic memory faults,” in Test
Conference, 2005. Proceedings. ITC 2005. IEEE International, pp. 8 pp.
–841, nov. 2005.

[23] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri, and
M. Hage-Hassan, “Dynamic read destructive fault in embedded-srams:
analysis and march test solution,” in Test Symposium, 2004. ETS 2004.
Proceedings. Ninth IEEE European, pp. 140 – 145, may 2004.

	Title Page
	Introduction
	Literature Review
	Memory Fault Models
	Concept of Fault Primitive
	Classification of Fault Primitives
	Simple versus Linked Faults
	Static versus Dynamic Faults
	Single-Port versus Multi-Port Faults
	Single-Cell versus Multi-Cell Faults

	Single-Port Static Faults
	Single-Cell Fault Primitives
	Single-Cell Functional Fault Models
	Two-Cell Fault Primitives
	Two-Cell Functional Fault Models

	Single-Port Dynamic Faults
	Single-Cell Fault Primitives
	Single-Cell Functional Fault Models
	Two-Cell Fault Primitives
	Two-Cell Functional Fault Models

	Memory Test Algorithms
	March Test Algorithms
	March LR: A Test for ``Realistic'' Linked Faults
	March SS: A Test for All Static Simple RAM Faults
	March 13N and March 9N
	March AB: A State-of-the-Art March Test for Realistic Static Linked Faults and Dynamic Faults
	Dynamic Faults
	Static Linked Faults
	March AB Test Algorithm

	March RAW: Testing Static and Dynamic Faults in Random Access Memories
	Effect of Address Ordering
	Converting March Tests for Bit-Oriented Memories into Tests for Word-Oriented Memories
	Detection of Single-Cell and Inter-Word Faults
	Detection of Intra-Word Faults

	Conclusion

	Comparison of MemBIST Algorithms
	Effectiveness of Memory Test Algorithms and Analysis of Fault Distribution in SRAMs: A Case Study Based on Industrial Test Results
	Testing Static and Dynamic Faults in Random Access Memories
	March AB, A State-of-the-Art March Test for Realistic Static Linked Faults and Dynamic Faults in SRAMs
	Conclusion

	Implementation of the MemBIST
	Proposed Architecture
	Proposed MemBIST Algorithm
	Selected BOM Test
	Extension to WOM Test
	Theoretical Performance Analysis
	Extension to Retention Testing

	Implementation of the MemBIST Unit
	Implementation of March AB+LR
	Implementation of Data Retention Testing

	Conclusion

	Evaluation and Experimental Results
	Performance Evaluation
	Discussion

	Area Evaluation
	Discussion

	Fault Coverage Evaluation
	Inter-word Faults
	Discussion

	Intra-word Faults
	Discussion

	Interpretation of the Results and Translation to Physical Defect Coverage

	Summary

	Summary and Conclusions
	Bibliography

