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Problem description
At the department of Circulation and Medical Imaging, Kalman filter based
approaches have been utilized for image tracking and segmentation. Until re-
cently, the methods have been based on forward tracking using the Real Time
Contour Tracking Library (RCTL). In particular for offline analysis, it would
likely be advantageous to utilize image information from multiple images. In
the literature Kalman smoothing techniques (such as fixed point, fixed interval
and backward-forward smoothers) have been employed for similar purposes. To
our knowledge, Kalman smoothers have not previously been applied to medical
image processing problems.

During a summer job at the department of Circulation and Medical Imaging
and later during his project work at NTNU the autumn 2011, Sigurd Storve was
working on extending the current RCTL framework to also handle unscented
Kalman filtering.

During his work with the master thesis, Sigurd will work to extend the RCTL
framework to handle Kalman smoothing techniques. The work will be divided
into three major parts:

• Implement the known methods: Fixed-lag smoothing, fixed point smooth-
ing, and fixed interval smoothing.

• Implement a new novel model-based smoothing approach: smoothing
around a learned model.

• Test the methods using datasets with known manual “ground truth” pro-
vided by a medical expert.
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Oppsummering
Et eksisterende C++ - bibliotek for sanntidssegmentering av ultralyddata vha.
Kalmanfiltrering, kjent som real-time contour tracking library (RCTL), brukes
som utgangspunkt for implementering og evaluering av forskjellige teknikker for
Kalman-smoothing: fixed-point, fixed-lag og fixed-interval Kalman-smoothing.
I tillegg har en eksperimentell smoothing-teknikk, gitt navnet statistical smoother
og basert p̊a fusjon av segmenterte og lærte gjenomsnittsestimater ved forskjel-
lige posisjoner i hjertesyklusen, blitt foresl̊att. Evalueringen gjøres med 29 vol-
umetriske ultralydopptak av venstre ventrikkel, med fasit best̊aende av manuelle
segmenteringer utført av en lege.

Den kliniske motivasjonen for dette arbeidet er forbedret nøyaktighet ved
automatisk segmentering av venstre ventrikkel, som igjen kan brukes til å øke
nøyaktigheten til automatisk m̊aling av klinisk nyttige parametere som f.eks.
ejeksjonsfraksjonen.

Evalueringen viser at ingen av de foresl̊atte Kalman-smoothingteknikkene
gir vesentlig bedre resultater enn vanlig Kalmanfiltrering. For de tre typene
Kalman-smoothere blir dette argumentert å følge fra m̊aten kantdeteksjoner
gjøres p̊a internt i biblioteket. Manglende ytelsesforbedring fra statistical smoother
forklares med for store variasjoner fra person til person; gjennomsnittlig de-
formasjonsmønster til venstre ventrikkel kan ikke generaliseres til individuelle
tilfeller i noen betydelig grad.
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Abstract
An existing C++ library for efficient segmentation of ultrasound recordings by
means of Kalman filtering, the real-time contour tracking library (RCTL), is
used as a building block to implement and assess the performance of different
Kalman smoothing techniques: fixed-point, fixed-lag, and fixed-interval smooth-
ing. An experimental smoothing technique based on fusion of tracking results
and learned mean state estimates at different positions in the heart-cycle is pro-
posed. A set of 29 recordings with ground-truth left ventricle segmentations
provided by a trained medical doctor is used for the performance evaluation.

The clinical motivation for this work is to improve the accuracy of automatic
left-ventricle tracking, which in turn can be used to improve the automatic
measurement of clinically important parameters such as the ejection fraction.

The evaluation shows that none of the smoothing techniques offer signifi-
cant improvements over regular Kalman filtering. For the Kalman smoothing
algorithms, it is argued to be a consequence of the way edge-detection measure-
ments are performed internally in the library. The statistical smoother’s lack of
improvement is explained by too large interpersonal variations; the mean left-
ventricular deformation pattern does not generalize well to individual cases.
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Abbreviations and terminology
• EKF : Extended Kalman filter.

• RCTL : Real-time contour tracking library.

• Covariance Intersection : algorithms for the fusion of two probabilistic
estimates.

• LV : Left Ventricle.
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• Ground truth : Triangle meshes representing the correct segmentation of
the left ventricle.

• Statistical Smoother : The experimental Kalman smoothing algorithm
based on learning from ground truths.

• The term forward-backward smoothers will be used to refer to both fixed-
lag Kalman smoothers and fixed-interval Kalman smoothers implemented
according to the forward-backward interpretation of smoothing.

• The words contour and state are in some places used interchangeably since
an RCTL-state vector contains all parameters needed to fully describe the
shape of a deformable model. All state vectors are interpreted relative to
the left ventricle model used in this project.
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1 Introduction
Between 1995 and 2006 the main cause of death in Norway was cardiovascular
diseases [1]. The availability of fast and reliable techniques for measuring the
heart function is therefore important both for emergency situations and routine
examinations.

Medical ultrasound offers a cheap and safe way for imaging and evaluating
the performance of the heart in real-time. The term echocardiography refers
to ultrasound used to image the heart, and is usually focused on assessing the
performance of the left ventricle, the main pumping chamber of the heart and
responsible for maintaining blood flow through the blood vessels.

The current trend in echocardiography is three-dimensional imaging and
quantitative analysis as opposed to qualitative, both of which are enabled by
rapid technological progress. Much research effort is put into developing algo-
rithms for extracting clinically useful parameters of the heart from ultrasound
scans.

Almost all left-ventricular performance parameters are derived from either
volume measurements or pressure measurements [2, p. 67]. The ejection fraction
quantifies the proportion of the filled left ventricle ejected during a heart-cycle
and is an important clinical parameter for predicting a patient’s prognosis. It
gives a measure of global heart function, i.e. how well the heart function as a
single unit.

In two-dimensional ultrasound imaging, estimation of left-ventricular vol-
umes necessarily involves approximations as the calculations are based on one
or more two-dimensional slices of the ventricle. Several methods differing in
complexity and accuracy are given in [3].

The task of locating objects and boundaries in images is in general termed
image segmentation. In medical image segmentation, the objects of interest
are typically organs or organ boundaries and the images are two- or three-
dimensional. Three-dimensional ultrasound offers volumetric images from which
volumes can be computed directly with great accuracy, given that the segmen-
tation is accurate.

Hence, real-time estimates for performance measures derived from volume
measurements, such as the ejection fraction, directly depends on the ability to
perform real-time segmentation in an automated and robust way; an estimated
delineation of the left ventricle throughout one full heart-cycle contains all nec-
essary information.

However, automatic segmentation of ultrasound images is a challenging task,
mostly because of the poor image quality caused by the inherent problem of
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speckle noise. This physical phenomenon is responsible for the characteristic
texture-like noise pattern of ultrasound that despite its appearance does not
represent tissue structure. Speckle is discussed in more detail later, for now it
suffices to point out that it complicates the process of automatic edge-detection,
a key step in a large class of automatic segmentation algorithms.

1.1 Motivation
The clinical motivation for this work is to achieve more accurate automatic
segmentation of ultrasound data in order to improve the quality of derived
automatic measurements of clinical parameters. An example of such a parameter
is the ejection fraction.

The technical motivation is to improve the real-time contour tracking library
(RCTL) [4, 5, 6], which is an extended Kalman filter-based C++ library for effi-
cient segmentation of arbitrary two-dimensional or three-dimensional recordings
or video streams. The principle of operation is to fit a deformable shape tem-
plate to the image data by encoding the deformation parameters as a state
vector, which is subsequently updated with edge-detection results.

According to [6], the real-time contour tracking library is capable of 3d real-
time left-ventricular segmentation at 25 frames per second on a 2.16 GHz Intel
Core 2 duo processor at approximately 8 % CPU power.

One drawback of the Kalman filter is that it cannot make use of future
measurements, even if available. This is the motivation for investigating Kalman
smoothing techniques within the RCTL framework. The term smoothing refers
to such estimates based on future measurements.

Future measurements are never available in a true real-time situation, but
they might be if a short lag is permissible or if post-processing is performed.
Although Kalman filtering techniques are widely used in the literature for per-
forming medical image segmentation [7], for unknown reasons Kalman smooth-
ing techniques is not as widespread.

The question addressed in this work is how different Kalman smoothing tech-
niques can be applied to medical image segmentation within the RCTL frame-
work and whether they can offer any improvement in tracking accuracy. The
intuition is that an estimate based on more information will be more accurate.

1.2 This project
This work consists of implementation and evaluation of three classes of known
Kalman smoothing techniques and one experimental smoothing algorithm. The
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experimental smoother solution is termed the statistical smoother and is inspired
by the information fusion performed in the Kalman smoothing algorithms, where
forward and backward estimates are combined into a single estimate. The sta-
tistical smoother instead merges prior knowledge of shape deformation with
forward filter estimates.

The performance evaluation will focus on left ventricle segmentation us-
ing deformable Doo-Sabin surfaces [6]. Except for the statistical smoother, all
smoothing algorithms are usable with general deformable models as well.

The three classes of Kalman smoothing techniques are fixed-lag smoothing,
fixed-interval smoothing, and fixed-point smoothing.

The usage of future measurement data necessarily implies a delay in the
stream of output estimates. The fixed-lag Kalman smoother introduces a user-
definable delay, while the fixed-interval Kalman smoother is limited to a post-
processing tool because all measurement information must be available in order
to compute any estimate. The principle of operation of the fixed-point smoother
is to combine subsequent estimates at specific positions in the heart-cycle into
better and better estimates, which is made possible by the very small changes
from one heart-cycle to another. Neither the statistical smoother nor the fixed-
point smoother introduce any lag.

The statistical smoother is based on learning from a set of ground-truths
provided by a medical expert. Average state vectors with associated certainty
estimates in the form of covariance matrices are computed at different points
in the heart cycle. These can be viewed as estimates in their own right, and
are fused with estimates from the extended Kalman filter, just as in the regular
smoother algorithms.

As this work focus on the left ventricle of the heart, the assumption can
be made that the data is periodic. All recordings used for evaluation purposes
consists of a single heart-beat repeated to achieve a periodic extension, but
recordings of multiple heartbeats could have been used as well.

Most of the algorithmic experimentation and implementation were performed
with a Matlab (R2010b, The MathWorks, inc.) interface to the RCTL-library,
called RctlMatlab. This approach was chosen since it is simpler to translate a
well-performing smoothing algorithm from Matlab to C++ than it is to con-
duct all experiments in C++ directly. The performance assessment was also
performed with Matlab.
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1.3 Previous work
The starting point was an experimental implementation of a fixed-interval smoother
inside the real-time contour tracking library itself. This functionality was not
usable directly without moderate changes to the core library code. The difficul-
ties arose from the fact that a fixed-interval smoother is not a filter, since no
outputs can be produced before all inputs are known.

RCTL’s experimental fixed-interval smoother consists of a forward-backward
smoother implementation in addition to the covariance intersection algorithm
which is introduced in section 2.7.1.

1.4 The structure of this thesis
In section 2 the necessary theoretical background will be presented, including
medical ultrasound, Kalman filtering and smoothing, and the real-time contour
tracking library. The implementation details follows in section 3, and the meth-
ods used to assess tracking performance are presented in section 4. In section 5
the results are presented and subsequently discussed in section 6. Finally, con-
clusions are presented in section 7. Additional technical details can be found in
the appendices.
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2 Theory
This section contains the necessary background material. First, a brief intro-
duction to medical ultrasound is given, followed by a description of the human
heart. Then the Kalman filter and an extension to non-linear systems, the ex-
tended Kalman filter, is introduced. The next section presents three common
Kalman smoothing techniques as well as a numerical example exploring the
performance gains introduced by smoothing.

A short introduction to subdivision surfaces, which is the type of surface
used to model the left ventricle in this project, is then given. The following
section introduces the real-time contour tracking library, which is the extended
Kalman filter-based contour tracker that all smoothing algorithms in this project
are based on.

The last section discusses the covariance intersection algorithm, which is an
integral part of the smoothing algorithms, used to fuse two or more estimates
into a single best estimate. It will be shown that it comes in two slightly different
formulations, depending on what is known about the correlation between the
estimates used as input.

2.1 Medical ultrasound
Medical ultrasound imaging is based on pulse echo measurements. A short pulse
emitted by a transducer propagates through tissue and energy is reflected back
as the pulse passes through layers with different acoustic impedances. The dis-
tance to the origin of an echo is determined using the two-way transit time,
while the echo strength carries information about the acoustic impedance mis-
match that caused it. The frequencies used in medical ultrasound are typically
between 1 and 15 MHz.

By assuming a constant speed of sound c
[m

s
]
, the formula for distance as

a function of two-way transit time becomes

d(t) = ct

2

An average speed of sound of c = 1540 m
s is commonly used in medical ultra-

sound and is justified by the human body being mostly composed of water.
In order to obtain a sector scan (2d) or a volume scan (3d) of a region of

interest, pulses must be emitted in different directions. After transmission of
a single pulse, the transducer is used as receiver to detect the returned echoes.
This introduces a delay determined by the maximum depth; enough time must
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be allocated for the pulse to reach the maximum depth and any echo to return
to the probe.

The beam steering can be done by moving the probe mechanically, or elec-
tronically using a phased array probe, which is composed of a (one- or two-
dimensional) array of small transducer elements. The emitted beam is then the
superposition of the output from the individual elements, and can be steered by
applying suitable delays to the individual elements. A more detailed treatment
can be found in [8, p. 177].

The focal point of the phased array probe can also be changed dynamically
on receive by adjusting the individual delays. A real-time scan of the region
of interest is obtained by repeating the scanning procedure multiple times per
second.

Medical ultrasound is a very safe imaging modality. According to [9], ”human
injury has never been attributed to clinical practice of diagnostic ultrasound.”

Ultrasound is inherently affected by speckle noise, which refers to a texture-
like noise pattern that degrades the quality of ultrasound images. It is caused by
the destructive and constructive interference pattern resulting from many fixed
tissue scatterers that are much smaller than the wavelength of the ultrasound
pulses [8, p. 215]. Although superficially resembling it, the speckle noise does
not correspond to underlying tissue structure.

The effect of speckle is to reduce contrast and visibility of boundaries of
anatomical structures. In [10] the negative effect of speckle noise is demon-
strated. It is shown that it leads to a reduction in lesion (tissue abnormality)
detectability of approximately a factor of eight. Speckle also complicates the
task of correctly identifying edges between anatomical structures.

There is also a positive aspect of speckle noise; it conveys information about
the motion of the tissue being imaged. This can be taken advantage of with
speckle tracking, which has been applied for tracking and strain computations
in multiple studies.

2.2 The human heart
The heart is a double pump which is responsible for maintaining the blood flow
through the human body. It consists of four chambers with valves to maintain
correct flow direction. These four chambers are the left and right atrium, and
the left and right ventricle. Figure 1 shows a simplified illustration of the main
anatomical structures. Referring to figure 1, venous blood containing carbon
dioxide and depleted of oxygen enters the right atrium, which contracts as the
right ventricle relaxes. The blood then enters the right ventricle, from which it is
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Figure 1: Cross-section of the the human heart. Image courtesy of wikipedia
user ZooFari, retrieved from http://en.wikipedia.org/wiki/File:Heart diagram-
en.svg

subsequently pumped through the lungs, where gas exchanges occurs. Carbon
dioxide is released and oxygen-enriched blood flows to the left atrium, which
contracts at the same time as the left ventricle relaxes. This fills the left ventricle
with oxygen-rich blood which is finally pumped to the organs when it contracts.
This cyclic behavior is illustrated in figure 2.

The term cardiac cycle refers to the heart’s contraction and relaxation. The
relaxation phase when the ventricles fills with blood is termed diastole, and the
contraction phase where blood is ejected from the ventricles is termed systole.

The amount of blood pumped out during one heart cycle can be found as
the volume of blood in the left ventricle at the end of diastole (end-diastolic
volume) minus the volume of blood present in the left ventricle at the end of the
contraction phase (end-systolic volume). This is called the stroke volume and
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Figure 2: Illustration of the blood flow in the human body. Red arrows sym-
bolize oxygen-rich blood while blue arrows symbolize oxygen-depleted blood.

can thus be computed by the following formula.

SV = EDV− ESV (1)

A much used measure of heart performance is the ejection fraction which is
defined as the percentage of EDV that is ejected.

Ef = SV
EDV = EDV− ESV

EDV (2)

A healthy person typically have an ejection fraction of approximately 60 % [11].

2.3 The Kalman filter
The Kalman filter is a recursive algorithm for computing optimal state esti-
mates given noisy observations and knowledge of the system dynamics and the
relation between system states and measurement vectors [12]. It maintains a
Gaussian posterior distribution conditioned on the set of observations so far.
The Kalman filter requires linear system- and measurement models. The ex-
tended Kalman filter and the unscented Kalman filter are two approaches for
relieving this constraint. However, these extensions are not optimal estimators
in general. Only the extended Kalman filter will be discussed, since this is the
approximation technique used in the real-time contour tracking library.

The notation used throughout the report is as follows. The expression x̂(k|l)
denotes an estimate for the value of x at discrete time k, given observational
data up to and including discrete time l. In the same manner, the expression
Pk|l denotes the covariance associated with the above estimate.
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Because the Kalman filter is usually employed in control-theoretic applica-
tions, its equations normally include a control term, i.e. the known control
inputs to the system. This is not needed in contour tracking applications and
hence dropped from the equations.

The original Kalman filter requires linear models because it involves com-
puting the mean and covariance of a transformed Gaussian distribution, which
is simple in the linear case [12, pp. 53]. The non-linear case is highly non-
trivial and some sort of approximation is needed since the optimal solution of
the non-linear filtering problem involves a potentially unbounded number of pa-
rameters [13], making real-time operation difficult. The extended Kalman filter
linearizes the non-linearities around an estimate.

The information filter formulation is algebraically equivalent to the standard
formulation of the Kalman filter and is often used to reduce the computational
requirements when the number of measurements exceeds the number of states,
which is the case in the real-time contour tracking library.

2.3.1 The dynamic system model

The Kalman filter algorithm requires the following framework consisting of a
state-transition function f(k) and a measurement function (or measurement
model) h(k). The state-transition function models the evolution of the system
with time, i.e. given the state vector x(k) at discrete time k, it returns x(k + 1),
the state vector at time k + 1.

The measurement function defines the relationship between a state vector
and the observation vector, i.e. the observation vector z obtained if the system
is in a given state x. Both functions are allowed to be time-varying.

x(k + 1) = f [x(k), k] + w(k) (3a)
z(k) = h[x(k), k] + v(k) (3b)

E
{
wkwT

j

}
= Qkδ(k − j) [Process noise cov.] (3c)

E
{
vkvT

j

}
= Rkδ(k − j) [Measurement noise cov] (3d)

E
{
wkvT

j

}
= 0 ∀ k, j [Noise independency] (3e)

The vector w(k) is the process noise, which is assumed to be zero-mean Gaus-
sian with covariance matrix Qk and the vector v(k) is the measurement noise,
which is assumed to be zero-mean Gaussian with covariance matrix Rk. These
noise terms represent system modeling errors and unknown measurement dis-
turbances, respectively.
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The original Kalman filter requires linear state-transition and measurement
functions. In this case equations 3 reduces to the following.

x(k + 1) = Fkx(k) + w(k) (4a)
z(k) = Hkx(k) + v(k) (4b)

where Fk and Hk are possibly time-varying matrices.

2.3.2 The original Kalman filter

The original Kalman filter was introduced in 1960 by Rudolf Kalman [14]. It
is a recursive algorithm for estimating the state of a system in such a way that
the the expected minimum-mean squared error is minimized [12].

The algorithm operates in a prediction-correction cycle. First, the state vec-
tor and covariance of the next time step are predicted using the state-transition
function. Then an observation is made and the updated state and covariance
is computed as a linear combination of the information from the measurement
vector and the prediction. A complete derivation of these equations can be
found in [12].

It is also possible to derive the Kalman filter from a statistical point of
view [15].

Prediction

x̂(k + 1|k) = Fkx̂(k|k) (5a)
Pk+1|k = FkPk|kFk

T + Qk (5b)

Update

Kk+1 = Pk+1|kHk+1
T
[
Hk+1Pk+1|kHk+1

T + Rk+1
]−1 (6a)

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kk+1 [z(k + 1)−Hk+1x̂(k + 1|k)] (6b)
Pk+1|k+1 = Pk+1|k −Kk+1Hk+1Pk+1|k (6c)
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2.3.3 Extended Kalman filter

The extended Kalman filter is an extension of the original Kalman filter to
systems where the state- and measurement models are allowed to be arbitrary
differentiable functions. However, this extension is at the expense of the filter’s
optimality. The extended Kalman filter may also diverge in certain cases.

The state-transition- and measurement matrices are now the Jacobian ma-
trices of the state-transition function and measurement function given by equa-
tions 3a and 3b, respectively.

Fk = ∂f(k)
∂x

∣∣∣∣
x=x̂(k|k)

(7)

Hk+1 = ∂h(k + 1)
∂x

∣∣∣∣
x=x̂(k+1|k)

(8)

(9)

With these modifications, the Kalman filter equations from section 2.3.2 be-
comes
Prediction

x̂(k + 1|k) = f [x̂(k|k), k] (10a)
Pk+1|k = FkPk|kFk

T + Qk (10b)

Update

Kk+1 = Pk+1|kHk+1
T
[
Rk+1 + Hk+1Pk+1|kHk+1

T
]−1 (11a)

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kk+1 [z(k + 1)− h[x̂(k + 1|k), k + 1]] (11b)
Pk+1|k+1 = Pk+1|k −Kk+1Hk+1Pk+1|k (11c)

2.3.4 Extended information filter

The extended information filter is algebraically equivalent to the extended Kalman
filter, but more efficient when the dimensionality of the measurement vector ex-
ceeds that of the state vector. The following description is based on [16].
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The prediction stage is the same as in the extended Kalman filter (equa-
tions 10), but the update stage is different. The system model is the same as
for the extended Kalman filter and is given by equations 3.

Pk|k
−1 = Pk|k−1

−1 + Hk
T Rk

−1Hk (12a)
ŷ(k|k) = ŷ(k|k − 1) + Hk

T Rk
−1(Hkx̂(k|k − 1) + z(k)− h[x̂(k|k − 1), k])

(12b)

where ŷ(k|k) = Pk|k
−1x̂(k|k) and and z(k) is the observed measurement vector

at time step k. This shows that the extended information filter maintains Pk|k
−1

and ŷ(k|k) in the filter loop, as opposed to Pk|k and x̂(k|k) in the extended
Kalman filter.

Equations 12 shows that except for the matrix Rk, all inversions involves
matrices of the same dimensionality as the state vector. This ensures an asymp-
totic running time independent of the dimensionality of the measurement vector,
in contrast to the extended Kalman filter as described in section 2.3.3.

2.4 Kalman smoothers
The standard Kalman filter formulation does not utilize measurement informa-
tion past current time-step, even if so is available. The term smoothing refers
to state estimates of the form x̂(k|l), where l > k, i.e. state estimates based
on future measurements. In a real-time situation such future measurements are
of course not available, but can be if a small time-lag is tolerable or off-line
post-processing is performed.

The different Kalman smoothers can be classified into three types: fixed-
point smoothing, fixed-lag smoothing and fixed-interval smoothing.
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Figure 3: Graphical comparison of the Kalman filter to fixed-point, fixed-lag,
and fixed-interval Kalman smoothers. The red squares show computed posterior
estimates. The gray squares in the fixed-point smoother are forward posterior
estimates needed before the fixed-point of interest is reached. Both the fixed-
point and fixed-lag is four. In the fixed-interval smoother it is assumed that the
measurement data interval is fixed and finite, while the other algorithms may
continue on indefinitely in the same manner.
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Figure 3 shows a simple graphical comparison of the Kalman filter and the
three smoother types. The horizontal axis denotes the set of observations used
as basis when computing state estimates, i.e. measurement information used
equal to k means that the set {z(0), z(1), . . . , z(k)} of measurements has been
used.

The fixed-point Kalman filter produce a better and better estimate for the
state at a single time step as more and more measurements arrive. The fixed-lag
smoother, on the other hand, computes an estimate of the state a certain number
of time steps before current measurement. Finally, the fixed-interval smoother
computes a state estimate conditioned on all of the measurements for each time
step. This smoother type assumes a fixed and finite set of measurements and is
therefore restricted to post-processing only.

By inspecting figure 3, the fixed-point Kalman smoother appears to be un-
interesting for segmentation of dynamic anatomical structures since the results
would be estimates of the segmentation at a single fixed instant in time, but
increasing in accuracy as more and more measurements arrives. It is the pe-
riodic motion of the heart that makes fixed-point smoothing interesting, since
the estimate of e.g. the left ventricle at a specific point in the heart-cycle can
be based on a data set containing many heart-cycles.

The different smoother types comes in different mathematical formulations.
Usually, the regular Kalman filter equations are employed together with a sep-
arate set of equations used for a backward pass. This backward pass use the
future measurement data to compute correcting terms for the regular forward
Kalman filter estimates.

In [17] an important interpretation of the fixed-interval smoother as a combi-
nation of two optimal filters running in each direction is presented. This idea is
further extended in [12] to give a practical means for implementing the fixed-lag
smoother for reasonably short fixed-lags. This interpretation of the smoothers
will be referred to as forward-backward smoothers, and serve as the theoretical
foundation for actual implementations. The forward-backward approach allows
reuse of existing Kalman filters.

2.4.1 Forward-backward approach to fixed-interval smoothing

The forward-backward Kalman smoother is now summarized. The forward filter
is operated in the usual way, giving a posterior state and covariance estimate of
the interior point of interest, x(k|k) and Pk|k.

The backward running Kalman filter starts with the last measurement, ends
on the first measurement, and is initialized with a prior estimate of infinite
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covariance (which assures that the initial state estimate has no influence). It
differs from the forward Kalman filter by performing the prediction stage using
the following equations.

x̂(k + 1)backward = Fk
−1x̂(k)backward (13a)

Pk+1,backward = Fk
−1 [Pk,backward + Qk] (Fk

−1)T (13b)

Where Fk
−1 is the inverse of the state-transition matrix used in the forward-

running Kalman filter.
The update stage is performed as usual. The backward-running Kalman

filter is stopped at the time step before (in backward direction) the point of
interest; then a prediction step is performed. The two estimates for the time
step of interest is then fused with the covariance intersection algorithm for
independent estimates given by equation 17. This is done for all time-steps and
yields the fixed-interval smoothed estimates.

By comparing equations 13 with the regular Kalman filter equations 5, it
is apparent that the backward Kalman filter is equivalent to a regular Kalman
filter with two modifications: the state transition matrix F is replaced by its
inverse and the process noise covariance matrix Q is replaced with Qbackward =
F−1Q

(
F−1) T .

2.4.2 Forward-backward approach to fixed-lag smoothing

The fixed-lag smoother is implemented in the same manner as the fixed-interval
smoother. A smoothed estimate for the state at time step k is computed with
fixed-lag L by first using the forward filter to obtain an estimate x̂f (k|k) of the
state at time k. Then a backward filtering pass is performed starting at time
k + L with no prior knowledge and ending with a state prediction x̂b(k|k + 1)
from time step k+1 to time step k. Finally the forward and backward estimates
x̂f (k|k) and x̂b(k|k) are combined using covariance intersection. This procedure
is illustrated in figure 10. The remarks in section 2.4.1 on the backward filter
applies in this case as well.

It should be noted that with a fixed-lag of L time-steps, the smoother is not
able to compute any estimates before enough forward estimates are obtained.
Hence a delay of L time-steps in introduced, and this technical difficulty must
be paid attention to in an actual implementation.
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2.4.3 Numerical example: applying the forward-backward Kalman
smoother to a damped mass-spring system

Figure 4a shows a damped mass-spring system. The governing differential equa-
tion and the analytical solution is derived in appendix D. The forward-backward
fixed-lag and fixed-interval Kalman smoothing algorithms will be demonstrated
on this system, and the results referred to in the discussion of smoothing algo-
rithms within the RCTL framework.

The state-transition matrix is used to generate a vector of mass displace-
ment values, subsequently transformed to an observation vector by addition
of Gaussian noise. A Kalman filter runs forward and backward and the esti-
mates are fused at all time steps in the measurement data interval, yielding the
fixed-interval smoothed estimates.

The position estimation errors are computed at all time-steps for the for-
ward, backward, and smoothed state estimates, and it is demonstrated that
the fixed-interval smoother produces the best estimates. The same procedure is
used to evaluate the fixed-lag smoother for two different lag values in order to
demonstrate both that the fixed-interval smoother produces better results than
the fixed-lag smoother and that the performance gain from smoothing increases
with the lag-value.

Two additional experiments are performed: not inverting the state-transition
matrix on the backward pass, and utilizing final update steps instead of pre-
diction steps. This represents two deviations from the theory presented in sec-
tion 2.4.1.

Figure 4 shows state estimates and associated squared position estimation
errors for the forward and backward Kalman filters and the fused estimates,
while figure 5 shows the estimated diagonal terms of the state covariance matrix.
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In order to get a system oscillating at a few Hertz and decaying fast enough
to be significantly non-stationary in the time interval from zero to ten seconds,
the following parameters for the mass-spring system were used.

• Mass m = 0.200 [kg]

• Spring constant: k = 60.0[kg
s2 ]

• Damping coefficient: c = 0.10

The state of the system was simulated using an initial displacement of 1.0 [m]
and a velocity of 0.0 [m

s ], using the state-transition matrix with a time-step of
0.01 s. With the above parameter values the state-transition can be determined
numerically as shown in appendix D.

φ = e
0.1

(
0 1
− k

m − c
m

)
= e

(
0 0.01
−3 −0.005

)
=
(

0.98506236 0.00992524
−2.97757236 0.98009974

)
Figure 4b shows the analytical continuous-time simulation as well as discrete
time-steps obtained from the state-transition matrix φ.

(a) The damped mass-spring sys-
tem

(b) Analytical solution of the damped mass-spring oscillation
shown with discrete displacement values computed using the
state-transition matrix.
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In order to keep the example simple, only scalar observations of the position
(mass displacement) were used as measurement input to the Kalman filters.
Hence, the measurement matrix is

H =
(
1 0

)
The vector of noisy position measurements was created by adding zero-mean

Gaussian noise with variance 12.0 to the simulated position vector.
The Kalman filter was initialized with the correct measurement noise vari-

ance R = 12.0, and with the process noise covariance matrix

Q=

(
1.0 · 10−6 0

0 1.0 · 10−6

)
This small process noise is justified by the fact that there are no system modeling
errors in this case, by design of the example. The initial state estimate used by
the Kalman filter was position 10.0 m and velocity 1.0 m

s and covariance matrix

P0 =
(

10 0
0 10

)

The regular Kalman filter results are obtained from the forward pass of the
fixed-interval smoother. The results are shown in table 1, where the results
have been averaged over at least 50000 simulations in order for the statistics to
converge. All smoothing algorithms have an identical forward pass, and hence
the same forward squared position error.
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Algorithm Forward
squared po-
sition error
[m2]

Backward
squared po-
sition error
[m2]

Smoothed
squared po-
sition error
[m2]

Improvement
by smooth-
ing

Fixed-
interval
smoother

0.109 0.265 0.014 7.8

Fixed-
interval
smoother,
final update

- 0.265 0.014 7.8

Fixed-
interval
smoother,
no inverse

- 0.230 0.076 1.4

Fixed-lag 3
smoother

- - 0.070 1.6

Fixed-
lag 16
smoother

- - 0.044 2.5

Table 1: Numerical simulation results. Squared backward error is only com-
puted for the fixed-interval smoother. The experiments are averaged over at
least 50000 repetitions so that at least the first two decimals have converged.
Right column is ratio between forward error and smoothed error. The forward
error is the same for all smoothing algorithms.
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Figure 4: Forward-backward smoothing on the simple mass-spring system.
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Figure 5: Logarithm of the estimated position and velocity covariances.
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2.5 Subdivision surfaces
This section contains a brief discussion of subdivision surfaces. The focus will be
on Doo-Sabin surfaces, the specific type implemented in the real-time contour
tracking library. References are given to more in-depth treatments.

The theory behind subdivision surfaces is complicated, but the basic princi-
ples are easy. Subdivision surfaces offer smooth surfaces requiring only a small
number of parameters for their specification. This contrasts e.g. triangular
meshes where smoothness require many triangles, and hence many parameters,
and depends on the scaling.

A subdivision surface is the limit of a recursive refinement process. Examples
of subdivision schemes are Catmull-Clark [18] and Doo-Sabin [19, p. 188]. The
basic principle is to start with an initial coarse mesh and repeatedly ”cut the
corners off” in a deterministic manner. Each iteration increases the surface
smoothness, but also the number of vertices, edges and faces. The important
point is that the limit surface is fully determined by the initial mesh.

A more mathematical treatment of subdivision surfaces can be found in [20].
The technical details are hidden from users of the real-time contour tracking
library, and will not be discussed here.

2.5.1 Terminology

Below is a summary of terminology commonly used in computer graphics.

• Node: A point in space.

• Control point / control node: A node used to control the shape of a curve
or surface.

• Edge: The line between two nodes.

• Face: The area enclosed by edges. In a triangular mesh, the faces are
triangular and in a quadrilateral mesh, the faces are quadrilaterals.

• Renderer: Software that converts a mesh into the final two-dimensional
projection on a screen or other medium.

• Mesh: A collection of vertices, edges and faces together with the topolog-
ical information.

Subdivision schemes come in two categories: approximating and interpolat-
ing. The difference is whether or not the initial control points remain in the

29



Figure 6: Example showing successive subdivisions of a Doo-Sabin
surface. Figure courtesy of Fredrik Orderud. Retrieved from
http://upload.wikimedia.org/wikipedia/commons/5/56/DooSabin subdivision.png

same position after a subdivision (interpolating). Different mesh types can be
used, and the real-time contour tracking library employs quadrilateral meshes,
i.e. meshes that are composed of quadrilaterals.

2.5.2 Doo-Sabin subdivision surfaces

According to [6], Doo-Sabin surfaces have the desirable property that the inher-
ent smoothness and continuity of surface derivatives of spline surfaces is com-
bined with the support of arbitrary topology offered by flat polygonal meshes.
Figure 6 shows examples of subdivision steps of a Doo-Sabin surface. Continuing
this process yields the smooth limit surface.

In addition to the recursive subdivision scheme, [6] presents a method for
exact surface evaluation at arbitrary parametric positions, based on a similar
result for Catmull-Clark surfaces [21]. This is used in RCTL to compute the
spatial positions of the edge-detectors on the deformed model.

2.6 The real-time contour tracking library
This section contains a brief description of the real-time contour tracking library.
A more thorough description can be found in [22] and [23].

The real-time contour tracking library is written in C++ and capable of
performing real-time segmentation of two- and three-dimensional image data,
including but not restricted to ultrasound recordings. It was primarily developed
by Fredrik Orderud in cooperation with GE Vingmed Ultrasound during his
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PhD. In addition to the library, there also exist a Matlab interface and user
interfaces for two- and three-dimensional operation.

The configuration of parameters of the extended Kalman filter in RCTL,
including the setup of the model hierarchy, is done through .xml configuration
files.

The segmentation is performed using a state-space approach. A state vector
is used to encode the shape information and a Kalman filter is used to estimate
the deformation and positioning needed to fit the deformable model onto the
image data. Edge-detections are performed from a set of points distributed on
the deformable contour, along the surface normals (in both directions). The
aim is to measure the correct positions of the points in the image data, in order
to update the state vector. This is done on a frame-by-frame basis on the input
recording. A more detailed description can be found in [23].

The main design goal of this library is speed. Although there are alternative
segmentation schemes available, the Kalman filter-based approach in the real-
time contour tracking library is probably among the world’s fastest. In this
project, ultrasound recordings in the DICOM format have been used. 1

2.6.1 Deformable models

The type of deformable models used in this project is Doo-Sabin surfaces, which
was discussed in section 2.5. The model data is stored in a HDF5 file 2 These
files contains the parameterized shape template, including information about
which control points that are allowed to move, and the distribution of edge-
detection points on the surface. Given a HDF5 file and a vector containing the
deformation parameters, the contour is fully described.

By allowing control points to move along the initial surface normal intersect-
ing it, the local deformation model can be introduced. By letting xl,i denote the
i-th normal displacement, we get the following expression for contour control
points

qi = q̄i + xl,ini (14)

where q̄i is the initial position and ni is the initial surface normal. If a control
point is stationary, the corresponding normal displacement value is fixed at zero.

1DICOM is short for Digital Imaging and Communications in Medicine. It is a standard
used in medical imaging.

2HDF5 is a flexible file format for storing and managing data. For more information, see
http://www.hdfgroup.org
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Surface points can then be computed as sums of control points weighted by the
basis functions

pl =
∑

i

biqi (15)

In addition to the local deformation model which permits local modification
of a shape template, the global deformation model is introduced. This is an affine
transform Tg that acts on the whole model and permits translation, rotation and
scaling of the deformed model.

p = Tg(pl) (16)

where pl is given by equation 15. Parametric contour coordinate information is
suppressed in these equations.

In summary, the deformable model consists of a parameterized surface with
an initial shape and with control point movement, translation, rotation and
scaling available as adjustable parameters in order to fit it onto an image.

2.6.2 Edge-detection normal displacement measurements

The edge-detection results is the information enabling updating of the de-
formable models. There are a number of different algorithms to choose from,
but all offer the functionality described by an abstract edge-detector interface.
It suffices to know that given a set of starting points, search directions, and a
frame, functionality exists for returning the corresponding most likely intensity
transitions.

The edge-detector types step and gradient has been used in this project. The
step edge-detector is used for all tracking on ultrasound data. It detects a tran-
sition from one brightness level to another, such as the left-ventricular border
separating blood and the ventricle wall. The gradient edge-detector detects the
maximum rate of change of brightness along the search vector, and was used
when tracking rendered ground-truth meshes (described in appendix B).

Edge-detectors are grouped into criterions, which makes it possible to use
different types and settings in different parts of the model. In this project, only
a single criterion has been used in the left-ventricle model.

As the low-level implementation details is out of the scope of this report, it
will only be shown by an example how edge-detections are done.

Figure 7 shows an illustration of a single edge-detection performed starting
from the point p and searching in the direction n. The point pobs is the point
returned as the most likely intensity transition point. The length of the red line
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Figure 7: Illustration of a single edge-detection. The white part represent an
anatomical structure in an ultrasound image. Here, p is the edge-detection
point, n is the search direction and pobs is the detected edge.

corresponds to the normal displacement as computed according to the following
formula.

v = nT (pobs − p)

2.6.3 The state-transition model

The Kalman filter framework requires a state-transition function modeling the
evolution of the system’s state with time, as shown in equation 3. For this
project, a stationary model has been used where the state-transition function
is a simple regularization towards an initial shape, which means that if no
measurement inputs are supplied, the contour will converge to this initial shape.

The stationary model is represented by a matrix A1, which defines the reg-
ularization, i.e. the rate at which the model converge to the shape template.
More details can be found in [23].

2.6.4 The measurement model

The Kalman filter framework also requires a measurement model, which specifies
the connection between measurements and state vectors. This function defines
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how the filter interprets the measurement vectors. This is also the non-linear
part of the tracking library.

Each deformable model has a number of edge-detection points, which is
specified by a set of parametric values. The measurement vector associated
with a state vector x is defined as the result of performing the edge-detections
starting on the predicted contour, when the true contour is as defined by the
state vector x.

This is illustrated in figure 8. The resulting normal displacement measure-
ment vector is a vector consisting of the length of the lines from edge-detection
points to the red contour, in the order defined by edge-detection numbering.

Figure 8: Illustration of the measurement model. The search is performed
starting in the green edge-detection points on the predicted contour. The length
of the black lines is the elements in the associated measurement vector. In this
example, the number of edge-detection points is six. This illustration is for the
two-dimensional case, but the same principles applies in 3d.
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2.6.5 The Rctl3dApp application

The Rctl3dApp is a visualization front-end for the real-time contour tracking
library. It shows arbitrary slices of ultrasound data with the fitted model and
can also show volume curves.

2.6.6 RctlMatlab

It is possible to interface RCTL from Matlab. This extension is called Rctl-
Matlab. The ultrasound recording to track on and the .xml configuration file
containing details about the deformable model is specified during initialization.
Filtering on arbitrary frames is then possible by specifying the frame number.
Additional functionality exists for exporting the state vector and covariance es-
timate, updating their values, and exporting a triangle mesh-representation of
a state vector.

2.6.7 RctlSlicer

There also exists a Matlab interface called RctlSlicer that permits slicing of
ultrasound data and deformable models for visualization purposes. RctlSlicer
was used to create most of the visualizations of slices through ultrasound data
and models in this report.

2.6.8 Noise parameters and autoscaling

The noise settings control the allowed rate of change of shape deformation and
global transformation as a response to edge-detection results, and are used by
RCTL to construct the process noise covariance matrix.

In order to keep the edge-detection noise parameter in the .xml configuration
files independent of the number of edge-detectors in use, automatic scaling of
the reported edge-detection variances are in use by default. A noise value is
then specified for the whole edge-detection criterion. With this approach, after
performing all edge-detections belonging to an edge-detection criterion, each
noise value is multiplied by a scaling factor in such a way that the sum of all
variances in this criterion sums up to the value specified in the configuration
file.

The auto-scaling of measurement noise covariance interferes with the smooth-
ing algorithms, and as a convenient way of turning auto-scaling on or off, the
measurement handling code was modified such that a physically meaningless
noise value of −1 disables it. This auto-scaling will be discussed later.
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2.7 Covariance Intersection
This section introduces the covariance intersection algorithms. The two algo-
rithms presented differ in the assumptions they make. While the first assumes
independent estimates, the second assumes no knowledge of the correlation be-
tween them.

Although only the latter is explicitly referred to as covariance intersection
in the literature, for consistency also the first one will be referred to as such; it
will be clear from the context which version is used.

The covariance intersection algorithms operate on estimates of the mean
vector and covariance matrix of probability distributions. The goal is to combine
multiple estimates into a single estimate.

Appendix C contains a simple numerical example which illustrates the dif-
ferences between the two versions of the algorithm.

2.7.1 Covariance intersection under the independency assumption

Section A contains the derivation for the scalar case, and it is pointed out where
the independency assumption is used. This derivation is based on [12, p. 323].
In addition, it is stated in [12] that the natural generalization to the vector case
shown below is correct.

The algorithm can be summarized as follows. Given two estimates (x̂A,PA)
and (x̂B ,PB), the fused estimate is computed as

P =
[
P−1

A + PB
−1]−1 (17a)

x̂ = P
[
P−1

A x̂A + P−1
B x̂B

]
(17b)

2.7.2 Covariance intersection under unknown correlation

The assumption that estimates are independent might not always hold in prac-
tice. In [13] it is described an alternative covariance intersection which makes
no assumptions on the correlation between the two estimates to be fused.

The algorithm can be summarized as follows. Assume estimates (x̂A,PA)
and (x̂B ,PB) are given. The fused estimate is computed as

P =
[
ωP−1

A + (1− ω)P−1
B

]−1 (18a)
x̂ = P

[
ωP−1

A x̂A + (1− ω)P−1
B x̂B

]
(18b)
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If ω ∈ [0, 1] it can be shown that the fused estimate is consistent [13]. A
visualization of this fact is shown in figure 33 where the covariance ellipse of
the fusion based on this algorithm encompasses the intersection of the input
covariance ellipses. It can be seen that this is not the case when fusing with the
covariance intersection algorithm assuming independency.

The following suggested ω weights the estimates according to the trace of the
covariance matrices in such a way that the estimate with the least covariance
matrix has most influence while the resulting value is always in [0, 1].

ω = trace(PB)
trace(PA) + trace(PB) (19)
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3 Implementation details
This section contains implementation details for the three Kalman smoothers
and the experimental statistical smoother. All algorithms are implemented in
Matlab, using the RctlMatlab interface to the RCTL library and a convenient
algorithm abstraction presented in figure 15.

The real-time contour tracking library is a confidential property of GE
Vingmed Ultrasound, Horten, Norway. This limits the detail level in this pre-
sentation, and for the same reason, the Matlab source code of the smoothing
algorithms is not included in this report.

The forward-backward approach to Kalman smoothing is fundamental to
this high-level approach for smoothing. The smoothing algorithms are built on
top of Kalman filters; all that is required is black-box access to a contour tracker
capable of outputting probabilistic state-vector estimates.

3.1 Fixed-point smoother
The basic principle of operation is that each heart-cycle is similar to the pre-
vious, and thus it is reasonable to expect obtaining better and better contour
estimates for a specific heart-cycle position p by a proper combination of esti-
mates from successive heart-cycles.

This smoother solution is motivated by the observation that contour esti-
mates for a specific heart-cycle position differs from cycle to cycle when using
the extended Kalman filter, even when the input is a single heart-cycle played
in loop. This is demonstrated in figure 17, where 1, 10, 100, and 1000 contour
estimates for the same cycle position is superimposed on a slice of the record-
ing, with the correct ground-truth mesh showed in red. The variability is large
where there is much yellow area.
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Figure 9: Illustration of the fixed-point Kalman smoother algorithm. The
smoothed contour estimate for cycle position p, iteration k is obtained by fusing
forward Kalman filter estimate for position p, iteration k with the smoothed es-
timate for position p, iteration k − 1. Fusion is performed using the covariance
intersection algorithm which assumes unknown correlation.
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Figure 9 shows how a fixed-point smoothed estimate for the contour at posi-
tion p in the heart-cycle is obtained. To obtain fixed-point smoothed estimates
for all positions in the heart-cycle, the smoothing algorithm is repeated for each
p of interest.

Since each contour estimate is not independent of the others, the unknown-
correlation version of the covariance intersection algorithm introduced in sec-
tion 2.7.2 is used to perform the covariance fusion.

3.2 Fixed-lag smoother
The fixed-lag smoother operates in two distinct phases: filling up frames and
smoothing. In the first case not enough frames have arrived to do the backward
pass, while the second case is normal operation; one input frame results in one
state estimate.

Of the different smoothing algorithms, the fixed-lag smoother is the one
most resembling a filter, the main difference being a time-lag between input and
output. This represents two challenges: the initialization where no smoothed
estimates can be returned and keeping track of the time stamp for which contour
estimates applies.

The first problem is only transient and in this project is automatically solved
by the two warm-up cycles, which guarantees that the frame buffer is filled for
the lag-values used (either 3 or 16). The synchronization is performed internally
and the details are invisible from the point of view of figure 15.

3.2.1 No prior knowledge on the backward pass

According to the theory in section 2.4.2 the backward pass must be initialized
with an infinite covariance matrix in order to not use any prior information.
This is in general a complicating factor since infinity is not a valid floating point
number. Because of RCTL’s choice of performing the edge-detections relative to
the predicted contour (section 2.6.2), the backward pass is not initialized with
an infinite covariance matrix. Instead, the same initial state and covariance is
used as for the forward pass. Other alternatives are also investigated and will
be discussed below.

The adverse effect of performing backward passes with no prior knowledge
(in practice achieved using an identity matrix multiplied with a large scalar)
within the RCTL framework is demonstrated in figure 20. No prior knowledge
makes the filter overly confident in the noisy edge-detection results, and severely
deformed estimates may in the worst case be the result.

40



3.2.2 Variations on the algorithm

In addition to using the initial state and covariance on the backward pass,
support for not resetting the state on the backward pass was implemented.
Referring to figure 10, filtering is then performed in the forward direction up to
a certain point followed by filtering frames in the backward direction, without
resetting the state when the direction is reversed.

According to the forward-backward approach to Kalman smoothing, a final
backward prediction should be used at the time step k where the forward and
backward passes meet to avoid using measurement number k twice. But since
the state-transition model used in RCTL is just a simple regularization, a final
update step is used in the implementation.

In summary, the following fixed-lag smoother algorithms were implemented.
They will subsequently be referred to by these names.

• Fixed-lag L smoother: Adjustable lag-value L, computes backward
estimates with a final update step before fusing forward and backward
estimates. The backward pass is initialized with the same initial state and
covariance as for the forward filter.

• Fixed-lag L smoother, no backward reset: Does not reset the state
to initial state and covariance prior to backward pass. Instead the forward
estimate is used directly. On the backward pass, only updated estimates
are computed and subsequently fused with the forward estimates.
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Figure 10: Illustration of the implementation of the fixed-lag Kalman smoother,
in this case the fixed lag is three. After a sufficient number of frames (lag + 1)
has been received, the smoother can do the backward pass and hence compute
output values.
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3.3 Fixed-interval smoother
Figure 11 illustrates how the fixed-interval smoother was implemented. The
forward and backward estimates are obtained through the RctlMatlab interface.

Support is implemented for fusing the forward posterior with the backward
predictions (as stated in the literature) or with the backward updated estimates
(better performance observed). The fusion is in either case done with the covari-
ance intersection algorithm assuming independent estimates, which is discussed
in more details in section 2.7.1.

In summary, the following fixed-interval algorithms are implemented and
will be referred to by these names.

• Fixed-interval smoother w/final update

• Fixed-interval smoother w/final prediction

Figure 11: Illustration of the fixed-interval smoother algorithm. Two warm-up
cycles are performed in both directions and the forward and backward estimates
for a complete cycle in the interior is fused to produce the smoothed estimates.
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3.4 The statistical smoother
The statistical smoother uses covariance intersection to fuse learned informa-
tion about LV deformation (from ground-truth segmentations) with the regular
forward Kalman filter estimates.

Although superficially similar, this method is not the same as principal com-
ponent analysis (PCA), where the most prominent deformation directions are
computed and used to define the allowable model deformation space. The sta-
tistical smoother approach can instead be thought of as an averaging taking
estimation certainty into account. The goal is that the learned states can be
used to fill in parts where the filtered estimate has high uncertainty.

The covariance intersection algorithm requires information in the form of
state vectors and covariance matrices. Thus, for all ultrasound recordings, the
ground-truth triangle meshes were converted to RCTL state vectors by following
the procedure in appendix B.

The learned state vectors and covariance matrices are obtained from the
state-vector version of the ground-truth meshes in the following way. After
obtaining the state-vector description, the frame number corresponding to end-
diastole is obtained from the original ground-truth data. Then the knowledge
of the total number of frames and the fact that each recording contains exactly
one heart-cycle is used to define a mapping from [0, 1] to the frames, where 0
corresponds to the first frame after end-diastole (first frame of systole) and 1
corresponds to end-diastole. This involves wrapping around the frame index.

The normalized cycle position interval [0, 1] is then split up into N = 100
equidistant points and linear interpolation of each of the 29 vectors of ground-
truth state vectors is utilized, which enables the computation of average state
vectors and covariance matrices at each of the N points in [0, 1] using the sample
average and sample covariance, respectively.

3.4.1 Algorithmic details

Figure 12 shows the principle of operation of the statistical smoother. The sta-
tistical smoother requires knowledge of the heart-cycle position of the current
Kalman filter estimate. During testing, this knowledge was obtained from the
ground-truth data files, but in a real-life situation e.g. the volume of the esti-
mated contour can be used to obtain this information, by exploiting that the
volume is normally largest at end-diastole and smallest at end-systole.

Since the learned covariance matrix for position p is obtained as the sample
covariance matrix from all state-vectors describing the state at position p, it is

44



Figure 12: Operation of the statistical smoother. Learned average state vectors
computed from ground-truth meshes of a training set is combined with the
regular EKF state estimate via the covariance intersection algorithm to produce
a possibly improved state estimate.

scaled very differently from the covariance matrix associated with the Kalman
filter state vector estimate. Hence a covariance multiplier is introduced as a
parameter, which can be used to tune how much confidence that is placed on
the learned state estimate. The implementation uses a covariance multiplier of
375000 times the sample covariance.

As explained in section 2.6, the deformation model consists of a global part
(translation, rotation, and scaling) and a local part (deformation of the shape
template). These parameters are concatenated to form the full state vector.

However, only the local deformation part of the ground-truth state vectors
are fused with the regular Kalman filter estimate, since this is the part contain-
ing information about average left-ventricular deformation. The orientation and
location of the left ventricle in the ultrasound volume is a function of the probe
placement used when recording, and can only be estimated by the Kalman filter.

Hence, after fusing the interpolated learned state estimate, the subrange
of the state vector and covariance matrix describing the global parameters are
copied back from the Kalman filter estimate.
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4 Method
This section describes the smoother performance evaluation and comparison to
the extended Kalman filter based tracker. A set of 29 three-dimensional ul-
trasound recordings of a single heart-cycle, each with a manual ground-truth
segmentation of the left-ventricle, is used as input. Each algorithm (including
the reference EKF) produces one triangle mesh estimate for each frame in the
recordings. Mean absolute surface error and mean absolute volume error is com-
puted by comparison with the the ground-truth segmentations. The evaluation
is done with two different configurations of the underlying EKF-tracker. The
results will be presented as tables, averaged over all ultrasound recordings, and
as histograms comparing the performance of the different smoother types with
EKF at selected positions in the heart-cycle.

The real-time contour tracking library has functionality for exporting trian-
gle mesh-representations of the Doo-Sabin surface used internally when track-
ing. Existing Matlab scripts are used for the computation of volume and surface
agreement.

The set of recordings consists of single heart-cycles from 10 healthy subjects
and 19 subjects with recent first time myocardial infarction, recorded using a
Vivid 7 (26 recordings) or a Vivid E9 (3 recordings) ultrasound scanner (GE
Vingmed Ultrasound, Norway) with a matrix array (3V) transducer. Each
recording is in DICOM format and the number of frames in each recording is
27.5± 5.7 (mean ± SD). Recordings are looped in order to present the various
estimation algorithms with multiple heart-cycles.

4.1 The deformable LV model
Figure 13 shows the deformable Doo-Sabin that was used in this project to seg-
ment the left ventricle. Also shown is the control point grid and edge-detectors
with search normals. The model is in its initial state with no control point
normal displacements.

The model has 20 control points, of which all but two are allowed to move
freely along surface normals of the initial model. The base (center point at
the bottom) and the apex (the tip) is required to be stationary. The number
of edge-detection points spread out evenly over the surface is 500. The edge-
detections are performed using edge-detectors of type ”step” and 30 samples
along the search line, with a spacing of 1 mm.
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Figure 13: The deformable Doo-Sabin model used when tracking the left vectri-
cle. It is shown in its initial state, i.e. the state where all control node normal
displacements are zero. The flat part to the left is the base and the tip at the
right is the apex.
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4.2 The manual ground-truths
The endocardial left-ventricle segmentation of the recordings was performed by a
trained medical doctor using a semi-automatic tool (4D AutoLvq, GE Vingmed
Ultrasound, Norway). Each ground-truth is in the form of a .mat file (Matlab
data file) containing

• ’edFrame’ : Frame number of end diastole.

• ’esFrame’ : Frame number of end systole.

• ’filename’ : Name of corresponding DICOM recording.

• ’mesh’ : Data structure containing the correct segmentation in the form
of one triangle mesh for each frame.

Figure 14 shows an example of a manual segmentation of the left ventricle.

Figure 14: Rendered triangle mesh description of the correct left ventricle seg-
mentation of the first frame in recording A38.

4.3 Evaluation and comparison of the estimation algo-
rithms

The evaluation consists of three separate parts: Computing the mean estimation
errors for all algorithms, computing the mean agreement between the various
smoothers and EKF on a recording-by-recording basis, and visualizing the esti-
mation errors for each algorithm at four points in the heart-cycle, in the form
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of histograms. The flexible algorithm evaluation framework is illustrated in
figure 15.

The average mean absolute surface error and mean absolute volume error
over all recordings is computed for the EKF and all smoother algorithms, i.e.
for a recording with N frames a total of N mean absolute surface errors and
N mean absolute volume errors are computed for a given algorithm. These are
averaged, the process repeated for the 29 recordings and finally averaged over
all recordings. This results in one single mean absolute surface error value and
mean absolute volume error value for each estimation algorithm. The results
are summarized in section 5.1.1, with one table for each of the two configuration
files.

The performance comparison between EKF and the smoothers are performed
by computing the average mean absolute surface error and mean absolute vol-
ume errors over all frames for each algorithm. This results in two vectors of
length 29 for each algorithm. The vector corresponding to EKF is then sub-
tracted from each of the others (which corresponds to smoothers). The aver-
age error difference from EKF is obtained by computing the sample mean and
standard deviations of the difference vectors. These results are summarized in
section 5.1.2, with one table for each of the two configuration files.

The smoothing algorithms in the following list were compared to the regular
extended Kalman filter-based tracker:

• Fixed-interval smoother using final update steps (experimental)

• Fixed-interval smoother using final prediction steps (textbook solution)

• Fixed-lag smoother with lag 3

• Fixed-lag smoother with lag 16

• Fixed-lag smoother with lag 16 and no reset on backward pass (experi-
mental)

• Fixed-point smoother operating on 10 consecutive heart-cycles.

• Fixed-point smoother operating on 100 consecutive heart-cycles.

• The statistical smoother

In addition to these, the closest Doo-Sabin state vector representation of
ground-truth meshes (explained in appendix B) was also implemented in the
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estimation algorithm framework of figure 15 to obtain bounds on the lowest
possible estimation errors.

The evaluation script measures average absolute distance between the esti-
mated surface and the ground truth surface and the absolute volume estimation
error in percent relative to the ground-truth volume. Existing functionality for
computation of average point to surface distance and volume of triangle meshes
is reused.

Triangle meshes are exported from RCTL in order to use the evaluation
scripts which requires input in the form of triangle meshes. This triangulation
of the smooth Doo-Sabin surface used internally by RCTL is not believed to
introduce significant errors.

Figure 15: Tracking algorithm abstraction employed for comparison of Kalman
filtering and Kalman smoothing algorithms.
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4.4 Warmup cycles
The extended Kalman filter must track a certain number frames in order to be
properly initialized. This is referred to as warm-up, and can be characterized
as the period where the deformable contour is stretching out or contracting
from the initial shape towards the correct contour position for the first time.
Once this is done, the filter responds correctly to changes in the image volume
and the tracker returns meaningful estimates. When evaluating, the filter is
operated for two complete cycles before any contour estimates are used, also for
the backward tracking pass in the fixed-interval smoother.

4.5 Visualizing the performance at specific positions in
the heart cycle

Average error measures for all algorithms were computed for the heart-cycle
positions 0.0, 0.5, 1.0, and 1.5, where 0.0 corresponds to end-diastole (ED) and
1.0 corresponds to end-systole (ES). The results for each smoother algorithm is
compared with the EKF in a histogram. Figure 16 illustrates the heart cycle
position defined as a real number with respect to ED and ES. Note that it is
possible to extend beyond 1.0 (ES).

4.6 Two different configuration files
Two different .xml configuration files for the extended Kalman filter have been
used when evaluating algorithm performance. Since the smoother algorithms
are implemented on top of the EKF-tracker, its configuration applies for the
smoothers as well.

The file STEP test.xml is tuned for good filtering performance in nor-
mal filtering operation. The difference between the two configuration files is
that STEP test.xml use the default auto-scaling of the reported measure-
ment noises and NoiseScalingDisabled.xml does not. The noise parameters
in NoiseScalingDisabled.xml was manually re-tuned to match the tracking
behavior of STEP test.xml.

4.7 Leave-one out cross-validation
The performance of the statistical smoother was evaluated using leave-one out
cross-validation. The principle is to evaluate on one recording and use the rest
as training data. This is repeated for each of the 29 recordings, and the results
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Figure 16: The cycle position definition as a real number, where 0.0 corresponds
to end-diastole and 1.0 corresponds to end-systole.

are averaged, in order to measure how well the learned results generalize to
independent cases.
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5 Results
In order to facilitate direct comparison of algorithm performances, each criterion
(mean absolute surface error and mean absolute volume error) use the same scale
on the y-axis in all histograms.

5.1 Summary of performance comparisons
5.1.1 Performance of all algorithms

These tables show average mean absolute surface error and average mean ab-
solute volume for each estimation algorithm (including EKF), averaged over all
29 recordings. Units are millimeters for surface errors and percentages of the
ground truth volume for volume errors.

53



Mean absolute sur-
face error [mm]
(mean ± SD)

Mean absolute vol-
ume error [% of
ground-truth] (mean
± SD)

Extended Kalman fil-
ter

2.05 ± 0.68 11.28 ± 8.77

Fixed-interval
smoother w/final
update

2.05 ± 0.70 11.18 ± 8.42

Fixed-interval
smoother w/final
prediction

2.09 ± 0.73 11.73 ± 9.11

Fixed-lag 3 smoother 2.27 ± 0.87 13.67 ± 9.27
Fixed-lag 16
smoother

2.10 ± 0.70 11.48 ± 7.94

Fixed-lag 16
smoother, no re-
set on backward

2.05 ± 0.70 11.19 ± 8.53

Fixed-point smoother
10 iterations

2.07 ± 0.71 11.60 ± 9.64

Fixed-point smoother
100 iterations

2.07 ± 0.71 11.60 ± 9.49

Statistical smoother 2.04 ± 0.70 11.42 ± 8.74
Closest Doo-Sabin
representation of
ground-truth mesh

1.19 ± 0.13 11.22 ± 1.08

Table 2: STEP test.xml
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Mean absolute sur-
face error [mm]
(mean ± SD)

Mean absolute vol-
ume errors [% of
ground-truth](mean
± SD)

Extended Kalman fil-
ter

2.12 ± 0.60 12.17 ± 9.75

Fixed-interval
smoother w/final
update

2.17 ± 0.69 12.73 ± 9.45

Fixed-interval
smoother w/final
prediction

2.13 ± 0.62 12.80 ± 9.50

Fixed-lag 3 smoother 2.25 ± 0.72 13.51 ± 9.18
Fixed-lag 16
smoother

2.18 ± 0.64 12.32 ± 8.43

Fixed-lag 16
smoother, no re-
set on backward

2.13 ± 0.66 12.10 ± 9.44

Fixed-point smoother
10 iterations

2.11 ± 0.60 12.16 ± 9.66

Fixed-point smoother
100 iterations

2.11 ± 0.59 12.18 ± 9.71

Statistical smoother 2.12 ± 0.60 12.26 ± 9.82
Closest Doo-Sabin
representation of
ground-truth mesh

1.19 ± 0.13 11.22 ± 1.08

Table 3: NoiseScalingDisabled.xml
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5.1.2 Estimation error relative to EKF

These tables show average and standard deviation of the difference between
EKF error and smoother error on a recording-by-recording basis, for both mean
absolute surface error and mean absolute volume error. Units are millimeters
for surface errors and percentages of the ground truth volume for volume errors.

Mean difference from
EKF in mean ab-
solute surface error
[mm] (mean ± SD)

Mean difference from
EKF in mean ab-
solute volume error
[% of ground-truth]
(mean ± SD)

Fixed-interval
smoother w/final
update

0.00 ± 0.04 -0.01 ± 0.65

Fixed-interval
smoother w/final
prediction

-0.03 ± 0.10 1.79 ± 0.97

Fixed-lag 3 smoother -0.22 ± 0.44 5.20 ± 5.35
Fixed-lag 16
smoother

-0.05 ± 0.14 0.65 ± 2.39

Fixed-lag 16
smoother, no re-
set on backward

-0.00 ± 0.04 -0.09 ± 0.58

Fixed-point smoother
10 iterations

-0.02 ± 0.12 -0.24 ± 1.82

Fixed-point smoother
100 iterations

-0.02 ± 0.12 -0.25 ± 1.77

Statistical smoother 0.01 ± 0.06 -0.03 ± 0.69

Table 4: STEP test.xml
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Mean difference from
EKF in mean ab-
solute surface error
[mm] (mean ± SD)

Mean difference
from EKF in mean
absolute volume
errors [% of ground-
truth](mean ± SD)

Fixed-interval
smoother w/final
update

-0.05 ± 0.28 -1.15 ± 4.18

Fixed-interval
smoother w/final
prediction

-0.01 ± 0.09 1.23 ± 1.88

Fixed-lag 3 smoother -0.13 ± 0.45 3.34 ± 6.22
Fixed-lag 16
smoother

-0.05 ± 0.21 -0.06 ± 3.41

Fixed-lag 16
smoother, no re-
set on backward

-0.00 ± 0.09 -0.29 ± 1.12

Fixed-point smoother
10 iterations

0.01 ± 0.04 0.03 ± 0.63

Fixed-point smoother
100 iterations

0.01 ± 0.03 0.04 ± 0.57

Statistical smoother 0.00 ± 0.02 0.10 ± 0.24

Table 5: NoiseScalingDisabled.xml
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5.2 The fixed-point smoother
5.2.1 Visualization of contour estimate spread

This section contains slices showing the tracked contour (with regular EKF)
at the same heart-cycle position, but at several consecutive cycles. They are
plotted on top of each other, so that thick regions corresponds to areas of great
variability.
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(a) Ground-truth (red) with 1, 10, 100, and 1000 estimates
(yellow) for ED frame (recording A38.dcm)

(b) Ground-truth (red) with 1, 10, 100, and 1000 estimates
(yellow) for ES frame (recording A38.dcm)

Figure 17: Multiple superpositioned slices of estimated contours for ED frame
and ES frame, shown with the correct segmentation (red)
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5.2.2 Evaluation at selected heart-cycle positions

This section contains histograms comparing the fixed-point smoother with EKF
at four positions in the heart-cycle, using two different configuration files.

(a) Using the STEP test.xml configuration file.

(b) Using the NoiseScalingDisabled.xml configuration file.

Figure 18: Performance evaluation of fixed-point smoothing using 10 or 100
iterations compared to the regular extended Kalman filter based tracker. The
experiment is run using two different configurations of the underlying Kalman
filter. For each row: left is mean absolute surface error and right is absolute
volume error when comparing to the ground-truth segmentation.
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5.3 The fixed-lag smoother
5.3.1 Evaluation at selected heart-cycle positions

This section contains histograms comparing the fixed-lag smoother with EKF
at four positions in the heart-cycle, using two different configuration files.

(a) Using the STEP test.xml configuration file.

(b) Using the NoiseScalingDisabled.xml configuration file.

Figure 19: Performance evaluation of different fixed-lag smoother solutions com-
pared to the regular extended Kalman filter based tracker. Experiment is run
using two different configurations of the underlying Kalman filter. For each
row: left is mean absolute surface error and right is absolute volume error when
comparing to the ground-truth segmentation.

61



5.3.2 Deformed shapes from the backward pass

This section contains deformed contour estimates from the first few steps in the
backward pass when the backward filter is initialized with a large covariance
matrix P = 1.0 ·1010I where I is the identity matrix. This represents a practical
implementation of the ”no prior knowledge” discussed in section 2.4.1.
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(a) Illustration of a recording for which the backward pass de-
formation severity is low

(b) Illustration of a recording for which the backward pass de-
formation severity is medium

(c) Illustration of a recording for which the backward pass de-
formation severity is high

Figure 20: Renderings of the first six LV contour estimates on the backward
pass with varying degree of deformation severity. Initial state estimate is the
mean shape from .xml config and covariance matrix is 1.0 · 1010I, where I is the
identity matrix.

63



5.3.3 Slices from the backward pass

This section visualizes the effect of the initial contour estimate when performing
the backward tracking. For both the initial position from the configuration file
and a translated version of it, slices of the first five tracking results are shown.
The edge-detection result types are also shown encoded by colors.
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(a) The initial contour is as specified in the configuration file
STEP test.xml and close to the true location of the contour.

(b) The initial contour is a translated version of that specified in the
configuration file STEP test.xml which is far away from the true
location of the contour.

Figure 21: The initial contour estimate and the five next backward tracking
results with visualization of the edge-detection results, when using different
initial contour estimates. Green and red lines are outward and inward detected
normal displacements, respectively. Black lines represents no results and yellow
discarded results.
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5.4 The fixed-interval smoother
5.4.1 Evaluation at selected heart-cycle positions

This section contains histograms comparing the fixed-interval smoother with
EKF at four positions in the heart-cycle, using two different configuration files.

(a) Using the STEP test.xml configuration file.

(b) Using the NoiseScalingDisabled.xml configuration file.

Figure 22: Performance evaluation of different fixed-interval smoother solutions
compared to the regular extended Kalman filter based tracker. Experiment is
run using two different configurations of the underlying Kalman filter. For each
row: left is mean absolute surface error and right is absolute volume error when
comparing to the ground-truth segmentation.
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5.4.2 Visualization of operation by orthogonal slices

This section contains selected results from a visualization of all tracking re-
sults for the fixed-interval smoother. The figures shows orthogonal plane slices
through ultrasound data, forward tracked contour (yellow), backward tracked
contour (red), fused contour (green), and the ground-truth contour (blue). Con-
figuration files used for forward and backward tracking is STEP test.xml.

67



Figure 23: Detailed visualization of the fixed-interval algorithm in operation.
Two orthogonal slices through two different ultrasound recordings showing very
close agreement between the forward (yellow), backward (red), and fused (green)
estimates are shown. The ground truth segmentation is also shown (blue). This
close agreement is representative for the majority of all frames in the 29 ultra-
sound recordings.
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Figure 24: Detailed visualization of the fixed-interval algorithm in operation.
Two orthogonal slices through two different ultrasound recordings showing rep-
resentative examples of the largest differences between the forward (yellow),
backward (red), and fused (green) estimates. The ground truth segmentation is
shown in blue.
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5.5 Statistical smoother
5.5.1 Evaluation at selected heart-cycle positions

This section contains histograms comparing the statistical smoother with EKF
at four positions in the heart-cycle, using two different configuration files. Leave-
one-out cross-validation is used.

(a) Using the STEP test.xml configuration file.

(b) Using the NoiseScalingDisabled.xml configuration file.

Figure 25: Performance evaluation of the statistical smoother compared to the
regular extended Kalman filter based tracker. Experiment is run using two
different configurations of the underlying Kalman filter. For each row: left is
mean absolute surface error and right is absolute volume error when comparing
to the ground-truth segmentation.
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5.5.2 Investigation of ground-truth volume curves

Figure 26 shows a plot of all 29 volume curves computed from the ground-truth
data files together with the volume curve associated with the mean states (red).
They are aligned and normalized as described in section 3.4.

Figure 26: Normalized and aligned volume curves from each individual ground-
truth data file (blue) and the average volume curve (red).

5.6 Best representation of the ground-truths as Doo-Sabin
deformable LV models

This section contains the results of treating the Doo-Sabin representation of the
ground truth meshes as an evaluation algorithm in its own right. The purpose
is to investigate the theoretical lower error limits for the specific deformable
Doo-Sabin LV model used in this project.

5.6.1 Evaluation at selected heart-cycle positions
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Figure 27: Comparison of the EKF estimation errors and the errors introduced
when representing the ground-truths as Doo-Sabin left ventricle models. The
configuration file used is STEP test.xml.
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5.6.2 Slice illustrations

This section contains orthogonal slices through ultrasound data, ground-truth
mesh and closest Doo-Sabin model for two frames from different recordings,
illustrating that the ground-truth meshes often have details not representable
by the Doo-Sabin model.
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(a) p10 - frame 14

(b) p8 - frame 4

Figure 28: Two orthogonal slices of ultrasound recordings with ground-truth
segmentation (red) and the surface defined by the closest Doo-Sabin state vector
(yellow).
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6 Discussion
General discussion are presented first; later sections address technical details.

The tables in section 5.1 show that differences in the mean absolute sur-
face error between EKF and the smoothers are in the order of fractions of a
millimeter, with the exception of the fixed-lag 3 smoother. The smoothing algo-
rithms do not offer any significant reduction in estimation errors. The fixed-lag
3 smoother even degrades the performance. This will be discussed in more
details below.

Most emphasis is on the absolute surface error, since it is shown in figure 27
that even the closest representation of the ground-truth meshes as left ventricle
Doo-Sabin models introduce volume errors close to what is introduced by the
extended Kalman filter. The absolute surface error is less affected.

Figure 21 explains why the fixed-lag 3 smoother introduces greater surface
and volume errors than EKF. As noted in section 3.2.1, the initial state on
the backward pass is as loaded from the configuration. This typically places
the contour in the middle of the left ventricle in the recording, as shown in
figure 21a. The same figure shows that in the first three frames, the backward
filter is still stretching out towards the left ventricle, and hence does not produce
meaningful estimates of the location of the left ventricle. Therefore the tracking
accuracy is decreased when those backward estimates are fused with forward
estimates. Figure 19 shows that in the case of a fixed-lag of 16, this problem is
reduced, most likely because the backward filter has had enough frames to lock
on to the left ventricle.

This performance degradation problem is avoided with the no-reset fixed-lag
smoother, as shown in figure 19. This is because the last forward result is used
as initial estimate for the backward pass, i.e. the backward filter starts in a
locked-on state.

The lack of improvement with smoothing algorithms can be explained by the
way edge-detections are performed in RCTL: along a finite search line in the
noisy image and starting from points on the predicted contour. The first part
implies that even in the absence of any anatomical edge in the image, the edge-
detectors may decide that some part of the noise is the most likely candidate for
an edge and return this point together with a measure of uncertainty, calculated
from the edge strength. This uncertainty value is unlikely to reflect the true
uncertainty, and may in some cases lead to the filter being overly confident that
an edge exists.

Performing the edge-detections relative to the predicted contour necessitates
an initial contour estimate close to the true contour location, otherwise the
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search will be performed in the wrong part of the image volume, as illustrated
in figure 21b. This again implies that the forward and backward filter will
detect nearly the same edges, leading to very little performance improvement
by smoothing. This is happening in figure 23, and is representative for the
behavior of the fixed-interval smoother on the majority of the 29 recordings.
The only situation in which an improvement is expected is if the backward
filtered model attaches to a more correct position. The fused estimate will then
be pulled in the right direction.

According to [5], the tracking quality is primarily limited by the the difficulty
of edge-detection in ultrasound recordings because of the poor image quality,
which fits well with the observed nonexistent performance gains by smoothing
techniques.

6.1 Kalman smoothers
6.1.1 The fixed-point Kalman smoother

The fixed-point smoother has the drawback that it requires knowledge of the
current position in the heart-cycle, since it combines multiple state vector esti-
mates for the same position. In a real-time situation it might be necessary to
estimate this position from e.g. the volume curve of the tracked contour. When
the performance of the fixed-point smoother was evaluated in this project, it
was possible to obtain the correct cycle-position from the ground-truth data.

Based on figure 17 it was anticipated that the fixed-point smoother would
produce better tracking results since estimates of the same cycle position (frame
number in the case of a single looped recording) at successive iterations varies
in parts of the model, as is evident by the thick yellow parts.

These variations when operating on a periodic input recording can be ex-
plained by the measurement function being defined relative to the tracked con-
tour. It is unlikely that the contour estimate is identical to the starting estimate
after a complete heart-cycle is tracked. Therefore, the edge-detections will be
performed starting at slightly different positions at the first image in the next
cycle. This can introduce complicated non-periodicities.

6.1.2 Closest Doo-Sabin representation of the ground truth meshes

An important question is how well the left-ventricle model introduced in sec-
tion 4.1 is able to represent the ground-truth meshes. Figure 27 shows the
average estimation errors when the Doo-Sabin representation was considered an
estimation algorithm in its own right.
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The figure shows that the typical errors introduced, and therefore the lower
limit on estimation errors in this project, are

• Absolute surface error: 1.25 mm

• Absolute volume error: between 10 % and 13 %

An important observation is that the extended Kalman filter tracker almost
attains this lowest volume error limit.

Figure 28 shows representative examples of situations where the Doo-Sabin
model does not have enough degrees of freedom to fit all the details of the
manually segmented ground-truth mesh.

Based on manual inspection of such slices, it appears likely that the volume
errors come from sharp bends in the ground-truth segmentation to which the
Doo-Sabin model cannot adapt. A significant part of the volume errors also
appears to come from the region around the mitral valve. A possible explanation
is that this is caused by the deformable model having a non-movable control
node there. In addition, this is the place where the model’s circumference is
largest, which amplifies the effect of deformations on the volume error.

6.1.3 Final update vs. final prediction in the forward-backward
smoothers

This discussion is relevant for the smoother solutions based on the forward-
backward formulation, i.e. the fixed-lag smoother and fixed-interval smoother.

Figure 22 shows the evaluation results when the EKF is compared to two
versions of the fixed-interval Kalman smoother, one in which the final step on
the backward pass is a prediction, and the other one where the final step is an
update.

Even though a final prediction step should be used, according to the theory
in section 2.4.1, the final-update solution was explored based on the intuition
that since the dynamical model is a simple regularization relaxing the estimated
contour towards an initial shape, the backward estimate would be made less cor-
rect by the regularization in frames where the left ventricle is in fact expanding.

The evaluation results in figure 22 indicates that the performance of the
final-prediction fixed-interval smoother is most of the time slightly inferior to
that of the final-update version, but the performance of both are very close to
that of the EKF.
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6.1.4 The effect of measurement noise auto-scaling

Disabling measurement noise auto-scaling does not make the smoothers perform
better than the EKF, in contrast to what was anticipated.

As explained in section 2.6.8, auto-scaling of measurement noise values are
by default enabled in RCTL. This has the effect that measurement variances
are reported in such a way that they sum up to a user-definable value.

Auto-scaling introduces artificial certainty. Even if the measurements are
done in a wrong part of the image, containing nothing but noise, the auto-scaling
results in the filter interpreting the measurements to be roughly as reliable as
measurements obtained from the correct anatomical position.

Given two estimates E1 and E2 that because of the measurement noise auto-
scaling have almost equal covariance matrices, the covariance intersection will
return approximately the average of the two estimates. In the case where E1
and E2 are independent, this would improve the accuracy. But, as mentioned
earlier, in order to obtain estimates of the correct structure, the edge-detections
must be performed close to the true location. This implies that the estimates
E1 and E2 will not be independent, and that the averaging will have smaller
effect.

The results when disabling noise-scaling is never as good as the results
when using a Kalman filter tuned for good performance by itself, such as the
STEP test.xml configuration file.

6.1.5 Not using inverse dynamics

In [12] it is stated that the state-transition matrix used on the backward pass
must be the inverse of the state-transition matrix used on the forward pass.
This is not done in the smoothers implemented in this project. The reason is
twofold: the implementation details are hidden to users of RCTL, and since
the state-transition function is a simple regularization towards a mean state, it
doesn’t make sense to invert it.

Another way of formulating this argument is that RCTL is able to track the
left ventricle regardless of which direction the ultrasound recording is played
back.

In contrast, referring to table 1 in the numerical fixed-interval smoother
example, the squared estimation error increases with a factor greater than five
when not inverting the state-transition matrix.
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6.1.6 Comparative discussion of the numerical smoother example

Several interesting comparisons can be made with the smoother example in
section 2.4.3.

As shown in table 1, the fixed-interval smoother produces position esti-
mates with approximately an order of magnitude less squared error than regular
Kalman filtering. Furthermore, even a small lag is able to reduce the squared
estimation error significantly. In figure 4, two less-than-perfect forward and
backward estimates are fused into a smoothed estimate that is better than any
one alone.

The same behavior is not observed when using smoothing techniques with
RCTL. When applied to a properly configured extended Kalman filter tracker,
the forward and backward pass is combined into something with almost the
same accuracy, when comparing to the ground-truths.

It is also evident from the table that when not inverting the state-transition
matrix on the backward pass, the reduction in squared estimation error by
smoothing is much smaller, while a final update step instead of prediction step
does not seem to have any great impact.

The estimated covariances are shown in similar fashion in figure 5, where
their logarithms are plotted due to the large dynamic range. The backward
filter has much higher estimated variances than the forward filter since it is
initialized with infinite uncertainty (a diagonal matrix of 1.0 · 1010 is used in
the simulation). Furthermore, the estimated uncertainty gets lower with time
for both the forward and backward filter (note that the time is reversed for the
latter), and the fused error estimate is lower than both.

The main explanation for the difference between the example and the results
obtained from the RCTL framework is that in the example, the backward esti-
mates are never interpreted as more informative than they are. This is evident
by the large backward covariance in the figure. In RCTL, the edge-detectors
may report information about edges that do not exist, with a lower associated
covariance than what can be justified. Additionally, the measurements in the
numerical example are always a noisy version of the true measurements, which
is not the case in RCTL if the edge-detections for some reason is started in the
wrong part of the image volume.

6.2 The statistical smoother
The statistical smoother was not able to significantly improve the performance,
and this section discusses the most likely cause. The algorithm is still included
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in this project since the underlying idea of using the covariance intersection
algorithm to combine regular Kalman filter estimates with learned information
from manual ground-truths is interesting.

The clever separation between global and local parameters in RCTL makes
the statistical smoother possible to implement. Using the regular Kalman
tracker to obtain the correct alignment of the left ventricle in addition to a
deformation estimate and subsequently fusing the deformation part with the
learned mean deformation is intuitively reasonable.

Without this clear separation, e.g. only control node displacements from an
initial shape as parameters, the recording probe location would be reflected in
the deformation parameters, thus rendering the statistical smoother technique
useless.

The covariance multiplier (375000) was chosen by trial and error with a
script in order to maximize the performance. The learned information will not
be given much weight with this large value. Figure 25 shows nearly identical
performance when compared to the extended Kalman filter. It was observed that
decreasing the covariance multiplier below 15000 increased the mean absolute
surface error to over 3 mm.

The large spread of the ground-truth volume curves shown in figure 26 ex-
plains why average information is not of much use in single cases. The reasoning
is that the widely differing volume curves reflect widely differing deformation
patterns in the Doo-Sabin representation of the ground-truths. As a result, few
of the recordings are well explained by the learned average heart motion.

This large spread was observed for the first time when investigating the low
performance gain offered by the statistical smoother.

6.3 Limitations and future work
6.3.1 The extended Kalman filter is not optimal

Using the forward-backward formulation of optimal Kalman smoothing assumes
that the forward- and backward-running filters are optimal. The real-time con-
tour tracking library uses extended Kalman filters, which are not in general
optimal filters and hence the smoothed results are not guaranteed to be opti-
mal.

However, the only source of non-linearities in the RCTL framework is the
global rotation. According to [6, pp. 7] it is believed that the linearization error
is small since there is very little change in global rotation of the heart between
successive frames.
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6.3.2 A different measurement model

This study indicates that smoothing algorithms offers little change in tracking
accuracy. It is argued that this is a consequence of the measurement model
being defined relative to the predicted contour location. An interesting topic
for future work is to modify the way edge-detections are performed in order to
overcome this problem.

A measurement model not defined relative to the predicted contour might
also solve other problems. A related project [24] attempted to implement an
unscented Kalman filter within the RCTL framework, and concluded with the
current measurement not being suited for a practical implementation.

6.3.3 Deformable model with more degrees of freedom

As shown in figure 27, the deformable left ventricle model’s degrees of freedom
is too low to give a reliable representation of the ground-truth segmentations.
This effect is most noticeable in the absolute volume errors. A topic for future
work is therefore to investigate the performance of the smoother algorithms
compared to the regular EKF-tracker, when using a deformable model of higher
resolution.

An informal experiment performed with Rctl3dApp showed better agree-
ment with a subdivided (refined) version of this project’s Doo-Sabin model
when tracking on a rendered ground-truth. There is however a risk that more
degrees of freedom in the model may reduce the smoothness because of increased
modeling of edge-detection noise.

6.3.4 Inertia of the fitted models

According to [22, p. 42], ”... [The Kalman smoother] can also be used to coun-
teract the inherent inertia of the estimates from Kalman filters due to temporal
regularization that only pulls the estimates back in time, but not forward”. A
topic for future work is to investigate whether the smoothing algorithms imple-
mented in this project offers any improvement with regards to this time-lag in
the contour estimates.
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7 Conclusion
Four classes of Kalman smoothing algorithms have been presented. The first
three are standard textbook solutions: fixed-point, fixed-lag, and fixed-interval
smoothing. The fourth is the experimental statistical smoother. Additionally,
a numerical example of an unrelated physical system where Kalman smooth-
ing techniques do offer a large improvement in estimator accuracy has been
presented.

This work propose how the different smoother types can be used in the
context of medical image segmentation. The answer to the question if Kalman
smoothing techniques offer any improvement within the RCTL framework is
negative. No smoothing algorithm offered consistently better performance than
the existing extended Kalman filter. In the special case of fixed-lag smoothing
with lag three, a performance degradation was observed.

The lack of performance improvement from smoothing techniques can be
traced back to the definition of the measurement model in RCTL. The smooth-
ing process reduces to approximately the average of two similar estimates, where
the averaging process is because of RCTL’s default auto-scaling of measurement
noise values.

Disabling the default noise auto-scaling has also been investigated with the
purpose of reducing estimate overconfidence, but no great differences were ob-
served.

The experimental statistical smoother performs nearly identically to the
Kalman filter tracker alone. The left-ventricle deformation through a heart-
cycle varies too much from person to person that knowledge of average shape
deformation is of any use. This limits the maximum amount of average de-
formation knowledge that can be fused with a regular Kalman filter estimate,
without degrading the estimator performance.

Finally, the deformable Doo-Sabin surface model of the left ventricle used in
this project is shown to not have enough degrees of freedom to closely represent
the ground-truth meshes. In other words, even if the smoothers produced ex-
actly the same estimates as the ground-truth segmentation, the representation
as a Doo-Sabin surface introduces non-negligible errors. This has largest im-
pact on the lowest possible absolute volume error, which the extended Kalman
filter tracker nearly attains. Therefore, most of the focus has been on the mean
absolute surface error when discussing and comparing performance.
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A Derivation of covariance intersection under
the independency assumption

Assume that θ1 and θ2 are two unbiased and independent estimates of some
parameter θ. Their covariances are σ2

1 and σ2
2 , respectively. The following

derivation of how to linearly fuse the two estimates into a single estimate with
the lowest possible resulting covariance is based on [12, pp 323].

The linear blend of the two estimates can be written in general as

θ̂ = k1θ̂1 + k2θ̂2

We can eliminate one constant by requiring the fused estimate to be unbiased,
and using that E

{
θ̂1

}
= θ and E

{
θ̂2

}
= θ since they are assumed to be

unbiased.

E
{
θ̂
}

= E
{
k1θ̂1 + k2θ̂2

}
= k1θ + k2θ = (k1 + k2)θ = θ (20)

From equation 20, we can infer that k1 +k2 = 1, since it must hold for all values
of the parameter θ in order for the estimator to be unbiased. Hence, we rename
the one free parameter to k, and get the following.

θ̂ = kθ̂1 + (1− k)θ̂2 (21)

The fused covariance can thus be written as

E
{

(θ − θ̂)2
}

= E
{

(θ − kθ̂1 − (1− k)θ̂2)2
}

(22)
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In order to use our knowledge about the estimate covariances σ2
1 and σ2

2 , we
express both sides in terms of the following estimation errors

e1 = θ − θ̂ (23a)
e2 = θ1 − θ̂1 (23b)
e3 = θ2 − θ̂2 (23c)

To achieve this, we assume the right-hand side of equation 22 can be expressed
as Ae1 +Be2 and solve for A and B.

θ − kθ̂1 − (1− k)θ̂2 = Ae1 +Be2

θ − kθ̂1 − (1− k)θ̂2 = Aθ −Aθ̂1 +Bθ −Bθ̂2

By comparing coefficients of θ̂1 and θ̂2 we must have −k = −A ⇔ A = k and
(1 − k) = B, which also is seen to agree with the coefficients of θ. Hence, we
have the following expression for the fused covariance

E
{
e2} = E

{
(ke1 + (1− k)e2)2} = k2E

{
e2

1
}

+2k(1−k)E {e1e2}+(1−k)2E
{
e2

2
}

(24)
We want to minimize this expression with respect to the blending factor k, thus
we compute the two first partial derivatives.

∂E
{
e2}

∂k
= 2kE

{
e2

1
}

+ (2− 4k)E {e1e2} − 2(1− k)E
{
e2

2
}

(25)

∂2E
{
e2}

∂k2 = 2E
{
e2

1
}
− 4E {e1e2}+ E

{
e2

2
}

= 2E
{

(e1 − e2)2} ≥ 0 (26)

We see from equation 26 that any values of k for which the expression 25 is zero
must be a minimum value for the covariance of the fused estimate. Hence, we
proceed by solving

∂E
{
e2}

∂k
= 0

2kE
{
e2

1
}

+ 2E {e1e2} − 4kE {e1e2} − 2E
{
e2

2
}

+ 2kE
{
e2

2
}

= 0

kE
{
e2

1
}

+ E {e1e2} − 2kE {e1e2} − E
{
e2

2
}

+ kE
{
e2

2
}

= 0

k =
E
{
e2

2
}
− E {e1e2}

E {e2
1} − 2E {e1e2}+ E {e2

2}
(27)
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By the assumption that θ̂1 and θ̂2 are independent, we have E
{
θ̂1θ̂2

}
= θ2 and

thus it follows that E {e1e2} = E
{

(θ − θ̂1)(θ − θ̂2)
}

= θ2−θE
{
θ̂1

}
−θE

{
θ̂2

}
+

E
{
θ̂1θ̂2

}
= θ2 − θ2 − θ2 + θ2 = 0.

Hence, equation 27 can be written

k =
E
{
e2

2
}

E {e2
1}+ E {e2

2}
= σ2

2
σ2

1 + σ2
2

(28)

From equation 21 we have

θ̂ = kθ̂1 + (1− k)θ̂2 = θ̂1σ
2
2

σ2
1 + σ2

2
+ θ̂2σ

2
1

σ2
1 + σ2

2

From equation 24 we have

E
{
e2} = k2σ2

1 + 0 + (1− k)2σ2
2 = σ4

2σ
2
1 + σ4

1σ
2
2

(σ2
1 + σ2

2)2

E
{
e2} = σ2

1σ
4
2 + σ4

1σ
2
2

(σ2
1 + σ2

2)2 = σ2
1σ

2
2(σ2

1 + σ2
2)

(σ2
1 + σ2

2)2 = σ2
1σ

2
2

σ2
1 + σ2

2

In summary, the expression for the optimal fusion and its associated covari-
ance has been shown to be

θ̂ = θ̂1σ
2
2 + θ̂2σ

2
1

σ2
1 + σ2

2
(29)

and
σ2 = σ2

1σ
2
2

σ2
1 + σ2

2
(30)

B Conversion of triangle meshes to RCTL state
vectors

Given a triangle mesh, how can this be converted into a state vector for a
suitable RCTL model so that the mesh is represented as closely as possible?
Below it will be shown that the problem can be reduced to rendering triangles
as voxels (volume ”pixels”).
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This problem arises in the statistical smoother case, because the manual
ground truth segmentations produced by AutoLVQ with manual editing, are
only known in the form of a triangle mesh, while the statistical smoother requires
a RCTL-state vector description.

The solution chosen was to let RCTL itself do this conversion by creating a
voxelized copy of the ground truth meshes. That is, for each recording, every
frame’s triangle mesh is rendered as voxels into a recording in the RCTL-specific
format .h5c, which is basically a four-dimensional array containing image data
for all frames. By rendering all triangles in a mesh as continous bright white
pixels, a sharp and clearly-defined voxelized version of the mesh results. By
finally using RCTL to track on this, the desired state vectors are obtained.

The 4D array consists of unsigned 8-bit chars. One dimension is for frame
number, and the remaining three dimensions are x, y, and z.

This custom format .h5c is simply a .hdf file (the letter ’c’ denotes cartesian
image volumes), which is easily created by first creating the data structure in
Matlab and then storing it as a .hdf file by using the Matlab script HdfExport
written by Fredrik Ordrud.

The units used in the ground truth meshes is meters which allows an easy
physical interpretation. In order to get the recording orientation correct and
uniform over all generated recordings, the physical space covered by each record-
ing must be the same for all recording. A global bounding box for all recordings
can be computed by finding maximum and minimum x, y, and z coordinate over
all triangles. This gives a global bounding box, such that if the voxel space is
at least as big, all rendered ground truth segmentations are guaranteed to fit
into it.

The only remaining free parameters are spacing in x, y, and z direction, i.e.
how many voxels will be used to represent the physical space between maximum
and minimum limits in each of the three directions. Approximately 200 in each
dimension were used in this project.

B.1 How to parameterize a triangle?
This section briefly presents a bijection between the unit square S = [0, 1] ×
[0, 1] into an arbitrary triangle defined by p1,p2,p3 ∈ RN , which will be used
below to sample points on triangles. The line segment between p2 and p3 as
l1(u) is parameterized in such a way that l1(0) = p2 and l1(1) = p3. This is
accomplished by

l1(u) = p2 + u(p3 − p2) (u ∈ [0, 1]) (31)
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Then, for any u ∈ [0, 1], parameterize the line segment between p1 and l1(u)
as l2(v) in such a way that l2(0) = p1 and l2(1) = l1(u). This is accomplished
by

l2(v) = p1 + v(l1(u)− p1) (32)
By combining equations 31 and 32 the following explicit expression for the
bijection is obtained.

p(u, v) = p1 + vp2 + uv(p3 − p2)− vp1 (u, v ∈ [0, 1]) (33)

Figure 29: Illustration of bijection between unit square and an arbitrary triangle.

B.2 Rendering a triangle as voxels
The interval is split into N equal parts, which gives N subintervals of length
h = xmax−xmin

N . Given x ∈ [xmin, xmax], how to get subinterval index? Solving

xmin + hr = x

for r gives
r = x− xmin

h
This gives the number of interval widths h as a real number. In order to obtain
an integer index, the following ceiling value is computed.

k = ceil
(
x− xmin

h

)
(34)
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Figure 30: Image voxel volume. The physical x, y, and z limits are partitioned
into Nx, Ny, and Nz cells, respectively.

Figure 31: Illustration of mapping between physical coordinate and voxel index.

with the additional boundary-case handling rule that if k is 0, let k = 1 instead.
Thus, as shown in figure 31, a number in the interval is mapped into an index
in the voxel data array.

By making sure that the maximum sample spacing is less than the resolution
of the .h5c image volume each rendered triangle will appear as completely filled.
This can be validated by playing back the rendered mesh in the Rctl3dApp; if
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the contour has visible black spots, the triangle sampling density is increased
until the problem disappears.

With this method for rendering a single triangle, rendering a full triangle
mesh is simple; just iterate through all triangles and render them one by one.
The final recording is made by rendering each ground truth mesh in a separate
frame.
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B.3 State-vectors from rendered ground truths
After obtaining a .h5c recording consisting of one frame for each ground-truth
triangle mesh, the desired state-vectors can be obtained by using RCTL to track
the recording and save the estimates. This is illustrated in figure 32 where the
Rclt3dApp is used to visualize the tracking.

The state-vector version of the ground-truth needed for the statistical smoother
and Doo-Sabin minimum error computation were computed by a Matlab script
using RctlMatlab to perform the tracking and return the desired state vectors.
A few warmup-cycles is performed before storing any state vector estimates in
order to give the tracker enough time to stabilize.

Figure 32: Screenshot of Rctl3dApp tracking on a rendered ground truth mesh.
Note the thin bright white contour floating in black space and the tightly tracked
contour (yellow). Edge-detector type ”gradient” was used.
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C Numerical example comparing the two co-
variance intersection algorithms

Assume that two independent position estimates are obtained as Gaussian dis-
tributions, perhaps from two separate GPS units each containing a Kalman
filter. Figure 33 shows the situation. The ellipses shown are contours of equal
probability, one standard deviation from the mean. The first position estimate
is

x1 =
(

1.5
2.0

)
P1 =

(
2.0 1.0
1.0 1.0

)
and the second position estimate is

x2 =
(

0.9
2.3

)
P2 =

(
0.1 0.0
0.0 5.0

)
By applying the covariance intersection algorithm assuming independent es-

timates, we get the following fused estimate, which is shown in black in the
figure.

xindependent =
(

0.934
1.770

)
Pindependent =

(
0.095 0.043
0.043 0.474

)
If one instead use the covariance intersection algorithm assuming an unknown
correlation between the two estimates, the following estimate is obtained, which
is shown in green in the figure.

xunknowcorr =
(

0.952
1.758

)
Punknowncorr =

(
0.248 0.117
0.117 0.805

)
.

93



Comparing the black and green covariance ellipses to the covariance ellipses
of both estimates, it is clear that they are smaller, and hence there is less
uncertainty in the fused estimates.

The unknown correlation assumption manifests itself in that the correspond-
ing covariance ellipse is bigger than the fused covariance ellipse assuming inde-
pendence of estimates. This is also pointed out in [13]; estimation certainty is
traded for a provably consistent fused estimate without any assumptions on the
correlation between the two input estimates.

It can also be observed that in this specific situation, the fused mean esti-
mates are almost equal.

Figure 33: Two uncertain position estimates fused into a more certain esti-
mate. The ellipses are covariance ellipses, i.e. constant-probability curves of
one standard deviation.
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D Derivation of the state-space formulation of
the mass-spring system

A damped mass-spring system is chosen as a simple non-trivial dynamical sys-
tem to demonstrate Kalman smoothing on. The governing second-order differ-
ential equation is converted to two coupled first-order differential equations.

D.1 The damped mass-spring system
Figure 4a shows the damped mass-spring system in question. Newton’s second
law of motion will be used to derive a second-order linear differential equation
for the displacement from rest, denoted by x(t). The spring force is given by
Fs = −kx and the friction is modeled as being proportional to the velocity, i.e.
Ff = −cdx(t)

dt . The differential equation thus becomes

∑
F = −kx(t)− cdx(t)

dt
= ma = m

d2x(t)
dt2

(39)

which can be written

d2x(t)
dt2

+ c

m

dx(t)
dt

+ k

m
x(t) = 0 (40)

D.2 The analytical solution by Laplace transforms
By taking the Laplace transform of both sides, equation 40 translates to

X(s) =
sx(0) + x′(0) + c

mx(0)
s2 + c

ms+ k
m

(41)

By taking the inverse Laplace transform of both sides, we get

x(t) = L−1{X(s)} = 1
2
√
c2 − 4km

(
cx(0)

[
exp(K1t) exp(K2t)− exp(K1t) exp(−K2t)

]
+x(0)

√
c2 − 4km

[
exp(K1t) exp(−K2t) + exp(K1t) exp(K2t)

]
+2x′(0)m

[
exp(K1t) exp(K2t)− exp(K1t) exp(−K2t)

])
(42)
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where
K1 = − c

2m (43)

K2 =
√
c2 − 4km

2m (44)

D.3 Converting the second-order differential equation to
two coupled first-order differential equations

State-space methods require that equation 40 be written as a set of coupled
first-order differential equations. This is done by the standard procedure of
introducing one new variable for each of the higher order derivatives.

x1(t) = x′(t)
x2(t) = x′1(t) = x′′(t) = kx1(t)− cx2(t)

This can be written on matrix form as(
x′1(t)
x′2(t)

)
=
(

0 1
− k

m − c
m

)(
x1(t)
x2(t)

)
(46)

or
x′(t) = Fx(t) (47)

By a standard result in the theory of linear systems, the solution of this vector
differential equation is

x(t) = eF(t−t0)x(t0) (48)

We define the state-transition matrix as φ(∆t) = eF∆t. This matrix moves the
system from the state at time t0 to the state at time t1 = t0 +∆t. We thus have

x(t) = φ(t− t0)x(t0) (49)

Given actual values for ∆t, m, k, and c, it is easy to compute this matrix
exponential numerically, e.g. by using the SciPy3 expm function .

3SciPy is an open source library of algorithms and mathematical tools for the Python
programming language.
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E Files included with this report
Additional details about this work can be found in the accompanying files:

• The Python source code used to generate all figures in the numerical
smoother example in section 2.4.3.

• Algorithm evaluation details for all recordings and all estimation algo-
rithms, the raw data used to generate the tables in section 5.1.1.
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