
Point to point wireless audio with limited
bandwidth and processing

Even Steen Brenden

Master of Science in Communication Technology

Supervisor: Lars Magne Lundheim, IET

Department of Electronics and Telecommunications

Submission date: June 2012

Norwegian University of Science and Technology

Abstract

Designing an audio communication system for an embedded platform
requires an analysis of both general audio processing techniques and the
specific characteristics of the platform. Therefore this is a task that must
be handled differently for different platforms, although many aspects of the
design process can be generalized.

This report describes such an analysis. A general-purpose audio com-
pression scheme is designed for optimizing audio quality given bounds on
processing resources and bit rates. Essential system design aspects such as
analog-to-digital and digital-to-analog conversion, scheduling for real-time
performance, error resilience and number representation is considered. A
low-cost, fully self-contained real-time wireless audio communication system
is designed and implemented.

Contents

1 System-on-Chip 7
1.1 SoC physical properties . 8
1.2 Possible compression schemes 10

2 Compression and coding 11
2.1 Symbols for rates, bits and bandwidths 11
2.2 DPCM . 12

2.2.1 Prediction . 14
2.3 Quantization, companding and entropy coding 15
2.4 ADPCM . 16

3 Number representation 19
3.1 A comparison of floating point and fixed-point representation . 19
3.2 Fixed-point arithmetic . 20
3.3 Qi.f. number format . 20
3.4 Saturation arithmetic . 21

4 Error concealment 24

5 Analog-to-digital conversion 26
5.1 Evaluation methods . 27
5.2 Performance tests . 29
5.3 Noise reduction . 33
5.4 Conclusion . 34

6 Digital-to-analog conversion by pulse-width modulation 35

7 Implementation 38
7.1 Buffers . 39
7.2 Scheduling for real-time operation 41
7.3 Scheduling for half-duplex operation 42

7.3.1 Scheduling for full-duplex operation 43

1

7.4 PWM . 46
7.5 Delays . 48
7.6 Error concealment . 50

8 Performance tests 51
8.1 A measure for operation count 53
8.2 Comparison of compression schemes 53
8.3 Impact of noise reduction . 54
8.4 Fixed point versus floating point performance 56
8.5 Profiling the implementation 58
8.6 Memory requirements . 59

9 Applications 60
9.1 Rates and delays . 60
9.2 Full-duplex real-time speech communication system 60
9.3 ITU-T G.722 wideband speech codec 62
9.4 Wireless transmission of sound for subwoofer 63
9.5 A source for voice recognition 65

10 Conclusion 67

11 Further work 69
11.1 Synchronizing transmitter and receiver 69
11.2 Code base optimized specifically for this SoC core 69
11.3 Full-duplex operation protocol 70
11.4 Joint source and channel coding 70
11.5 Other possible points for further work 70

A Levinson-Durbin recursion 72

B M-tables for one-word-memory AQB 73

C Complex ADPCM 74

D Algorithms for multiplication and division of Q15.16 num-
bers 76

E Code references 78
E.1 Octave/MATLAB code . 78
E.2 C x86 code (Q16 and float) 79
E.3 C SoC code . 79

2

F Audio file references 81
F.1 ADC test sources . 81
F.2 ADC test results . 81
F.3 Performance test sources . 82
F.4 Performance test results . 82

3

Introduction

The project covered by this report investigates the implementation of an au-
dio communication system on a particular System-on-Chip (SoC) that can
transmit data point-to-point over radio. Limited processing, storage and
transmission resources and latency restrictions will pose bounds on applica-
tion possibilities and audio quality. Focus will be on utilizing these resources
by finding and implementing an audio communication system that operates
in real-time. The resulting implementation will then function as an assess-
ment on what the SoC in question is able to achieve in real-time. We will
strive to make use of the features present on-chip without the need for ex-
ternal devices so that the SoC is fully self-contained, effectively lowering
production costs.

Microphone

Anti-aliasing
filter

Speaker

Endpoint

Microphone

Anti-aliasing
filter

Speaker

Endpoint

Audio
input

Audio
input

Audio
output

Audio
output

Radio

ADC

Codec

SoC

ADC

Codec

SoC

DAC DAC

Figure 1: A typical application of the system described in this project.

4

Several applications for the system will be discussed. One of these is
illustrated in figure 1. It is a full-duplex (both directions simultaneously)
communication system using two identical endpoints with audio input and
output and radio signal transmission and reception. The endpoints could for
example be headsets with microphones.

An overview of the signal chain of the system is shown in figure 2. The

ADC Compression Packet formation

Channel coding
and application
layer protocols

Radio
transmitter

Radio
receiver

Packet
unwrapping

Channel decoding
and application
layer protocols

Decode
compressed

data
DAC

Analog
audio

Air

Analog
audio

Figure 2: Signal path. This project will mainly be concerned with the shaded
blocks.

shaded blocks are the ones this project will be concerned with: the quality of
the analog-to-digital conversion (ADC), audio compression, packet formation
for transmission over radio on the transmitter side, then unpacking, decod-
ing and digital-to-analog conversion on the receiver side. Figure 2 shows
half-duplex operation (one way at a time). For full-duplex operation both
endpoints must be both a transmitter and receiver. The scope of the project
is primarily in the software domain. No hardware development will be carried
out.

A project going in-depth on the radio part of the SoC was done in parallel
with this project and is found in [1]. Also, a project that analyzes what
compression algorithms are possible for real-time operation on the SoC is
found in [2].

This report is written so that it can be used as a guide for doing a similar
project. It is organized as follows: First, the embedded system is presented.
Then a compression scheme is chosen and explained. Number representation
and arithmetics is discussed, followed by a chapter on how to conceal errors.
Then the analog-to-digital converter is assessed and an approach to on-chip
digital-to-analog conversion is discussed. This is followed by an presentation

5

and discussion of a system implementation and a performance assessment on
this is carried out. Finally, a set of possible applications is discussed.

This report is accompanied by a ZIP file containing source code and audio
files. Details on this is presented in appendix E and F, respectively.

6

Chapter 1

System-on-Chip

This chapter will present the main components and properties of the System-
on-Chip in question [3]. Since this project ultimately concerns what appli-
cations are possible to implement on this specific SoC, the possibilities and
constraints that are described here will set the tone for all following chapters.
The main components are illustrated in figure 1.1.

Radio A/D-converter

Analog
signal

[0V, +4V]Air

SPI bus UART bus

Digital
signal

Digital
signal

General purpose
I/O-pins

Digital
signal

Timers

AES
encryption

Random
number

generator

CPU
core

Figure 1.1: System-on-Chip main components.

7

1.1 SoC physical properties

The following is a list of the main characteristics of the SoC [3]. These will
be discussed below.

• A CPU clocked at fC = 16 MHz with an efficiency of EC = 0.9
MIPS/MHz. This gives an average of M = fCEC = 14.4 MIPS (Million
Instructions Per Second).

• 32-bit fixed-point arithmetic.

• 1-cycle hardware multiplier.

• 256 kB flash program memory.

• 16 kB RAM.

• Delta-sigma analog-to-digital converter (ADC) with hardware dithering
and four modes, as shown in table 1.1.

• 2.4 GHz half-duplex radio transmitter and receiver (RF) with three
transmission rates RR: 250 kbps, 1 Mbps or 2 Mbps.

• Both the radio (RF) and the CPU core are designed for very low power
consumption.

Table 1.1: ADC modes in terms of bit depth and sample rate.
Mode 1 2 3 4
Bit depth BA [bits] 8 9 10 12
Sample rate fs [kHz] 50 28 14.7 3.8
Bit rate RA = BAfs [kbps] 400 252 147 45.6

Bandwidth fb = fs
2

[kHz] 25 14 7.35 1.9
Dynamic range [dB] 48.16 54.18 60.2 72.24

At first sight, one of the main constraints of the SoC is the CPU with the
given fC and fixed-point arithmetics only. Throughout this project we will
attempt to find the what audio processing algorithms the processor can run
in real-time for given bit rates. Arithmetic operations are normally executed
in one cycle. The 1-cycle hardware multiplier is very helpful in achieving
this. As will be shown in chapter 8, the flash program memory is more than
large enough for our use. Therefore the compiler may be set to produce
so-called branch-free code by repeating code segments. This is beneficial

8

because branching is one of the instructions that may use more than one
cycle to execute [4]. An assessment on what algorithms may be run for each
ADC mode given the constraint on CPU power is described in [2].

The issues when dealing with fixed-point arithmetic for signal processing
is discussed in chapter 3. In short, they do not pose a problem for designing
the system, but they do make the implementation a bit more complex.

A potential threat on audio quality is the ADC. It has four operating
modes, which is shown in table 1.1. It is a general purpose ADC that is not
specifically designed for audio sampling, although it may be used for such
purposes. Chapter 5 will make an assessment on what audio applications it is
suitable for. An analog anti-aliasing filter is not present on-board pre-ADC,
so any input must be filtered so that its bandwidth is no larger than fb = fs

2
.

The dynamic ranges in table 1.1 is calculated as 6.02BA+1.76 dB [5, p. 125].
For comparison, CD quality audio has a dynamic range of 98.08 dB [6, ch.
1].

The radio is half-duplex, meaning that at any time it can either transmit
or receive, but never both at once. However, an overlaying protocol emulating
full-duplex operation exists for this SoC [1]. That protocol is intended for
infrequent and sporadic packet transmission, which is not the case for an
audio transmission system. This project will mainly investigate the use of this
protocol for half-duplex (one-way) audio transmission without any overlying
application layer protocol, although some tests for operating in full-duplex
will also be carried out. Protocol design will not be discussed. The reason for
having different radio transmission rates RR to choose from is that a lower
RR will produce a higher bit energy, which again makes for more robust
transmission. Notice that all uncompressed bit rates RA in table 1.1 are less
than all radio transmission rates RR except when RR = 250 kbps. This may
seem like a reason not to compress at all, but because other devices in the
same RF band may use the same air space, it is likely that there will be a lot
of packet losses accompanied by retransmissions. Therefore, these theoretical
limits that are never fully reached in practice. Lowering the compressed rate
RC will give more time to ensure reliable transmission [1].

The SoC has built-in routines for power management. This project will
focus on the limited processing resources, not on energy consumption. There-
fore power saving schemes will not be addressed. The CPU may execute
power management routines that are transparent to the programmer, such
as putting the system to sleep during idle times. However, since a real-time
audio application has constant, frequent and periodic execution, there will
probably not be much time to sleep.

9

1.2 Possible compression schemes

For all ADC modes except mode 4, [2] shows that most MPEG-standard
codecs will not be able to run real-time on this device. This is because there
are not sufficient processing resources for doing real-time operation using
the sample rate fs of its respective mode. [2] further makes an assessment
on what sort of general compression algorithms can be run full-duplex in
real-time for the four modes. These are summarized in table 1.2.

Table 1.2: List of compression schemes and the ADC modes they can perform
full-duplex real-time operation in using our SoC.

Compression scheme Possible modes
MPEG Layer-3 (MP3) Mode 4
MPEG-4 AAC Mode 4
MPEG-4 AAC-Low-Complexity Modes 3 and 4
ADPCM All modes
DPCM All modes

10

Chapter 2

Compression and coding

The aim of compression is to reduce the bit rate for transmission while min-
imizing distortion. For this project there is no definite goal on which rate
to achieve [7]. We merely want to utilize the given processing power and
then make an assessment on rate versus distortion for a codec running on
the SoC. The compression scheme should be of general purpose, since we
are investigating several applications for sound sources with different sta-
tistical properties. With this in mind, [2] makes an assessment of the SoC
and chooses DPCM as a basic compression scheme. This scheme will have
optional adaption features that can be used to challenge the restrictions on
computational resources with the benefit of enhancing audio quality for a
fixed bit rate or vice versa. The theory behind DPCM and ADPCM will be
presented in this chapter. Focus will be on the features that gave the best
results with respect to audio quality in [2].

2.1 Symbols for rates, bits and bandwidths

Before diving into compression, the system symbols and their place in the
signal path is shown in figure 2.1. These will be used throughout this report.
RA is the bit rate from the ADC with bit depth BA. fs and fb is the sample
rate and signal bandwidth, respectively. These remain constant through the
signal path. RC is the compressed bit rate with bit depth BC . RR and is the
rate at which the radio transmits. See [1] for a discussion on other metrics for
the radio. BA will also be used when referring to general signal bit depths.

11

ADC Compression Channel coding

Radio
transmitter

Radio
receiver

Channel decoding
Decode

compressed
data

DAC

Analog
audio

Air

Analog
audio

f
s
,f

b

R
A
,B

A

f
s
,f

b

R
C
,B

C

R
R

R
R

f
s
,f

b

R
C
,B

C

f
s
,f

b

R
A
,B

A

Figure 2.1: Signal path with symbols.

2.2 DPCM

Differential Pulse-Code Modulation, as described in [5, ch. 6], uses linear
prediction to remove signal redundancy. A closed-loop DPCM encoder and
decoder is illustrated in figures 2.2 and 2.3, respectively.

Equations 2.1-2.3 describes a DPCM system. It consists of the following
signals: the input signal x(n), the predicted signal x̂(n), the reconstructed
signal x̃(n), the error signal d(n) and the quantized error signal e(n), which
is the signal that is to be transmitted from encoder to decoder.

d(n) = x(n)− x̂(n) (2.1)

e(n) = d(n)− q(n) (2.2)

x̃(n) = x̂(n) + e(n) (2.3)

The concept is as follows. Let x(n) be represented by BA bits. A good
prediction will produce a d(n) < x(n). Then d(n) may be quantized with
BC < BA bits to produce e(n) = d(n) + q(n), where q(n) is the quantization
error. An example of x(n) versus d(n) is shown in figure 2.4.

The decoder produces x̃(n), which is a reconstruction of x(n). This is
the signal that is heard at the receiver side. Provided an error-free channel,
the only error in this DPCM system is the one introduced by the quantizer,
q(n). Note that q(n) need not necessarily be additive as in equation 2.2; the
relation between d(n) and e(n) depends on the quantizer type. For a uniform

12

Q

LP

e(n)x(n)

x(n)~

x(n)^

d(n)

÷

Figure 2.2: A DPCM encoder.

LP

e(n)x(n)~

x(n)^

Figure 2.3: A DPCM decoder.

-1

-0.5

0

0.5

1

0 5000 10000 15000 20000 25000 30000 35000 40000

d(
n)

n

-1

-0.5

0

0.5

1

0 5000 10000 15000 20000 25000 30000 35000 40000

x(
n)

Figure 2.4: Example of input signal x(n) versus residual signal d(n).

13

quantizer with BC ≥ 3, however, it is common to treat it as additive [8, ch.
4].

2.2.1 Prediction

To design an efficient DPCM coder, we need a way of calculating good pre-
dictor x̂(n). Equation 2.4 defines x̂(n) as a linear predictor for x̃(n) of oder
P with a set of prediction coefficients {αi}n∈{1,2,...,P}.

x̂(n) = −
P∑
i=1

αix̃(n− i) (2.4)

Let x(n) be a M -sample sequence for n = 0, 1, . . . ,M − 1. A common
way of measuring prediction error power is by defining

σ2
d = E[|d(n)|2] = E[|x(n)− x̂(n)|2], (2.5)

which is to minimized. E is an expectation operator applied to {x(n)}.
Using equations 2.4 and 2.5 one can find an equation for the optimal αi’s
with respect to a minimal σ2

d. These can be found by solving the Yule-Walker
equations (2.6).

P∑
i=0

αiR|j−i| = MαP = 0, (2.6)

where M and αP is

M =

 R1 R0 R1 . . . RP−1
...

.
...

RP RP−1 R0

 , αP =

1
α1

. . .
αP

 (2.7)

This is merely a set of linear equations based on

Rk =
1

M

M−|k|−1∑
n=−0

x(n)x(n+ |k|), (2.8)

the autocorrelation function of x(n). A fast and elegant method for solv-
ing the Yule-Walker equations is Levinson-Durbin recursion, an inductive
method that uses α1, . . . ,αk−1 to calculate αk. The Levinson-Durbin algo-
rithm is presented in appendix A.

In the simplest form of DPCM, P = 1 and α1 ∈ (0, 1), typically α1 = 0.9.
Optimal αi values may be found offline by analyzing larger data sets with

14

representative audio inputs x(n), for instance with the method discussed
above, or online using adaptive schemes. Adaptive schemes are more com-
putationally demanding than static schemes. [2] found adaptive prediction
to be substantially less effective than adaptive quantization (explained be-
low) with respect to audio quality. Therefore adaptive prediction will not be
discussed in this project.

2.3 Quantization, companding and entropy

coding

A uniform quantizer with a fixed step size, as described in [5][ch. 4.3] is
simple with respect to both implementation and theory. However, most
signals are not uniformly distributed. More complex quantizers may make
use of known statistical properties of the signal, typically by analyzing its
probability density function (PDF). A common approach for PCM-coded
signals is to remap amplitude values according to a companding curve so
that the resulting PDF is closer to a uniform distribution and therefore well
suited for uniform quantization with a fixed step size [5][ch. 4.5]. This
is called companding or logarithmic quantization. A related approach is
to design non-uniform quantizers tailored for specific PDFs, for instance a
Gaussian distribution. These are called PDF-optimized quantizers.

Any transmission system with a quantizer that produces an output with a
non-uniform distribution will benefit from entropy coding [5, ch. 4]. Coding
techniques such as arithmetic coding can be used after compression if this is
the case with the error signal [9, ch. 5]. This would produce a variable-length
codebook, which could compromise error robustness when transmitting the
signal, since it is harder to decode an array of samples without a priori
knowledge of its length 1. By designing the quantizer such that its output is
uniformly distributed, entropy coding is avoided since all codewords will be
equally probable. This is typically achieved with a PDF-optimized quantizer.

Another step in producing a uniform output from the encoder is remap
the amplitudes of the input signal using a companding curve [6, ch. 3.3.2].
This mapping is done prior to quantization, so for DPCM it would be applied
to d(n). A typical companding curve called µ-law is shown in figure 2.5. µ-
law is a well known standard used in commercial digital communications
systems. It is defined by function F (x) in equation 2.9. Typically, µ = 255
for BC = 8. After decoding at the receiver side, companding must be inversed

1This problem can be overcome with a protocol that enforces Automatic Repeat Query
[1]. For simplicity, the implementation of this project will not enforce this.

15

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

O
ut

pu
t a

m
pl

itu
de

Input amplitude

Linear amplitude mapping
Companded amplitude mapping

Figure 2.5: Companding curve example.

by applying F−1(x).

F (x) = sgn(x)
ln(1 + µ|x|)

ln(1 + µ)
, − 1 ≤ x ≥ 1 (2.9)

This project will not be concerned with companding as it is not common
to compand d(n) in DPCM [10]. Companding is mentioned here to emphasize
that a companded signal prior to quantization may have an impact on audio
quality and is therefore a source of improvement that is not computationally
demanding.

2.4 ADPCM

DPCM can be adaptive in two ways: prediction adaptive, as mentioned in
the previous section, and quantizer step size adaptive, which is what will be
referred to as ADPCM throughout this report. As mentioned earlier, the
quantizer is the only step in the signal chain where the signal is irreversibly
degraded, not counting transmission losses. Therefore it makes sense to put
an effort into designing it well. The approach discussed in this section is a
uniform quantizer with a sample-by-sample-adaptive step size. The reasons
for this is as follows:

16

• Step-adaptive quantizers tend to be less signal-specific than most other
quantizer types, which is an important property since we will be inves-
tigating several types of audio sources and applications in this paper
[5, ch. 4].

• They are known to produce a stable SNR [5][p. 195].

• They are easy to implement and can have a low memory overhead.

• Compared to a uniform quantizer with a static step size, a quantizer
with an adaptive step size is one step closer to a PDF-optimized one
[5, ch. 4].

Adaption schemes can be divided into two categories: forward adaption
and backward adaption. Forward adaption works on sample blocks of size M
which is buffered up and analyzed to produce adaption parameters every Mth
sample. Adaption parameters is typically prediction coefficients or step sizes.
This introduces a delay of M samples and requires adaption parameters to
be sent as side information and therefore adds to the transmission bit rate.

With backward adaption, the encoder and decoder simultaneously cal-
culates the adaption parameters based on the quantized and transmitted
samples, and therefore makes it possible to update prediction coefficients on
a sample-by-sample basis. This also eliminates the additional side informa-
tion bits and delays at the cost of suboptimality because we are analyzing
the coded signal e(n) and the decoded signal x̃(n) instead of the input sig-
nal x(n). Therefore AQB generally performs worse than AQF for coarse
quantization[5][p. 303].

Forward-adaptive and backward-adaptive quantization is abbreviated AQF
and AQB, respectively. AQF can be very straightforward: simply find the
dynamic range of a block of M samples and adjust the step size so that the
quantizer operates within the same dynamic range as the signal. For exam-
ple, d(n) in figure 2.4 can be quantized with BC bits using a significantly
smaller step size ∆ than x(n) because it has a significantly shorter dynamic
range.

A lot of algorithms for AQB exists. The following scheme, called adaptive
quantization with a one-word memory, is one of the least demanding AQB
algorithms with respect to both computational complexity and memory usage
[11]. The adaptive step size ∆(n) is calculated as

∆(n− 1)M(|C(n)|), (2.10)

where C(n) is the current codeword and M is a table of size 2BC−1 that
holds step size multipliers that has a distinct value for all |C(n)|. The basic

17

idea for M to have values less then one in its lower half and values larger
than one in the upper half, so that an increase in C(n) compared to C(n−1)
yields an increase on ∆(n) and vice versa. An example for BC = 3 using a
midtread uniform quantizer is shown in figure 2.6, with example values for
M .

Input amplitude

Output amplitude

1/2Δ
i

3/2Δ
i

5/2Δ
i

7/2Δ
i

M
1
=0.9

M
2
=0.9

M
3
=1.25

M
4
=1.75

Figure 2.6: Example of one-word memory AQB.

Although the encoder must do both adaption, encoding and decoding for
each sample, adaption is only one table lookup and one multiplication. The
real work, which is of course computed offline, is to find the M -table that
is best suited for the signal in question. Training a system to find the best
fitting M -table will not be pursued in this project as there exists standard
tables for typical values of BC that have taken typical signal statistics into
account.

18

Chapter 3

Number representation

This chapter will discuss digital number representations and arithmetic oper-
ations. The focus will be on fixed-point arithmetic, since there is no on-board
floating point unit (FPU), only an integer arithmetic logic unit (ALU) on the
SoC.

3.1 A comparison of floating point and fixed-

point representation

When designing a digital system, the inclusion of an FPU is a trade-off
between cost and value range, both of which is higher with native floating
point arithmetic. A comparison of typical 32-bit floating point and fixed-
point integer properties is shown in table 3.1 [12, ch. 1.5]. Q15.16 is a signed
32-bit fixed-point number representation scaled with 15 bits for the integer
part and 16 bits for the fractional part, which will be discussed in depth in
section 3.3. The range is the span of numbers that a type can represent. The
precision is the difference between successive values relative to scaling and is
equal to the value of the least significant bit.

Table 3.1: Comparsion of 32-bit floating point and two types of fixed-point
number representation.

IEEE 754 Float Signed integer Q15.16
Value range ∼ ±3.4× 1038 −231, 231 − 1 −32678, 32767
Precision (maximum) 2−23 1 ∼ 1.5× 10−5

Overflow (definiton) ∞ 231 − 1, −231 −32678, 32767
Underflow (definition) −∞ 0 0

Emulating true floating point operation on a fixed-point ALU is known

19

to be costly in terms of computations [12, p. 29]1. The precision, however,
is initially the same for both floating point and fixed-point types if they are
represented by the same number of bits. It is the scaling that makes the
difference in the representative precisions in table 3.1. Therefore, it is only
the scale and range that might be a problem when using fixed-point types.
So for any algorithm, do an analysis to find the right scale for that particular
algorithm. If no scale exists that satisfies the required precision and range,
analyze the algorithm in question to locate the parts that needs different
ranges and scales. Then one can scale the fixed-point number differently
for each part, effectively achieving floating point arithmetic (although not
true emulation). Even though such an analysis can be a tedious task, it will
produce an implementation that is less computationally demanding than true
floating point emulation.

This chapter will investigate what range and precision is needed for the
algorithms described in chapter 2 and present a number type that is sufficient
for these.

3.2 Fixed-point arithmetic

Having shed some light on the main issues in comparing floating- and fixed-
point representations, the rest of this chapter will focus entirely on fixed-point
arithmetic.

3.3 Qi.f. number format

The words ’integer’ and ’fixed-point’ have been used interchangeably so far.
This is because from a processor view, they are the same. The processor
has no knowledge of any point between the integer and fractional part of a
number and treats all numbers as integers. A common way of denoting a
fixed-point number is as Qi.f , where i is the number of bits assigned for the
integer part and f for the fractional part, as seen in equation 3.1.

Qi.f =
i∑

j=0

2j +

f∑
k=1

2−k (3.1)

The sign bit is not counted, so BA = 1+ i+f is the total of available bits
for a number. A full 32-bit integer, for example, can be denoted as Q31.0.

1True emulation involves storing the numbers in a floating point format and run sub-
routines for all operations on these numbers so that floating point operation is transparent
to the programmer.

20

[13] describes how to carry out basic arithmetic on any fixed-point number
Qi.f . For all cases where f > 0, special care needs to be taken to get correct
results with fixed-point operations. In addition, operations where f and i
are different for the operands requires even more care, since we need to align
the points before carrying out the operation. Therefore it is desirable to use
only one type of Qi.f if possible.

Addition of two Qi.f numbers needs no extra treatment, since overflow
in the fractional part will flow over to the integer part and underflow in
the integer part will flow over to the fractional part. When multiplying
two numbers represented by BA bits, the intermediate result is a 2BA size
number, i.e. Q2i.2f . Also, when multiplying the f fractional bits we need
to post-scale by right-shifting f bits, since the processor sees

∑f
k=1 2−f as∑f

k=1 2f . Algorithms for multiplication and division of Qi.f -numbers can be
found in appendix D.

When choosing a suitable Qi.f format, we must take into account all data
variables of the system. Let’s look at the ones needed for DPCM:

• The input samples x(n) occupy no more than 12 bits due to the ADC.

• For perfect prediction, the predictions coefficents αi can in theory take
on the value from predicting the difference between two input samples:
x(n) − αix(n − i) = 0 ∀i. The extremes for this is when |x(n)| = 1
and |x(n− i)| = 2−12 and vice versa. This means that |αi| = 212 at its
largest and |αi| = 2−12 at its smallest. Therefore αi theoretically needs
12 + 12 = 24 bits for full representation. This is, however, an extreme
overrepresentation, since most values of αi tends to be in the range of
−2.5 ≤ αi ≤ 2.5 [10].

• For AQB and AQF, the step size ∆(n) should be limited to the same
number of bits as x(n), since it makes no sense to have a step size
smaller than the LSB of x(n).

These requirements are covered by the common format Q15.16, where we
define x(n) ∈ [−1, 1−2−12]. This is illustrated in figure 3.1. The figure shows
that we have a total of seven spare bits to prevent under- and overflows when
processing, three from the MSBs and 4 from the LSBs.

3.4 Saturation arithmetic

Saturation arithmetic is illustrated in figure 3.2. With this arithmetic, any
number that is produced by an arithmetic operation is limited within a fixed

21

Decimal point

x(n) and Δ(n) in [1-2-12, 2-12]

α
i
 in [212, 2-12]

Leftover bits

Bits used by x(n) and Δ(n)
Bits used by α

i

Sign bit

i=15 f=16

Figure 3.1: Q15.16 number format structure.

X

Y

Ymin

Ymax

Xmin Xmax

Figure 3.2: Saturation arithmetic with input and output numbers X and Y,
respectively.

22

range of a maximum and minimum number. For signal processing, saturated
integer arithmetic is commonly used. This is because other methods for
handling (or not handling) overflow, the most common being binary modulo,
may result in very large errors. Too see why, let X and Y be two numbers
represented by BA bits. Denote addition with binary modulo and saturation
arithmetic as +m and +s, respectively. Then

X +m Y = (X + Y) mod (2BA−1 − 1) (3.2)

X +s Y = max((min(X + Y, 2BA−1 − 1),−2BA−1) (3.3)

For instance, if X = 32767 and Y = 1, then X +m Y = −32768, which
produces the error E = |(X +m Y)− (X + Y)| = 65536. On the other hand,
X +s Y = 32767, which produces E = 1. In this sense, saturation arithmetic
is the digital counterpart to clipping or limiting [14] in the analog domain.
Software saturation requires extra computations and memory resources since
we need to calculate the resulting number before deciding whether it overflows
or not. However, most current architectures, including our SoC, has the
option of using registers with implicit saturation, which will handle saturation
automatically without using any extra resources [3].

23

Chapter 4

Error concealment

Losing audio samples, either by packet loss or by late reception at the receiver
is something that is likely to happen every now and then. Dealing with errors
in on a real-time media transmission system can be divided into to three
categories:

• Error resilience - making sensitive data more robust against errors.

• Error protection - detecting and correcting errors.

• Error concealment - detecting and concealing errors.

These are somewhat overlapping. Error resilience and protection is part
of channel coding and will not be discussed in this project. This chapter will
discuss error concealment.

Packet loss means losing a full packet of unrecoverable data that holds
N samples. Error concealment means finding the subjectively best sounding
way of patching up the ”hole” in the audio stream due to such a loss. Error
concealment is carried out at the receiver side, although the sender may
send extra information that would make concealment at the receiver perform
better. This project will only be concerned with simple error concealment
techniques that are carried out at the receiver. They will also be source coder
independent, meaning they can be applied to any decoded stream. Common
methods include [15]:

1. Padding with zeros and low-pass filtering to avoid abrupt changes in
audio.

2. Add white or pink noise with same power as last packet.

3. Repeating the last packet or pattern matching using segments of earlier
packets.

24

These techniques are only applicable to systems with small amounts of
samples per packet and infrequent losses [15]. The methods are illustrated
by exampled in figure 4.1.

Packet 1 Packet 2 Packet 3

Packet 1 Packet 2 Packet 3

Packet 1 Packet 2 Packet 3

Figure 4.1: 3 methods for error concealment.

Although the SoC has an on-chip random number generator, number gen-
eration is considered more time consuming than producing zeros, so method
2 is considered the slower algorithm of the three. Method 3 is the least com-
putationally demanding one, but it requires more memory overhead sicne the
previous packet must be available. Which is the better sounding of the three
methods is very dependent on the statistics of the signal in question and the
packet sample size N . For instance, the loss of a large packet may sound
better with a moment of silence as with method 1. On the other hand, for
a very uncorrelated or noisy signal due to hard quantization, method 2 or 3
probably sounds better.

25

Chapter 5

Analog-to-digital conversion

This chapter will present and evaluate the on-chip analog-to-digital converter
(ADC) and conclude with an assessment how it performs when used for dig-
itizing audio signals. The ADC uses delta-sigma modulation for conversion
[3]. It is considered a low-cost general-purpose converter that is typically
used for digitizing voltages from mechanic input such as a rotary knob [7].
The audio files analyzed in this chapter is referenced in appendix F.

Table 5.1 (repeated from chapter 1) lists possible conversion modes in
terms of bit resolution BA and sampling frequency fs in samples per second
[SPS]. Mode 4 will not be evaluated as it was not available at the time of

Table 5.1: ADC modes.
Mode 1 2 3 4
Bit depth BA [bits] 8 9 10 12
Sample rate fs [kHz] 50 28 14.7 3.8
Bit rate I = BAfs [KBPS] 400 252 147 45.6
Bandwidth [kHz] 25 14 7.35 1.9

this project. The approximate conversion formula is shown in equation 5.1,
where Vin and Vmax is the analog signal voltage and its maximum value,
respectively, so that 0 ≤ Vin ≤ Vmax.

x(n) =
Vin
Vmax

2BA (5.1)

Figure 5.1 illustrates how the ADC can convert signals from up to 8
inputs. A conversion can not be done faster than 1

fs
seconds, though. This

means that if L is the number of inputs used, the effective sampling frequency
is fs(L) = fs

L
. For example, sampling a stereo signal (L = 2) in mode 3 would

produce two signals xl(n) and xr(n) with bit resolutions BA = 10 bits and

26

Input selector

Input #1

Input #2

Input #3

Input #4

Input #5

Input #6

Input #7

Input #8

Converter

f
s

Storage

L

ADC

Figure 5.1: Input selection and conversion diagram for the ADC.

sample rate fs = 7.35kHz each. This chapter will only be concerned with
ADC operation using L = 1. Applications with L > 1 will be discussed in
chapter 9.

The values of fs in table 5.1 are the maximum sample rates for their
respective modes. Any mode may sample at a rate equal to or lower than fs,
but not higher.

5.1 Evaluation methods

An ideal AD converter will do perfectly uniform quantization1 of the input
signal xa(t) and will therefore introduce a quantization noise with a flat power
spectral density (PSD) only [5, ch. 4]. Perceptually, broadband noise with
close-to-flat PSDs tends to sound more comforting to the human ear than
narrowband noise [6, ch. 5] and is therefore desirable. Sadly, no such ADC
exists. All ADCs have some inherent distortion due to non-linearities in
their conversion function in addition to the quantization noise, which is why
equation 5.1 from the previous section is an approximation. Such distortions
produce harmonics of the input signal. This section will present the theory
and practicalities behind the test setup in figure 5.2 as described in [16] and
[17].

B
A
-bit

ADC

Analog
input

F
b
, V

in

f
s

Store
M samples

B
A M-point

FFT
processor

M/2-point
spectral
outputNormalize

to [-1, 1)

Apply
Hanning
window

x
a
(t)

x(n)

Figure 5.2: ADC performance test setup [17].

1Provided that BA ≥ 3 [8, ch. 9].

27

Signals on the form xa(t) = Vmax

2
(sin(2πft) + 1) as well as silence will

be sampled an analyzed to make an assessment of the ADC performance.
xa(t) ∈ [0, Vmax] volts and t ∈ [0, tx], where tx seconds is the duration of
xa(t). For the test we will look at power spectral density (PSD) estimates2

denoted by Ps(k) for any signal s(n), where k indexes frequency bins. We
will also need the DFT-transform S(k) applied to any signal s(n), as defined
in equation 5.2.

S(k) =
M−1∑
n=0

s(n)e−i2π
k
M
n (5.2)

M is the length of the signal s(n) in samples and also the size of the DFT
transform. Entries of S(k) will simply be referred to as bins later in the text.
Further, we will use ES as a measure of the energy as defined in equation
5.3.

ES =
M−1∑
k=0

|S(k)|2 (5.3)

The signal-to-noise-and-distortion-ratio (SINAD), as defined in equation
5.4, is a common measure of ADC performance.

SINAD =
EX
EQ

(5.4)

Here, EX is the input signal energy and EQ is the quantization noise,
including harmonic distortions of f and excluding the DC component [17].
The SINAD measure provides a good indication of the the overall dynamic
performance of the ADC since all noise and distortion is taken into account.
Also, it can easily be translated to a measure called the effective number of
bits (ENOB) as defined in equation 5.5 [16].

ENOB =
1

2
log2(SINAD)− 1

2
log2(1.5)[bits] (5.5)

This measure tells us that the measured signal-to-noise ratio (SNR) for an
ADC corresponds to that of an ideal ADC with BA = ENOB bits. Put an-
other way, the ENOB tells us how many bits are effectively used to represent
xa(t), since some fraction of the BA bits is used to represent the distortion
introduced by the conversion and not xa(t).

Noise and distortion is measured by converting xa(t), then applying a
Hanning window function3 and a DFT X(k) of size M = txfs points. Then

2Estimated using Octave function spectral xdf with a triangle window.
3Too reduce the size of the side lobes of X(k) [10].

28

the noise energy EQ is measured from X(k), with k ∈ [0, M
2

] except for the
bins that holds f and the DC component. Similarly, one can measure the
energy EX of xa(t) by calculating the energy in the bins that holds the f
component. This is illustrated by example in figure 5.3. The values of f are

f component

Harmonic distortion components

DC component

Figure 5.3: Example of M -point DFT plot showing DC, f and harmonic
distortion components.

chosen so that they are approximately logarithmically distributed in [0, fs
2

]
according to f = fs

J
M

, where J is some number that relatively prime to M4.

5.2 Performance tests

Before presenting the SINAD results we will look at a PSD estimate for
silence when sampled by the ADC to investigate how close to uniform the
ADC is. Figure 5.4 shows the PSD estimate PX(k) using M = 60000 samples
of xa(t) = Vmax

2
sampled with the ADC. tx = 5 seconds, Vmax = 4.0V and fs =

14kHz for all modes for easier calculation. These values are used throughout

4Being relatively primed means having no common factors.

29

all tests in this section unless stated otherwise. As stated earlier, modes 1, 2
and 3 uses BA = 8, 9 and 10 bits, respectively.

-65

-60

-55

-50

-45

-40

0 0.1 0.2 0.3 0.4 0.5

P
x(

k)
 [d

B
]

k (normalized to [0, 0.5])

Mode 1 (BA=8 bits)
Mode 2 (BA=9 bits)

Mode 3 (BA=10 bits)

(peaks)

(peaks)

Figure 5.4: ADC noise and distortion PSD estimation on sampled silence.

The graph shows that Px(k) is relatively flat for f ∈ [0, fs
2

], with the
exception of some peaks in the lower end of the spectrum. The noise floors
(the value at which the plots are nearly flat) are at about −62 dB, −55 dB
and −48 dB for modes 3, 2 and 1, respectively. A uniform quantizer with
BA ≥ 3 is known to have the same characteristic, and, as stated earlier, the
ideal is a uniform quantizer [5, ch. 4]. The graph also shows that the noise
power Px(k) of ADC modes 1, 2 and 3 differ by approximately 6 dB. Since
an ideal uniform quantizer has an

SNR = 6.02BA + 1.5dB, (5.6)

this adds to the claim that the ADC performs close to that of an ideal uni-
form quantizer and that the noise floors are mainly made up of quantization
noise [5, ch. 4].

Figure 5.5 shows the results of calculating SINAD and ENOB for x(n)
versus eight values of f . As when carrying out the PSD estimates above,

30

103 104
6.28

6.29

6.3

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

E
N

O
B

 (
bi

ts
)

Hz

38

40

42

44

46

48

50

52

103 104

S
IN

A
D

 (
dB

)

Mode 1 (BA=8 bits)
Mode 2 (BA=9 bits)

Mode 3 (BA=10 bits)

Figure 5.5: SINAD and ENOB for ADC modes 1, 2 and 3.

tx = 5 seconds, Vmax = 4.0V and fs = 14kHz for all modes. f ∈ {99, 297,
891, 1089, 2673, 3267, 5049, 6831}.

The ENOB results are somewhat surprising. One would expect an in-
crease of approximately 1 bit in ENOB for an increase of 1 bit in BA accord-
ing to figure 5.4 and equation 5.6. As figure 5.5 shows, this is not the case.
The differences between the ENOB calculations for all modes are much less
than 1. The graph suggests that modes 2 and 3 only improves by a marginal
amount compared to mode 1 in terms of the ENOB. This is contrary to the
PSD estimates presented above.

An explanation for these ENOB calculations could be that the harmonic
distortions have magnitudes large enough to outweigh the differences in the
quantization noise of the modes. As mentioned earlier, figure 5.4 shows a
number of peaks in the PSD, especially in the lower half of the spectrum,
for mode 2 and 3. Since the peaks are similarly distributed for modes 2 and
3, it is feasible to assume that these peaks are present in all modes, and
that they are merely masked by the noise floors for mode 1 and partly for
mode 2. Now, figure 5.4 only shows the distortion when sampling silence,
leaving out all potential harmonic distortions. Figure 5.6 shows Px(k) when
xa(t) = Vmax

2
(sin(2πft) + 1) with f = 99 Hz and M = 60000 samples. As

31

expected, this graph shows even more peaks, especially some very prominent
ones in the midband bins that are almost identical in magnitude across the
three modes. These are about 24 dB above the noise floor of mode 3, meaning
that they have magnitudes 16 times of that of that noise floor. It is feasable
to assume that these, in addition to the other distortions, are the cause of
the poor ENOB calculations.

-65

-60

-55

-50

-45

-40

-35

0 0.1 0.2 0.3 0.4 0.5

P
x(

k)
 [d

B
]

k (normalized to [0, 0.5])

Mode 1 (BA=8 bits)
Mode 2 (BA=9 bits)

Mode 3 (BA=10 bits)

fundamental frequency f of sine

(peaks)

Figure 5.6: ADC noise and distortion PSD estimation on sampled sine with
frequency f = 99 Hz.

Notice also that the ENOB calculations in figure 5.5 improves for higher
values of f . This is because higher values of f will produce less harmonics
across the spectrum, effectively increasing the ENOB at the higher end of
the spectrum [10].

Summing up the ENOB calculations, the modes are almost identical in
terms of ENOB and modes 2 and 3 perform poorly compared to their BA,
although always marginally better than mode 1. We will not go into the exact
impact of the distortions on the ENOB readings, nor the source of the various
peaks5, but merely conclude that the distortions are simply outweighing the

5In addition to harmonic distortions, non-harmonic distortions can arise from artifacts
in the circuitry of the ADC [10]

32

quantization noise.
Informal listening tests was carried out by the author. They confirmed

a broadband noise spectrum. A distinguishable difference between the noise
from modes 1, 2 and 3 was heard, and the harmonic and non-harmonic
distortions were almost non-audible. The perceived noise was reduced with
an increasing BA. In other words, the listening tests concur with the PSD
estimates and the ADC performs almost like an ideal quantizer perceptually.
This makes the important point that for our application, we will not be
listening to pure sines, but to audio with complex spectra, and the ENOB
calculations are not by far as important as the PSD estimates for this project.

5.3 Noise reduction

[2] presented, implemented and discussed several different approaches to re-
ducing the noise introduced by the ADC. Now that we have characterized
the noise produced by the ADC, it becomes clear that some digital noise
reduction algorithm could improve on the signal post-conversion.

[2] suggests an low cost (in terms of computations) noise reduction scheme
called a noise gate [14, ch. 9]. An example of this is shown in figure 5.7.

-1.5

-1

-0.5

0

0.5

1

1.5

0 200 400 600 800 1000

A
m

pl
itu

de

Samples

Original
Noise reduction

Figure 5.7: Example noise gate on a sine that starts in [-1, 1], drops to [-0.5,
0.5] and goes back up to [-1, 1]. Gt = −6 dB, Tgate = 500 samples and
Ga = 24 dB.

33

The idea is simply to detect signals that have amplitudes under a certain
threshold Gt for a time period of Tgate and attenuate it by Ga dB, effectively
removing or reducing the noise. Since we are primarily trying to remove the
quantization noise from the ADC, Tgate should be set to a value near the
peak value of the quantization noise. This can be found by analyzing silent
periods of the signal.

This scheme will of course only remove noise when no other significant
signal is present. For example, if someone starts talking, no noise will be
removed. This is justified by the fact that noise below a certain threshold
may be masked by the clean signal, especially if the noise is white. Noise is,
in other words, most audible during silence [18, ch. 31].

5.4 Conclusion

From table 1.1 it was already clear that CD-quality audio was not attainable,
and expectations for the ADC to perform well with audio signals were low.
However, the noise present turned out to relatively white, and the perceived
quality when testing with pure speech audio was surprisingly good for all
the evaluated modes. When dealing with speech, bandwidths larger than
fb = 8kHz are not interesting [19], so modes 2 and 3 are the most applicable
for such an application. And as mode 2 produces almost double the bit rate
of mode 3, mode 3 is the best choice for a speech source. A discussion on
different applications for different modes is found in chapter 9.

34

Chapter 6

Digital-to-analog conversion by
pulse-width modulation

The SoC does not have an on-board digital-to-analog converter (DAC) to
output analog audio. Although one may use an external DAC through a
digital bus like SPI, it is desirable to only use on-chip features. This chapter
will present pulse-width modulation (PWM) as a technique for implementing
an on-chip DAC [3]. Focus will be on the technique and we will not go deep
into the mathematical theory behind PWM.

PWM is a means of outputting any digital signal on a single general-
purpose I/O pin (GPIO) so that it functions as a 1-bit DAC. This is shown
by example in figure 6.1, and the signal path is shown in 6.2. The idea is to
modulate the pin state with the audio signal x̃(n) using a counter signal p(n)
with period 1

ft
and a carrier signal c(n) with period 1

fc
. If fs is the sampling

frequency of x̃(n), we should have fs � fc � ft for reasons that will become
clear below. PWM is carried out as follows.

• Let x̃(n) be the audio signal used for modulation with sampling fre-
quency fs and bit depth BA.

• Generate carrier signal c(n). This is a sawtooth wave with period 1
fc

that counts to 2BA once a period. The counter increments by 1 every
tick, which is every 1

ft
seconds.

• Generate a pulse-width modulated signal p(n) =

{
1, x̃(n) > c(n)
0, otherwise

which is computed every 1
ft

seconds.

• Output p(n) on the designated GPIO pin and apply an analog low-pass
filter with cut-off frequency at fs

2
to remove high-bandwidth artifacts

35

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

A
m

pl
itu

de

Samples

p(n)
~xa(t)

0

50

100

150

200

250

0 200 400 600 800 1000

A
m

pl
itu

de

Samples

~x(n)
c(n)

~xa(t)

Figure 6.1: PWM digital simulation example with BA = 8 bits, fs = 10 kHz,
fc = 120 kHz and ft = 30.72 MHz.

PWM GPIO pin
p(n) Low-pass

filter

p(t) x
a
(t)~x(n)~

f
t

f
c

SoC

Figure 6.2: PWM signal path.

36

from the modulation. The resulting signal x̃a(t) is then the analog
counterpart of x̃(n).

The method is intuitively clear; the larger the value of x̃(n), the longer
the duty cycle of p(n), which produces more energy on the analog output
p(t). Low-pass filtering p(t) will then produce x̃a(t). This is illustrated by
example in figure 6.1.

For carrying out PWM with the desired BA, fc and ft, the following
constraint applies: since c(n) must count to 2BA every 1

ft
seconds, 2BAfc ≤ ft.

For our CPU, fC = 16 MHz. Assuming that it is possible to generate one p(n)
sample using only one machine cycle (usually possible by using a hardware
latch to bypass software processing), we can have ft ≤ fC . Further, [20, p.
160] states that for high quality PWM output, one should have fs ≤ 12fc.
So for high quality PWM using our SoC we have the constraints 2BAfc ≤ fC
and fs ≤ 12fc, which can be shortened to fs ≤ fC

12·2BA
= fmax. This is checked

for each ADC mode and summed up in table 6.1.

Table 6.1: PWM possibilites for the four ADC modes. For high quality
PWM, we must have fs ≤ fmax.

Mode BA [bits] fs [kHz] fmax [Hz]
1 8 50 5209
2 9 28 2605
3 10 14.7 1302
4 12 3.8 353

As fs > fmax for all modes, the conclusion is that high quality PWM
output is not possible in any of the SoC modes. Therefore, noisier PWM
output which only obey the constraints 2BAfc ≤ fC and fc < 20 kHz, the
threshold for human hearing, is the the only option. This does not not
necessarily mean that the audio quality will be unintelligeble. It merely
means that there one can expect some quality degradation compared to the
high quality measure of [20, p. 160] as a result of PWM artifacts [10].

An approach to implementing PWM is presented in section 7.4.

37

Chapter 7

Implementation

In this chapter we will assemble the ideas presented in earlier chapters into
a working system. The system components are illustrated in figure 7.1. Im-
plementation details on radio transmission (TX) and reception (RX) will not
be discussed.

ADC ADPCM encoder ADPCM
decoder DAC

(Air)
RXTX

N

Buffer

N

Buffer

BC BC BABA
RRRRM M

Figure 7.1: System implementation overview.

The following are the features of the system:

• ADPCM compression with AQB

– Sample-by-sample processing - samples are encoded and decoded
instantly upon arrival.

– Fixed prediction order P = 1 and coefficient α1 = 0.9.

• Q15.16 32-bit fixed point number representation.

• Radio transmission with two options:

– Full-duplex with Gazell protocol (non-optimized) [1].

– Non-duplex (one side is TX and the other is RX).

• DAC by PWM.

38

The system has the following parameters:

• N [samples] - the number of samples per packet for radio transmission.

• M [samples] - buffer size.

• BA [bits] - fixed number of bits for representing each uncompressed
sample.

• BC [bits] - fixed number of bits for representing each compressed sam-
ple.

• RR [kbps] - radio transmission rate.

The codec was simulated in Octave (a MATLAB-compatible language)
using 64-bit floating point numbers. Then it was ported to C and rewritten
using fixed point numbers. Drivers and other control flow was implemented
in C and the codec was inserted into the signal chain. Finally, the code
was compiled for the SoC core. Appendix E contains a list of all code files
accompanied by a brief description.

7.1 Buffers

This section will discuss the design and operation of the two first-in-first-out
(FIFO) cues/buffers used in the implementation, as illustrated in figure 7.2.

(Air)TX RX

TX buffer RX buffer

R
C

R
C

R
RXTX

M samples M samples

Figure 7.2: Buffer flows from sender to receiver [1].

The ADC is a strictly timed sample producer. Since N samples are
needed to build a packet for transmission, a buffer holding N compressed
samples as they are gathered is required. However, once the buffer is filled
up and transmission is started, we need all of these N samples until the
packet is successfully received. While transmission is ongoing, new ADC
samples may appear. These must also be stored somewhere, so we need an

39

additional buffer of size N that is filled up while the former N samples are
being transmitted. Therefore the transmitter requires a total buffer size of
minimum M = 2N .

Similarly, the DAC is a strictly timed sample consumer. Packets will
arrive at arbitrary times and stored in a buffer of size N . The DAC will
read from this buffer and convert sample by sample to its analog equivalent,
but the RX should not overwrite that buffer while the DAC is in the middle
of reading from it. Therefore we need another buffer of a minimum size of
M = 2N at the receiver.

Now, M = 2N is merely a theoretical lower bound on the buffer size.
Too see why, consider again figure 7.2. The rate RC that the TX buffer is
being written to and the RX buffer is being read at is considered constant
in time. Since the radio transmission rate RR is merely a theoretical limit,
we need to introduce the throughput rate RRXTX , which is the effective
transmission bit rate. RRXTX is dependent on current channel conditions and
so it will vary with time. Indeterministic incidents such as packet losses will
call for retransmission, which will reduce RRXTX . Therefore, RRXTX ≤ RR.
Whenever RRXTX < RC , the TX buffer will overflow and consequently the
RX buffer will underflow. Conversely, when RRXTX > RC , the TX buffer
will underflow and consequently the RX buffer will overflow. Therefore, in
practice, M � 2N . [1, ch. 7] makes an assessment on buffer sizes M versus
channel condition parameters and suggests practical values of M .

A common way of implementing a FIFO buffer is illustrated by example
in figure 7.3. Such a buffer is called a circular buffer as it is indexed modulo
M . When a sample is ready to be read from the ADC at the transmitter
side, it is copied over to the slot pointed at by PR, which is incremented by
1. Similarly, at the receiver side, every time a packet of N samples arrive,
they are decoded and copied into the next N slots starting at PW , which is
incremented by N .

Overflow occurs when PW catches up with PR so that PR = PW . As long
as the buffer is under this condition, subsequent incoming samples must be
discarded. Conversely, underflow occurs when PR catches up with PW so
that PW = PR. As long as the buffer is under this condition, the consumer
that reads from the buffer (TX or DAC) will not be fed. In both cases, error
concealment, as described in chapter 4, can be applied to patch up the wholes
in the sample stream that results from over- or underflow.

Throughout this report, the rate fs at which the ADC and DAC oper-
ates at has, for simplicity, been assumed to be equal. This is, however, not
necessarily true in the case where the ADC and DAC are situated on sepa-
rate physical devices. Because of physical inaccuracies on the SoCs, they are
certain to fall out of synchronization and drift apart at some point in time

40

P
W P

R

Next sam
ple

to be written

Next sample
to be read

Unread samples
Read samples

x(n-1) x(n)

x(n+1)

x(n+2)

x(n+3)x(n+4)

x(n+5)

x(n+6)

Figure 7.3: Example snapshot of a FIFO buffer state for M = 8.

even though their timers are set to the same resolution. This means that
the RX buffer is sure to under- or overflow sooner or later, depending on
whether the ADC or the DAC has the faster fs. This problem can be over-
come by some control logic that periodically senses drifting and adjusts the
fs at the receiver side accordingly. There are numerous methods for solving
this problem [21, ch. 5], none of which will not be addressed in this project.

7.2 Scheduling for real-time operation

A real-time audio transmission system is a so-called firm real-time system,
which is defined according to the following property:

Infrequent deadline misses are tolerable, but may degrade the
system’s quality of service. The usefulness of a result is zero after
its deadline [22, ch. 1].

This is as apposed to a hard real-time system, where deadlines result in
a total system failure, and soft real-time systems, where system performance
is merely degraded and whatever is lost is still usable to a certain degree.
In our context, missing a deadline means that a sample does not reach the

41

DAC at its playback time. It is then unusable and should be discarded. This
chapter is concerned with organizing the system flow so that losses can be
prevented. To minimize the number of deadlines missed we need to use a
scheduling policy. This is described next.

7.3 Scheduling for half-duplex operation

Half-duplex operation for transmitter and receiver is shown in the left and
right flow chart of figure 7.4, respectively.

New samples?

No

Poll ADC for samples

Start

Encode

Pack and add to
current TX packet

Yes

Is TX packet full?
No

Add to TX buffer

Yes

New sample?

No

Poll RX for new sample

Start

Unpack

Decode

Yes

Push to DAC

Figure 7.4: Flow chart for transmitter (left) and receiver (right) in half-
duplex operation.

Packing and unpacking is the process of assembling and extracting the
bits that make the compressed samples, respectively. For real-time operation,
we must have that the sum of all processing per sample runs in less than 1

fs

seconds [2]. As long as this is enforced, half-duplex operation as in figure 7.4
will execute without missing deadlines.

42

7.3.1 Scheduling for full-duplex operation

The flow chart in figure 7.5 shows how full-duplex operation can be carried
out. This is essentially the same as in flow charts in figure 7.4, except that
we are toggling between encoding and decoding. It is the main loop of the
program, meaning that it is the point of return after the execution of any
other process that might interrupt it.

New sample
ready in RX

buffer?

No

Start

Decode

Push to DAC

Yes

New sample
ready at ADC?

Encode

Pack and add to
current TX packet

Yes

Is TX packet full?

Add to TX buffer

Yes

Unpack

No

Figure 7.5: Flow chart for both transmitter and receiver in full-duplex oper-
ation. This is referred to as the main loop.

A process that interrupts the main loop is commonly called an interrupt
service routine (ISR). An ISR has a start time TS, an execution time TE and
may also have a period TP . Besides processes transparent to the programmer,
such as radio operation, there are three ISRs that can interrupt the main loop.
These are:

• ISR1: A process that runs when a new sample is converted with the
ADC. ISR3 sets a flag for the main loop to read and determine if a new
sample is ready from the ADC. The process is called every TP = 1

fs
seconds.

43

• ISR2: A process that runs when a new sample is needed by the DAC
to calculate the next duty cycle for PWM. ISR2 is also called every
TP = 1

fs
seconds.

• ISR3: A process that runs when a new packet is received at the RX.
This process copies the packet to the RX buffer and sets a flag for the
main loop to read and determine if new samples is ready to be decoded.
ISR3 is a sporadic process and does not have a fixed TP , but is called
every N

fs
seconds on average.

It is important to keep the execution time TE of any ISRs as brief as
possible to reduce the probability of deadlines being missed, since the main
loop will not be able to execute while an ISR is running. For instance, if the
main loop is interrupted for too long, a sample x(n) available at the ADC
may be lost because the main loop was not able to fetch it before it was
overwritten by a subsequent sample x(n+ 1) available the ADC. This could
be avoided using a buffer for incoming ADC samples, but that will introduce
an unnecessary delay. An approach that avoids this is to keep TE short
enough to avoid such problems for all ISRs. Assigning higher priorities to
ISRs with shorter values of TE may also help reduce the probability of missing
a deadline [22, ch. 13]. For instance, if ISR3 runs slower than ISR2 and ISR1,
assign higher priorities to ISR1 and ISR2 so that they may interrupt ISR3,
but not the other way around 1.

Also, consider the scenario where a call to an ISR will be blocked because
the previous call to the same ISR is still executing. Because ISR3 is called
N times as seldom as ISR1 and ISR2 on average, this scenario is less likely
to happen for ISR3 than for ISR1 and ISR2. This is another reason to give
ISR1 and ISR2 higher priorities than ISR3.

As stated earlier, real-time operation requires that the sum of all periodic
processing runs in less than 1

fs
seconds [2]. Since encoding and decoding is

taking up most of this time, every ISR must have an execution time TE � 1
fs

.
With rate-monotonic scheduling, one can find an optimal priority ordering
if all processes have a fixed start time TS, execution time TE and period TP .
However, ISR3 does not have a deterministic start time TS as we do not
know when to expect a packet to appear at the RX. Therefore we cannot use
the schedulability tests associated with the rate-monotonic scheduling policy
to arrive at priority ordering that guarantees that all deadlines will be held.
We will have to settle with the reasoning above. System processes and their
respective priorities are shown table 7.1.

1This type of static priority scheduling policy is called rate-monotonic scheduling [22,
ch. 13].

44

Time t

ISR3

Encoding
(main loop)

Decoding
(main loop)

ISR2

ISR1

Decode
z(n)

Decode
z(n+2)

Decode
z(n+3)

Decode
z(n+4)

Decode
z(n+5)

Decode
z(n+1)

Encode
x(n)

Encode
x(n+1)

Encode
x(n+3)

Encode
x(n+4)

Encode
x(n+2)

Encode
x(n+5)

Encode
x(n+6)

Receive z(n+1)-z(n+4) from RX Receive z(n+5)-z(n+8) from RX

ADC: x(n) ADC: x(n+1) ADC: x(n+2) ADC: x(n+3) ADC: x(n+4) ADC: x(n+5) ADC: x(n+6) ADC: x(n+7)

DAC: z(n-1) DAC: z(n) DAC: z(n+1) DAC: z(n+2) DAC: z(n+3) DAC: z(n+4) DAC: z(n+5) DAC: z(n+6)

f
s

Decode
z(n+6)

t=T
1

t=T
2

Figure 7.6: Scheduling example.

Table 7.1: System processes and their respective priorities.
Process Priority
Main loop 0
ISR3 1
ISR1 2
ISR2 2
Other 3

45

Figure 7.6 illustrates an example of full-duplex scheduling on an endpoint
using the priorities in table 7.1 and is explained as follows. The shaded blocks
indicate that an ISR or a main loop part is executing, so the length of these
represent TE. x(n) is the signal from the ADC and z(n) is the received signal
from the RX. ISR1 and ISR2 is called every TP = 1

fs
and are succeeded by

encoding and decoding, respectively. As N = 4 samples in this example,
ISR3 is called every TP = 4

fs
on average. A dotted line represents a process

that has been interrupted and not yet completed. ISR3 can only interrupt
the main loop. This is seen at time t = T1, where encoding is interrupted.
ISR1 and ISR2 can interrupt any other process in the figure. This is seen at
time t = T2, where ISR3 is interrupted.

7.4 PWM

This section will describe an approach to implementing PWM as described
in chapter 6. This is achieved with a counter running at ft and the three
counter compare registers CC0, CC1 and CC2 [3]. The operation of the
implementation is illustrated by example in figure 7.7.

A counter is started and its value Tcounter is incremented by 1 every 1
ft

seconds. All CC registers are set to toggle the selected GPIO pin for PWM
output whenever Tcounter = CC. Initially, CC0 = 2BA . Then, when Tcounter =
CC0, algorithm 1 is run, where the next sample to be output is x̃(n) ∈
{0, 2BA − 1}. Variable V holds the name of the CC register that was set in
the previous call to algorithm 1.

Algorithm 1 ISR2. Called when Tcounter = CC0.

CC0← CC0 + 2BA

if V = CC1 then
CC2← CC0 + x̃(n)

else
CC1← CC0 + x̃(n)

end if

As described in chapter 6, 2BAfc = ft. Therefore algorithm 1 is called
every 1

fc
= 2BA

ft
seconds to pick up a new sample of x̃(n), and CC1 and CC2

sets the correct duty cycle for the current pulse. This is essentially how
this PWM-based DAC implementation operates. The example in figure 7.7
illustrates this for fs = fc, which, as discussed in chapter 6, violates the high
quality PWM output criteria of fs ≤ 12fc.

46

CC0 CC0CC1CC0 CC2 CC1

time

counter
value

x(n-1)

1/f
c

n

p(n)

1

CC0+=2BA

CC2+=CC0
CC0+=2BA

CC1+=CC0
CC0+=2BA

CC2+=CC0

0

1/f
c

x(n)

x(n+1)

~

~

~

Figure 7.7: PWM operation from counter perspective. The boxes under their
respective CC0 are the instructions that are carried out at the indicated time.
In this example, fs = fc

47

The reason we need both CC1 and CC2 is because of real-time demands.
Too see this, consider the following: if we only used CC1, there would be a
problem running algorithm 1 if the current sample x̃(n) was close to 2BA since
algorithm 1 needs time to execute. In this case, Tcounter may have passed the
values of CC1 and CC2 before they are set. Then the current GPIO pin
toggles would be skipped. PWM operation is illustrated by another example
in figure 7.8, where each of the pulse widths of CC0 shows the execution time
TE of algorithm 1. Although fast, running algorithm 1 requires some time to

Figure 7.8: PWM timers and output scope snapshot.

run and therefore three, not two, compare registers are needed for real-time
operation.

The SoC has hardware logic for toggling an output GPIO pin when a
counter reaches a CC value [3]. Therefore no software processing is used for
comparing values of CC1 and CC2 with Tcounter.

7.5 Delays

Figure 7.9 sums up all system delays. The sum of these is the system sample
latency TL in time from ADC input to DAC output. As the sum of all
processing delays is required to be less than 1

fs
for real-time operation, it

cannot take longer time to process a sample than to play it back. Therefore
we must have TEncoding + TPacking + TUnpacking + TDecoding <

1
fs

. As discussed
in section 7.1, we need an M ≥ 2N at both the transmitter and receiver end
to prevent buffer over- and underflow. There is also small transmission delay
of about TRadio = 3 ms [1]. TM is the delay resulting from the TX and RX
buffer size M because the samples needs to move through the entire buffer
as with any FIFO buffer. For full-duplex communication, we should have
TL ≤ Tmax = 150 ms point-to-point [1].

48

ADC Encoding Packing Transmission

Reception Decoding DAC

T
Encoding

T
Packing T

Transmission
=T

M
+T

Radio

T
Reception

=T
M

T
Decoding

Decoder

Encoder

Unpacking

T
Unpackng

Figure 7.9: System delays.

[1] has conducted simulations on the SoC radio to find a lower bound on
the TX and RX buffer size M that should provide safety against buffer over-
and underflows. The simulations were carried out with for a typical radio
configuration2 using a rate of RC = 196 kbps. The maximum delay due to
M reported in this simulation is 2TM = 48 ms. As this project will only
be concerned with RC < 196 kbps, we will use TM = 48

2
= 24 ms for the

remainder of this report.
Consider a worst-case example. As TM = 24 ms,

TTransmission + TReception ≈ 48ms (7.1)

If total processing delay is 1
fs

seconds, then using mode 4, which has the
lowest sampling frequency fs,

TProcessing = TEncoding + TPacking + TUnpacking + TDecoding ≈ 0.3ms (7.2)

Then the total system latency is

TL = TProcessing + TTransmission + TReception + TRadio ≈ 51.3 < Tmaxms (7.3)

As this is a worst case, latency is generally not considered a real problem
even in the most demanding configuration in terms of system delays.

2A packet size of 50 bytes and a bit error rate (BER) of 10−3.

49

7.6 Error concealment

The value of M proposed by [1] in the previous section guarantees that no
over- and underflows will occur. This means that all packets will arrive in
time at the receiver, which again means that there will be no need for error
concealment.

Error resilience does however stand as an important feature when de-
signing an audio communication system, as applications might exists which
finds that the Ms suggested in [1] will result in unacceptable delays. Then a
smaller M must be chosen, which would no longer hold a guarantee against
over- and underflows. Also, the radio may use a different protocol than the
one tested in [1], which may not do retransmission at all. This means that
if a packet is lost, no action is taken to retrieve it, and consequently some
error concealment method should be applied to minimize the resulting error.

For these reasons error concealment has not been implemented for this
project.

50

Chapter 8

Performance tests

This chapter will analyze the performance of the system in chapter 7. The
system has many degrees of freedom. The ones relating to coder efficiency
will be examined here. Performance is given by a measure of the error that is
produced by the different stages in the signal path. The audio files analyzed
in this chapter is referenced in appendix F.

Figure 8.1 shows all error sources of the system and where they appear
in the signal chain. The sampling error is the quantization noise that is

ADCx
a
(t)

Sampling error

Encoder

Coding
error

Precision
error

Decoder

Precision
error

DAC

Reconstruction
error

x
a
(t)~

Figure 8.1: System error sources.

introduced when digitizing the analog signal xa(t) with the on-chip ADC.
Compression yields a coding error and all processing with finite precision
may introduce a rounding error. If packets gets lost or corrupted, we get

51

a transmission error (which of course overrides all other errors). Finally
the mechanics of the DAC produces a reconstruction error when generating
x̂(n), the reconstruction of x(n). Note that these errors are not necessarily
additive, even though they are depicted this way in figure 8.1. This chapter
will examine the impact the errors have on performance by experiment. They
will be tested both individually and together.

The mean squared error (MSE) metric for any M -sample sequences u(n)
and v(n), n = 0, 1, . . . ,M − 1, as defined in equation 8.1 will be used as a
measure of the error between any signals u(n) and v(n).

‖u− v‖2 =
1

M

M−1∑
n=0

|u(n)− v(n)|2 (8.1)

u = [u(0), u(1), . . . , u(M − 1)]T and v = [v(0), v(1), . . . , v(M − 1)]T is
used as a vector notation for u(n) and v(n), respectively.

Figure 8.2 shows the measurement points for the MSE measurement that
will be discussed throughout this chapter. The source signal xa(t) is a 16-bit

ADC
ADPCM
encoder

Noise
reduction

ADPCM
decoder DAC

x(n)

DPCM encoder DPCM
decoder

Air

Air

x(n)
UU x(n)

A
~

x(n)
D

~

x(t)
S

Figure 8.2: Reference taps for error measurements.

signal sampled at 44.1kHz (CD quality) played back through an industry
standard PC DAC, ready to be sampled be the SoC ADC to produce x(n).
Parameter U ∈ {0 = bypass, 1 = on} indicates whether noise reduction is
applied to the signal prior to compression or bypassed so that xU(n) = x(n).
Unless stated otherwise, U = 0. x̃D(n) and x̃A(n) represents the signal after
DPCM and ADPCM decoding, respectively.

For all performance tests, a sound file containing Norwegian speech over
8 seconds was used. The resulting sampled signal x(n) consisted of M = 8fs
samples, fs being dependent on the ADC mode. To compare xa(t) with the
other signal taps in figure 8.2, xa(t) was decimated to fs for each mode and
all files were normalized to [−1, 1). This was achieved using PC software.
The original sound file as well as processed versions of it is included in the
ZIP file accompanying this report.

52

8.1 A measure for operation count

Before proceeding, we will define a common measure for the number of arith-
metic operations, O. The SoC core is known to be able to do one operation
in almost one instruction, and almost one instruction every clock cycle 1

fC

on average [3]. O can therefore be used as an approximate measure on the
runtime of any algorithm on the SoC by inspection of that algorithm. An op-
eration can be a comparison, a shift, addition or even a multiplication since
the SoC core has a 1-cycle multiplier. Memory loads and stores will not be
included when calculating O since the caching policies of the SOC core has
not been investigated. An operation is of course a simplified measure, since
the compiler has the final say in the number of instructions needed for an
algorithm. The O measure will be used throughout the remainder of this
report for comparison of algorithms.

8.2 Comparison of compression schemes

Table 8.1 shows the rates RC = fsBC kbps associated with each ADC mode
for a selected range of BC bits per compressed sample. RC < RR = 250
kbps, the lowest radio transmission rate configuration, for every RC in this
table1.

Table 8.1: Bit rates RC with compression for a select range of BC per ADC
mode.

Mode 1 2 3 4
fs [kHz] 50 28 14.7 3.8
RC (BC = 2) [kbps] 7.6 29.4 56 100
RC (BC = 3) [kbps] 11.4 44.1 84 150
RC (BC = 4) [kbps] 15.2 58.8 112 200

Figure 8.3 shows the performance of DPCM and ADPCM. As expected,
DPCM performs worse than ADPCM. What is not so intuitive, is that ‖x−
x̃A‖2< ‖xa− x̃A‖2 for all values of BC . The reason for this is because in the
chosen ADPCM scheme there is an inherent noise reduction feature that is
in practice similar to the one presented in chapter 5. This was discovered by
inspection of x̃A(n). Therefore, as seen in figure 8.3, x̃A is more similar to
xa(t) than x(n), which is ultimately what we want.

1In practice we must have RC + RS ≤ RR, where RS is some additional rate due
to the protocol adding redundant information for more robust transmission. RS will be
considered negligible in this report.

53

2 3 4
0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

MSE

B
C

||x-x
D
||2

||x-x
A
||2

||x
a
-x

A
||2

~

~

~

Figure 8.3: Comparison of compression schemes for different values of BC .

The inherent noise reduction is explained as follows. For B = 3 and up,
M(|C(n)|) is more likely to fall into the lower half of the M-table, where the
step size multipliers are less than 1. Therefore, codewords C gradually fall
to C = 0 for silent periods, where only ADC noise and distortion is present,
effectively removing these. This means that a type of noise reduction very
similar to the one described in section 5.3 comes for free with this specific
ADPCM codec implementation. This works best for BC = 3 and BC=4 since
for B = 2, the table is too coarse for step size ∆(n) to reach its minimal value.

The noise reduction feature also gives a pointer to why ||x − x̃A||2 is
close to equal for BC = 2, BC = 3 and BC = 4: the MSE measure is more
dominated by the noise produced by the ADC, which is partially removed in
x̃A, than the noise produced by the codec.

8.3 Impact of noise reduction

The purpose of this analysis is to examine whether the chosen noise reduction
scheme makes ||xa − xU||2 < ||x − xU||2 with U = 1, effectively reducing
the noise introduced by sampling with the SoC ADC. The noise reduction
algorithm used parameters Tgate = 20 ms, Gt = −48 dB and Ga = 48 dB. As
figure 8.4 illustrates, noise reduction does reduce the ADC noise, but only by

54

MSE ||x
a
-x

U
||2, U=1

||x
a
-x||2, U=1

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

Figure 8.4: Impact of noise reduction without compression.

MSE ||x
a
-x

A
||2, U=1

||x
a
-x

A
||2, U=0

2 3 4
0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

B
C

~

~

Figure 8.5: Impact of noise reduction with compression.

55

a small margin. Also, as figure 8.5 shows, the gain in using noise reduction
with ADPCM is less than what is gained by the inherent noise reduction
property of the ADPCM that was seen in figure 8.3. Therefore, when using
this specific ADPCM, noise reduction is unnecessary.

8.4 Fixed point versus floating point perfor-

mance

Figure 8.6 shows ||x− x̃A||2 for the MATLAB-simulated ADPCM codec and
the Q16 SoC implementation.The difference is relatively small, and comes

MSE

B
C

||x-x
A
||2 64-bit floating point

||x-x
A
||2 32-bit Q15.16

2 3 4
0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

~

~

Figure 8.6: Floating point versus fixed point performance for ADPCM codec.

from the fixed resolution of the adaptive step size ∆(n). While 64-bit floating
point precision can represent a step size as small as ∆(n) = 2−53 (see section
3.1), the 32-bit Q16 implementation can only represent ∆(n) = 2−16 since
the point is fixed. Step sizes this small was observed by inspection. This
could call for a different Qi.f format to represent the step size. However,
informal listening tests carried out by the author concluded that the audible
difference between the 64-bit floating point x̃A(n) and the 32-bit Q16 x̃A(n)
is small enough to say that there is too little to gain from altering the chosen
Qi.f format. As stated above, the MSE in figure 8.6 also suggests this.

56

Encode

Pack

Transmission delay

Unpack

Decode

25,47%

16,98%

7,55%

26,42%

23,58%

Figure 8.7: Relative time usage for different codec stages of DPCM scheme.

50,49%

7,77%

3,88%

10,68%

27,18%

Encode

Pack

Transmission delay

Unpack

Decode

Figure 8.8: Relative time usage for different codec stages of ADPCM scheme.

57

8.5 Profiling the implementation

Figures 8.7 and 8.8 are pie charts showing the relative time use for the main
stages of the DPCM and APDCM codecs, respectively. The data was derived
from inspection of oscilloscope snapshots where the start and end times of
encoding, packing, unpacking, decoding and transmission delay was tracked.
The point of this analysis is to get an idea of where one should start optimiz-
ing the codec and also improve on the scheduling policy. For DPCM, it is seen
that encoding and decoding time is fairly equal. This is because the midrise
quantizer, which is the principal difference between the DPCM encoder and
decoder, has a simple and fast implementation. Packing and unpacking is
almost as time consuming as encoding and decoding, which suggests that
they are open for optimization. For ADPCM, however, the encoder is by far
the most complex stage since it needs to calculate the next step size, encode
the current sample and also decode it for use in the next step size adaption,
while decoding only calculates the next step size and decodes the current
sample (as discussed in section 2.4).

Profiling the system also gave a measure on how much time one the system
uses for processing a sample though the entire signal chain: from the ADC,
through the encoder, over the radio and into the decoder before it is finally
present at the DAC on the receiver side. From this, an approximation on
the maximal sample rate that the ADC and DAC may operate at for each
codec is produced. To accompany this the number of operations per sample
is found by code inspection. The data is presented in table 8.2. The basic
DPCM codec may carry out full-duplex real-time operation far beyond the
sample rate for ADC mode 3 (fs = 14.7kHz) because of its low complexity.
ADPCM will only manage this for half-duplex (one way at a time) operation,
but has an objective quality far superior of that of the DPCM coder, as seen
in section 8.2. Lastly, the complex ADPCM that was briefly discussed in
chapter 2 was also implemented and profiled to get a measure on the time
consumption of a significantly heavier compression scheme.

Table 8.2 holds the most important results of this chapter since it provides
data that can be used to measure against any other compression scheme.

Table 8.2: Maximum sample rate for real-time operation per compression
scheme.

DPCM ADPCM Complex ADPCM
Max rate half-duplex [kHz] 37 15 6
Max rate full-duplex [kHz] 18 9 3
[O/sample] 53 231 809

58

As mentioned in the introduction of this report, the goal of this project is
not to develop a unique, optimized codec but to get a measure on what
bounds on real-time operation the SoC presents in terms of complexity. For
example, table 8.2 states that an algorithm that needs O = 231 operations
for processing one sample can be expected to run at approximately fs = 10
kHz if both encoding and decoding needs to be carried out simultaneously.
This is of course a crude measure, as different architectures have different
properties and their compilers will compile the code base differently, but this
is never the less a point of reference. Also, from section 8.2 we have a measure
on how well such an algorithm can perform in terms of MSE, although this
is neither an upper nor a lower bound. It is also merely a point of reference.

This project has mainly been concerned with testing half-duplex opera-
tion without retransmission features as a proof-of-concept, while [1] has inves-
tigated the accompanying full-duplex protocol called Gazell. As mentioned
in chapter 1, this protocol is designed and optimized for short, infrequent and
sporadic transmissions from wireless keyboards and mouse peripherals, which
is the opposite of the requirements for this project. The protocol was tested
with the simple DPCM codec, but could not deliver full-duplex transmission
faster than approximately fs = 244 Hz due to limitations in the protocol. As
will be seen in chapter 9, there are exists at least one audio applications for
such a low bandwidth.

8.6 Memory requirements

As stated in chapter 1, the SoC allows program sizes up to 256 kB. Using an
optimized compiler, the total program size is approximately 6 kB.

The SoC has 16 kb RAM available. RAM requirements for the imple-
mentation of this project are about 2 kB, not counting RX and TX buffers.
Assuming worst-case buffer sizes of 1200 bytes [1, ch. 7] to prevent over- and
underflows, which there must be two of (TX and RX buffer) for full-duplex
operation, we arrive at a total of approxiamtely 4.5 kb of RAM.

Summing up, the memory resources provided by the SoC are sufficient
for this implementation.

59

Chapter 9

Applications

With the preceding chapters in mind, this chapter will discuss some appli-
cations for the SoC. These will focus mainly on using the on-board ADC,
ADPCM compression and PWM for audio output. All applications will use
DAC by BA-bit PWM unless otherwise stated.

9.1 Rates and delays

Before presenting the applications, the ADC modes with compressed and
uncompressed bit rates and their respective delays is summarized in table
9.1 as a reference.

9.2 Full-duplex real-time speech communica-

tion system

A stand-alone speech communication system using our SoC is interesting
because of the price range of the SoC. Such a system would be private,
wireless and for two users at a time. It is illustrated in figure 9.1. The two
apposing sides could be, for example, headsets with microphones. This is
by far the most demanding application for the device since we need to do
decoding and encoding simultaneously.

For high-bandwidth speech (fb < 7 kHz [19]) we need to use ADC mode
3 or higher. A suggested configuration for this application is therefore mode
3 (fs = 14.7 kHz and fb = 7.35 Hz) and BC = 4. According to table 9.1, this
will produce a compressed bit rate of RC = 58.8 kbps.

The device also have built-in support for AES-encryption which could be
used for security against eavesdropping.

60

Microphone

Anti-aliasing
filter

Speaker

Endpoint

Microphone

Anti-aliasing
filter

Speaker

Endpoint

Audio
input

Audio
input

Audio
output

Audio
output

Radio

ADC

Codec

SoC

ADC

Codec

SoC

DAC DAC

Figure 9.1: Full-duplex real-time audio communication system.

61

Table 9.1: ADC modes versus bit rates and delays.
Mode fs [kHz] BC/BA [bits] Bit rate RC [kbps]
1 50 2 100

3 150
4 200
8 400

2 28 2 56
3 84
4 112
9 252

3 14.7 2 29.4
3 44.1
4 58.8
10 147

4 3.8 2 7.6
3 11.4
4 15.2
12 45.6

9.3 ITU-T G.722 wideband speech codec

The speech communication system above may be adapted to fulfill a ITU-T
codec standard, the G.722. This can be achieved using some extra analog
components at both sender and receiver and two input simultaneously at the
ADC (L = 2). The system is illustrated in figure 9.2. With an input signal
bandwidth of fb, the QMF (quadrature mirror filter) divides the input signal
into two separate audio streams, one in the subband [0, fb

2
] and one in the

subband [fb
2

, fb]. The two signals are then both decimated by a factor of
two so that the total bit rate RA is the same as for the input audio. Then
each of these streams are coded independently using ADPCM. This is called
subband coding. The point of this is to allocate a different number of bits B1

and B2 for the high-pass and low-pass stream, respectively. This is beneficial
because a the input signal typically has more energy in one stream than the
other, so one can expect a better SNR compared to BC = B1 + B2 for a
full-band ADPCM. The signal is then multiplexed and the reverse process is
carried out at the receiver side.

Notice that since this application requires two analog inputs. Referring
to chapter 5, we have L = 2. This means that fb ≤ fs

2L
for any mode because

of aliasing and ADC sample rate constraints. Alternatively, the QMF filters
may be implemented in the digital domain, but this would require extra

62

processing and it is not clear whether the SoC would handle this or not.

QMF

HP
encoding

LP
encoding

Multiplexor
ADC
L=2

Audio
input TX

QMF

HP
decoding

LP
decoding

Demultiplexor

PWM
DAC

PWM
DAC

RX
Audio
output

Decoder

Encoder
Analog

Analog

Figure 9.2: ITU-T G.722 wideband speech codec implementation using the
device.

A suggested configuration for this application is mode 3 (fs = 14.7 kHz)
and BC = 4 bits with B1 = 3 bits and B2 = 1 bit. According to table 9.1,
this will produce a compressed bit rate of RC = 58.8 kbps.

9.4 Wireless transmission of sound for sub-

woofer

This is a relatively low-complex application where compression might not be
needed since the in-air bit rate is very low. Also, transmission is one-way.
The system is illustrated in figure 9.3.

[6, p. 268] defines the bandwidth of a subwoofer as less than fb = 150
Hz. Clearly, mode 4 (BA = 12, fs = 3800Hz) is the right ADC mode for this

63

Encoding

PWM DAC

Digital
sound
source

Analog
sound
source

or

SPI or UART
digital bus

Sender

Anti-aliasing filter

Decoding

RF

ADC

Receiver

Subwoofer

150 Hz LP filter

Downsample

Figure 9.3: Wireless transmission of sound for subwoofer.

64

application. Since the bandwidth is low, we can downsample the signal by
from fs = 3800 Hz to fs = 300 Hz, reducing the bandwidth to fb = 150 Hz.
Then, since BA = 12 bits for mode 4, the resulting uncompressed bit rate is
RA = 2 ·150 ·BA = 3.6 kbps. Since this RA is only about 1.5% the size of the
lowest possible radio rate RR = 250 kbps, it can be argued that compression
is uneccessary.

9.5 A source for voice recognition

Figure 9.4 shows how the device can be used to transmit audio wireless to
a third party device that performs voice recognition. This is similar to the
subwoofer application above, except that we should have bandwidth of at
least fb = 7 kHz for decent voice recognition, as mentioned in section 9.2.
This is fulfilled with all ADC modes except mode 4 . The performance of the
speech recognizer, no matter how good, is of course also dependent on the
quality of the ADC. But since no person will actually listen to the sampled
signal, we can take means to reduce whatever noise is produced by the ADC
without considering the subjective quality of the signal.

Since one is typically not using the voice recognition feature continuously,
the remote device that is being spoken into can be designed so that the user
actively engages and disengages voice recognition, for example with a single
button. This means that the SoC can be put to sleep when it is not used
which will significantly reduce power consumption compared to the other
appliances.

A suggested configuration for this application is mode 3 (fs = 14.7 kHz
and fb = 7.35 Hz) and BC = 4 bits. According to table 9.1, this will produce
a compressed bit rate of RC = 58.8 kbps.

65

Encoding

Audio analysis

Audio
input

Device

Anti-aliasing
filter

Decoding

RF

ADC

3rd prty DSP

Device

Digital bus

Digital audio

Digital audio

Semantic processing

Action

Remote control

For instance
TV or lighting control

Figure 9.4: Voice recognition system.

66

Chapter 10

Conclusion

The SoC was proven to have the capacity to be used for point-to-point audio
transmission in terms of processing power, memory and I/O capabilities.
This chapter summarizes the results of this project.

Initially, the processing power and the ADC of the SoC was considered
bottlenecks when designing an audio transmission system. The well-known
ADPCM scheme was implemented, benchmarked and proven to run in real-
time at sample rates up to about fs = 15kHz in half-duplex. By inspecting
the code we got a measure on what computational complexity the SoC was
able to do for two of the four ADC modes (fs = 14.7 and 28kHz). The
ADC was tested in terms of THD+N and gave surprisingly good results
considering that it is a general purpose converter that is not designed with
audio sampling in mind. Noise reduction was briefly discussed and assessed
as a means of reducing quantization noise and distortion from the ADC.

This project has been about finding new appliances for a device that was
originally intended for something different - a typical engineer’s problem. The
SoC and its accompanying full-duplex protocol is designed for infrequent, low
bit rate packet transmission like wireless PC keyboard strokes. The propri-
etary full-duplex protocol analyzed in [1] was found to be unable to carry
out full-duplex real-time operation for any of the ADC modes’ sample rates
fs. [1] also arrives at this conclusion and suggests several other full-duplex
protocols that are designed for audio transmission, which means periodic and
frequent high-rate packet transmission.

An low cost approach to performing analog output on-chip was success-
fully implemented by applying the pulse-width modulation principle. Since
the ADC proved sufficient for several applications in terms of audio quality,
and since everything else needed for point-to-point audio transmission was
present on-chip, this result was the last piece of the puzzle for designing a
fully self-contained audio communication system for the SoC. Without the

67

need for any external, third-party peripherals, production costs are severely
reduced, which was the point of investigating this appliance for the SoC in
the first place.

In addition to presenting an assessment of the SoC, this report was written
as a guide for anyone who is in the business of doing a similar task for any
embedded SoC. It explores the main theoretical and practical issues when
designing an audio transmission system, and may also be generalized for
numerous other signal transmission applications.

68

Chapter 11

Further work

This section will present and briefly discuss further work and potential ideas
that could contribute to the project.

11.1 Synchronizing transmitter and receiver

As mentioned briefly in section 7.1, an issue with ADC and DAC clock syn-
chronization will arise when they are situated on separate physical devices,
no matter how similar in design these may be [21, ch. 5]. This is a common
problem that occurs because of physical inaccuracies. Choosing a method for
overcoming this is highly dependent on the coding scheme; if the transmitted
information is straightforward PCM audio, discarding or filling in samples
whenever the receiver buffer over- or underflows may suffice, but if more com-
plex coding schemes is used, the loss of a sample or packet may be equally
complex to disguise. The implementation that accompanies this project did
not cover the subject of synchronizing transmitter and receiver. The ADC
and the DAC were merely tuned to not fall out of sync immediately. For
production-level quality, this issue needs to be addressed.

11.2 Code base optimized specifically for this

SoC core

As mentioned earlier, table 8.2 in section 8.5 is a crude measure on what
the SoC core can achieve for the given sample rates. Each architecture has
its own pros and cons, and exploiting these is what makes a difference. All
implementation, including Q16 operations, have been written as a proof of
concept and has not been tailored to the SoC architecture. Therefore there

69

is likely to be room for improvement in computational complexity. Carrying
out this implementation would produce a more accurate measure on what
order of computations per sample this specific SoC can carry out for a given
sample rate.

11.3 Full-duplex operation protocol

Full-duplex operation with the protocol investigated in [1] was proven to bve
unsuitable for full-duplex audio transmission, mainly because it is tailored
for reliable, loss-free spurious transmission of mouse and keyboard peripheral
output. A protocol written for full-duplex audio transmission was considered
a time consuming task since the radio is natively half-duplex. However, since
half-duplex operation was proven to be effective enough for the applications
discussed in this project, and since section 8.5 showed that bandwidths large
enough to hold speech is attainable with full-duplex operation with respect
to computational complexity, it is reasonable to assume that such a protocol
could be implemented. [1] proposes several solutions for suchs protocols.

11.4 Joint source and channel coding

Source and channel coding have been investigated and designed separately
for this project, the latter part being handled by another student [1]. The
source-channel separation theorem [9][p. 187] states that source and channel
coding can be optimal and independent if the data set is infinitely large. So
if buffers were infinitely large, one need not consider any properties of the
channel when designing the source coder. Obviously this is never the case,
and investigations on how to jointly design source and channel coding has
been investigated [23].

11.5 Other possible points for further work

• Error resilience, although presented and discussed, was not implemented.
Tests on this with simple variants on channel conditions could then be
carried out.

• Explore alternative audio processing algorithms for the applications
discussed in chapter 9 and apply subjective listening tests for audio
quality assessment in addition to the technical MSE measurement.

70

• Advance on noise reduction for minimizing ADC noise and distortion.
This is a rather large field of study with numerous schemes which one
can choose from.

• Look into echo cancellation to reduce potential feedback noise for full-
duplex operation.

71

Appendix A

Levinson-Durbin recursion

The following is an implementation of Levinson-Durbin recursion. It is de-
rived from [24]. ACF(s(n), l) calculates the autocorrelation function for the
given signal s(n) with lag l.

Algorithm 2 Levinson-Durbin recursion

for l = 0→ P do
Rl = ACF(x(n), l)

end for
α1 = −R1

R0

E1 = R0 +R1α1

for k = 1→ P do

λ =
−

∑k
j=0 αjRk+1−j

Ek

Ak+1 =

α0
...
αk
0

+ λ

0
αk
...
α0

Ek+1 = (1− λ2)Ek

end for

72

Appendix B

M-tables for one-word-memory
AQB

The following are suggested step size multipliers (M-tables) for DPCM signals
with BC ∈ {2, 3, 4} [11].

BC Step size multipliers
2 0.8, 1.6
3 0.9, 0.9, 1.25, 1.75
4 0.9, 0.9, 0.9, 0.9, 1.3, 1.6, 2.0, 2.4

73

Appendix C

Complex ADPCM

This appendix will describe a more complex AQB algorithm than the one-
word-memory AQB described in section 2.4. It was originally presented in [5,
ch. 4]. The following method calculates the step size ∆(n) as proportional to
the sample standard deviation σs(n) of any input signal s(n) with a scaling
factor η:

∆(n) = ησs(n) (C.1)

A good choice for η is

η =
∆

σs
(C.2)

where ∆ is the step size of the non-adaptive uniform quantizer and σs
is the long-term standard deviation of s(n). Equation C.1 derived in [5, ch.
4], and can be used as a basis for a iterative adaptive algorithm as follows.
Introducing β ∈ {0, 1} as factor for how fast the step size will adapt, we can
estimate σs recursively with σ̂s:

σ̂2
s(n) = βσ̂2

s(n− 1) + (1− β)s2(n− 1) (C.3)

This idea behind this is to low-pass filter the changes input variance with
β as a coefficient for adaption speed [5, ch. 6.4]. Combining equations C.3
and C.1, we get a recursive formula for ∆(n):

74

∆(n) = ησ̂s

= η

√
βσ̂s

2(n− 1) + (1− β)s2(n− 1)

= ησ̂s(n− 1)

√
β + (1− β)

η2s2(n− 1)

η2σ̂s
2(n− 1)

= ∆(n− 1)

√
β + (1− β)η2

(
s(n− 1)

∆(n− 1)

)2

(C.4)

Equation C.4 is fairly intuitive. An increase in amplitude when moving
from s(n − 1) to s(n) increases ∆(n) from ∆(n − 1) and vice versa, with β
controlling the abruptness of the change over time.

75

Appendix D

Algorithms for multiplication
and division of Q15.16 numbers

Multiplication and division of Qi.f -numbers X and Y represented by BA bits
can be carried out as in algorithm 3 and 4, respectively [13].

Algorithm 3 Qi.f multiplication

Allocate 2BA bits for XYii, XYif , XYff and XYresult
XYsign ← resulting sign of X · Y
Xi ← integer part of X and Yi ← integer part of Y
Xi ← fractional part of X and Yi ← fractional part of Y
XYii ← Xi · Yi {Integer only part.}
XYif ← Xi · Yf +Xf · Yi {Middle part.}
XYff ← Xf · Yf {Fractional only part.}
XYii ← XYii · 2−f {Prescale before adding it all up.}
XYff ← XYff · 2f {Prescale before adding it all up.}
XYresult ← XYii +XYif +XYff
XYresult ← truncate XYresult to BA bits
XYresult ← XYresult ·XYsign

76

Algorithm 4 Qi.f division

XYsign ← resulting sign of X
Y

Allocate 2BA bits for XYresult
Allocate BA bits for remainder XYr and divisor XYd
XYr ← X · 2−BA/2 {Initialize XYr witt prescaled X.}
XYd ← Y · 2BA/2 {Initialize XYd witt prescaled Y .}
{Calculate integer part bit-by-bit.}
for n = 0→ BA do
XYd ← XYd · 2
if XYr ≥ XYd then
XYr ← XYr −XYd
XYa ← XYa + 2BA−1−n

end if
end for
{Calculate fractional part bit-by-bit.}
for n = 0→ BA do
XYr ← XYr · 2
if XYr ≥ XYd then
XYr ← XYr −XYd
XYa ← XYa + 2BA/2−1−n

end if
end for
XYresult ← XYresult ·XYsign

77

Appendix E

Code references

This appendix lists the files modules of the C implementation and MAT-
LAB simulation. The files are located in the /code folder in the ZIP file
accompanying this report.

E.1 Octave/MATLAB code

acf.m - Calculates one-sided autocorrelation function.
adc analysis script.m - Calculates ENOB and SINAD from ADC tests.
caqb calc const.m - Script for calculating complex AQB constants offline for
faster C implementation.
caqb decoder.m - Complex AQB decoder.
caqb delta calc.m - Complex AQB step size calculation.
caqb encoder.m - Complex AQB encoder.
caqb test script.m - Complex AQB test script.
double2Q16.m - Converts 64-bit floating point number to Q15.16.
dpcm dec.m - DPCM decoder.
dpcm enc q.m - DPCM encoder.
double2Q16.m - 64-bit floating point to 32-bit Q16 converter.
draw adc noise psd.m - Script for calculating and drawing PSD estimation
from ADC test results.
draw companding curve.m - Script for drawing µ-law companding curve.
draw error concealment.m - Script for drawing examples of error conceal-
ment.
draw nr.m - Script for drawing example figure for noise reduction.
draw pwm ex.m - Script for drawing PWM example in chapter 6.
ENOB.m - ENOB calculator.
expander.m - Noise gate.

78

gen sines for adc test.m - Script that generates sines for ADC test.
lpc direct.m - LPC calculation by solving linear equations.
maqb decoder.m - One-word-memory AQB decoder.
maqb delta calc.m - One-word-memory AQB step size calculation.
maqb encoder.m - One-word-memory AQB encoder.
maqb test script.m - One-word-memory AQB test script.
midrise q.m - Midrise quantizer.
Q162double.m - Converts Q15.16 to 64-bit floating point number.

E.2 C x86 code (Q16 and float)

adpcm.c/.h - ADPCM encoder and decoder, not including LPC calculation.
caqb.c/.h - Complex AQB.
coding.c/.h - All aspects of encoding and decoding.
config.h - System configuration.
expander.c/.h - Noise gate.
l-d.c/.h - Levinson-Durbin algorithm. Rewritten from [24].
maqb.c/.h - One-word-memory AQB.
maths.c/.h - Custom math operations.
midrise.c/.h - Midrise quantizer.
Q16.c/.h - Q15.16 fixed-point type.
system.c/.h - System simulation for scenario 1. Analogous to system sim 1.m.
tester.c/.h - Testing ”framework” for all C code.
Makefile - Makefile for all C code.

E.3 C SoC code

adc.c/.h - ADC driver and buffer logic.
adpcm.c/.h - ADPCM encoder and decoder, not including LPC calculation.
config.h - System configuration.
dac.c/.h - DAC driver and buffer logic.
gazell.c/.h - Gazell protocol.
l-d.c/.h - Levinson-Durbin algorithm. Rewritten from [24].
main.c/.h - Entry point.
maqb.c/.h - One-word-memory AQB.
maths.c/.h - Custom math operations.
Q16.c/.h - Q15.16 fixed-point type.

79

radio config.c/.h - Radio configuration.
rx.c/.h - RX logic.
tx.c/.h - TX logic.
uart.c/.h - UART driver for testing.

80

Appendix F

Audio file references

This appendix lists folders with audio files that were used for performance
tests thoughout the project. The files are located in the /audio folder in the
ZIP file accompanying this report. All files are named by content, BA and
fs.

F.1 ADC test sources

door [fs] [BA]bit.wav - Squeaking door.
lydbok 1 [fs] [BA]bit.wav - Norwegian speech #1.
lydbok 2 [fs] [BA]bit.wav - Norwegian speech #2.
prime sines 1 [fs] [BA]bit.wav - Pure sines. #1.
sub [fs] [BA]bit.wav - Subwoofer.

F.2 ADC test results

door [fs] [BA]bit.wav - Squeaking door.
lydbok 1 [fs] [BA]bit.wav - Norwegian speech #1.
lydbok 2 [fs] [BA]bit.wav - Norwegian speech #2.
prime sines 1 [fs] [BA]bit.wav - Pure sines. #1.
sub [fs] [BA]bit.wav - Subwoofer.
n+d [fs] [BA]bit.wav - ADC noise+distortion.

81

F.3 Performance test sources

lydbok 1 [fs] [BA]bit.wav - Norwegian speech #1.

F.4 Performance test results

These files are named by the following conventions.

CAQB - ADPCM with complex AQB was used.
DBITS[BC] - BC bits.
DOUBLE - MATLAB 64-bit floating point was used instead of 32-bit Q16.
DPCM - DPCM was used.
MAQB - ADPCM with one-word memory AQB was used.
NR - Noise reduction was used.
NOCOMP - Compression was bypassed.

82

Bibliography

[1] J. M. Lloveras. Point to point wireless audio with limited bandwidth
and processing (report). 2012. Channel coding and RF Part of the same
project that is described in this report.

[2] E. S. Brenden. Point to point wireless audio with limited bandwidth and
processing (report). 2011. A previous project on this device, focusing
on investigating what algoithms will run real-time on the device.

[3] Nordic Semiconductor. nRF51 SOS. Datasheet for the SoC (article).

[4] C. F. Goss. Machine code optimization - improving executable object
code (article). 1986.

[5] N. S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice Hall,
1984.

[6] V. Atti A. Spanias, T. Painter. Audio Signal Processing and Coding.
John Wiley and Sons, Inc., first edition, 2007.

[7] R. Brandtsegg, 2012. Personal communication with second supervisor
Rune Brandtsegg at Nordic Semiconductor.

[8] D. K. Manolakis J. G. Proakis. Digital Signal Processing - Principles, Al-
gorithms and Applications. Pearson Prentice Hall, fourth edition, 2007.

[9] J. A. Thomas T. M. Cover. Elements of Information Theory. John
Wiley and Sons, second edition, 2006.

[10] L. Lundheim, 2012. Personal communication with supervisor Lars Lund-
heim.

[11] N. S. Jayant. Adaptive quantization with a one-word memory (article).
1973.

83

[12] L. M. Bishop J. M. Van Verth. Essential Mathematics for Games and
Interactive Applications - A Programmer’s Guide. Morgan Kaufmann
Publishers, second edition, 2008.

[13] J. Lauha. The neglected art of fixed point arithmetic (article). Seminar
for ASSEMBLY event in Helsinki the summer of 2006.

[14] M. Talbot-Smith. Sound Engineering Explained. Focal Press, second
edition, 2002.

[15] D. Lin B. W. Wah, X. Su. A survey of error-concealment schemes for
real-time audio and video transmissions over the internet (article). 1986.

[16] A. Schaefer. The Effective Number of Bits (ENOB) of my R and S
Digital Oscilloscope (article). 2011.

[17] W. Kester. Understand SINAD, ENOB, SNR, THD, THD+N, and
SFDR so You Don’t Get Lost in the Noise Floor (article). 2009.

[18] P. A. Wheeler T. D. Rossing, F. R. Moore. The Science of Sound.
Addison Wesley Longmain, third edition, 2002.

[19] J. Rodman. The effect of bandwidth on speech intelligibility (article).
2006.

[20] R. Gentile J. MD. J. Katz. Embedded Media Processing. Elsevier, first
edition, 2006.

[21] S. Fechtel H. Meyr, M. Moeneclaey. Digital Communication Receivers:
Synchronization, Channel Estimation, and Signal Processing. John Wi-
ley and Sons, Inc., 1998.

[22] A. Wellings A. Burns. Real-Time Systems and Programming Languages.
Addison Wesley Longmain, fourth edition, 2009.

[23] F. Hekland. Review of joint source-channel coding (article). 2004.

[24] J. Degener. lpc.c, 1994. Levinson-Durbin C implemenation (C code).

84

	Title Page
	masteroppgave.pdf

