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Problem Description 
 
Self-organized InAs/GaAs quantum dots (QDs) can be used for the realization of so-called 
intermediate band solar cells (IBSC), since the quantized energy levels in the InAs QDs can 
form an intermediate energy band in the bandgap of the surrounding GaAs material. Even 
though the InAs/GaAs QD material system has been studied since the 1980s, several aspects 
of the QD growth are not completely established. One example is the thickness of the 2D InAs 
wetting layer (WL) that is formed in the first step of the self-organized growth, and that later may 
be eroded as the QDs form and increase in size. The WL may also be modified as the QDs and 
the WL is overgrown (capped) with GaAs. 
One method that could be used to estimate the thickness of the final WL is X-ray diffraction 
(XRD); a non-destructive technique extensively used to characterize semiconductor hetero-
structures and multilayers.  Information about layer thickness, superlattice period and 
composition can be extracted, by comparing the measured XRD curve with a simulated one.  
However, XRD is rarely used to characterize the layer structure of QD materials. This master 
thesis thus consists of two main parts: 
A)  Experimental work to determine the InAs and GaAs layer thicknesses in an InAs/GaAs 
bilayer QD sample. 
B)  Theoretical work to evaluate what kind of fine structure in the composition of the bilayer 
sample can be detected by XRD. 
 
For the first part, the student should: 
1)  Perform XRD measurements at IET on an InAs/GaAs bilayer QD sample to see if such 
measurements give data of high enough quality/resolution. The sample to study has been 
grown using Molecular Beam Epitaxy (MBE), but without rotation of the substrate during the 
deposition. When the substrate is not rotated, a gradient of the amount of deposited material is 
expected. The XRD data should be recorded for several locations on the sample. 
2)  Estimate the variation on deposited amount of InAs and GaAs across the sample, based on 
the geometry of the MBE machine at IET. 
3)  Using the LEPTOS software for the XRD instrument at IET, perform simulations of rocking 
curve scans around the 004 reflection from an InAs/GaAs bilayer QD structure, and by varying 
the thickness of the InAs and GaAs layers in the simulation and compare to experimental data, 
determine how the GaAs and InAs film thicknesses vary across the sample. 
 
In the second part, the student should model various cases of how the InAs material could be 
distributed in the sample.  During growth of the initial 2D WL, intermixing may occur, and during 
capping, segregation may take place. Both these effects may result in an alloying of the InAs 
and the GaAs.  Also it is unclear whether ALL the InAs, i.e. both in the 2D WL and in the 3D 
QDs, will contribute to the rocking curve scans or if only the 2D WL contributes. 
The different model cases should then be simulated with LEPTOS, to evaluate what kind of 
alloying and what variations in the bilayer structure could give significant enough differences in 
the XRD curves that it might be detectable in analysis of XRD from real samples. 
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Abstract

Intermediate band solar cells (IBSC) is a proposed new type of solar cell
device that has an intermediate energy band in the band gap. One possi-
ble implementation of IBSCs is by using arrays of nano-sized semiconductor
particles known as quantum dots (QDs). InAs QDs can be grown on GaAs
by using molecular beam epitaxy (MBE). As a part of this growth process,
an InAs wetting layer (WL) is formed on which the InAs QDs grow. One
possible method of determining the WL thickness is by using x-ray diffrac-
tion (XRD), which is a non-destructive analysis technique used to extract
information about the structure and composition of crystalline thin films.

An InAs/GaAs bilayer sample grown by MBE was investigated. This
sample was grown without rotation, meaning the thicknesses of the deposited
layers are expected to exhibit a gradient across the sample. Based on the
geometry of the MBE machine, the variation in deposited thicknesses across
the sample was estimated to be ±3.4% for InAs and ±4.2% for GaAs. XRD
rocking curve measurements were performed around the 004 reflection in
thirteen different locations on this sample. LEPTOS software was used to
simulate XRD curves, and these simulations were fitted to the XRD mea-
surements by varying the thicknesses of the simulated InAs and GaAs layers.
It was found that the GaAs thicknesses across the sample varied as expected,
while the variation in InAs thicknesses was much larger than expected. It
was also found that the measured thicknesses of the InAs layer were signifi-
cantly thinner than the nominal value. This is a strong indication that there
are QDs on the sample, and that only the WL of the QDs contributes to the
x-ray curve.

LEPTOS was also used to simulate several cases of alloying of an InAs/-
GaAs bilayer. It was found that if the entire InAs layer is segregated into an
InAs/GaAs alloy, this causes the diffraction peaks to weaken as the InAs/-
GaAs interfaces become less abrupt. It was also found that intermixing
causes a significant change in the XRD curve because the amount of GaAs
in the InAs/GaAs bilayer structure increases.
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Chapter 1

Introduction

In 1961 Shockley and Queisser calculated the theoretical limit of the conver-
sion efficiency for current semiconductor solar cells to be 40.7% [1], meaning
that they can covert no more than 40.7% of the energy in sunlight to electric
energy. If solar cells are to exceed this limit, new technologies have to be
developed and implemented.

One important limitation of solar cells is the band gap of the semiconduc-
tor. The solar cell can not absorb photons with energies lower than the band
gap. Photons with energies much larger than the band gap are absorbed,
albeit with large energy losses. This means that optimum energy conversion
only happens for photons with energies equal to or slightly larger than the
band gap of the solar cell semiconductor material. As the solar light consists
of a broad spectrum of photon energies, this means that large parts of the
energy in the solar spectrum is lost.

Intermediate band solar cells (IBSCs) is a proposed new type of solar
cell device where this limitation is circumvented by inserting an extra energy
band in the band gap[2]. This means that the band gap of the semiconductor
is in practice divided into two smaller band gaps. These two smaller band
gaps make it possible to absorb lower energy photons. The original band
gap also still exists, meaning that relatively high energy photons can be
efficiently absorbed. Luque and Mart́ı showed in 1997 that the maximum
theoretical efficiency for IBSCs is 63.1% [2] as compared to 40.7% which is
the Shockley-Queisser limit mentioned above.

Several possible ways of realising IBSCs have been investigated. One of
them is based on the implementation of arrays of nano-sized semiconductor
particles known as quantum dots (QDs)[3]. A number of requirements must
be fulfilled for this quantum dot array to give rise to the desired intermediate
band, including high density, regular size and regular spacing [4]. At NTNU
there is a research group (the QD-IBSC group, a collaboration between the
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Department of Electronics and Telecommunications and the Department of
Physics) which is currently investigating InAs quantum dots grown on a
GaAs substrate by molecular beam epitaxy (MBE, a method of epitaxial
growth of thin films), to see how the various MBE growth parameters affect
the quantum dot properties.

X-ray diffraction is used to investigate the properties of crystalline thin
films, but has not been used at NTNU on QD materials until now. This
technique has been used by others to investigate InAs/GaAs heterostructures
with quantum dots. See for example [5].

The purpose of this thesis is to study InAs/GaAs heterostructures with
x-ray diffraction, through simulations and diffraction measurements on a
sample with a InAs/GaAs QD bi-layer grown by MBE. Also different cases
of intermixing and segregation of an InAs layer with surrounding GaAs layers
will be investigated through XRD simulations.
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Chapter 2

Theory

In this chapter the theoretical background of this thesis is presented. In sec-
tion 2.1 the basic theory of semiconductors is presented, and in section 2.2
solar cells are presented. In section 2.3 semiconductor and solar cell theory
is used to describe the intermediate band solar cell. Quantum dots are then
presented in section 2.4, and this is followed by a presentation of the quan-
tum dot intermediate band solar cell in section 2.5. Basic crystallography is
presented in section 2.6, and finally the basic theory of x-ray diffraction is
presented in section 2.7.

2.1 Semiconductors

The contents of this section is taken mostly from [6].

In a given solid, there is a number of available energy states for electrons.
Every energy state can be occupied by maximum two electrons where one is
in the spin up and the other one is in the spin down state. Electrons that are
in the outer shell of the atoms in a solid are called valence electrons. These
electrons take part in the bonding of the atoms in the solid. The energies
of valence electrons form a continuous energy band that is called the valence
band. Likewise, the energies of electrons that are free to move around in
the solid form a continuous energy band called the conduction band. If an
electric current is going to flow through the solid the electrons have to be free
to move around in the solid, meaning that there must be electrons available
in the conduction band.

Electrons can be excited from the valence band to the conduction band
by absorbing energy from the surroundings, e.g. thermal or optical energy.

Solids can be divided in three categories depending on how easily they
conduct currents, as shown in figure 2.1.
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� Insulators are solids with a large energy gap between the valence and
the conduction bands. The energy gap has no available states for elec-
trons. Due to the energy gap there are very few electrons in the conduc-
tion band, meaning that even for relatively high voltages, an insulator
conducts a negligible current. See figure 2.1a.

� Metals are solids where the valence and conduction bands either overlap
or are only partially filled, see figure 2.1b. This means that the con-
duction band is always partially filled with electrons. In other words
metals will conduct a large current even at relatively small voltages.

� Semiconductors are similar to insulators except that the energy gap is
smaller, as shown in figure 2.1c. Due to the small band gap electrons
can be easily excited from the valence band to the conduction band
through thermal or optical energy. This means that at room tempera-
ture there will be a certain number of electrons that have been excited
thermally into the conduction band, and the semiconductor will typ-
ically have conducting properties somewhere between a metal and an
insulator.

(a) Insulator (b) Metal (c) Semiconductor

Figure 2.1: The electronic band diagrams of various solids at 0 K. CB is the
conduction band and VB is the valence band of the solid.

When an electron is excited from the valence band, it leaves behind an
empty state. In solid state physics, this empty valence state is often modelled
as a hole, or a positively charged particle (as opposed to electrons, which
are negatively charged particles). This does not mean that holes are actual
physical particles, only that they are modelled this way for simplicity. When
an electron moves from a state to another inside the valence band, it fills a
hole while leaving behind a new hole. This is modelled as the hole ”moving
around” in the valence band.
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2.1.1 The Fermi level

Electrons tend to occupy the lowest energy level that is not already occupied
by other electrons. This means that in a semiconductor material all the
lower energy levels tend to be occupied by electrons while the higher levels
are unoccupied. At the temperature of 0 K there is a sharp distinction
between the completely filled and the unfilled energy levels. However, when
the temperature increases, the thermal energy absorbed by electrons will
cause them to be excited to higher energy levels. This means that the lower
energy levels start to empty and the higher levels start to fill.

This behaviour can be described using the Fermi-Dirac distribution func-
tion: f(E) = 1/(1 + e(E−EF )/kT ). Here f(E) is the probability that an energy
state at a given energy E is occupied by an electron. EF is the Fermi level (a
variable depending on the properties of the semiconductor) where the proba-
bility of occupation is exactly 50%, k = 8.62 · 10−5 eV K−1 is the Boltzmann
constant and T is the temperature.

The Fermi-Dirac distribution is presented graphically in figure 2.2. Here
the distribution at 0 K is shown as a black line. As can be seen, all energy
states are filled below the Fermi level EF , and all states are empty above.
When the temperature increases, electrons near the Fermi level are excited
thermally to higher energies and leave behind empty states. This leads to
the curve being smoothed, as shown by the grey lines in the figure.

The Fermi level can be modified through the doping of the semiconduc-
tor, i.e. voluntarily adding impurities to the semiconductors. If elements
from column V in the periodic table (so-called donors) is added to the semi-
conductor, extra electrons are added to the semiconductor (called n-doping).
This causes the Fermi level to increase. If on the other hand elements from
column III (so-called acceptors) are added, extra holes are added to the semi-
conductor and the Fermi level decreases (called p-doping).

When the population of charge carriers is changed from the equilibrium
value through the injection of excess carriers (e.g. through the optical ex-
citation of electron-hole pairs) the Fermi level does not give a meaningful
description of the distribution of charge carriers any more. In stead, so-
called quasi-Fermi level are used, with separate Fermi levels Fn and Fp for
electrons and holes. The quasi-Fermi levels are defined using the equations
n = nie

(Fn−Ei)/kT and p = nie
(Ei−Fp)/kT where n and p are the resulting steady

state concentrations of electrons and holes, ni is the intrinsic concentration
of electrons excluding the excess carriers, Ei is the intrinsic Fermi level and
T is the temperature.
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Figure 2.2: A graphic representation of the Fermi-Dirac distribution. The proba-
bility of the energy states being occupied is shown as a function of the energy. The
black line shows the distribution at 0 K. As the temperature increases, the grey
lines depicts how the distribution changes.

2.1.2 p-n junctions

A solar cell is essentially a p-n junction under illumination. In order to
understand such junctions between p-doped and n-doped regions in a semi-
conductor, one can compare them to two separate pieces of semiconductor
materials where one is p-doped and the other is n-doped. When a p-n junc-
tion is formed, a transition region arises where holes diffuse from the p side
into the n side and electrons diffuse from n to p. The resulting electric band
structure is shown in figure 2.3b. As shown in the figure, an electric poten-
tial arises in the transition region which leads to a gradient in the band gap
figure. The difference between the conduction band top at the p-side and
the n-side is called the built-in potential at equilibrium, qV0.
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(a) (b)

Figure 2.3: A p-n junction at equilibrium. (a) Two separate p-doped and n-doped
semiconductors together with their respective band diagram. (b) A p-n junction.
Here a transition region builds up at the junction area. The built-in potential at
equilibrium is shown as V0.

2.2 Solar cells

A solar cell (also called a photovoltaic cell) is a p-n junction device that
converts sunlight into electrical energy. This is accomplished through the
optical excitation of electrons from the valence band into the conduction band
and the subsequent separation of charge carriers (also called the photovoltaic
effect).

Light is a type of electromagnetic radiation, and consists of photons, which
are massless particles with frequency and wavelength defined as c = fλ where
c ≈ 2.998 · 108 m/s is the speed of light in vacuum, f is the frequency and λ
is the wavelength of the photon.

Photons incident on the solar cell can be 1) absorbed, 2) reflected, or 3)
transmitted through the semiconductor. The amount of photons that are
absorbed depends on properties such as band gap and cell thickness.

In chapter 13 in [7] the equation for the energy of the photon is pre-
sented as E = hc/λ, where h = 6.63 · 10−34 J s is the Planck constant,
c = 3.00 · 10−8 m s−1 is the speed of light in vacuum, and λ is the wave-
length of the photon. From this equation it can be seen that the energy of
the photon is inversely proportional to the wavelength of the photon. The
band gap energy εG of the semiconductor limits the absorption of photons.
If the energy of the photon is smaller than the band gap energy (i.e. if the
wavelength of the photon is too long), the photon’s energy is insufficient to
excite the electron from the valence band to the conduction band, and so the
photon is not absorbed. In other words, the wavelength of the photon must
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be equal to or lower than a maximum value determined by the band gap of
the semiconductor if the photon is to be absorbed.

In figure 2.4 the band diagram of the photovoltaic cell is shown along
with various energy loss mechanisms. When the electron is excited from the
valence to the conduction band and a hole is created in the valence band,
the part of the excitation energy used to excite the electron inside the energy
bands is rapidly lost to the lattice as thermal vibrations. The larger the
excitation energy is compared to the band gap energy, the more significant
this energy loss becomes. More energy is lost as the electron drifts across
the junction and towards the n-side contact as it drops to the n-side contact
potential. In addition, wherever electrons and holes are present at the same
time and place, they can recombine. The excess energy can be released either
as radiation or non-radiatively.

Figure 2.4: Energy band diagram of a photovoltaic cell. Four types of electron
energy losses are shown: 1) Thermal loss, 2) and 3) junction and contact voltage
loss, 4) recombination loss. The corresponding losses for holes are shown as 1’, 3’
and 4’. Note that φn + φp + q(V0 − V ) + qV = φn + φp + qV0 = Eg/q, as seen in
the figure. The figure is taken from [8] and slightly modified.

As extra electron-hole pairs are generated through optical absorption the
electron and hole concentrations deviate from the equilibrium values and
separate quasi-Fermi levels for electrons and holes arise. As seen in figure 2.4,
electrons exiting on the n-side contact have energies equivalent to the quasi
Fermi level for electrons Fn, while electrons that arrive on the p-side contact
and recombine with holes in the semiconductor have energies equivalent to
Fp. In other words the usable potential is the difference between Fn and Fp,
and the voltage over the cell is expressed as V = (Fn − Fp)/q.
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Figure 2.5 shows the current-voltage characteristics for a solar cell under
illumination. The maximum voltage (equivalent to the open-circuit voltage)
Vmax = Voc is shown in the figure. At this voltage there is no current. On
the other hand, the maximum current Imax is the same as the short-circuit
current Isc where the voltage over the solar cell is zero.

Figure 2.5: A sketch of the current-voltage characteristics of an illuminated solar
cell. The maximum power rectangle is seen as a grey box.

As seen from figure 2.4, the maximum (open-circuit) voltage must be
lower than the built-in junction voltage V0. The built-in voltage is again
lower than the energy gap voltage Eg/q. In mathematical terms, this can
be expressed as Vmax = Voc < V0 < Eg/q, see figure 2.4. In other words, the
energy gap determines an upper limit for the maximum voltage of the solar
cell. If the energy gap of the solar cell was minimized in order to absorb as
much as possible of the solar spectre, the voltage would be so small that it
would be necessary to connect many solar cell devices in series to create a
usable output voltage. This is not a practical way of manufacturing solar
cells. This means that to create a usable solar cell device, a balance must
be found between minimizing the energy gap to absorb as much as possible
solar light, and maximizing the energy gap to increase the output voltage of
the device.

Often the output efficiency of solar cells is measured as the ratio of the
maximum output power and the input power from the incident solar light:
η = VmIm/Pin [9].

To sum up, the two most important causes of energy losses in solar cells
are 1) the loss of photons with energy lower than the band gap energy and
2) the loss of photons with energy higher than the band gap energy of the
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semiconductor, as they are either not absorbed or absorbed with large energy
losses. Decreasing the band gap would lead to a higher absorption rate of
photons, but would also lead to the output voltage of the solar cell being
decreased.

2.3 Intermediate band solar cells

One way of reducing energy losses in the photovoltaic cell is by inserting an
extra energy band in the band gap, as shown in figure 2.6. This results in
an intermediate band solar cell (IBSC). In the IBSC there are three possible
excitation paths for the electrons. In addition to being excited directly from
the valence to the conduction band (across the main band gap εG), electrons
can be excited from the valence band to the intermediate band or from the
intermediate band to the conduction band (excitation paths εH and εL, re-
spectively). Now the energy of the band gap εG can be increased without
losing the lower energy photons as the absorbed energy can be used to excite
electrons over εL or εH instead. The two smaller band gaps (εH and εL) can
have different magnitudes to match different parts of the solar spectrum.

2.4 Quantum Dots

Quantum dots can be used to form the intermediate band. In order to
understand the concept of quantum dots it is necessary to have a look at
the quantum mechanical description of confined particles (e.g. electrons).
The time-independent Schrödinger equation used for modelling particles in a
given potential is described in [11]: −(h̄2/2m)∇2ψ(r) + U(r)ψ(r) = Eψ(r).
Here h̄ = h/2π is the reduced Planck constant, m denotes the mass of the
confined particle, U(r) is the confining potential, ψ is the wavefunction of the
particle, and E is the corresponding energy of the particle. This equation is
used for calculating the wave function of a particle in a known potential.

A quantum dot is a structure where an electron is confined to nanoscale
dimensions in all directions. As an example a cubic quantum dot can be
studied. For simplicity, it will be assumed that the quantum dot has dimen-
sions l, a potential of zero inside the dot, and an infinite potential outside.
This means that the boundary values of the wave function is zero at the
edges (where the infinite potential outside starts). Here the solution of the

Schrödinger equation is ψ = (l/2)
3
2 sin((nxπ/l)x) sin((nyπ/l)y) sin((nzπ/l)z)

with the corresponding energy states E = (h̄2π2/2ml2)(n2
x + n2

y + n2
z) where

nx, ny and nz are three independent integers (see chapter 3 in [12]).
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Figure 2.6: Basic structure of an intermediate band solar cell (top), energy di-
agram at equilibrium (middle) and energy diagram under forward bias (bottom).
Notice the three different excitation paths across εL, εH and εG. The figure is
taken from [10] and slightly modified.

This shows that the energy states for a particle in the quantum dot are
discretely quantized. The equation for the energy states also shows that
when the dimensions of the quantum dot are decreased, the energy levels of
the confined particle actually increase. The magnitude of the energy states
can be controlled with a high degree of precision by varying the size of the
quantum dot.

Real world quantum dots manufactured by using nanoparticles will have
more complex shapes and a finite potential outside the quantum dot, as
opposed to an idealised shape and an infinite potential outside as assumed
above. A shape that is not perfectly spheric, cylindric or cubic makes the
calculations a lot more complex. Also, when the potential outside is finite,
the boundary values of the wave function is no longer zero at the edges and
the calculations for the wave function inside the well complicates even more.
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Still the cubic quantum dot can serve as an approximation and a simplified
example to show the basic principles that also apply to the real quantum
dot.

2.4.1 Quantum dot growth

The contents of this subsection is taken from [13].
In heteroepitaxy (i.e. the epitaxial growth of films on substrates where

the film material is different from the substrate material) typically one of two
growth modes are observed.

� Frank-van der Merwe (layer) growth: Here epitaxial 2D layer growth is
observed. This can be explained due to the atoms or molecules being
more strongly bound to the substrate than to each others.

� Vomer-Weber (island) growth: Here 3D island growth is observed. This
can be explained due to the atoms or molecules being more strongly
bound to each others than to the surface.

In addition, when the lattice constants of the film and the substrate are
mismatched, a third growth mode may be observed. This growth mode is
called the Stranski-Krastanov growth mode. Due to the lattice mismatch, a
combination of the island and the layer growth modes is seen. For the first
few layers an epitaxial film growth is seen, and the film lattice is strained to
match the substrate lattice. Then, as the substrate is covered, the top layers
will relax into the original lattice constant of the deposited thin film. This
leads to islands being formed on top of the epitaxial film, as shown in figure
2.7.

(a) (b)

Figure 2.7: A schematic illustration of the Stranski-Krastanov growth. This il-
lustration shows how the strain due to the lattice mismatch makes island formation
more favourable than full film growth after an initial epitaxial layer growth. Based
on an illustration in [13].
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InAs has a 7% larger lattice constant than GaAs. Therefore, the Stranski-
Krastanov growth mode can be used to grow InAs quantum dots on a GaAs
substrate.

2.5 Quantum dot intermediate band solar cells

A quantum dot is sometimes referred to as an artificial atom, as the energy
states confined in a quantum dot can be compared to the energy states in
real atoms. When quantum dots are arranged in a 3D lattice, this can be
thought of as a superlattice of artifical atoms. A superlattice is a periodic
structure with a periodic potential (see chapter 3.5 of [13]). From the periodic
potential wells of the quantum dots in the 3D lattice a new energy band
arises [10]. This behaviour can be used to create the intermediate band of
the intermediate band solar cell [3].

One possible design of a quantum dot intermediate band solar cell is
shown in the upper part of figure 2.8. The confined states in the closely
spaced quantum dots form the intermediate band in the band gap between
the valence band and the conduction band. Electrons can then be pumped
by optical excitation from the valence band to the intermediate band, and
from the intermediate band to the conduction band. This means that there
have to be both filled and empty states in the intermediate band, implying
that the Fermi level has to cross it [10].

A number of design constraints for the quantum dot intermediate band
solar cell have been identified in [4].

� Dot size: The energy states of the quantum dot depend on the shape
and size of the dot. For idealized spherical dots made of In0.58Ga0.42As
embedded in Al0.4Ga0.8As it has been calculated that the size needs
to be in the range of 39 Å. This estimate is not directly related to
InAs/GaAs quantum dots, but may give an idea of the typical size
order for quantum dots used in intermediate band solar cells.

� Dot spacing: The dots should have an as high as possible density in
order to provide an as high as possible absorption coefficient without
making the bandwidth so large that stimulated emission becomes pos-
sible. It has been found that the dots can be stacked together at a
distance of 100 Å and that the density of dots can be kept below one
order of magnitude from the density of states in the conduction and
valence bands without making stimulated emission possible.
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� Dot regularity: The dot size and spacing of the quantum dot should
have a high regularity in order to minimize the bandwidth of the in-
termediate band. The dispersion in size should preferably be less than
10%.

� Other factors: A number of other factors, including the choice of ma-
terials, also play an important role in the design of the quantum dot
intermediate band solar cell.

Figure 2.8: An illustration of the intermediate band formation in a QD-IBSC
[10]. On top, an overview of the quantum dot material is seen. Below it, the
energy band diagram in equilibrium is shown.

2.6 Crystal lattices

The theory in this section is taken mostly from [14].
A mathematical concept called a lattice is used to describe crystals. A

lattice is an infinite grid onto which the basis of the crystal is attached. The
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basis is a set of one or more atoms that is repeated throughout the lattice,
as shown in figure 2.9.

(a)

(b)

(c)

Figure 2.9: (a) A two-dimensional lattice. (b) A basis consisting of two atoms.
(c) The basis is placed in the lattice. This figure is based on figure 1.2 in [14].

For any point in a lattice there is an infinite number of similar points. In a
three-dimensional lattice, the shortest distance between two identical points
along the x axis can be described using a lattice vector called a1. Likewise,
the shortest translation between two points along the y and z axes can be
called a2 and a3, correspondingly. These vectors are called the primitive
translation vectors of the crystal. The space bound by these vector is called
the primitive cell, as shown in figure 2.10. Sometimes a lattice is divided
in unit cells that are non-primitive for convenience, which are then called
conventional cells.
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Figure 2.10: A unit cell with its associated lattice points and its unit vectors a1,
a2 and a3. This figure is based on figure 1.3b in [14].

Simple cubic structure

The simple cubic structure is a type of lattice structure where the three
primitive translation vectors are of identical length and perpendicular to
each others. Then they are given as a1 = ax̂, a2 = aŷ and a3 = aẑ where a
is the length of one of the sides of the primitive cell, also called the lattice
constant. The lattice constant varies depending on the element(s) used, the
temperature and the stresses present in the lattice.

The primitive cell in this lattice is cubic with an atom in each corner, as
shown in figure 2.11.

Figure 2.11: The primitive cell of a simple cubic lattice.

Face centered cubic structure

In the face centered cubic (fcc) structure, the unit vectors are given as a1 =
1
2
a(x̂+ ŷ), a2 = 1

2
a(ŷ+ ẑ) and a3 = 1

2
a(ẑ+ x̂). The angle between the vectors

is 60°.

Figure 2.12 shows both the conventional and the primitive cell of the face
centered cubic structure.
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(a) (b)

Figure 2.12: (a) A conventional cell of the fcc structure. (b) A primitive cell of
the fcc structure. This figure is based on figures 1.8 and 1.11 in [14].

Zinc blende structure

The zinc blende structure is identical to the face centered cubic lattice, but
has a basis consisting of two atoms of different elements. The coordinates of
the two atoms in the basis is (0, 0, 0) and (1

4
a, 1

4
a, 1

4
a) with a being the lattice

constant. Examples of solids with the zinc blende structure are gallium
arsenide and indium arsenide. The zinc blende structure is shown in figure
2.13.

Figure 2.13: A conventional cell of the zinc blende structure. This figure is taken
from figure 1.24 in [14].

2.6.1 Crystal planes

Planes in a crystal is described using a (hkl) notation where h, k and l are
found using the following procedure:
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� Find the intercepts on the axes in terms of the lattice constants a1, a2

and a3.

� Take the reciprocal of these numbers and reduce them to three integers
having the same ratio.

An example of a plane is shown in figure 2.14.

Figure 2.14: The plane in the figure intercepts the axes at 3, 2, 2. The reciprocals
of these intercepts are 1/3, 1/2 and 1/2, meaning the plane has indices (233). This
figure is based on figure 1.13 in [14].

When a plane cuts through the negative side of an axis, this is denoted
by placing a minus sign over the index, like this: (hk̄l).

In cubic crystal systems, the [hkl] notation describes a direction that is
perpendicular to the (hkl) plane.

2.6.2 Monolayers

A monolayer is a single layer of atoms or molecules. For the simple cu-
bic lattice, every translation along the primitive lattice vectors equals one
monolayer, as only one monolayer of atoms needs to be added to the lattice
to create another layer of unit cells.

However, for the face cubic lattice two monolayers of two-atom molecules
needs to be added to add another layer of conventional unit cells to the
lattice (one layer for the face centred atoms, and one layer for the atoms at
the corners). This means that in order to grow a layer of a face centred lattice
that has the thickness of one lattice constant, two monolayers of atoms or
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molecules must be grown. This also applies to the zinc blende structure, as
it is a face centred lattice with two-atom molecules.

2.6.3 Strain

When a crystal is deposited on top of another crystal with a different lattice
constant, this leads to the crystal being strained. The in-plane strain is
defined as[15]:

exx =
ax − a0

a0

where a0 is the lattice constant of the lattice that is being grown and ax

is the lattice constant of the other crystal that it is grown on top of.
And the strain in the growth direction is given as:

ezz =
−2C12

C11

exx

where C11 and C12 are elastic moduli taken from the stiffness tensor of
the material.

Then the lattice constant in the z direction can be calculated as follows:

az = a0(1 + ezz)

For instance, when InAs, which has a lattice constant of 0.60591 nm at
26° Celsius and elastic moduli C11 = 83.29 and C12 = 45.26 is grown on top
of GaAs which has a lattice constant of 0.56532 nm at 26° Celsius, the lattice
constant in the z direction for InAs becomes 0.65002 nm under strain.

2.7 X-ray diffraction

The theory in this subsection is taken mostly from [7] and [14].

2.7.1 Plane waves

A wave that propagates along a one dimensional line, or a plane wave, can
be described using the periodic cosine function: y(x, t) = A cos(ωt− kx+ φ)
where A is the amplitude, ω is the angular frequency, k is the wave number
and φ is the phase of the wave, as shown in figure 2.15.

The angular frequency can also be written as ω = 2πf = 2π/T where f is
the frequency and T is the period of the wave, as shown in figure 2.15. The
wave number is given as k = 2π/λ where λ is the wavelength of the wave.
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Figure 2.15: The amplitude A, the period T and the phase φ of a wave. The
phase of a cosine wave is the difference between the y axis and the nearest peak of
the wave.

Given two synchronous waves y1(x, t) and y2(x, t) (i.e. having the same
amplitude, frequency and phase) that meet at the same point after having
travelled two different paths to the point. The two waves can be written as:

y1 = A cos(kx1 − ωt+ φ)

y2 = A cos(kx2 − ωt+ φ)

where (x2 − x1) is the different in path length between the two waves.

The wave observed at this point will then be the superposition of the
two waves: y = y1 + y2. By using the trigonometric identity cosα + cos β =
2 cos[(α+ β)/2] cos[(α− β)/2] the sum can be written as:

y = 2A cos

[
k(x1 + x2)

2
− ωt+ φ

]
cos

[
k(x1 − x2)

2

]

There are two special cases of the superposition of these two waves. First,
if k(x2 − x1)/2 = nπ where n is any arbitrary integer, then the cosine com-
ponent of y will be equal to 1 or −1, and the resulting wave will then be a
wave with twice the amplitude of the waves y1 and y2. This is called con-
structive interference, as shown in figure 2.16. Second, if k(x2 − x1)/2 =
((2n+ 1)/2)π, then the cosine component will be zero, and the resulting
wave will cancel. This is called destructive interference, as shown in figure
2.17.
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Figure 2.16: The constructive interference of two waves y1 and y2

Figure 2.17: The destructive interference of two waves y1 and y2

Beat

Beat occurs when two waves with frequencies that are very close, but not
identical, are added. Mathematically it can be explained as follows:

sin(2πf1t) + sin(2πf2t) = 2 cos(2π
f1 − f2

2
t) sin(2π

f1 + f2

2
t)

The frequency of the resulting wave is the average of the frequencies of the
original waves, with an envelope with frequency equal to half the difference
of the original wave frequencies, as shown in figure 2.18. The resulting wave
appears to vary in amplitude.
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Figure 2.18: A superposition of two waves with frequencies 104 Hz and 110 Hz,
and the enveloping cosine wave. Note that the wave undergoes a 180° phase shift
every time the cosine function crosses zero.

2.7.2 Bragg’s law

In figure 2.19 parallel atomic planes are shown which function as plane re-
flectors. The distance between these parallel planes is d. The angle between
the incident beam and the normal to the planes (θ) is equal to the angle
between the normal and the reflected beam.

Figure 2.19: Two parallel waves are shown reflecting from two parallel atomic
planes separated by the distance d. This figure is based on figure 2.2 in [14].

As shown in figure 2.19, the path difference between the two neighbouring
waves can be written as ∆ = 2d sin θ. When the path difference is equal to
an integer multiple of the wave length λ, the waves will reinforce each others.
This is called a Bragg reflection, and occurs at any integer multiple of λ:

2d sin θB = nλ

This equation is called Bragg’s law. If the path difference is equal to half
the wavelength (or to any integer multiple of the wavelength plus a half) the
reflected waves will cancel each other: 2d sin θ = (n+ 1/2)λ
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The Bragg angle θB is determined by the spacing of the reflection planes.
For a given crystal plane (hkl) in the unit cell of a crystal with lattice constant
a, the interplanar spacing is:

d =
a√

h2 + k2 + l2

2.7.3 X-rays and x-ray diffraction

X-rays is electromagnetic radiation with wavelengths in the range of approx-
imately 0.01 to 1 nanometers.

X-rays are produced when high-energy electrons are slowed down and lose
energy. This can be done by applying a high voltage (at the magnitude of 10
kV) between a cathode and an anode. Then high-energy electrons are drawn
out of the cathode and collide with the anode. When this happens, x-rays
are emitted. The highest energy electrons will have the frequency defined
as qeV = hfmax, where qe = 1.60218 × 10−19C is the fundamental charge of
electrons and V is the voltage applied between the electrodes. The shortest
wavelength of the x-ray photons emitted is λSWL = hc/qeV .

Crystal structures can be studied through the diffraction of waves. When
the wavelength is of roughly the same magnitude as the lattice constant
(which is the case for x-rays in crystalline solids) the diffracted beams will
carry information about the crystal structure, as shown by Bragg’s law.
These beams will show clear peaks in intensity when constructive diffrac-
tion is present, which can be used to determine the periodicity of the crystal
lattice by using Bragg’s law.

2.7.4 Superlattices

The theory in this subsection is taken from subsection 4.7.3 in [16].

A superlattice is a structure with another periodicity additional to the
lattice periodicity. One example is a heterostructure (a structure consisting of
two different semiconductor materials) consisting of two different materials A,
B ordered on top of each other (ABABAB...) as illustrated in figure 2.20. The
period D is the sum of the thickness of the A and B layers D = DA+DB. The
superlattice creates an extra periodicity in the lattice that leads to a extra
diffraction pattern superimposed on the diffraction pattern due to the normal
lattice periodicity, provided that the wavelength of the x-rays is roughly
comparable to the period of the superlattice.

The superlattice peaks will then be at angles θ such that 2D sin θ = Lλ
where L is an integer. Since the superlattice is in the z direction, the hk0
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Figure 2.20: Schematic illustration of a superlattice. It consists of two materials
A and B stacked alternately. D is the thickness of one superlattice period. This
figure is based on figure 4.15 in [16].

reflections are unaffected by the superlattice effect while the 00l reflections
are strongly affected.

If A and B are two binary zinc blende materials, then the thickness of
the layers A and B are:

DA =
nAaA

2

DB =
nBaB

2

where nA and nB are the number of monolayers and aA and aB are the lattice
constant of A and B, respectively.

Then D = (1/2)(nAaA + nBaB), and Bragg reflection occurs at angles:

sin θ =
Lλ

nAaA + nBaB

When L = (l/2)(nA + nB) with l as an integer,

sin θ =
(nA + nB)lλ

2(nAaA + nBaB)
=

lλ

2 〈a〉

which reduces to the Bragg formula for scattering from a crystal lattice with
lattice constant 〈a〉, the average lattice constant of the superlattice. This
superlattice diffraction peak is called the zero-order peak and will be some-
where between the Bragg peak of material A and the Bragg peak of material
B. The other reflection peaks of the superlattice are called satellites, with in-
dicies −2, −1, +1, +2, etc. An x-ray diffraction pattern from a GaAs/AlAs
superlattice is shown in figure 2.21.
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Figure 2.21: X-ray diffraction spectrum from a GaAs/AlAs superlattice. S is
the substrate peak, O is the zero-order superlattice peak and the other superlattice
peaks are numbered +3, +2, +1, −1 etc. This figure is taken from figure 4.16 in
[16].

The Bragg equation can be written as 2D sin(θp + θB) = mλ where θp is
the angular separation between a superlattice peak of order p and the zero-
order superlattice peak, θB is the zero-order peak as described above and m
is an integer. Then, for two superlattice orders p, q:

2D [sin(θp + θB)− sin(θq + θB)] = (p− q)λ

Since θp and θq are small, sin θp,q ≈ θp,q and cos θp,q ≈ 1. Then, by using
the trigonometic identity:

sin(α+ β) = sinα cos β + sin β cosα

the equation above can be rewritten to:

2D(θp cos θB − θq cos θB) = (p− q)λ

so that

D =
(p− q)λ

2∆θp,q cos θB

where ∆θp,q = θp − θq is the angular separation of two satellites p and q.
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Chapter 3

Experimental methodology

3.1 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is a method of depositing a crystalline film
(called an epilayer) on a crystalline substrate. A schematic drawing of an
MBE growth chamber is shown in figure 3.1.

Figure 3.1: A schematic drawing of the MBE growth chamber [15].

Ultra-pure elements are heated in separate effusion cells until they slowly
sublimate. The resulting gas then flows as a molecular beam into the main
chamber where the sample is situated. When the beams reach the sample
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substrate, they condense on the surface if the temperature is appropriate.
In this way, a crystalline solid is built up layer by layer. The MBE growth
process can be controlled with an atomic resolution of thickness. This pro-
cess happens under ultra high vacuum to ensure a high purity of the grown
material (see chapter 8 in [12] and chapter 11 in [17]).

A number of growth parameters can be varied in the molecular beam
epitaxy growth process. The shutters of the effusion cells can be opened
and closed individually to allow or stop the gas flowing from the effusion
chamber into the main chamber. Also, the flux of the gases from the effusion
cells can be controlled by varying the temperature inside the effusion cells. In
the main chamber, the temperature of the substrate (also called the growth
temperature) can be controlled using a substrate heater. The film growth
is monitored using an reflection high-energy electron diffraction (RHEED)
system. An electron gun emits a high energy electron beam. This beam
is diffracted and reflected from the sample onto a fluorescent screen. By
monitoring the time variation of the diffraction pattern that is seen on this
screen, the film thickness and growth speed can be determined.

The positioning and contents of the effusion cells relative to the sample
is illustrated in figure 3.2. The angle between individual effusion cells is 45°.
Also the angle between the sample plane and the effusion cells is 57°, as
illustrated in figure 3.3.
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Figure 3.2: The effusion cells in the MBE growth chamber.

Figure 3.3: The positioning of an effusion cell relative to the sample, seen from
the side.
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3.1.1 Deposition thickness as a function of the location
on the sample

When a sample is not rotated during MBE deposition, the deposition thick-
ness across the sample will vary depending on the distance from the source.

Figure 3.4 shows a single MBE effusion cell and the plane that the sample
lies in, seen from the front and from the side. In this figure r is the distance
from the source to the sample, n is a line that is normal to the sample plane,
and l is the distance between the end points of n and r on the sample plane.
These three lines together create a right-angled triangle. r0 and l0 are the
corresponding values for r and l when r ends at the origin in the sample plane.
The angle between r0 and l0 is 57°. When choosing an r different from r0,

l becomes equal to
√
x2 + (l0 + y)2, where x and y denote the displacement

from the origin in the sample plane.

(a) (b)

Figure 3.4: (a) The MBE effusion cell and the sample plane, seen from the front.
(b) The MBE effusion cell and the sample plane, seen from the side. In both figures
the sample plane is oriented relative to the MBE effusion cell.
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This leads to the following equations:

n2 + l0
2 = r0

2

n2 + l2 = n2 + x2 + (l0 + y)2 = (r0 + ∆r)2

where ∆r is the change in r from r0 caused by the x and y translation in the
sample plane.

Equating the n in both equations, expanding the parentheses and ordering
the equation yields:

(∆r)2 + 2r0∆r − (x2 + 2l0y + y2) = 0

This is now a quadratic equation in ∆r. Solving the equation leads to:

∆r = −r0 ± (r0
2 + 2l0y + x2 + y2)1/2

The negative root would be at the magnitude of −2r0 when x and y are
small relatively to r0. This would lead to a negative r. That is unreasonable
and the negative root is discarded.

As mentioned earlier, the angle between r0 and l0 is 57°. Then cos 57° =
l0/r0. This can be inserted in the positive root of ∆r, which then becomes:

∆r = (r0
2 + x2 + y2 + 2yr0 cos 57°)1/2 − r0

The flux at a distance r from the source can be written as F = b/r2 where
b is a constant.

Then the flux density at any given point of the sample plane can then be
found by inserting the equation for r into F :

Fx,y = b
1

(r0 + ∆r)2
= b

1

(r0 + (r02 + x2 + y2 + 2yr0 cos 57°)1/2 − r0)2

= b
1

r02 + x2 + y2 + 2yr0 cos 57°

At the origin of the sample plane the flux density is: F0,0 = b/r0
2. Then

the change of flux density at any point on the sample surface plane relative
to the flux density at the origin is:

Fx,y

F0,0

=
r0

2

r02 + x2 + y2 + 2yr0 cos 57°
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3.2 X-ray diffraction

A rocking curve scan is a x-ray scan where the x-ray diffraction angle is lim-
ited to a small area around the strongest Bragg peak of the sample substrate.
As shown in figure 3.5, the angle ω between the incident wave and the sample
is varied while the angle 2θ between the incident and the outgoing wave is
constant.

Figure 3.5: Set-up for x-ray rocking curve scan.

In this thesis the 004 reflection is being studied with an x-ray wavelength
of 0.15406 nm. The Bragg law can be used to estimate the Bragg reflection
angle for GaAs and InAs. For the 004 reflection the difference in path length
for two neighbouring reflected waves is 4λ, and therefore n = 4 in the Bragg
equation. For the zinc-blende lattice the interplanar spacing is d = a with
a being the lattice constant of the conventional unit cell. Then the Bragg
equation simplifies to:

sin θB =
2λ

a

The lattice constants for GaAs and InAs are 0.56532 nm and 0.60591 nm
at 26° Celsius, respectively[15]. Using these lattice constants, the strongest
Bragg reflection angles can be calculated to be:

θB(GaAs) = 33.027°

θB(InAs) = 30.566°

The x-ray diffraction setup used is a D8 Discover manufactured by Bruker-
AXS. The software XRD Commander version 2.6.1 was used to control the
x-ray equipment and sample holder, XRD Wizard version 2.9.0.22 was used
to program measurement sequences for experiments and the 2007 version
of EVA was used to analyse the measurement results (all of these are from
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Bruker-AXS). During the rocking curve scans, a circular aperture of 1.0 mm
was attached to the x-ray source. With this aperture the x-ray beam is cir-
cular and about 1 mm in diameter. 2θ was set to 66.05694° (this value was
calculated using XRD Wizard), and ω was varied from 32.7285° to 33.4785°
with a step size of 0.001° and a step time of 10 seconds. The x-ray source
voltage and current were set to 40 kV and 40 mA, respectively. The x-ray
wavelength emitted was 0.15406 nanometers. The numerical computing soft-
ware MATLAB version 7.13.0.564 from MathWorks was used to analyse and
plot the measurement results.
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Chapter 4

Simulations

In this chapter a number of simulations are presented. In section 4.1 simu-
lations of MBE gas flux are presented. Then simulations of x-ray scans are
presented in section 4.2.

4.1 MBE flux simulation

The distribution of In and Ga across the wafer was simulated using the nu-
merical computing software MATLAB version 7.13.0.564 from MathWorks.
It is assumed the sample is grown with an abundance of As, meaning the
amounts of In and Ga during MBE growth determine the thicknesses of the
InAs and GaAs layers on the sample, respectively. Note that in the flux
simulations the sample and the sources have been rotated 180° compared to
the orientation in figure 3.2.

The results from the simulation for In are shown in figure 4.1. In this
simulation the lowest relative flux density is -2.4% on the curved edge near
the upper right corner, and the highest relative flux density is 4.4% at the
upper left corner. This means the In flux density varies by ±3.4% across the
sample.

The results from the simulation for Ga are shown in figure 4.2. In this
simulation the lowest relative flux density is -4.4% at the lower left corner,
and the highest relative flux density is 4.4% at the upper right corner, which
means the Ga flux density varies by ±4.4%

The source code for this simulation can be seen in appendix A.1.
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Figure 4.1: In flux distribution simulation. The origin of the flux simulation is
marked with a cross.
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Figure 4.2: Ga flux distribution simulation. The origin of the flux simulation is
marked with a cross.
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4.2 X-ray diffraction simulations

X-ray rocking curve scans were simulated using LEPTOS software, version
2.03 (build 1). In LEPTOS, sample structures are simulated by first choosing
a substrate material, then entering the material type and thickness of the
various thin film layers on top of it, in the z direction. In case of alloys,
the amount of the various elements is also chosen. The crystal is assumed
to be infinite in the x and y directions. LEPTOS then calculates an x-ray
diffraction pattern based on this input.

In LEPTOS, the x-ray wavelength was set to 0.15406 nm and the simula-
tions were done around the 004 reflection. The RMF (Recursive Matrix For-
malism) was set to 4x4, the instrumental function was pseudo-Voigt (meaning
both Gaussian and Lorentzian distributions are used for convolution) with
the Gaussian dispersion set to 200, the Lorentz factor set to 0.01 and the
weight coefficient between the Gaussian and the Lorentzian functions set to
0.3. These are standard values. LEPTOS was set to simulate a rocking curve
scan between 31 and 35 degrees with an increment of 0.001 and 2θ equal to
66.05694. This value was calculated in XRD Wizard.

The lattice constant that is used to calculate InAs thicknesses is set to
0.65002 nm to account for strain. This is a good approximation for InAs
thicknesses of 0-2 ML. However for 2-4 ML this might be a less good approx-
imation as the InAs lattice becomes relaxed in this range and approaches the
relaxed lattice constant at 0.60591 nm.

All simulations are based on a basic structure of a 70 nm GaAs layer sand-
wiched between two 2 ML InAs layers, all this on top of a GaAs substrate.
A schematic drawing of the structure is shown in figure 4.3.

A simulation of this structure is seen in figure 4.4. In this figure a sharp
peak from the GaAs substrate and superlattice peaks from the InAs/GaAs
structure can be observed.

MATLAB was used for plotting the simulations, and also for estimating
the peak locations of the simulations. The algorithm used for estimating
peak locations is as follows: The slope in every single point is calculated
based on the change from the point before to the point after the given point.
If the slope is positive in a point A and zero in the next point B and negative
in the next point after that C, it is assumed the peak is at point B (and
the uncertainty of the peak location is ±0.001° since the step size of the
simulation is 0.001°). If the slope changes from positive in a point A to
negative in the next point B, it is assumed the peak is in the middle between
points A and B (and the uncertainty of the peak location is ±0.0005° since
the step size of the simulation is 0.001°).
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Figure 4.3: Schematic drawing of the basic structure used in the simulations.

Figure 4.4: A simulation of the sample seen in figure 4.3.
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4.2.1 GaAs spacer thickness

A set of simulations was made where the thickness of the GaAs spacer layer
was varied with 1 nm steps from 60 nm to 80 nm. The thicknesses of the
other layers were kept constant.

Parts of the results are shown in figure 4.5. In this figure, it can be
seen that the angular separation of the superlattice peaks decreases as the
thickness of the GaAs layer increases. Two superlattice peaks can be seen
between 33.1 and 33.3 degrees at 60 nm in the figure, while three peaks can
be seen in the same interval at 80 nm.

Figure 4.5: Parts of the simulations with varying GaAs spacer thickness.
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The exact position of the zero-order peak can not be found as it is hidden
by the GaAs Bragg peak. The location of this peak was estimated by finding
the average of the location of the -2 and +2 peaks. The results are shown in
figure 4.6. From this figure it can be seen that the estimated position of the
zero-order peak increases as the GaAs thickness increases. The difference be-
tween the position at 60 nm and the position at 80 nm is 0.012°. This change
can be explained as follows: when the amount of GaAs in the superlattice
is increased, the average lattice constant decreases and the zero-order peak
shifts closer to the Bragg peak from the GaAs substrate.

The superlattice thickness was calculated based on the superlattice peaks
as follows: First a plot is made with the 2 sin(ω)/λ of every peak on the y
axis and the order of the peaks on the x axis, as shown in figure 4.7 for the
simulation with 70 nm GaAs layer. Then a straight line is fitted to this plot.
The superlattice thickness is then the inverse of the slope of this line.

The superlattice thicknesses has been estimated for all simulations, and
the results are presented in table 4.1 and figure 4.8. From the figure it can be
seen that the superlattice thickness seems to increases linearly as the GaAs
spacer thickness increases.

Figure 4.6: Change in the estimated zero-peak position as the thickness of the
GaAs buffer layer increases.

41



Figure 4.7: The order and the 2 sin(ω)/λ for every peak. The gap in the middle
of the plot is due to the 0 and 1 peaks being hidden by the GaAs Bragg peak.

Figure 4.8: Estimated superlattice thickness as a function of GaAs spacer thick-
ness.
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Table 4.1: Estimated superlattice thickness as a function of GaAs spacer thick-
ness.
GaAs
thickness

Estimated superlattice
thickness

60 nm 60.31 nm
61 nm 61.31 nm
62 nm 62.30 nm
63 nm 63.31 nm
64 nm 64.30 nm
65 nm 65.30 nm
66 nm 66.30 nm
67 nm 67.30 nm
68 nm 68.31 nm
69 nm 69.30 nm
70 nm 70.30 nm
71 nm 71.30 nm
72 nm 72.30 nm
73 nm 73.31 nm
74 nm 74.30 nm
75 nm 75.30 nm
76 nm 76.30 nm
77 nm 77.30 nm
78 nm 78.30 nm
79 nm 79.30 nm
80 nm 80.31 nm
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4.2.2 InAs layer thicknesses

Four different set of simulations have been made where the thicknesses of the
InAs layers shown in figure 4.3 have been varied.

Bottom InAs layer

A set of simulations was made where the thickness of the bottom InAs layer
was varied from 0 to 4 monolayers with a step size of 0.1 ML. The GaAs
layer thickness was held constant at 70 nm and the top InAs layer was held
constant at 2.0 ML.

Parts of the results can be seen in figure 4.9. In this figure it can be seen
that the superlattice peaks from the InAs/GaAs peaks move towards lower
angles as the bottom InAs thickness is increased. At 3.2 and 3.6 ML the
diffraction peaks are weaker. This is due to a phase shift that occurs in the
simulations between 2.4 and 4.0 ML. At 2.4 ML this phase shift appears at
about 35°, and moves towards lower angles as the InAs bottom layer thickness
increases. Figure 4.10 shows this phase shift more clearly. When the peak
positions was calculated for simulations with a phase shift, the maximum
points were used when the angle is lower than the position of the phase shift
and the minimum points were used when the angle is higher than the position
of the phase shift.

It can also be seen in figure 4.9 that the superlattice peaks disappear
at 0.0 ML. They first appear at 0.1 ML, where they are very weak. The
amplitude of the peaks then increases until 0.5 ML. This means the bottom
InAs layer is needed for the superlattice peaks to occur.

The position of the zero-order peak has been estimated, and the results
is presented in figure 4.11. There are two data sets shown in this figure, one
where the position of the zero-order peak has been estimated by taking the
average of the angular position of the -2 and +2 peaks in the simulations
where both these peaks are visible, and one where where the actual position
of the zero-order peak is shown in the simulations where it is visible. The
zero-order peak seems to shift towards lower angles as the InAs layer thickness
increases. There is one exception: The estimated zero-peak position seems
to increase between 3.1 and 3.4 ML. This may be due to the zero-order peak
being very weak in this area, making it harder to find the exact location of
this peak and introducing an error source in the peak location estimate.
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It can also be seen that the actual zero peak position is about 0.015–
0.020° higher than the estimated peak position at 2.4–3.0 ML, but shifts
much closer to the estimated zero-peak position at 3.7–4.0 ML. This might
be due to what is sometimes called the thin film effect : When a thin epilayer
that is strained is close to another, thicker epilayer, the interference between
the reflected waves from the thin epilayer and the reflected waves from the
thicker layer (e.g. the substrate) will lead to the XRD peak from the thin
layer being shifted closer to the XRD peak of the thicker layer[18]. This
effect is seen when the product h · e of the thickness h and the strain e of the
thinnest layer is less than 0.5 nm, which is the case for the InAs layers. At
2.4–3.0 ML the zero-order peak is shifted towards the GaAs Bragg peak, but
at 3.7–4.0 ML this effect disappears and the actual peak position is much
closer to the estimated peak position.

The superlattice thickness was also estimated based on the diffraction
peaks in the simulations. The results are shown in figure 4.12. As shown in
this figure, the estimated superlattice thickness increases from 70.02 nm at
0.1 ML, via 70.30 nm at 2.0 ML to 70.60 nm at 4.0 ML.
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Figure 4.9: Parts of the simulations with a varying InAs bottom layer thickness
and the top layer held constant at 2.0 ML.
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Figure 4.10: A wider view on the simulations between 2.4 and 4.0 ML.
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Figure 4.11: Zero-order peak location as a function of InAs bottom layer thick-
ness.

Figure 4.12: Estimated superlattice thickness as a function of InAs bottom layer
thickness.
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Top InAs layer

A set of simulations was made where the thickness of the top InAs layer was
varied from 0 ML to 4 ML with 0.1 ML steps. The bottom InAs layer and
the GaAs spacer were held constant at 2.0 ML and 70 nm, respectively.

Parts of the results can be seen in figure 4.13. From this figure it can
be seen that the satellite peaks near the GaAs Bragg peak do not move
significantly as the InAs top layer thickness increases.

Figure 4.13: Parts of the simulations with a varying InAs top layer thickness
and the bottom layer held constant at 2.0 ML.
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The position of the zero-order peak was estimated by taking the average
of the position of the -2 and +2 satellite peaks. The result can be seen in
figure 4.14. From this figure it can be seen that the zero-order peak location
does not change significantly. This suggests changes in the thickness of the
top layer does not cause significant changes in the position of the satellite
peaks.

Figure 4.14: Zero-order peak location as a function of InAs top layer thickness.

The thickness of the superlattice has also been estimated based on the
peak locations, and the results are shown in figure 4.15. From this figure it
can be seen that the superlattice thickness does not increase linearly with the
top InAs thickness as was expected, but has maximums at 0.8 ML (with a
superlattice thickness of 70.60 nm) and 3.3 ML (with a superlattice thickness
of 70.41 nm), and a minimum at 1.8 ML (with a superlattice thickness of
70.30 nm).
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Figure 4.15: Estimated superlattice thickness as a function of InAs top layer
thickness.
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No top InAs layer

Another set of simulations was made with bottom InAs layer thickness vary-
ing from 0 to 4 ML. The simulations had a 70 nm GaAs spacer and no InAs
top layer.

Parts of the results can be seen in figure 4.16. As can be seen from this
figure, the peaks appear to shift toward lower angles as the thickness of the
bottom InAs layer is increased. A phase shift appears at 3.2 and 3.6 ML.
Also note how the superlattice peaks disappear when the bottom InAs layer
is 0.0 ML thick.

The location of the zero-order peak has been estimated based on the
location of the -2 and +2 peaks in the simulations where they are visible.
The results are shown in figure 4.17. From this figure, it can be seen that
the estimated zero-order peak position decreases linearly as the InAs layer
thickness increases from 0.1 to 4.0 ML. There is one exception at 3.4–3.5
ML, which may be due to the -2 and +2 peaks being weak and harder to
distinguish in this range, introducing an error source in the estimate of the
peak location. It can also be seen that the actual zero peak position seems
to be shifted towards the GaAs Bragg peak at 2.4–3.0 ML, possibly due to
the thin film effect.

The thickness of the superlattice was also estimated based on the super-
lattice peak positions in the simulation. The results are shown in figure 4.18.
As can be seen from this figure, the superlattice thickness increases from
70.10 nm at 0.1 ML, via 70.38 nm at 2.0 ML to 70.67 nm at 4.0 ML.
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Figure 4.16: Parts of the simulations with a varying InAs bottom layer thickness
and no top layer.
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Figure 4.17: Zero-order peak location as a function of InAs bottom layer thick-
ness.

Figure 4.18: Estimated superlattice thickness as a function of InAs bottom layer
thickness.
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Both top and bottom InAs layer

A set of simulations was made where both the thicknesses of the top and
the bottom InAs layers were varied from 0.0 to 4.0 ML. The thicknesses of
these two layers were equal at all times, while the GaAs spacer layer was
held constant at 70 nm.

Parts of the result can be seen in figure 4.19. The superlattice peaks
seem to shift towards lower angles with increasing InAs layer thickness. The
same kind of phase shift that was observed for the other simulations with
varying bottom layer thickness, can also be seen here at 3.2 and 3.6 ML. The
superlattice peaks also seem to disappear when the InAs layer thicknesses
are 0.0 ML.

An estimate of the zero-order peak location can be seen in figure 4.20. In
this figure the general trend is that the zero-order peak shifts towards lower
angles as the InAs layer thickness increases. It can be seen that the zero-
order peak is shifted towards the GaAs Bragg peak at 2.4–3.0 ML, possibly
due to the thin film effect.

Estimates was also made of the superlattice thicknesses as shown in figure
4.21. The results show that the estimated superlattice thickness does not
increase linearly with the InA layer thicknesses as was expected, but has
maximums at 1.0 ML (with a superlattice thickness of 70.41 nm) and 3.4
ML (with a superlattice thickness of 70.61 nm) and a minimum at 1.5 ML
(with a superlattice thickness of 70.26 nm).
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Figure 4.19: Parts of the simulations with varying InAs top and bottom layer
thicknesses.
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Figure 4.20: Zero-order peak location as a function of InAs layer thicknesses.

Figure 4.21: Estimated superlattice thickness as a function of InAs bottom layer
thicknesses.
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4.2.3 Segregation

When a layer of InAs is overgrown (capped) with a GaAs layer, some of
the In atoms will be exchanged with the incoming Ga atoms. The In thus
segregates to the top-most layer when the growth takes place. Three different
cases of segregation have been simulated.

Case 1

Segregation has been modelled using a constant segregation rate r, which
determines how many In atoms are exchanged with Ga in the monlayer above.
An amount r of In from the upper monolayer of the InAs layer moves into
the Ga layer above and is replaced by Ga, while 1− r remain in the original
InAs monolayer. In the following monolayer above the amount of In is then
r(1− r), as r is taken from the layer below and a 1− r remainder of it is left
in this layer as the rest segregates into the next layer above. The amount
of InAs in the following monolayer above that is r2(1− r), etc. as shown in
figure 4.22.

This has been simulated in LEPTOS by using a finite number of Ga1−xInxAs
layers with x being the amount of InAs in each monolayer. The amount of
InAs in any given layer k is rk(1− r) except for the last layer n with segre-
gation where the amount of InAs is rn.

Then, by using the geometric sum formula:
n∑

k=1

qk−1 =
1− qn

1− q

the total amount of InAs in all monolayers can be shown to be:

(1− r)
n∑

k=1

rk−1 + rn = (1− r)
1− rn

1− r
+ rn = 1

In other words, the total amount of InAs is preserved even though it is
distributed across several monolayers.

Segregation with a segregation rate of 30% was simulated for the bottom
InAs layer in Leptops. Up to 9 layers of segregation was simulated, because
for ten layers and above the amount of InAs segregated becomes too small
to enter in LEPTOS. The thickness of the monolayers that InAs segregates
into was calculated by finding the average lattice constant weighted on the
amounts of InAs and GaAs in the monolayer. The total amount of GaAs in
the spacer and the segregated layers was kept constant at 70 nm.

Parts of the results can be seen in figure 4.23. As shown in this figure,
there are no significant changes in the position of the peaks near the Bragg
peak as segregation is introduced.
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(a)

(b)

Figure 4.22: (a) InAs/GaAs structure with one monolayer of InAs and three
monolayers of GaAs. (b) The same structure with segregation of In during growth
(r = 0.3%). The bottom layer has 70% InAs, where the rest has segregated into
the layers above. The next layers have 21%, 6.3% and 1.89% InAs, respectively.
Then there is a remainder of 0.81%, which segregates into additional layers above.

A set of simulations was also made similar to the segregation simulation
described above, but where the number of layers is constant at 5 and the
segregation rate varies from 0% (no segregation) in steps of 5% to 50%.
Parts of the results can be seen in figure 4.24. As shown in this figure, no
significant changes occur in the position of the satellite peaks near the GaAs
Bragg peak as the segregation rate increases.
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Figure 4.23: Simulated for segregation with a segregation rate of 30%.
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Figure 4.24: Simulations with segregeation in 5 layers, for increasing segregation
rate from r = 0% to r = 50%.
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Case 2

A set of simulations were made with a rougher model of segregation. In these
simulations, the top monolayer of the bottom InAs layer is mixed with the
above GaAs layer, creating a Ga(1−x)InxAs alloy. The total amount of InAs
in the bottom layer and the alloy was kept constant at 2.0 ML, and the total
amount of GaAs in the alloy and the spacer was kept constant at 70 nm. The
thickness of the top InAs layer was kept constant at 2.0 ML. The amount of
InAs in the alloy varied from 100% to 50%, and the thickness of the GaAs
spacer was reduced as the amount of GaAs in the alloy increased to keep
the total amount of GaAs constant, as shown in table 4.2 and illustrated in
figure 4.25. The results can be seen in figure 4.26. As shown in this figure,
no significant changes occurs in the position or separation of the peaks near
the GaAs Bragg peak as the thickness of the alloy increases.

Table 4.2: Alloy and GaAs spacer thicknesses for varying amount of InAs.
InAs
percentage

Alloy
thickness

GaAs spacer
thickness

100% 0.33 nm 70.00 nm
95% 0.34 nm 70.00 nm
90% 0.35 nm 69.99 nm
85% 0.37 nm 69.97 nm
80% 0.38 nm 69.96 nm
75% 0.40 nm 69.94 nm
70% 0.41 nm 69.93 nm
65% 0.42 nm 69.92 nm
60% 0.44 nm 69.90 nm
55% 0.45 nm 69.89 nm
50% 0.47 nm 69.87 nm
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(a) 100% In (b) 75% In

(c) 50% In

Figure 4.25: Schematic drawings of the InAs content along the growth direction
z. x is the InAs content and 1− x is the GaAs content.
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Figure 4.26: Simulations of segregation with varying amount of InAs in alloy.
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Case 3

Four simulations were made to investigate extreme cases of segregation, as
illustrated in figure 4.27:

� Reference: A simulation with 2 ML InAs bottom layer, 70 nm GaAs
spacer and 2 ML InAs top layer.

� Averaged : The InAs bottom layer and GaAs spacer layer in the refer-
ence simulation were replaced with one layer where the InAs content
was evened out across the entire layer (so that the layer was 0.92%
InAs). This layer had the exact same amount of InAs and GaAs as the
InAs and GaAs layers it replaced. The 2 ML InAs layer on top was
unchanged.

� Narrow triangular : The bottom InAs layer in the reference simulation
was replaced with a layer with a triangular distribution of GaAs and
InAs. At the bottom of this layer there was 100% InAs, and at the
top there was 0% InAs. This layer had a thickness equivalent to two
monolayers of InAs plus two monolayers of GaAs. The GaAs spacer
layer thickness was reduced by two monolayers to compensate for the
GaAs in the layer below. The 2 ML InAs layer on top was unchanged.

� Broad triangular : The bottom InAs layer and the GaAs spacer in the
reference simulation were replaced by a layer with a triangular GaAs-
InAs distribution, where there was 1.84% InAs on the bottom and 0%
InAs on the top. The 2 ML InAs layer on top was unchanged.

Part of the results can be seen in figure 4.28. Here it can be seen that
the ”narrow triangular” simulation is very similar to the reference simula-
tion. The ”averaged” simulation and the ”broad triangular” simulation are
different from the reference simulation, but these two simulations are sim-
ilar to each order. The zero-order peak in these two simulations seems to
have shifted towards a lower angle compared to the reference simulation.
The ”averaged” simulation seems to have a very weak peak amplitude for
the superlattice peaks, which is possibly due to the low InAs content in the
InAs/GaAs layer making the interface to the GaAs substrate less abrupt. In
the ”broad triangular” simulation the peaks seem to have a larger amplitude,
but they are still weaker than in the reference simulation. This is possibly
because the InAs content in this simulation has been increased compared
with the ”averaged” simulation, making the interface to the GaAs substrate
more abrupt and providing a stronger reflection from the interface between
the InAs/GaAs layer and the substrate.
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(a) Reference (b) Averaged

(c) Narrow triangular (d) Broad triangular

Figure 4.27: Schematic drawings of the InAs content along the growth direction
z. x is the InAs content and 1− x is the GaAs content.
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Figure 4.28: Simulations with different InAs distributions.
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4.2.4 Intermixing and segregation

Eleven simulations were made, based on a structure with a GaAs substrate,
1 ML of InAs, 70 nm of GaAs and 2 ML of InAs. The lower monolayer of
InAs is then mixed with GaAs from the substrate and/or from the GaAs
layer above to simulate layer intermixing and segregation effects. This was
modelled by creating three mixed InAs/GaAs monolayers in the bottom, and
varying the InAs/GaAs content in these layers as shown in figure 4.29. In
some simulations the GaAs in the alloy is taken from the substrate (intermix-
ing) and in some simulation the GaAs in the alloy is taken from the spacer
layer (segregation). The thicknesses of these layers are calculated from the
average lattice constant of InAs and GaAs weighted on the amounts of these
materials. The total amount of InAs in the alloys always equals 1 ML, and
the total amount of GaAs in the spacer and the alloys always equals 70 nm.
Simulations have been made as shown in table 4.3.

Figure 4.29: A schematic drawing of the structure used in InAs/GaAs intermix-
ing simulations.

Parts of results can be seen in figure 4.30. It can be seen that the results
for various simulations are very similar.

For all simulations the location of the zero-order peak and the superlattice
thickness was estimated. The zero-order peak location was estimated based
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Table 4.3: Simulations of InAs/GaAs intermixing.
ML 1 ML 2 ML 3

InAs content 100% 0% 0%
Simulation 1 GaAs comes from - Spacer Spacer

ML 1 ML 2 ML 3
InAs content 50% 50% 0%

Simulation 2a GaAs comes from Substrate Substrate Spacer
Simulation 2b GaAs comes from Spacer Spacer Spacer

ML 1 ML 2 ML 3
InAs content 90% 10% 0%

Simulation 3a GaAs comes from Substrate Substrate Spacer
Simulation 3b GaAs comes from Substrate Spacer Spacer
Simulation 3c GaAs comes from Spacer Spacer Spacer

ML 1 ML 2 ML 3
InAs content 10% 90% 0%

Simulation 4a GaAs comes from Substrate Substrate Spacer
Simulation 4b GaAs comes from Substrate Spacer Spacer

ML 1 ML 2 ML 3
InAs content 10% 80% 10%

Simulation 5a GaAs comes from Substrate Substrate Substrate
Simulation 5b GaAs comes from Substrate Substrate Spacer
Simulation 5c GaAs comes from Substrate Spacer Spacer

on the location of the -2 and +2 peaks. The results are shown in table
4.4. As can be seen from this table, the zero-order peak location seems to be
constant. This is because any changes in the InAs/GaAs composition are too
small to cause a noticeable change of the peak location. Also the estimated
superlattice thickness seem to be higher in the simulations where GaAs is
taken from the substrate, compared to the simulations where GaAs is taken
from the spacer only. This can be explained as the total amount of GaAs in
the superlattice is increased in the simulations where GaAs is taken from the
substrate simulations, leading to an increase in the separation of the satellite
peaks.
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Figure 4.30: Parts of of InAs/GaAs intermixing simulations.
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Table 4.4: Estimated zero-order peak location and superlattice thickness.
Simulation Estimated zero-order

peak location
Estimated superlattice
thickness

1 33.000 70.12

2a 33.000 70.27
2b 33.000 69.99

3a 33.000 70.40
3b 33.000 70.14
3c 33.000 70.12

4a 33.000 70.15
4b 33.000 70.13

5a 33.000 70.43
5b 33.000 70.17
5c 33.000 70.11
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4.2.5 Summary

In the simulations periodic satellite peaks were observed in addition to the
GaAs Bragg peak. The InAs/GaAs structure is not a superlattice, as it is
not a repeated structure. Still the superlattice theory can be used as an
approximation to what is actually seen in the simulation. What has been
interpreted as superlattice peaks in the simulations is most likely diffraction
fringes from the epilayers. When the superlattice thickness as a function of
the top layer thickness was calculated, a complex, periodic interaction was
seen between the top layer thickness and the superlattice thickness. Also in
some of the simulations a phase shift was seen, which suggests the diffraction
peaks observed in the simulations is actually a sum of several different sets
of diffraction peaks with slightly different period.

These results suggest there are interactions between x-rays scattered from
the different layers that can only be explained using dynamical diffraction
theory where interference effects between reflections from different layers are
taken into consideration. Explaining the dynamical diffraction theory is be-
yond the scope of this thesis.

The most important conclusions that can be drawn from the simulations
are:

� The angular separation of the XRD satellite peaks depends mainly on
the GaAs layer thickness.

� The position of the zero-order satellite peak depends mainly on the
thickness of the bottom InAs layer.

� Segregation does not seem to affect the XRD curve significantly, as long
as a pure InAs layer is still present.

� Intermixing does seem to cause a change in the angular separation of
the satellite peaks.

� An abrupt InAs/GaAs interface at the bottom of the InAs/GaAs bi-
layer structure is needed for the satellite peaks to show.
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Chapter 5

X-ray diffraction measurements

In this chapter the results from the x-ray diffraction measurements are pre-
sented, analysed and discussed. In section 5.1 the measurements are pre-
sented, in section 5.2 curve fits are presented, in section 5.3 the superlattice
thickness is calculated on basis of the results and finally in section 5.4 the
results are discussed.

5.1 Measurement results

Sample 586-3 was grown using MBE, and has nominally the structure pre-
sented in figure 5.1. This sample was grown without rotation, which means
the thickness of the thin film layers is expected to vary across the wafer
depending on the distance from source, as described in section 4.1.

XRD measurements were done on this sample. A total of 13 measure-
ments were made on the sample, as shown in figure 5.2. These measure-
ments are spaced by 0.5 cm. The temperature varied between 29° and 30°
Celsius during the measurements. EVA software from Bruker-AXS was used
to search for peaks in the measurement results with the following settings:
width = 0.02, threshold = 1. The results are shown in table 5.1. All the mea-
surement results were offset so that the GaAs Bragg peak appear in the same
location as in the simulations, to make comparisons between the individual
results and between the results and simulations easier. The measurement
results are shown in figure 5.3.
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Figure 5.1: Schematic drawing of the structure grown in MBE.

Figure 5.2: Measurement spots for sample 586-3. Spot 001 is 5 mm from the
edge in both directions, and all spots are spaced by 5 mm.
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Figure 5.3: Measurement results for sample 586-30.
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Table 5.1: Peak search results.
Peak order -2 -1 1 2
001 32.8645 32.9330 33.0601 33.1211
002 32.8646 32.9347 33.0597 33.1242
003 32.8633 32.9351 33.0597 33.1246
004 32.8650 32.9346 33.0593 33.1274
005 32.8589 32.9301 33.0593 33.1281
006 32.8563 32.9329 33.0590 33.1309
007 32.8564 32.9315 33.0597 33.1321
008 32.8568 32.9326 33.0593 33.1314
009 32.8511 32.9257 33.0606 33.1343
010 32.8575 32.9294 33.0594 33.1306
011 32.8477 32.9270 33.0601 33.1371
012 32.8461 32.9233 33.0596 33.1357
013 32.8415 32.9236 33.0594 33.1325
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5.2 Curve fitting

Manual curve fittings were made for all simulations. The curve fittings were
made by simulating a structure based on the one seen in figure 5.1 using
LEPTOS software, and varying the thicknesses of the bottom InAs layer and
the GaAs spacer until the peaks in the simulation coincided with the visible
peaks in the measurement results. The top InAs layer was kept constant
at 2.0 ML. First the thickness of the GaAs layer was held constant while
the thicknesses of the InAs layers were varied with 0.1 ML steps until the
best possible fit was found, then the thicknesses of the InAs layers were held
constant while the thickness of the GaAs layer was varied with 1 nm steps
until the best possible fit was found, then the GaAs layer was kept constant
again while the InAs layers were varied etc. until stable values were found
for the thicknesses of the GaAs and InAs layers. Maximum and minimum
thickness values were found for all curve fittings. An example is shown from
the measurement in the 001 position in figure 5.4.

Figure 5.4: Comparision of curve fittings for measurement in position 001.

The results from the curve fittings are shown in tables 5.2 and 5.3 and
illustrated in figures 5.5 and 5.6 for GaAs and in figures 5.7 and 5.6 for InAs.
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Table 5.2: Results from curve fitting for GaAs.
Measurement GaAs minimum GaAs average GaAs maximum
001 77.0 nm 78.0 nm 79.0 nm
002 78.0 nm 78.5 nm 79.0 nm
003 77.0 nm 78.0 nm 79.0 nm
004 76.0 nm 77.0 nm 78.0 nm
005 74.0 nm 75.5 nm 77.0 nm
006 73.0 nm 74.0 nm 75.0 nm
007 73.0 nm 74.5 nm 76.0 nm
008 73.0 nm 74.5 nm 76.0 nm
009 71.0 nm 72.0 nm 73.0 nm
010 72.0 nm 72.5 nm 73.0 nm
011 70.0 nm 71.0 nm 72.0 nm
012 69.0 nm 70.0 nm 71.0 nm
013 69.0 nm 70.0 nm 71.0 nm

Table 5.3: Results from curve fitting for InAs.
Measurement InAs minimum InAs average InAs maximum
001 1.70 ML 1.80 ML 1.90 ML
002 1.70 ML 1.80 ML 1.90 ML
003 1.60 ML 1.70 ML 1.80 ML
004 1.50 ML 1.60 ML 1.70 ML
005 1.50 ML 1.70 ML 1.90 ML
006 1.30 ML 1.50 ML 1.70 ML
007 1.40 ML 1.55 ML 1.70 ML
008 1.20 ML 1.40 ML 1.60 ML
009 1.10 ML 1.30 ML 1.50 ML
010 1.10 ML 1.30 ML 1.50 ML
011 1.00 ML 1.15 ML 1.30 ML
012 1.30 ML 1.45 ML 1.60 ML
013 1.50 ML 1.70 ML 1.90 ML
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Figure 5.5: Results of curve fittings for GaAs.
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Figure 5.6: Results of curve fittings for GaAs with uncertainties.
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Figure 5.7: Results of curve fittings for InAs.
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Figure 5.8: Results of curve fittings for InAs with uncertainties.
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5.3 Estimated superlattice thickness

The superlattice thickness was estimated based on the satellite peaks in the
measurement results. This was done by creating a plot with the peak order
on the x axis and the 2 sinω/λ of the peak on the y axis (where ω is the
measured angle of the peak and λ is the x-ray wavelength of 0.15406 nm). A
straight line was fitted to this curve. Then the superlattice thickness is the
slope of this line. The results can be seen in table 5.4 and figure 5.9.

Table 5.4: Estimated superlattice thickness.
Measurement Superlattice thickness
001 82.18
002 81.69
003 81.31
004 81.02
005 78.82
006 77.92
007 77.43
008 77.85
009 75.03
010 77.82
011 73.92
012 73.54
013 73.30
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Figure 5.9: Estimated superlattice thickness.
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5.4 Discussion

The GaAs thicknesses found in the curve fittings are in the range of 74.3 nm
±4.3 nm. This is a change of ±5.2%, slightly larger than the variation seen
in the flux simulation which is ±4.2% (see section 4.1). The GaAs curve fit
results seem to exhibit a gradient similar to the one seen in the flux density
simulation in figure 4.2.

It can be seen from figure 5.8 that the measured InAs thickness in the
001 measurement spot is significantly higher than the thicknesses in the 008
and 011 spots. This suggests there is a gradient in InAs thicknesses across
this wafer in the same direction as the one seen in figure 4.1. The InAs
thicknesses found in the curve fittings are in the range of 1.48 ML ±0.33
ML, or ±22%. This variation is significantly larger than the variation seen
in the In flux simulation which is ±3.4%. Also the InAs thicknesses seen are
significantly lower than the nominal thickness, which is about 2.0 ML.

The quantum dot wetting layer for the InAs layers is expected to be about
1.4 ML ± 0.4 ML thick[19]. The results from the curve fittings are within
this range, which is a strong indicator that there are quantum dots on the
surface of the bottom InAs layer and that it is the wetting layer that is seen
in the x-ray diffraction results. As more InAs is deposited the quantum dots
increase in size and density and will eventually cover most of the surface,
meaning they may start to affect the x-ray diffraction curve. This might
explain the large variation in the measured InAs thickness.

The measured superlattice thicknesses seem to vary in the same direction
as the measured GaAs thickesses. This is because most of the superlattice
consists of GaAs, thus most of the variation in the superlattice thickness will
be due to variations in the GaAs thickness.

85



86



Chapter 6

Conclusion

A InAs/GaAs heterostructure with nominal thicknesses as shown in figure
6.1 was studied. This sample had been grown by MBE without rotation,
which means that the thicknesses of the GaAs and InAs layers are expected
to exhibit a gradient across the wafer.

Figure 6.1: A schematic drawing of the basic structure studied in this thesis.

XRD measurements were done on multiple locations across this sample.
Curve fittings were made on basis of these measurements, and it was found
that the variation of GaAs thicknesses across the sample is roughly as ex-
pected. It was also found that the InAs bottom layer was significantly thinner
than the nominal value and that the variation in InAs thickness was much
larger than the variation seen in the MBE flux simulation. This is a strong
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indication that there are quantum dots on the sample, and that the quantum
dots do not contribute to the XRD signal as a thin film with an average InAs
content.

Several simulations were also made to evaluate the effects of segregation
and intermixing on the XRD curve. The main findings from these simulations
were:

� Segregation of the bottom InAs layer does not cause a significant change
in the XRD curve.

� Intermixing does lead to a significant change in the XRD curve, because
it leads to an increase in the total amount of GaAs in the InAs/GaAs
bilayer structure.

� When the bottom InAs/GaAs is made less abrupt, the diffraction peaks
become weaker.

For future studies, the following suggestions are made:

� Samples without the InAs top layer could be made to study whether
the lack of an InAs top layer affects the XRD curve.

� Simulations and curve fittings could be made where the strain relax-
ation is considered when calculating the thickness of the InAs layers.

� The surface of samples with a gradient in the InAs thickness could be
studied with atomic force microscopy to find whether there are quan-
tum dots on the surface and if the density and size of quantum dots
vary depending on the location on the sample.
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Appendix A

Appendix

A.1 Source code for wafer flux simulations

function flux_sim
function result = simulate(res_sim, l_wafer, r_0, shift_d)

% simulate(res_sim, r_wafer, r_0, shift_d)

% Simulates the gas flux across the surface of a substrate.

% res_sim = resolution of simulation,

% in number of points along x and y axis

% l_wafer = length along one side of substrate.

% r_0 = distance from source to center of substrate.

% shift_d = rotation of substrate in degrees.

% Create simulation

sub_sim = zeros(res_sim, res_sim);
for i = 1:res_sim

for j = 1:res_sim
x = ((i - ((res_sim+1)/2))/res_sim)*l_wafer;
y = ((((res_sim+1)/2) - j)/res_sim)*l_wafer;
mag = sqrt(x^2 + y^2);
deg = atand(y/x);
if (x < 0)

deg = 180 + deg;
elseif (y < 0)

deg = 360 + deg;
end
x = mag*cosd(deg + shift_d);
y = mag*sind(deg + shift_d);
val = (r_0^2)/(r_0^2 + x^2 + y^2 + 2*y*r_0*cosd(57));
rel_change = (val - 1)*100;
sub_sim(((i - 1)*res_sim) + j) = rel_change;

end
end
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result = sub_sim;
end

res_edge = 10000; % Number of points drawn along curved edge of

% wafer. The higher, the smoother the wafer

% edge becomes.

res_wafersim = 1500; % The resolution of the simulation.

% Note: The higher, the longer the simulation

% will take to calculate!

r_wafer = 2.50; % The radius of the wafer.

r_0 = 40.00; % The length from source to center of wafer.

% Define edge of wafer.

edge_x = zeros(1, res_edge+1);
edge_y = zeros(1, res_edge+1);
for k = 0:res_edge

curr_rad = (2.00 - (k/res_edge)*0.50)*pi;
edge_x(k+1) = r_wafer*cos(curr_rad);
edge_y(k+1) = r_wafer*sin(curr_rad);

end

% Calculate outline of wafer.

frame_x = [0 edge_x 0];
frame_y = [0 edge_y 0];

% Calculate polygon to cover anything beyond curved edge.

curve_x = [ 2*r_wafer 2*r_wafer r_wafer edge_x -2*r_wafer ...
-2*r_wafer 2*r_wafer];

curve_y = [-2*r_wafer 2*r_wafer 2*r_wafer edge_y -r_wafer ...
-2*r_wafer -2*r_wafer];

% Simulate and draw results twice. First for In, then for Ga, then for

% As, and finally for the average of Ga and As.

for l=1:2
% Create new, blank figure to draw on.

figure();

% Set values for simulation

if l == 1
sim_title = ’In flux distribution across wafer’;
fname = ’in_flux’;
angle = 112.50;

elseif l == 2
sim_title = ’Ga flux distribution across wafer’;
fname = ’ga_flux’;
angle = 202.50;

end

% Simulate.
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wafer_sim = simulate(res_wafersim, r_wafer, r_0, angle);

% Draw results.

colormap(gray);
imagesc([0.00 r_wafer], [0.00 -r_wafer ], wafer_sim, [-5 5]);
colorbar(’EastOutside’, ’YTickLabel’, {’-5.00%’, ’-4.00%’, ...

’-3.00%’,’-2.00%’, ...
’-1.00%’, ’0.00%’, ...
’1.00%’, ’2.00%’, ...
’3.00%’, ’4.00%’, ...
’5.00%’});

title(sim_title, ’FontWeight’,’bold’, ’FontSize’, 12);

% Set axes.

axis manual
axis equal
axis([-(r_wafer/10) (11*r_wafer/10) -(11*r_wafer/10) (r_wafer/10)])
set(gca, ’YDir’, ’normal’)
hold on

% Cover anything outside wafer.

patch(curve_x,curve_y,[1.0 1.0 1.0], ’EdgeColor’, ’none’)

% Draw outline of wafer.

line(frame_x, frame_y, ’LineWidth’, 3.0, ’Color’, [0 0 0])

% Draw cross in center.

line(’Xdata’, [1.25, 1.25], ’Ydata’, [-1.00, -1.50], ...
’LineWidth’, 1.5, ...
’Color’, [1 1 1]);

line(’Xdata’, [1.00, 1.50], ’Ydata’, [-1.25, -1.25], ...
’LineWidth’, 1.5, ...
’Color’, [1 1 1]);

% Dimensions of figure in cm.

x_dim = 13;
y_dim = 11;

% Save figure to file (both as pdf and png).

set(gcf,’paperunits’,’centimeters’);
set(gcf,’papersize’,[x_dim, y_dim])
set(gcf,’paperposition’,[0,0,x_dim, y_dim])
saveas(gcf, strcat(fname, ’.pdf’));
set(gcf,’renderer’,’zbuffer’);
print(gcf, ’-r300’, ’-dpng’, strcat(fname, ’.png’));

end
end
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