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Acoustic wave propagation in lattice Boltzmann BGK simulations may be analysed
using a linearization method. This method has been used in the past to study prop-
agation of waves which are viscously damped in time, and is here extended to also
study waves which are viscously damped in space. Its validity is verified against
simulations, and the results are compared with theoretical expressions. It is found
in the infinite resolution limit k → 0 that the absorption coefficients and phase dif-
ferences between density and velocity waves match theoretical expressions for small
values of ωτν , the characteristic number for viscous acoustic damping. However, the
phase velocities and amplitude ratios between the waves increase incorrectly with
(ωτν)2, and agree with theory only in the inviscid limit k → 0, ωτν → 0. The actual
behaviour of simulated plane waves in the infinite resolution limit is quantified.
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1. Introduction

In a seminal article, Lighthill showed how flow fields may act as acoustic sources [1],
thereby planting the seed for the scientific field now known as aeroacoustics. The
related field of computational aeroacoustics (CAA) has been studied since the 1980s,
and two main approaches of CAA have been identified:

The hybrid approach, where the flow and acoustic fields are found separately.
The flow field is analysed to find the acoustic source strength of the flow,
which is then used to compute the acoustic field in the surrounding domain.

The direct approach, where the acoustic field comes out as a natural part of a
numerical solution to the compressible Navier-Stokes equation.

One important weakness of the hybrid approach is its inability to simulate the
feedback of the acoustic field on the flow field. This means that it is not usable in
cases where this feedback is critical to the process of sound generation, such as in
the singing risers problem currently studied in the natural gas industry [2]. It is
also difficult to capture complex geometries with this method.

The direct approach has no such problems, but traditional numerical simulations
of the compressible Navier-Stokes equation are far more complex and demanding
than hybrid methods. It is therefore our hope that the lattice Boltzmann method
(LBM) can be used for direct CAA. Compared to traditional methods, the LBM is
straightforward to implement. It is also an explicit method which can be parallel-
lized with a nearly linear speedup in number of processors.
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There exists a large body of work which validates the LBM as a useful tool for
simulations of incompressible flow [3]. However, it has been shown mathematically
that the LBM may also be used for solving the compressible Navier-Stokes equa-
tion [4], albeit with spurious O(Ma3) terms which limit its applicability to small
Mach numbers and cause incomplete Galilean invariance.

To ascertain whether the LBM may become a useful tool for CAA, we need a
better picture of the acoustic behaviour of the method. This article will focus on
viscous damping of acoustic waves. In §2, the theory of this behaviour is described.
§3 describes a method of linearization analysis which can be applied to study this
behaviour in the LBM. The method is validated in §4, and is then used to compare
the behaviour of LB-simulated waves with theoretically expected behaviour.

2. Theoretical background

When performing the Chapman-Enskog analysis on the LBM, certain assumptions
must be made to retrieve the compressible Navier-Stokes equation. First, one as-
sumes that the Mach number is sufficiently low that the aforementioned spurious
terms can be neglected. Second, one assumes isothermal compression, so that the
absolute pressure and density p and ρ are linked through the thermodynamic speed
of sound cs = 1/

√
3 as p = c2

sρ. These assumptions fit well with those made in linear
acoustics: Low Mach number and adiabatic compression, so that the off-equilibrium
pressure and density p′ and ρ′ are linked as p′ = c2

sρ
′.

One result of the Chapman-Enskog analysis is that the kinematic shear and bulk
viscosities for the BGK collision operator are given through the relaxation time τ
as respectively

ν = c2
s (τ − 1/2) , (2.1a)

ν′ = 2ν/3. (2.1b)

This constant ratio between bulk and shear viscosities make it impossible to perform
simulations of fluids with correct transport coefficients without resorting either to
extended LB methods (e.g. [4]), or to another type of collision operator such as
the Multiple Relaxation Time (MRT) operator (e.g. [5]). Both these choices would
allow us to set bulk and shear viscosity independently.

(a) Solutions to the lossy wave equation

Conservation of mass and momentum are expressed through the continuity and
compressible Navier-Stokes equations, which relate density ρ, pressure p, and par-
ticle velocity u,

∂ρ

∂t
= −∇ · (ρu), (2.2a)

ρ
Du

Dt
= −∇p + ρ

(

4

3
ν + ν′

)

∇(∇ · u) − ρν∇×∇× u. (2.2b)

Assuming low Mach number, adiabatic compression, and sufficient distance to
boundaries, it may be shown similarly to ref. [6] that this implies a lossy wave
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equation,
(

1 + τν

∂

∂t

)

∇2p − 1

c2
s

∂2p

∂t2
= 0, (2.3)

where τν = (4
3ν + ν′)/c2

s is the viscous relaxation time. Inserting from eq. 2.1, we
find for the LBM that τν = 2τ − 1. From the extended analysis of Hamilton &
Morfey [7], we see that eq. 2.3 is correct up to second order in Mach number and
ωτν if the effects of thermal conduction and molecular relaxation are neglected.

In one dimension, this equation implies general damped wave solutions in pres-
sure, density, and particle velocity,

p̂(x, t) = p0 + p̂′ei(ω̂t−k̂x), (2.4a)

ρ̂(x, t) = ρ0 + ρ̂′ei(ω̂t−k̂x), (2.4b)

û(x, t) = û′ei(ω̂t−k̂x), (2.4c)

where a hat implies a complex quantity, and ω̂ = ω′ + iαt and k̂ = k′ − iαx are
complex angular frequency and complex wavenumber respectively. αt and αx are
the temporal and spatial absorption coefficients, while the real parts ω′ and k′ are
linked through a phase velocity, cp = ω′/k′. By comparison, we have in lossless

media that k̂ = k, ω̂ = ω, and cp = ω/k = cs.

Two important special cases are temporal damping (when k̂ = k) and spatial
damping (when ω̂ = ω). In both cases, properties of the waves can be found by
inserting eq. 2.4a into eq. 2.3. For spatially damped waves, we thus find

αx

k
=

√

√

1 + (ωτν)2 − 1

2 + 2(ωτν)2
,

k′

k
=

√

√

1 + (ωτν)2 + 1

2 + 2(ωτν)2
,

cp

cs

=

√

2 + 2(ωτν)2
√

1 + (ωτν)2 + 1
,

(2.5)
whereas for temporally damped waves we find

αt/ω = ωτν/2, ω′/ω =
√

1 − (ωτν)2/4, cp/cs =
√

1 − (ωτν)2/4. (2.6)

These expressions only depend on the dimensionless quantity ωτν , which may be
seen as a characteristic dimensionless number for the effect of viscous acoustic
damping. Spatially damped waves occur whenever a wave is radiated from an acous-
tic source in an absorbing medium, and is the type commonly encountered in nature.

Early numerical studies of wave propagation with the LBM focused on tempo-
rally damped waves, propagating a single wavelength in a periodic system [8]. Later
numerical studies have taken spatial damping into account as well [9].

(b) Linearization of conservation equations

By inserting the damped wave solutions in eq. 2.4 into the conservation equa-
tions in eq. 2.2 under the linearizing assumptions that the wave amplitudes p̂′, ρ̂′,
and û′ are very small, we may reduce these equations to relations between the
complex wave amplitudes,

û′/ρ̂′ = ω̂/ρ0k̂, (2.7a)

p̂′/û′ = ρ0ω̂/k̂ − iρ0k̂ (4ν/3 + ν′) . (2.7b)
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The absolute values of these ratios indicate the amplitude ratios between the waves,
while the complex phases describe the phase difference between them. For temporal
and spatial damping, we may use expressions from eqs. 2.5 and 2.6.

3. Linearization analysis of lattice Boltzmann

The acoustic behaviour of LB may be analysed by performing a similar lineariza-
tion [4,5]. We assume that we have a rest state F eq

i of density ρ0 with a fluctuation

f̂i on top. We assume this to be on a general complex one-dimensional wave form,

f̂i(x, t) = ĥie
i(ω̂t−k̂x). (3.1)

If this wave is very small, we may linearize the equilibrium distribution,

f̂ eq
i + F eq

i = ρ̂ti
[

1 + 3ûci + 9(ûci)
2/2 − 3û2/2

]

,

f̂ eq
i ≃ ti [(ρ̂ − ρ0) + 3ρ0ûci] .

(3.2)

In this small-amplitude limit, the aforementioned O(Ma3) errors disappear.
While this behaviour could be examined for a number of different lattices, we will

follow ref. [10] and limit ourselves to the D1Q3 lattice, which is a one-dimensional
projection of a number of common lattices (D2Q9, D3Q15, D3Q19, and D3Q27).
Thus, plane waves in D1Q3 are equivalent with plane waves along any main axis of
these other lattices. The D1Q3 lattice is given by velocities [c−, c0, c+] = [−1, 0, 1]
and weights [t−, t0, t+] = [1/6, 2/3, 1/6].

With density and momentum given as

ρ̂(x, t) = ρ0 +
∑

i

f̂i(x, t) = ρ0 + (ĥ− + ĥ0 + ĥ+)ei(ω̂t−k̂x), (3.3a)

ρ0û(x, t) =
∑

i

cif̂i(x, t) = (ĥ+ − ĥ−)ei(ω̂t−k̂x), (3.3b)

we find a post-collision distribution

ĝi(x, t) = f̂i(x + ci, t + 1) =

(

1 − 1

τ

)

f̂i(x, t) +
1

τ
f̂ eq

i (x, t)

=

{(

1 − 1

τ

)

ĥi +
ti
τ

[

ĥ− + ĥ0 + ĥ+ + 3ci(ĥ+ − ĥ−)
]

}

ei(ω̂t−k̂x).

(3.4)

If we for simplicity assume x and t such that ei(ω̂t−k̂x) = 1, we find

f̂i(x, t + 1) = ĝi(x − ci, t) ⇒ ĥie
iω̂ = ĝi(x, t)eik̂ci , (3.5)

which results in the eigenvalue problem as found in ref. [4],

1

3







e−ik̂(3 − 1/τ) e−ik̂/2τ −e−ik̂/τ

2/τ 3 − 1/τ 2/τ

−eik̂/τ eik̂/2τ eik̂(3 − 1/τ)













ĥ−

ĥ0

ĥ+






= eiω̂







ĥ−

ĥ0

ĥ+






. (3.6)
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Through assuming k̂ = k known and finding the eigenvalue eiω̂ numerically, we
may study the behaviour of temporally damped waves in the LBM. Alternatively,
we may assume ω̂ = ω known and find the value of k̂ which gives the correct
eigenvalue eiω through a nested binary search in k′ and αx. This allows us to study
the behaviour of spatially damped waves also.

The eigenvector itself may be used to determine the relative complex amplitudes
ρ̂′ and ρ0û

′ of the density and velocity waves. It may be found from eqs. 2.4 and
3.3 that ρ̂′ = ĥ− + ĥ0 + ĥ+ and ρ0û

′ = ĥ+ − ĥ−, so that

ρ0û
′

ρ̂′
=

ĥ+ − ĥ−

ĥ− + ĥ0 + ĥ+

. (3.7)

In this way we may compare the ratios of the LB amplitudes with theoretical ones
from eq. 2.7a.

4. Results

We may validate the linearization method by comparing with actual LB simulations.
A spatially damped plane wave may be created in a simple fashion in a D1Q3 lattice
by pinning density and velocity to small sinusoidal functions around an equilibrium,
setting ρ(0, t) = ρ0 + |ρ̂′| sin(ωt), u(0, t) = |û′| sin(ωt + ∠[û′/ρ̂′]) in the first node
and always relaxing it to equilibrium. We may then measure the phase velocities
and absorption coefficients of the resulting waves.
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Figure 1. Comparison of predicted LB and measured phase velocity and normalized ab-
sorption coefficients for spatially and temporally damped waves at ωτν = 2π × 5 × 10−3

with theoretical values from eqs. 2.5 and 2.6.

The comparison is performed in Figure 1, where we also compare with theoretical
values. We see that the linearization analysis for spatially damped waves accurately
predicts the values measured from simulations, validating this method as a tool
for predicting the behaviour of spatially damped waves. Validation for temporally
damped waves has already been performed [4]. From this point, we will therefore
use the linearization analysis to study the behaviour of LB waves.

Article submitted to Royal Society



6 E. M. Viggen

The theoretical values in eqs. 2.5 and 2.6 change only with the dimensionless
parameter ωτν . Our analysis shows that the LB phase velocity has a small numerical
dispersion which for low k is linear in k2. This k2 error also affects the spatial
absorption coefficient, while the temporal absorption coefficient is hardly influenced
in this way, being instead mainly affected by a very small k4 error.

In addition, the values for the phase velocity and absorption coefficients do not
agree even when the numerical resolution goes to infinity (the k → 0 limit), which
means that the LBM with the BGK operator does not appear to be a consistent
method for simulating waves. We will now examine how the waves behave in this
limit.
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Figure 2. Comparison of predicted LB and theoretical phase velocity and normalized
absorption coefficients in k → 0 limit as function of ωτν.

Figure 2 compares the behaviour of LB waves in this limit with theoretical
behaviour. We find an agreement with theory and Chapman-Enskog analysis in the
k → 0, ωτν → 0 limit for both phase velocity and absorption. The phase velocity
is a linear function of (ωτν)2 as expected, but the slope is too steep in both cases.
The absorption is correct apart from some small errors in (ωτν)3.

Finally, we compare the ratio ρ0û
′/ρ̂′, as given from theory (eq. 2.7a) and as

predicted through the linearization analysis (eq. 3.7). From Figure 3, we see that
the amplitudes of the waves are linear functions of (ωτν)2, but that the slope of
spatially and temporally damped waves are again both steeper than they should
be. The phase shift is largely correct, with a small (ωτν)3 error for spatially damped
waves and an insignificant (ωτν)5 error for temporally damped waves. Again, the
results agree with theory in the k → 0, ωτν → 0 limit.

We have seen that the waves’ properties are quite well-behaved, although not
necessarily correct. Table 1 compares the LB and theoretical properties of the waves
we have studied in the k → 0 limit, with terms of order O([ωτν ]3) or higher ne-
glected. We find that the while the normalized absorption coefficients and phase
shifts are consistent with theory in this limit, the phase velocities and amplitude
ratios do not match except in the inviscid limit. In fact, both of these increase at
rates which are (ωτν)2/4 greater than they should be.
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Figure 3. Comparison of predicted LB and theoretical ratio between the complex wave
amplitudes ρ0û

′ and ρ̂
′.

Table 1. Wave properties in the k → 0, small ωτν limit

(Tabulation of the predicted LB and theoretical properties of spatially and temporally
damped waves at infinite resolution (k → 0) when ωτν is small. α∗/∗ indicates normalized
absorption coefficient for both types of damped waves.)

Type cp/cs α∗/∗ |ρ0û
′
/ρ̂

′|/cs ∠(ρ0û
′
/ρ̂

′)

Predicted spatial 1 + 5

8
(ωτν)2 ωτν/2 1 + 1

2
(ωτν)2 ωτν/2

Theoretical spatial 1 + 3

8
(ωτν)2 ωτν/2 1 + 1

4
(ωτν)2 ωτν/2

Predicted temporal 1 + 1

8
(ωτν)2 ωτν/2 1 + 1

4
(ωτν)2 ωτν/2

Theoretical temporal 1 − 1

8
(ωτν)2 ωτν/2 1 ωτν/2

5. Conclusion

We have examined the behaviour of viscously damped LB waves using the BGK
collision operator. The linearization analysis was shown to be capable of analysing
not only temporally damped waves, but also spatially damped waves.

We found that while the absorption coefficients and phase shifts match theory
well, the phase velocities and amplitude ratios do not, except in the limit of an
inviscid lossless fluid. The results are valid for plane waves propagating along a
main axis in any lattice for which D1Q3 is a projection. The BGK operator allows
no freedom to affect this, so addressing this problem would require an alternate
method. On the other hand, the actual behaviour in the infinite resolution limit
k → 0 has been quantified in Table 1, and the regularity of the deviations makes it
quite possible to predict LB phase velocities and absorption coefficients a priori [11].

Since there is no independent pressure wave in the LBM, it is not possible to
perform comparisons with eq. 2.7b. In fact, the Chapman-Enskog analysis for the
LBM assumes that p = c2

sρ, which may be shown from eq. 2.7 to be incorrect for
damped acoustic waves. That this incorrect assumption underlies the LBM may be
a reason for the systematic deviations from theory which we have seen here.

Article submitted to Royal Society



8 E. M. Viggen

However, an extended energy-conserving LBM has been proposed [12], and has
been validated for a number of compressible flow problems [13]. Perhaps this method
would give results more consistent with theory.

The deviations are still quite small, and have been found to be comparable to
the ones found for high-order finite difference schemes [14]. They also found the
LBM to be faster than high-order methods of similar accuracy. This indicates that
the LBM is a promising tool for CAA.

In this article, we have only looked at the effects of viscosity on damped acoustic
waves. In real fluids, there are very significant contributions to this damping from
thermal conduction and molecular relaxation [6,15]. It remains to be seen how the
LBM may be adapted to handle all three damping mechanisms.
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