
Design of Detectors for
Automatic Speech Recognition

Thesis for the degree of Philosophiae Doctor

Trondheim, May 2012

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Electronics and Telecommunications

Alfonso Martínez del Hoyo Canterla

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Electronics and Telecommunications

© Alfonso Martínez del Hoyo Canterla

ISBN 978-82-471-3336-1 (printed ver.)
ISBN 978-82-471-3337-8 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2012:36

Printed by NTNU-trykk

Abstract

This thesis presents methods and results for optimizing subword detectors in
continuous speech. Speech detectors are useful within areas like detection-
based ASR, pronunciation training, phonetic analysis, word spotting, etc.
Firstly, we propose a structure suitable for subword detection. This struc-
ture is based on the standard HMM framework, but in each detector the
MFCC feature extractor and the models are trained for the specific detection
problem. Our experiments in the TIMIT database validate the effectiveness
of this structure for detection of phones and articulatory features.

Secondly, two discriminative training techniques are proposed for detec-
tor training. The first one is a modification of Minimum Classification Error
training. The second one, Minimum Detection Error training, is the adap-
tation of Minimum Phone Error to the detection problem. Both methods
are used to train HMMs and filterbanks in the detectors, isolated or jointly.
MDE has the advantage that any detection performance criterion can be
optimized directly. F-score and class accuracy optimization experiments
show that MDE training is superior to the MCE-based method.

The optimized filterbanks reflect some acoustical properties of the de-
tection classes. Moreover, some changes are consistent over classes with
similar acoustical properties. In addition, MDE-training of filterbanks re-
sults in filters significatively different than in the standard filterbank. In
fact, some filters extract information from different critical bands.

Finally, we propose a detection-based automatic speech recognition sys-
tem. Detectors are built with the proposed HMM-based detection struc-
ture and trained discriminatively. The linguistic merger is based on an
MLP/Viterbi decoder.

iii

iv

Preface

This dissertation is submitted in partial fulfillment of the requirements for
the degree of Philosophiae Doctor (PhD) at the Norwegian University of Sci-
ence and Technology (NTNU). My supervisor has been Associate Professor
Magne Hallstein Johnsen and my co-supervisor has been Professor Torbjørn
Svendsen, both at the Department of Electronics and Telecommunications,
NTNU.

The work has been conducted in the period from January 2006 until
November 2011. In addition to research activity, the work included the
equivalent of one year of full-time course studies, as well as one year of
teaching assistant duties. This research project has been funded by a schol-
arship given by the Faculty of Information Technology, Mathematics and
Electrical Engineering, NTNU.

Acknowledgments

First of all I would like to thank my supervisor, Associate Professor Magne
Hallstein Johnsen, for his invaluable guidance and support during my re-
search. Moreover, I would like to thank my co-supervisor, Professor Torbjørn
Svendsen, for his helpful suggestions.

I would also like to express my gratitude to all the members of the
speech group, in particular to Dr. Ingunn Amdal for helpful assistance and
collaboration, Trond Skogstad and Timo Mertens for reviewing my articles,
and Jarle Bauck Hamar for reviewing my thesis. Further, I am also thankful
to my colleagues at the Signal Processing group, specially to Kirsten Marie
Ekseth, who has always been helpful and kind to me.

Moreover, I am grateful to my current employer, Atmel Norway, for their
flexibility towards my research.

During these years my friends have shared with me many good moments
and been supportive when I needed it. I am thankful to Alex, Ellen, Jarle,
Jean-Cristophe, Jose, Paolo, Sara, Susana and Tuva.

v

vi

Finally, I am grateful to my family, specially my father for his support
and my mother for being an example of academic excellence. And I would
like to thank Caroline for her love, understanding and encouragement.

Trondheim, January 2012
Alfonso Mart́ınez del Hoyo Canterla

Contents

1 Introduction 1

1.1 Related Work . 3

1.2 Contributions of This Thesis 5

1.2.1 A Subword Detection Structure Based on Standard
ASR . 5

1.2.2 Discriminative Training Methods for Subword Detection 6

1.2.3 Detector-Specific MFCC Filterbank Optimization and
Analysis . 6

1.3 Outline . 7

I Subword Detectors: Design and Optimization 9

2 Standard Automatic Speech Recognition 11

2.1 ASR as a Pattern Recognition Problem 11

2.2 Overview of a Standard HMM-Based ASR System 12

2.2.1 Feature Extraction . 13

2.2.2 Acoustic Model and Basic Units 13

2.2.3 Language Model . 14

2.2.4 Decoder . 15

2.2.5 Performance Evaluation 15

2.3 The Hidden Markov Model 16

2.3.1 Evaluation . 18

2.3.2 Decoding . 19

2.3.3 Training . 19

2.4 Mel-Frequency Cepstral Coefficients 20

2.5 Summary . 22

3 Design of Subword Detectors 25

3.1 Detection Strategies . 25

vii

viii Contents

3.1.1 Acoustic Feature Extraction 26

3.1.2 Detector Based on Frames 26

3.1.3 Detectors Based on Segments 27

3.2 Proposed Structure for Subword Detection 29

3.3 Evaluation of Subword Detectors 31

3.4 Summary . 34

4 Discriminative Training of Subword Detectors 35

4.1 Discriminative Training Methods 35

4.1.1 Motivation . 35

4.1.2 Framework . 37

4.1.3 Optimization Methods 38

4.1.4 Gradient-Based Optimization of HMMs and Filterbanks 39

4.2 Minimum Classification Error Training 42

4.2.1 MCE Training for Detectors 44

4.3 Minimum Detection Error Training 47

4.4 Summary . 49

5 Detection-Based ASR 51

5.1 The Detection-Based ASR Paradigm 51

5.2 Bank of Detectors . 53

5.2.1 Intermediate Classes 53

5.2.2 Other Considerations 55

5.3 Linguistic Merger . 56

5.3.1 Merger for Frame-Based Detectors 56

5.3.2 Merger for Segment-Based Detectors 57

5.4 Proposed DBASR System . 59

5.5 Summary . 60

II Experiments 63

6 Experimental Settings 65

6.1 Database . 65

6.2 Phone and Articulatory Feature Sets 66

6.3 Parameterization . 66

6.4 Experimental Setup . 66

6.4.1 Detection Experiments 66

6.4.2 Recognition Experiments 68

Contents ix

7 Subword Detectors Trained with MCE 71

7.1 Task and Experimental Settings 71
7.2 Results and Discussion . 71
7.3 Summary . 76

8 Subword Detectors Trained with MDE 81

8.1 Task and Experimental Settings 81
8.2 Results and Discussion . 81
8.3 Summary . 87

9 Detection-Based ASR Experiments 93

9.1 Task and Experimental Settings 93
9.2 Results and Discussion . 93
9.3 Summary . 95

10 Conclusions and Future Work 97

10.1 Conclusions . 97
10.2 Future Work . 98

A Sets of Intermediate Classes 101

B Proofs of Results 109

B.1 Derivatives with Respect to the Filterbank Matrix 109
B.2 Gradient of MDE Performance Function 111

x Contents

Notation and Symbols

x Scalars are typeset in non-bold lowercase

x Vectors are typeset in bold lowercase

X Matrices are typeset in bold uppercase

XT The transpose of X

X−1 The inverse of X

./ Element-wise matrix division

P (·) Probability mass

p(·) Probability density

xi

List of Abbreviations

ASR automatic speech recognition

DBASR detection-based ASR

GMM Gaussian mixture model

HMM hidden Markov model

HTK hidden Markov model toolkit

MAP maximum a posteriori

MCE minimum classification error

MDE minimum detection error

MPE minimum phone error

MFCC Mel-frequency cepstral coefficient

ML maximum likelihood

MLP Multi-Layer Perceptron

xiii

Chapter 1

Introduction

A detector is a binary classifier that discerns between patterns that share a
specific quality (the class) and the rest (the anti-class). Subword detection
in continuous speech is then the process of finding segments in the speech
signal that belong to a given subword class. For example, a detector for
the phone /ih/ would process a speech signal to find two kind of segments:
those that belong to /ih/ and those that belong to anything else. Auto-
matic Speech Recognition (ASR) is the process of automatically converting
a speech signal into text. Speech detection and recognition are in fact sim-
ilar problems; the former focuses on separating one speech class from the
rest while the latter tries to separate every class from the others.

Detection of phonetic events such as phones and articulatory features
has applications within phonetic analysis, word spotting, computer aided
pronunciation training (CAPT) and specially in detection-based automatic
speech recognition (DBASR). The performance of ASR is still far from the
performance of humans in similar tasks. Therefore, there is a search for
alternative structures that can reduce this performance gap. In [1] it was
argued that the standard approach to ASR is data driven and does not use
all available knowledge about speech or language. Therefore, DBASR is an
alternative paradigm where speech knowledge sources are integrated in the
recognition system in the form of detectors.

The structure of a DBASR system basically consists of a bank of de-
tectors and a linguistic merger. The bank of detectors is built to analyze
the speech signal and find information about a set of intermediate classes.
These could be detectors for articulatory features, which are speech features
based on knowledge about human production and perception of speech. For
instance, they can be related to the place and manner of production of the
speech signal. Further, the information from the bank of detectors is pro-

1

2 Introduction

cessed by a linguistic merger and an output sequence of linguistic units is
hypothesized. Therefore, in DBASR accurate detectors are decisive for the
performance of the system.

Phonetics is concerned with describing speech. Specifically, acoustic
phonetics studies the acoustic properties of speech sounds, articulatory pho-
netics deals with the configuration of the vocal tract used to produce speech
and linguistic phonetics focuses on how speech sounds are combined in order
to make syllables, words and sentences [2]. Subword detectors can be used
to automatically transcribe and analyze speech corpora used in phonetic
experiments. Further, articulatory feature detectors can produce phonetic
transcriptions that are more detailed than broad phonetic transcriptions [3].
Other areas of application are, for instance, forensic phonetics [4], analysis
of speech disorders [5] or medical protocols [6].

Keyword spotting is the task of automatically detecting the occurrences
of predefined words in a continuous speech signal [7]. This has applica-
tions in audio indexing, surveillance, data mining, etc. Early approaches
to keyword spotting were based on sliding a window through the speech
signal and using dynamic time warping or artificial neural networks to find
the keyword. Another approach is the keyword-filler model, where a sta-
tistical model is built with three components: a filler model, a background
model and a keyword model. The speech signal is then decoded in order
to detect keywords. In these approaches keywords are traditionally spotted
directly from the speech signal. However, it is also possible to use subword
detectors to preprocess the speech signal and spot keywords based on their
output information. This can be done, for instance, generating subword-
based templates and detecting keywords with dynamic time warping [8], or
with statistical models based on subword features [9].

As the world becomes more and more globalized most people need to
learn at least a second language, for example English. This is difficult
and requires individualized feedback in order to detect and correct errors.
Therefore, there is an increasing interest in software tools that can generate
this feedback automatically. One of the challenges is to develop applications
that can improve the pronunciation of the learner in the new language. In
CAPT systems [10] it is useful to measure the overall pronunciation perfor-
mance on a sentence. However, it is also necessary to detect pronunciation
errors and to provide feedback at the phoneme level [11, 12]. Therefore,
phone and articulatory feature detectors can also be used to improve the
performance of CAPT systems.

In this thesis we have approached subword detection by adapting the
standard ASR framework for the two-class problem. A standard ASR sys-

1.1. Related Work 3

tem extracts acoustic features from the frequency content and the time dy-
namics of the speech signal. In Mel-frequency cepstral coefficients (MFCCs),
the dominant speech representation in ASR, the short-term spectrum is
processed with a bank of filters that imitates two important properties of
human audition: critical bands and a logarithmic scale for both frequency
and loudness. Note that this feature extraction is common to all classes,
which means that a single MFCC extraction is performed for every time
frame. The frequency content variation over classes is modelled by the
class-specific MFCC-densities in a classifier based on the hidden Markov
model (HMM), the state-of-the-art statistical model for speech signals. The
short time dynamic information of the speech signal is modelled by the
MFCC time derivatives and the HMM state structure, and the long time
dynamic information is modelled by a language model and lexicon.

In the detector case, the parameters of the feature extractor and the
HMMs can be improved for each detector. In the feature extractor a rea-
sonable choice is to keep the MFCC structure, as this has shown to be
state-of-the-art preprocessing in ASR for many years. However, the MFCC
feature extractor could be optimized for each specific detection problem. For
example, one extraction parameter that could be optimized is the MFCC
filterbank. The standard filterbank is based on empirical experiments on hu-
man auditory perception and it is not clear that it leads to optimal speech
recognition or subword detection. Moreover, a filterbank optimized for a
specific class would probably reflect some of the typical frequency content
of that class. The HMM state-density parameters in the detector are also
good candidates for detector-specific optimization. A possible approach is
to use discriminative training techniques, as they are commonly applied to
ASR systems.

In the next section of this introductory chapter we give an overview
of research related to our work. After that, Section 1.2 lists the major
contributions of this thesis. Finally, Section 1.3 presents an outline of the
rest of the thesis.

1.1 Related Work

Design of subword detectors and their evaluation have been studied in con-
nection with detection-based ASR systems [13, 14, 15]. In the ASAT (Au-
tomatic Speech Attribute Transcription) [1] and SIRKUS (Spoken Infor-
mation Retrieval by Knowledge Utilization in Statistical speech process-
ing) projects, there have been a number of successful speech recognition
systems that were based on detectors, for example a lattice re-scoring ap-

4 Introduction

proach [16], a phone recognizer [17] or a large-vocabulary continuous speech
recognizer [18]. In the latter system a bank of MLP-based detectors gener-
ated articulatory feature posteriors for each speech frame. Then an MLP-
based evidence merger mapped the scores into phone posteriors, which were
combined into word lattices by a weighted finite state machine. The last
module in this system rescored those lattices using a language model. Fur-
ther, it is worth mentioning that HMM were used as “attribute detectors”
in [19, 20]. However, as far as we understood, what they built were in fact
HMM-based classifiers for each exclusive group of attributes, which is con-
ceptually different than our approach. In addition, their method would not
allow a class specific detector optimization.

Landmark-based ASR [21, 22, 23, 24] is a related knowledge-based ap-
proach to speech recognition. Landmarks identify parts of an utterance
where articulatory features are most salient. In a first step landmarks can
be detected with landmark-specific acoustic features. After that, in order to
identify articulatory features, further analysis can be done in the utterance
regions specified by the detected landmarks. In a final step, this informa-
tion is integrated by some probabilistic framework in order to find linguistic
units such as phones or words.

There is a number of discriminative training methods that have been
successfully applied to ASR, for example Maximum Mutual Information
(MMI) [25], Minimum Phone Error (MPE) [26] and Minimum Classification
Error (MCE) [27]. The relationship between these methods was studied
in [28]. Both segment-based and string-based MCE were used in [13] to
train detectors for the task of isolated and continuous detection of subwords.
Even if in some cases MCE training led to performance improvements, they
argued for a modified version for detector training. The reason was that
the standard MCE training focused on increasing the accuracy of all classes
and then there was no guarantee that the performance for the target class
would improve. A possible solution would be to apply weighted MCE [29],
which is a training criterion suitable for tasks with non-uniform error costs.

Previous work in data-driven filterbank optimization for speech recogni-
tion includes the following studies. Firstly, joint training of filterbank and
the back-end classifier, for example a prototype-based distance classifier [30]
or a HMM-based isolated word recognition system [31]. Secondly, in [32, 33]
the filterbank was optimized to produce robust features. Further, there have
been work on filterbank design using MPE [34], Linear Discriminant Anal-
ysis [35] or minimum entropic distance [36]. In [37] they studied filterbank
parameters such as shape and center frequencies, and then they optimized
them using the simplex method.

1.2. Contributions of This Thesis 5

Filterbank optimization is one approach to acoustic feature optimiza-
tion. In the following we present some other approaches. Firstly, linear
and non-linear transformations can be applied to MFCC features, for ex-
ample [38, 39]. An study on MCE training of linear feature transformation
was presented recently in [40]. Secondly, discriminative training of the fea-
ture extractor and the classifier was studied in [41]. Thirdly, MLPs have
been applied to the front-end of speech recognizers. The basic approach has
been the Tandem system, where an MLP estimates phone posteriors from
MFCCs and a HMM-based decoder uses a decorrelated version of these pos-
teriors as input features. A review of MLP-based approaches was presented
recently in [42]. Further, work on MPE-trained feature transformations
was presented in [43, 44]. In addition, a combination of MPE-based trans-
formations and MLP features was proposed in [45]. Finally, optimization
of classification performance for a subset of classes using a discriminative
feature transformation was studied in [46].

1.2 Contributions of This Thesis

This thesis provides a study on detection of subwords in continuous speech.
Our main contributions are as follows. Firstly, we propose a subword detec-
tor structure based on the standard ASR framework. Secondly, this thesis
presents two discriminative training methods that can be applied to our
detector structure. Thirdly, we provide a study on detector-specific MFCC
filterbank optimization. Parts of this work have been published in [47, 48].

1.2.1 A Subword Detection Structure Based on Standard

ASR

Our approach to subword detection design has been to adapt the stan-
dard continuous speech recognition framework, which basically consists of
a MFCC extractor and a HMM-based decoder. Further, the parameters
of this detector structure can be optimized in each detector to improve
the performance for the detection class. In this thesis we have focused on
phone and articulatory-feature detectors. However, the detector structure
is suitable for other subwords, for example syllables.

A common approach to subword detector design is to use frame-based
classifiers, for example using Multi-Layer Perceptrons (MLPs). Detectors
based on HMMs have previously been proposed, for example [13]. However,
this mainly consisted in the use of two HMMs with similar complexity, one
for the class and one for the anti-class. In addition, HMM-based detectors

6 Introduction

have mostly been used for detection of isolated speech segments in ASR
re-scoring applications. By contrast, the anti-class models in our detector
structure are built with all the HMMs of the subwords that belong to the
anti-class. Our motivation for this was that we assumed that a more complex
anti-class model would lead to better segmentation in the continuous speech
case. In addition, this type of anti-class model is flexible and does not
require additional training.

1.2.2 Discriminative Training Methods for Subword Detec-

tion

Subword detectors have previously been trained applying the same discrim-
inative training techniques that are used for automatic speech recognition.
Therefore, in this thesis we propose two novel discriminative training meth-
ods that focus specifically on subword detectors. The first approach to sub-
word detector training is a modification of the standard string-based MCE
framework, which was motivated by the results presented in [13]. Basically,
our modification consists in selecting the frames that are included in the
computation of the gradient so that the performance of the detection class
is improved.

The second method for subword detector training is based on the MPE
framework and, therefore, we call it Minimum Detection Error (MDE) train-
ing. As far as we know, MPE has not previously been applied to subword
detector optimization. This novel technique is capable of directly optimizing
the F-score or any other performance measure for detectors, which means
that MDE can be applied to a wide range of applications.

1.2.3 Detector-Specific MFCC Filterbank Optimization and

Analysis

The two discriminative training methods that we have developed for detec-
tor optimization have been applied to optimize the MFCC filterbank in our
detector structure. In fact, filterbank training is a novel technique for op-
timization of subword detectors. Further, the MFCC filterbanks have been
trained either isolated or jointly with the HMMs used in the class and anti-
class models in the detector. In addition, this thesis presents an analysis of
the optimized filterbanks and we find that some of the changes in the filter
shapes reflect known acoustical properties of the detection classes.

1.3. Outline 7

1.3 Outline

The first part of the thesis focuses on subword detector design, optimization
and applications. Chapter 2 is a short introduction to HMMs and standard
ASR systems. In Chapter 3 we present a detector structure for subword
units. Chapter 4 focuses on discriminative training and describes two meth-
ods for detector training. In Chapter 5 we introduce detection-based ASR
and present a system based on our detector structure.

The second part of this thesis focuses on the experiments with subword
detectors. The experimental settings are described in Chapter 6. Exper-
iments with subword detector optimization are presented in Chapters 7
and 8. Chapter 9 describes the experiments where detection-based ASR
systems are built with optimized detectors. Finally, Chapter 10 presents
the conclusions and suggestions for future work.

8 Introduction

Part I

Subword Detectors:

Design and Optimization

9

Chapter 2

Standard Automatic Speech

Recognition

Speech is the most natural and important communication channel for hu-
mans. Automatic Speech Recognition (ASR) deals with the problem of au-
tomatically identifying the string of words embedded in an acoustic speech
signal. In the previous chapter we mentioned that our approach to sub-
word detection consists on adapting the standard ASR framework for the
two class problem. Therefore, in this chapter we give a short introduction
to standard ASR systems. Firstly, ASR is described as a pattern-matching
problem. After that, we give an overview of the main components in a
standard recognizer. The last two sections focus on the feature extraction
module and the acoustical models.

2.1 ASR as a Pattern Recognition Problem

The current approach to ASR is the one of statistical pattern recogni-
tion [49, 50]. Given a spoken utterance S we find the string of words Ŵ
that maximizes the a posteriori probability P (W |S). That is

Ŵ = argmax
W

P (W |S) . (2.1)

This is called the maximum a posteriori (MAP) decision rule and is optimal
in the sense that it minimizes the error rate. However, the optimality is only
valid if the true statistical distributions are known. In practice this is not
true and, therefore, some parametrical distributions are usually assumed.
The parameters are then estimated using training data and the MAP deci-
sion rule is evaluated with these estimated distributions. This is known as

11

12 Standard Automatic Speech Recognition

plug-in MAP decision rule [51].

In practice, acoustical features X are extracted from the speech sig-
nal S. Applying Bayes’ rule, the corresponding posterior probability can be
rewritten as

P (W |X) =
p(X|W)P (W)

p(X)
. (2.2)

The denominator is independent of the class W and, therefore, it can be
discarded in the MAP context. The numerator consists of two terms. The
first one gives the acoustic likelihood for the class and is usually modeled
by hidden Markov models (HMMs). The second term gives the a priori
probability of the class W and is usually approximated by a language model.
Speech is usually split up into hierarchically organized linguistic units such
as sentences, words, syllables, phonemes, etc. Typically HMMs are used to
model a chosen basic unit, for example phonemes, and higher order unit
models, for instance sentences, can be composed from the models of the
chosen basic units using a the language model and a lexicon.

ASR tasks can be divided into two main categories. The first one is iso-
lated speech classification, where the segment borders between speech units
are known. The second group is continuous speech recognition, which is a
more difficult problem because both the segmentation and the correspond-
ing string of units are unknown. Each basic unit is modeled as a HMM and
the likelihood of each string is computed as the likelihood of the concate-
nation of the corresponding basic units. This thesis focuses on detection
of speech units in continuous speech and, therefore, the rest of the chapter
considers continuous speech recognition.

2.2 Overview of a Standard HMM-Based ASR Sys-

tem

A block diagram of a standard system is shown in Figure 2.1. The input to
the system is a speech signal s(t) and the output is a hypothesized string of
linguistic units. Following the notation of the previous section, the first step
is to extract a set of features X from the speech utterance S. The system
then finds the string of linguistic units with maximum P (W |X) using a
decoder, an acoustic model, a language model and a lexicon. The following
subsections describe the modules shown in Figure 2.1.

2.2. Overview of a Standard HMM-Based ASR System 13

Figure 2.1: Block diagram of a standard HMM-based ASR system

2.2.1 Feature Extraction

The input to this block is the speech signal s(t) and the output a sequence
of feature vectors X. An ideal feature extractor would discard all the in-
formation that refers to the speaker and the environment. The remaining
information should provide good discrimination between linguistic units.

In the standard approach to feature processing, the speech signal is
divided in short speech frames. Each frame can be modeled as the realization
of a corresponding stationary process. Usually some information about the
power spectrum is extracted for each frame. The most popular choice of
features, Mel-frequency cepstral coefficients (MFCCs), is described in detail
in Section 2.4. Other features that are commonly used, especially for noisy
speech, are perceptual linear predictive (PLP) features [52].

2.2.2 Acoustic Model and Basic Units

The acoustic model provides the likelihood of the acoustic features X given
the linguistic unit that is modelled, i.e. the basic unit. In standard ASR the
acoustic model is a HMM, which is reviewed in more detail in Section 2.3.
There are a number of choices for the basic units, for example phonemes,
syllables and words:

• From [53, p. 37], “the term phoneme is used to denote any of the
minimal units of speech sound in a language that can serve to distin-
guish one word from another. We conventionally use the term phone
to denote a phoneme’s acoustic realization”

14 Standard Automatic Speech Recognition

• A syllable is an intermediate unit between phones and the word level,
usually centered around vowels.

• A word is a higher order unit that can be written or spoken and has
an agreed-upon meaning.

The task usually determines which basic unit to model. In some small-
vocabulary applications HMM word modelling usually leads to the best
system performance. However, when the vocabulary increases in size it is
not practical to use words as basic units and smaller units, for instance
phonemes, are modelled instead. A more detailed discussion is given in
Section 5.2.1 in the context of detection-based ASR systems.

2.2.3 Language Model

A language model gives the probability of linguistic units that are modelled.
The simplest language models are the 0-gram and the unigram, where the
probability of a unit is independent of the context (the surrounding linguistic
units). In the former each unit has the same probability and, for this reason,
it is also referred to as uniform model. However, in more complex models
the probability of a given linguistic unit is dependent on the context. For
example, the bigram and trigram models assume that the probability of a
unit depends, respectively, on the previous one or two linguistic units.

Usually the language model is completed with the use of a grammar
and a lexicon. The grammar determines the possible transitions between
linguistic units. A simple example is a unit loop where each unit can be
followed of any other. The lexicon (also referred to as dictionary) provides
one or several ways to construct higher order units from basic units.

The specific implementation depends on the task, the basic linguistic
unit that is modelled, etc. For a small-vocabulary word recognizer that
uses phone HMMs, the implementation of the language model could start
with an unconstrained loop over all words as a grammar, where the word
transition probabilities could be given by a word bigram model. Further,
this could be combined with a lexicon with the phone transcription of each
word. Another example could be the implementation of a phone recognizer
that uses phone HMMs. In this case no lexicon would be required, the
grammar could be an unconstrained loop over all phones governed by phone
trigram probabilities.

2.2. Overview of a Standard HMM-Based ASR System 15

2.2.4 Decoder

The decoder uses the acoustical and language models to find a hypothesis
for the string of linguistic units in the output of the system. This sequence
of linguistic units is the one that matches best the input features according
to the plug-in MAP decision rule. The language model and the HMMs
for the basic units are used to build a network of HMM states. A given
path (state sequence) in this network corresponds to a string of linguistic
units. The size of the state network is usually large and the best path has
to be found using an efficient search algorithm. The Viterbi algorithm (for
instance [53, p. 388]) is based on dynamic programming and it is commonly
applied for this task.

In some applications it can be useful to find not only the best path, but
also several several competing hypotheses that can be further processed.
This could be in the form of a N-best list [54], which corresponds to the
N paths in the network with highest likelihood. In addition, each hypothesis
is given together with the most likely segment borders. An N-best list can
be useful, for example, in some large vocabulary ASR applications where
a fast system provides N best hypothesis and a slower but more accurate
system re-scores them to generate a final output string of linguistic units.
Another way of representing a set of competing hypothesis are lattices. This
is basically a graph where nodes correspond to times and edges correspond
to speech segments. Therefore, in a lattice a complete path corresponds to
a sentence hypothesis. Lattices can be generated from N-best lists and vice
versa.

2.2.5 Performance Evaluation

The performance of the system is found by comparing the correct tran-
scription of the input speech signal with the output of the system, i.e. the
hypothesized string of linguistic units. The strings are aligned according to
the minimum Levenshtein distance and the number of hits H, substitutions
S, insertions I and deletions D are found. The accuracy of a system At is
defined as

At =
H − I

H +D + S
=

H − I

N
, (2.3)

whereN = H+D+S is the number of segments in the correct transcription.
We have added the subindex t to emphasize that this accuracy is the total
accuracy of the system, meaning that it considers the accuracy for all classes.
This is further discussed in Section 3.3.

16 Standard Automatic Speech Recognition

In the case of isolated speech recognition there are no deletions or inser-
tions and the performance is then called correctness:

Ct =
H

H + S
. (2.4)

This performance measure is commonly used in continuous speech recogni-
tion to complement the information given by the accuracy.

Finally, it could be added that in some cases there is a linguistic unit
mapping previous to the alignment. This is done because sometimes mod-
elling a more detailed linguistic unit set can lead to better results compared
to modelling the linguistic unit set of interest.

2.3 The Hidden Markov Model

The hidden Markov model (HMM) is a simple statistical model that is
commonly used to model the speech signal. From [27, p.259], when hu-
mans speak the articulatory apparatus modulates air pressure and flow to
produce the sounds that constitute the speech signal. Even if speech is a
time-varying signal, there are short time regions where the signal can be
considered to be a stationary process. This quasi-stationarity is a conse-
quence of physical constraints in the articulatory apparatus, which makes
that the articulatory configuration cannot change dramatically more than
ten times per second. In addition, there is usually a certain dependency be-
tween sounds in the speech signal that occur after each other, which means
that speech is not a memoryless process. The HMM accommodates these
properties and, therefore, it is used in the standard ASR framework.

Given the set of observations X = {x1,x2 . . .xT }, each vector xt is
assumed to have been drawn according to a probability density function.
There are two important assumptions in HMMs:

• Output-independence assumption: the probability density function is
assumed to depend only on the actual state of the model st.

• Markov assumption: even though the state variable is unknown, the
sequence of states during time is assumed to follow a random process
called first-order Markov chain. This means that the state at a given
time t, referred to as st, depends only on the state at the previous
time t− 1, referred to as st−1.

The components of a HMM are the state probability density function,
the transition probabilities between states and the initial state distribution:

2.3. The Hidden Markov Model 17

bi(xt) = p(xt|st = i) , (2.5)

aij = P (st = j|st−1 = i) , and (2.6)

πi = P (s1 = i) . (2.7)

Figure 2.2 shows a HMM with an oriented structure. This is called a left-
to-right HMM and it is commonly used in ASR. For instance, for phoneme
modelling it is standard to use left-to-right HMMs with three states.

Figure 2.2: Left-to-right HMM

A commonly used state output probability function is the Gaussian mix-
ture model (GMM). For a state s we have that

bs(x) =

M∑
m=1

csmbsm(x) (2.8)

=

M∑
m=1

csm
(2π)D/2|Σsm|1/2

e−
1
2 (x−μsm)TΣsm

−1(x−μsm) . (2.9)

where M is the number of mixtures in the GMM, bsm(x) is a Gaussian
probability density function with parameters μsm (the mean vector) and
Σsm (the covariance matrix), D is the dimension of the observation vector x
and csm are the mixture coefficients. These mixtures coefficients have to
follow the following constraints:

18 Standard Automatic Speech Recognition

csm > 0 , ∀m (2.10)

∑
m

csm = 1 (2.11)

In the rest of this section we use Λ to denote all parameters in a
HMM: transition probabilities, GMM means and covariances, mixture coef-
ficients, etc.

2.3.1 Evaluation

The evaluation problem consists on finding the likelihood of the set of ob-
servations X = {x1,x2 . . .xT } given by a HMM with parameters Λ. Con-
sidering the state sequence S = {s1, s2, ...sT }, we have that

p(X|Λ) =
∑
all S

p(S,X|Λ) =
∑
all S

P (S|Λ)p(X|S,Λ) , (2.12)

where the sum is over all possible values of the state sequence S. Given the
Markov assumption, the probability of a given state sequence is the product
of the corresponding state transition probabilities:

P (S|Λ) = πs1

T∏
t=2

ast−1st . (2.13)

In addition, because of the output-independence assumption we have that

p(X|S,Λ) =

T∏
t=1

bst(xt) . (2.14)

Applying these two results to Eq. 2.12, the likelihood of the observation X

results in

p(X|Λ) =
∑
all S

πs1bs1(x1)
T∏
t=2

ast−1stbst(xt) . (2.15)

However, the direct computation of this probability is in practice impossible
because the total number of state sequences grows exponentially with T .
Fortunately, it is possible to compute it efficiently with a recursive algorithm
known as the forward algorithm, given for example in [53, p. 387].

2.3. The Hidden Markov Model 19

2.3.2 Decoding

In the decoding problem we are interested in finding the optimal state se-
quence, i.e. the state sequence S∗ with the highest likelihood, given a set of
observations and a HMM. We saw in Section 2.2.4 that this is essential in
an ASR system: the decoder uses the language and acoustic models to build
a large network of HMM states and the best path determines the output of
the system. Given that the network is large, an efficient search algorithm
such as the Viterbi algorithm finds the optimal state sequence S∗ and its
corresponding likelihood S∗, p(S∗,X|Λ). In addition, the likelihood of S∗

is commonly used as an approximation to the likelihood in Eq. 2.15:

p(X|Λ) ≈ p(S∗,X|Λ) = max
S

πs1bs1(x1)

T∏
t=2

ast−1stbst(xt) . (2.16)

Because the number of possible state sequences can be very large, it may
seem that approximating the sum in 2.15 by the highest term is not a
good approximation. However, in practice most terms in the sum are much
smaller than the highest one and the approximation is in fact useful.

2.3.3 Training

The traditional training approach is the following one: given a HMM and
training data (a set of labelled observations) the parameters that best de-
scribe the data are estimated, which is also referred to as Maximum Like-
lihood (ML) learning. Specifically, this corresponds to finding Λ such that
p(X|Λ) is maximized for a training sequence X. Mathematically this can
be written as

ΛML = argmax
Λ

p(X|Λ) (2.17)

The problem here is that the state sequence is unknown and, therefore,
ML training cannot be applied directly. The standard solution is to ap-
ply a version of the expectation-maximization (EM) algorithm adapted to
HMM. This training method is known as the Baum-Welch algorithm or
as the forward-backward algorithm (see for instance [53, p. 389]). Sec-
tion 4.1 brings more details on training algorithms and parameter opti-
mization methods.

20 Standard Automatic Speech Recognition

2.4 Mel-Frequency Cepstral Coefficients

As in all pattern recognition problems, the choice of acoustic features is crit-
ical in speech recognition. MFCCs [55] are the dominant speech represen-
tation because of their good performance, especially in clean environments.
Figure 2.3 shows the block diagram for a MFCC feature extractor. The in-
put is the speech signal and the output is a vector of cepstral coefficients x.

Figure 2.3: Block diagram of the MFCC feature extractor.

According to [56], there are three main parts in the MFCC extractor:

• Short-term Fourier analysis of the speech signal

• Auditory-motivated modifications of the spectrum

• Projection on cosine basis

The motivation for the short-time analysis is the following one. Even if
speech is a non-stationary process, it can be considered stationary over
sufficiently short-time intervals. Therefore, the Fourier transform of a short
segment should give a good spectral representation of the segment. In the
first module, the speech signal is pre-emphasized and thereafter divided into
frames which are multiplied by a window. Typical choices are 10 ms frame
shift and 25 ms Hamming windows. Then a Fast Fourier Transform (FFT)
with NFFT points is computed for each windowed frame and the magnitude
or the squared magnitude is applied. The resulting vector is referred as z

in Figure 2.3.

The resulting spectrum is modified to model some properties of human
hearing. Firstly, there is a non-uniform frequency resolution in human per-
ception. Secondly, humans seem to integrate the energy of signals that
fall into some bands, which are referred to as critical bands. Moreover, the
bandwidth of these critical bands increases with the center frequency. These
properties are simulated in feature extraction by processing the short-time
spectrum with a filterbank. The next block in Figure 2.3 is then a bank of
NCH critical filters (or channels) that performs the linear mapping y = H z.

2.4. Mel-Frequency Cepstral Coefficients 21

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Frequency (kHz)

Figure 2.4: Standard filterbank in the MFCC feature extractor.

Each component yi represents the averaged spectral energy in the corre-
sponding critical band of the filter. The center frequencies of the filters are
spaced according to a frequency scale motivated by how humans perceive
sounds. Usually this is the Mel frequency scale, which is approximated by

M(f) = 1125 ln(1 +
f

700
) , (2.18)

where f is the linear frequency (in Hz). Moreover, the bandwidths of the
critical-band filters increase with the frequency according to the Mel scale.
Further, the shape of the filters is such that the averaging prioritizes the
center of the critical band over the borders and, therefore, triangular or
Gaussian filters are typically used. Figure 2.4 shows a triangular shaped
Mel-scale filterbank.

The final perceptually motivated transformation of the spectrum is done
in the next block in Figure 2.3. A logarithmic transformation is done to the
energy averages output by the filterbank. This operation models human
loudness sensitivity.

The next block is a discrete cosine transform (DCT), which maps the

22 Standard Automatic Speech Recognition

log-energies to the cepstral domain. As discussed in [56], projection onto
a cosine basis approximately decorrelates vectors generated by a first-order
Markov process. This means that the covariance matrices in the GMMs
state distributions of the HMM can be considered to be diagonal matrices.
The elements of a unitary DCT matrix are given by

Dij = aij cos
[π(2j − 1)

2NCH
(i− 1)

]
, (2.19)

where i, j = 1, 2, . . . NCH, and

aij =

⎧⎪⎪⎨
⎪⎪⎩

√
1

NCH
i, j = 1√

2
NCH

i = j

1 otherwise.

(2.20)

The DCT block performs the mapping c = D log y, which transforms
a vector of NCH components into c, a vector of NCH cepstral coefficients.
However, due to the energy compaction property of the DCT, most dis-
criminative information lies in the first NCEP coefficients. It is customary
to truncate the cepstral vector, i.e. those coefficients are kept and the rest
are discarded, which is known as cepstral smoothing of the log-magnitude
spectrum. In fact, most of the variation lies on the 0th cepstral coefficient,
which is a measure of the speech frame energy. This means that most of the
variation in the speech spectrum is due to variation in the average energy.
For this reason, some other energy measurement, for example power, can
be used either in addition or as a replacement.

Finally, it is known that appending the first and second order time
derivatives (delta and acceleration coefficients) improves the performance
of the system considerably [57]. The final block in Figure 2.3 computes the
first and second order time derivatives and appends them to c.

For instance, for a speech signal sampled at 16 kHz it is common to use
NCH = 26 filters and use the NCEP = 13 first cepstral coefficients. Further,
after the addition of the time derivatives we end up with a feature vector x
with 39 components.

2.5 Summary

Our method for subword detection is based on the standard speech recogni-
tion framework and, therefore, we have reviewed standard ASR systems in

2.5. Summary 23

this chapter. The input of a speech recognizer is the speech signal and the
output is a hypothesis of linguistic units. The speech signal is processed by
a feature extractor to generate an observation: a sequence of acoustic fea-
ture vectors with discriminative information. Further, a decoder finds the
sequence of linguistic units that best matches the observation using acoustic
models, language models, a grammar and a lexicon. This process usually
involves searching for the best path in a state network and, therefore, an ef-
ficient search algorithm is required. The performance of a speech recognizer
is commonly evaluated aligning the output with a reference transcription
and computing the accuracy, a measure that combines hits, substitutions,
deletions and insertions.

In the standard speech recognition framework, MFCCs are the state-of-
the-art feature representation of speech and HMMs are commonly used to
model the speech signal. This thesis focuses on the MFCC feature extraction
and the HMM and, therefore, they were reviewed in more detail.

We discussed the components of a HMM: state probability density func-
tion (commonly implemented with GMMs), transition probabilities (we saw
that the left-to-right configuration is commonly used in ASR) and initial
distributions. After that we discussed the implied statistical assumptions:
output-independence and Markov assumptions. In addition, we gave an
overview of the evaluation of a HMM with the forward algorithm, Viterbi
decoding and training with Baum-Welch.

The MFCC feature extractor computes cepstral coefficients from the
speech signal as follows. Firstly, the speech signal is divided in frames
and a window function is applied. After that a FFT is computed and a
bank of filters is applied to model the critical band sensitivity of human
hearing. Further, human loudness sensitivity is modelled by a logarithm.
Finally, a DCT transform is applied to decorrelate the coefficients, and time
derivatives are appended to the resulting cepstral coefficients.

24 Standard Automatic Speech Recognition

Chapter 3

Design of Subword Detectors

In Chapter 1 we saw that a detector is a binary classifier that discerns
between patterns that share a specific quality (the class) and the rest (the
anti-class). In this thesis, we consider detectors that find the occurrences
of a type of subword in the speech signal. For example, a detector for the
phone /ih/ will process the speech signal to find segments that belong to
that phone. In this case, /ih/ segments are referred to as class segments,
and segments that belong to the other phones are referred to as anti-class
segments. One of the challenges found in detection is that most patterns
belong to the anti-class. This has to be considered in the training algorithm.

In this chapter we address the design of subword detectors and their eval-
uation. Training and optimization methods will be presented in Chapter 4.
The outline of the chapter is as follows. Firstly, Section 3.1 describes two
approaches to detection of subword units: frame-based and segment-based
detectors. Secondly, in Section 3.2 we propose a detection structure based
on standard ASR. Finally, Section 3.3 discusses the evaluation of subword
detectors and presents the criteria that have been considered in this thesis.
Parts of this work were also presented in [47, 48].

3.1 Detection Strategies

This section presents a number of strategies for the design of subword de-
tectors. Firstly, we discuss the advantage that detectors have in feature
extraction compared with a standard ASR system. After that, frame-based
and segment-based detectors are described. This categorization follows the
work in [13].

25

26 Design of Subword Detectors

Figure 3.1: Block diagram of a frame-based detector.

3.1.1 Acoustic Feature Extraction

The feature extractor module is the first part in a detector. In a standard
ASR system the feature extraction is common to all classes, but in subword
detection there can be a specific feature extractor in each detector. This is
in principle an advantage because it is possible to process the speech signal
and extract features that are optimal for the specific class vs. anti-class
problem in each subword detector. However, it is of course possible to use
the same features in all the detectors.

One possibility is to use a standard feature extraction method and op-
timize some of its parameters. For example, the filterbank, window length
or time shift could be optimized in a MFCC-based feature extractor (see
Section 2.4). Another option is to use features based on phonetic knowl-
edge of the specific detection class, for instance formants, voiced onset time,
zero-crossing rate, etc. In any case the extraction parameters (and thus the
features) can be optimized independently or jointly with the detector struc-
ture.

3.1.2 Detector Based on Frames

A frame-based detector classifies speech frames individually. Figure 3.1
shows a block diagram of this type of detector. The input of the detector is
the speech signal and the output is a sequence of labelled frames. The first
module is a feature extractor that finds discriminative information for the
speech frames.

The next module is a binary classifier that processes the extracted fea-
tures to generate scores. In practice there are two common strategies for the
score generation. The first one consists on generating a single class score
for each frame. The second one is to generate scores both for the anti-class
and the class.

There are many possible structures for the binary classifier, for example

3.1. Detection Strategies 27

Figure 3.2: Block diagram of a segment-based detector.

Multi-Layer Perceptron (MLP) or, more generally, artificial neural networks
(ANN), support vector machine or Gaussian mixture model (GMM). The
output of frame-based detectors are usually posterior probabilities. In the
case of using GMM-based class densities, there is usually a class GMM and
an anti-class GMM. Each of them provides a likelihood, which can be further
processed if a posterior probability is required.

The last step in the detector is to use the scores from the binary classifier
in a decision rule. A simple method is to apply a threshold to the class score.
However, a decision rule could consider both class and anti-class scores, for
instance a threshold for the score ratio.

It should be noted that in applications such as detection-based ASR,
the decision rule step is commonly skipped. In those systems, the generated
detector scores are further processed by some type of linguistic merger in
order to find a string of linguistic units. More details about this are given
in Chapter 5.

3.1.3 Detectors Based on Segments

Segment-based detectors have a speech signal as an input and they output
a sequence of labelled segments. Figure 3.2 shows the block diagram of
this type of detector. As in frame-based detectors, the first module is the
feature extractor. However, in the case of segment-based detection, all the
speech feature frames are processed in order to find class segments. This
means that, in addition to the segment scores given by the detector, the
segmentation is important and has to be considered as well. In segment-
based detectors the segmentation can be found with a decoding algorithm
and statistical models for the class and the anti-class. Segment-based de-
tectors were found to perform better than frame-based detectors in [13].
In their experiments they found that ANN detectors had a problem with

28 Design of Subword Detectors

output scores fluctuation. In the rest of the section, we focus on detectors
where the class and the anti-class models are built with HMMs. However,
there are other options, for example Dynamic Bayesian Networks, see for
instance [58].

HMM-based detectors output the segmentation of the speech signal and
the likelihood of each segment. The class model usually consists of a single
HMM for the detection class. We consider two possible strategies to build
the anti-class model in a HMM-based detector, similar to those methods
described in [16]. Firstly, a simple method is to use a single HMM for
the anti-class. This HMM could have the same or higher complexity than
the class model and it could be specific for each detector or common to
all detectors (“background” model). The second strategy is to build the
anti-class model with a combination of the HMMs of all the other classes,
or with only those belonging to the main competing classes. In this case,
these HMMs are combined with a grammar, for instance parallel transitions
corresponding to each HMM. As an example, let us suppose that there are
three subwords and we are interested in building a HMM-based detector
for the first subword. The class model can be built with a single HMM
that is trained with the data of the first subword. In the first method, the
anti-class model is a single HMM, which is trained with the data of all the
other classes (the second and third subwords). In the second method, the
anti-class model is built with two HMMs that are trained, respectively, with
the data of the second and third subwords.

For the segmentation the decoder requires a network (grammar) that
define the transitions between the class and the anti-class models. This
could include the use of transition penalties to weight some paths of the
network. A simple network is a loop between the class and the anti-class
models, which is shown in Figure 3.3. Other strategies are, however, possi-
ble; for instance in [14] only the class model was used to segment the speech
signal and, after that, class and anti-class models were Viterbi-aligned to
each segment in order to compute a log-likelihood ratio.

After the segmentation it is possible to apply a postprocessing algo-
rithm. This includes pruning of segments in order to eliminate insertions,
which could be done using knowledge-based methods, for example temporal
information of attribute models [59], or other methods such as, for instance,
verification [60, 61].

3.2. Proposed Structure for Subword Detection 29

Figure 3.3: An example of grammar network for segment-based detectors.

3.2 Proposed Structure for Subword Detection

The block diagram of the proposed structure for subword detection is shown
in Figure 3.4. There are two ways to justify this detection structure. Firstly,
it is a special case of the segment-based detectors strategy described in Sec-
tion 3.1.3. Secondly, the chosen method for the design of subword detectors
is an adaptation of the standard ASR framework for a two-class problem. In
the following we explain the chosen detector structure as a special case of a
segment-based detector. In the end of the section we compare the detector
structure with a standard ASR system.

The first module in a segment-based detector is the feature extractor,
which was discussed in Section 3.1.1. As shown in Figure 3.4, the chosen
feature extraction method was a MFCC module (see Figure 2.3) optimized
for the specific detector. There are a number of extraction parameters
that can be optimized, but we focused on the filterbank for a number of
reasons. Firstly, the standard filterbank is based on empirical experiments
on human auditory perception and it is not clear that it leads to optimal
detection regardless of the specific phonetic event to detect, structure of
the back-end classifier, speaker, environment, etc. In fact, several studies
have shown that it can be optimized for ASR by data-driven techniques, for
example [30]. Secondly, the shape of the standard filterbank can probably
be modified to extract information that is relevant to discriminate class and
anti-class. Thus, the resulting filterbank would reflect some of the typical
frequency content of the detection class. Thirdly, the blocks in the MFCC
feature extractor have a cascade connection (see Figure 2.3), which means
that the filterbank is well suited for gradient based discriminative training.
This could be done by training the filter parameters, for instance bandwidths
and spacing, or by training all the elements in the filterbank matrix H. Note
that MFCC parameters such as the window length or time shift would be

30 Design of Subword Detectors

Figure 3.4: Block diagram of the proposed detector structure.

more more difficult to train discriminatively. The feature extractor in our
detector structure is then a MFCC extractor where the filterbank is specific
to the detector. This is the meaning of the filterbank block pointing to the
MFCC block in Figure 3.4.

The next module in the proposed detector structure is the segmentation.
In this work we have focused on detectors for phonemes and articulatory
features (AFs). The class model in phone detectors was built with a single
HMM. AF detectors are commonly trained with a database transcribed at
the phone level and a mapping to AFs (Appendix A describes this in more
detail). We chose to model the class in AF detectors with a combination
of the HMMs of the phones for which the AF is active (this is similar to
the approach in [20]). In both cases, the anti-class models were built with
a combination of all the other phone HMMs, i.e. those that belong to the
anti-class. These class and anti-class models are used by a decoder (see
Section 2.2.4) to generate an output segmentation. The grammar used in
the decoder was a loop between the class and anti-class models. In addition,
the class and anti-class models are implemented with their corresponding
phone HMMs in parallel. This means that the proposed network in the de-
coder results in a phone loop both for the case of phone and AF detectors.
Therefore, the segmentation module in the proposed detection structure is a
decoder that uses a detector-specific set of phone HMMs. This is the mean-
ing of the HMMs block pointing to the segmentation block in Figure 3.4.
Figure 3.5 shows an example where there are C phones and we consider the
detector for an AF that is active for phone 1 and phone 2. The class model
is then built with HMM1 and HMM2 in parallel, and the anti-class model
is built with all the other models, i.e. {HMMi}

C
i=3, in parallel. It can be

seen that this decoding network is equivalent to all models {HMMi}
C
i=1 in

parallel, i.e. a phone loop.

3.3. Evaluation of Subword Detectors 31

As with the MFCC feature extractor, these class and anti-class models
should also be optimized in each detector. The state-density parameters in
the phone HMMs are good candidates for detector-specific discriminative
training. Therefore, the proposed optimization method for our detection
structure is to train the phone HMMs and the MFCC filterbank matrix
discriminatively. All detectors can be initialized with phone HMMs trained
with Maximum Likelihood and a standard filterbank in the MFCC extrac-
tion module. The discriminative optimization of filterbanks and HMMs is
addressed in Chapter 4.

In the beginning of this section we mentioned that our detection struc-
ture can be regarded as an adaptation of the standard ASR framework for
the class vs. anti-class problem. Comparing the proposed detector struc-
ture with the standard system described in Section 2.2, we find the following
common points. Firstly, the feature extractor in the detection structure is
indeed a MFCC module where the standard filterbank is replaced by a fil-
terbank optimized for the specific detector. Secondly, given how the class
and anti-class models were implemented, the decoder is basically the same
as in a standard phone recognizer that uses a phone loop as the gram-
mar. The difference is that the HMMs in the proposed detector structure
are optimized so that the performance for one sub-group of the phones is
improved.

Finally, note that even if this subword detector structure has been ap-
plied to detection of phones and AFs, the structure is general and could be
applied to detect other subwords such as syllables. Moreover, this structure
could in principle be adapted for word spotting in small vocabulary tasks
were each word can be modelled with a HMM.

3.3 Evaluation of Subword Detectors

This final section addresses the evaluation of the subword detector structure
that has been proposed. In Section 2.2.5 we discussed performance measures
for ASR systems. There we saw that in continuous speech recognition the
segment sequence is aligned with a reference transcription to find hits (H),
substitutions (S), deletions (D) and insertions (I). In the case of detection
of subwords there are four outcomes: hits (correct classifications of class
segments), correct rejections (correct classifications of anti-class segments),
false alarms (incorrect class segments) and misses (class segments that were
not detected). The detected transcription can be aligned with a reference
and a confusion matrix generated:

32 Design of Subword Detectors

Figure 3.5: A decoding network for the proposed detector structure.

⎡
⎣ Hc Sc Dc

Sac Hac Dac

Ic Iac

⎤
⎦ ,

where the subindexes “c” and “ac” refer to respectively the class and the
anti-class. The relevant outcomes are then hits (Hc), misses (Sc and Dc)
and false alarms (Sac and Ic).

Note that in the proposed detector structure the decoder outputs a seg-
mentation with subword labels (for example /ph1/’, /ph2/, etc.) and not
detector labels (for instance ”class” and “anti-class”). The evaluation is
as follows. Firstly, the output segmentation at the phone level is aligned
with the reference transcription. Secondly, phone labels are mapped to de-
tector labels and Hc, Sc, etc. are computed. Thirdly, any of the detector

3.3. Evaluation of Subword Detectors 33

evaluation criteria discussed below can be applied.

An ideal detector would identify correctly all class segments (which im-
plies no misses) without raising any false alarms. Further, the segment
borders would be highly accurate. However, in practice we must accept a
trade off between hits, false-alarms and misses, as well as having imperfect
time information.

Detection performance criteria should consider that the number of class
segments in a detection application is usually much lower than the number
of anti-class segments. If we wanted to evaluate a detector using the same
criterion as in ASR systems (see Equation 2.3), the accuracy of the detector
would result in

At =
Hc +Hac − Ic − Iac

Nc +Nac
. (3.1)

However, this criterion is not suited for detection applications because in
practice a high At can be achieved even if the number of class hits, Hc, is
low. This can be explained by the fact that usually Hc � Hac, Ic � Iac
and Nc � Nac, where Nc = Hc + Sc +Dc (the number of class segments in
the reference transcription) and similarly for Nac.

The following criteria are commonly used to score detectors: precision,
recall and F-score (or F-measure). These are performance measures that
can be used in pattern recognition applications where one of the classes
is more important than the rest [62]. Note that there are other possible
criteria, for example the DET curve [63]. Precision (P) is the relationship
between hits and the number of class segments in the detected transcription:

P =
hits

hits + false alarms
=

Hc

Mc
, (3.2)

where Mc = Hc + Sac + Ic. Recall (R) is the relationship between hits and
the number of class segments in the reference:

R =
hits

hits + misses
=

Hc

Nc
. (3.3)

F-score (F) is the harmonic mean of P and R, which results in

F =
2PR

P +R
=

2Hc

Nc +Mc
. (3.4)

In addition, in this thesis we propose to use the accuracy of the detector
as evaluation criterion. This class accuracy Ac is defined as

34 Design of Subword Detectors

Ac =
Hc − Ic

Nc
= R−

Ic
Nc

, (3.5)

which is the commonly used ASR accuracy limited to include only class
segments. Note that the class accuracy is more restrictive than R because
it considers the inserted class segments Ic.

The choice of evaluation criterion has to consider the target applica-
tion of the detectors as well. For example, in the context of DBASR it
is important not to miss candidates and recall is usually prioritized over
precision [15]. In this thesis we have considered the F-score and the class
accuracy. The former leads to a balanced performance between hits, misses
and false alarms. The latter leads to detectors that should perform well
in DBASR. However, note that these methods do not consider segmenta-
tion accuracy directly. Some work on performance evaluation combining
detection and segmentation performance was done in [64].

3.4 Summary

In this chapter we discussed the design of subword detectors. There are
two main groups of detectors: frame-based and segment-based detectors.
Detectors based on frames classify each speech frame individually and can be
implemented with binary classifiers such as for example an MLP. Detectors
based on segments process all speech frames with a decoding algorithm,
class and anti-class models in order to produce a sequence of class and anti-
class segments, border information and scores. In addition, we proposed
a segment-based detector that can be regarded as a standard ASR system
where the filterbank and the HMMs are discriminatively trained to improve
the performance of the detector. Finally, we discussed the evaluation of
subword detectors. We argued that ASR system evaluation criteria such
as the commonly used accuracy are not valid for detectors. Therefore, we
presented four measures that are suitable for detection evaluation: precision,
recall, F-score and class accuracy.

Chapter 4

Discriminative Training of

Subword Detectors

In this chapter we present two discriminative training methods for the detec-
tor structure presented in the previous chapter. The first section discusses
the motivation for discriminative optimization methods and, in addition, it
introduces some background on optimization and our discriminative frame-
work. In the second section we present the standard embedded Minimum
Classification Error training and how we have modified it in order for it to
be applied to subword detector training. The third section describes Mini-
mum Detection Error (MDE) training, the adaptation of Minimum Phone
Error training for subword detection. Parts of this work have been published
in [47, 48].

4.1 Discriminative Training Methods

4.1.1 Motivation

Recall from Section 2.1 that posterior probabilities are required for an op-
timal classification decision. The optimal decision rule in the classifier is
then given by

Ŵ = argmax
W

p(W |X) , (4.1)

where W is any possible word string and X is the observation vector. As
discussed in [27], this transforms the classifier design problem into a dis-
tribution estimation problem. However, there are a number of issues with
this approach. Firstly, in practice the distributions are unknown and we

35

36 Discriminative Training of Subword Detectors

have to find a suitable model for them, which is usually limited by math-
ematical tractability. In the case of speech recognition, HMM is a simple
method to model the speech signal (see Section 2.3) but it is not the true
distribution and, therefore, the Bayes error cannot be achieved. Secondly,
the parameters of the distribution model have to be estimated from training
data. In order to obtain good parameter estimates an estimation method is
required and, in addition, training data of sufficient size has to be collected
and labelled. This is specially difficult and expensive in speech recognition.

In supervised training, the conventional approach to classifier design is
known as the generative approach. This consists in trying to model P (W,X),
the joint generative model of observations and classes, which is usually done
by modeling the likelihood of the observation P (X|W) and the language
model P (W). The classifier implements then the following decision rule:

Ŵ = argmax
W

p(X|W)p(W) . (4.2)

The traditional method of parameter estimation, Maximum Likelihood (ML),
was discussed in Section 2.3.3. ML estimation does not necessarily lead to
an optimal performance in the classifier because of two reasons. Firstly, this
method leads to optimal parameters for the estimated distributions with re-
spect to data description. Given the mismatch between the HMM and the
actual (unknown) speech distribution, there is no connection between data
description optimality and classification optimality. Secondly, even if we
had very good models for the real distributions, recall that training data is
often limited and inadequate.

The discriminative approach to classifier design aims at modelling di-
rectly the posterior distributions P (W |X), which is used in the decision rule
given by Eq. 4.1. This is the case in Multi-Layer Perceptron, support vector
machine and logistic regression [65]. This approach has the advantage that
the training algorithm focuses on those regions that are important for the
classification task. By contrast, the generative approach aims at describing
the data accurately and this can lead to focus on regions that may be unim-
portant for the classification task. However, the generative approach has
also strengths, for example it leads to better classifier performance when
training data are limited. A further discussion can be found in [66, 67, 68].

There are a number of approaches to combine the benefits of generative
and discriminative classifiers. One of them is discriminative training, where
the parameters of a generative classifier are trained using a discriminative
criterion, that is a function related to the performance of the classifier. In
discriminative training there are two critical aspects: design of the perfor-

4.1. Discriminative Training Methods 37

mance function and the choice of the optimization method that is used to
optimize this performance function. Some of the most popular discrimina-
tive training techniques for speech recognition are Maximum Mutual Infor-
mation (MMI), Minimum Classification Error (MCE) and Minimum Phone
Error (MPE). These methods have different motivations but they are closely
related, as shown in [69, 70]. However, there are many other discriminative
training techniques, for example Direct Error Rate Minimization [71].

In the following we introduce the mathematical framework and the op-
timization method that we have considered. After that, we present two
discriminative training algorithms that can be applied to train subword de-
tectors.

4.1.2 Framework

The training data is a set of sentences X = {X1, . . . ,XK} and their labels
L = {L10, . . . , LK0}, where the index 0 indicates that this is the correct
transcription. Given the set of system parameters Λ, a set of N competing
segmentations {Lkj}

N
j=1 can be generated for each sentence Xk (see Sec-

tion 2.2.4). A sentence has a number of frames: Xk = {x1, . . . ,xT (k)} and
each frame is labelled at the model i and state s level:

Lkj = {(ij1, sj1), . . . , (ijT (k), sjT (k))} . (4.3)

Note that the notation has been relaxed so that the dependence on k is
implicit.

Given a transcription Lkj and the parameters set Λ, the log-likelihood
of a sentence Xk is

gj(Xk;Λ) = log p(Xk|Lkj,Λ) =

T (k)∑
t=1

log asj,t−1sjt +

T (k)∑
t=1

log bijtsjt(xt) , (4.4)

where t is the frame index, asj,t−1sjt is the transition probability between
states sj,t−1 and sjt, and bijtsjt(xt) is the state probability density function
given by a Gaussian mixture model (see Eq. 2.9) for model ijt and state
sjt. In the following, the notation is relaxed so that the dependence on j is
implicit for ijt and sjt.

We consider a scalar function that is related to the performance of the
system and thus it is referred to as performance function:

J(Λ) =
∑
k

f(Xk;Λ) , (4.5)

38 Discriminative Training of Subword Detectors

where f() is a scalar function that measures the performance of the system
for one sentence. This function will be determined by the specific discrimi-
native method that is considered. However, in our work we have considered
discriminative methods that lead to performance functions of the following
form:

J(Λ) =
∑
k

f(g0(Xk;Λ), . . . , gN (Xk;Λ)) . (4.6)

4.1.3 Optimization Methods

An introduction to optimization methods in the context of discriminative
training can be found in [70, Section 1.5]. Growth Transformation (GT) is a
family of methods for parameter optimization. These methods are iterative
and estimate the new set of parameters Λn+1 using a transformation of the
actual set of parameters Λn:

Λn+1 = T (Λn) . (4.7)

This transformation has the property that the performance function grows
in its value unless Λn+1 = Λn. Examples of these re-estimation methods
are Expectation Maximization (EM) or the Extended Baum-Welch (EBW)
algorithm, which is focused towards the optimization of HMM parameters.
The advantages of EBW are monotone convergence and close-form parame-
ter updating formulae. However, GT-based methods require a performance
function with rational form and this leads to a more complex implementa-
tion.

GT-based methods are related to gradient optimization methods. In its
simplest form, a gradient-based method updates the parameters iteratively
following the following rule:

Λn+1 = Λn + α
∂J(Λn)

∂Λ
, (4.8)

where α is referred to as learning rate. The Generalized Probabilistic De-
scent (GPD) is a popular method from this family. More recently, other
methods like Quickprop or Resilient propagation have been proposed. Even
if these methods do not have the desirable monotone convergence property
of EBW, they can be easily implemented and in practice their performance
in discriminative training makes them a valid alternative to EBW.

4.1. Discriminative Training Methods 39

4.1.4 Gradient-Based Optimization of HMMs and Filter-

banks

In this thesis we have chosen gradient-based optimization because of its
simpler implementation. These methods require the computation of the
gradient of the performance function in each iteration. Considering Eq. 4.6
and the chain rule of multivariate functions we have that

∂J(Λ)

∂Λ
=

∑
k,j

∂f(g0(Xk;Λ) . . . gN (Xk;Λ))

∂gj(Xk;Λ)

∂gj(Xk;Λ)

∂Λ
. (4.9)

The first term will be dependent on the specific discriminative training that
is implemented, which determines the function f(). However, the second
term shows that the computation of the gradient of the log-likelihood with
respect to the parameters to optimize is common to all the methods that
we have considered. Therefore, in the rest of this section we will compute
this term for the parameters of interest.

In this work we have focused on the optimization of the HMMs and the
filterbank matrix in the MFCC feature extractor. In principle it is possible
to optimize the means, covariances, transition probabilities and mixture
weights in the HMMs. However, optimization of the means usually brings
most of the performance improvement. The gradient of the log-likelihood
with respect to μism can be obtained applying the chain rule of differential
calculus:

∂gj(Xk;Λ)

∂μism
=

∑
t

∂ log bitst(xt)

∂μism

=
∑
t

δkjtis
∑
m

cism · bism(xt)

bis(xt)
Σism

−1(xt − μism) , (4.10)

where m is the index for the mixtures in model i and state s and δkjtis
indicates that Lkj classifies frame xt as model i and state s. Mathematically
this can be written as

δkjtis =

{
1 if (it, st) = (i, s)
0 otherwise.

(4.11)

Note that only a subset of the training data is used for the training of μism.

There are a number of methods that have been proposed to train the fil-
terbank in the MFCC feature extractor. One possible option is to constrain
the optimization by assuming a parametric shape for the filters. However,

40 Discriminative Training of Subword Detectors

in this thesis we chose to represent the filterbank by a matrix H and train
each matrix element. The gradient of the log-likelihood with respect to H

can be obtained applying the chain rule of differential calculus:

∂gj(Xk;Λ)

∂H
=

∑
t

∂ log bitst(xt)

∂H

=
∑
t,m

citstm · bitstm(xt)

bitst(xt)

∂xt

∂H
Σitstm

−1(μitstm − xt) , (4.12)

where m is the index for the mixtures in model it and state st. Note that in
this case all the frames in the training data are used to train the coefficients
of the filterbank matrix.

The gradient of the feature vector with respect to the filterbank matrix
can be computed as follows. Firstly, we could divide xt, Σ

−1 and μ into
static cepstrum, first derivative and acceleration parts:

xt =

⎡
⎣ctdt

at

⎤
⎦ μ =

⎡
⎣μc

μd

μa

⎤
⎦ Σ−1 =

⎡
⎣Σ−1c 0 0

0 Σ−1d 0

0 0 Σ−1a

⎤
⎦ , (4.13)

where ct is the cepstral vector, dt is the vector of first time derivatives and
at is the vector of second order time derivatives, etc. In addition, we have
considered that the covariance matrix Σ−1 is diagonal and, therefore, Σ−1c ,
Σ−1d and Σ−1a are diagonal matrices as well. In addition, we have denoted
by 0 a matrix with all its entries being zero, i.e. a null matrix. Further, in
Section 2.4 we saw that the vector of cepstral features is computed as

ct = D log yt , (4.14)

where

yt = Hzt . (4.15)

The method to compute the gradient of xt with respect to H is general.
However, for simplicity let us consider that the first order time derivatives
are computed as

dt = ct+2 − ct−2 , (4.16)

and the second order time derivatives as

4.1. Discriminative Training Methods 41

at = dt+2 − dt−2 . (4.17)

Section B.1 shows that the gradient of the observation vector xt with respect
to the filterbank matrix H is given by the following expression:

∂xt

∂H
Σ−1(μ− xt) = (wc

t ./yt)z
T
t + (wd

t ./yt+2)z
T
t+2 − (wd

t ./yt−2)z
T
t−2+

(wa
t ./yt+4)z

T
t+4 − (wa

t ./yt−4)z
T
t−4 − 2(wa

t ./yt)z
T
t

(4.18)

where the vectors wc
t , w

d
t and wa

t are defined as

wc
t =DTΣ−1c (μc − ct)

wd
t =DTΣ−1d (μd − dt)

wa
t =DTΣ−1a (μa − at) .

(4.19)

Note that the optimization of the filterbank matrix should be con-
strained to positive values. When constrains are in the form of inequalities
a common method for optimization is to transform the related variables to
fulfill the constrain. In our case we have that hij > 0 and then we could
transform h̃ij = exp(hij). Given that the exponential function is mono-
tonically increasing, the optimization of one variable corresponds to the
solution of the other. As mentioned in [70], it is important to notice, how-
ever, that there could be sensitivity problems in the solution when using
this technique.

In this thesis we have chosen Resilient propagation (RPROP) [72] to
optimize the performance function. However, note that the proposed frame-
work is independent of the specific gradient-based optimization algorithm.
For completeness, the following describes this algorithm. RPROP is an ef-
ficient learning scheme that adapts the weight step directly based on local
gradient information. Each parameter that is trained with RPROP has an
individual update value Δ. If the derivative of the performance function
changes sign, a local optimum was jumped over and the update-value is
decreased by α−. If the derivative of the performance function maintains
the sign, the update-value is increased by α+. The parameter to train is
modified according to the sign of the derivative, with the exception that
if a local optimum has been jumped over the previous parameter value is

42 Discriminative Training of Subword Detectors

reverted. Algorithm 4.1 describes one training iteration for any parameter
Λ. The sign change in the sign function with respect to [72] is because in
this thesis we are interested in maximizing the performance function.

Algorithm 4.1 Resilient propagation (RPROP) algorithm

if ∂J
∂Λ

(n− 1) · ∂J
∂Λ

(n) > 0 then

Δ(n) = min(Δ(n− 1) · α+,Δmax)

ΔΛ(n) = sign(∂J
∂Λ

(n)) ·Δ(n)

Λ(n+ 1) = Λ(n) + ΔΛ(n)

else if ∂J
∂Λ

(n− 1) · ∂J
∂Λ

(n) < 0 then

Δ(n) = max(Δ(n− 1) · α−,Δmin)

Λ(n+ 1) = Λ(n)−ΔΛ(n− 1)
∂J
∂Λ

(n) = 0

else if ∂J
∂Λ

(n− 1) · ∂J
∂Λ

(n) = 0 then

ΔΛ(n) = sign(∂J
∂Λ

(n)) ·Δ(n)

Λ(n+ 1) = Λ(n) + ΔΛ(n)

end if

In the rest of this chapter we present two discriminative training tech-
niques that can be applied to subword detectors. Recall from the beginning
of this section that the first term in Eq. 4.9 is specific to each training al-
gorithm and this is computed in the next sections for each method. The
second term is, however, common to all methods and is given by Eqs. 4.10
for the HMM means, and by 4.12 and 4.18 for the filterbank matrix.

4.2 Minimum Classification Error Training

The motivation of MCE [27, 73, 74] is to build a performance function based
on the how a classifier operates. Specifically, the decision rule of the clas-
sifier is approximated with a smooth function of the system parameters Λ

and the training data. The performance of the classifier is then estimated
as a soft count over the correct decisions in the training set. Optimization
of the performance function leads to an increase in the number of correct
decisions in the classifier. MCE can be applied at the level of different
speech units, for example phone, word or sentences. In our work we build
detectors that are based on phone HMMs and, therefore, it may seem log-
ical to build a performance function that counts the number of correctly

4.2. Minimum Classification Error Training 43

recognized phones. However, we have focused on detection of subwords in
continuous speech and it has been reported that in this context string-level
MCE (also referred to as MCE at the sentence level or embedded MCE) is a
more effective way of improving phone accuracies [73]. A simple explanation
is that improving the number of correct sentences improves indirectly the
number of correctly recognized phones and, in addition, in this method the
phone models are modified taking in consideration the sorrounding phones,
which is critical in continuous speech recognition. Therefore, we have chosen
string-based MCE as the basis for the subword detection training method.
It is important to notice that even if string-based MCE is more effective than
phone-based MCE, there is a mismatch between the performance function
(sentence accuracy) and the evaluation performance (phone accuracy). In
the rest of the section we present the MCE framework and discuss the mod-
ifications of the standard method in order for it to be applied to subword
detector training.

One of the keys of MCE training is to express in a smooth function the
decision rule implemented by the classifier. If we ignore the language model
we have that the decision rule in the classifier is

L(Xk) = Lkj ⇐⇒ gj(Xk;Λ) = max
u

gu(Xk;Λ) . (4.20)

The operation of the classifier can be approximated with a smooth func-
tion refered to as classification measure d(Xk;Λ). In this thesis we have
considered the same function as in [27], which has the following form

d(Xk;Λ) = g0(Xk;Λ)−
1

η
log

{
1

N

N∑
j=1

exp
[
gj(Xk;Λ) · η

]}
, (4.21)

where η is a positive number and the discrepancy in sign with respect to [27]
is because they considered a misclassification measure. There are, however,
other possible functions that can be used as classification measure [70].
When η → ∞ the second term approaches maxj=1:N gj(Xk;Λ) and then
d(Xk;Λ) > 0 means a correct decision. For smaller values all the segmenta-
tions are taken into consideration resulting in a non-zero decision threshold.

The classification measure d(Xk;Λ) can be embedded into a smoothed
zero-one function. Far from the threshold of the zero-one function correct
decisions will have a near unity value and errors will have a near zero value.
In this work with have considered the sigmoid function:

sigm
[
d(Xk;Λ)

]
=

1

1 + exp
[
− γd(Xk;Λ) + θ

] . (4.22)

44 Discriminative Training of Subword Detectors

where the values of θ and γ determine the threshold and, therefore, these
parameters should be optimized during training. Further, the performance
function is defined as

J(Λ) =
∑
k

sigm [d (Xk;Λ)] , (4.23)

which is a soft count of the correctly classified sentences in the training set.

We need to compute the gradient of J with respect to the system pa-
rameters Λ. Applying the chain rule of differential calculus we obtain the
following expression:

∂J(Λ)

∂Λ
=

∑
k

sigm′[d(Xk;Λ)]
∂d(Xk;Λ)

∂Λ
. (4.24)

Further, the gradient of the classification measure with respect to the pa-
rameters is given by

∂d(Xk;Λ)

∂Λ
=

N∑
j=0

βj(Xk;Λ)
∂gj(Xk;Λ)

∂Λ
, (4.25)

where βj(Xk;Λ) is defined as

βj(Xk;Λ) =

{
1 if j = 0

− exp[gj(Xk ;Λ)·η]
∑N

i=1
exp[gi(Xk;Λ)·η]

otherwise.
(4.26)

Finally, recall from Section 4.1.4 that the gradient of the log-likelihood with
respect to the HMM model means and the filterbank matrix is given, re-
spectively, by Eqs. 4.10, 4.12 and 4.18.

4.2.1 MCE Training for Detectors

The theory derived in the previous section is used to train the model means
and the filterbank matrix to increase the number of correctly classified sen-
tences (see Eq. 4.23). Recall that this improvement in sentence accuracy
improves indirectly the overall phone accuracy but not necessarily the de-
tector performance [13]. Moreover, if we applied the standard MCE training
to the proposed subword detector structure, there would be no difference
between detectors. That is of course considering that the same initial values
in the optimization for the models and the filterbank in all detectors.

4.2. Minimum Classification Error Training 45

Therefore, the standard string-based MCE training method was mod-
ified so that it can be applied to training of subword detectors. In our
modified MCE training for detectors the frames that are used to train the
means and filterbank matrix are a subset of the frames that would be used
in the standard MCE method. In addition, this subset depends on the de-
tector class c. In the standard method we train μism with all frames that
belong to class i and state s in at least one of the N+1 sentences. However,
in our modified MCE training for the detector for target class c it is required
that in addition those frames belong to class c in at least one of the N + 1
hypotheses. Note that this makes no difference when training the model for
the target class μcsm. In other words, the means in the anti-class models,
μism, i 	= c, are trained with a fraction of the data, while the means of the
class model μcsm are trained as in the standard MCE training. Applying
this modification to Eq. 4.10 leads to the following expression:

∂gj(Xk;Λ)

∂μism
=

∑
t

δkjtis · δktc
∑
m

cism · bism(xt)

bis(xt)
Σism

−1(xt − μism) ,

(4.27)

where δkjtis is given by Eq. 4.11 and δktc indicates whether there exists one
Lkj that classifies frame xt as the target class c. Mathematically this can
be written as

δktc =

{
1 if ∃ j : it = c
0 otherwise.

(4.28)

Similarly, applying the modification to Eq. 4.12 leads to

∂gj(Xk;Λ)

∂H
=

∑
t

δktc
∑
m

citstm · bitstm(xt)

bitst(xt)

∂xt

∂H
Σitstm

−1(μitstm − xt) .

(4.29)

Figure 4.1 shows and example where two frames, [x1,x2], are classified
as L0 = [c1, c2] and L1 = [c2, c3] by transcriptions 0 and 1, respectively.
To make it simpler, states are not considered. Consider the training of μ1,
μ2 in the detector for c1. In the standard embedded MCE training, μ1

would be trained with x1, and μ2 would be trained with x1 and x2. In the
modified MCE training for detectors x2 is not classified as c1 (the target
class) in any segmentation. Therefore, μ1 is trained with x1 as before, but
μ2 is now trained only with x1.

46 Discriminative Training of Subword Detectors

Figure 4.1: Example: two transcriptions and two frames.

The motivation for this modification is to focus the training effort in
those frames that present confusability between class and anticlass while
avoiding frames with high confusability within the anti-class. This is bet-
ter understood considering the analysis in [73, Section 5.3.1], where it was
stated that “the (string-based MCE) optimization will focus on the differ-
ences between correct and recognized strings: the incorrectly recognized
phoneme models will be pushed away and the correct models will be pulled
closer. Thus, implicitly, it seems that string-level learning focuses on im-
proving phone accuracy”. However, there are two important issues to con-
sider. Firstly, our method probably weakens the connection between the
optimization method and the optimality of the performance function J .
Secondly, note that there is not a direct relationship between the optimality
of J and the optimality of any of the detection performance criteria that
were discussed in Section 3.3.

The steps followed in each iteration n of this detector training are de-
scribed in Algorithm 4.2. The first step is the extraction of new features
using the filterbank matrix computed in the previous iteration. After that
an N-best list is generated using the new features and the set of model
means computed in the previous iteration. The 1-best transcription Lk1 is
aligned with the correct transcription Lk0 to compute the detection score,
for example F-score or Ac, as described in Section 3.3. We can denote the
detection scores for transcriptions Lkj as Skj and then the scores for the
1-best transcription are referred to as Sk1. Note that the score computation
is not a requirement of the detector training itself, but it can be used to
find the best training iteration. The next step is to generate Viterbi state
alignments for the N-best list and the correct transcription, that is to gen-
erate Ln

kj. Further, the gradients of J with respect to the means and the
filterbank matrix are computed with Eqs. 4.24, 4.27 and 4.29. The final
step is to apply Algorithm 4.1 to compute the filterbank matrix and the
HMMs for the next iteration. This is repeated until the algorithm reaches
the nmax iteration or some performance condition is fulfilled.

4.3. Minimum Detection Error Training 47

Algorithm 4.2 Modified MCE training for subword detectors.

for n = 1 : nmax do

MFCC extraction: Hn ⇒ Xn

N-best segmentation

Evaluation: Sk1

Viterbi state alignment: Ln
kj

Eqs. 4.24, 4.27 and 4.29

RPROP: Hn+1 and μ
n+1

end for

4.3 Minimum Detection Error Training

In this section we present Minimum Detection Error (MDE) training, which
is the application of the MPE framework [26, 75] to detection of subwords.
MPE optimizes the parameters of a recognizer to improve the overall phone
accuracy. Specifically, a performance function is built that estimates the
expected phone accuracy on the training set as a function of the model
parameters. However, the MPE framework is independent on the specific
evaluation measure that is used in the performance function.

The key idea in MDE is the generalization of the MPE framework in or-
der to optimize any measure. Specifically, in this thesis we use MDE to train
subword detectors to optimize a detector evaluation measure, for example
those presented in Section 3.3. Therefore, the performance function J in
MDE estimates the expected detector score on the training set as a function
of the detector structure parameters Λ:

J(Λ) =
1

K

∑
k

S̄k(Λ) , (4.30)

where S̄k(Λ) is the estimated expected detection score of sentence k given
the current set of parameters Λ and K is the total number of sentences. We
estimate this expectation using the set of transcriptions {Lkj}

N
j=0:

S̄k(Λ) =
∑
j

P (Lkj|Xk,Λ)Skj , (4.31)

where Skj is the detection score for transcription Lkj. Note that given Lkj

and the reference Lk0, the score Skj does not dependend of Λ.

48 Discriminative Training of Subword Detectors

We need to compute the gradient of J with respect to the system pa-
rameters Λ. In the following we discard the constant 1

K in the performance
function for simplicity. Applying the chain rule of differential calculus:

∂J(Λ)

∂Λ
=

∑
k,j

Skj
∂P (Lkj|Xk,Λ)

∂Λ
. (4.32)

The posterior probability P (Lkj|Xk,Λ) can be expressed in terms of likeli-
hoods applying Bayes’ theorem:

P (Lkj|Xk,Λ) =
p(Xk|Lkj,Λ)P (Lkj)

p(Xk|Λ)
(4.33)

=
p(Xk|Lkj,Λ)P (Lkj)∑
u p(Xk|L

u
k ,Λ)P (Lu

k)
. (4.34)

In addition we can consider that

∂p(Xk|Lkj,Λ)

∂Λ
= p(Xk|Lkj,Λ)

∂ log p(Xk|Lkj,Λ)

∂Λ
(4.35)

= p(Xk|Lkj,Λ)
∂gj(Xk;Λ)

∂Λ
, (4.36)

where the first equality results from derivative of the logarithm and the
second one is obtained simply applying our notation for the log-likelihood,
that is gj(Xk;Λ) = log p(Xk|Lkj,Λ). In Section B.2 it is shown that

∂J(Λ)

∂Λ
=

∑
k,j

(Skj − S̄k(Λ))P (Lkj |Xk,Λ)
∂gj(Xk;Λ)

∂Λ
. (4.37)

It is important to notice that there are two approximations in our ap-
proach. Firstly, recall that the average performance S̄k(Λ) is an estimate
given that from all possible string sequences we only consider the correct
transcription and those with highest log-likelihood (given by the N-best list).
Secondly, the normalization factor p(Xk|Λ) in the posterior probabilities is
approximated as

p(Xk|Λ) ≈

N∑
j=0

p(Xk|Lkj,Λ)P (Lkj) (4.38)

for the same reasons as above. However, in practice we found that these
estimates were effective even when the number of considered hypotheses was

4.4. Summary 49

small, for example N = 10. Note that the proposed MDE framework could
use lattices instead of N-best lists, something which is common in state-
of-the-art implementations of MPE for large-vocabulary continuous speech
recognition tasks.

In principle, an advantage of MDE over the MCE-based method pre-
sented in the previous section is that it can be used to optimize directly
any chosen detection performance measure. Note that in the MCE-based
method the performance function J is not directly related to any detection
evaluation criterion and, therefore this method probably leads to subopti-
mal results. In addition, this also means that MDE is more flexible than
the MCE-based method because it can optimize detectors focusing on the
specific figure-or-merit of the application. For example, while recall is prior-
itized in detection-based ASR, other applications could prefer an optimized
F-score.

The steps in iteration n in the MDE algorithm are shown in Algo-
rithm 4.3. The main difference with respect to Algorithm 4.2, apart from
the equations, is the fact that MDE requires the computation of the detec-
tion scores Skj for all transcriptions Lkj. The first step is the extraction of
new features using the filterbank matrix computed in the previous iteration.
After that an N-best list is generated using the new features and the set of
model means computed in the previous iteration. All transcriptions Lkj are
aligned with the correct transcription Lk0 and the scores Skj are computed.
As in the previous method, Sk1 can be used to choose the best iteration.
The next step is to generate Viterbi state alignments for the N-best list and
the correct transcription, that is to generate Ln

kj. Further, the gradients of
J with respect to the means and the filterbank matrix are computed with
Eqs. 4.37, 4.10 and 4.12. It should be emphasized that the formulae are ap-
plied without the modifications of Section 4.2.1. The final step is to apply
Algorithm 4.1 to compute the filterbank matrix and the HMMs for the next
iteration. This is repeated until the algorithm reaches the nmax iteration or
some performance condition is fulfilled.

4.4 Summary

In this chapter we focused on discriminative training methods for subword
detectors. Maximum Likelihood training does usually not lead to optimal
classification performance. This is because training data is often limited and
also because of the mismatch between the real distribution and the models
used in the classifier. By contrast, discriminative training methods esti-
mate parameters in order to optimize a function that is directly related to

50 Discriminative Training of Subword Detectors

Algorithm 4.3 Minimum Detection Error training for subword detectors.

for n = 1 : nmax do

MFCC extraction: Hn ⇒ X

N-best segmentation

Evaluation Skj , ∀k, j.

Viterbi state alignment: Ln
kj

Eq. 4.37, 4.10 and 4.12

RPROP: Hn+1 and μ
n+1

end for

the performance of the classifier. Three commonly used methods are Max-
imum Mutual Information (MMI), Minimum Classification Error (MCE)
and Minimum Phone Error (MPE). MCE builds a performance function
that embeds the decision rule implemented by the classifier. In MPE a per-
formance function is built that estimates the expected phone accuracy on
the training set as a function of the model parameters.

After that, we presented our mathematical framework for discrimina-
tive training of the parameters in a system. We saw that there are two
main families of optimization methods: Grow Transformation and gradient
techniques. Specifically, in this work we use RPROP, a gradient optimiza-
tion method, which adapts the learning rates heuristically. The training
algorithms that we have considered require the computation of the gradient
of the log-likelihood with respect to the parameters to optimize. In this
thesis we want to optimize the HMM means and filterbank matrix in sub-
word detectors and, therefore, we started by computing the gradients of the
log-likelihood with respect to these parameters.

We proposed two methods for discriminative training of subword detec-
tors. The first training technique is based on MCE. In this method the
frames used to train a given parameter are a subset of the frames that the
standard method would use to train the same parameter. This is because
we exclude those frames that potentially will not improve discrimination
between class and anti-class. The second training method is Minimum De-
tection Error, which adapts the MPE framework to train subword detectors.
In this method any detector performance evaluation criterion, for example
the class accuracy or F-score, can be optimized directly.

Chapter 5

Detection-Based ASR

Subword detectors are useful within a number of applications. In this the-
sis we have focus on applying discriminatively trained subword detectors
in detection-based ASR (DBASR) systems. Therefore, this chapter intro-
duces this speech recognition paradigm. The outline of the chapter is as
follows. Firstly, we describe the motivation behind the DBASR paradigm
in Section 5.1. After that, the bank of detectors and the linguistic merger
are discussed, respectively, in Sections 5.2 and 5.3. Finally, in Section 5.4
we propose a DBASR systems structure based on the subword detectors
presented in Chapter 3 and the discriminative training methods described
in Chapter 4.

5.1 The Detection-Based ASR Paradigm

One of the new speech recognition paradigms that has been suggested is
DBASR. In [1] it was argued that the standard approach to ASR, which was
reviewed in Chapter 2, is data driven and does not use all available knowl-
edge about speech or language. In addition, it is not straightforward how
to use knowledge sources in the standard approach (“knowledge-ignorant
modeling”).

There are a number of elements in a standard ASR system that apply
speech knowledge. Firstly, we discussed in Section 2.4 how the MFCC
extractor modifies the short-term spectrum based on properties of human
hearing. Secondly, the commonly used left-to-right HMM for speech units
is motivated by the quasi-stationarity of speech and this is a consequence
of how humans produce speech. Thirdly, modelling of speech basic units
such as phones requires phonetic knowledge. Further, the language model
is based on phonetic, lexical and syntactic information.

51

52 Detection-Based ASR

Figure 5.1: Block diagram of a DBASR system.

However, there are other knowledge sources that are not used in standard
ASR systems. These speech attributes are mainly articulatory features of
the speech signal, but they also include characteristics of the speaker (gen-
der, accent, etc.) and the speaking environment. Recall that articulatory
features provide information on the place (which articulator) and manner of
production of the speech signal. A set of phones could then be represented
by their values in the articulatory feature space. This would have the advan-
tage that some phones with very different spectral properties would differ
in few articulatory features, as discussed in [76]. For example /p/ and /b/
differ only in the presence of voicing.

A block diagram for the structure of a DBASR system is shown in Fig-
ure 5.1. The input to the system is the speech signal and the output is a
hypothesized string of linguistic units, just as in a standard ASR system.
The bank of detectors is built to find information about a set of intermedi-
ate classes. Specifically, each detector tries to find one of the intermediate
classes in the speech signal and it outputs some kind of score for each frame
or segment. The output from the bank of detectors is then processed by
a linguistic merger and a sequence of linguistic units is hypothesized. In
principle, the linguistic units in the output could be, for example, words,
syllables or phones. However, in this thesis we have only considered merg-
ers that output phones. If higher order units were required, they could be
found, for example, with a dictionary and Viterbi decoding.

An important assumption in DBASR is that improving the detectors in
the recognition system should lead to a better system performance. The
detectors could be optimized by incorporating class specific knowledge. For
example, vowel segments are known to be stable and thus longer windows
could be used in the feature extractor of the detectors for vowel classes.

5.2. Bank of Detectors 53

Another example is the use of acoustic parameters related the burst duration
in order to discriminate stop sounds [77]. However, it is also possible to
optimize the detectors using discriminative techniques.

5.2 Bank of Detectors

The structure of a DBASR system is flexible and allows a variety of detec-
tor alternatives. We have considered the detection framework described in
Chapters 3 and the discriminative training methods presented in Chapter 4.
In this section we discuss the choice of intermediate classes and, after that,
some important issues in the output of the bank of detectors.

5.2.1 Intermediate Classes

A major issue when designing a DBASR system is how to choose the in-
termediate classes. The problem is close to the one of selecting appropriate
basic speech units in a standard ASR system, as described in [53, p. 428].
The following subsections present some possible intermediate classes for
a DBASR system: words, phones, syllables, acoustically derived subword
units and articulatory features.

There are two points somehow related that should be considered. Firstly,
it would probably be an advantage if there was a unique map between the
intermediate classes and the linguistic units output by the merger. The
detector structure that we have considered outputs class scores with contin-
uous values and, therefore, it should be possible for the merger to separate
linguistic units that share the same map to intermediate classes. However,
having a unique map would probably offer more information redundancy
and reliability. Secondly, in a DBASR system it is possible to combine
different types of intermediate classes. For example, in [20] the bank of
detectors had both articulatory feature and phone detectors. As in the pre-
vious case, more detectors in the system means in principle more reliability
and redundancy. However, the task would probably be more complex for
the linguistic merger. This is further discussed in Section 5.3.

Words

The chosen unit should be accurate, trainable and generalizable. Whole
word models have the advantage that the inter-phonemic context depen-
dence and coarticulation are incorporated in the model explicitly. However,
in a general-purpose large-vocabulary ASR system whole-word models are
not used as basic acoustic units. The reason is that the number of words is in

54 Detection-Based ASR

general too high to train even context-independent models. Therefore sub-
word units are commonly used in large-vocabulary systems. For the same
reasons, words are only suitable as intermediate classes in small-vocabulary
DBASR systems.

Phones

A popular subword unit is the phone. The number of phones is much
smaller than words and they all (at least monophones) occur so frequent
that they are well trained. Phones are also generalizable because any word
can be derived from phones by using a lexicon. An important practical
advantage when using phonemes is the existence of a number of databases
transcribed at the phonemic level. However context-independent phones
are not very accurate because they overgeneralize the variability brought
by coarticulation. If there is enough training data, a possible solution is
to differentiate allophones according to their left and right neighbor phones
(triphones).

Syllables

Syllables capture some coarticulation effects and they are more trainable
than words. They can be a good compromise between words and phonemes
in some languages such as Japanese, where there is small number of units.
In other languages the number of syllables is, however, too high, for example
over thirty thousand in English.

Acoustically Derived Subword Units

While the previous subword units were linguistically motivated, it is also
possible to work with acoustically derived subword units (ASWUs) [78, 79].
These units are usually defined and found based on a pure acoustically-
based clustering criterion. Therefore, if the detectors are based on HMM and
acoustic features such MFCCs, ASWU should in principle be easier to detect
than linguistically motivated units. During detector training transcriptions
at the ASWU level are needed. However, ASWUs do not have a one to one
mapping to linguistic units and, therefore, a lexicon is required. During the
lexicon design phase the Viterbi algorithm is usually applied in order to find
an ASWU pronunciation for each word realization. Thus, many different
pronunciations are generated for the same word. In the final lexicon the
pronunciation that is used could be, for example, the one with maximum
average log-likelihood over all realizations of the word.

5.2. Bank of Detectors 55

Articulatory Features

Articulatory features are speech features that are based on knowledge about
human production and perception of speech. They are also referred to as
attributes of the speech signal, distinctive features, phonological features or
acoustic-phonetic features. Articulatory features have been investigated in
connection with ASR, which was justified in [80] by the fact that ”(1) such
models should help account for coarticulation effects, (2) certain aspects
of articulation can be more robustly detected than others, and (3) several
classifiers, each with a small number of classes, may make better use of
sparse training data than a single phone classifier”.

Articulatory features have been used as intermediate classes in many
DBASR systems [81]. There various articulatory feature sets based on dif-
ferent linguistic theories. For example, the Sound Pattern of English (SPE)
[82] feature set and the multi-valued phonological feature set [83] are based
on how and where the sounds are produced.

Very few databases are transcribed at the articulatory feature level and,
therefore, it is common to work with a database transcribed at the phoneme
level and a mapping that determines which articulatory features should be
active for a given phoneme. There are, however, two points to consider.
Firstly, it is important to notice that this is not a one-to-one mapping.
Secondly, articulatory features can be asynchronized with the phoneme seg-
mentations, they can be missing or even be present when they are not
supposed to, for example because of coarticulation effects. Therefore, the
resulting transcription is far from correct. Articulatory feature asynchrony
and compensation methods were studied in [84].

5.2.2 Other Considerations

There are two important issues that appear when we consider the output
of a bank of detectors. Firstly, more than one detector class can be ac-
tive simultaneously or at least with some temporal overlap. For example,
a given speech segment could be classified as the detection class by two
different detectors. Intermediate classes can be exclusive and, therefore, we
need a merger capable of considering the information from all the detec-
tors to make an optimal decision. Secondly, the segmentations generated
by different detectors will generally be asynchronized. This could be due
to differences in window sizes in the feature extractors, segment durations,
HMM parameters, etc. For example, in this thesis the segment-based struc-
ture presented in Section 3.2 is trained discriminatively for each detection
class. The resulting models and filterbanks are different from each other

56 Detection-Based ASR

and, therefore, the segment borders and labels will in general be different
as well.

In the classical “beads on a string” paradigm [85, 79] only one class can
be active at a given time (frame) and there is no possibility of overlap. This
paradigm is to some extent suitable to describe some intermediate classes,
for example words, syllables or phones, but not articulatory features. This is
because when humans produce speech the articulators achieve their targets
asynchronously. In this sense, the possibility of overlap is an advantage of
the detection-based paradigm. However, it also requires a complex merger
capable of processing all the detector outputs and generating a single string
of phonemes. The following section discusses a number of strategies to
design the linguistic merger in a DBASR system.

5.3 Linguistic Merger

The role of the linguistic merger is to use the information from the bank of
detectors to hypothesize a sequence of linguistic units, for example phones
or words. Basically, the operation of the merger can be summarized in three
steps. Firstly, the information from the bank of detectors is processed to
generate a suitable input to the linguistic merger. Secondly, the input is
mapped to scores for the chosen linguistic unit, which in our case is phones.
Finally, an optimal sequence of linguistic units is found using the output
scores. This can be done directly or with the generation of a lattice or
N-best list as an intermediate step. The linguistic merger is commonly
trained independently from the detectors, but training the detectors and
the linguistic merger jointly can bring performance improvements [86, 87].

The structure of the merger is dependent on the choice of detectors.
In this thesis we focus on segment-based detectors but, for completeness,
we will also give a short overview of a merger choice for the frame-based
detection case.

5.3.1 Merger for Frame-Based Detectors

In this case the output scores from each detector can be grouped together
in vectors for every frame. Recall from Section 3.1.2 that frame-based de-
tectors usually output posterior probabilities. If other scores are generated,
for example likelihood, it is possible to process them to generate posterior
scores. In addition, it may be necessary to normalize the detector scores.

If the intermediate classes are phones, a Viterbi decoder can be used to
generate the optimal sequence of linguistic units. In the case where other

5.3. Linguistic Merger 57

Figure 5.2: Block diagram of a hybrid MLP/Viterbi linguistic merger.

intermediate classes are chosen, for example articulatory features or ASWU,
the intermediate class scores need to be mapped to phone scores before the
Viterbi decoder.

Typically a Multi-Layer Perceptron (MLP) is used to process frame-
based detector outputs. The detector scores (likelihood, posteriors or oth-
ers) are normalized and mapped to phone or phone-state posteriors by the
MLP. Further, a Viterbi decoder can be used to generate the best path. In
this case, the merger results in the well known hybrid MLP/Viterbi [88].
Figure 5.2 shows a block diagram for this type of merger.

However, there are other possible merger structures. Conditional ran-
dom fields were used to combine the output of MLP-based phone and artic-
ulatory feature detectors in [89]. Another possibility is to use HMMs with
the detector scores as input features. For example, phone HMMs could be
trained on the scores generated by a frame-based bank of detectors with
articulatory features as intermediate classes, which would probably require
a decorrelation stage as preprocessing. The final phone sequence would be
decoded as in standard ASR systems, which was described in Section 2.2.4.
In this case, the detector bank can be regarded as an advanced feature ex-
tractor followed by a standard ASR system. This method was followed in
[76], where a triphone HMM-based large-vocabulary continuous speech rec-
ognizer was trained with knowledge-based features. The feature extractor
in this case was a bank of articulatory feature detectors that were built with
neural network and that had MFCCs as input features. The bank of detec-
tors was followed by a Karhunen-Loeve transform in order to decorrelate
the features.

5.3.2 Merger for Segment-Based Detectors

In the case of segment-based detectors, we have considered two possible
strategies for the design of the linguistic merger. In the first method the
merger works directly at the segment level. In this case, detector segment
scores and segmentations are generated in the detector bank and then an

58 Detection-Based ASR

Figure 5.3: An example of output segmentation and scores.

algorithm finds the most likely phone sequence based on them. HMM-based
detectors can generate a likelihood score for both the class and the anti-
class models, which were described in Section 3.1.3. There are number of
strategies if a single score is required for each segment. Firstly, it is possible
to use only the class likelihood as segment score. Secondly, both likelihoods
can be combined into a segment score through for example likelihood ratio,
linear discriminant analysis, MLP, etc. Another possibility would be to use
the segmentation output by the detector but to compute segment scores
with a method independent of the class and anti-class models.

When the merger works directly at the segment level, the task of merg-
ing the information provided by the detectors is in general complex. This
is because the bank of detectors can output asynchronous streams of in-
formation. Figure 5.3 shows an example of the segmentations and scores
output by four detectors, where the segments start and end times are asyn-
chronized and the number of segments is different. Merging asynchronous
detector outputs is a difficult task and a research effort in this direction is
still required. As far as we know, there are no experiments reported where
the segment scores of a bank of HMM-based detectors have been directly
merged into linguistic units. However, if the segmentation in the detectors
is synchronized the task is simplified to some extent. In this case a possible
strategy would be to group segment scores from all detectors into a vector
and an MLP could generate phone posteriors. It would not be necessary to
use a Viterbi decoder to generate a phone sequence because the MLP would
already work at the segment level. Further, the synchronous segmentation
in the detectors would not be modified by the MLP merger.

The second strategy for the linguistic merger is to generate scores at

5.4. Proposed DBASR System 59

the frame level from the detector segment scores. The resulting frame-
based detector scores can be further processed as described in Section 5.3.1.
For example, conditional random fields were used to merge HMM-based
detectors in [14, 19, 20]. A simple method for deriving frame scores from
the segment is to repeat the score of the segment, optionally normalized
over the number of frames in the segment. Note that if the segmentation in
the detectors is synchronized, this method will lead to identical frame-based
vectors within a segment. Alternatively, in the case of HMM-based detectors
Viterbi alignment could be used to find the frame-based state sequences
and, therefore, a unique score for each detector state or frame could be
generated. This method would increase the resolution because there would
be less frames with the same score. However, even if the likelihood of
the optimal state sequence is a good approximation to the total likelihood
(Viterbi approximation), frame likelihoods obtained with this method show
a big variation within a segment. Therefore, these frame scores could be
smoothed by some method, for example median filtering. If the likelihood
of both the class and anti-class are used to generate the segment score, for
example with a likelihood ratio, we could use the state alignment of the
anti-class as well. However, this would further increase the noisiness in the
scores. In that case, a possible solution can be to use the state or frame
likelihood for the class, and the segment likelihood for the anti-class. Other
possible strategies were described in [16].

In addition, the resulting frame-based vectors could be augmented with
time derivatives. In the case where all frames in a segment have been
assigned an identical score there are two things to consider. Firstly, the
derivatives should probably span several segment durations. Secondly, af-
ter including the derivatives, there would be fewer identical vectors because
vectors corresponding to frames in the border would have different deriva-
tives.

5.4 Proposed DBASR System

We propose a system where the detectors for the intermediate classes are
built with the structure proposed in Section 3.2 and optimized with the
subword detector training algorithms from Chapter 4, i.e. MCE-based or
MDE training. In this thesis we have considered detectors for phones and
articulatory features, but it would be possible to detect other intermediate
classes, for examples syllables. Table 5.1 shows as an example four of the
articulatory features (AFs) that we have considered and the phones where
they are active. Appendix A describes in detail the phone and articulatory

60 Detection-Based ASR

Table 5.1: Examples of articulatory features

AF Phones

Vocalic aa, ae, ah, ao, eh, el, er, ey, ih, iy, l, ow, r, uh, uw, ux

Consonantal b, bcl, d, dcl, dh, dx, el, em, en, eng, f, g, gcl, k, kcl, l,
m, n, ng, nx, p, pcl, r, s, sh, t, tcl, th, v, z, zh

Nasal em, en, eng, m, n, ng, nx

Low aa, ae, ao, hh, hv, q

feature sets that we have considered and includes the complete mapping.

Figure 5.4 presents a block diagram of the proposed system. In this
system each detector finds a segmentation for the speech signal and com-
putes the likelihood of the class and anti-class models for each segment. The
segment score is the log-likelihood ratio computed as

LLR = LLc − LLac , (5.1)

where LLc and LLac are, respectively, the log-likelihood for the class and
the anti-class models. Each frame is given the score of the corresponding
segment, normalized by the number of frames in each segment. The frame
scores from all detectors are grouped in a vector u. Further, this vector u

is augmented with first and second order derivatives, respectively v and w.
The first order derivatives are computed as

vt = ut+L − ut−L , (5.2)

and similarly for the second order derivates. The parameter L is chosen so
that the time derivative can include frames in other segments.

The linguistic merger consists on an MLP that generates phone pos-
terior probabilities from the vector of detector scores appended with time
derivatives. The final element is a Viterbi decoder that finds an optimal
phone sequence.

5.5 Summary

This chapter introduced detection-based ASR (DBASR), one of the possi-
ble fields where subword detectors can be applied. This is an alternative
paradigm for ASR where speech knowledge sources can be included in a

5.5. Summary 61

Figure 5.4: Proposed structure for detection-based ASR system.

system in the form of detectors. These knowledge sources are mainly artic-
ulatory features, which are related to the place (articulators) and manner
in which the speech signal is produced. DBASR systems have two main
parts: a bank of detectors for some intermediate classes and a linguistic
merger. The most common intermediate classes are articulatory features
but there are other possibilities, for example acoustically derived subword
units, phones, syllables or words. The bank of detectors analyzes the speech
signal and generate scores for the intermediate classes. The linguistic merger
maps these scores to phone scores and finds an optimal sequence of phones.
This is commonly done in three steps: preprocessing of the detector out-
puts, generation of linguistic unit scores and decoding. We have proposed a
DBASR system structure where a bank of HMM-based detectors generate
segment scores. Further, these scores are processed by a merger based on
an MLP and a Viterbi decoder to generate a final phone hypothesis.

62 Detection-Based ASR

Part II

Experiments

63

Chapter 6

Experimental Settings

In this second part of the thesis we present experiments with the subword
detectors that we have designed. Chapters 7 and 8 describe the experiments
on optimization of subword detectors for phones and articulatory features
using, respectively, the MCE and MDE training methods. Parts of this work
were also presented in [47, 48]. In Chapter 9 we used the optimized detectors
in detection-based automatic speech recognition (DBASR) systems.

Most of the experimental settings are common in those experiments
and, therefore, we have chosen to present them in this chapter. Firstly, we
describe the database that was chosen for the experiments. Secondly, we
present the sets of intermediate classes that we considered. After that the
acoustical parameterization is described. Finally, the chosen HMM struc-
ture is described, as well as the standard filterbank, discriminative training
parameters and other important details on the experimental setup.

6.1 Database

Experiments were performed on the TIMIT acoustic-phonetic continuous
speech corpus [90]. We chose this database because it is a well-known stan-
dard reference and it is labeled at the phoneme level. We used the designated
training set of 462 speakers (3696 sentences), that is excluding SA-sentences.
A development set of 50 speakers (400 sentences) was used for intermediate
experiments. Results are reported on the NIST defined core test set of 24
speakers (192 sentences).

65

66 Experimental Settings

6.2 Phone and Articulatory Feature Sets

The experiments with phone detectors were based on a set of 39 phonemes.
The manual TIMIT labelling consists of 61 acoustic-phonetic symbols. We
merged plosive closures and bursts and applied the standard mapping to 39
phones [91].

The articulatory feature detection experiments were based on a set of
20 features similar to Sound Pattern of English (SPE), for example vocalic,
strident, nasal, syllabic, etc. The articulatory features were derived by a
mapping from a set of 56 phonemes where closures were preserved, /jh/
and /ch/ were mapped to /zh/ and /sh/ respectively, and the diphthongs
were divided into a vowel and a glide. This is described in more detail in
Appendix A.

6.3 Parameterization

The acoustic parameterization consisted of 13 static MFCCs (including C0)
with their first and second order derivatives. The sampling frequency was 16
kHz, and frames were extracted every 10 ms with 25 ms Hamming window.
The filterbank was specific to each detector.

The standard filterbank had 26 triangular shaped filters where the center
frequencies and bandwidths were uniformly spaced according to the Mel-
scale (see Section 2.4 and Figure 7.1(a)). The total number of points in each
filter corresponds to the number of points in the linear frequency spectrum,
which was set to 201 points. This was a compromise between training
complexity and performance.

6.4 Experimental Setup

The next two sections present the experimental setup for, respectively, the
detection and recognition experiments. Figure 6.1 presents a block diagram
that explains how the detectors and systems in our experiments are built
for a given subword type (phones or articulatory features).

6.4.1 Detection Experiments

Baseline phone detectors were built using the standard filterbank and a
set of 39 maximum likelihood trained HMMs. For the articulatory feature
detectors we used a set of 56 HMMs. Figure 6.1 refers to the initial pa-
rameters as ΛINI. In each case, monophone HMMs were trained using the

6.4. Experimental Setup 67

phonemic transcription of TIMIT. The chosen HMM structure was 3 states
in a left-to-right configuration, which is standard for phoneme modelling.
The state output probability functions were GMMs with 10 mixtures and
diagonal covariance matrices.

Two experiments were performed in the MCE and MDE training of
subword detectors: F-score and class accuracy optimization. In each exper-
iment, three implementations of the detector training were tested:

1. Only means were trained, referred to as (μ).

2. Only filterbanks were trained, referred to as (H).

3. Both means and filterbanks were trained, referred to as (H,μ).

We can refer to these experiments as Score-Training(Implementation) , for
example A-MDE(H) denotes class accuracy optimization through MDE
training of the filterbank matrix H. Figure 6.1 shows how detectors are
built for a given implementation of each detector training type. For exam-
ple, for MDE training, the initial parameters ΛINI are trained with MDE
for each detector. This leads to an optimized parameter set ΛMDE for each
detection class. Each of these sets is then used to build an MDE-optimized
detector.

Given the large number of detectors, we have chosen to present a weighted
average detector performance. For the F-score we computed

F̄ =
∑
i

(Ni · Fi)/
∑
i

Ni (6.1)

and for the class accuracy

Āc =
∑
i

(Ni ·Ai)/
∑
i

Ni , (6.2)

where the index i refers to the class number and Ni is the number of class
segments.

In the implementation of discriminative trainings the initial detector is
the same as the corresponding baseline detector. In all cases, the number
of competing hypotheses N was set to 10. In addition, in the MCE imple-
mentation η was set to 15. The gradient optimization method was RPROP
and cross validation with the development set was used to select the best
iteration according to the the performance measure to optimize, i.e. class
accuracy or F-score.

68 Experimental Settings

The HTK Toolkit [92] was used for standard ML embedded training
of HMMs, generation of N-best segmentations, forced alignments, string
alignments, etc. Finally, the grammar was an unconstrained phone loop,
the language model used under training and testing was a 0-gram (uniform
model) and the insertion penalty was optimized on the development set.

6.4.2 Recognition Experiments

The banks of detectors in the DBASR systems were built with MDE-
optimized subword detectors. The following eight configurations were tried:

1. Phone detectors, A-MDE(H,μ).

2. Phone detectors, A-MDE(μ).

3. Phone detectors, F-MDE(H,μ).

4. Phone detectors, F-MDE(μ).

5. Articulatory feature detectors, A-MDE(H,μ).

6. Articulatory feature detectors, A-MDE(μ).

7. Articulatory feature detectors, F-MDE(H,μ).

8. Articulatory feature detectors, F-MDE(μ).

The lowest path in Figure 6.1 shows how these systems are built (note
that this figure does not make difference between phones and articulatory
features).

To compare the performance of these optimized DBASR systems, a num-
ber of baseline systems were designed. Firstly, three standard ASR systems
based on phone HMMs were built. These systems had the following config-
urations:

1. ML-trained HMMs and standard filterbank.

2. MCE-trained HMMs and MCE-trained filterbank (joint training).

3. MPE-trained HMMs and standard filterbank.

In the case of MPE optimization there was no performance improvement
when the filterbank was trained jointly with the HMMs. Therefore, we chose
the system where only the models were trained. Figure 6.1 refers to these
systems as Baseline ASR ML, Baseline ASR MCE and Baseline ASR MDE.

6.4. Experimental Setup 69

Secondly, three baseline DBASR systems were built where the detectors
were based on the ASR systems above. This means that in each baseline
DBASR system all segmentations are identical. However, the score compu-
tation is specific to each detector, as described in Section 5.4. Figure 6.1
refers to these systems as Baseline DBASR ML, Baseline DBASR MCE and
Baseline DBASR MDE.

The setup for the standard ASR systems was the same as described
in the previous section: 39 monophone HMMs with the same structure,
standard ML embedded training with HTK, ML models as starting point
for discriminative training, phone loop as language model, etc.

In all DBASR systems the MLP had 200 hidden nodes and 39 output
nodes. In early experiments we found that further increase in the number
of hidden nodes did not improve the system performance. The number of
inputs in the MLP was three times the number of detectors because time
derivatives were added to the LLR score vectors from the detectors. The
MLP was trained with backpropagation on a least square error criterion and
the output nonlinearities were sigmoids. In the case of the baseline DBASR
systems, the targets for the training were based on the forced alignment
transcription generated with the same models as in the detectors. In the
optimized DBASR systems the targets were based on the forced alignment
transcription generated with the ML models. The final Viterbi alignment
imposed only a minimum duration of three frames and the insertion penalty
was optimized on the development set.

70 Experimental Settings

Figure 6.1: Block diagram of the experimental setup.

Chapter 7

Subword Detectors Trained

with MCE

7.1 Task and Experimental Settings

In this chapter we present the experiments with subword detectors trained
with the MCE training described in Section 4.2.1. Detectors with discrim-
inatively trained filterbanks and models were applied to the task of phone
and articulatory feature detection on TIMIT. Baseline detectors were built
using the standard filterbank and a set of HMMs trained with maximum
likelihood. Two MCE training experiments were performed in order to
improve, respectively, the F-score and the class accuracy in the detectors.
In each experiment three implementations of MCE were tested: MCE(μ),
MCE(H) and MCE(H,μ). The experimental setup was described in detail
in Chapter 6.

7.2 Results and Discussion

This section presents the performance and filterbanks for the detectors.
Firstly, we discuss the test results for the F-score and accuracy improve-
ment experiments. They are presented in Tables 7.1 for phoneme detectors
and 7.2 for articulatory feature detectors. The large number of detectors
prevents us from presenting a thorough analysis of each case; instead we
present a weighted average detector performance. In each experiment, we
present the averages for both the F-score and the class accuracy of the
detectors. However, we present also some specific examples of detectors:
Table 7.3 shows the class accuracy, F-score, precision and recall for the

71

72 Subword Detectors Trained with MCE

Table 7.1: Class averaged performance for the core test set. Phone detectors.

(a) F-score experiment.

Score BL F-MCE(H) F-MCE(μ) F-MCE(H,μ)

F̄ 67.0 66.5 69.2 69.3

Āc 60.7 60.5 66.3 69.1

(b) Class accuracy experiment.

Score BL A-MCE(H) A-MCE(μ) A-MCE(H,μ)

F̄ 67.0 64.2 68.4 66.1

Āc 60.7 62.3 67.0 73.7

detectors of /ih/, /n/ and /sh/. Secondly, we make a brief analysis of the
trained filterbanks, focusing on those shown in Figures 7.1, 7.2 and 7.3. Fig-
ures 7.1(b) and 7.2(a) show only the filters in the low frequencies to display
a better resolution.

As expected, discriminative training improved the performance of the
detectors. In the class accuracy experiment, the relative error reductions
with respect to baseline for phone detectors were 4.1% for A-MCE(H),
16.0% for A-MCE(μ) and 33.1% for A-MCE(H,μ). For articulatory fea-
tures, the corresponding class accuracy improvements were 3.7%, 30.9%
and 43.1%. In the F-score experiment, the relative error reduction with
respect to baseline for phone detectors were 6.7% for F-MCE(μ) and 7.0%
for F-MCE(H,μ). For articulatory features, the corresponding F-score im-
provements were 9.0% and 9.0%. However, F-MCE(H) did not lead to im-
proved performance neither for phone nor for articulatory feature detectors.
This is discussed later in this section.

The average F-score in F-MCE experiments was higher than the corre-
sponding F-score in A-MCE experiments, and vice versa. This is reasonable
because increased recall usually comes at the expense of decreased precision.
In addition, this shows that even if the training algorithm does not directly
optimize class accuracy or F-score, both are improved during the training.
In general the maximum F-score comes from a different training iteration
than the maximum class-accuracy. However, for some detectors the best
class accuracy and F-score were achieved in the same iteration, for example
see Table 7.3(a) for MCE(μ).

In all cases, the average performance of MCE(μ) was higher than that

7.2. Results and Discussion 73

Table 7.2: Class averaged performance for the core test set. Articulatory
Features.

(a) F-score experiment.

Score BL F-MCE(H) F-MCE(μ) F-MCE(H,μ)

F̄ 86.7 86.6 87.9 87.9

Āc 81.2 81.3 85.8 85.8

(b) Class accuracy experiment.

Score BL A-MCE(H) A-MCE(μ) A-MCE(H,μ)

F̄ 86.7 86.1 87.7 85.9

Āc 81.2 81.9 87.0 89.3

of MCE(H). For example, for phone detectors trained with A-MCE(μ) the
relative error reduction with respect to A-MCE(H) was 12.5% . This can
probably be explained by the fact that the total number of parameters in
the HMM means was much higher than in the filterbank matrix (45630 vs.
5226). However, it is interesting to notice that in some detectors A-MCE(H)
outperformed A-MCE(μ), for example Table 7.3(b) shows that for the /n/
detector the class accuracy was 64.2% vs. 62.6%.

For phone and articulatory feature detectors trained with A-MCE(H,μ)
the relative error reduction with respect to A-MCE(μ) was, respectively,
20.3% and 17.7%. However, F-MCE(H,μ) did not outpeform F-MCE(μ)
neither for phone nor for articulatory feature detectors. There are some
possible explanations for the fact that F-MCE(H) did not improve the base-
line performance and that F-MCE(H,μ) did not improve the performance
of F-MCE(μ). Firstly, it could be that the standard filterbank is optimal
for F-score. However, the results from the next chapter showed that this
is not the case. In addition, note that even if the training did not improve
the average performance, there were detectors where MCE(H,μ) did indeed
improve the performance with respect to MCE(μ), for example Table 7.3(a)
shows that for the /ih/ detector the F-score was 70.0% vs. 67.4%, and for
the /n/ detector Table 7.3(b) shows 73.5% vs. 62.6%.

Secondly, recall that the MCE-based training described in Section 4.2.1
does not focus on optimizing the F-score directly and that, moreover, the
number of parameters in the filterbank is lower than in the HMMs. There-
fore, it is probably true that the filterbank parameters were not trained

74 Subword Detectors Trained with MCE

Table 7.3: Performance of selected detectors after MCE-based detector
training1.

(a) /ih/

Training Ac F P R

BL 45.0 57.6 77.9 45.7

F-MCE(H) 38.4 51.8 76.7 39.1

A-MCE(H) 38.4 51.8 76.7 39.1

F-MCE(μ) 67.4 66.8 62.7 71.6

A-MCE(μ) 67.4 66.8 62.7 71.6

F-MCE(H,μ) 70.0 67.0 59.9 76.0

A-MCE(H,μ) 72.9 63.5 52.8 79.5

(b) /n/

Training Ac F P R

BL 57.7 69.5 84.7 59.0

F-MCE(H) 56.6 68.7 83.3 58.4

A-MCE(H) 64.2 61.6 57.7 66.0

F-MCE(μ) 62.6 69.9 72.1 67.8

A-MCE(μ) 62.6 69.9 72.1 67.8

F-MCE(H,μ) 73.5 72.1 67.1 77.9

A-MCE(H,μ) 73.5 69.6 62.3 79.0

(c) /sh/

Training Ac F P R

BL 76.6 76.4 75.0 77.9

F-MCE(H) 76.6 76.4 75.0 77.9

A-MCE(H) 76.6 76.4 75.0 77.9

F-MCE(μ) 74.0 78.2 77.2 79.2

A-MCE(μ) 74.0 78.2 77.2 79.2

F-MCE(H,μ) 70.1 79.1 88.7 71.4

A-MCE(H,μ) 85.7 66.7 52.6 90.9

1Class accuracy, F-score, precision and recall were defined in Section 3.3.

7.2. Results and Discussion 75

efficiently. Thirdly, in the case of F-MCE(H,μ), training of features and
classifier simultaneously could increase the sensitivity of the parameters to
the learning rates in a gradient-based optimization algorithm. In fact, train-
ing the complete filterbank matrix was found in [30] to be more sensitive to
learning rates than other constrained configurations, for example training of
amplitudes, centers and bandwidths. In addition, they also discussed that
the conventional approach to avoid over-training may be inadequate for the
case of simultaneous training of features and classifier. Another point to
consider is the possibility that F-MCE(H,μ) gets stuck in a local minimum.

Some phone detectors for infrequent classes did not improve their perfor-
mance in the development set after MCE-training, for example /ng/, /uh/
and /y/ with A-MCE(H,μ). We assume this was a problem of availability of
training data. For those detectors, the initial (baseline) Ac was considered
when computing Āc. This is investigated in more detail in 9.2.

A significant part of the increase in performance brought by the new
features can probably be explained by the fact that the filterbank in each
detector was successfully modified to extract discriminative information for
the specific detection task. Note that the filterbanks are clearly different;
this is especially noticeable for classes with different acoustical properties,
for example see filterbanks of the articulatory feature detectors for vocalic
and strident in Figs. 7.2(b) and 7.3(b). Most of the changes in the filterbanks
are due to scaling of the filter amplitudes and partly also different filter
shapes. The filters were, however, only rarely shifted in frequency. We
currently do not have a good explanation for this.

Analyzing the changes in the frequency form of the filterbanks resulted
in some logical conclusions. We found that some of the significant changes
often occurred at relevant frequencies, for example formant frequencies, for
both the class and main competitors. In addition, the amplitude of a fil-
ter relative to the amplitudes of the surrounding filters seemed to carry
discriminative information. Filterbanks in vowel detectors showed some
similarities. Firstly, the main changes occurred in the lower frequencies
(0, 4) kHz, where the formants are located, and filters in the area (4-8kHz)
were all attenuated. This is reasonable because it is known that formants
are important for vowel classification. Secondly, in all vowel detectors the
amplitude Ai of the first five filters followed 1) A1 < A2 < A3 < A4 > A5,
and 2) A4 was the highest amplitude in the filterbank. This behavior in
the lower filters is shown in the filterbanks of /ih/ and the articulatory
feature vocalic (respectively in Figs. 7.2(a) and 7.2(b)) and it was probably
related to the position of the first formant (F1). Nasals have F1 in the in-
terval (250, 300) Hz, which is lower than for vowels. This was reflected in a

76 Subword Detectors Trained with MCE

relatively higher A2 than in vowel filterbanks, for example see the filterbank
of /n/ in Fig. 7.1(b). In addition, it was noticeable that the vowels with
lowest F1, /iy/ and /uw/, had a relatively larger A2 than other vowels. Fil-
ters in the higher frequencies in nasal filterbanks behaved as in the vowels,
i.e. they were all attenuated. The filterbank for /sh/ is shown in Fig. 7.3(a).
In this case the shape of the filters in the higher frequencies changed signif-
icantly, which did not happen for vowels and nasals. This agrees with the
fact that high frequencies are important to discriminate fricatives. More-
over, /sh/ is one of the phones where the articulatory feature strident is
present and Fig. 7.3(b) shows the same effect in the high frequencies.

7.3 Summary

In this chapter we built detectors of phones and articulatory features in
continuous speech. These detectors had MFCC filterbanks and models im-
proved with the detector MCE-training described in Section 4.2.1. For class
accuracy improvement, phone detectors with MCE-trained filterbanks and
HMMs reduced the average detector error rate by 33.1% compared to the
baseline detectors and 20.3% compared to MCE-training of HMMs using
standard MFCCs. For F-score improvement, phone detectors with MCE-
trained HMMs reduced the average detector error rate by 6.3% compared to
the baseline detectors, but MCE-training of filterbanks and HMMs did not
lead to further improvements. Articulatory feature detectors showed simi-
lar results. In addition, we found that the trained filterbanks were clearly
different and reflected acoustic properties, for example formant positions,
of the class to detect.

7.3. Summary 77

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Frequency (kHz)

(a) Standard filterbank

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

Frequency (kHz)

(b) /n/, A-MCE(H,μ)

Figure 7.1: Selected examples of filterbanks.

78 Subword Detectors Trained with MCE

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

Frequency (kHz)

(a) /ih/, A-MCE(H,μ)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Frequency (kHz)

(b) VOC, A-MCE(H,μ)

Figure 7.2: Selected examples of filterbanks.

7.3. Summary 79

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Frequency (kHz)

(a) /sh/, A-MCE(H,μ)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

Frequency (kHz)

(b) STR, A-MCE(H,μ)

Figure 7.3: Selected examples of filterbanks.

80 Subword Detectors Trained with MCE

Chapter 8

Subword Detectors Trained

with MDE

8.1 Task and Experimental Settings

In this chapter we present the experiments with subword detectors opti-
mized with the MDE training described in Section 4.3. Detectors with
optimized filterbanks and models were applied to the task of phone and
articulatory feature detection on TIMIT. Two MDE training experiments
were performed: F-score and class accuracy optimization. In each experi-
ment three implementations of MDE were tested: MDE(μ), MDE(H) and
MDE(H,μ). The experimental setup was described in detail in Chapter 6.

8.2 Results and Discussion

This section presents the performance and filterbanks for the detectors.
Firstly, we discuss the test results for the F-score and accuracy optimization
experiments. They are presented in Table 8.1 for phoneme detectors and
Table 8.2 for articulatory feature detectors. As in the previous chapter, in
each experiment we give both the averages for the F-score and the class
accuracy. However, we present also some specific examples of detectors:
Table 8.3 shows the class accuracy, F-score, precision and recall for the
detectors of /ih/, /n/ and /sh/. We chose these detectors because they were
used as specific examples in Chapter 7. Secondly, we make a brief analysis
of the optimized filterbanks, focusing on those shown in Figures 8.2, 8.3
and 8.4.

As expected, discriminative training improved the average detector per-

81

82 Subword Detectors Trained with MDE

Table 8.1: Class averaged performance for the core test set. Phoneme de-
tectors.

(a) F-score experiment.

Score BL F-MDE(H) F-MDE(μ) F-MDE(H,μ)

F̄ 67.0 69.1 71.9 71.2

Āc 60.7 63.9 66.6 66.3

(b) Class accuracy experiment.

Score BL A-MDE(H) A-MDE(μ) A-MDE(H,μ)

F̄ 67.0 67.2 69.9 67.5

Āc 60.7 70.2 73.0 76.8

Table 8.2: Class averaged performance for the core test set. Articulatory
Features.

(a) F-score experiment.

Score BL F-MDE(H) F-MDE(μ) F-MDE(H,μ)

F̄ 86.7 87.2 88.8 88.9

Āc 81.2 82.9 85.4 86.0

(b) Class accuracy experiment.

Score BL A-MDE(H) A-MDE(μ) A-MDE(H,μ)

F̄ 86.7 86.8 85.0 81.3

Āc 81.2 87.8 93.1 95.1

8.2. Results and Discussion 83

formance in both experiments. In the F-score optimization experiment, the
relative error reductions with respect to baseline for phone detectors were
6.4% for F-MDE(H), 14.8% for F-MDE(μ) and 12.7% for F-MDE(H,μ).
For articulatory features, the corresponding relative error reductions were
3.8%, 15.8% and 16.5%. In the class accuracy optimization experiment,
the error reduction for phone detectors were 24.2% for A-MDE(H), 31.3%
for A-MDE(μ) and 41.0% for A-MDE(H,μ). For articulatory features, the
corresponding relative error reductions were 35.1%, 63.3% and 73.9%.

The average F-score in F-MDE experiments was higher than the corre-
sponding F-score in A-MDE experiments, and vice versa. This is reasonable
because increased recall usually comes at the expense of decreased precision.
In addition, this shows that MDE-training focused on the optimization of
the chosen performance criterion, F-score in the first experiment and class
accuracy in the second. In both experiments, the average performance of
MDE(μ) was higher than that of MDE(H). As it was mentioned in the
previous chapter, this can probably be explained by the fact that the total
number of parameters in the HMM means was much higher than in the
filterbank matrix (45630 vs. 5226). However, in some detectors we found
the opposite, e.g. Table 8.3(a) shows that A-MDE(H) improved the result
of A-MDE(μ) for the /ih/ detector. Both for phone and articulatory feature
detectors A-MDE(H,μ) reduced the error rate by, respectively, 14.1% and
29.0% with respect to A-MDE(μ). However, F-MDE(H,μ) did not improve
the performance with respect to F-MDE(μ) neither for phone nor articu-
latory feature detectors. Some possible explanations were presented in the
previous chapter.

We are also interested in comparing MDE training with the MCE-based
detector training. Recall that, in contrast to the MCE-based method, MDE
can optimize directly any detection evaluation criteria. Our approach in the
MCE-based training was then to use the chosen performance metric in the
cross validation, but this was at best suboptimal. The results in Tables 8.1,
8.2 and 8.3 can be compared, respectively, with those in Tables 7.1, 7.2
and 7.3. In order to simplify the analysis, Figure 8.1 shows the performance
of MCE and MDE for phone and articulatory feature detectors. Note that
only the average F-score performance is displayed for F-score experiments,
and similarly for class accuracy experiments.

In the following we compare the performance of phone detectors trained
with A-MDE and A-MCE . Firstly, Figure 8.1(a) shows that the perfor-
mance curve for A-MDE was above the one of A-MCE in all cases. Note
that the average performance of A-MDE(H) was also higher than that of
A-MCE(μ) (70.2% vs 67.0%) even if the number of optimized parameters

84 Subword Detectors Trained with MDE

BL (H) (μ) (H,μ)
60

62

64

66

68

70

72

74

76

78

F−MCE
A−MCE
F−MDE
A−MDE

(a) Phone detectors

BL (H) (μ) (H,μ)
80

82

84

86

88

90

92

94

96

F−MCE
A−MCE
F−MDE
A−MDE

(b) Articulatory feature detectors

Figure 8.1: Performance for different training methods: F-score for F-MCE
and F-MDE, and accuracy for A-MCE and A-MDE.

8.2. Results and Discussion 85

was much smaller. In addition, in some cases detectors optimized with
A-MDE(H) performed even better than those trained with A-MCE(H,μ),
for instance comparing Table 8.3 and 7.3, we find 90.5% vs 72.9% for
/ih/ and 74.8% vs 73.5% for /n/. Secondly, the average performance of
A-MDE(μ) was close to A-MCE(H,μ) (73.0% vs 73.7%). Also in this case
some detectors optimized with A-MDE(μ) performed better than those
trained with A-MCE(H,μ), for example /ih/ and /n/ as well. Further,
Figure 8.1(b) for articulatory feature detectors shows the same behavior.
Note that in this case A-MDE(μ) was much higher than A-MCE(H,μ).
Figures 8.1(a) and 8.1(b) show that the performance curve for F-MDE was
also above that of F-MCE in all cases. In addition, it should be noted that
while F-MCE(H) did not offer improvements with respect to baseline nei-
ther for phone nor for articulatory feature detectors, F-MDE(H) improved
the baseline results in both cases and even offered performance similar to
F-MCE(μ) for the case of phone detectors. Therefore, it can be concluded
that that MDE training is more powerful than our previous MCE-based
training for detectors.

Some phone detectors for infrequent classes did not improve their perfor-
mance in the development set after MDE-training, specially with MDE(H).
For those detectors, the initial baseline score was considered when com-
puting the average score. We assume this was a problem of training data
availability. In addition, some detectors improved their performance with
respect to baseline both for the training and development sets, while the
corresponding test performances decreased, for example this was the case
for the detector of /sh/ trained with A-MDE(μ). It is possible that this lack
of generalization could be explained by the low number of class segments in
the test set for the affected detectors. For example, the number of class seg-
ments in the training, development and test sets for /sh/ are, respectively,
1466, 153 and 77. This issues were also found in 7.2.

In the filterbank optimization experiments, F-MDE(H) and A-MDE(H),
the only changes in the detection structure with respect to baseline was the
filterbank matrix H. Therefore, the increase in performance brought by the
new features can be explained by the fact that the filterbank in each detector
was modified to extract discriminative information for the specific detection
task. The filterbanks were clearly different from each other, specially for
classes with different acoustical properties, for example see filterbanks for
/ih/ and /sh/ in Figs. 8.3(b) and 8.4(b).

In the previous chapter we analyzed filterbanks optimized with
A-MCE(H,μ). Most of the changes in the filterbanks were due to scal-
ing of the filter amplitudes and partly also different filter shapes. However,

86 Subword Detectors Trained with MDE

Table 8.3: Performance of selected detectors after MDE training1.

(a) /ih/

Training Ac F P R

BL 45.0 57.6 77.9 45.7

F-MDE(H) 60.7 63.9 64.8 63.1

A-MDE(H) 90.5 47.6 31.5 97.8

F-MDE(μ) 64.1 69.0 70.3 67.8

A-MDE(μ) 84.1 62.1 47.4 89.8

F-MDE(H,μ) 66.0 67.9 65.4 70.7

A-MDE(H,μ) 91.7 56.3 39.9 95.9

(b) /n/

Training Ac F P R

BL 57.7 69.5 84.7 59.0

F-MDE(H) 70.4 73.6 73.7 73.5

A-MDE(H) 74.8 70.6 63.9 79.0

F-MDE(μ) 73.5 76.4 77.5 75.3

A-MDE(μ) 80.0 72.8 64.0 84.4

F-MDE(H,μ) 73.8 76.9 77.7 76.1

A-MDE(H,μ) 80.5 66.3 53.1 88.1

(c) /sh/

Training Ac F P R

BL 76.6 76.4 75.0 77.9

F-MDE(H) 68.8 77.5 84.6 71.4

A-MDE(H) 74.0 78.7 80.8 76.6

F-MDE(μ) 74.0 81.9 88.1 76.6

A-MDE(μ) 74.0 81.1 84.5 77.9

F-MDE(H,μ) 81.8 85.5 86.7 84.4

A-MDE(H,μ) 80.5 85.9 88.9 83.1

1Class accuracy, F-score, precision and recall were defined in Section 3.3.

8.3. Summary 87

in MDE(H) detectors we found that optimized filters had often expanded in
new frequencies. Therefore, the limitation in filterbank modifications found
in the previous chapter are probably a consequence of the suboptimality
of the MCE-based detector training. Since this cannot be visualized when
all filterbanks are plotted together, Fig. 8.4(a) isolates the 18th filter from
Fig. 8.3(b) as an example, and the initial filter is displayed as well as a
reference. We can see 1) modified shape in the initial area (2.8, 3.5) kHz,
2) smaller new values near 2.5 kHz, 3) significant new shape in the interval
(3.8, 4.4) kHz, with maximum near 4 kHz. This means that, in contrast
to standard filters, this optimized filter outputs energy information from
different critical bands.

Analyzing the changes in the frequency shape of the filterbanks resulted
in some logical conclusions. The resulting filterbanks for the same detec-
tor in MDE(H) had some similarities in shape when optimizing for accu-
racy or F-score, for example compare Figs. 8.2(b) and 8.3(a). Some filter-
banks reflected properties that were found in filterbanks optimized with
A-MCE(H,μ), for example the filterbank in /n/ had a high amplitude
in the second filter probably because nasals have a low first formant, see
Figs. 8.2(b) and 8.3(a). In addition, some of the changes in vowels seemed
to be related to the position of the formants as well. However, some of
the properties that we found previously in A-MCE(H,μ) were not present
in filterbanks optimized with MDE(H), for example the shape of filters in
the high frequencies in some vowel detectors was clearly different from the
corresponding standard filters, see Fig. 8.3(b). These differences can proba-
bly be explained by 1) filterbanks were trained keeping the baseline models,
while in our previous method both filterbanks and models were optimized
and 2) MDE differs from MCE both with respect to algorithm and perfor-
mance.

8.3 Summary

In this chapter we built phones and articulatory feature detectors where
the MFCC filterbanks and HMMs were optimized with MDE training as
described in Section 4.3. We found that our MDE technique succeeded
in optimizing detectors for the chosen evaluation criteria; phone detectors
optimized for F-score had a relative improvement of 14.8% over baseline, and
the corresponding class accuracy improvement was 41.0%. Similar results
were obtained for the articulatory feature detectors. The results showed
that MDE training leads to significative improvements with respect to the
training method based on MCE. Further, the optimized filterbanks reflected

88 Subword Detectors Trained with MDE

acoustic properties of the detection class as we found in the previous chapter.
However, the filterbanks were in this case significantly different than the
standard filterbank. In fact some filters were modified to extract information
from different critical bands.

8.3. Summary 89

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Frequency (kHz)

(a) Standard filterbank

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

Frequency (kHz)

(b) /n/, A-MDE(H)

Figure 8.2: Selected examples of filterbanks.

90 Subword Detectors Trained with MDE

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

Frequency (kHz)

(a) /n/, F-MDE(H)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Frequency (kHz)

(b) /ih/, F-MDE(H)

Figure 8.3: Selected examples of filterbanks.

8.3. Summary 91

2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Frequency (kHz)

STD
MDE

(a) /ih/, F-MDE(H), filter 18

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

Frequency (kHz)

(b) /sh/, A-MDE(H)

Figure 8.4: Selected examples of filterbanks.

92 Subword Detectors Trained with MDE

Chapter 9

Detection-Based ASR

Experiments

9.1 Task and Experimental Settings

In this chapter we present experiments with detection-based automatic
speech recognition (DBASR) systems built with the structure proposed in
Section 5.4. These DBASR systems were applied to the task of phone
recognition on TIMIT. The experimental setup was described in detail in
Chapter 6.

9.2 Results and Discussion

This section presents the phone accuracy of the standard and detection-
based ASR systems. Table 9.1 gives the performance of the standard (STD)
and DBASR baseline systems. The performance for the optimized DBASR
systems is given in Table 9.2, where IDC refers to the intermediate detection
class in the bank of detectors. Firstly, the performance of the baseline
systems and the DBASR systems is analyzed and discussed independently.
After that, the performance of the optimized DBASR systems is compared
to the baseline systems (STD and DBASR).

It should be noted that the phone accuracy of ML-trained standard ASR
system is equal to the average class accuracy Āc of the baseline phone de-
tectors (defined in Section 7.2), see for example Table 7.1(a). This can be
explained as follows. Firstly, the total accuracy of a recognizer can be ex-
pressed as the average of the class accuracies (defined as in Eq. 3.5) weighted
by the number of segments in each class, which equals Āc. Secondly, recall

93

94 Detection-Based ASR Experiments

Table 9.1: Baseline systems: phone recognition accuracy for the test set.

System ML MCE(H,μ) MPE(μ)

STD 60.7 62.7 66.1
DBASR 63.1 64.2 66.3

that the baseline detectors have the same structure as the baseline ML-
trained ASR system.

Discriminative training of the ML-trained standard ASR systems led
to performance improvements. The recognition results for the ML-trained
standard ASR system and the relative improvement brought by standard
embedded MCE are similar to those in [93, Table 2] (note their use of bi-
grams under testing). Further, as it could be expected the best performance
for the standard baseline systems came from the MPE-trained system. This
can be explained by the fact that the optimization criterion matches the sys-
tem evaluation criterion, i.e. phone accuracy.

Baseline DBASR systems outperformed their corresponding standard
ASR systems. However, in the case of the baseline DBASR system based
on MPE-trained models, the performance gain is probably not significant.
The baseline DBASR systems can be regarded as a rescoring scheme for
the baseline standard ASR systems. The standard MPE-trained system
is optimal in the sense that this rescoring scheme could not improve its
performance.

The best DBASR system performance was given by the system built
with articulatory feature (AFs) detectors trained with F-MDE(μ), with a
5.9% relative error reduction over the standard ML baseline system. The
best performance for a DBASR system based on phone detectors brought a
2.8% relative error reduction over the standard ML baseline system. There
are two possible explanations that would support the fact that articulatory
feature detectors could lead to higher system performance. The first one is
that the number of models in the detectors was higher (56 vs. 39). The
second one is that since the number of detectors was smaller, the number
of asynchronous streams was reduced and, therefore, the task was easier for
the MLP. However, A-MDE phone detectors performed better than A-MDE
articulatory feature detectors. We could not find an explanation for this
behavior.

In all cases, MDE(μ) detectors led to a better system performance than
the corresponding for MDE(H,μ) detectors. It should be noted that in all
cases except F-MDE(μ) vs. F-MDE(H,μ), detectors with better detector

9.3. Summary 95

Table 9.2: DBASR systems: phone recognition accuracy for the test set.

IDC 1 A-MDE(μ) A-MDE(H,μ) F-MDE(μ) F-MDE(H,μ)

Phones 61.1 59.1 61.8 59.8
AFs 59.0 56.0 63.0 62.9

performance led to a worse system performance. For example A-MDE(μ)
phone detectors had worse average class accuracy than A-MDE(H,μ), how-
ever A-MDE(μ) phone detectors led to a better system performance. A
possible explanation is that detectors with class-specific feature extractors
generate segmentations that are more asynchronized and, therefore, the
merging task requires a more advanced merging structure than the MLP.
Further, F-MDE detectors led to a better system performance than the
corresponding for A-MDE detectors. This is very interesting because it has
previously been stated that recall should be prioritized over precision for
DBASR in order not to lose candidates, for example see [15]. A possible
explanation is that recovering misses and prunning insertions are in fact
equally difficult for the MLP.

The best DBASR system brought a phone recognition accuracy improve-
ment with respect to the standard ML and MCE baselines (probably not
significant in the latter case). However, the standard MPE and DBASR
baselines were in all cases superior to optimized DBASR systems. More-
over, some of the optimized DBASR systems performed even worse than the
standard ML baseline system. This can probably be explained by the fact
that the proposed merger structure is too simple for the task of merging
asynchronous detectors. This explanation is consistent with the fact that
MDE(μ) detectors led to a better system performance than the correspond-
ing for MDE(H,μ) detectors, even if MDE(μ) detectors had worse average
detector performance. Note that the study on asynchrony compensation in
[84] could be applied to our system in order to improve the results.

9.3 Summary

In this chapter we built detection-based automatic speech recognition sys-
tems for the task of phone recognition in TIMIT. The banks of detectors
were built with subword detectors trained with MDE. The linguistic merger
was based on a MLP and a Viterbi decoder. The best performance was
achieved with a DBASR system built with F-MDE(μ) articulatory feature

1Intermediate detection class.

96 Detection-Based ASR Experiments

detectors, which brought a 5.9% relative error reduction over the standard
ML baseline system. However, the performance of the best DBASR system
was far from a standard baseline system trained with MPE. This can prob-
ably be explained by the fact that the linguistic merger is not capable of
merging the asynchronous stream of information provided by the detectors.

Chapter 10

Conclusions and Future

Work

In this final chapter we will summarize this thesis and present the most im-
portant conclusions from this work. After that we will give some suggestions
for future work.

10.1 Conclusions

Firstly, we proposed a structure suitable for subword detection. This struc-
ture is based on the standard HMM framework, but in each detector the
MFCC feature extractor and the models are trained for the specific detec-
tion problem. The experiments showed the effectiveness of this structure
for detection of phones and articulatory features.

Two discriminative training techniques were proposed for detector train-
ing. The first one is a modification of Minimum Classification Error train-
ing. The second one, Minimum Detection Error training, is the adaptation
of Minimum Phone Error to the detection problem. Both methods were
used to train HMMs and filterbanks in the detectors, isolated or jointly.
MDE has the advantage that any detection performance criterion can be
optimized directly. F-score and class accuracy optimization experiments
showed that MDE training is superior to the MCE-based method.

The optimized filterbanks reflected some acoustical properties of the de-
tection classes. Moreover, some changes were consistent over classes with
similar acoustical properties. In addition, MDE-training of filterbanks re-
sulted in filters significatively different than in the standard filterbank. Some
filters extracted information from different critical bands.

97

98 Conclusions and Future Work

Finally, we proposed a detection-based automatic speech recognition
system. Detectors are built with the proposed HMM-based detection struc-
ture and trained discriminatively. The linguistic merger is based on an
MLP/Viterbi decoder. Experimental results showed that the improvements
at the detection level brought by MDE training did lead to an increase in
phone recognition accuracy at the system level. This can probably be ex-
plained by the fact that the proposed merger structure is not capable of
merging the asynchronous information output by the detectors.

10.2 Future Work

In the following we give some suggestions for future research in this area.
The proposed detection structure could be further improved for each detec-
tion class. Firstly, MFCC features could be tuned for the specific detection
class. This could be done, for example, by using specific window sizes, frame
steps, etc. Secondly, the model structure could also be optimized for each
detector. For example, the number of states in the HMMs, number of mix-
tures in the GMM or even the state output functions could be specific to
each detector.

For the optimization of detector-specific filterbanks, it would be inter-
esting to study HMM-state specific filterbanks, which would model some
of the short time dynamic of the signal that is relevant for the detection
task. In addition, filterbanks based on phonetic knowledge of the target
classes could be discriminatively trained and the results compared to those
obtained in this work. The filterbanks obtained with MDE training could
be analyzed thoroughly and compared to existing acoustic knowledge of
phones and articulatory features.

In the experiments there were a number of issues that require further
investigation. Firstly, in the class accuracy experiments in Chapters 7 and 8
we found that joint discriminative training of HMMs and the filterbank ma-
trix led to improvements with respect to training the HMMs only. However,
this was not the case in the F-score experiments. We discussed a number
of reasons that could explain this behavior, for example that joint train-
ing increases the sensitivity to training parameters, that the conventional
approach to avoid over-training may be inadequate for the case of simulta-
neous training of features and classifier, or that F-MCE(H,μ) gets stuck in
a local minimum.

Secondly, in the experiments with DBASR systems in Chapter 9 we
found that the system built with F-MDE(μ) articulatory feature detectors
outperformed the DBASR system with phone detectors trained with the

10.2. Future Work 99

same method. However, the system built with phone detectors trained with
F-MDE(μ) outperformed the one built with articulatory feature detectors.
We did not find a good explanation for this contradictory behavior. Fur-
ther, bank of detectors with lower average performance at the intermediate
class level led to better DBASR system performance. We explained this by
limitations of the MLP-based merger, but this should probably be studied
in more detail.

The detectors that we have developed could be used to build a pro-
nunciation training system that focuses on vowel quality, plosive confusion,
etc. Further, for the application to detection-based automatic speech recog-
nition systems, a research effort is needed for the linguistic merger. The
detectors that we have developed are asynchronous and the experiments in
Chapter 9 showed that merging that information requires a more advanced
structure than the proposed MLP/Viterbi. A possible direction is the use
of conditional random fields.

Appendix A

Sets of Intermediate Classes

This appendix describes the phoneme and articulatory feature sets that
were used for the experiments with the TIMIT acoustic-phonetic contin-
uous speech corpus [90]. Firstly, a 39 phone set was derived as follows.
The manual TIMIT labeling consists of 61 acoustic-phonetic symbols. We
merged plosive closures and bursts, and /eng/ was mapped to /ng/ due to
few training samples. This reduced the number of symbols in the standard
set to 54. Further, the standard mapping to 39 phones was applied [91].
The resulting set is shown in Tables A.2 and A.3.

Secondly, a set of articulatory features was defined in the SIRKUS1(Spoken
Information Retrieval by Knowledge Utilization in Statistical speech pro-
cessing) project in the speech group at the Department of Electronics and
Telecommunications (NTNU). This project was related to the detection-
based ASR (DBASR) paradigm and its objective was to improve the perfor-
mance of ASR by integrating speech knowledge into a statistical framework.
In this thesis we have discussed that in DBASR systems this has been usu-
ally accomplished by using articulatory features instead of or in addition to
phones. Therefore, a set of 20 articulatory features (shown in Table A.1)
was developed for DBASR experiments. The definition of these articula-
tory features was based on phonetics and did not considered the existence
of methods to detect them automatically. All articulatory features in the
set are strictly binary. Further, the set is based on the Sound Pattern of
English (SPE) [82], but there are also elements from [94, 95]. However, the
articulatory features were adapted to TIMIT because in this database there
are several allophonic variants of the same phoneme.

Further, this set of articulatory features is specified for a set of 56
phonemes derived from the original 61 phone set in TIMIT. The mapping is

1http://www.iet.ntnu.no/projects/sirkus/

101

102 Sets of Intermediate Classes

shown in Tables A.4 and A.5. This 56 phone set was derived as follows. In
order to have acoustically homogeneous segments diphthongs were divided
into a vowel and a glide. Further, in the affricates the frication part /jh/
and /ch/ were mapped, respectively, to /zh/ and /sh/. Note that plosive
closures and bursts were not merged in this case. The resulting set is shown
in Tables A.2 and A.3.

It is important to notice that even if the features are defined over a
reduced phone set, the defined mapping is not one to one for all phonemes.
For example /n/ and /nx/ are defined for the same features.

Finally, Table A.6 includes as a reference the command files used to
obtain the 56 and 39 phone using HLEd. This is a tool included in HTK to
transform labels in transcription files.

103

Table A.1: Articulatory features used in the SIRKUS project.

Core SPE Added Features

vocalic syllabic

consonantal sonorant

nasal mid

low front

high central

back lateral

round distributed

anterior

coronal

continuant

strident

tense

voiced

104 Sets of Intermediate Classes

Table A.2: Phoneme mappings I

61 Class 56 54 39

aa vowels aa aa ao

ae vowels ae ae ae

ah vowels ah ah ah

ao vowels ao ao ao

aw vowels aa w aw aw

ax vowels ax ax ah

axh vowels axh axh ah

axr vowels axr axr er

ay vowels aa y ay ay

b stop b b b

bcl stop closure bcl merged merged

ch affricates sh ch ch

d stop d d d

dcl stop closure dcl merged merged

dh fricatives dh dh dh

dx stop dx dx dx

eh vowels eh eh eh

el vowels el el l

em nasals em em m

en nasals en en n

eng nasals eng ng ng

epi others epi epi sil

er vowels er er er

ey vowels ey ey ey

f fricatives f f f

g stop g g g

gcl stop closure gcl merged merged

h# others sil sil sil

hh semivowels and glides hh hh hh

hv semivowels and glides hv hv hh

ih vowels ih ih ih

105

Table A.3: Phoneme mappings II

61 Class 56 54 39

ix vowels ix ix ih

iy vowels iy iy iy

jh affricates zh jh jh

k stop k k k

kcl stop closure kcl merged merged

l semivowels and glides l l l

m nasals m m m

n nasals n n n

ng nasals ng ng ng

nx nasals nx nx n

ow vowels ow ow ow

oy vowels ao y oy oy

p stop p p p

pau others pau pau sil

pcl stop closure pcl merged merged

q stop q q removed

r semivowels and glides r r r

s fricatives s s s

sh fricatives sh sh sh

t stop t t t

tcl stop closure tcl merged merged

th fricatives th th th

uh vowels uh uh uh

uw vowels uw uw uw

ux vowels ux ux uw

v fricatives v v v

w semivowels and glides w w w

y semivowels and glides y y y

z fricatives z z z

zh fricatives zh zh sh

106 Sets of Intermediate Classes

Table A.4: Articulatory feature mappings I

SPE defined features Added features

P
h
on

e

V
O
C

C
N
S

N
A
S

L
O
W

H
IG

B
A
C

R
O
U

A
N
T

C
O
R

C
N
T

S
T
R

T
E
N

V
O
I

S
Y
L

S
O
N

M
ID

F
R
O

C
E
N

L
A
T

D
IS

sil 0

aa 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0

ae 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0

ah 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0

ao 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0

ax 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0

axh 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0

axr 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0

b 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1

bcl 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1

d 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0

dcl 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0

dh 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1

dx 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0

eh 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0

el 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0

em 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1

en 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0

eng 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

epi 0

er 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0

ey 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0

f 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1

g 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

gcl 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

hh 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

hv 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

ih 1 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0

107

Table A.5: Articulatory feature mappings II

SPE defined features Added features

P
h
on

e

V
O
C

C
N
S

N
A
S

L
O
W

H
IG

B
A
C

R
O
U

A
N
T

C
O
R

C
N
T

S
T
R

T
E
N

V
O
I

S
Y
L

S
O
N

M
ID

F
R
O

C
E
N

L
A
T

D
IS

ix 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0

iy 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0

k 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

kcl 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

l 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0

m 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1

n 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0

ng 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0

nx 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0

ow 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0

p 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

pau 0

pcl 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

q 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

r 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0

s 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

sh 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1

t 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

tcl 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

th 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1

uh 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0

uw 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0

ux 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0

v 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0

w 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0

y 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0

z 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0

zh 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1

108 Sets of Intermediate Classes

Table A.6: HLEd Command files

61 to 56 61 to 54 54 to 39

RE aa_w aw

RE aa_y ay

RE ao_y oy

EX

RE zh jh

RE sh ch

RE axh ax-h

RE sil h#

SO

ME p pcl p

ME t tcl t

ME ch tcl ch

ME k kcl k

ME b bcl b

ME d dcl d

ME jh dcl jh

ME g gcl g

RE p pcl

RE t tcl

RE k kcl

RE b bcl

RE d dcl

RE g gcl

RE axh ax-h

RE ng eng

RE sil h#

SO

DE q

RE ax axh

RE m em

RE n nx

RE hh hv

RE uw ux

RE er axr

RE sil pau

RE sh zh

RE n en

RE l el

RE ao aa

RE ah ax

RE ih ix

RE sil epi

SO

Appendix B

Proofs of Results

B.1 Derivatives with Respect to the Filterbank

Matrix

In this section we would like to find an expression for ∂xt

∂HΣ−1(μ− xt). We

use the notation in Figure 2.3. Each element ∂xt

∂hkl
is a row vector, which

multiplied by Σ−1(μ− xt) yields a scalar. We could divide xt, Σ
−1 and μ

into static cepstrum, first derivative and acceleration parts:

xt =

⎡
⎣ctdt

at

⎤
⎦ μ =

⎡
⎣μc

μd

μa

⎤
⎦ Σ−1 =

⎡
⎣Σ−1c 0 0

0 Σ−1d 0

0 0 Σ−1a

⎤
⎦ . (B.1)

Then we have that

∂xt

∂H
Σ−1(μ− xt) =

∂ct
∂H

Σ−1c (μc − ct) +
∂dt

∂H
Σ−1d (μd − dt)+

∂at
∂H

Σ−1a (μa − at) , (B.2)

where we have omitted the indices for model, state and mixtures for clarity.

We can start with the computation of the first element in Eq. B.2. Re-
call that ct = D ln(yt), where yt is a vector of NCH components and that
the DCT matrix has dimensions NCEP × NCH. Applying the chain rule of
differential calculus:

109

110 Proofs of Results

∂ct
∂H

Σ−1c (μc − ct) =
∂yt

∂H
./yT

t D
TΣ−1c (μc − ct) (B.3)

=
∂yt

∂H
(wc

t ./yt) (B.4)

where in the second equality we have defined wc
t = DTΣ−1c (μc − ct) and

used the fact that (u./v)Tw = uT (w./v) holds for any two arbitrary vectors
u and v.

Further, considering that yt = Hzt, where the size of zt is half of the
spectrum given the symmetry properties of the FFT of a real signal, we
obtain the following expression for each element in ∂yt

∂H :

∂yt

∂hij
= zjtu

T
i , (B.5)

where the vector ui is a unit vector with a one in position i. Then it can
be verified that

∂xt

∂H
Σ−1(μ− xt) =

∂yt

∂H
(wc

t ./yt) = (wc
t ./yt)z

T
t , (B.6)

The computation of the other elements in Eq. B.2 requires an expression
for the first and second order time derivatives as a function of the cepstral
vector ct. Then we would have a number of terms of the form

∂ct+L

∂H
Σ−1d (μd − dt)

and

∂ct+L

∂H
Σ−1a (μa − at) ,

where L is a positive or negative integer. Following same procedure as
described for ∂ct

∂HΣ−1c (μc − ct) would lead to the following expressions:

∂ct+L

∂H
Σ−1d (μd − dt) = (wd

t ./yt+L)z
T
t+L (B.7)

and

∂ct+L

∂H
Σ−1a (μa − at) = (wa

t ./yt+L)z
T
t+L , (B.8)

where we have defined wd
t = DTΣ−1d (μd − dt) and wa

t = DTΣ−1a (μa − at).

B.2. Gradient of MDE Performance Function 111

For simplicity in our experiments we defined the first order time deriva-
tives as:

dt = ct+2 − ct−2 (B.9)

and the second order time derivatives as

at = dt+2 − dt−2 = ct+4 − ct−4 − 2ct . (B.10)

Then it can be verified that

∂xt

∂H
Σ−1(μ− xt) = (wc

t ./yt)z
T
t + (wd

t ./yt+2)z
T
t+2 − (wd

t ./yt−2)z
T
t−2+

(wa
t ./yt+4)z

T
t+4 − (wa

t ./yt−4)z
T
t−4 − 2(wa

t ./yt)z
T
t .
(B.11)

B.2 Gradient of MDE Performance Function

In this section we want to find an expression for ∂J(Λ)
∂Λ . We can start with

∂J(Λ)

∂Λ
=

∑
k,j

Skj
∂P (Lkj|Xk,Λ)

∂Λ
. (B.12)

The posterior P (Lkj|Xk,Λ) can be expressed in terms of likelihoods apply-
ing Bayes’ theorem:

P (Lkj|Xk,Λ) =
p(Xk|Lkj,Λ)P (Lkj)∑
u p(Xk|Lku,Λ)P (Lku)

. (B.13)

The gradient of the posterior can then be computed as follows:

∂P (Lkj|Xk,Λ)

∂Λ
=

P (Lkj)∑
u p(Xk|Lku,Λ)P (Lku)

∂p(Xk|Lkj,Λ)

∂Λ

−
p(Xk|Lkj,Λ)P (Lkj)(∑
u p(Xk|Lku,Λ)P (Lku)

)2

∑
u

P (Lku)
∂p(Xk|Lku,Λ)

∂Λ
.

(B.14)

Further, applying that

∂p(Xk|Lkj,Λ)

∂Λ
= p(Xk|Lkj,Λ)

∂ log p(Xk|Lkj,Λ)

∂Λ
(B.15)

we obtain the following expression:

112 Proofs of Results

∂P (Lkj|Xk,Λ)

∂Λ
= P (Lkj|Xk,Λ)

∂gj(Xk;Λ)

∂Λ

− P (Lkj |Xk,Λ)
∑
u

P (Lku|Xk,Λ)
∂gu(Xk;Λ)

∂Λ
, (B.16)

where gj(Xk;Λ) = log p(Xk|Lkj,Λ).
The gradient of the posterior given by Eq. B.16 can be substituted in

Eq. B.12 to obtain two terms. The first term is given by

∑
k,j

SkjP (Lkj|Xk,Λ)
∂gj(Xk;Λ)

∂Λ
(B.17)

and the second term is given by

−
∑
k,j

SkjP (Lkj|Xk,Λ)
∑
u

P (Lku|Xk,Λ)
∂gu(Xk;Λ)

∂Λ

=−
∑
k

(∑
j

SkjP (Lkj|Xk,Λ)
)∑

u

P (Lku|Xk,Λ)
∂gu(Xk;Λ)

∂Λ

=−
∑
k

S̄k(Λ)
∑
u

P (Lku|Xk,Λ)
∂gu(Xk;Λ)

∂Λ

=−
∑
k

S̄k(Λ)
∑
j

P (Lkj|Xk,Λ)
∂gj(Xk;Λ)

∂Λ
(B.18)

Finally, combining Eqs. B.17 and B.18 results in

∂J(Λ)

∂Λ
=

∑
k,j

(Skj − S̄k)P (Lkj |Xk,Λ)
∂gj(Xk;Λ)

∂Λ
. (B.19)

Bibliography

[1] C.-H. Lee, “From knowledge-ignorant to knowledge-rich modeling: a
new speech research paradigm for next generation automatic speech
recognition,” in Proc. ICSLP, 2004.

[2] P. Ladefoged and K. Johnson, A course in phonetics, Wadsworth,
2010.

[3] B. Schuppler, Automatic Analysis of Acoustic Reduction in Sponta-
neous Speech, Ph.D. thesis, Radboud University Nijmegen, 2011.

[4] R. Maher, “Audio forensic examination,” IEEE Signal Processing
Magazine, vol. 26, no. 2, pp. 84 –94, march 2009.

[5] S. Frisch and R. Wright, “The phonetics of phonological speech errors:
An acoustic analysis of slips of the tongue,” Journal of Phonetics, vol.
30, no. 2, pp. 139–162, 2002.

[6] M. de Bruijn, L. ten Bosch, et al., “Objective acoustic-phonetic speech
analysis in patients treated for oral or oropharyngeal cancer,” Folia
Phoniatrica et Logopaedica, vol. 61, pp. 180–187, 2009.

[7] A. Thambiratnam, Acoustic keyword spotting in speech with applica-
tions to data mining, Ph.D. thesis, Queensland University of Technol-
ogy, 2005.

[8] S. Iseji T. Nitta et al., “Key-word spotting using phonetic distinctive
features extracted from output of an LVCSR engine,” in Proc. SSPR,
2003, paper MAP16.

[9] A. Jansen and P. Niyogi, “Point process models for spotting keywords
in continuous speech,” IEEE Trans. Audio, Speech, and Language Pro-
cessing, vol. 17, no. 8, pp. 1457–1470, nov. 2009.

113

114 Bibliography

[10] S. M. Witt, Use of Speech Recognition in Computer-Assisted Language
Learning, Ph.D. thesis, Cambridge University, 1999.

[11] A. Neri, C. Cucchiarini, and W. Strik, “Automatic speech recognition
for second language learning: How and why it actually works,” in Proc.
ICPhS, 2003, pp. 1157–1160.

[12] J. Xu, J. Xin Liu, et al., “Design of the pronunciation dictionary for
an English CAPT system,” in Proc. ICCDA, 2010, vol. 4, pp. V4–9
–V4–13.

[13] J. Li and C.-H. Lee, “On designing and evaluating speech event detec-
tors,” in Proc. Interspeech, 2005, pp. 3365–3368.

[14] I. Bromberg et al., “Detection-based ASR in the automatic speech
attribute transcription project,” in Proc. ASRU, 2007, pp. 1829–1832.

[15] C. Ma, A detection-based pattern recognition framework and its appli-
cations, Ph.D. thesis, Georgia Tech, April 2010.

[16] S. M. Siniscalchi and C.-H. Lee, “A study on integrating acoustic-
phonetic information into lattice rescoring for automatic speech recog-
nition,” Speech Communication, vol. 51, no. 11, pp. 1139–1153, 2009.

[17] S. M. Siniscalchi, T. Svendsen, and C.-H. Lee, “Towards bottom-up
continuous phone recognition,” in Proc. ASRU, 2007, pp. 566 –569.

[18] S. M. Siniscalchi, T. Svendsen, and C.-H. Lee, “A bottom-up stepwise
knowledge-integration approach to large vocabulary continuous speech
recognition using weighted finite state machines,” in Proc. Interspeech,
2011, pp. 901–904.

[19] H.-C. Wang C.-Y. Lin, “Attribute-based mandarin speech recognition
using conditional random fields,” in Proc. Interspeech, 2007, pp. 1833–
1836.

[20] C. Zhang, Y. Liu, and C.-H. Lee, “Detection-based accented speech
recognition using articulatory features,” in Proc. ASRU, 2011, pp.
500–505.

[21] S. A. Liu, Landmark detection for distinctive feature-based speech recog-
nition., Ph.D. thesis, Dept. of Electrical Engineering and Computer
Science (Massachusetts Institute of Technology), 1995.

Bibliography 115

[22] A. Juneja, Speech recognition based on phonetic features and acoustic
landmarks, Ph.D. thesis, University of Maryland College Park, 2004.

[23] M. Hasegawa-Johnson, J. Baker, et al., “Landmark-based speech recog-
nition: Report of the 2004 Johns Hopkins summer workshop,” in Proc.
ICASSP, 18-23 2005, vol. 1, pp. 213 – 216.

[24] A. Juneja and C. Y. Espy-Wilson, “A probabilistic framework for
landmark detection based on phonetic features for automatic speech
recognition,” Journal of the Acoustical Society of America, pp. 1154–
1168, June 2008.

[25] L. Bahl, Brown, et al., “Maximum mutual information estimation of
hidden markov model parameters for speech recognition,” in Proc.
ICASSP, apr 1986, vol. 11, pp. 49–52.

[26] D. Povey, Discriminative Training for Large Vocabulary Speech Recog-
nition, Ph.D. thesis, Cambridge University Engineering Dept, 2003.

[27] B.-H. Juang, W. Hou, and C.-H. Lee, “Minimum classification error
rate methods for speech recognition,” IEEE Trans. Speech and Audio
Processing, vol. 5, no. 3, pp. 257–265, 1997.

[28] X. He, L. Deng, and W. Chou, “Discriminative learning in sequential
pattern recognition,” IEEE Signal Processing Magazine, vol. 25, no. 5,
pp. 14 –36, 2008.

[29] Q. Fu, A generalization of the minimum classification error (MCE)
training method for speech recognition and detection, Ph.D. thesis,
Georgia Institute of Technology, 2008.

[30] A. Biem, S. Katagiri, et al., “An application of discriminative fea-
ture extraction to filter-bank-based speech recognition,” IEEE Trans.
Speech and Audio Processing, vol. 9, no. 2, pp. 96–110, feb 2001.

[31] A. Biem, “Optimizing features and models using the minimum classi-
fication error criterion,” in Proc. ICASSP, 2003.

[32] B. Mak, Y.-C. Tam, and R. Hsiao, “Discriminative training of audi-
tory filters of different shapes for robust speech recognition,” in Proc.
ICASSP, 2003, vol. 2, pp. II – 45–8.

[33] H. Bořil, P. Fousek, and P. Pollák, “Data-driven design of front-end fil-
ter bank for Lombard speech recognition,” in Proc. ICSLP, Pittsburgh,
Pennsylvania, 2006, pp. 381 – 384.

116 Bibliography

[34] H. Huang and J. Zhu, “Minimum phoneme error based filter bank
analysis for speech recognition,” in Proc. Multimedia and Expo, 2006,
pp. 1081 –1084.

[35] L. Burget and H. Hermansky, “Data driven design of filter bank for
speech recognition,” in Proc. ICTSD, 2001, pp. 299–304.

[36] Y. Suh and H. Kim, “Data-driven filter-bank-based feature extraction
for speech recognition,” in Proc. SPECOM, 2004, p. 154.

[37] C. Lee, D. Hyun, et al., “Optimizing feature extraction for speech
recognition,” IEEE Trans. Speech and Audio Processing, vol. 11, no.
1, pp. 80–87, Jan. 2003.

[38] Y. Bengio, R. De Mori, et al., “Global optimization of a neural network-
hidden Markov model hybrid,” IEEE Trans. Neural Networks, vol. 3,
no. 2, pp. 252 –259, mar 1992.

[39] F. T. Johansen, “Global optimisation of HMM input transformations,”
in Proc. ICSLP, 1994, pp. 239–242.

[40] B. Zamani, A. Akbari, et al., “Optimized discriminative transforma-
tions for speech features based on minimum classification error,” Pat-
tern Recognition Letters, vol. 32, no. 7, pp. 948 – 955, 2011.

[41] J. Droppo and A. Acero, “Joint discriminative front end and back end
training for improved speech recognition accuracy,” in Proc. ICASSP,
May 2006, vol. 1, p. I.

[42] M. M. Doss F. Valente and W. Wang, “Analysis and comparison of
recent MLP features for LVCSR systems,” in Proc. Interspeech, 2011,
pp. 1245–1248.

[43] D. Povey, B. Kingsbury, et al., “fMPE: Discriminatively Trained Fea-
tures for Speech Recognition,” in Proc. ICASSP, 2005, vol. 1, pp. 961
– 964.

[44] B. Zhang, S. Matsoukas, and R. Schwartz, “Discriminatively trained
region dependent feature transforms for speech recognition,” in Proc.
ICASSP, May 2006, vol. 1, p. I.

[45] J. Zheng, O. Cetin, et al., “Combining discriminative feature, trans-
form, and model training for large vocabulary speech recognition,” in
Proc. ICASSP, 2007, vol. 4, pp. 633–636.

Bibliography 117

[46] R. Hsiao and B. Mak, “Discriminative feature transformation by guided
discriminative training,” in Proc. ICASSP, May 2004, vol. 1, pp. 897–
900.

[47] A. M. Canterla and M. H. Johnsen, “Optimized Feature Extraction
and HMMs in Subword Detectors,” in Proc. Interspeech, 2011, pp.
2397–2400.

[48] A. M. Canterla and M. H. Johnsen, “Minimum Detection Error Train-
ing of Subword Detectors,” in Proc. ASRU, 2011, pp. 506–5011.

[49] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley,
2nd edition, 2001.

[50] K. Fukunaga, Introduction to statistical pattern recognition, Academic
Press Professional, Inc., 2nd edition, 1990.

[51] C.-H. Lee and Q. Huo, “On adaptive decision rules and decision pa-
rameter adaptation for automatic speech recognition,” in Proc. IEEE,
2000, pp. 1241–1269.

[52] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,”
Journal of the Acoustical Society of America, vol. 87, no. 4, pp. 1738–
1752, 1990.

[53] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A
Guide to Theory, Algorithm, and System Development, Prentice Hall
PTR, 2001.

[54] R. Schwartz and Y.-L. Chow, “The N-best algorithms: an efficient and
exact procedure for finding the N most likely sentence hypotheses,” in
Proc. ICASSP, Apr. 1990, pp. 81 –84 vol.1.

[55] S. Davis and P. Mermelstein, “Comparison of parametric represen-
tations for monosyllabic word recognition in continuously spoken sen-
tences,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. 28,
no. 4, pp. 357 – 366, Aug. 1980.

[56] N. Malayath and H. Hermansky, “Data-driven spectral basis functions
for automatic speech recognition,” Speech Communication, vol. 40, no.
4, pp. 449–466, 2003.

[57] S. Furui, “Speaker-independent isolated word recognition using dy-
namic features of speech spectrum,” IEEE Trans. Acoustics, Speech
and Signal Processing, vol. 34, no. 1, pp. 52 – 59, feb 1986.

118 Bibliography

[58] J. Frankel, M Wester, and S. King, “Articulatory feature recognition
using dynamic Bayesian networks,” Computer Speech and Language,
vol. 21, no. 4, pp. 620–640, October 2007.

[59] C. Ma, Y. Tsao, and C.-H. Lee, “A study on detection based automatic
speech recognition,” in Proc. Interspeech, 2006.

[60] C.-H. Lee, “A tutorial on speaker and speech verification,” in Proc.
NORSIG, 1998, number 9-16.

[61] S. G. Pettersen, M. H. Johnsen, and T. A. Myrvoll, “Task independent
speech verification using SB-MVE trained phone models,” in Proc.
Robust2004, 2004, number 10.

[62] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond Accuracy, F-
Score and ROC: A Family of Discriminant Measures for Performance
Evaluation,” AI 2006: Advances in Artificial Intelligence, pp. 1015–
1021, 2006.

[63] A. Martin, G. Doddington, et al., “The det curve in assessment of
detection task performance,” in Proc. Eurospeech, 1997, pp. 1895–1898.

[64] Carla Lopes and Fernando Perdigo, “Improved performance evaluation
of speech event detectors,” in Proc. Interspeech, 2006.

[65] Ø. Birkenes, A Framework for Speech Recognition using Logistic Re-
gression, Ph.D. thesis, Norwegian University of Science and Technol-
ogy, Faculty of Information Technology, Mathematics and Electrical
Engineering, 2007.

[66] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes,” in Proc. NIPS,
2001, number 14.

[67] G. Bouchard and B. Triggs, “The trade-off between generative and
discriminative classifiers,” in Proc. Computational Statistics, 2004, pp.
721–728.

[68] P. Liang and M. I. Jordan, “An asymptotic analysis of generative,
discriminative, and pseudolikelihood estimators,” in Proc. ICML, 2008,
pp. 584–591.

[69] Ralf Schlüter, Wolfgang Macherey, et al., “Comparison of discrimina-
tive training criteria and optimization methods for speech recognition,”
Speech Communication, vol. 34, no. 3, pp. 287 – 310, 2001.

Bibliography 119

[70] X. He and L. Deng, Discriminative Learning for Speech Recognition:
Theory and Practice, Synthesis Lectures on Speech and Audio Process-
ing. Morgan & Claypool Publishers, 2008.

[71] J. Keshet, C.-C. Cheng, et al., “Direct error rate minimization of
hidden markov models,” in Proc. Interspeech, 2011, pp. 449–452.

[72] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. Neural
Networks, 1993, pp. 586–591.

[73] E. McDermott, Discriminative Training for Speech Recognition, Ph.D.
thesis, Waseda University, 1997.

[74] E. McDermott, T. Hazen, et al., “Discriminative training for large-
vocabulary speech recognition using minimum classification error,”
IEEE Trans. Audio, Speech, and Language Processing, vol. 15, no. 1,
pp. 203 –223, 2007.

[75] M. Gibson and T. Hain, “Error approximation and minimum phone
error acoustic model estimation,” IEEE Trans. Audio, Speech, and
Language Processing, vol. 18, pp. 1269–1279, August 2010.

[76] B. Launay, O. Siohan, et al., “Towards knowledge-based features for
HMM based large vocabulary automatic speech recognition,” in Proc.
ICASSP, 2002, vol. 1, pp. I–817 – I–820 vol.1.

[77] P. Niyogi and M. M. Sondhi, “Detecting stop consonants in continuous
speech,” vol. 111, no. 2, pp. 1063–1076, Feb. 2002.

[78] K.K. Paliwal, “Lexicon-building methods for an acoustic sub-word
based speech recognizer,” in Proc. ICASSP, Apr. 1990, pp. 729 –732
vol.2.

[79] M. Ostendorf, “Moving beyond the ‘beads-on-a-string’ model of
speech,” in Proc. ASRU, 1999, pp. 79–84.

[80] K. Livescu, O. Çetin, et al., “Articulatory feature-based methods for
acoustic and audio-visual speech recognition: Summary from the 2006
JHU Summer Workshop,” in Proc. ICASSP, Honolulu, April 2007.

[81] I-F. Chen and H.-M. Wang, “An investigation of phonological feature
systems used in detection-based ASR,” in Proc. ISCSLP, 2008.

120 Bibliography

[82] N. Chomsky and M. Halle, The Sound Pattern of English, Harper &
Row, New York, 1968.

[83] S. King and P. Taylor, “Detection of phonological features in contin-
uous speech using neural networks,” Computer Speech and Language,
vol. 14(4), pp. 333–353, 2000.

[84] I-F. Chen and H.-M. Wang, “Articulatory feature asynchrony analysis
and compensation in detection-based ASR,” in Proc. Interspeech, 2009.

[85] K. Erier and G. Freeman, “Using articulatory features for speech recog-
nition,” in Proc. Communications, Computers, and Signal Processing,
may 1995, pp. 562–566.

[86] S. M. Siniscalchi, Ø. Birkenes, et al., “Joint optimization of event
detectors and evidence merger for continuous phone recognition,” in
Proc. SPKD, 2008.

[87] S. M. Siniscalchi, T. Svendsen, and C.-H. Lee, “A penalized logistic
regression approach to detection based phone classification,” in Proc.
Interspeech, 2008, pp. 2390–2393.

[88] H. Bourlard and N. Morgan, “Continuous speech recognition by con-
nectionist statistical methods,” IEEE Trans. Neural Networks, vol. 4,
no. 6, pp. 893 –909, Nov. 1993.

[89] J. Morris and E. Fosler-Lussier, “Conditional random fields for inte-
grating local discriminative classifiers,” IEEE Trans. Audio, Speech,
and Language Processing, vol. 16, no. 3, pp. 617–628, March 2008.

[90] J. S. Garofolo et al., “DARPA TIMIT acoustic phonetic continuous
speech corpus CDROM,” 1993.

[91] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition
using hidden Markov models,” IEEE Trans. Acoustics, Speech and
Signal Processing, vol. 37, no. 11, pp. 1641–1648, 1989.

[92] S. Young, D. Kershaw, et al., The HTK Book Version 3.4, Cambridge
University Press, 2006.

[93] E. McDermott and S. Katagiri, “String-level MCE for continuous
phoneme recognition,” in Proc. Eurospeech, 1997, pp. 123–126.

[94] S. A. Schane, Generative phonology, Prentice-Hall Englewood Cliffs,
N.J., 1973.

Bibliography 121

[95] V. Fromkin and R. Rodman, An Introduction to Language, 5th Ed.,
Harcourt Brace College Publishers, Fort Worth, TX, 1993.

